Sample records for archean banded iron

  1. Updating the Geologic Barcodes for South China: Discovery of Late Archean Banded Iron Formations in the Yangtze Craton.

    PubMed

    Ye, Hui; Wu, Chang-Zhi; Yang, Tao; Santosh, M; Yao, Xi-Zhu; Gao, Bing-Fei; Wang, Xiao-Lei; Li, Weiqiang

    2017-11-08

    Banded iron formations (BIFs) in Archean cratons provide important "geologic barcodes" for the global correlation of Precambrian sedimentary records. Here we report the first finding of late Archean BIFs from the Yangtze Craton, one of largest Precambrian blocks in East Asia with an evolutionary history of over 3.3 Ga. The Yingshan iron deposit at the northeastern margin of the Yangtze Craton, displays typical features of BIF, including: (i) alternating Si-rich and Fe-rich bands at sub-mm to meter scales; (ii) high SiO 2  + Fe 2 O 3total contents (average 90.6 wt.%) and Fe/Ti ratios (average 489); (iii) relative enrichment of heavy rare earth elements and positive Eu anomalies (average 1.42); (iv) and sedimentary Fe isotope compositions (δ 56 Fe IRMM-014 as low as -0.36‰). The depositional age of the BIF is constrained at ~2464 ± 24 Ma based on U-Pb dating of zircon grains from a migmatite sample of a volcanic protolith that conformably overlied the Yingshan BIF. The BIF was intruded by Neoproterozoic (805.9 ± 4.7 Ma) granitoids that are unique in the Yangtze Craton but absent in the North China Craton to the north. The discovery of the Yingshan BIF provides new constraints for the tectonic evolution of the Yangtze Craton and has important implications in the reconstruction of Pre-Nuna/Columbia supercontinent configurations.

  2. Benthic iron cycling in a high-oxygen environment: Implications for interpreting the Archean sedimentary iron isotope record.

    PubMed

    McCoy, V E; Asael, D; Planavsky, N

    2017-09-01

    The most notable trend in the sedimentary iron isotope record is a shift at the end of the Archean from highly variable δ 56 Fe values with large negative excursions to less variable δ 56 Fe values with more limited negative values. The mechanistic explanation behind this trend has been extensively debated, with two main competing hypotheses: (i) a shift in marine redox conditions and the transition to quantitative iron oxidation; and (ii) a decrease in the signature of microbial iron reduction in the sedimentary record because of increased bacterial sulfate reduction (BSR). Here, we provide new insights into this debate and attempt to assess these two hypotheses by analyzing the iron isotope composition of siderite concretions from the Carboniferous Mazon Creek fossil site. These concretions precipitated in an environment with water column oxygenation, extensive sediment pile dissimilatory iron reduction (DIR) but limited bacterial sulfate reduction (BSR). Most of the concretions have slightly positive iron isotope values, with a mean of 0.15‰ and limited iron isotope variability compared to the Archean sedimentary record. This limited variability in an environment with high DIR and low BSR suggests that these conditions alone are insufficient to explain Archean iron isotope compositions. Therefore, these results support the idea that the unusually variable and negative iron isotope values in the Archean are due to dissimilatory iron reduction (DIR) coupled with extensive water column iron cycling. © 2017 John Wiley & Sons Ltd.

  3. The origin or the Archean Jardine iron formation-hosted lode gold deposit. Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping, Liu.

    1992-06-09

    While there is considerable controversy concerning the origin of greenstone-hosted lode gold deposits of Archean age, there is a general consensus that these deposits are epigenetic. By contrast, iron formation-hosted lode gold deposits of Archean or Proterozoic age are considered either epigenetic or syngenetic. At least three genetic models have been proposed for these gold deposits: a syngenetic model involving simultaneous deposition of gold and the iron formation; an epigenetic model involving a later introduction of gold, arsenic, and sulfur into the iron formation; and a multistage model involving primary concentration of gold during deposition of iron formation followed bymore » remobilization and reconcentration of gold during later events. The Jardine district is one of only three Archean lode gold districts in the United States that have reserves of greater than 300,000 ounces of gold. The other two are the South Pass-Atlantic City district, Wyoming, and the Ropes mine, Michigan. The fact that two of the three districts are in the Wyoming province suggests that the province might be an Archean gold province similar to Archean provinces in Canada. Placer gold was discovered near Jardine in 1866, and gold quartz veins were mined in the 1880's at Mineral Hill. Exploration by the Jardine Joint Venture has concentrated on the Jardine area, including Crevasse Mountain, where minor lode gold mineralization occurs in quartz-biotite schists. In order to complement previous geochemical, mineralogical, petrological and structural studies, the present study has concentrated on fluid inclusion, stable isotope, and electron microprobe studies with the intention of determining: (1) the source of the ore-forming fluids and gold, and (2) the genetic relationship between gold mineralization and iron formation, alteration and metamorphism.« less

  4. The origin or the Archean Jardine iron formation-hosted lode gold deposit. Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping, Liu

    1992-06-09

    While there is considerable controversy concerning the origin of greenstone-hosted lode gold deposits of Archean age, there is a general consensus that these deposits are epigenetic. By contrast, iron formation-hosted lode gold deposits of Archean or Proterozoic age are considered either epigenetic or syngenetic. At least three genetic models have been proposed for these gold deposits: a syngenetic model involving simultaneous deposition of gold and the iron formation; an epigenetic model involving a later introduction of gold, arsenic, and sulfur into the iron formation; and a multistage model involving primary concentration of gold during deposition of iron formation followed bymore » remobilization and reconcentration of gold during later events. The Jardine district is one of only three Archean lode gold districts in the United States that have reserves of greater than 300,000 ounces of gold. The other two are the South Pass-Atlantic City district, Wyoming, and the Ropes mine, Michigan. The fact that two of the three districts are in the Wyoming province suggests that the province might be an Archean gold province similar to Archean provinces in Canada. Placer gold was discovered near Jardine in 1866, and gold quartz veins were mined in the 1880`s at Mineral Hill. Exploration by the Jardine Joint Venture has concentrated on the Jardine area, including Crevasse Mountain, where minor lode gold mineralization occurs in quartz-biotite schists. In order to complement previous geochemical, mineralogical, petrological and structural studies, the present study has concentrated on fluid inclusion, stable isotope, and electron microprobe studies with the intention of determining: (1) the source of the ore-forming fluids and gold, and (2) the genetic relationship between gold mineralization and iron formation, alteration and metamorphism.« less

  5. Archean deep-water depositional system: interbedded and banded iron formation and clastic turbidites in the Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Zentner, Danielle; Lowe, Donald

    2013-04-01

    The 3.23 billion year old sediments in the Barberton greenstone belt, South Africa include some of the world's oldest known deep-water deposits. Unique to this locality are turbidites interbedded with banded iron formation (BIF) and banded ferruginous chert (BFC). This unusual association may provide clues for reconstructing Archean deep-water depositional settings. For our study we examined freshly drilled core in addition to measuring ~500 m of outcrop exposures along road cuts. The stacking pattern follows an overall BIF to BFC to amalgamated turbidite succession, although isolated turbidites do occur throughout the sequence. The turbidites are predominately massive, and capped with thin, normally graded tops that include mud rip-ups, chert plates, and ripples. The lack of internal stratification and the amalgamated character suggests emplacement by surging high-density turbidity currents. Large scours and channels are absent and bedding is tabular: the flows were collapsing with little turbulence reaching the bed. In contrast, field evidence indicates the BIF and BFC most likely precipitated directly out of the water column. Preliminary interpretations indicate the deposits may be related to a pro-deltaic setting. (1) Deltaic systems can generate long-lived, high volume turbidity currents. (2) The contacts between the BIF, BFC, and turbidite successions are gradual and inter-fingered, possibly representing lateral facies relationships similar to modern pro-delta environments. (3) Putative fan delta facies, including amalgamated sandstone and conglomerate, exist stratigraphically updip of the basinal sediments.

  6. Phosphogenesis in the 2460 and 2728 million-year-old banded iron formations as evidence for biological cycling of phosphate in the early biosphere.

    PubMed

    Li, Yi-Liang; Sun, Si; Chan, Lung S

    2012-01-01

    The banded iron formation deposited during the first 2 billion years of Earth's history holds the key to understanding the interplay between the geosphere and the early biosphere at large geological timescales. The earliest ore-scale phosphorite depositions formed almost at ∼2.0-2.2 billion years ago bear evidence for the earliest bloom of aerobic life. The cycling of nutrient phosphorus and how it constrained primary productivity in the anaerobic world of Archean-Palaeoproterozoic eons are still open questions. The controversy centers about whether the precipitation of ultrafine ferric oxyhydroxide due to the microbial Fe(II) oxidation in oceans earlier than 1.9 billion years substantially sequestrated phosphate, and whether this process significantly limited the primary productivity of the early biosphere. In this study, we report apatite radial flowers of a few micrometers in the 2728 million-year-old Abitibi banded iron formation and the 2460 million-year-old Kuruman banded iron formation and their similarities to those in the 535 million-year-old Lower Cambrian phosphorite. The lithology of the 535 Million-year-old phosphorite as a biosignature bears abundant biomarkers that reveal the possible similar biogeochemical cycling of phosphorus in the Later Archean and Palaeoproterozoic oceans. These apatite radial flowers represent the primary precipitation of phosphate derived from the phytoplankton blooms in the euphotic zones of Neoarchean and Palaoeproterozoic oceans. The unbiased distributions of the apatite radial flowers within sub-millimeter bands do not support the idea of an Archean Crisis of Phosphate. This is the first report of the microbial mediated mineralization of phosphorus before the Great Oxidation Event when the whole biosphere was still dominated by anaerobic microorganisms.

  7. Biologically recycled continental iron is a major component in banded iron formations

    PubMed Central

    Li, Weiqiang; Beard, Brian L.; Johnson, Clark M.

    2015-01-01

    Banded iron formations (BIFs) record a time of extensive Fe deposition in the Precambrian oceans, but the sources and pathways for metals in BIFs remain controversial. Here, we present Fe- and Nd-isotope data that indicate two sources of Fe for the large BIF units deposited 2.5 billion y ago. High-εNd and -δ56Fe signatures in some BIF samples record a hydrothermal component, but correlated decreases in εNd- and δ56Fe values reflect contributions from a continental component. The continental Fe source is best explained by Fe mobilization on the continental margin by microbial dissimilatory iron reduction (DIR) and confirms for the first time, to our knowledge, a microbially driven Fe shuttle for the largest BIFs on Earth. Detailed sampling at various scales shows that the proportions of hydrothermal and continental Fe sources were invariant over periods of 100–103 y, indicating that there was no seasonal control, although Fe sources varied on longer timescales of 105–106 y, suggesting a control by marine basin circulation. These results show that Fe sources and pathways for BIFs reflect the interplay between abiologic (hydrothermal) and biologic processes, where the latter reflects DIR that operated on a basin-wide scale in the Archean. PMID:26109570

  8. Biologically recycled continental iron is a major component in banded iron formations.

    PubMed

    Li, Weiqiang; Beard, Brian L; Johnson, Clark M

    2015-07-07

    Banded iron formations (BIFs) record a time of extensive Fe deposition in the Precambrian oceans, but the sources and pathways for metals in BIFs remain controversial. Here, we present Fe- and Nd-isotope data that indicate two sources of Fe for the large BIF units deposited 2.5 billion y ago. High-εNd and -δ(56)Fe signatures in some BIF samples record a hydrothermal component, but correlated decreases in εNd- and δ(56)Fe values reflect contributions from a continental component. The continental Fe source is best explained by Fe mobilization on the continental margin by microbial dissimilatory iron reduction (DIR) and confirms for the first time, to our knowledge, a microbially driven Fe shuttle for the largest BIFs on Earth. Detailed sampling at various scales shows that the proportions of hydrothermal and continental Fe sources were invariant over periods of 10(0)-10(3) y, indicating that there was no seasonal control, although Fe sources varied on longer timescales of 10(5)-10(6) y, suggesting a control by marine basin circulation. These results show that Fe sources and pathways for BIFs reflect the interplay between abiologic (hydrothermal) and biologic processes, where the latter reflects DIR that operated on a basin-wide scale in the Archean.

  9. The formation of magnetite in the early Archean oceans

    NASA Astrophysics Data System (ADS)

    Li, Y. L.

    2017-12-01

    Banded iron formations are iron- and silica-rich chemical sedimentary rocks that were deposited throughout much of the Precambrian. It is generally accepted that biological oxidation of dissolved Fe(II) led to the precipitation of a ferric oxyhydroxide phase, such as ferrihydrite, in the marine photic zone. Upon burial, ferrihydrite was either transformed into hematite through dehydration or it was reduced to magnetite via biological or abiological Fe(III) reduction coupled to the oxidation of buried microbial biomass. However, it has always been intriguing as to why the oldest BIFs are characteristically magnetite-rich, while BIFs formed after the Neoarchean are dominated by hematite. Here, we propose that some magnetite in early Archean BIF could have precipitated directly from seawater through the reaction of settling ferrihydrite and hot, Fe(II)-rich hydrothermal fluids that vented directly into the photic zone. We conducted experiments that showed the reaction of Fe(II) with biogenic ferric iron mats under strict anoxic conditions led to the formation of a metastable green rust phase that within hours transformed into magnetite at relatively high temperatures. At lower temperatures magnetite does not form. Our model further posits that with the progressive cooling of the Earth's oceans through Archean, the above reaction shut off, and magnetite was subsequently restricted to reactions associated with diagenesis and metamorphism.

  10. Experimental constraints on reconstruction of Archean seawater Ni isotopic composition from banded iron formations

    NASA Astrophysics Data System (ADS)

    Wang, Shui-Jiong; Wasylenki, Laura E.

    2017-06-01

    The Ni isotopic systematics in banded iron formations (BIFs) potentially recorded the Ni isotopic composition of ancient seawater over Precambrian geological history. However, the utility of BIFs as proxies requires quantitative knowledge of how Ni isotopes fractionated as dissolved Ni was initially incorporated into iron-rich sediments and how diagenesis may have affected the Ni isotopic systematics. Here we report results of synthesis experiments to investigate the behavior of Ni isotopes during Ni coprecipitation with ferrihydrite and then transformation of ferrihydrite to hematite. Ferrihydrite coprecipitation experiments at neutral pH demonstrated that the dissolved Ni was variably heavier than coprecipitated Ni (likely a mixture of surface-adsorbed and structurally incorporated Ni), with the isotope fractionation becoming larger as the fraction of Ni associated with solid increased (Δ60/58Nisolution-solid = +0.08 to +0.50‰). Further experiments at lower pH (3.7-6.7), in which structurally incorporated Ni likely dominated in solids, documented a decrease in Δ60/58Nisolution-solid from +0.44‰ to -0.18‰ as the pH decreased. The negative value for Δ60/58Nisolution-solid at low pH indicates the enrichment of heavier isotopes in incorporated Ni relative to dissolved and adsorbed Ni, possibly as a result of the presence of a small amount of tetrahedral Ni2+ in addition to octahedral Ni2+ in the ferrihydrite structure. The results of the ferrihydrite experiments thus reflect equilibrium isotope fractionation between three pools of Ni, with δ60/58Ni values in the order of incorporated > dissolved > adsorbed. Hematite was synthesized by transformation of Ni-bearing ferrihydrite in aqueous solution at ∼100 °C. A significant amount of Ni (up to 60%) was released (desorbed) from solids into solutions as pH dropped from ∼7 to 4.5-5.5 upon phase transformation. Rinsing of the synthesized hematite in 2 M acetic acid released only very small amounts of Ni (<4

  11. Phosphogenesis in the 2460 and 2728 million-year-old banded iron formations as evidence for biological cycling of phosphate in the early biosphere

    PubMed Central

    Li, Yi-Liang; Sun, Si; Chan, Lung S

    2013-01-01

    The banded iron formation deposited during the first 2 billion years of Earth's history holds the key to understanding the interplay between the geosphere and the early biosphere at large geological timescales. The earliest ore-scale phosphorite depositions formed almost at ∼2.0–2.2 billion years ago bear evidence for the earliest bloom of aerobic life. The cycling of nutrient phosphorus and how it constrained primary productivity in the anaerobic world of Archean–Palaeoproterozoic eons are still open questions. The controversy centers about whether the precipitation of ultrafine ferric oxyhydroxide due to the microbial Fe(II) oxidation in oceans earlier than 1.9 billion years substantially sequestrated phosphate, and whether this process significantly limited the primary productivity of the early biosphere. In this study, we report apatite radial flowers of a few micrometers in the 2728 million-year-old Abitibi banded iron formation and the 2460 million-year-old Kuruman banded iron formation and their similarities to those in the 535 million-year-old Lower Cambrian phosphorite. The lithology of the 535 Million-year-old phosphorite as a biosignature bears abundant biomarkers that reveal the possible similar biogeochemical cycling of phosphorus in the Later Archean and Palaeoproterozoic oceans. These apatite radial flowers represent the primary precipitation of phosphate derived from the phytoplankton blooms in the euphotic zones of Neoarchean and Palaoeproterozoic oceans. The unbiased distributions of the apatite radial flowers within sub-millimeter bands do not support the idea of an Archean Crisis of Phosphate. This is the first report of the microbial mediated mineralization of phosphorus before the Great Oxidation Event when the whole biosphere was still dominated by anaerobic microorganisms. PMID:23404127

  12. High-grade iron ore at Windarling, Yilgarn Craton: a product of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy

    NASA Astrophysics Data System (ADS)

    Angerer, Thomas; Hagemann, Steffen G.; Danyushevsky, Leonid

    2013-08-01

    Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda-Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite-martite-goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in `least-altered' hematite-magnetite-metachert-BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe-Ca-Mg-Ni-Co-P-REE metasomatism that produced local Ni-REE-rich Fe-dolomite-magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle-ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni-Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite-hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)-Fe-dolomite-quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides

  13. Identification of an Archean marine oxygen oasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riding, Dr Robert E; Fralick, Dr Philip; Liang, Liyuan

    2014-01-01

    The early Earth was essentially anoxic. A number of indicators suggest the presence of oxygenic photosynthesis 2700 3000 million years (Ma) ago, but direct evidence for molecular oxygen (O2) in seawater has remained elusive. Here we report rare earth element (REE) analyses of 2800 million year old shallowmarine limestones and deep-water iron-rich sediments at Steep Rock Lake, Canada. These show that the seawater from which extensive shallow-water limestones precipitated was oxygenated, whereas the adjacent deeper waters where iron-rich sediments formed were not. We propose that oxygen promoted limestone precipitation by oxidative removal of dissolved ferrous iron species, Fe(II), to insolublemore » Fe(III) oxyhydroxide, and estimate that at least 10.25 M oxygen concentration in seawater was required to accomplish this at Steep Rock. This agrees with the hypothesis that an ample supply of dissolved Fe(II) in Archean oceans would have hindered limestone formation. There is no direct evidence for the oxygen source at Steep Rock, but organic carbon isotope values and diverse stromatolites in the limestones suggest the presence of cyanobacteria. Our findings support the view that during the Archean significant oxygen levels first developed in protected nutrient-rich shallow marine habitats. They indicate that these environments were spatially restricted, transient, and promoted limestone precipitation. If Archean marine limestones in general reflect localized oxygenic removal of dissolved iron at the margins of otherwise anoxic iron-rich seas, then early oxygen oases are less elusive than has been assumed.« less

  14. Decoupling of Neoarchean sulfur sources recorded in Algoma-type banded iron formation

    NASA Astrophysics Data System (ADS)

    Diekrup, David; Hannington, Mark D.; Strauss, Harald; Ginley, Stephen J.

    2018-05-01

    Neoarchean Algoma-type banded iron formations (BIFs) are widely viewed as direct chemical precipitates from proximal volcanic-hydrothermal vents. However, a systematic multiple sulfur isotope study of oxide-facies BIF from a type locality in the ca. 2.74 Ga Temagami greenstone belt reveals mainly bacterial turnover of atmospheric elemental sulfur in the host basin rather than deposition of hydrothermally cycled seawater sulfate or sulfur from direct volcanic input. Trace amounts of chromium reducible sulfur that were extracted for quadruple sulfur isotope (32S-33S-34S-36S) analysis record the previously known mass-independent fractionation of volcanic SO2 in the Archean atmosphere (S-MIF) and biological sulfur cycling but only minor contributions from juvenile sulfur, despite the proximity of volcanic sources. We show that the dominant bacterial metabolisms were iron reduction and sulfur disproportionation, and not sulfate reduction, consistent with limited availability of organic matter and the abundant ferric iron deposited as Fe(OH)3. That sulfur contained in the BIF was not a direct volcanic-hydrothermal input, as expected, changes the view of an important archive of the Neoarchean sulfur cycle in which the available sulfur pools were strongly decoupled and only species produced photochemically under anoxic atmospheric conditions were deposited in the BIF-forming environment.

  15. Extreme Hafnium Values in Archean Banded Iron Formations: Evidence for Sedimentary Lu/Hf Fractionation at 3.2 Ga or Diagenesis?

    NASA Astrophysics Data System (ADS)

    Foster, I. S.; Agranier, A.; Heubeck, C. E.; Köhler, I.; Homann, M.; Tripati, A. K.; Nonnotte, P.; Ponzevera, E.; Lalonde, S.

    2017-12-01

    The emergence of continental crust above sea level in the early Precambrian would have created the first terrestrial habitats, and initiated atmosphere-driven weathering of the continents, yet the history of continental emergence is largely unknown[1]. Precambrian chemical sediments, specifically Banded Iron Formation (BIF), appear to have sampled the Hf-Nd isotope composition of ancient seawater, and may preserve a historical record of the emergence of the continental landmass[2] via Lu/Hf fractionation induced by subaerial differential weathering[3,4]. However, paired Hf-Nd isotope data are available for only one BIF to date, indicating appreciable emerged continental landmass ca. 2.7 Ga[2]. Our work extends this record back into the Eo- and Meso-Archean using samples of 3.8 Ga BIF from Isua, Greenland, and 3.2 Ga BIF from the Moodies Group, S. Africa. Isua samples appear to have been altered by amphibolite-grade metamorphism, however Moodies Group samples appear primary, having experienced significantly lower metamorphic grades. Moodies samples appear to retain their primary seawater signatures, however, their range of ˜Hf(i) values, from -54.6 to +40.7, is among the most extreme ever reported. Such extreme values may be indicative of one of several possibilities: unusual and intense sedimentary Lu/Hf fractionation during the Mesoarchean relative to today, sampling of a continuum of compositions from two sources with distinct Hf-compositions, or the result of early diagenetic processes occurring soon after the deposition of the Moodies Group BIF. These results suggest that interpretation of ˜Hf and ˜Nd data from BIF is not as straightforward as previously suggested[2], and positive ˜Hf values are not necessarily indicative of emerged continental crust. [1] Flament et al. (2013), Precambrian Research, 229, 177-188. [2] Veihmann et al. (2014), Geology, 42, 115-118. [3] Bayon et al. (2006), Geology, 34, 433-436. [4] Vervoort et al. (2011), Geochimica et

  16. Geochemistry of precambrian carbonates. II. Archean greenstone belts and Archean sea water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veizer, J.; Hoefs, J.; Lowe, D.R.

    1989-04-01

    Carbonate rocks with geological attributes of marine sediments are a minor component of the Archean greenstone belts. Despite their relative scarcity, these rocks are important because they record chemical and isotopic properties of coeval oceans. The greenstones containing such carbonates appear to cluster at {approximately}2.8 {plus minus} 0.2 and {approximately}3.5 {plus minus} 0.1 Ga ago. The samples for the younger group are from the Abitibi, Yellowknife, Wabigoon, Michipicoten and Uchi greenstone belts of Canada and the Upper Greenstones of Zimbabwe. The older group includes the Swaziland Supergroup of South Africa, Warrawoona Group of Australia and the Sargur marbles of India.more » Mineralogically, the carbonates of the younger greenstones are mostly limestones and of the older ones, ferroan dolomites (ankerites); the latter with some affinities to hydrothermal carbonates. In mineralized areas with iron ores, the carbonate minerals are siderite {plus minus} ankerite, irrespective of the age of the greenstones. Iron-poor dolomites represent a later phase of carbonate generation, related to post-depositional tectonic faulting. The original mineralogy of limestone sequences appears to have been an Sr-rich aragonite. The Archean carbonates yield near-mantle Sr isotopic values, with ({sup 87}Sr/{sup 86}Sr){sub o} of 0.7025 {plus minus} 0.0015 and 0.7031 {plus minus} 0.0008 for younger and older greenstones, respectively. The mineralogical and chemical attributes of Archean carbonates are consistent with the proposition that the composition of the coeval oceans may have been buffered by a pervasive interaction with the mantle, that is, with the oceanic crust and the coeval ubiquitous volcanosedimentary piles derived from mantle sources.« less

  17. Reconciling atmospheric temperatures in the early Archean

    NASA Astrophysics Data System (ADS)

    Pope, E. C.; Rosing, M.; Bird, D. K.; Albarede, F.

    2012-12-01

    Average surface temperatures of Earth in the Archean remain unresolved despite decades of diverse approaches to the problem. As in the present, early Earth climates were complex systems dependent on many variables. With few constraints on such variables, climate models must be relatively simplistic, and consider only one or two factors that drive Archean climate (e.g. a fainter young sun, a low albedo, the extent and effect of cloud cover, or the presence and abundance of a wide array of greenhouse and icehouse gasses). Compounded on the limitations of modeling is the sparse and often ambiguous Archean rock record. The goal of this study is to compile and reconcile Archean geologic and geochemical features that are in some way controlled by surface temperature and/or atmospheric composition, so that at the very least paleoclimate models can be checked by physical limits. Data used to this end include the oxygen isotope record of chemical sediments and ancient ocean crust, chemical equilibria amongst primary phases in banded iron formations (BIFs), sedimentary features indicative of temperate or glacial environments, and paleosol indicators of atmospheric CO2. Further, we explore the extent to which hydrogen isotopes contribute to the geologic record as a signal for glaciations, continental growth and atmospheric methane levels. Oceanic serpentinites and subduction-related volcanic and hydrothermal environments obtain their hydrogen isotope signature from seawater, and thus may be used to calculate secular variation in δDSEAWATER which may fluctuate significantly due to hydrogen escape, continental growth and large-scale glaciation events. Further, ancient records of low-δD meteoric fluids signal both cooler temperatures and the emergence of large continents (increasing the effects of continental weathering on climate). Selective alteration of δD in Isua rocks to values of -130 to -100‰ post-dates ca. 3.55Ga Ameralik dikes, but may be associated with a poorly

  18. Testing Timescales for Rhythms Recorded in the 2.5 Ga Banded Iron Formation of the Dales Gorge Member (Brockman Iron Formation, Hamersley Group, Australia)

    NASA Astrophysics Data System (ADS)

    Hinnov, L. A.; de Oliveira Carvalho Rodrigues, P.; Franco, D.

    2017-12-01

    The classic, Superior-type banded iron formation (BIF) of the Precambrian Dales Gorge Member (DGM) of the Brockman Iron Formation, Hamersley Basin, Western Australia consists of a succession of micro- (millimeter-scale) and meso- (centimeter to decimeter-scale) bands of primarily iron-silica chemical sediment alternations, separated into macro- (meter to decameter-scale) bands by shales (1). Here, we present a time-frequency analysis of a gray-scale scan of the DGM "type section core" Hole 47A with small contributions from Hole EC10 (1) to provide a comprehensive characterization of banding patterns and periodicity throughout the 140 m section. SHRIMP zircon ages (2) indicate that the DGM was deposited over approximately 30 myr during the Archean-Proterozoic transition just prior to the Great Oxidation Event. This suggests that the banding patterns recorded Milankovitch cycles, although with orbital-rotational parameters significantly different from present-day due to Earth's tidal dissipation and chaotic episodes in the Solar System since 2.5 Ga. Banding patterns change systematically within the formation in response to slowly varying environmental conditions, which have been interpreted previously to be related to sea level change and basin evolution (3). Researchers, including (2), have questioned the 30 myr duration, suggesting instead that the micro-bands may be annual in scale. This would indicate a much shorter duration of less than 150 kyr for the DGM. In an attempt to determine whether Milankovitch cycles could have generated the meso-band patterns, we present detailed studies of BIF0 and BIF12, which typify the marked changes in meso-banding along the section. Objective procedures are also applied, including ASM (4) and TIMEOPT (5) to test for a range of potential alternative timescales assuming orbital-rotational parameter values modeled for 2.5 Ga. References: (1) Trendall, A.K., Blockley, J.G., GSWA Ann. Rep. 1967, 48, 1968; (2) Trendall, A.K., et al

  19. Experimental Constraints on Reconstruction of Archean Seawater Ni Isotopic Composition from Banded Iron Formations

    NASA Astrophysics Data System (ADS)

    Wang, S.; Wasylenki, L.

    2016-12-01

    Ni isotope systematics in banded iron formations (BIFs) potentially recorded the Ni isotopic composition of ancient seawater during the Precambrian Eon[1]. The use of BIFs as seawater proxies requires knowing how Ni isotopes fractionated during initial incorporation into iron-rich sediments and during early diagenesis. We conducted experiments to investigate Ni isotope behavior during coprecipitation with ferrihydrite and transformation of ferrihydrite to hematite. Ferrihydrite synthesis at neutral pH demonstrated that dissolved Ni was variably heavier than coprecipitated Ni (Δ60/58Ni = +0.08 to +0.50 ‰), in contrast to the constant offset observed earlier during adsorption to pre-existing ferrihydrite[2]. Experiments at lower pH (<7) yielded negative values of Δ60/58Ni ( -0.18 ‰), suggesting enrichment in heavier isotopes of structurally incorporated Ni relative to dissolved and adsorbed Ni, possibly due to the presence of a small amount of highly fractionated tetrahedral Ni2+ in the ferrihydrite structure. We model our results as equilibrium fractionation among three pools of Ni with systematically varied proportions. We synthesized hematite by transforming Ni-bearing ferrihydrite in aqueous solution at 100 °C and observed significant Ni release from solids (up to 60 %) as pH dropped from 7 to 4.5 - 5.5 during phase transformation. Rinsing hematite with acetic acid released very little Ni (presumably surface-adsorbed) compared to the amounts remaining in solid residues (presumably incorporated). We infer that Δ60/58Ni values (-0.04 to +0.77 ‰) observed in hematite experiments likely reflect Rayleigh fractionation between incorporated and dissolved Ni. The final hematite was slightly lighter than the ferrihydrite had been (by 0.08 ‰), indicating that this phase transformation results in very limited change in Ni isotopic composition, given current analytical uncertainty of ± 0.09 ‰. [1] Wasylenki and Wang (2016) Goldschmidt; [2] Wasylenki et al

  20. The formation of magnetite in the early Archean oceans

    NASA Astrophysics Data System (ADS)

    Li, Yi-Liang; Konhauser, Kurt O.; Zhai, Mingguo

    2017-05-01

    Banded iron formations (BIFs) are iron- and silica-rich chemical sedimentary rocks that were deposited throughout much of the Precambrian. The biological oxidation of dissolved Fe(II) led to the precipitation of a ferric oxyhydroxide phase, such as ferrihydrite, in the marine photic zone. Upon burial, ferrihydrite was either transformed into hematite through dehydration or it was reduced to magnetite via biological or abiological Fe(III) reduction coupled to the oxidation of buried microbial biomass. However, it has always been intriguing as to why the oldest BIFs are characteristically magnetite-rich, while BIFs formed after the Neoarchean are dominated by hematite. Here, we propose that some magnetite in early Archean BIF could have precipitated directly from seawater through the reaction of settling ferrihydrite and hot, Fe(II)-rich hydrothermal fluids that existed in the deeper waters. We conducted experiments that showed the reaction of Fe(II) with biogenic ferric iron mats under strict anoxic conditions lead to the formation of a metastable green rust phase that within hours transformed into magnetite. Our model further posits that with the progressive cooling and oxidation of the Earth's oceans, the above reaction shuts off, and magnetite was subsequently restricted to reactions associated with diagenesis and metamorphism.

  1. Iron Reduction and Carbonate Precipitation by Shewanella oneidensis

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Tice, M. M.

    2011-12-01

    This study is to contribute to better understanding of how Archean microbes induced carbonate diagenesis in mats and stromatolites. Previous studies showed sulfate reduction, a common promoter of carbonate precipitation in modern mats[1], is likely to have been less effective in Archean mats in marine fluids lower in sulfate[2]. Alternatively, iron reduction produces far more alkalinity per unit carbon respired than sulfate reduction. Therefore, we hypothesize iron reduction can promote much more carbonate precipitation than sulfate reduction. Our study might also have some relevance to banded iron formation on which microbial iron reduction played a potential role[3]. To test our hypothesis, Shewanella oneidensis MR-1, a dissimilatory iron reducing bacterium will be cultured anaerobically (79%N2, 20%CO2 and 1%H2) in basal medium to trigger iron reduction. Lactate will be used as electron donor, and the electron acceptor will be fresh ferrihydrite. Culture medium will be added with various metal ions, such as Ca2+ and Mg2+, to obtain potential carbonate precipitate. Escherichia coli (with fumarate added as an electron acceptor) will be used to provide a comparison to live but non-iron- reduction cells. After 20 days incubation, precipitate will be collected, washed and identified by X-ray diffraction (XRD). Besides, iron reduction rate (ferrozine assay)[4], PH and amount of precipitate (carbonate and oxidize fractions)[5] will be measured over time to well understand how S. oneidensis drives carbonate precipitation.

  2. The melting of subducted banded iron formations

    NASA Astrophysics Data System (ADS)

    Kang, Nathan; Schmidt, Max W.

    2017-10-01

    Banded iron formations (BIF) were common shelf and ocean basin sediments 3.5-1.8 Ga ago. To understand the fate of these dense rocks upon subduction, the melting relations of carbonated BIF were determined in Fe-Ca-(Mg)-Si-C-O2 at 950-1400 °C, 6 and 10 GPa, oxidizing (fO2 = hematite-magnetite, HM) and moderately reducing (fO2 ∼CO2-graphite/diamond, CCO) conditions. Solidus temperatures under oxidizing conditions are 950-1025 °C with H2O, and 1050-1150 °C anhydrous, but 250-175 °C higher at graphite saturation (values at 6-10 GPa). The combination of Fe3+ and carbonate leads to a strong melting depression. Solidus curves are steep with 17-20 °C/GPa. Near-solidus melts are ferro-carbonatites with ∼22 wt.% FeOtot, ∼48 wt% CO2 and 1-5 wt.% SiO2 at fO2 ∼ HM and ∼49 wt.% FeOtot, ∼20 wt% CO2 and 19-25 wt.% SiO2 at fO2 ∼ CCO . At elevated subduction geotherms, as likely for the Archean, C-bearing BIF could melt out all carbonate around 6 GPa. Fe-rich carbonatites would rise but stagnate gravitationally near the slab/mantle interface until they react with the mantle through Fe-Mg exchange and partial reduction. The latter would precipitate diamond and yield Fe- and C-rich mantle domains, yet, Fe-Mg is expected to diffusively re-equilibrate over Ga time scales. We propose that the oldest subduction derived diamonds stem from BIF derived melts.

  3. Iron isotopes in ancient and modern komatiites: Evidence in support of an oxidised mantle from Archean to present

    NASA Astrophysics Data System (ADS)

    Hibbert, K. E. J.; Williams, H. M.; Kerr, A. C.; Puchtel, I. S.

    2012-03-01

    The mantle of the modern Earth is relatively oxidised compared to the initially reducing conditions inferred for core formation. The timing of the oxidation of the mantle is not conclusively resolved but has important implications for the timing of the development of the hydrosphere and atmosphere. In order to examine the timing of this oxidation event, we present iron isotope data from three exceptionally well preserved komatiite localities, Belingwe (2.7 Ga), Vetreny (2.4 Ga) and Gorgona (0.089 Ga). Measurements of Fe isotope compositions of whole-rock samples are complemented by the analysis of olivine, spinel and pyroxene separates. Bulk-rock and olivine Fe isotope compositions (δ57Fe) define clear linear correlations with indicators of magmatic differentiation (Mg#, Cr#). The mean Fe isotope compositions of the 2.7-2.4 Ga and 0.089 Ga samples are statistically distinct and this difference can be explained by greater extent of partial melting represented by the older samples and higher mantle ambient temperatures in the Archean and early Proterozoic relative to the present day. Significantly, samples of all ages define continuous positive linear correlations between bulk rock δ57Fe and V/Sc and δ57Fe and V, and between V/Sc and V with TiO2, providing evidence for the incompatible behaviour of V (relative to Sc) and of isotopically heavy Fe. Partial melting models calculated using partition coefficients for V at oxygen fugacities (fO2s) of 0 and + 1 relative to the fayalite-magnetite-quartz buffer (FMQ) best match the data arrays, which are defined by all samples, from late Archean to Tertiary. These data, therefore, provide evidence for komatiite generation under moderately oxidising conditions since the late Archean, and argue against a change in mantle fO2 concomitant with atmospheric oxygenation at ~ 2.4 Ga.

  4. Flow banding in basaltic pillow lavas from the Early Archean Hooggenoeg Formation, Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Robins, Brian; Sandstå, Nils Rune; Furnes, Harald; de Wit, Maarten

    2010-07-01

    Well-preserved pillow lavas in the uppermost part of the Early Archean volcanic sequence of the Hooggenoeg Formation in the Barberton Greenstone Belt exhibit pronounced flow banding. The banding is defined by mm to several cm thick alternations of pale green and a dark green, conspicuously variolitic variety of aphyric metabasalt. Concentrations of relatively immobile TiO2, Al2O3 and Cr in both varieties of lava are basaltic. Compositional differences between bands and variations in the lavas in general have been modified by alteration, but indicate mingling of two different basalts, one richer in TiO2, Al2O3, MgO, FeOt and probably Ni and Cr than the other, as the cause of the banding. The occurrence in certain pillows of blebs of dark metabasalt enclosed in pale green metabasalt, as well as cores of faintly banded or massive dark metabasalt, suggest that breakup into drops and slugs in the feeder channel to the lava flow initiated mingling. The inhomogeneous mixture was subsequently stretched and folded together during laminar shear flow through tubular pillows, while diffusion between bands led to partial homogenisation. The most common internal pattern defined by the flow banding in pillows is concentric. In some pillows the banding defines curious mushroom-like structures, commonly cored by dark, variolitic metabasalt, which we interpret as the result of secondary lateral flow due to counter-rotating, transverse (Dean) vortices induced by the axial flow of lava towards the flow front through bends, generally downward, in the tubular pillows. Other pillows exhibit weakly-banded or massive, dark, variolitic cores that are continuous with wedge-shaped apophyses and veins that intrude the flow banded carapace. These cores represent the flow of hotter and less viscous slugs of the dark lava type into cooled and stiffened pillows.

  5. Banded Iron Formations of the Cauê Formation, Quadrilátero Ferrífero Minas Gerais, Brazil: A novel pre-GOE record of biospheric evolution

    NASA Astrophysics Data System (ADS)

    Lee, B. K.; Tsikos, H.; Oliveira, E. P.; Lyons, T.

    2016-12-01

    The rise of atmospheric oxygen (O2) is a milestone in the history of life on Earth. Banded Iron Formations (BIFs) record major episodes of chemical sedimentation, while providing multiple lines of evidence for the environmental conditions present at the time of their deposition during the Archean and Paleoproterozoic. They are direct products of seawater redox, specifically of the balance between iron, sulfide, and oxygen availability. At the same, they are recorders of the broader isotopic and elemental compositions of seawater, which reflect diverse processes in the ocean and on land. In addition to their relevance to the history of environmental oxygen levels, BIFs also have enormous economic importance. BIFs from the Cauê Formation of the Minas Supergroup in the Quadrilátero Ferrífero (QF) ("Iron Quadrangle") are located on the southern edge of the São Francisco Craton. The Cauê Formation, a superior-type iron formation, is likely coeval with iron formations of the Transvaal and Hamersley basins. The geochemical properties of BIFs from the QF are poorly known, although previous studies suggest mild oxygenation of seawater at the depositional onset of the Cauê formation around 200 million years before the Great Oxidation Event (GOE) based on negative anomalies of Ce and Th/U ratios. The ultimate goal of this study is to evaluate environmental conditions proximal to the Archean-Paleoproterozoic boundary, but particularly prior to the GOE, as recorded in the Cauê Formation. Our drill core samples are unweathered and among the least altered materials available from the Itabira Group. These 197 samples cover the entire sequence of the Cauê Formation (dated at 2.65 Ga) as well as the overlying Gandarela Formation (2.4 Ga). We will look at the redox cycling of iron (Fe) and manganese (Mn) from these samples by analyzing variations on Fe and Mn concentrations as well as Fe isotope signatures that will potentially fingerprint the pathways of precipitation of

  6. Very early Archean crustal-accretion complexes preserved in the North Atlantic craton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutman, A.P.; Collerson, K.D.

    1991-08-01

    The North Atlantic craton contains very early Archean supracrustal rocks, orthogneisses, and massive ultramafic rocks. Most units of supracrustal rocks are dominated by mafic volcanic rocks, layered gabbros, and banded iron formations, bust some also contain abundant felsic volcanic-sedimentary rocks, quartzites, and marbles. Some quartzites contain detrital zircons derived from rocks identical in age to felsic volcanic-sedimentary rocks in these sequences (ca. 3800 Ma) and also from older (ca. 3850 Ma) sources. The presence of the ca. 3850 Ma detrital zircons suggests that the supracrustal units containing them were deposited on, or close to, ca. 3850 Ma sialic crust. Themore » massive ultramafic rocks have chemical affinities to upper mantle rocks. The voluminous suites of tonalitic gneisses are dominated by 3700-3730 Ma bodies that intrude the supracrustal sequences, but they also locally contain components with ages between 3820 and 3920 Ma. The diverse supracrustal units, upper mantle rocks, and {ge} 3820 Ma components in the gneisses were tectonically interleaved in very early Archean convergent plate boundaries, giving rise to accretion complexes. In the period 3700-3730 Ma, voluminous tonalitic magmas produced by partial melting of predominantly mafic rocks in the base of the accretion complexes were emplaced at higher levels, forming juvenile continental crust and leaving behind a refractory lower crustal to upper mantle substrate.« less

  7. Exploring Iron Silicate Precursors of Ancient Iron Formations through Rock Record, Laboratory and Field Analogue Investigations

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Rasmussen, B.; Muhling, J.; Benzerara, K.; Jezequel, D.; Cosmidis, J.; Templeton, A. S.

    2016-12-01

    In direct contrast to today's oceans, iron-rich chemical precipitates dominate the deep marine sedimentary record > 2.3 billion years ago. The deposition of these minerals resulted in massive iron formations and indicate that the ocean was previously ferruginous and largely anoxic. To precipitate and concentrate iron in the sediments, many hypotheses have centered on the oxidation of soluble Fe(II) to solid Fe(III)-oxyhydroxides; these ideas have stimulated extensive research using iron-oxidizing bacteria to produce Fe(III)-oxides and trace metal sorption experiments on Fe(III)-oxides, leading to inferences of trace metal availability and implications for enzymatic and microbial evolution as well as pO2 levels and seawater chemistry. However, recent discoveries of disseminated iron-silicate nanoparticles in early-silicifying chert indicate that iron-silicates may have instead been the primary precipitates from these Archean ferruginous oceans (Rasmussen et al, 2015). Considering the significant paradigm shift this discovery implies for interpretations of Archean elemental cycling, redox state and potential microbial metabolisms, we investigated these iron-silicate inclusions and their implications for ancient seawater chemistry in a multi-faceted approach using spectroscopic- and diffraction-based techniques. The crystal structure, Fe oxidation state and Fe coordination environment of iron-silicate nanoparticles have been interrogated using microscale X-ray absorption spectroscopy, TEM and nanoscale scanning transmission X-ray microscopy. To further explore the chemical and potential biological controls on iron-silicate formation, we have also performed laboratory experiments to mimic Archean seawater and precipitate iron-bearing silicate minerals under abiotic conditions and in the presence of iron-oxidizing bacteria. In a complementary study, sediments from a natural Archean analogue system were sampled to determine if iron-silicate minerals form in Mexican

  8. Availability of free oxygen in deep bottom water of some Archean-Early Paleoproterozoic ocean basins as derived from iron formation facies analyses

    NASA Astrophysics Data System (ADS)

    Beukes, N. J.; Smith, A.

    2013-12-01

    Archean to Early Paleoproterozoic ocean basins are commonly, although not exclusively, depicted as rather static systems; either permanently stratified with shallow mixed oxygenated water overlying anoxic deep water or with a totally anoxic water column. The anoxic water columns are considered enriched in dissolved ferrous iron derived from hydrothermal plume activity. These sourced deposition of iron formations through precipitation of mainly ferrihydrite via reaction with free oxygen in the stratified model or anaerobic iron oxidizing photoautotrophs in the anoxic model. However, both these models face a simple basic problem if detailed facies reconstructions of deepwater microbanded iron formations (MIFs) are considered. In such MIFs it is common that the deepest water and most distal facies is hematite rich followed shoreward by magnetite, iron silicate and siderite facies iron formation. Examples of such facies relations are known from jaspilitic iron formation of the ~3,2 Ga Fig Tree Group (Barberton Mountainland), ~ 2,95 Ga iron formations of the Witwatersrand-Mozaan basin and the ~2,5 Ga Kuruman Iron Formation, Transvaal Supergroup, South Africa. Facies relations of these MIFs with associated siliciclastics or carbonates also indicate that the upper water columns of the basins, down to below wave base, were depleted in iron favoring anoxic-oxic stratification rather than total anoxia. In the MIFs it can be shown that hematite in the distal facies represents the earliest formed diagenetic mineral; most likely crystallized from primary ferrihydrite. The problem is one of how ferrihydrite could have been preserved on the ocean floor if it was in direct contact with reducing ferrous deep bottom water. Rather dissolved ferrous iron would have reacted with ferrihydrite to form diagenetic magnetite. This dilemma is resolved if in the area of deepwater hematite MIF deposition, the anoxic ferrous iron enriched plume was detached from the basin floor due to buoyancy

  9. Archean sedimentary systems and crustal evolution

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1985-01-01

    Current knowledge of preserved Archean sedimentary rocks suggests that they accumulated in at least three major depositional settings. These are represented generally by sedimentary units: (1) in early Archean, pre-3.0 Ga old greenstone belts, (2) on late Archean sialic cratons, and (3) in late Archean, post-3.0 Ga old greenstone belts. Research suggests that the Archean was characterized by at least two distinctive and largely diachronous styles of crustal evolution. Thick, stable early Archean simatic platforms, perhaps analogous to modern oceanic islands formed over hot spots, underwent a single cycle of cratonization to form stable continental blocks in the early Archean. Later formed Archean continents show a two stage evolution. The initial stage is reflected in the existence of older sialic material, perhaps representing incompletely cratonized areas or microcontinents of as yet unknown origin. During the second stage, late Archean greenstone belts, perhaps analogous to modern magmatic arcs or back arc basins, developed upon or adjacent to these older sialic blocks. The formation of this generation of Archean continents was largely complete by the end of the Archean. These results suggest that Archean greenstone belts may represent a considerable range of sedimentological and tectonic settings.

  10. Empirical Records of Environmental Change across the Archean-Proterozoic Transition

    NASA Astrophysics Data System (ADS)

    Kaufman, A. J.

    2011-12-01

    Time-series geochemical analyses of scientific drill cores intersecting the Archean-Proterozoic transition suggest a coupling of environmental and biological change that culminated in the pervasive oxygenation of Earth's atmosphere and oceans. Elemental and multiple isotope measurements of sedimentary archives, including carbonate, shale, and banded iron-formation from Western Australia, South Africa, Brazil, and southern Canada, indicate important changes in the carbon, sulfur, and nitrogen cycles that monitor the redox state of the oceans and the cyanobacterial buildup of atmospheric oxygen and ozone. In response, continental weathering would have increased, resulting in the enhanced delivery of sulfate and nutrients to seawater, further stimulating photoautotrophic fluxes of oxygen to surface environments. The positive feedback may additionally be responsible for the decline of atmospheric methane and surface refrigeration, represented by a series of discrete ice ages beginning around 2.4 billion years ago, due to the loss of greenhouse capacity during a time of lower solar luminosity. While speculative, the linkage of surface oxidation with enhanced nutrient supply and development of stratospheric sunscreen soon after the Archean-Proterozoic boundary suggests that the earliest perturbation in the carbon cycle may be associated with the rapid expansion of single-celled eukaryotes. Both sterol synthesis in eukaryotes and aerobic respiration require significant levels of oxygen in the ambient environment. Hence, Earth's earliest ice age(s) and onset of a modern and far more energetic carbon cycle may have been directly related to the global expansion of cyanobacteria that released oxygen to the environment, and of eukaryotes that respired it.

  11. Ni Isotope Signatures in Banded Iron Formations Before, During, and After the Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Wasylenki, L.; Wang, S.

    2016-12-01

    We have measured the Ni isotope compositions of banded iron formations (BIF) in an effort to test the hypothesis of Konhauser et al. that a decrease in supply of Ni to the Late Archean oceans may have triggered a decline in methanogen productivity [1,2]. These microorganisms are critically dependent on Ni, and their decline may have triggered a drop in atmospheric CH4 that allowed the first sustained rise of free O2 in the atmosphere at 2.4 Ga. While simultaneously considering other processes that may have controlled the Ni isotope composition of Precambrian seawater, and in turn the BIF, we are looking for a shift in δ60/58Ni over time that correlates with the decrease in BIF Ni/Fe ratios documented previously [1,2] and that possibly reflects a dramatic change in methanogen Ni status over that same time interval (2.7-2.4 Ga). Our preliminary results indicate that the ocean's Ni isotope composition has varied considerably over geologic time. Using results from an accompanying experimental study of Ni fractionation during incorporation into ferric oxyhydroxides/oxides, we can reconstruct the Ni isotope compositions of seawater from which BIF precipitated. We observe that Precambrian seawater was generally considerably enriched in light isotopes of Ni relative to modern seawater. So far we observe the widest range of δ60/58Ni values in those BIF samples aged 2.7-2.4 Ga, implying significant changes in the controls on δ60/58Ni in the Late Archean Eon and possibly much greater sensitivity of the biogeochemical cycle of Ni to perturbations in Ni sources, such as oxidative weathering of sulfides, input/output fluxes, or biological uptake. [1] Konhauser et al. (2009) Nature 458,750; [2] Konhauser et al. (2015) Astrobiology 15,804.

  12. Assessing the effects of ultraviolet radiation on the photosynthetic potential in Archean marine environments

    NASA Astrophysics Data System (ADS)

    Avila-Alonso, Dailé; Baetens, Jan M.; Cardenas, Rolando; de Baets, Bernard

    2017-07-01

    In this work, the photosynthesis model presented by Avila et al. in 2013 is extended and more scenarios inhabited by ancient cyanobacteria are investigated to quantify the effects of ultraviolet (UV) radiation on their photosynthetic potential in marine environments of the Archean eon. We consider ferrous ions as blockers of UV during the Early Archean, while the absorption spectrum of chlorophyll a is used to quantify the fraction of photosynthetically active radiation absorbed by photosynthetic organisms. UV could have induced photoinhibition at the water surface, thereby strongly affecting the species with low light use efficiency. A higher photosynthetic potential in early marine environments was shown than in the Late Archean as a consequence of the attenuation of UVC and UVB by iron ions, which probably played an important role in the protection of ancient free-floating bacteria from high-intensity UV radiation. Photosynthetic organisms in Archean coastal and ocean environments were probably abundant in the first 5 and 25 m of the water column, respectively. However, species with a relatively high efficiency in the use of light could have inhabited ocean waters up to a depth of 200 m and show a Deep Chlorophyll Maximum near 60 m depth. We show that the electromagnetic radiation from the Sun, both UV and visible light, could have determined the vertical distribution of Archean marine photosynthetic organisms.

  13. The Archean Nickel Famine Revisited.

    PubMed

    Konhauser, Kurt O; Robbins, Leslie J; Pecoits, Ernesto; Peacock, Caroline; Kappler, Andreas; Lalonde, Stefan V

    2015-10-01

    Iron formations (IF) preserve a history of Precambrian oceanic elemental abundance that can be exploited to examine nutrient limitations on early biological productivity. However, in order for IF to be employed as paleomarine proxies, lumped-process distribution coefficients for the element of interest must be experimentally determined or assumed. This necessitates consideration of bulk ocean chemistry and which authigenic ferric iron minerals controlled the sorption reactions. It also requires an assessment of metal mobilization reactions that might have occurred in the water column during particle descent and during post-depositional burial. Here, we summarize recent developments pertaining to the interpretation and fidelity of the IF record in reconstructions of oceanic trace element evolution. Using an updated compilation, we reexamine and validate temporal trends previously reported for the nickel content in IF (see Konhauser et al., 2009 ). Finally, we reevaluate the consequences of methanogen Ni starvation in the context of evolving views of the Archean ocean-climate system and how the Ni famine may have ultimately facilitated the rise in atmospheric oxygen.

  14. High Ni in Archean tholeiites

    NASA Astrophysics Data System (ADS)

    Arndt, Nicholas T.

    1991-03-01

    Archean tholeiites generally have higher Ni, Co. Cr and Fe than most younger tholeiites with similar MgO contents. These characteristics cannot be attributed to high T or P batch melting in the Archean mantle, because, although such melts are enriched in siderophile elements, they have higher MgO than normal tholeiites. As primary melts fractionate to lower MgO, they lose Ni, Co and Cr. Nor can the differences between Archean and younger tholeiites be attributed to secular variation in mantle compositions because Archean komatiites have Ni, Co, Cr contents similar to modern (Gorgona) komatiites. It is suggested that the high siderophile element content of Archean tholeiites results from mixing of either komatiitic with basaltic magmas, as might occur in an ascending, melting mantle plume or column, or of komatiite and more evolved rocks, as may take place when komatiite encounters and assimilates crustal rocks.

  15. Isotopic, petrologic and biogeochemical investigations of banded iron-formations

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Kaufman, A. J.; Klein, C.; Studley, S. A.; Baur, M. E.; Walter, M. R.

    1986-01-01

    It is recognized that the first occurrence of banded iron-formations (BIFs) clearly predates biological oxygenation of the atmosphere-hydrosphere system and that their last occurrences extend beyond plausible dates of pervasive biological oxygenation. For this reason, and because enormous quantities of oxidizing power have been sequestered in them, it is widely thought that these massive, but enigmatic, sediments must encode information about the mechanism and timing of the rise of atmospheric O2. By coupling isotopic analyses of iron-formation carbonates with biogeochemical and petrologic investigations, we are studying (1) the mechanism of initial sedimentation of iron; (2) the role of iron in microbially mediated diagenetic processes in fresh iron-formation sediments; and (3) the logical integration of mechanisms of deposition with observed levels of banding. Thus far, it has been shown that (1) carbonates in BIFs of the Hamersley Group of Western Australia are isotopically inhomogenous; (2) the nature and pattern of isotopic ordering is not consistent with a metamorphic origin for the overall depletion of C-13 observed in the carbonates; (3) if biological, the origin of the C-13 depleted carbonate could be either respiratory or fermentative; (4) iron may have been precipitate d as Fe(3+), then reduced to Fe(2+) within the sediment; and (5) sedimentary biogeochemical systems may have been at least partially closed to mass transport of carbonate species.

  16. Archean Microbial Mat Communities

    NASA Astrophysics Data System (ADS)

    Tice, Michael M.; Thornton, Daniel C. O.; Pope, Michael C.; Olszewski, Thomas D.; Gong, Jian

    2011-05-01

    Much of the Archean record of microbial communities consists of fossil mats and stromatolites. Critical physical emergent properties governing the evolution of large-scale (centimeters to meters) topographic relief on the mat landscape are (a) mat surface roughness relative to the laminar sublayer and (b) cohesion. These properties can be estimated for fossil samples under many circumstances. A preliminary analysis of Archean mat cohesion suggests that mats growing in shallow marine environments from throughout this time had cohesions similar to those of modern shallow marine mats. There may have been a significant increase in mat strength at the end of the Archean.

  17. Ridge-trench collision in Archean and Post-Archean crustal growth: Evidence from southern Chile

    NASA Technical Reports Server (NTRS)

    Nelson, E. P.; Forsythe, R. D.

    1988-01-01

    The growth of continental crust at convergent plate margins involves both continuous and episodic processes. Ridge-trench collision is one episodic process that can cause significant magmatic and tectonic effects on convergent plate margins. Because the sites of ridge collision (ridge-trench triple junctions) generally migrate along convergent plate boundaries, the effects of ridge collision will be highly diachronous in Andean-type orogenic belts and may not be adequately recognized in the geologic record. The Chile margin triple junction (CMTJ, 46 deg S), where the actively spreading Chile rise is colliding with the sediment-filled Peru-Chile trench, is geometrically and kinematically the simplest modern example of ridge collision. The south Chile margin illustrates the importance of the ridge-collision tectonic setting in crustal evolution at convergent margins. Similarities between ridge-collision features in southern Chile and features of Archean greenstone belts raise the question of the importance of ridge collision in Archean crustal growth. Archean plate tectonic processes were probably different than today; these differences may have affected the nature and importance of ridge collision during Archean crustal growth. In conclusion, it is suggested that smaller plates, greater ridge length, and/or faster spreading all point to the likelihood that ridge collision played a greater role in crustal growth and development of the greenstone-granite terranes during the Archean. However, the effects of modern ridge collision, and the processes involved, are not well enough known to develop specific models for the Archean ridge collison.

  18. Phosphate microaggregates in Archean sediments. [Abstract only

    NASA Technical Reports Server (NTRS)

    Mojzsis, S.; Fan, G. Y.; Arrhenius, G.

    1994-01-01

    Light microscopy conducted on samples of Archean sediments reveals phosphate microaggregates which are suggestive of a biotic origin (Arrhenius et al., 1993). These aggregates, typically 15 micrometers wide and 50 micrometers long, are thought to be the mineral remains of colonies of microorganisms that lived during the late Archean Eon (greater than or equal to 2.5 Ga). Confocal microscopy was used to study the structures of these microaggregates in three dimensions. Samples used in this study are from the lowermost section of drill core taken from the Dales Gorge Member of the Brockman Iron-Formation (Hamersley Basin) in Western Australia. These sediments are well-preserved and escaped extensive metamorphism typically experienced by older rocks of this type. Two types of samples were prepared for study under the microscope: thin sections (30 micrometers) for transmitted light microscopy to study the general rock texture and to locate the grains of interest, and thick sections (3mm) for confocal microscopy to determine the 3-D structure of the aggregates in situ. The samples have been carefully polished so that they may be directly placed on the oil-immersion lens without the use of a cover slip. No chemical treatments of the surfaces have been performed. The aggregates often form clusters, although isolated aggregates have also been found. The clusters tend to distribute along microbands in the rocks. Electron microprobe analyses show that the phosphate grains and their inclusions, besides calcium and phosphorus, contain no major elements heavier than sodium. The proportions of calcium to phosphorus, the absence of stoichiometric amounts of other cations such as magnesium and iron, as well as optical properties suggest apatite as the mineral form.

  19. Raman Spectroscopic Characterisation of Australian Banded Iron Formation and Iron Ore

    NASA Astrophysics Data System (ADS)

    Wells, M. A.; Ramanaidou, E. R.

    2012-04-01

    In Australia and world-wide over the past 5-10 years, declining reserves of premium, high-grade (>64% Fe), low-P bearing iron ore, have seen iron ore producers increase their utilisation of lower Fe-grade, higher P/Al/Si ore. In Australia, the channel iron deposits (CID), bedded iron deposits (BID) and, more recently, BIF-derived magnetite iron deposits (MID) have seen increased usage driven mainly by the increased demand from Chinese steel mills (Ramanaidou and Wells, 2011). Efficient exploitation and processing of these lower-grade iron ores requires a detailed understanding of their iron oxide and gangue mineralogy and geochemistry. The common Fe-bearing minerals (e.g., hematite, magnetite, goethite and kenomagnetite) in these deposits, as well as gangue minerals such as quartz and carbonates, are all strongly Raman active (e.g., de Faria et al., 1997). Their distinct Raman spectra enable them to be easily detected and mapped in situ in either unprepared material or samples prepared as polished blocks. In this paper, using representative examples of Australian CID ore, martite-goethite bedded iron deposit (BID) ore and banded iron formation (BIF) examined as polished blocks, we present a range of Raman spectra of the key iron ore minerals, and discuss how Raman spectroscopy can be applied to characterising iron ore mineralogy. Raman imaging micrographs, obtained using a StreamLine Plus Raman imaging system, clearly identified the main Fe-oxide and gangue components in the CID, BID and BIF samples when compared to optical micrographs. Raman analysis enabled the unequivocal identification of diamond in the CID ore as a contaminant from the polishing paste used to prepare the sample, and confirmed the presence of hematite in the BID ore in the form of martite, which can be morphologically similar to magnetite and, thus, difficult to otherwise distinguish. Image analysis of Raman mineral maps could be used to quantify mineral abundance based on the number of 'pixels

  20. A geodynamic constraint on Archean continental geotherms

    NASA Astrophysics Data System (ADS)

    Bailey, R. C.

    2003-04-01

    Dewey (1988) observed that gravitational collapse appears to currently limit the altitudes of large plateaus on Earth to about 3 to 5 km above sea level. Arndt (1999) summarized the evidence for the failure of large parts of the continental crust to reach even sea-level during the Archean. If this property of Archean continental elevations was also enforced by gravitational collapse, it permits an estimation of the geothermal gradient in Archean continental crust. If extensional (collapse) tectonics is primarily a balance between gravitational power and the power consumed by extensional (normal) faulting in the upper brittle crust, as analysed by Bailey (1999), then it occurs when continental elevations above ocean bottoms exceed about 0.4 times the thickness of the brittle crust (Bailey, 2000). Assuming an Archean oceanic depth of about 5 km, it follows that that the typical thickness of Archean continental brittle crustal must have been less than about 12 km. Assuming the brittle-ductile transition to occur at about 350 degrees Celsius, this suggests a steep geothermal gradient of at least 30 degrees Celsius per kilometer for Archean continents, during that part of the Archean when continents were primarily submarine. This result does not help resolve the Archean thermal paradox (England and Bickle, 1984) whereby the high global heat flow of the Archean conflicts with the rather shallow crustal Archean geotherms inferred from geobarometry. In fact, the low elevation of Archean continental platforms raises another paradox, a barometric one: that continents were significantly below sea-level implies, by isostasy, that continental crustal thicknesses were significantly less than 30 km, yet the geobarometric data utilized by England and Bickle indicated burial pressures of Archean continental material of up to 10 kb. One resolution of both paradoxes (as discussed by England and Bickle) would be to interpret such deep burials as transient crustal thickening events of

  1. Oxygen in the Martian atmosphere: Regulation of PO2 by the deposition of iron formations on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    During Earth's early history, and prior to the evolution of its present day oxygenated atmosphere, extensive iron rich siliceous sedimentary rocks were deposited, consisting of alternating layers of silica (chert) and iron oxide minerals (hematite and magnetite). The banding in iron formations recorded changes of atmosphere-hydrosphere interactions near sea level in the ancient ocean, which induced the oxidation of dissolved ferrous iron, precipitation of insoluble ferric oxides and silica, and regulation of oxygen in Earth's early atmosphere. Similarities between the Archean Earth and the composition of the present day atmosphere on Mars, together with the pervasive presence of ferric oxides in the Martian regolith suggest that iron formation might also have been deposited on Mars and influenced the oxygen content of the Martian atmosphere. Such a possibility is discussed here with a view to assessing whether the oxygen content of the Martian atmosphere has been regulated by the chemical precipitation of iron formations on Mars.

  2. Geochemistry of Archean Mafic Amphibolites from the Amsaga Area, West African Craton, Mauritania: Occurrence of Archean oceanic plateau

    NASA Astrophysics Data System (ADS)

    El Atrassi, Fatima; Debaille, Vinciane; Mattielli, Nadine; Berger, Julien

    2015-04-01

    While Archean terrains are mainly composed of a TTG (Tonalite-trondhjemite-granodiorite) suite, more mafic lithologies such as amphibolites are also a typical component of those ancient terrains. Although mafic rocks represent only ~10% of the Archean cratons, they may provide key evidence of the role and nature of basaltic magmatism in the formation of the Archean crust as well as the evolution of the Archean mantle. This study focuses on the Archean crust from the West African craton in Mauritania (Amsaga area). The Amsaga Archean crust mainly consists of TTG and thrust-imbricated slices of mafic volcanic rocks, which have been affected by polymetamorphic events from the amphibolite to granulite facies. We report the results of a combined petrologic, Sm-Nd isotopic, major element and rare earth element (REE) study of the Archean amphibolites in the West African craton. This study was conducted in order to characterize these rocks, to constrain the time of their formation and to evaluate their tectonic setting and their possible mantle source. Our petrological observations show that these amphibolites have fine to medium granoblastic and nematoblastic textures. They are dominated by amphibolite-facies mineral assemblages (mainly amphibole and plagioclase), but garnet and clinopyroxene occur in a few samples. These amphibolites have tholeiitic basalt composition. On a primitive mantle-normalized diagram, they display fairly flat patterns without negative anomalies for either Eu or Nb-Ta. We have shown using Sm-Nd whole rock isotopic data that these amphibolites formed at 3.3 ±0.075 Ga. They have positive ɛNdi values (+5.2 ± 1.6). These samples show isotopically juvenile features, which rule out the possibility of significant contamination of the protolith magmas by ancient continental crust. Based on these geochemical data we propose that the tholeiitic basalts were formed in an oceanic plateau tectonic setting from a mantle plume source and that they have a

  3. Archean sedimentary styles and early crustal evolution

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1986-01-01

    The distinctions between and implications of early and late Archean sedimentary styles are presented. Early Archean greenstone belts, such as the Barberton of South Africa and those in the eastern Pilbar Block of Australia are characterized by fresh or slightly reworked pyroclastic debris, orthochemical sediments such as carbonates, evaporites, and silica, and biogenic deposits including cherts and stromatolitic units. Terrigenous deposits are rare, and it is suggested that early Archean sediments were deposited on shallow simatic platforms, with little or no components derived from sialic sources. In contrast, late Archean greenstone belts in the Canadian Shield and the Yilgarn Block of Australia contain coarse terrigenous clastic rocks including conglomerate, sandstone, and shale derived largely from sialic basement. Deposition appears to have taken place in deepwater, tectonically unstable environments. These observations are interpreted to indicate that the early Archean greenstone belts formed as anorogenic, shallow water, simatic platforms, with little or no underlying or adjacent continental crust, an environment similar to modern oceanic islands formed over hot spots.

  4. Sensitivity of gap symmetry to an incipient band: Application to iron based superconductors

    NASA Astrophysics Data System (ADS)

    Mishra, Vivek; Scalapino, Douglas; Maier, Thomas

    Observation of high temperature superconductivity in iron-based superconductors with a submerged hole band has attracted wide interest. A spin fluctuation mediated pairing mechanism has been proposed as a possible explanation for the high transition temperatures observed in these systems. Here we discuss the importance of the submerged band in the context of the gap symmetry. We show that the incipient band can lead to an attractive pairing interaction and thus have significant effects on the pairing symmetry. We propose a framework to include the effect of the incipient band in the standard multi-orbital spin-fluctuation theories which are widely used for studying various iron-based superconductors. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  5. Carbonates of the Gunflint Banded Iron Formation as Analogs of Martian Carbonates

    NASA Technical Reports Server (NTRS)

    Pun, A.; Papike, J. J.; Shearer, C. K.

    2001-01-01

    Terrestrial iron formations preserve remnants of life on Earth and may serve as analogs for identifying evidence of biologic activity in martian rocks. We report on the petrography, mineralogy and trace-element abundances of carbonates of the Gunflint banded iron formation. Additional information is contained in the original extended abstract.

  6. Geochemistry of the Archean Yellowknife Supergroup

    NASA Astrophysics Data System (ADS)

    Jenner, G. A.; Fryer, B. J.; McLennan, S. M.

    1981-07-01

    The Archean Yellowknife Supergroup (Slave Structural Province. Canada) is composed of a thick sequence of supracrustal rocks, which differs from most Archean greenstone belts in that it contains a large proportion ( ~ 80%) of sedimentary rocks. Felsic volcanics of the Banting Formation are characterized by HREE depletion without Eu-anomalies, indicating an origin by small degrees of partial melting of a mafic source, with minor garnet in the residua. Granitic rocks include synkinematic granites [HREE-depleted; low ( 87Sr /86Sr ) I], post-kinematic granites [negative Eu-anomalies, high ( 87Sr /86Sr ) I] and granitic gneisses with REE patterns similar to the post-kinematic granites. Sedimentary rocks (turbidites) of the Burwash and Walsh Formations have similar chemical compositions and were derived from 20% mafic-intermediate volcanics, 55% felsic volcanics and 25% granitic rocks. Jackson Lake Formation lithic wackes can be divided into two groups with Group A derived from 50% mafic-intermediate volcanics and 50% felsic volcanics and Group B, characterized by HREE depletion, derived almost exclusively from felsic volcanics. REE patterns of Yellowknife sedimentary rocks are similar to other Archean sedimentary REE patterns, although they have higher La N/Yb N. These patterns differ significantly from typical post-Archean sedimentary REE patterns, supporting the idea that Archean exposed crust had a different composition than the present day exposed crust.

  7. Sulfate was a trace constituent of Archean seawater.

    PubMed

    Crowe, Sean A; Paris, Guillaume; Katsev, Sergei; Jones, CarriAyne; Kim, Sang-Tae; Zerkle, Aubrey L; Nomosatryo, Sulung; Fowle, David A; Adkins, Jess F; Sessions, Alex L; Farquhar, James; Canfield, Donald E

    2014-11-07

    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column of Lake Matano, Indonesia, a low-sulfate analog for the Archean ocean, we find large (>20 per mil) sulfur isotope fractionations between sulfate and sulfide, but the underlying sediment sulfides preserve a muted range of δ(34)S values. Using models informed by sulfur cycling in Lake Matano, we infer Archean seawater sulfate concentrations of less than 2.5 micromolar. At these low concentrations, marine sulfate residence times were likely 10(3) to 10(4) years, and sulfate scarcity would have shaped early global biogeochemical cycles, possibly restricting biological productivity in Archean oceans. Copyright © 2014, American Association for the Advancement of Science.

  8. A Mesoproterozoic iron formation

    NASA Astrophysics Data System (ADS)

    Canfield, Donald E.; Zhang, Shuichang; Wang, Huajian; Wang, Xiaomei; Zhao, Wenzhi; Su, Jin; Bjerrum, Christian J.; Haxen, Emma R.; Hammarlund, Emma U.

    2018-04-01

    We describe a 1,400 million-year old (Ma) iron formation (IF) from the Xiamaling Formation of the North China Craton. We estimate this IF to have contained at least 520 gigatons of authigenic Fe, comparable in size to many IFs of the Paleoproterozoic Era (2,500–1,600 Ma). Therefore, substantial IFs formed in the time window between 1,800 and 800 Ma, where they are generally believed to have been absent. The Xiamaling IF is of exceptionally low thermal maturity, allowing the preservation of organic biomarkers and an unprecedented view of iron-cycle dynamics during IF emplacement. We identify tetramethyl aryl isoprenoid (TMAI) biomarkers linked to anoxygenic photosynthetic bacteria and thus phototrophic Fe oxidation. Although we cannot rule out other pathways of Fe oxidation, iron and organic matter likely deposited to the sediment in a ratio similar to that expected for anoxygenic photosynthesis. Fe reduction was likely a dominant and efficient pathway of organic matter mineralization, as indicated by organic matter maturation by Rock Eval pyrolysis combined with carbon isotope analyses: Indeed, Fe reduction was seemingly as efficient as oxic respiration. Overall, this Mesoproterozoic-aged IF shows many similarities to Archean-aged (>2,500 Ma) banded IFs (BIFs), but with an exceptional state of preservation, allowing an unprecedented exploration of Fe-cycle dynamics in IF deposition.

  9. Ultrafast band-gap oscillations in iron pyrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, B; Kolpak, AM

    2013-12-20

    With its combination of favorable band gap, high absorption coefficient, material abundance, and low cost, iron pyrite, FeS2, has received a great deal of attention over the past decades as a promising material for photovoltaic applications such as solar cells and photoelectrochemical cells. Devices made from pyrite, however, exhibit open circuit voltages significantly lower than predicted, and despite a recent resurgence of interest in the material, there currently exists no widely accepted explanation for this disappointing behavior. In this paper, we show that phonons, which have been largely overlooked in previous efforts, may play a significant role. Using fully self-consistentmore » GW calculations, we demonstrate that a phonon mode related to the oscillation of the sulfur-sulfur bond distance in the pyrite structure is strongly coupled to the energy of the conduction-band minimum, leading to an ultrafast (approximate to 100 fs) oscillation in the band gap. Depending on the coherency of the phonons, we predict that this effect can cause changes of up to +/- 0.3 eV relative to the accepted FeS2 band gap at room temperature. Harnessing this effect via temperature or irradiation with infrared light could open up numerous possibilities for novel devices such as ultrafast switches and adaptive solar absorbers.« less

  10. An archean suture zone in the Tobacco Root Mountains? (1984) Evolution of Archean Continental Crust, SW Montana (1985)

    NASA Technical Reports Server (NTRS)

    Mogk, D. W.; Kain, L.

    1985-01-01

    The Lake Plateau area of the Beartooth Mountains, Montana were mapped and geochemically sampled. The allochthonous nature of the Stillwater Complex was interpreted as a Cordilleran-style continental margin. The metamorphic and tectonic history of the Beartooth Mountains was addressed. The Archean geology of the Spanish Peaks area, northern Madison Range was addressed. A voluminous granulite terrain of supracrustal origin was identified, as well as a heretofore unknown Archean batholithic complex. Mapping, petrologic, and geochemical investigations of the Blacktail Mountains, on the western margin of the Wyoming Province, are completed. Mapping at a scale of 1:24000 in the Archean rocks of the Gravelly Range is near completion. This sequence is dominantly of stable-platform origin. Samples were collected for geothermometric/barometric analysis and for U-Pb zircon age dating. The analyses provide the basis for additional geochemical and geochronologic studies. A model for the tectonic and geochemical evolution of the Archean basement of SW Montana is presented.

  11. Archean Subduction or Not? The Archean Volcanic Record Re-assessed.

    NASA Astrophysics Data System (ADS)

    Pearce, Julian; Peate, David; Smithies, Hugh

    2013-04-01

    Methods of identification of volcanic arc lavas may utilize: (1) the selective enrichment of the mantle wedge by 'subduction-mobile' elements; (2) the distinctive preconditioning of mantle along its flow path to the arc front; (3) the distinctive combination of fluid-flux and decompression melting; and (4) the effects of fluids on crystallization of the resulting magma. It should then be a simple matter uniquely to recognise volcanic arc lavas in the Geological Record and so document past subduction zones. Essentially, this is generally true in the oceans, but generally not on the continents. Even in recent, fresh lavas and with a full battery of element and isotope tools at our disposal, there can be debate over whether an arc-like geochemical signature results from active subduction, an older, inherited subduction component in the lithosphere, or crustal contamination. In the Archean, metamorphism, deformation, a different thermal regime and potential non-uniformitarian tectonic scenarios make the fingerprinting of arc lavas particularly problematic. Not least, the complicating factor of crustal contamination is likely to be much greater given the higher magma and crustal temperatures and higher magma fluxes prevailing. Here, we apply new, high-resolution immobile element fingerprinting methods, based primarily on Th-Nb fractionation, to Archean lavas. In the Pilbara, for example, where there is a volcanic record extending for over >500 m.y., we note that lavas with high Th/Nb (negative Nb anomalies) are common throughout the lava sequence. Many older formations also follow a basalt-andesite-dacite-rhyolite (BADR) sequence resembling present-day arcs. However, back-extrapolation of their compositions to their primitive magmas demonstrates that these were almost certainly crustally-contaminated plume-derived lavas. By contrast, this is not the case in the uppermst part of the sequence where even the most primitive magmas have significant Nb anomalies. The

  12. Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxides

    PubMed Central

    Kim, J. Dongun; Yee, Nathan; Nanda, Vikas; Falkowski, Paul G.

    2013-01-01

    Photochemical reactions of minerals are underappreciated processes that can make or break chemical bonds. We report the photooxidation of siderite (FeCO3) by UV radiation to produce hydrogen gas and iron oxides via a two-photon reaction. The calculated quantum yield for the reaction suggests photooxidation of siderite would have been a significant source of molecular hydrogen for the first half of Earth’s history. Further, experimental results indicate this abiotic, photochemical process may have led to the formation of iron oxides under anoxic conditions. The reaction would have continued through the Archean to at least the early phases of the Great Oxidation Event, and provided a mechanism for oxidizing the atmosphere through the loss of hydrogen to space, while simultaneously providing a key reductant for microbial metabolism. We propose that the photochemistry of Earth-abundant minerals with wide band gaps would have potentially played a critical role in shaping the biogeochemical evolution of early Earth. PMID:23733945

  13. Microbial diversity and iron oxidation at Okuoku-hachikurou Onsen, a Japanese hot spring analog of Precambrian iron formations.

    PubMed

    Ward, L M; Idei, A; Terajima, S; Kakegawa, T; Fischer, W W; McGlynn, S E

    2017-11-01

    Banded iron formations (BIFs) are rock deposits common in the Archean and Paleoproterozoic (and regionally Neoproterozoic) sedimentary successions. Multiple hypotheses for their deposition exist, principally invoking the precipitation of iron via the metabolic activities of oxygenic, photoferrotrophic, and/or aerobic iron-oxidizing bacteria. Some isolated environments support chemistry and mineralogy analogous to processes involved in BIF deposition, and their study can aid in untangling the factors that lead to iron precipitation. One such process analog system occurs at Okuoku-hachikurou (OHK) Onsen in Akita Prefecture, Japan. OHK is an iron- and CO 2 -rich, circumneutral hot spring that produces a range of precipitated mineral textures containing fine laminae of aragonite and iron oxides that resemble BIF fabrics. Here, we have performed 16S rRNA gene amplicon sequencing of microbial communities across the range of microenvironments in OHK to describe the microbial diversity present and to gain insight into the cycling of iron, oxygen, and carbon in this ecosystem. These analyses suggest that productivity at OHK is based on aerobic iron-oxidizing Gallionellaceae. In contrast to other BIF analog sites, Cyanobacteria, anoxygenic phototrophs, and iron-reducing micro-organisms are present at only low abundances. These observations support a hypothesis where low growth yields and the high stoichiometry of iron oxidized per carbon fixed by aerobic iron-oxidizing chemoautotrophs like Gallionellaceae result in accumulation of iron oxide phases without stoichiometric buildup of organic matter. This system supports little dissimilatory iron reduction, further setting OHK apart from other process analog sites where iron oxidation is primarily driven by phototrophic organisms. This positions OHK as a study area where the controls on primary productivity in iron-rich environments can be further elucidated. When compared with geological data, the metabolisms and mineralogy at

  14. Experimental observation of incoherent-coherent crossover and orbital-dependent band renormalization in iron chalcogenide superconductors

    DOE PAGES

    Liu, Z. K.; Yi, M.; Zhang, Y.; ...

    2015-12-22

    The level of electronic correlation has been one of the key questions in understanding the nature of superconductivity. Among the iron-based superconductors, the iron chalcogenide family exhibits the strongest electron correlations. To gauge the correlation strength, we performed a systematic angle-resolved photoemission spectroscopy study on the iron chalcogenide series Fe 1+ySe xTe 1-x (0 < x < 0.59), a model system with the simplest structure. Our measurement reveals an incoherent-to-coherent crossover in the electronic structure as the selenium ratio increases and the system evolves from a weakly localized to a more itinerant state. Furthermore, we found that the effective massmore » of bands dominated by the d xy orbital character significantly decreases with increasing selenium ratio, as compared to the d xz/d yz orbital-dominated bands. The orbital-dependent change in the correlation level agrees with theoretical calculations on the band structure renormalization, and may help to understand the onset of superconductivity in Fe 1+ySe xTe 1-x.« less

  15. Examining Archean methanotrophy

    NASA Astrophysics Data System (ADS)

    Slotznick, Sarah P.; Fischer, Woodward W.

    2016-05-01

    The carbon isotope ratios preserved in sedimentary rocks can be used to fingerprint ancient metabolisms. Organic carbon in Late Archean samples stands out from that of other intervals with unusually low δ13C values (∼-45 to -60‰). It was hypothesized that these light compositions record ecosystem-wide methane cycling and methanotrophy, either of the aerobic or anaerobic variety. To test this idea, we studied the petrography and carbon and oxygen isotope systematics of well-known and spectacular occurrences of shallow water stromatolites from the 2.72 Ga Tumbiana Formation of Western Australia. We examined the carbonate cements and kerogen produced within the stromatolites, because methanotrophy is expected to leave an isotopic fingerprint in these carbon reservoirs. Mathematical modeling of Archean carbonate chemistry further reveals that methanotrophy should still have a discernible signature preserved in the isotopic record, somewhat diminished from those observed in Phanerozoic sedimentary basins due to higher dissolved inorganic carbon concentrations. These stromatolites contain kerogen with δ13Corg values of ∼ - 50 ‰. By microsampling different regions and textures within the stromatolites, we determined that the isotopic compositions of the authigenic calcite cements show a low degree of variation and are nearly identical to values estimated for seawater at this time; the lack of low and variable δ13Ccarb values implies that methanotrophy does not explain the low δ13Corg seen in the coeval kerogen. These observations do not support a methanotrophy hypothesis, but instead hint that the Late Archean may constitute an interval wherein autotrophs employed markedly different biochemical processes of energy conservation and carbon fixation.

  16. The early Earth -- A perspective on the Archean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, W.B.

    1993-04-01

    Dominant models of Archean tectonics and magmatism involve plate-tectonic mechanisms. Common tenets of geochemistry (e.g., model ages) and petrology visualize a cold-accreted Earth in which primitive mantle gradually fractionated to produce crust during and since Archean time. These popular assumptions appear to be incompatible with cosmologic and planetologic evidence and with Archean geology. All current quantitative and semiquantitative theories agree that the Earth was largely or entirely melted (likely superheated) by giant impacts, including the Mars-size impact which splashed out the Moon, and by separation of the core. The Earth at [approximately]4.5 Ga was a violently convecting anhydrous molten ball.more » Both this history and solar-system position indicate the bulk Earth to be more refractory than chondrite. The outer part of whatever sold shell developed was repeatedly recycled by impacts before 3.9 Ga. Water and CO[sub 2] were added by impactors after the Moon-forming event; the mantle is not a source of primordial volatiles, but rather is a sink that has depleted the hydrosphere. Voluminous liquidus ultramafic lava (komatiite) indicates that much Archean upper mantle was above its solidus. Only komatiitic and basaltic magma entered Archean crust from the mantle. Variably hydrous contamination, secondary melting, and fractionation in the crust produced intermediate and felsic melts. Magmatism was concurrent over vast tracts. Within at least the small sample of Archean crust that has not been recycled into the mantle, heat loss was primarily by voluminous, dispersed magmatism, not, as in the modern Earth, primarily through spreading windows through the crust. Only in Proterozoic time did plate-tectonic mechanisms become prevalent.« less

  17. Some examples of deep structure of the Archean from geophysics

    NASA Technical Reports Server (NTRS)

    Smithson, S. B.; Johnson, R. A.; Pierson, W. R.

    1986-01-01

    The development of Archean crust remains as one of the significant problems in earth science, and a major unknown concerning Archean terrains is the nature of the deep crust. The character of crust beneath granulite terrains is especially fascinating because granulites are generally interpreted to represent a deep crustal section. Magnetic data from this area can be best modeled with a magnetized wedge of older Archean rocks (granulitic gneisses) underlying the younger Archean greenstone terrain. The dip of the boundary based on magnetic modeling is the same as the dip of the postulated thrust-fault reflection. Thus several lines of evidence indicate that the younger Archean greenstone belt terrain is thrust above the ancient Minnesota Valley gneiss terrain, presumably as the greenstone belt was accreted to the gneiss terrain, so that the dipping reflection represents a suture zone. Seismic data from underneath the granulite-facies Minnesota gneiss terrain shows abundant reflections between 3 and 6 s, or about 9 to 20 km. These are arcuate or dipping multicyclic events indicative of layering.

  18. Low-threshold photonic-band-edge laser using iron-nail-shaped rod array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jae-Hyuck; No, You-Shin; Hwang, Min-Soo

    2014-03-03

    We report the experimental demonstration of an optically pumped rod-type photonic-crystal band-edge laser. The structure consists of a 20 × 20 square lattice array of InGaAsP iron-nail-shaped rods. A single-mode lasing action is observed with a low threshold of ∼90 μW and a peak wavelength of 1451.5 nm at room temperature. Measurements of the polarization-resolved mode images and lasing wavelengths agree well with numerical simulations, which confirm that the observed lasing mode originates from the first Γ-point transverse-electric-like band-edge mode. We believe that this low-threshold band-edge laser will be useful for the practical implementation of nanolasers.

  19. Texture-specific Si isotope variations in Barberton Greenstone Belt cherts record low temperature fractionations in early Archean seawater

    NASA Astrophysics Data System (ADS)

    Stefurak, Elizabeth J. T.; Fischer, Woodward W.; Lowe, Donald R.

    2015-02-01

    Sedimentary cherts are unusually abundant in early Archean (pre-3.0 Ga) sequences, suggesting a silica cycle that was profoundly different than the modern system. Previously applied for the purpose of paleothermometry, Si isotopes in ancient cherts can offer broader insight into mass fluxes and mechanisms associated with silica concentration, precipitation, diagenesis, and metamorphism. Early Archean cherts contain a rich suite of sedimentological and petrographic textures that document a history of silica deposition, cementation, silicification, and recrystallization. To add a new layer of insight into the chemistry of early cherts, we have used wavelength-dispersive spectroscopy and then secondary ion mass spectrometry (SIMS) to produce elemental and Si and O isotope ratio data from banded black-and-white cherts from the Onverwacht Group of the Barberton Greenstone Belt, South Africa. This geochemical data is then interpreted in the framework of depositional and diagenetic timing of silica precipitation provided by geological observations. SIMS allows the comparison of Si and O isotope ratios of distinct silica phases, including black carbonaceous chert beds and bands (many including well-defined sedimentary grains), white relatively pure chert bands including primary silica granules, early cavity-filling cements, and later quartz-filled veins. Including all chert types and textures analyzed, the δ30Si dataset spans a range from -4.78‰ to +3.74‰, with overall mean 0.20‰, median 0.51‰, and standard deviation 1.30‰ (n = 1087). Most samples have broadly similar δ30Si distributions, but systematic texture-specific δ30Si differences are observed between white chert bands (mean +0.60‰, n = 750), which contain textures that represent primary and earliest diagenetic silica phases, and later cavity-filling cements (mean -1.41‰, n = 198). We observed variations at a ∼100 μm scale indicating a lack of Si isotope homogenization at this scale during

  20. Geological Mapping of Fortuna Tessera (V-2): Venus and Earth's Archean Process Comparisons

    NASA Technical Reports Server (NTRS)

    Head, James W.; Hurwitz,D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil

    2008-01-01

    The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by insight from the Archean record of the Earth, to gain new insight into the evolution of Venus and Earth's Archean. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and the surface of Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. Elsewhere we have addressed the nature of the Earth's Archean, the similarities to and differences from Venus, and the specific Venus and Earth-Archean problems on which progress might be made through comparison. Here we present the major goals of the Venus-Archean comparison and show how preliminary mapping of the geology of the V-2 Fortuna Tessera quadrangle is providing insight on these problems. We have identified five key themes and questions common to both the Archean and Venus, the assessment of which could provide important new insights into the history and processes of both planets.

  1. Building Archean Cratons From Hadean Crust

    NASA Astrophysics Data System (ADS)

    O'Neil, J.; Carlson, R.

    2016-12-01

    Geologic processing of Earth's surface has removed most of the evidence concerning the nature of Earth's first crust. The largest volumes of ancient crust, the so-called Archean cratons, are dominated by felsic Tonalite-Trondhjemite-Granodiorite (TTG) rocks. These felsic rocks, however, are most likely derived by melting of an older mafic precursor. Although in part dictated by survivability, the scarcity of Hadean zircons also suggests that felsic rocks may have not been a prominent component of the earliest crust. Both points raise questions about the nature of the primordial crust and how, or if, it was involved in the formation of stable Archean cratons. The Hudson Bay Terrane of the Northeastern Superior Province is one of such Archean cratons, mainly composed of 2.88 to 2.69 Ga TTG. New data show these Neoarchean granitoids to be the youngest to yield significantly low 142Nd/144Nd, down to 15 ppm lower than that of the terrestrial Nd standard. 142Nd is the decay product of short-lived radioactive 146Sm and because of the short 103 Ma half-life of 146Sm, deviations in 142Nd/144Nd ratio can only be produced by Sm-Nd fractionation prior to 4 Ga. The variability in 142Nd/144Nd ratios in 2.7 Ga felsic rocks from the Hudson Bay Terrane shows conclusively that this large block of Archean crust was formed by reworking of much older > 4.2 Ga crust over a 1.5 billion year interval of early Earth history. Reworking of pre-existing crust likely is an important mechanism contributing to the stabilization of Earth's first continents.

  2. Archean metamorphic sequence and surfaces, Kangerdlugssuaq Fjord, East Greenland

    NASA Technical Reports Server (NTRS)

    Kays, M. A.

    1986-01-01

    The characteristics of Archean metamorphic surfaces and fabrics of a mapped sequence of rocks older than about 3000 Ma provide information basic to an understanding of the structural evolution and metamorphic history in Kangerdlugssuaq Fjord, east Greenland. This information and the additional results of petrologic and geochemical studies have culminated in an extended chronology of Archean plutonic, metamorphic, and tectonic events. The basis for the chronology is considered, especially the nature of the metamorphic fabrics and surfaces in the Archean sequence. The surfaces, which are planar mineral parageneses, may prove to be mappable outside Kangerdlugssuaq Fjord, and if so, will be helpful in extending the events that they represent to other Archean sequences in east Greenland. The surfaces will become especially important reference planes if the absolute ages of their metamorphic assemblages can be determined in at least one location where strain was low subsequent to their recrystallization. Once an isochron is obtained, the dynamothermal age of the regionally identifiable metamorphic surface is determined everywhere it can be mapped.

  3. SQUID-SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle

    NASA Astrophysics Data System (ADS)

    Fischer, Woodward W.; Fike, David A.; Johnson, Jena E.; Raub, Timothy D.; Guan, Yunbin; Kirschvink, Joseph L.; Eiler, John M.

    2014-04-01

    Many aspects of Earth's early sulfur cycle, from the origin of mass-anomalous fractionations to the degree of biological participation, remain poorly understood-in part due to complications from postdepositional diagenetic and metamorphic processes. Using a combination of scanning high-resolution magnetic superconducting quantum interference device (SQUID) microscopy and secondary ion mass spectrometry (SIMS) of sulfur isotopes (32S, 33S, and 34S), we examined drill core samples from slope and basinal environments adjacent to a major Late Archean (∼2.6-2.5 Ga) marine carbonate platform from South Africa. Coupled with petrography, these techniques can untangle the complex history of mineralization in samples containing diverse sulfur-bearing phases. We focused on pyrite nodules, precipitated in shallow sediments. These textures record systematic spatial differences in both mass-dependent and mass-anomalous sulfur-isotopic composition over length scales of even a few hundred microns. Petrography and magnetic imaging demonstrate that mass-anomalous fractionations were acquired before burial and compaction, but also show evidence of postdepositional alteration 500 million y after deposition. Using magnetic imaging to screen for primary phases, we observed large spatial gradients in Δ33S (>4‰) in nodules, pointing to substantial environmental heterogeneity and dynamic mixing of sulfur pools on geologically rapid timescales. In other nodules, large systematic radial δ34S gradients (>20‰) were observed, from low values near their centers increasing to high values near their rims. These fractionations support hypotheses that microbial sulfate reduction was an important metabolism in organic-rich Archean environments-even in an Archean ocean basin dominated by iron chemistry.

  4. Petrogenesis of calcic plagioclase megacrysts in Archean rocks

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.; Morrison, D. A.

    1986-01-01

    Anorthositic complexes with large equidimensional plagioclase grains of highly calcic composition occur in nearly all Archean cratons. Similar plagioclase occur as megacrysts in many Archean sills, dikes, and volcanic flows. In the Canadian Shield these units occur throughout the Archean portions of the entire shield and are particularly common as dikes over an area of a few 100,000 sq km in Ontario and Manitoba during a period of at least 100 m.y. in many different rock types and metamorphic grades. The plagioclase generally occurs in three modes: as inclusions in mafic intrusions at various stages of fractionation, as crystal segregations in anorthosite complexes, or as megacrysts in fractionated sills, dikes, and flows. Most occurrences suggest that the plagioclase was formed elsewhere before being transported to its present location. The evidence seems to be quite clear that occurrences of these types of calcic plagioclase require: (1) ponding of a relatively undifferentiated Archean tholeiitic melt at some depth; (2) isothermal crystallization of large, equidimensional homogeneous plagioclase crystals; (3) separation of the plagioclase crystals from any other crystalline phases; (4) further fractionation of melt; (5)transport of various combinations of individual plagioclase crystals and clusters of crystals by variously fractionated melts; and (6) emplacement as various types of igneous intrusions or flows.

  5. Sedimentary mechanisms of a modern banded iron formation on Milos Island, Greece

    NASA Astrophysics Data System (ADS)

    Fru, Ernest Chi; Kilias, Stephanos; Ivarsson, Magnus; Rattray, Jayne E.; Gkika, Katerina; McDonald, Iain; He, Qian; Broman, Curt

    2018-05-01

    An early Quaternary shallow submarine hydrothermal iron formation (IF) in the Cape Vani sedimentary basin (CVSB) on Milos Island, Greece, displays banded rhythmicity similar to Precambrian banded iron formation (BIF). Field-wide stratigraphic and biogeochemical reconstructions show two temporal and spatially isolated iron deposits in the CVSB with distinct sedimentological character. Petrographic screening suggests the presence of a photoferrotrophic-like microfossil-rich IF (MFIF), accumulated on a basement consisting of andesites in a ˜ 150 m wide basin in the SW margin of the basin. A banded nonfossiliferous IF (NFIF) sits on top of the Mn-rich sandstones at the transition to the renowned Mn-rich formation, capping the NFIF unit. Geochemical data relate the origin of the NFIF to periodic submarine volcanism and water column oxidation of released Fe(II) in conditions predominated by anoxia, similar to the MFIF. Raman spectroscopy pairs hematite-rich grains in the NFIF with relics of a carbonaceous material carrying an average δ13Corg signature of ˜ -25‰. A similar δ13Corg signature in the MFIF could not be directly coupled to hematite by mineralogy. The NFIF, which postdates large-scale Mn deposition in the CVSB, is composed primarily of amorphous Si (opal-SiO2 ṡ nH2O) while crystalline quartz (SiO2) predominates the MFIF. An intricate interaction between tectonic processes, changing redox, biological activity, and abiotic Si precipitation are proposed to have collectively formed the unmetamorphosed BIF-type deposits in a shallow submarine volcanic center. Despite the differences in Precambrian ocean-atmosphere chemistry and the present geologic time, these formation mechanisms coincide with those believed to have formed Algoma-type BIFs proximal to active seafloor volcanic centers.

  6. An investigation of the Archean climate using the NCAR CCm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, G.S.

    1991-01-01

    The Archean (2.5 to 3.8 billion years ago) is of interest climatically, because of the 'Faint-Young Sun Paradox', which can be characterized by the Sun's reduced energy output. This lower energy output leads to a frozen planet if the climate existed as it does today. But, the geologic record shows that water was flowing at the earth's surface 3.8 billion years ago. Energy Balance Models (EBMs) and one-dimensional radiative-convective (1DRC) models predict a frozen planet for this time period, unless large carbon dioxide (CO2) concentrations exist in the Archean atmosphere. The goal is to explore the Archean climate with themore » National Center for Atmospheric Research (NCAR), Community Climate Model (CCM). The search for negative feedbacks to explain the 'Faint-Young Sun Paradox' is the thrust of this study. This study undertakes a series of sensitivity simulations which first explores individual factors that may be important for the Archean. They include rotation rate, lower solar luminosity, and land fraction. Then, these climatic factors along with higher CO2 concentrations are combined into a set of experiments. A faster rotation rate may have existed in the Archean. The faster rotation rate simulations show warmer globally averaged surface temperatures that are caused by a 20 percent decrease in the total cloud fraction. The smaller cloud fraction is brought about by dynamical changes. A global ocean is a possibility for the Archean. A global ocean simulation predicts 4 K increase in global mean surface temperatures compared to the present-day climate control.« less

  7. Alteration of submarine volcanic rocks in oxygenated Archean oceans

    NASA Astrophysics Data System (ADS)

    Ohmoto, H.; Bevacqua, D.; Watanabe, Y.

    2009-12-01

    Most submarine volcanic rocks, including basalts in diverging plate boundaries and andesites/dacites in converging plate boundaries, have been altered by low-temperature seawater and/or hydrothermal fluids (up to ~400°C) under deep oceans; the hydrothermal fluids evolved from shallow/deep circulations of seawater through the underlying hot igneous rocks. Volcanogenic massive sulfide deposits (VMSDs) and banded iron formations (BIFs) were formed by mixing of submarine hydrothermal fluids with local seawater. Therefore, the behaviors of various elements, especially of redox-sensitive elements, in altered submarine volcanic rocks, VMSDs and BIFs can be used to decipher the chemical evolution of the oceans and atmosphere. We have investigated the mineralogy and geochemistry of >500 samples of basalts from a 260m-long drill core section of Hole #1 of the Archean Biosphere Drilling Project (ABDP #1) in the Pilbara Craton, Western Australia. The core section is comprised of ~160 m thick Marble Bar Chert/Jasper Unit (3.46 Ga) and underlying, inter-bedded, and overlying submarine basalts. Losses/gains of 65 elements were quantitatively evaluated on the basis of their concentration ratios against the least mobile elements (Ti, Zr and Nb). We have recognized that mineralogical and geochemical characteristics of many of these samples are essentially the same as those of hydrothermally-altered modern submarine basalts and also those of altered volcanic rocks that underlie Phanerozoic VMSDs. The similarities include, but are not restricted to: (1) the alteration mineralogy (chlorite ± sericite ± pyrophyllite ± carbonates ± hematite ± pyrite ± rutile); (2) the characteristics of whole-rock δ18O and δ34S values; (3) the ranges of depletion and enrichment of Si, Al, Mg, Ca, K, Na, Fe, Mn, and P; (4) the enrichment of Ba (as sulfate); (5) the increases in Fe3+/Fe2+ ratios; (6) the enrichment of U; (7) the depletion of Cr; and (8) the negative Ce anomalies. Literature data

  8. SQUID–SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle

    PubMed Central

    Fischer, Woodward W.; Fike, David A.; Johnson, Jena E.; Raub, Timothy D.; Guan, Yunbin; Kirschvink, Joseph L.; Eiler, John M.

    2014-01-01

    Many aspects of Earth’s early sulfur cycle, from the origin of mass-anomalous fractionations to the degree of biological participation, remain poorly understood—in part due to complications from postdepositional diagenetic and metamorphic processes. Using a combination of scanning high-resolution magnetic superconducting quantum interference device (SQUID) microscopy and secondary ion mass spectrometry (SIMS) of sulfur isotopes (32S, 33S, and 34S), we examined drill core samples from slope and basinal environments adjacent to a major Late Archean (∼2.6–2.5 Ga) marine carbonate platform from South Africa. Coupled with petrography, these techniques can untangle the complex history of mineralization in samples containing diverse sulfur-bearing phases. We focused on pyrite nodules, precipitated in shallow sediments. These textures record systematic spatial differences in both mass-dependent and mass-anomalous sulfur-isotopic composition over length scales of even a few hundred microns. Petrography and magnetic imaging demonstrate that mass-anomalous fractionations were acquired before burial and compaction, but also show evidence of postdepositional alteration 500 million y after deposition. Using magnetic imaging to screen for primary phases, we observed large spatial gradients in Δ33S (>4‰) in nodules, pointing to substantial environmental heterogeneity and dynamic mixing of sulfur pools on geologically rapid timescales. In other nodules, large systematic radial δ34S gradients (>20‰) were observed, from low values near their centers increasing to high values near their rims. These fractionations support hypotheses that microbial sulfate reduction was an important metabolism in organic-rich Archean environments—even in an Archean ocean basin dominated by iron chemistry. PMID:24706767

  9. Iron oxide copper-gold deposits in the Islamic Republic of Mauritania (phase V, deliverable 79): Chapter M in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Fernette, Gregory

    2015-01-01

    Mauritania hosts one significant copper-gold deposit, Guelb Moghrein and several occurrences, which have been categorized as iron oxide copper-gold (IOCG) deposits but which are atypical in some important respects. Nonetheless, Guelb Moghrein is an economically significant mineral deposit and an attractive exploration target. The deposit is of Archean age and is hosted by a distinctive metacarbonate rock which is part of a greenstone-banded iron formation (BIF) package within a thrust stack in the northern part of the Mauritanide Belt. The surrounding area hosts a number of similar copper-gold occurrences. Based on the characteristics of the Guelb Moghrein deposit and its geologic environment, five tracts which are considered permissive for IOCG type mineralization similar to Guelb Moghrein have been delineated.

  10. Reappraisal of hydrocarbon biomarkers in Archean rocks

    PubMed Central

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-01-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387

  11. Geochemistry of Archean metasedimentary rocks of the Aravalli craton, NW India: Implications for provenance, paleoweathering and supercontinent reconstruction

    NASA Astrophysics Data System (ADS)

    Ahmad, Iftikhar; Mondal, M. E. A.; Satyanarayanan, M.

    2016-08-01

    Basement complex of the Aravalli craton (NW India) known as the Banded Gneissic Complex (BGC) is classified into two domains viz. Archean BGC-I and Proterozoic BGC-II. We present first comprehensive geochemical study of the Archean metasedimentary rocks occurring within the BGC-I. These rocks occur associated with intrusive amphibolites in a linear belt within the basement gneisses. The association is only concentrated on the western margin of the BGC-I. The samples are highly mature (MSm) to very immature (MSi), along with highly variable geochemistry. Their major (SiO2/Al2O3, Na2O/K2O and Al2O3/TiO2) and trace (Th/Sc, Cr/Th, Th/Co, La/Sc, Zr/Sc) element ratios, and rare earth element (REE) patterns are consistent with derivation of detritus from the basement gneisses and its mafic enclaves, with major contribution from the former. Variable mixing between the two end members and closed system recycling (cannibalism) resulted in the compositional heterogeneity. Chemical index of alteration (CIA) of the samples indicate low to moderate weathering of the source terrain in a sub-tropical environment. In A-CN-K ternary diagram, some samples deceptively appear to have undergone post-depositional K-metasomatism. Nevertheless, their petrography and geochemistry (low K2O and Rb) preclude the post-depositional alteration. We propose non-preferential leaching of elements during cannibalism as the cause of the deceptive K-metasomatism as well as enigmatic low CIA values of some highly mature samples. The Archean metasedimentary rocks were deposited on stable basement gneisses, making the BGC-I a plausible participant in the Archean Ur supercontinent.

  12. Anoxygenic growth of cyanobacteria on Fe(II) and their associated biosignatures: Implications for biotic contributions to Precambrian Banded Iron Formations

    NASA Astrophysics Data System (ADS)

    Parenteau, M.; Jahnke, L. L.; Cady, S. L.; Pierson, B.

    2011-12-01

    Banded Iron Formations (BIFs) are widespread Precambrian sedimentary deposits that accumulated in deep ocean basins or shallow platformal areas with inputs of reduced iron (Fe(II)) and silica from deep ocean hydrothermal activity. There is debate as to whether abiotic or biotic mechanisms were responsible for the oxidation of aqueous Fe(II) and the subsequent accumulation of ferric iron (Fe(III)) mineral assemblages in BIFs. Biotic Fe(II) oxidation could have occurred indirectly as a result of the photosynthetic production of oxygen by cyanobacteria, or could have been directly mediated by anoxygenic phototrophs or chemolithotrophs. The anoxygenic use of Fe(II) as an electron donor for photosynthesis has also been hypothesized in cyanobacteria, representing another biotic mechanism by which Fe(II) could be oxidized in BIFs. This type of photoferrotrophic metabolism may also represent a key step in the evolution of oxygenic photosynthesis. Members of our group have speculated that an intermediate reductant such as Fe(II) could have acted as a transitional electron donor before water. The widespread abundance of Fe(II) in Archean and Neoproterozoic ferruginous oceans would have made it particularly suitable as an electron donor for photosynthesis. We have been searching for modern descendants of such an ancestral "missing link" cyanobacterium in the phototrophic mats at Chocolate Pots, a hot spring in Yellowstone National Park with a constant outflow of anoxic Fe(II)-rich thermal water. Our physiological ecology study of the Synechococcus-Chloroflexi mat using C-14 bicarbonate uptake and autoradiography experiments revealed that the cyanobacteria grow anoxygenically using Fe(II) as an electron donor for photosynthesis in situ. An initial set of similar experiments substituting C-13 bicarbonate as the tracer was used to characterize labeling of the community lipid biomarker signature and confirm the C-14 results. Under light conditions with and without Fe(II), the C

  13. Mineral ecophysiological evidence for microbial activity in banded iron formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dr. Yi-Liang; Konhauser, Dr, Kurt; Cole, David R

    2011-01-01

    The phosphorus composition of banded-iron formations (BIFs) has been used as a proxy for Precambrian seawater composition and the paleoeredox state of Earth's surface environment. However, it is unclear whether the phosphorus in BIFs originally entered the sediment as a sorbed component of the iron oxyhydroxide particles, or whether it was incorporated into the biomass of marine phytoplankton. We conducted high-resolution mineral analyses and report here the first detection of an Fe(III) acetate salt, as well as nanocrystals of apatite in association with magnetite, in the 2.48 Ga Dales Gorge Member of the Brockman Iron Formation (a BIF), Hamersley, Westernmore » Australia. The clusters of apatite are similar in size and morphology to biogenic apatite crystals resulting from biomass decay in Phanerozoic marine sediments, while the formation of an Fe(III) acetate salt and magnetite not only implies the original presence of biomass in the BIF sediments, but also that organic carbon likely served as an electron donor during bacterial Fe(III) reduction. This study is important because it suggests that phytoplankton may have played a key role in the transfer of phosphorus (and other trace elements) from the photic zone to the seafloor.« less

  14. Generation of felsic crust in the Archean: a geodynamic modeling perspective

    NASA Astrophysics Data System (ADS)

    Sizova, Elena; Gerya, Taras; Stüwe, Kurt; Brown, Michael

    2015-04-01

    The relevance of contemporary tectonics to the formation of the Archean terrains is a matter of vigorous debate. Higher mantle temperatures and higher radiogenic heat production in the past would have impacted on the thickness and composition of the oceanic and continental crust. As a consequence of secular cooling, there is generally no modern analog to assist in understanding the tectonic style that may have operated in the Archean. For this reason, well-constrained numerical modeling, based on the fragmentary evidence preserved in the geological record, is the most appropriate tool to evaluate hypotheses of Archean crust formation. The main lithology of Archean terrains is the sodic tonalite-trondhjemite-granodiorite (TTG) suite. Melting of hydrated basalt at garnet-amphibolite to eclogite facies conditions is considered to be the dominant process for the generation of the Archean TTG crust. Taking into account geochemical signatures of possible mantle contributions to some TTGs, models proposed for the formation of Archean crust include subduction, melting at the bottom of thickened continental crust and fractional crystallization of mantle-derived melts under water-saturated conditions. We evaluated these hypotheses using a 2D coupled petrological-thermomechanical numerical model with initial conditions appropriate to the Eoarchean-Mesoarchean. As a result, we identified three tectonic settings in which intermediate to felsic melts are generated by melting of hydrated primitive basaltic crust: 1) delamination and dripping of the lower primitive basaltic crust into the mantle; 2) local thickening of the primitive basaltic crust; and, 3) small-scale crustal overturns. In addition, we consider remelting of the fractionated products derived from underplated dry basalts as an alternative mechanism for the formation of some Archean granitoids. In the context of a stagnant lid tectonic regime which is intermittently terminated by short-lived subduction, we identified

  15. Convergent Plate Boundary Processes in the Archean: Evidence from Greenland

    NASA Astrophysics Data System (ADS)

    Polat, A.

    2014-12-01

    The structural, magmatic and metamorphic characteristics of Archean greenstone belts and associated TTG (tonalite, trondhjemite and granodiorite) gneisses in southern West Greenland are comparable to those of Phanerozoic convergent plate margins, suggesting that Archean continents grew mainly at subduction zones. These greenstone belts are composed mainly of tectonically juxtaposed fragments of oceanic crust including mafic to ultramafic rocks, with minor sedimentary rocks. Volcanic rocks in the greenstone belts are characterized mainly by island arc tholeiitic basalts, picrites, and boninites. The style of deformation and geometry of folds in 10 cm to 5 m wide shear zones are comparable to those occur on 1 to 50 km scale in the greenstone belts and TTG gneisses, suggesting that compressional tectonic processes operating at convergent plate boundaries were the driving force of Archean crustal accretion and growth. Field observations and trace element data suggest that Archean continental crust grew through accretion of mainly island arcs and melting of metamorphosed mafic rocks (amphibolites) in thickened arcs during multiple tectonothermal events. Fold patterns on cm to km scale are consistent with at least three phases of deformation and multiple melting events generating TTG melts that intruded mainly along shear zones in accretionary prism and magmatic arcs. It is suggested that Archean TTGs were produced by three main processes: (1) melting of thickened oceanic island arcs; (2) melting of subducted oceanic crust; and (3) differentiation of basaltic melts originating from metasomatized sub-arc mantle wedge peridotites.

  16. Tracing Archean sulfur across stitched lithospheric blocks

    NASA Astrophysics Data System (ADS)

    LaFlamme, Crystal; Fiorentini, Marco; Lindsay, Mark; Wing, Boswell; Selvaraja, Vikraman; Occhipinti, Sandra; Johnson, Simon; Bui, Hao Thi

    2017-04-01

    Craton margins are loci for volatile exchange among lithospheric geochemical reservoirs during crust formation processes. Here, we seek to revolutionise the current understanding of the planetary flux and lithospheric transfer of volatiles during supercontinent formation by tracing sulfur from the atmosphere-hydrosphere through to the lithosphere during crust formation. To do so, we trace the transfer of sulfur by following mass independently fractionated sulfur at ancient tectonic boundaries has the potential to. Mass independent fractionation of sulfur (MIF-S) is a signature (quantified as Δ33S and Δ36S) that is unique to the Archean sedimentary rock record and imparted to sulfur reservoirs that interacted with the oxygen-poor atmosphere before the Great Oxidation Event (GOE) at ca. 2.4 Ga. Here we present multiple sulfur isotopes from across a Proterozoic post-GOE orogenic belt, formed when Archean cratons were stitched together during supercontinent amalgamation. For the first time, multiple sulfur isotope data are presented spatially to elucidate volatile pathways across lithospheric blocks. Across the orogenic belt, the Proterozoic granitoid and hydrothermal rock records proximal to Archean cratons preserve values of Δ33S up to +0.8\\permil and a Δ33S-Δ36S array of -1.2, whereas magmatic and hydrothermal systems located more distally from the margin do not display any evidence of MIF-S. This is the first study to identify MIF-S in a Proterozoic orogen indicates that tectonic processes controlling lithospheric evolution and crust formation at tectonic boundaries are able to transfer sulfur from Archean supracrustal rock reservoirs to newly formed Proterozoic granitoid crust. The observation of MIF-S in the Proterozoic granitoid rock record has the potential to revolutionise our understanding of secular changes in the evolution of crust formation mechanisms through time.

  17. Iron and oxygen isotope fractionation during iron UV photo-oxidation: Implications for early Earth and Mars

    NASA Astrophysics Data System (ADS)

    Nie, Nicole X.; Dauphas, Nicolas; Greenwood, Richard C.

    2017-01-01

    Banded iron formations (BIFs) contain appreciable amounts of ferric iron (Fe3+). The mechanism by which ferrous iron (Fe2+) was oxidized into Fe3+ in an atmosphere that was globally anoxic is highly debated. Of the three scenarios that have been proposed to explain BIF formation, photo-oxidation by UV photons is the only one that does not involve life (the other two are oxidation by O2 produced by photosynthesis, and anoxygenic photosynthesis whereby Fe2+ is directly used as electron donor in place of water). We experimentally investigated iron and oxygen isotope fractionation imparted by iron photo-oxidation at a pH of 7.3. The iron isotope fractionation between precipitated Fe3+-bearing lepidocrocite and dissolved Fe2+ follows a Rayleigh distillation with an instantaneous 56Fe/54Fe fractionation factor of + 1.2 ‰. Such enrichment in the heavy isotopes of iron is consistent with the values measured in BIFs. We also investigated the nature of the mass-fractionation law that governs iron isotope fractionation in the photo-oxidation experiments (i.e., the slope of the δ56Fe-δ57Fe relationship). The experimental run products follow a mass-dependent law corresponding to the high-T equilibrium limit. The fact that a ∼3.8 Gyr old BIF sample (IF-G) from Isua (Greenland) falls on the same fractionation line confirms that iron photo-oxidation in the surface layers of the oceans was a viable pathway to BIF formation in the Archean, when the atmosphere was largely transparent to UV photons. Our experiments allow us to estimate the quantum yield of the photo-oxidation process (∼0.07 iron atom oxidized per photon absorbed). This yield is used to model iron oxidation on early Mars. As the photo-oxidation proceeds, the aqueous medium becomes more acidic, which slows down the reaction by changing the speciation of iron to species that are less efficient at absorbing UV-photons. Iron photo-oxidation in centimeter to meter-deep water ponds would take months to years to

  18. Diversity in the Archean Biosphere: New Insights from NanoSIMS

    NASA Astrophysics Data System (ADS)

    Oehler, Dorothy Z.; Robert, François; Walter, Malcolm R.; Sugitani, Kenichiro; Meibom, Anders; Mostefaoui, Smail; Gibson, Everett K.

    2010-05-01

    The origin of organic microstructures in the ˜3 Ga Farrel Quartzite is controversial due to their relatively poor state of preservation, the Archean age of the cherts in which they occur, and the unusual spindle-like morphology of some of the forms. To provide more insight into the significance of these microstructures, nano-scale secondary ion mass spectrometry (NanoSIMS) maps of carbon, nitrogen, sulfur, silicon, and oxygen were obtained for spheroidal and spindle-shaped constituents of the Farrel Quartzite assemblage. Results suggest that the structures are all bona fide ˜3 Ga microfossils. The spindles demonstrate an architecture that is remarkable for 3 Ga organisms. They are relatively large, robust, and morphologically complex. The NanoSIMS element maps corroborate their complexity by demonstrating an intricate, internal network of organic material that fills many of the spindles and extends continuously from the body of these structures into their spearlike appendages. Results from this study combine with previous morphological and chemical analyses to argue that the microstructures in the Farrel Quartzite comprise a diverse assemblage of Archean microfossils. This conclusion adds to a growing body of geochemical, stromatolitic, and morphological evidence that indicates the Archean biosphere was varied and well established by at least ˜3 Ga. Together, the data paint a picture of Archean evolution that is one of early development of morphological and chemical complexity. The evidence for Archean evolutionary innovation may augur well for the possibility that primitive life on other planets could adapt to adverse conditions by ready development of diversity in form and biochemistry.

  19. A revised, hazy methane greenhouse for the Archean Earth.

    PubMed

    Haqq-Misra, Jacob D; Domagal-Goldman, Shawn D; Kasting, Patrick J; Kasting, James F

    2008-12-01

    Geological and biological evidence suggests that Earth was warm during most of its early history, despite the fainter young Sun. Upper bounds on the atmospheric CO2 concentration in the Late Archean/Paleoproterozoic (2.8-2.2 Ga) from paleosol data suggest that additional greenhouse gases must have been present. Methanogenic bacteria, which were arguably extant at that time, may have contributed to a high concentration of atmospheric CH4, and previous calculations had indicated that a CH4-CO2-H2O greenhouse could have produced warm Late Archean surface temperatures while still satisfying the paleosol constraints on pCO2. Here, we revisit this conclusion. Correction of an error in the CH4 absorption coefficients, combined with the predicted early onset of climatically cooling organic haze, suggest that the amount of greenhouse warming by CH4 was more limited and that pCO2 must therefore have been 0.03 bar, at or above the upper bound of the value obtained from paleosols. Enough warming from CH4 remained in the Archean, however, to explain why Earth's climate cooled and became glacial when atmospheric O2 levels rose in the Paleoproterozoic. Our new model also shows that greenhouse warming by higher hydrocarbon gases, especially ethane (C2H6), may have helped to keep the Late Archean Earth warm.

  20. On the photosynthetic potential in the very Early Archean oceans.

    PubMed

    Avila, Daile; Cardenas, Rolando; Martin, Osmel

    2013-02-01

    In this work we apply a mathematical model of photosynthesis to quantify the potential for photosynthetic life in the very Early Archean oceans. We assume the presence of oceanic blockers of ultraviolet radiation, specifically ferrous ions. For this scenario, our results suggest a potential for photosynthetic life greater than or similar to that in later eras/eons, such as the Late Archean and the current Phanerozoic eon.

  1. RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES: NLTE EFFECTS IN J-BAND IRON AND TITANIUM LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergemann, Maria; Kudritzki, Rolf-Peter; Lind, Karin

    2012-06-01

    Detailed non-LTE (NLTE) calculations for red supergiant (RSG) stars are presented to investigate the influence of NLTE on the formation of atomic iron and titanium lines in the J band. With their enormous brightness at J band RSG stars are ideal probes of cosmic abundances. Recent LTE studies have found that metallicities accurate to 0.15 dex can be determined from medium-resolution spectroscopy of individual RSGs in galaxies as distant as 10 Mpc. The NLTE results obtained in this investigation support these findings. NLTE abundance corrections for iron are smaller than 0.05 dex for effective temperatures between 3400 K and 4200more » K and 0.1 dex at 4400 K. For titanium the NLTE abundance corrections vary smoothly between -0.4 dex and +0.2 dex as a function of effective temperature. For both elements, the corrections also depend on stellar gravity and metallicity. The physical reasons behind the NLTE corrections and the consequences for extragalactic J-band abundance studies are discussed.« less

  2. Rare earth element patterns in Archean high-grade metasediments and their tectonic significance

    NASA Technical Reports Server (NTRS)

    Taylor, Stuart Ross; Rudnick, Roberta L.; Mclennan, Scott M.; Eriksson, Kenneth A.

    1986-01-01

    REE data on metasedimentary rocks from two different types of high-grade Archean terrains are presented and analyzed. The value of REEs as indicators of crustal evolution is explained; the three geologic settings (in North America, Southern Africa, and Australia) from which the samples were obtained are described; and the data are presented in extensive tables and graphs and discussed in terms of metamorphic effects, the role of accessory phases, provenance, and tectonic implications (recycling, the previous extent of high-grade terrains, and a model of Archean crustal growth). The diversity of REE patterns in shallow-shelf metasediments is attributed to local provenance, while the Eu-depleted post-Archean patterns are associated with K-rich plutons from small, stable early Archean terrains.

  3. Mineralogy of approximately 1-10 Micrometer Iron Spheres Within 3.4 Ga Rocks (Towers Formation, Warrawoona Group, Northwestern Australia)

    NASA Technical Reports Server (NTRS)

    Morris, P. A.; Wentworth, Susan J.; Thomas-Keprta, Kathie L.; Allen, Carlton C.; Schwandt, Craig S.; McKay, David S.; Westall, Frances; Bell, Mary Sue; Gibson, Everett K.

    2000-01-01

    Iron-bearing spherules in Archean Warrawoona rocks are composed of hematite and goethite. They are clearly syngenetic with the rock but their origin, whether biological or abiogenic, is not yet known.

  4. Geology and tectonics of the Archean Superior Province, Canadian Shield

    NASA Technical Reports Server (NTRS)

    Card, K. D.

    1986-01-01

    Superior Province consists mainly of Late Archean rocks with Middle Archean gneisses in the south, and possibly in the north. The Late Archean supracrustal sequences are of island arc and interarc affinity and are cut by abundant plutonic rocks, including early arc-related intrusions, late synorogenic intrusions, and post-orogenic plutons that are possibly the product of crustal melting caused by thermal blanketing of newly-thickened continental crust combined with high mantle heat flux. The contemporaneity of magmatic and deformational events along the lengths of the belts is consistent with a subduction-dominated tectonic regime for assembly of the Kenoran Orogen. Successive addition of volcanic arcs accompanied and followed by voluminous plutonism resulted in crustal thickening and stabilization of the Superior craton prior to uplift of Kapuskasing granulites, emplacement of the Matachewan diabase dykes, and Early Proterozoic marginal rifting.

  5. Gas Production Within Stromatolites Across the Archean: Evidence For Ancient Microbial Metabolisms

    NASA Astrophysics Data System (ADS)

    Wilmeth, D.; Corsetti, F. A.; Berelson, W.; Beukes, N. J.; Awramik, S. M.; Petryshyn, V. A.

    2017-12-01

    Identifying the presence of specific microbial metabolisms in the Archean is a fundamental goal of deep-time geobiology. Certain fenestral textures within Archean stromatolites provide evidence for the presence of gas, and therefore gas-releasing metabolisms, within ancient microbial mats. Paleoenvironmental analysis indicates many of the stromatolites formed in shallow, agitated aqueous environments, with relatively rapid gas production and lithification of fenestrae. Proposed gases include oxygen, carbon dioxide, methane, hydrogen sulfide, and various nitrogen species, produced by appropriate metabolisms. This study charts the presence of gas-related fenestrae in Archean stromatolites over time, and examines the potential for various metabolisms to produce fenestral textures. Fenestral textures are present in Archean stromatolites on at least four separate cratons from 3.5 to 2.5 Ga. Fenestrae are preserved in carbonate and chert microbialites of various morphologies, including laminar, domal, and conical forms. Extensive fenestral textures, with dozens of fenestrae along individual laminae, are especially prevalent in Neoarchean stromatolites (2.8 -2.5 Ga). The volume of gas within Archean microbial mats was estimated by measuring fenestrae in ancient stromatolites and bubbles within modern mats. The time needed for metabolisms to produce appropriate gas volumes was calculated using modern rates obtained from the literature. Given the paleoenvironmental conditions, the longer a metabolism takes to make large amounts of gas, the less likely large bubbles will remain long enough to become preserved. Additionally, limiting reactants were estimated for each metabolism using previous Archean geochemical models. Metabolisms with limited reactants are less likely to produce large amounts of gas. Oxygenic photosynthesis can produce large amounts of gas within minutes, and the necessary reactants (carbon dioxide and water) were readily available in Archean environments

  6. Deep-Time drilling in the Australian Archean: the Agouron Institute geobiological drilling project. (Invited)

    NASA Astrophysics Data System (ADS)

    Buick, R.

    2010-12-01

    of the Hamersley Group near Yilgalong Creek. This location had been previously drilled by a mining company in the 1980’s and the core provided the highest biomarker yields of any Archean rocks thus far sampled. As it has been suggested that these biomarkers are non-indigenous contaminants, one possibility is that they were introduced into the drill-core at some time between drilling and sampling, so this hole tests that hypothesis. If biomarker concentrations and ratios differ significantly between the two adjacent holes with differing exposures to post-drilling contaminants, then clearly contamination has affected one or other of the cores. The third hole sampled an off-shore equivalent, through banded irons and kerogenous shales of the ~2.65 Ga Marra Mamba and Jeerinah Formations of the Hamersley Group near Cowcumba Creek. Another opportunity for contamination may arise during post-depositional but pre-drilling hydrocarbon migration, when biomarkers can potentially be introduced into previously barren rocks by younger oils, so this hole tests that possibility. As it was drilled through the same stratigraphic interval and structural domain as the second hole but in a different environment, biomarker ratios should be similar if contaminated but different if indigenous.

  7. Biomarker evidence for Archean oxygen fluxes (Invited)

    NASA Astrophysics Data System (ADS)

    Hallmann, C.; Waldbauer, J.; Sherman, L. S.; Summons, R. E.

    2010-12-01

    Knowledge of deep-time organismic diversity may be gained from the study of preserved sedimentary lipids with taxonomic specificity, i.e. biomarker hydrocarbons (e.g. Brocks and Summons, 2003; Waldbauer et al., 2009). As a consequence of long residence times and high thermal maturities however, biomarker concentrations are extremely low in most ancient (Precambrian) sediment samples, making them exceptionally prone to contamination during drilling, sampling and laboratory workup (e.g. Brocks et al., 2008). Outcrop samples most always carry a modern overprint and deep-time biogeochemistry thus relies on drilling operations to retrieve ‘clean’ sediment cores. One such effort was initiated by NASA’s Astrobiology Institute (NAI): the Archean biosphere drilling project (ABDP). We here report on the lipids retrieved from sediment samples in drill hole ABDP-9. Strong heterogeneities of extractable organic matter - both on a spatial scale and in free- vs. mineral-occluded bitumen - provide us with an opportunity to distinguish indigenous lipids from contaminants introduced during drilling. Stratigraphic trends in biomarker data for mineral-occluded bitumens are complementary to previously reported data (e.g. S- and N-isotopes, molybdenum enrichments) from ABDP-9 sediments (Anbar et al., 2007; Kaufman et al., 2007; Garvin et al., 2009) and suggest periodic fluxes of oxygen before the great oxidation event. Anbar et al. A whiff of oxygen before the great oxidation event. Science 317 (2007), 1903-1906. Brocks & Summons. Sedimentary hydrocarbons, biomarkers for early life. In: Schlesinger (Ed.) Treatise on Geochemistry, Vol. 8 (2003), 63-115. Brocks et al. Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants. Geochimica et Cosmochimica Acta 72 (2008), 871-888. Garvin et al. Isotopic evidence for a aerobic nitrogen cycle in the latest Archean. Science 323 (2009), 1045-1048. Kaufman et al. Late Archean

  8. Constraining mechanisms of quartz precipitation in the Archean ocean using silicon isotopes

    NASA Astrophysics Data System (ADS)

    Brengman, L. A.; Fedo, C.; Martin, W.

    2017-12-01

    To constrain reservoir values for the Archean silica cycle we measured silicon isotope compositions (δ30Si) of 28 igneous, siliciclastic sedimentary, hydrothermal, and chemical sedimentary rock samples from three Archean greenstone belts representing different times (>3.7 - 2.7 Ga) and tectonic regimes. We posit that silicon isotope compositions of quartz (746 analyses measured in situ by secondary ion mass spectrometry at the NORDSIM facility) are linked to changes in key geochemical parameters that vary within local depositional environments, coupled with a dependency on size and δ30Si composition of the source reservoir. Collectively, siliceous precipitates from even a single basin span a 7‰ range in δ30Si values. Such heterogeneity, regardless of basinal position or presence of Fe-phases demonstrates that δ30Si values of chemical sediments are linked to neither a well-mixed water column representative of a single ocean composition, nor a specific time in Earth history. Combining data from all three greenstone belts we discern that all measured Algoma-type iron formation (IF) and about 50% of associated chert samples possess δ30Si values <0‰, while the majority of silicified volcanic rocks and the remaining 50% of chert samples have δ30Si values >0‰. Negative values of Algoma-type IF can be explained by rate-dependent fractionation during precipitation and/or adsorption to Fe/Al. Combined experimental and natural data for quartz precipitates suggest slow precipitation rates coupled with closed system, Rayleigh type distillation could produce the isotopically heavy values. Such results suggest the quartz-precipitating fluid for these rocks evolves from an open system in disequilibrium, to one that is closed, and in equilibrium with the host rock. In contrast to the static range of values through time for Algoma-type IF, associated cherts and silicified rocks, compiled data for Superior-type IF from 3 - 1.8 Ga record a systematic increasing trend from

  9. The nature of Mesoarchaean seawater and continental weathering in 2.85 Ga banded iron formation, Slave craton, NW Canada

    NASA Astrophysics Data System (ADS)

    Haugaard, Rasmus; Ootes, Luke; Creaser, Robert A.; Konhauser, Kurt O.

    2016-12-01

    Banded iron formations (BIF) have been extensively used as proxies to infer the chemical composition of ancient bulk seawater. However, their proximity to ancient crust suggests that they might also be used to reveal the composition of emergent continental landmass at the time of their deposition. Here we use the combination of geochemistry and Sm-Nd isotopes on a layer-by-layer basis to interpret the relative contributions of hydrothermal, hydrogenous and terrestrial input to one of the oldest documented Superior-type BIF in the world. The ∼2.85 Ga Central Slave Cover Group BIF is deposited within a rift basin related to a continental margin and is found associated with basement gneisses, as well as shoreline and shallow-shelf type facies, such as fuchsitic quartzite and pebble-to-cobble conglomerate, that confirm a near-shore depositional setting for the BIF. The BIF ranges from a pure chemical oxide (magnetite)-silicate (grunerite + actinolite) sediment with low Al2O3 (<1 wt.%) into a mixture of chemical and clastic sediment characterized by higher Al2O3 (⩽10 wt.%) and the occurrence of ferro-hornblende, biotite and garnet. The silica bands have low trace metal content (e.g., Ni), low ∑REE (average of 6 ppm) and a shale-normalized rare earth and yttrium (REY) pattern that is HREE-to-LREE enriched with (Pr/Yb)SN values reaching <0.2. The iron bands are more enriched, with average ∑REE of 26 and with a more uniform and less fractionated REY pattern (average (Pr/Yb)SN of 0.5). During active rifting of the basement, excess of Eu2+ impacted the basin yielding seawater with Eu anomalies [(Eu/Eu∗)SN] as high as 3.85 (average 2.75), larger than similarly-aged BIF. High-resolution geochemistry shows that there is more silica (19.4 wt.% SiO2) in the iron bands than iron (8.7 wt.% Fe2O3) in the silica bands, implying that dissolved Fe2+ came to the BIF site in pulses and that silica likely represents background deposition. Consistently radiogenic εNd(t) values

  10. Magnetotelluric survey to locate the Archean/Proterozoic suture zone north of Wells, Nevada

    USGS Publications Warehouse

    Williams, Jackie M.; Rodriguez, Brian D.

    2006-01-01

    It is important to know whether major mining districts in the Northern Nevada Gold Province are underlain by rocks of the Archean Wyoming craton, which are known to contain orogenic gold deposits, or by accreted rocks of the Paleoproterozoic Mojave province. It is also important to know the location and orientation of the Archean/Proterozoic suture zone between these provinces as well as major basement structures within these terranes because they may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. The Archean was the main gold-mineralization period, and Archean lode-gold deposits were formed at mid-crustal depths along major shear zones. The nature of the crystalline basement below the Northern Nevada Gold Province and the location of major faults within it are relevant to Rodinian reconstructions, crustal development, and ore deposit models (e.g., Hofstra and Cline, 2000; Grauch and others, 2003). According to Whitmeyer and Karlstrom (2004), the Archean cratons of the northwestern United States and Canada had stabilized as continental lithosphere by 2.5 Ga, and were rifted and assembled into a large continental mass by 1.8 Ga, to which the 1.73-1.68 Ga Mohave province was accreted by 1.65 Ga. The Archean/Proterozoic suture zone has a west-southwest strike where it is exposed (Reed, 1993) at the eastern Utah and southwestern Wyoming border (Cheyenne Belt) where it is characterized by an up to 7-km-thick mylonite zone (Smithson and Boyd, 1998). In the Great Basin, the strike of the Archean/Proterozoic suture zone is poorly constrained because it is largely concealed below a Neoproterozoic-Paleozoic miogeocline and basin fill. East-west and southwest-northeast strikes for the Archean/Proterozoic suture zone have been inferred based on Sr, Nd, and Pb isotopic compositions of granitoid intrusions (Tosdal and others, 2000). To better constrain the location and strike of the Archean/Proterozoic suture zone below cover

  11. A model for late Archean chemical weathering and world average river water

    NASA Astrophysics Data System (ADS)

    Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.

    2017-01-01

    Interpretations of the geologic record of late Archean near-surface environments depend very strongly on an understanding of weathering and resultant riverine transport to the oceans. The late Archean atmosphere is widely recognized to be anoxic (pO2,g =10-5 to 10-13 bars; pH2,g =10-3 to 10-5 bars). Detrital siderite (FeCO3), pyrite (FeS2), and uraninite (UO2) in late Archean sedimentary rocks also suggest anoxic conditions. However, whether the observed detrital minerals could have been thermodynamically stable during weathering and riverine transport under such an atmosphere remains untested. Similarly, interpretations of fluctuations recorded by trace metals and isotopes are hampered by a lack of knowledge of the chemical linkages between the atmosphere, weathering, riverine transport, and the mineralogical record. In this study, we used theoretical reaction path models to simulate the chemistry involved in rainwater and weathering processes under present-day and hypothetical Archean atmospheric boundary conditions. We included new estimates of the thermodynamic properties of Fe(II)-smectites as well as smectite and calcite solid solutions. Simulation of present-day weathering of basalt + calcite by world-average rainwater produced hematite, kaolinite, Na-Mg-saponite, and chalcedony after 10-4 moles of reactant minerals kg-1 H2O were destroyed. Combination of the resultant water chemistry with results for granitic weathering produced a water composition comparable to present-day world average river water (WARW). In contrast, under late Archean atmospheric conditions (pCO2,g =10-1.5 and pH2,g =10-5.0 bars), weathering of olivine basalt + calcite to the same degree of reaction produced kaolinite, chalcedony, and Na-Fe(II)-rich-saponite. Late Archean weathering of tonalite-trondhjemite-granodiorite (TTG) formed Fe(II)-rich beidellite and chalcedony. Combining the waters from olivine basalt and TTG weathering resulted in a model for late Archean WARW with the

  12. Constraining the location of the Archean--Proterozoic suture in the Great Basin based on magnetotelluric soundings

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sampson, Jay A.

    2012-01-01

    It is important to understand whether major mining districts in north-central Nevada are underlain by Archean crust, known to contain major orogenic gold deposits, or, alternatively, by accreted crust of the Paleoproterozoic Mojave province. Determining the location and orientation of the Archean-Proterozoic suture zone between the Archean crust and Mojave province is also critical because it may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. In the Great Basin, the attitude of the suture zone is unknown because it is concealed below cover. A regional magnetotelluric sounding profile along the Utah-Nevada State line reveals a deeply penetrating, broad electrical conductor that may be the Archean-Proterozoic suture zone in the northwest corner of Utah. This major crustal conductor's strike direction is northwest, where it broadens to about 80 km wide below about 3-km depth. These results suggest that the southwestern limit of intact Archean crust in this part of the Great Basin is farther north than previously reported. These results also suggest that the major gold belts in north-central Nevada are located over the Paleoproterozoic Mojave province, and the Archean terrain lies northeast in the northwest corner of Utah. Rifted Archean crust segments south and west of the suture suggest that future mineral exploration northeast of current mineral trends may yield additional gold deposits.

  13. Archean komatiite volcanism controlled by the evolution of early continents.

    PubMed

    Mole, David R; Fiorentini, Marco L; Thebaud, Nicolas; Cassidy, Kevin F; McCuaig, T Campbell; Kirkland, Christopher L; Romano, Sandra S; Doublier, Michael P; Belousova, Elena A; Barnes, Stephen J; Miller, John

    2014-07-15

    The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.

  14. Electronic coupling in iron oxide-modified TiO2 leads to a reduced band gap and charge separation for visible light active photocatalysis.

    PubMed

    Nolan, Michael

    2011-10-28

    In recent experiments Tada et al. have shown that TiO(2) surfaces modified with iron oxide display visible light photocatalytic activity. This paper presents first principles simulations of iron oxide clusters adsorbed at the rutile TiO(2) (110) surface to elucidate the origin of the visible light photocatalytic activity of iron oxide modified TiO(2). Small iron oxide clusters adsorb at rutile (110) surface and their presence shifts the valence band so that the band gap of the composite is narrowed towards the visible, thus confirming the origin of the visible light activity of this composite material. The presence of iron oxide at the TiO(2) surface leads to charge separation, which is the origin of enhanced photocatalytic efficiency, consistent with experimental photoluminesence and photocurrent data. Surface modification of a metal oxide is thus an interesting route in the development of visible light photocatalytic materials. This journal is © the Owner Societies 2011

  15. Development of a mixed seawater-hydrothermal fluid geochemical signature during alteration of volcanic rocks in the Archean (∼2.7 Ga) Abitibi Greenstone Belt, Canada

    NASA Astrophysics Data System (ADS)

    Brengman, Latisha A.; Fedo, Christopher M.

    2018-04-01

    conclude that seafloor silicification in hydrothermal depositional settings is capable of producing rocks that resemble marine chemical precipitates such as banded iron formation, and could be a process that is widespread in the Archean. Consequently, because silicified volcanic rocks from the HMG possess mixed seawater and hydrothermal rare-earth element characteristics similar to Archean iron formations and cherts, we suggest caution must be exercised when interpreting the geochemical information preserved in metamorphosed rocks where original genesis is unknown.

  16. Archean microfossils: a reappraisal of early life on Earth.

    PubMed

    Altermann, Wladyslaw; Kazmierczak, Józef

    2003-11-01

    The oldest fossils found thus far on Earth are c. 3.49- and 3.46-billion-year-old filamentous and coccoidal microbial remains in rocks of the Pilbara craton, Western Australia, and c. 3.4-billion-year-old rocks from the Barberton region, South Africa. Their biogenicity was recently questioned and they were reinterpreted as contaminants, mineral artefacts or inorganic carbon aggregates. Morphological, geochemical and isotopic data imply, however, that life was relatively widespread and advanced in the Archean, between 3.5 and 2.5 billion years ago, with metabolic pathways analogous to those of recent prokaryotic organisms, including cyanobacteria, and probably even eukaryotes at the terminal Archean.

  17. Building Archean cratons from Hadean mafic crust

    NASA Astrophysics Data System (ADS)

    O'Neil, Jonathan; Carlson, Richard W.

    2017-03-01

    Geologic processing of Earth’s surface has removed most of the evidence concerning the nature of Earth’s first crust. One region of ancient crust is the Hudson Bay terrane of northeastern Canada, which is mainly composed of Neoarchean felsic crust and forms the nucleus of the Northeastern Superior Province. New data show these ~2.7-billion-year-old rocks to be the youngest to yield variability in neodymium-142 (142Nd), the decay product of short-lived samarium-146 (146Sm). Combined 146-147Sm-142-143Nd data reveal that this large block of Archean crust formed by reworking of much older (>4.2 billion-year-old) mafic crust over a 1.5-billion-year interval of early Earth history. Thus, unlike on modern Earth, mafic crust apparently could survive for more than 1 billion years to form an important source rock for Archean crustal genesis.

  18. Geochemistry of Archean Mafic Amphibolites from the Amsaga Area, West African Craton, Mauritania: What Is the Message?

    NASA Astrophysics Data System (ADS)

    El Atrassi, F.; Debaille, V.; Mattielli, N. D. C.; Berger, J.

    2014-12-01

    While Archean terrains are mainly composed of a TTG (Tonalite-trondhjemite-granodiorite) suite, more mafic lithologies such as amphibolites are also a typical component of those ancient terrains. Although mafic rocks represent only ~10% of the Archean cratons, they may provide key evidence of the role and nature of basaltic magmatism in the formation of the Archean crust as well as the evolution of the Archean mantle. This study focuses on the Archean crust from the West African Craton in Mauritania (Amsaga area). The Amsaga Archean Crust mainly consists of TTG and thrust-imbricated slices of mafic volcanic rocks, which have been affected by polymetamorphic events from the amphibolite to granulite facies. Our main objectives aim to the identification of the mafic lithology origin and a better understanding of their role in the continental crust emplacement. Our petrological observations show that these amphibolites have fine to medium granoblastic and nematoblastic textures. The amphibolites are dominated by amphibolite-facies mineral assemblages (mainly amphibole and plagioclase), but garnet and clinopyroxene occur in a few samples. Two groups are distinct in their geochemical characteristics (major and trace elements), although both have tholeiitic basalt composition. The first group show LREE-enriched patterns and negative Nb-Ta anomalies. The second group is characterized by near-flat LREE patterns and flat HREE patterns. This second group clearly shows no Nb-Ta anomalies. The first group could be related to arc-like basalts, as it is many similarities with some Archean amphibolites probably formed in a supra-subduction zone, for instance the volcanic rocks from the southern edge of the Isua Supracrustal Belt. On the contrary, the second group has a MORB-like signature which is more unusual during the Archean. Different scenarios will be discussed regards to the Archean geodynamics.

  19. Mesoarchean Banded Iron Formation sequences in Dixon Island-Cleaverville Formation, Pilbara Australia: Oxygenic signal from DXCL project

    NASA Astrophysics Data System (ADS)

    Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Naraoka, H.; Onoue, T.; Horie, K.; Sakamoto, R.; Aihara, Y.; Miki, T.

    2013-12-01

    The 3.2-3.1 Ga Dixon island-Cleaverville formations are well-preserved Banded Iron Formation (BIF) within hydrothermal oceanic sequence at oceanic island arc setting (Kiyokawa et al., 2002, 2006, 2012). The stratigraphy of the Dixon Island (3195+15Ma) -Cleaverville (3108+13Ma) formations shows the well preserved environmental condition at the Mesoarchean ocean floor. The stratigraphy of these formations are formed about volcano-sedimentary sequences with hydrothermal chert, black shale and banded iron formation to the top. Based on the scientific drilling of DXCL project at 2007 and 2011, detail lithology between BIF sequence was clearly understood. Four drilling holes had been done at coastal sites; the Dixon Island Formation is DX site (100m) and the Cleaverville Formation is CL2 (40m), CL1 (60m) and CL3 (200m) sites and from stratigraphic bottom to top. Coarsening and thickening upward black shale-BIF sequences are well preserved of the stratigraphy form the core samples. The Dixon Island Formation consists komatiite-rhyolite sequences with many hydrothermal veins and very fine laminated cherty rocks above them. The Cleaverville Formation contains black shale, fragments-bearing pyroclastic beds, white chert, greenish shale and BIF. The CL3 core, which drilled through BIF, shows siderite-chert beds above black shale identified before magnetite lamination bed. U-Pb SHRIMP data of the tuff in lower Dixon Island Formation is 3195+15 Ma and the pyroclastic sequence below the Cleaverville BIF is 3108+13 Ma. Sedimentation rate of these sequence is 2-8 cm/ 1000year. The hole section of the organic carbon rich black shales below BIF are similar amount of organic content and 13C isotope (around -30per mill). There are very weak sulfur MIF signal (less 0.2%) in these black shale sequence. Our result show that thick organic rich sediments may be triggered to form iron rich siderite and magnetite iron beds. The stratigraphy in this sequence quite resemble to other Iron

  20. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics.

    PubMed

    Tang, Ming; Chen, Kang; Rudnick, Roberta L

    2016-01-22

    The Archean Eon witnessed the production of early continental crust, the emergence of life, and fundamental changes to the atmosphere. The nature of the first continental crust, which was the interface between the surface and deep Earth, has been obscured by the weathering, erosion, and tectonism that followed its formation. We used Ni/Co and Cr/Zn ratios in Archean terrigenous sedimentary rocks and Archean igneous/metaigneous rocks to track the bulk MgO composition of the Archean upper continental crust. This crust evolved from a highly mafic bulk composition before 3.0 billion years ago to a felsic bulk composition by 2.5 billion years ago. This compositional change was attended by a fivefold increase in the mass of the upper continental crust due to addition of granitic rocks, suggesting the onset of global plate tectonics at ~3.0 billion years ago. Copyright © 2016, American Association for the Advancement of Science.

  1. Sulfur mass-independent fractionation during photolysis and photoexcitation of SO2 and CS2 and implications to the source reactions for Archean sulfur isotope anomaly

    NASA Astrophysics Data System (ADS)

    Ono, S.; Whitehill, A. R.; Oduro, H. D.

    2012-12-01

    Signatures of sulfur mass-independent fractionations (S-MIF) in Archean sedimentary rocks provide critical constraints on the atmospheric oxygen level of an early atmosphere and documents fundamental difference in early sulfur biogeochemical cycle from that of today. Archcean sulfide and sulfate minerals often yield correlated relationships among δ34S, Δ33S and Δ36S values. Our goal is to use this S-MIF pattern to pinpoint the S-MIF source reaction(s), and to constrain early atmospheric conditions beyond the oxygen level. Such an effort may lead to a new hypothesis about the cause of the Great Oxidation Event at 2.4 Billion years ago. We will present new results of laboratory photochemical experiments that are designed to calibrate the pattern of S-MIF during the photochemistry of SO2 and CS2 as a function of UV spectrum regions, partial pressure of SO2 and CS2 (0.1 mbar and above) and total N2 pressure (0.25 to 1.0 bar). Both SO2 and CS2 exhibit high energy absorption band (190 to 220 nm) that leads to direct photolysis (SO2 → SO + O or CS2 → CS + S), and low energy band (>240 nm for SO2 and 280 nm for CS2) that excites molecules to low lying electronic states under dissociation thresholds. Broadband UV light sources (Xenon or Deuterium arc lamps) are used in combination with a series of bandpass (200±35 nm), longpass (250 or 280 nm) filters to isolate specific electronic transitions. Excited state SO2 is trapped by acetylene and excited state CS2 polymerizes in the reactor, and are collected for sulfur isotope ratio analysis. Although SO2 photolysis under 190 to 220 nm is thought to be the main Archean S-MIF source reaction, its S-MIF is characterized by high δ34S values (up to 140 ‰) and relatively low Δ36S/Δ33S values (-3.3 to -5.9) compared to Archean data (-0.9 to -1.5). Strong pSO2 dependence suggests S-MIF is primarily due to isotopologue self-shielding at least under our experimental conditions. In contrast, SO2 photoexciation under >250 nm

  2. Deformation history of Archean metasedimentary rocks of the Beartooth mountains in the vicinity of the Mineral Hill mine, Jardine, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablinski, J.D.; Holst, T.B.

    1992-09-01

    Archean metasedimentary rocks of the South Snowy Block of the Beartooth Mountains, in the vicinity of Jardine, Montana, consist predominantly of schistose rocks with rare iron formation. These rocks are intruded by Precambrian granitic stocks and minor mafic dikes and sills. Evidence for three phases of folding and late-stage kinking is found within the metasedimentary rocks, whereas rocks of the Crevice Mountain stock (2,700 Ma) are unaffected by any of these events. The first folding event involved the development of isoclinal, recumbent folds of varying scale. F[sub 1] fold hinges are rare, most commonly observed underground in Mineral Hill. Anmore » S[sub 1] schistosity has developed axial planar to these folds. This schistosity, which is subparallel to bedding, is very well developed and ubiquitous in the metasedimentary rocks of the Jardine region. Two later phases of folding are also recognized. F[sub 2] folds are nearly upright with gently to moderately plunging fold hinges. Temperature and pressure conditions during deformation, as revealed by calculations from microprobe analyses, suggest that the peak of metamorphism occurred at a temperature of about 560 C and a pressure of 2.9 kb. Thin section observations indicate that the metamorphic peak accompanied the formation of S[sub 1] schistosity. Structural, metamorphic, and geochemical data are consistent with the hypothesis that the metasedimentary rock of the Jardine region are allochthonous and constitute one of a number of tectonostratigrphic terranes in the western Beartooth Mountains that were juxtaposed tectonically against the western margin of an Archean continent during a Late Archean collisional event.« less

  3. Biomarkers Indigenous to Late Archean Rocks

    NASA Astrophysics Data System (ADS)

    Eigenbrode, J. L.; Freeman, K. H.; Summons, R. E.; Love, G. D.; Snape, C. E.

    2003-12-01

    Two new lines of evidence support the authenticity of molecular fossils in late Archean rocks of the Hamersley Province, Western Australia. Specifically, they support 1) a syngenetic relationship between the kerogen and extractable biomarkers, and 2) a indigenous relationship between extractable compounds and the host rocks. Carbon skeletons released from kerogen via high-pressure hydropyrolysis match those found in associated extracted bitumen. Biomarker ratios indicate less mature steranes and terpanes (i.e. hopanes and tricyclic terpanes) are embedded in the kerogen matrix as compared to the highly mature steranes and terpanes in the extracts, which is similar to findings in other hydropyrolysis experiments. Lithology-associated variations in biomarker distributions are noteworthy and suggest environmental settings are associated with differing biotic ecosystems. The evidence reported here confirms the 2.7 Ga antiquity of diverse biosynthetic pathways. Molecular data, together with isotopic data, indicate aerobic and anaerobic respiration pathways were fundamental to the complex microbial biogeochemistry of the late Archean. The biomarkers in these rocks support an early radiation of the three domains of life and radiation within the bacteria, such that clades of cyanobacteria, green sulfur bacteria, and proteobacteria had been established.

  4. Hazy Archean Earth as an Analog for Hazy Earthlike Exoplanets

    NASA Astrophysics Data System (ADS)

    Arney, Giada; Meadows, Victoria; Domagal-Goldman, Shawn; Claire, Mark; Schwieterman, Edward

    2015-01-01

    Hazy exoplanets may be common (Bean et al. 2010, Sing et al. 2011, Kreidberg et al 2014), and in our solar system, Venus and Titan have photochemically-produced hazes. There is evidence that Earth itself had a hydrocarbon haze in the Archean (Zerkle et al. 2012, Domagal-Goldman et al. 2008) with important climatic effects (Pavlov et al. 2001, Trainer et al. 2006, Haqq-Misra et al. 2008, Wolf and Toon 2012). We use a 1D coupled photochemical-climate model and a line-by-line radiative transfer model to investigate the climactic and spectral impacts of a fractal hydrocarbon haze on Archean Earth. The haze absorbs significantly at shorter wavelengths and can strongly suppress the Rayleigh scattering tail, a broadband effect that would be remotely detectable at low spectral resolution at wavelengths less than 0.5 μm. Hazes may have a more significant impact on transit transmission spectra. Using the transit transmission radiative transfer model developed by Misra et al. (2014) to generate hazy Archean spectra, we find that even a thin hydrocarbon haze masks the lower atmosphere from the visible into the near infrared where the haze optical depth exceeds unity. The transit transmission spectra we generate for hazy Archean Earth are steeply sloped like the Titan solar occultation spectrum observed by Robinson et al. (2014). Thick hazes can also cool the planet significantly: for example, the thick fractal haze generated around Archean Earth with 0.3% CH4, 1% CO2 and 1 ppm C2H6 cools the planet from roughly 290 K without the haze to below freezing with the haze. Finally, we investigate the impact of host star spectral type on haze formation, comparing the hazes generated around a solar-type star to those generated at an Earth analog planet around the M dwarf AD Leo. Our results indicate hazes around M dwarfs for the same initial atmospheric composition may be thinner due to decreased UV photolysis of methane and other hydrocarbons needed for haze formation. Earthlike

  5. The Archean geology of the Godthabsfjord Region, southern west Greenland (includes excursion guide)

    NASA Technical Reports Server (NTRS)

    Mcgregor, V. R.; Nutman, A. P.; Friend, C. R. L.

    1986-01-01

    The part of the West Greenland Archean gneiss complex centered around Godthabsfjord and extending from Isukasia in the north to south Faeringehavn is studied. Extensive outcrops of 3800 to 3400 Ma rocks can provide some direct evidence of conditions and processes that operated on the Earth in the early Archean. However, the ways in which primary characteristics have been modified by later deformation, metamorphism, and chemical changes are first taken into account. The rocks exposed are the products of two major phases of accretion of continental crust, at 3800 to 3700 Ma and 3100 to 29 Ma. The main features of these two accretion phases are similar, but careful study of the least modified rocks may reveal differences related to changes in the Earth in the intervening period. The combination of excellent exposure over an extensive area, relatively detailed geological mapping of much of the region, and a considerable volume of isotopic and other geochemical data gives special insights into processes that operated at moderately deep levels of the crust in the Archean. Of particular interest is the effect of late Archean granulite facies metamorphism on early Archean rocks, especially the extent to which isotope systems were disturbed. Similar processes may well have partly or wholly destroyed evidence of more ancient components of other high grade terrains. This account does not attempt to be an exhaustive review of all work carried out on the geology of the region. Rather, it attempts to summarize aspects of the geology and some interest in the context of early crustal genesis.

  6. The nature of Archean terrane boundaries: an example from the northern Wyoming Province

    USGS Publications Warehouse

    Mogk, D.W.; Mueller, P.A.; Wooden, J.L.

    1992-01-01

    The Archean northern Wyoming Province can be subdivided into two geologically distinct terranes, the Beartooth-Bighorn magmatic terrane (BBMT) and the Montana metasedimentary terrane (MMT). The BBMT is characterized by voluminous Late Archean (2.90-2.74 Ga) magmatic rocks (primarily tonalite, trondhjemite, and granite); metasedimentary rocks are preserved only as small, rare enclaves in this magmatic terrane. The magmatic rocks typically have geochemical and isotopic signatures that suggest petrogenesis in a continental magmatic arc environment. The MMT, as exposed in the northern Gallatin and Madison Ranges, is dominated by Middle Archean trondhjemitic gneisses (3.2-3.0 Ga); metasedimentary rocks, however, are significantly more abundant than in the BBMT. Each terrane has experienced a separate and distinct geologic history since at least 3.6 Ga ago based on differences in metamorphic and structural styles, composition of magmatic and metasupracrustal rocks, and isotopic ages; consequently, these may be described as discrete terranes in the Cordilleran sense. Nonetheless, highly radiogenic and distinctive Pb-Pb isotopic signatures in rocks of all ages in both terranes indicate that the two terranes share a significant aspect of their history. This suggests that these two Early to Middle Archean crustal blocks, that initially evolved as part of a larger crustal province, experienced different geologic histories from at least 3.6 Ga until their juxtaposition in the Late Archean (between 2.75 to 2.55 Ga ago). Consequently, the boundary between the BBMT and MMT appears to separate terranes that are not likely to be exotic in the sense of their Phanerozoic counterparts. Other Archean provinces do appear to contain crustal blocks with different isotopic signatures (e.g. West Greenland, India, South Africa). The use of the term exotic, therefore, must be cautious in situations where geographic indicators such as paleontologic and/or paleomagnetic data are not available

  7. Exploring Archean seawater sulfate via triple S isotopes in carbonate associated sulfate.

    NASA Astrophysics Data System (ADS)

    Paris, G.; Fischer, W. W.; Sessions, A. L.; Adkins, J. F.

    2015-12-01

    Multiple sulfur isotope ratios in Archean sedimentary rocks provide powerful insights into the behavior of the ancient sulfur cycle, the redox state of fluid Earth, and the timing of the rise of atmospheric oxygen [1]. The Archean sulfur isotope record is marked by pronounced mass-independent fractionation (Δ33S≠0)—signatures widely interpreted as the result of SO2 photolysis from "short-wavelength" UV light resulting in a reduced phase carrying positive Δ33S values (ultimately recorded in pyrite) and an oxidized phase carrying negative Δ33S values carried by sulfate [2]. Support for this hypothesis rests on early laboratory experiments and observations of negative Δ33S from barite occurrences in mixed volcanic sedimentary strata in Mesoarchean greenstone terrains. Despite forming the framework for understanding Archean sulfur cycle processes, this hypothesis is still largely untested, notably due to the lack of sulfate minerals in Archean strata. Using a new MC-ICP-MS approach combined with petrography and X-ray spectroscopy we have generated a growing S isotope dataset from CAS extracted from Archean carbonates from a range of sedimentary successions, including: the 2.6 to 2.521 Ga Campbellrand-Malmani carbonate platform (Transvaal Supergroup, South Africa), 2.7 Ga Cheshire Formation (Zimbabwe), and 2.9 Ga Steep Rock Formation (Canada). Importantly, we observe positive δ34S and Δ33S values across a range of different lithologies and depositional environments. These results demonstrate that dissolved sulfate in seawater was characterized by positive Δ33S values—a result that receives additional support from recent laboratory and theoretical experiments [e.g. 4, 5]. [1] Farquhar et al., 2000, Science [2] Farquhar et al., 2001, Journal of Geophysical Research: Planets [3] Paris et al., 2014, Science. [4] Whitehill et al., 2013, Proceedings of the National Academy of Sciences. [5] Claire et al., 2014 Geochimica et Cosmochimica Acta

  8. Constraining Δ33S signatures of Archean seawater sulfate with carbonate-associated sulfate

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Bao, H.; Bekker, A.; Hofmann, A.

    2017-12-01

    Non-mass dependent sulfur isotope deviation of S-bearing phases in Archean sedimentary strata, and expressed as Δ33S, has a consistent pattern, i.e., sulfide (pyrite) predominantly bear positive Δ33S values, while Paleoarchean sulfate (barite) has negative Δ33S values. This pattern was later corroborated by observations of negative Δ33S values in Archean volcanogenic massive sulfide deposits and negative Δ33S values in early diagenetic nodular pyrite with a wide range of δ34S values, which is thought to be due to microbial sulfate reduction. These signatures have provided a set of initial conditions for a mechanistic interpretation at physical chemistry level. Unlike the younger geological times when large bodies of seawater evaporite deposits are common, to expand seawater sulfate records, carbonate-associated sulfate (CAS) was utilized as a proxy for ancient seawater sulfate. CAS extracted from the Archean carbonates carries positive Δ33S values. However, CAS could be derived from pyrite oxidation following exposure to modern oxidizing conditions and/or during laboratory extraction procedures. It is, therefore, important for us understanding context of the overall early earth atmospheric condition to empirically confirm whether Archean seawater sulfate was generally characterized by negative Δ33S signatures. Combined δ18O, Δ17O, δ34S, and Δ33S analyses of sequentially extracted water-leachable sulfate (WLS) and acid-leachable sulfate (ALS = CAS) and δ34S and Δ33S analyses of pyrite can help to identify the source of extracted sulfate. We studied drill-core samples of Archean carbonates from the 2.55 Ga Malmani and Campell Rand supgroups, South Africa. Our preliminary results show that 1) neither WLS nor ALS were extracted from samples with extremely low pyrite contents (less than 0.05 wt.%); 2) extractable WLS and ALS is present in samples with relatively high pyrite contents (more than 1 wt.%), and that δ34S and Δ33S values of WLS, ALS, and

  9. Bridging Two Worlds: From the Archean to the Proterozoic

    NASA Technical Reports Server (NTRS)

    Schopf, J. William

    2000-01-01

    As now known, the Archean and Proterozoic appear to have been different worlds: the geology (tectonic style, basinal distribution, dominant rock types), atmospheric composition (O2, CO21, CH4), and surface environment (day-length, solar luminosity, ambient temperature) all appear to have changed over time. And virtually all paleobiologic indicators can be interpreted as suggesting there were significant biotic differences as well: (1) Stromatolites older than 2.5 Ga are rare relative to those of the Proterozoic; their biotic components are largely unknown; and the biogenicity of those older than approx. 3.2 Ga has been questioned. (2) Bona fide microfossils older than approx. 2.4 Ga are rare, poorly preserved, and of uncertain biological relations. Gaps of hundreds of millions of years in the known record make it impossible to show that Archean microorganisms are definitely part of the 2.4 Ga-to-present evolutionary continuum. and (3) In rocks older than approx. 2.2 Ga, the sulfur isotopic record is subject to controversy; phylogenetically distinctive bio-markers are unknown; and nearly a score of geologic units contain organic carbon anomalously light isotopically (relative to that of the Proterozoic and Phanerozoic) that may reflect the presence of Archaeans ("Archaebacteria of earlier classifications) but may not (since cellularly preserved Archean-age Archaeans have never been identified).

  10. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?

    NASA Technical Reports Server (NTRS)

    Sumner, D. Y.; Grotzinger, J. P.

    1996-01-01

    Archean carbonates commonly contain decimetre- to metre-thick beds consisting entirely of fibrous calcite and neomorphosed fibrous aragonite that precipitated in situ on the sea floor. The fact that such thick accumulations of precipitated carbonate are rare in younger marine carbonates suggests an important change in the modes of calcium carbonate precipitation through time. Kinetics of carbonate precipitation depend on the concentration of inhibitors to precipitation that reduce crystallization rates and crystal nuclei formation, leading to kinetic maintenance of supersaturated solutions. Inhibitors also affect carbonate textures by limiting micrite precipitation and promoting growth of older carbonate crystals on the sea floor. Fe2+, a strong calcite-precipitation inhibitor, is thought to have been present at relatively high concentrations in Archean seawater because oxygen concentrations were low. The rise in oxygen concentration at 2.2-1.9 Ga led to the removal of Fe2+ from seawater and resulted in a shift from Archean facies, which commonly include precipitated beds, to Proterozoic facies, which contain more micritic sediment and only rare precipitated beds.

  11. Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA

    USGS Publications Warehouse

    Slack, J.F.; Grenne, Tor; Bekker, A.; Rouxel, O.J.; Lindberg, P.A.

    2007-01-01

    A current model for the evolution of Proterozoic deep seawater composition involves a change from anoxic sulfide-free to sulfidic conditions 1.8??Ga. In an earlier model the deep ocean became oxic at that time. Both models are based on the secular distribution of banded iron formation (BIF) in shallow marine sequences. We here present a new model based on rare earth elements, especially redox-sensitive Ce, in hydrothermal silica-iron oxide sediments from deeper-water, open-marine settings related to volcanogenic massive sulfide (VMS) deposits. In contrast to Archean, Paleozoic, and modern hydrothermal iron oxide sediments, 1.74 to 1.71??Ga hematitic chert (jasper) and iron formation in central Arizona, USA, show moderate positive to small negative Ce anomalies, suggesting that the redox state of the deep ocean then was at a transitional, suboxic state with low concentrations of dissolved O2 but no H2S. The presence of jasper and/or iron formation related to VMS deposits in other volcanosedimentary sequences ca. 1.79-1.69??Ga, 1.40??Ga, and 1.24??Ga also reflects oxygenated and not sulfidic deep ocean waters during these time periods. Suboxic conditions in the deep ocean are consistent with the lack of shallow-marine BIF ??? 1.8 to 0.8??Ga, and likely limited nutrient concentrations in seawater and, consequently, may have constrained biological evolution. ?? 2006 Elsevier B.V. All rights reserved.

  12. New Constraints on the Extent of Paleoproterozoic and Archean Basement in the Northwest U.S. Cordillera

    NASA Astrophysics Data System (ADS)

    Brewer, R. A.; Vervoort, J.; Lewis, R. S.; Gaschnig, R. M.; Hart, G.

    2008-12-01

    The Laurentian basement west of the Wyoming craton in southwest Montana and northern Idaho has been interpreted as a collage of Archean and Proterozoic terranes which accreted to the North American craton and incorporated into Laurentia at ~ 1.86 Ga [1]. This basement and the geometry of the Archean and Proterozoic crust are poorly understood due to coverage by metasediments of the Belt-Purcell Supergroup and are further obscured by Mesozoic magmatism (Idaho Batholith, sensu lato). Exposures of the basement are rare but have been documented in a few regions including the Priest River Complex in northern Idaho and the Sevier fold and thrust belt just northwest of the Wyoming craton in the Great Falls tectonic zone (Foster et al. 2006). New ages and isotopic data from orthogneisses in north-central Idaho provide evidence for previously undocumented exposures of both Paleoproterozoic and Archean basement that may place important constraints on the reconstruction of Laurentia and its tectonic setting. The orthogneisses analyzed in this study (all previously mapped as deformed Cretaceous plutons) fall into two distinct age groups of 1.86 Ga and 2.67 Ga. The zircons from both the Archean and Proterozoic rocks have simple systematics. The zircons from three Archean samples have ɛHf(i) values of 2.4 ± 2.1, 3.8 ± 1.8, and 5.2 ± 3.5 (average values based on 6 individual zircon Hf analyses per sample). Zircons from the Paleoproterozoic gneisses have different but internally consistent ɛHf(i) values of -8.0 ± 0.9 and -0.6 ± 1.4. In contrast, both Hf and Nd whole rock data are highly scattered in these samples especially in the Archean samples in which ɛHf(i) varies from -25 to +21 and ɛNd(i) varies from -8 to +11. These extreme values are implausible for initial compositions and indicate open system behavior in both Lu-Hf and Sm-Nd in the whole rocks. The zircons, in contrast, appear to be closed to significant Hf mobility on the scale of the laser analyses. The data

  13. Trace element geochemistry of Archean volcanic rocks

    NASA Technical Reports Server (NTRS)

    Jahn, B.-M.; Shih, C.-Y.; Murthy, V. R.

    1974-01-01

    The K, Rb, Sr, Ba and rare-earth-element contents of some Archean volcanic rocks from the Vermilion greenstone belt, northeast Minnesota, were determined by the isotopic dilution method. The characteristics of trace element abundances, supported by the field occurrences and major element chemistry, suggest that these volcanic rocks were formed in an ancient island arc system.

  14. Tracking the Archean-Proterozoic suture zone in the northeastern Great Basin, Nevada and Utah

    USGS Publications Warehouse

    Rodriguez, B.D.; Williams, J.M.

    2008-01-01

    It is important to know whether major mining districts in north-central Nevada are underlain by crust of the Archean Wyoming craton, known to contain major orogenic gold deposits or, alternatively, by accreted crust of the Paleoproterozoic Mojave province. Determining the location and orientation of the Archean-Proterozoic suture zone between these provinces is also important because it may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. The suture zone is exposed in northeastern Utah and south-western Wyoming and exhibits a southwest strike. In the Great Basin, the suture zone strike is poorly constrained because it is largely concealed below a Neoproterozoic-Paleozoic miogeocline and Cenozoic basin fill. Two-dimensional resistivity modeling of three regional north-south magnetotelluric sounding profiles in western Utah, north-central Nevada, and northeastern Nevada, and one east-west profile in northeastern Nevada, reveals a deeply penetrating (>10 km depth), broad (tens of kilometers) conductor (1-20 ohm-meters) that may be the Archean-Proterozoic suture zone, which formed during Early Proterozoic rifting of the continent and subsequent Proterozoic accretion. This major crustal conductor changes strike direction from southwest in Utah to northwest in eastern Nevada, where it broadens to ???100 km width that correlates with early Paleozoic rifting of the continent. Our results suggest that the major gold belts may be over-isolated blocks of Archean crust, so Phanerozoic mineral deposits in this region may be produced, at least in part, from recycled Archean gold. Future mineral exploration to the east may yield large gold tonnages. ?? 2008 Geological Society of America.

  15. Mesoarchean black shale -iron sedimentary sequences in Cleaverville Formation, Pilbara Australia: drilling preliminary result of DXCL2

    NASA Astrophysics Data System (ADS)

    Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Onoue, T.; Horie, K.; Sakamoto, R.; Teraji, S.; Aihara, Y.

    2012-12-01

    The 3.2-3.1 Ga Dixon island-Cleaverville formations are well-preserved hydrothermal oceanic sequence at oceanic island arc setting (Kiyokawa et al., 2002, 2006, 2012). The Dixon Island (3195+15 Ma) - Cleaverville (3108+13 Ma) formations formed volcano-sedimentary sequences with hydrothermal chert, black shale and banded iron formation to the top. Based on the scientific drilling as DXCL1 at 2007 and DXCL2 at 2011, lithology was clearly understood. Four drilling holes had been done at coastal sites; the Dixon Island Formation is DX site (100m) and the Cleaverville Formation is CL2 (40m), CL1 (60m) and CL3 (200m) sites and from stratigraphic bottom to top. These sequences formed coarsening and thickening upward black shale-BIF sequences. The Dixon Island Formation consists komatiite-rhyolite sequences with many hydrothermal veins and very fine laminated cherty rocks above them. The Cleaverville Formation contains black shale, fragments-bearing pyroclastic beds, white chert, greenish shale and BIF. Especially, CL3 core, which drilled through the Iron formation, shows siderite-chert beds above black shale identified before magnetite lamination bed. The magnetite bed formed very thin laminated bed with siderite lamination. This magnetite bed was covered by black shale beds again. New U-Pb SHRIMP data of the pyroclastic in black shale is 3109Ma. Estimated 2-8 cm/1000year sedimentation rate are identified in these sequences. Our preliminary result show that siderite and chert layers formed before magnetite iron sedimentation. The lower-upper sequence of organic carbon rich black shales are similar amount of organic content and 13C isotope (around -30per mill). So we investigate that the Archean iron formation, especially Cleaverville iron formation, was highly related by hydrothermal input and started pre-syn iron sedimentation at anoxic oceanic condition.

  16. The photochemistry of manganese and the origin of banded iron formations

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Holland, H. D.

    1992-01-01

    The origin of the deposition of superior-type Precambrian banded iron formations (BIFs) is investigated in experiments where the effect of UV radiation on dissolved manganese was studied to determine if the commonly accepted photochemical model for BIF formation is consistent with the distribution of Mn in BIFs. Solutions containing 0.56 M NaCl and about 180 microM MnCl2, with or without 3 to 200 microM FeCl2 were irradiated with filtered and unfiltered UV light for up to 8 hrs; the solutions were deaerated and buffered to a pH of 7, and the experiments were conducted under oxygen-free atmosphere. Data on the rate of manganese photooxidation confirmed that a photochemical model for the origin of oxide facies BIFs is consistent with field observations.

  17. Controls on the Archean climate system investigated with a global climate model.

    PubMed

    Wolf, E T; Toon, O B

    2014-03-01

    The most obvious means of resolving the faint young Sun paradox is to invoke large quantities of greenhouse gases, namely, CO2 and CH4. However, numerous changes to the Archean climate system have been suggested that may have yielded additional warming, thus easing the required greenhouse gas burden. Here, we use a three-dimensional climate model to examine some of the factors that controlled Archean climate. We examine changes to Earth's rotation rate, surface albedo, cloud properties, and total atmospheric pressure following proposals from the recent literature. While the effects of increased planetary rotation rate on surface temperature are insignificant, plausible changes to the surface albedo, cloud droplet number concentrations, and atmospheric nitrogen inventory may each impart global mean warming of 3-7 K. While none of these changes present a singular solution to the faint young Sun paradox, a combination can have a large impact on climate. Global mean surface temperatures at or above 288 K could easily have been maintained throughout the entirety of the Archean if plausible changes to clouds, surface albedo, and nitrogen content occurred.

  18. Sm-Nd isotopic data from Archean metavolcanic rocks at Holenarsipur, South India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drury, S.A.; Van Calsteren, P.C.; Reeves-Smith, G.J.

    1987-11-01

    Results of a Sm-Nd isotopic analysis of Archean metavolcanics in the Holenarsipur greenstone belt, Karnataka, South India, give a whole-rock isochron age of 2.62 Ga for lightly deformed metabasaltic amphibolites in the northern part of the belt. This is within error of the age of high-grade metamorphism and crustal thickening which affected areas further to the south during the late Archean. Together with the geochemical affinities of these and other metavolcanics in Karnataka, and results of regional structural analysis, this unexpected age supports a model relating volcanism and crustal thickening to northward subduction and crustal accretion during the late Archean.more » Data from basic and ultrabasic metavolcanics from the more strongly deformed and higher-grade southern arm of the Holenarsipur belt do not permit an age greater than 3.0 Ga. Previously, these rocks were regarded as part of an older supracrustal sequence that predated the local 3.0 to 3.3 Ga gneissic complex. The new dates therefore considerably simplify attempts at accounting for greenstone evolution in South India.« less

  19. Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere

    PubMed Central

    Ventura, Gregory T.; Kenig, Fabien; Reddy, Christopher M.; Schieber, Juergen; Frysinger, Glenn S.; Nelson, Robert K.; Dinel, Etienne; Gaines, Richard B.; Schaeffer, Philippe

    2007-01-01

    Highly cracked and isomerized archaeal lipids and bacterial lipids, structurally changed by thermal stress, are present in solvent extracts of 2,707- to 2,685-million-year-old (Ma) metasedimentary rocks from Timmins, ON, Canada. These lipids appear in conventional gas chromatograms as unresolved complex mixtures and include cyclic and acyclic biphytanes, C36–C39 derivatives of the biphytanes, and C31–C35 extended hopanes. Biphytane and extended hopanes are also found in high-pressure catalytic hydrogenation products released from solvent-extracted sediments, indicating that archaea and bacteria were present in Late Archean sedimentary environments. Postdepositional, hydrothermal gold mineralization and graphite precipitation occurred before metamorphism (≈2,665 Ma). Late Archean metamorphism significantly reduced the kerogen's adsorptive capacity and severely restricted sediment porosity, limiting the potential for post-Archean additions of organic matter to the samples. Argillites exposed to hydrothermal gold mineralization have disproportionately high concentrations of extractable archaeal and bacterial lipids relative to what is releasable from their respective high-pressure catalytic hydrogenation product and what is observed for argillites deposited away from these hydrothermal settings. The addition of these lipids to the sediments likely results from a Late Archean subsurface hydrothermal biosphere of archaea and bacteria. PMID:17726114

  20. Origin of microbial biomineralization and magnetotaxis during the Archean.

    PubMed

    Lin, Wei; Paterson, Greig A; Zhu, Qiyun; Wang, Yinzhao; Kopylova, Evguenia; Li, Ying; Knight, Rob; Bazylinski, Dennis A; Zhu, Rixiang; Kirschvink, Joseph L; Pan, Yongxin

    2017-02-28

    Microbes that synthesize minerals, a process known as microbial biomineralization, contributed substantially to the evolution of current planetary environments through numerous important geochemical processes. Despite its geological significance, the origin and evolution of microbial biomineralization remain poorly understood. Through combined metagenomic and phylogenetic analyses of deep-branching magnetotactic bacteria from the Nitrospirae phylum, and using a Bayesian molecular clock-dating method, we show here that the gene cluster responsible for biomineralization of magnetosomes, and the arrangement of magnetosome chain(s) within cells, both originated before or near the Archean divergence between the Nitrospirae and Proteobacteria This phylogenetic divergence occurred well before the Great Oxygenation Event. Magnetotaxis likely evolved due to environmental pressures conferring an evolutionary advantage to navigation via the geomagnetic field. Earth's dynamo must therefore have been sufficiently strong to sustain microbial magnetotaxis in the Archean, suggesting that magnetotaxis coevolved with the geodynamo over geological time.

  1. Geological sulfur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox.

    PubMed

    Ueno, Yuichiro; Johnson, Matthew S; Danielache, Sebastian O; Eskebjerg, Carsten; Pandey, Antra; Yoshida, Naohiro

    2009-09-01

    Distributions of sulfur isotopes in geological samples would provide a record of atmospheric composition if the mechanism producing the isotope effects could be described quantitatively. We determined the UV absorption spectra of 32SO2, 33SO2, and 34SO2 and use them to interpret the geological record. The calculated isotopic fractionation factors for SO2 photolysis give mass independent distributions that are highly sensitive to the atmospheric concentrations of O2, O3, CO2, H2O, CS2, NH3, N2O, H2S, OCS, and SO2 itself. Various UV-shielding scenarios are considered and we conclude that the negative Delta33S observed in the Archean sulfate deposits can only be explained by OCS shielding. Of relevant Archean gases, OCS has the unique ability to prevent SO2 photolysis by sunlight at lambda >202 nm. Scenarios run using a photochemical box model show that ppm levels of OCS will accumulate in a CO-rich, reducing Archean atmosphere. The radiative forcing, due to this level of OCS, is able to resolve the faint young sun paradox. Further, the decline of atmospheric OCS may have caused the late Archean glaciation.

  2. Geological sulfur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox

    PubMed Central

    Ueno, Yuichiro; Johnson, Matthew S.; Danielache, Sebastian O.; Eskebjerg, Carsten; Pandey, Antra; Yoshida, Naohiro

    2009-01-01

    Distributions of sulfur isotopes in geological samples would provide a record of atmospheric composition if the mechanism producing the isotope effects could be described quantitatively. We determined the UV absorption spectra of 32SO2, 33SO2, and 34SO2 and use them to interpret the geological record. The calculated isotopic fractionation factors for SO2 photolysis give mass independent distributions that are highly sensitive to the atmospheric concentrations of O2, O3, CO2, H2O, CS2, NH3, N2O, H2S, OCS, and SO2 itself. Various UV-shielding scenarios are considered and we conclude that the negative Δ33S observed in the Archean sulfate deposits can only be explained by OCS shielding. Of relevant Archean gases, OCS has the unique ability to prevent SO2 photolysis by sunlight at λ >202 nm. Scenarios run using a photochemical box model show that ppm levels of OCS will accumulate in a CO-rich, reducing Archean atmosphere. The radiative forcing, due to this level of OCS, is able to resolve the faint young sun paradox. Further, the decline of atmospheric OCS may have caused the late Archean glaciation. PMID:19706450

  3. Development of Archean crust in the Wind River Mountains, Wyoming

    NASA Technical Reports Server (NTRS)

    Frost, C. D.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.

    1986-01-01

    The Wind River Mountains are a NW-SE trending range composed almost entirely of high-grade Archean gneiss and granites which were thrust to the west over Phanerozoic sediments during the Laramide orogeny. Late Archean granites make up over 50% of the exposed crust and dominates the southern half of the range, while older orthogneisses and magnatites form most of the northen half of the range. Locally these gneisses contain enclaves of supracrustal rocks, which appear to be the oldest preserved rocks in the range. Detailed work in the Medina Mountain area of the central Wind River Mountains and reconnaissance work throughout much of the northern part of the range has allowed definition of the sequence of events which marked crustal development in this area. The sequence of events are described.

  4. Reassignment of the Iron (3) Absorption Bands in the Spectra of Mars

    NASA Technical Reports Server (NTRS)

    Sherman, D. M.

    1985-01-01

    Absorption features in the near-infrared and visible region reflectance spectra of Mars have been assigned to specific Fe (3+) crystal-field and o(2-) yields Fe(3+) charge transfer transitions. Recently, near-ultraviolet absorption spectra of iron oxides were obtained and the energies of o(2-) yields Fe(3+) charge-transfer (LMCT) transitions were determined from accurate SCF-X # alpha-SW molecular orbital calculations on (FeO6)(9-) and (FeO4)(5-) clusters. Both the theoretical and experimental results, together with existing data in the literature, show that some of the previous Fe(3+) band assignments in the spectra of Mars need to be revised. The theory of Fe(3+) spectra in minerals is discussed and applied to the spectrum of Mars.

  5. Extraterrestrial demise of banded iron formations 1.85 billion years ago

    USGS Publications Warehouse

    Slack, J.F.; Cannon, W.F.

    2009-01-01

    In the Lake Superior region of North America, deposition of most banded iron formations (BIFs) ended abruptly 1.85 Ga ago, coincident with the oceanic impact of the giant Sudbury extraterrestrial bolide. We propose a new model in which this impact produced global mixing of shallow oxic and deep anoxic waters of the Paleoproterozoic ocean, creating a suboxic redox state for deep seawater. This suboxic state, characterized by only small concentrations of dissolved O2 (???1 ??M), prevented transport of hydrothermally derived Fe(II) from the deep ocean to continental-margin settings, ending an ???1.1 billion-year-long period of episodic BIF mineralization. The model is supported by the nature of Precambrian deep-water exhalative chemical sediments, which changed from predominantly sulfide facies prior to ca. 1.85 Ga to mainly oxide facies thereafter. ?? 2009 Geological Society of America.

  6. Photosynthesis in the Archean era.

    PubMed

    Olson, John M

    2006-05-01

    The earliest reductant for photosynthesis may have been H2. The carbon isotope composition measured in graphite from the 3.8-Ga Isua Supercrustal Belt in Greenland is attributed to H2-driven photosynthesis, rather than to oxygenic photosynthesis as there would have been no evolutionary pressure for oxygenic photosynthesis in the presence of H2. Anoxygenic photosynthesis may also be responsible for the filamentous mats found in the 3.4-Ga Buck Reef Chert in South Africa. Another early reductant was probably H2S. Eventually the supply of H2 in the atmosphere was likely to have been attenuated by the production of CH4 by methanogens, and the supply of H2S was likely to have been restricted to special environments near volcanos. Evaporites, possible stromatolites, and possible microfossils found in the 3.5-Ga Warrawoona Megasequence in Australia are attributed to sulfur-driven photosynthesis. Proteobacteria and protocyanobacteria are assumed to have evolved to use ferrous iron as reductant sometime around 3.0 Ga or earlier. This type of photosynthesis could have produced banded iron formations similar to those produced by oxygenic photosynthesis. Microfossils, stromatolites, and chemical biomarkers in Australia and South Africa show that cyanobacteria containing chlorophyll a and carrying out oxygenic photosynthesis appeared by 2.8 Ga, but the oxygen level in the atmosphere did not begin to increase until about 2.3 Ga.

  7. Geochemistry of Archean shales from the Pilbara Supergroup, Western Australia

    NASA Astrophysics Data System (ADS)

    McLennan, Scott M.; Taylor, S. R.; Eriksson, K. A.

    1983-07-01

    Archean clastic sedimentary rocks are well exposed in the Pilbara Block of Western Australia. Shales from turbidites in the Gorge Creek Group ( ca. 3.4 Ae) and shales from the Whim Creek Group ( ca. 2.7 Ae) have been examined. The Gorge Creek Group samples, characterized by muscovite-quartzchlorite mineralogy, are enriched in incompatible elements (K, Th, U, LREE) by factors of about two, when compared to younger Archean shales from the Yilgarn Block. Alkali and alkaline earth elements are depleted in a systematic fashion, according to size, when compared with an estimate of Archean upper crust abundances. This depletion is less notable in the Whim Creek Group. Such a pattern indicates the source of these rocks underwent a rather severe episode of weathering. The Gorge Creek Group also has fairly high B content (85 ± 29 ppm) which may indicate normal marine conditions during deposition. Rare earth element (REE) patterns for the Pilbara samples are characterized by light REE enrichment ( La N/Yb N ≥ 7.5 ) and no or very slight Eu depletion ( Eu/Eu ∗ = 0.82 - 0.99 ). A source comprised of about 80% felsic igneous rocks without large negative Eu-anomalies (felsic volcanics, tonalites, trondhjemites) and 20% mafic-ultramafic volcanics is indicated by the trace element data. Very high abundances of Cr and Ni cannot be explained by any reasonable provenance model and a secondary enrichment process is called for.

  8. Archean komatiite volcanism controlled by the evolution of early continents

    PubMed Central

    Mole, David R.; Fiorentini, Marco L.; Thebaud, Nicolas; Cassidy, Kevin F.; McCuaig, T. Campbell; Kirkland, Christopher L.; Romano, Sandra S.; Doublier, Michael P.; Belousova, Elena A.; Barnes, Stephen J.; Miller, John

    2014-01-01

    The generation and evolution of Earth’s continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50–30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean–Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits. PMID:24958873

  9. The rock components and structures of Archean greenstone belts: An overview

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.; Byerly, G. R.

    1986-01-01

    Knowledge of the character and evolution of the Earth's early crust is derived from the studies of the rocks and structures in Archean greenstone belts. Ability to resolve the petrologic, sedimentological and structural histories of greenstone belts, however, hinges first on an ability to apply the concepts and procedures of classical stratigraphy. Unfortunately, early Precambrian greenstone terrains present particular problems to stratigraphic analysis. Many current controversies of greenstone belt petrogenesis, sedimentology, tectonics and evolution arise more from an inability to develop a clear stratigraphic picture of the belts than from ambiguities in interpretation. Four particular stratigraphic problems that afflict studies of Archean greenstone belts are considered: determination of facing directions, correlation of lithologic units, identification of primary lithologies and discrimination of stratigraphic versus structural contacts.

  10. Strong Phylogeographic Structure in a Millipede Indicates Pleistocene Vicariance between Populations on Banded Iron Formations in Semi-Arid Australia

    PubMed Central

    Nistelberger, Heidi; Byrne, Margaret; Coates, David; Roberts, J. Dale

    2014-01-01

    The Yilgarn Banded Iron Formations of Western Australia are topographical features that behave as terrestrial islands within the otherwise flat, semi-arid landscape. The formations are characterised by a high number of endemic species, some of which are distributed across multiple formations without inhabiting the intervening landscape. These species provide an ideal context for phylogeographic analysis, to investigate patterns of genetic variation at both spatial and temporal scales. We examined genetic variation in the spirostreptid millipede, Atelomastix bamfordi, found on five of these Banded Iron Formations at two mitochondrial loci and 11 microsatellite loci. Strong phylogeographic structuring indicated the five populations became isolated during the Pleistocene, a period of intensifying aridity in this landscape, when it appears populations have been restricted to pockets of moist habitat provided by the formations. The pattern of reciprocal monophyly identified within the mtDNA and strong differentiation within the nuclear microsatellite data highlight the evolutionary significance of these divergent populations and we suggest the degree of differentiation warrants designation of each as a conservation unit. PMID:24663390

  11. Geology and mineralization of the Wyoming Province

    USGS Publications Warehouse

    Hausel, W.D.; Edwards, B.R.; Graff, P.J.; ,

    1991-01-01

    The Wyoming Province is an Archean craton which underlies portions of Idaho, Montana, Nevada, Utah, and much of Wyoming. The cratonic block consists of Archean age granite-gneiss with interspersed greenstone belts and related supracrustal terranes exposed in the cores of several Laramide uplifts. Resources found in the Province and in the adjacent accreted Proterozoic terrane include banded iron formation, Au, Pt, Pd, W, Sn, Cr, Ni, Zn, Cu, and diamonds. The Province shows many similarities to the mineral-rich cratons of the Canadian shield, the Rhodesian and Transvaal cratons of southern Africa, and the Pilbara and Yilgarn blocks of Western Australia, where much of the world's precious and strategic metal and gemstone resources are located.

  12. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth.

    PubMed

    Arney, Giada; Domagal-Goldman, Shawn D; Meadows, Victoria S; Wolf, Eric T; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; Hébrard, Eric; Trainer, Melissa G

    2016-11-01

    Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8-2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ∼ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7-2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO 2 . Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets. Key Words: Haze-Archean Earth-Exoplanets-Spectra-Biosignatures-Planetary habitability

  13. The Archean crust in the Wawa-Chapleau-Timmins region. A field guidebook prepared for the 1983 Archean Geochemistry-Early Crustal Genesis Field Conference

    NASA Technical Reports Server (NTRS)

    Percival, J. A.; Card, K. D.; Sage, R. P.; Jensen, L. S.; Luhta, L. E.

    1983-01-01

    This guidebook describes the characteristics and interrelationships of Archean greenstone-granite and high-grade gneiss terrains of the Superior Province. A 300-km long west to east transect between Wawa and Timmins, Ontario will be used to illustrate regional-scale relationships. The major geological features of the Superior Province are described.

  14. Alteration mineral mapping for iron prospecting using ETM+ data, Tonkolili iron field, northern Sierra Leone

    NASA Astrophysics Data System (ADS)

    Mansaray, Lamin R.; Liu, Lei; Zhou, Jun; Ma, Zhimin

    2013-10-01

    The Tonkolili iron field in northern Sierra Leone has the largest known iron ore deposit in Africa. It occurs in a greenstone belt in an Achaean granitic basement. This study focused mainly on mapping areas with iron-oxide and hydroxyl bearing minerals, and identifying potential areas for haematite mineralization and banded iron formations (BIFs) in Tonkolili. The predominant mineral assemblage at the surface (laterite duricrust) of this iron field is haematitegoethite- limonite ±magnetite. The mineralization occurs in quartzitic banded ironstones, layered amphibolites, granites, schists and hornblendites. In this study, Crosta techniques were applied on Enhanced Thematic Mapper (ETM+) data to enhance areas with alteration minerals and target potential areas of haematite and BIF units in the Tonkolili iron field. Synthetic analysis shows that alteration zones mapped herein are consistent with the already discovered magnetite BIFs in Tonkolili. Based on the overlaps of the simplified geological map and the remote sensing-based alteration mineral maps obtained in this study, three new haematite prospects were inferred within, and one new haematite prospect was inferred outside the tenement boundary of the Tonkolili exploration license. As the primary iron mineral in Tonkolili is magnetite, the study concludes that, these haematite prospects could also be underlain by magnetite BIFs. This study also concludes that, the application of Crosta techniques on ETM+ data is effective not only in mapping iron-oxide and hydroxyl alterations but can also provide a basis for inferring areas of potential iron resources in Algoma-type banded iron formations (BIFs), such as those in the Tonkolili field.

  15. Magnetic susceptibility of the South African Agouron scientific drillcores quantifies iron and sulfur alteration relevant to geochemical oxygenation proxies

    NASA Astrophysics Data System (ADS)

    Raub, T. D.; Nayak, P. M.; Tikoo, S. M.; Johnson, J. E.; Peek, S.; Fischer, W. W.; Kirschvink, J. L.

    2010-12-01

    Various geochemical characteristics of sedimentary iron- and sulfur-bearing minerals motivate early- to late-oxygenation hypotheses from South African and Australian scientific drillcores. Most intervals of these drillcores appear to be remagnetized (in some cases multiple times); and ~2.0 Ga magnetic sulfide crystallization is particularly pervasive in carbonaceous siltstones of the ca. 2.7-2.2 Ga Griqualand margin of Kaapvaal craton. Robust interpretation of trace element abundances suggesting “whiffs” to “pervasive” levels of late Archean oxygen depends upon systematics of presumed depositional iron speciation; so multiple iron- and sulfur-mineral-altering events affecting existing drillcore records call straightforward interpretations into question. We report ca. 10,000 magnetic susceptibility measurements and associated detailed rock-magnetic results from all lithologies of Archean basinal and slope facies in drillcores GKP and GKF and relatively younger and shallower facies in Paleoproterozoic drillcores GEC and GTF. Specific carbonaceous siltstone and carbonate intervals are less-altered as revealed by coherent and relatively low magnetic susceptibilities: geochemical and biomarker interpretations based upon data from these intervals should be preferred to those from others. Magnetic susceptibility tracks subtle facies variation in drillcore GTF diamictite and suggests highly-structured Paleoproterozoic glacioeustatic sequence architecture consistent with assignment of Makganyene glaciation and its associated geochemical signature to a ca. 2.2 Ga “Snowball Earth” ice age.

  16. Workshop on a Cross Section of Archean Crust

    NASA Technical Reports Server (NTRS)

    Ashwal, L. D. (Editor); Card, K. D. (Editor)

    1983-01-01

    Various topics relevant to crustal genesis, especially the relationship between Archean low - and high-grade terrains, were discussed. The central Superior Province of the Canadian Shield was studied. Here a 120 km-wide transition from subgreenschist facies rocks of the Michipicoten greenstone belt to granulite facies rocks of the Kapuskasing structural zone represents an oblique cross section through some 20 km of crust, uplifted along a northwest-dipping thrust fault.

  17. Relationship between high- and low-grade Archean terranes: Implications for early Earth paleogeography

    NASA Technical Reports Server (NTRS)

    Eriksson, K. A.

    1986-01-01

    The Western Gneiss Terrain (WGT) of the Yilgarn Block, Western Australia was studied. The WGT forms an arcuate belt of Archean gneisses that flank the western margin of the Yilgarn Block. In general the WGT is composed of high-grade orthogneisses and paragneisses which contain supracrustal belts composed largely of siliciclastic metasediments and subordinate iron formation. The platformal nature of the metasedimentary belts and lack of obvious metavolcanic lithologies contrasts with the composition of typical Yilgarn greenstones to the east. Radiometric data from WGT rocks indicates that these rocks are significantly older than Yilgarn rocks to the east (less than 3.3 Ga) and this has led to the suggestion that the WGT represents sialic basement to Yilgarn granite-greenstone belts. The Mount Narryer region exposes the northernmost occurrence of high-grade metasediments within the WGT and consists of quartz-rich clastic metasediments at upper amphibolite to granulite grade. Most occurrences of supracrustal rocks in this region comprise isolated lenses within the gneissic basement. However, at Mount Narryer a unique sequence of metaclastics with preserved bedding provide an unusual window into the parentage of similar supracrustal bodies in this region.

  18. Diversification in the Archean Biosphere: Insight from NanoSIMS of Microstructures in the Farrel Quartzite of Australia

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Robert, F.; Walter, M. R.; Sugitani, K.; Meibom, A.; Mostefaoui, S.; Gibson, E. K.

    2010-01-01

    The nature of early life on Earth is difficult to assess because potential Early Archean biosignatures are commonly poorly preserved. Interpretations of such materials have been contested, and abiotic or epigenetic derivations have been proposed (summarized in [1]). Yet, an understanding of Archean life is of astrobiological importance, as knowledge of early evolutionary processes on Earth could provide insight to development of life on other planets. A recently-discovered assemblage of organic microstructures in approx.3 Ga charts of the Farrel Quartzite (FQ) of Australia [2-4] includes unusual spindle-like forms and a variety of spheroids. If biogenicity and syngeneity of these forms could be substantiated, the FQ assemblage would provide a new view of Archean life. Our work uses NanoSIMS to further assess the biogenicity and syngeneity of FQ microstructures. In prior NanoSIMS studies [5-6], we gained an understanding of nano-scale elemental distributions in undisputed microfossils from the Neoproterozoic Bitter Springs Formation of Australia. Those results provide a new tool with which to evaluate poorly preserved materials that we might find in Archean sediments and possibly in extraterrestrial materials. We have applied this tool to the FQ forms.

  19. Preliminary report on the geology and gold mineralization of the South Pass granite-greenstone terrain, Wind River Mountains, western Wyoming (US)

    NASA Technical Reports Server (NTRS)

    Hausel, W. D.

    1986-01-01

    The South Pass granite-greenstone terrain lies near the southern tip of the Wind River Mountains of western Wyoming. This Archean supracrustal pile has been Wyoming's most prolific source of gold and iron ore. From 1962 to 1983, more than 90 million tons of iron ore were recovered from oxide-facies banded iron formation, and an estimated 325,000 ounces of gold were mined from metagreywacke-hosted shears and associated placers. Precambrian rocks at South Pass are unconformably overlain by Paleozoic sediments along the northeast flank, and a Tertiary pediment buries Archean supracrustals on the west and south. To the northwest, the supracrustals terminate against granodiorite of the Louis Lake batholith; to the east, the supracrustals terminate against granite of the Granite Mountains batholith. The Louis Lake granodiorite is approximately 2,630 + or - 20 m.y. old, and the Granite Mountains granite averages 2,600 m.y. old. The geometry of the greenstone belt is best expressed as a synform that has been modified by complex faulting and folding. Metamorphism is amphibolite grade surrounding a small island of greenschist facies rocks. The younger of the Archean supracrustal successions is the Miners Delight Formation. This unit yielded a Rb-Sr isochron of 2,800 m.y. A sample of galena from the Snowbird Mine within the Miners Delight Formation yielded a model age averaging 2,750 m.y. The Snowbird mineralization appears to be syngenetic and is hosted by metavolcanics of calc-alkaline affinity. Discussion follows.

  20. Geology and geochronology of granitoid and metamorphic rocks of late Archean age in northwestern Wisconsin

    USGS Publications Warehouse

    Sims, P.K.; Peterman, Z.E.; Zartman, R.E.; Benedict, F.C.

    1985-01-01

    Granitoid rocks of the Puritan Quartz Monzonite and associated biotite gneiss and amphibolite in northwestern Wisconsin compose the southwestern part of the Puritan batholith of Late Archean age. They differ from rocks in the Michigan segment of the batholith in having been deformed by brittle-ductile deformation and partly recrystallized during shearing accompanying development of the midcontinent rift system of Keweenawan (Middle Proterozoic) age. Granitoid rocks ranging in composition from granite to tonalite are dominant in the Wisconsin part of the batholith. To the north of the Mineral Lake fault zone, they are massive to weakly foliated and dominantly of granite composition, whereas south of the fault zone they are more strongly foliated and mainly of tonalite composition. Massive granite, leucogranite, and granite pegmatite cut the dominant granitoid rocks. Intercalated with the granitoid rocks in small to large conformable bodies are biotite gneiss, amphibolite, and local tonalite gneiss. Metagabbro dikes of probable Early Proterozoic age as much as 15 m thick cut the Archean rocks. Rubidium-strontium whole-rock data indicate a Late Archean age for the granitoids and gneisses, but data points are scattered and do not define a single isochron. Zircon from two samples of tonalitic gneiss for uranium-thorium-Iead dating define a single chord on a concordia diagram, establishing an age of 2,735?16 m.y. The lower intercept age of 1,052?70 m.y. is in close agreement with rubidium-strontium and potassium-argon biotite ages from the gneisses. Two episodes of deformation and metamorphism are recorded in the Archean rocks. Deformation during the Late Archean produced a steep west-northwest-oriented foliation and gently plunging fold axes and was accompanied by low amphibolite-facies metamorphism of the bedded rocks. A younger deformation resulting from largely brittle fracture was accompanied by retrogressive metamorphism; this deformation is most evident adjacent

  1. Mineral ecophysiological evidence for biogeochemical cycles in 2461-2495 million year old banded iron formations (BIF).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Konhauser, Dr, Kurt; Cole, David

    2011-01-01

    The phosphorus composition of banded-iron formations (BIFs) has been used as a proxy for Precambrian seawater composition and the paleoeredox state of Earth's surface environment. However, it is unclear whether the phosphorus in BIFs originally entered the sediment as a sorbed component of the iron oxyhydroxide particles, or whether it was incorporated into the biomass of marine phytoplankton. We conducted high-resolution mineral analyses and report here the first detection of an Fe(III) acetate salt, as well as nanocrystals of apatite in association with magnetite, in the 2.48 Ga Dales Gorge Member of the Brockman Iron Formation (a BIF), Hamersley, Westernmore » Australia. The clusters of apatite are similar in size and morphology to biogenic apatite crystals resulting from biomass decay in Phanerozoic marine sediments, while the formation of an Fe(III) acetate salt and magnetite not only implies the original presence of biomass in the BIF sediments, but also that organic carbon likely served as an electron donor during bacterial Fe(III) reduction. This study is important because it suggests that phytoplankton may have played a key role in the transfer of phosphorus (and other trace elements) from the photic zone to the seafloor.« less

  2. Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics?

    NASA Astrophysics Data System (ADS)

    Kerrich, Robert; Polat, Ali

    2006-03-01

    Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone-granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then "resurfaced" by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41-65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111-124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite-basalt plateau sequences erupted from deep mantle plumes and bimodal basalt-dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites-Mg andesites- and Nb-enriched basalts. Archean cratons

  3. Archean Pb Isotope Evolution: Implications for the Early Earth.

    NASA Astrophysics Data System (ADS)

    Vervoort, J. D.; Thorpe, R.; Albarede, F.; Blichert-Toft, J.

    2008-12-01

    The U-Pb isotope system provides us with a powerful tool for understanding the chemical evolution of the Earth. Pb isotopes in Archean rocks, however, have not been widely utilized because U mobility makes initial Pb isotope ratios from old silicate rocks difficult, if not impossible, to determine. Galenas in syngenetic volcanogenic massive sulfide (VMS) deposits, however, provide snapshots of initial Pb ratios because their Pb isotopic composition is time invariant at their formation (U/Pb=0). The Pb isotopic record from galenas from rocks of all age have been utilized for over 70 years to answer a wide range of scientific problems beginning with Al Nier's pioneering work analyzing Pb isotopes in the 1930's but are no longer widely used by the isotopic community because they have been produced by older TIMS techniques. We have begun a re-examination of Archean Pb by an extensive analysis of over 100 galena samples from Archean VMS deposits throughout the Superior and Slave Provinces in Canada as well as from other VMS deposits in Finland, South Africa and Western Australia. The goal of this work is to provide modern, high precision measurements and update an old, but venerable, Pb isotopic data set. We feel these data provide important constraints on not only the Pb isotopic evolution of the Earth, but planetary differentiation and recycling processes operating in the first 2 b.y. of Earth's history. Our analytical techniques include dissolving the Pb sulfide minerals, purifying them with ion chromatography, and analyzing them using MC-ICPMS at both Washington State University (Neptune) and Ecole Normale Superieure in Lyon, France (Nu). All Pb solutions are doped with Tl in order to correct for mass fractionation. In this abstract we report preliminary galena Pb isotope data from 6 VMS deposits in the Abitibi greenstone belt: Chibougamu, Matagami, Noranda, Normetal, Timmins, and Val d"Or. These deposits are all approximately 2.7 Ga in age but in detail vary from 2

  4. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth

    PubMed Central

    Domagal-Goldman, Shawn D.; Meadows, Victoria S.; Wolf, Eric T.; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; Hébrard, Eric; Trainer, Melissa G.

    2016-01-01

    Abstract Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8–2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ∼ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7–2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO2. Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets. Key Words: Haze—Archean Earth

  5. Spatially Resolved, In Situ Carbon Isotope Analysis of Archean Organic Matter

    NASA Technical Reports Server (NTRS)

    Williford, Kenneth H.; Ushikubo, Takayuki; Lepot, Kevin; Hallmann, Christian; Spicuzza, Michael J.; Eigenbrode, Jennifer L.; Summons, Roger E.; Valley, John W.

    2011-01-01

    Archean OM suggest that instrumental bias is consistent for 12C count rates as low as 10% relative to anthracite. Samples from the ABDP-9 (n=3; Mount McRae Shale, approximately 2.5 Ga), RHDH2a (n=2; Carrawine Dolomite and Jeerinah Fm, approximately 2.6 Ga), WRL1 (n=3; Wittenoom Fm, Marra Mamba Iron Formation, and Jeerinah Fm, approximately 2.6 Ga), and SV1 (n=1; Tumbiana Fm, approximately 2.7 Ga) drill cores, each previously analyzed for bulk organic carbon isotope composition, yielded 100 new, in situ data from Neoarchean sedimentary OM. In these samples, delta C-13 varies between -53.1 and -28.3 % and offsets between in situ and bulk compositions range from -8.3 to 18.8%. In some cases, isotopic composition and mode of occurrence (e.g. morphology and mineral associations) are statistically correlated, enabling the identification of distinct reservoirs of OM. Our results support previous evidence for gradients of oxidation with depth in Neoarchean environments driven by photosynthesis and methane metabolism. The relevance of these findings to questions of bio- and syngenicity as well as the alteration history of previously reported Archean OM will be discussed.

  6. Late Archean rise of aerobic microbial ecosystems

    PubMed Central

    Eigenbrode, Jennifer L.; Freeman, Katherine H.

    2006-01-01

    We report the 13C content of preserved organic carbon for a 150 million-year section of late Archean shallow and deepwater sediments of the Hamersley Province in Western Australia. We find a 13C enrichment of ≈10‰ in organic carbon of post-2.7-billion-year-old shallow-water carbonate rocks relative to deepwater sediments. The shallow-water organic-carbon 13C content has a 29‰ range in values (−57 to −28‰), and it contrasts with the less variable but strongly 13C-depleted (−40 to −45‰) organic carbon in deepwater sediments. The 13C enrichment likely represents microbial habitats not as strongly influenced by assimilation of methane or other 13C-depleted substrates. We propose that continued oxidation of shallow settings favored the expansion of aerobic ecosystems and respiring organisms, and, as a result, isotopic signatures of preserved organic carbon in shallow settings approached that of photosynthetic biomass. Facies analysis of published carbon-isotopic records indicates that the Hamersley shallow-water signal may be representative of a late Archean global signature and that it preceded a similar, but delayed, 13C enrichment of deepwater deposits. The data suggest that a global-scale expansion of oxygenated habitats accompanied the progression away from anaerobic ecosystems toward respiring microbial communities fueled by oxygenic photosynthesis before the oxygenation of the atmosphere after 2.45 billion years ago. PMID:17043234

  7. U enrichment and Th/U fractionation in Archean boninites: Implications for paleo-ocean oxygenation and U cycling at juvenile subduction zones

    NASA Astrophysics Data System (ADS)

    Manikyamba, C.; Said, Nuru; Santosh, M.; Saha, Abhishek; Ganguly, Sohini; Subramanyam, K. S. V.

    2018-05-01

    Phanerozoic boninites record enrichments of U over Th, giving Th/U: 0.5-1.6, relative to intraoceanic island arc tholeiites (IAT) where Th/U averages 2.6. Uranium enrichment is attributed to incorporation of shallow, oxidized fluids, U-rich but Th-poor, from the slab into the melt column of boninites which form in near-trench to forearc settings of suprasubduction zone ophiolites. Well preserved Archean komatiite-tholeiite, plume-derived, oceanic volcanic sequences have primary magmatic Th/U ratios of 4.4-3.6, and Archean convergent margin IAT volcanic sequences, having REE and HFSE compositions similar to Phanerozoic IAT equivalents, preserve primary Th/U of 4-3.6. The best preserved Archean boninites of the 3.0 Ga Olondo and 2.7 Ga Gadwal greenstone belts, hosted in convergent margin ophiolite sequences, also show relative enrichments of U over Th, with low average Th/U ∼3 relative to coeval IAT, and Phanerozoic counterparts which are devoid of crustal contamination and therefore erupted in an intraoceanic setting, with minimal contemporaneous submarine hydrothermal alteration. Later enrichment of U is unlikely as Th-U-Nb-LREE patterns are coherent in these boninites whereas secondary effects induce dispersion of Th/U ratios. The variation in Th/U ratios from Archean to Phanerozoic boninites of greenstone belts to ophiolitic sequences reflect on genesis of boninitic lavas at different tectono-thermal regimes. Consequently, if the explanation for U enrichment in Phanerozoic boninites also applies to Archean examples, the implication is that U was soluble in oxygenated Archean marine water up to 600 Ma before the proposed great oxygenation event (GOE) at ∼2.4 Ga. This interpretation is consistent with large Ce anomalies in some hydrothermally altered Archean volcanic sequences aged 3.0-2.7 Ga.

  8. Mobility of nutrients and trace metals during weathering in the late Archean

    NASA Astrophysics Data System (ADS)

    Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.

    2017-08-01

    The evolution of the geosphere and biosphere depends on the availability of bio-essential nutrients and trace metals. Consequently, the chemical and isotopic variability of trace elements in the sedimentary record have been widely used to infer the existence of early life and fluctuations in the near-surface environment on the early Earth, particularly fluctuations in the redox state of the atmosphere. In this study, we applied late Archean weathering models (Hao et al., 2017), developed to estimate the behavior of major elements and the composition of late Archean world average river water, to explore the behavior of nutrient and trace metals and their potential for riverine transport. We focused on P, Mn, Cr, and Cu during the weathering of olivine basalt. In our standard late Archean weathering model (pCO2,g = 10-1.5 bars, pH2,g = 10-5.0 bars), crustal apatite was totally dissolved by the acidic rainwater during weathering. Our model quantitatively links the pCO2,g of the atmosphere to phosphate levels transported by rivers. The development of late Archean river water (pH = 6.4) resulted in riverine phosphate of at least 1.7 μmolar, much higher than at the present-day. At the end of the early Proterozoic snowball Earth event when pCO2,g could be 0.01-0.10 bars, river water may have transported up to 70 μmolar phosphate, depending on the availability of apatite, thereby stimulating high levels of oxygenic photosynthesis in the marine environment. Crustal levels of Mn in olivine dissolved completely during weathering, except at large extents of weathering where Mn was stored as a component of a secondary carbonate mineral. The corresponding Mn content of river water, about 1.2 μmolar, is higher than in modern river water. Whiffs of 10-5 mole O2 gas or HNO3 kg-1 H2O resulted in the formation of pyrolusite (MnO2) and abundant hematite and simultaneous dramatic decreases in the concentration of Mn(II) in the river water. Chromite dissolution resulted in negligible

  9. Mantle redox evolution and the oxidation state of the Archean atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Eggler, D. H.; Raeburn, S. P.

    1993-01-01

    Current models predict that the early atmosphere consisted mostly of CO2, N2, and H2O, along with traces of H2 and CO. Such models are based on the assumption that the redox state of the upper mantle has not changed, so that volcanic gas composition has remained approximately constant with time. We argue here that this assumption is probably incorrect: the upper mantle was originally more reduced than today, although not as reduced as the metal arrest level, and has become progressively more oxidized as a consequence of the release of reduced volcanic gases and the subduction of hydrated, oxidized seafloor. Data on the redox state of sulfide and chromite inclusions in diamonds imply that the process of mantle oxidation was slow, so that reduced conditions could have prevailed for as much as half of the earth's history. To be sure, other oxybarometers of ancient rocks give different results, so the question of when the mantle redox state has changed remains unresolved. Mantle redox evolution is intimately linked to the oxidation state of the primitive atmosphere: A reduced Archean atmosphere would have had a high hydrogen escape rate and should correspond to a changing mantle redox state; an oxidized Archean atmosphere should be associated with a constant mantle redox state. The converses of these statements are also true. Finally, our theory of mantle redox evolution may explain why the Archean atmosphere remained oxygen-deficient until approximately 2.0 billion years ago (Ga) despite a probable early origin for photosynthesis.

  10. Iron-tolerant Cyanobacteria as a Tool to Study Terrestrial and Extraterrestrial Iron Deposition

    NASA Technical Reports Server (NTRS)

    Brown, I. I.; Mummey, D.; Cooksey, K. E.; McKay, D. S.

    2005-01-01

    We are investigating biological mechanisms of terrestrial iron deposition as analogs for Martian hematite recently confirmed by. Possible terrestrial analogs include iron oxide hydrothermal deposits, rock varnish, iron-rich laterites, ferricrete soils, moki balls, and banded iron formations (BIFs). With the discovery of recent volcanic activity in the summit craters of five Martian volcanoes, renewed interest in the iron dynamics of terrestrial hydrothermal environments and associated microorganisms is warranted. In this study we describe a new genus and species of CB exhibiting elevated dissolved iron tolerance and the ability to precipitate hematite on the surface of their exopolymeric sheathes.

  11. Geochemistry of Precambrian carbonates: 3-shelf seas and non-marine environments of the Archean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veizer, J.; Clayton, R.N.; Hinton, R.W.

    1990-10-01

    A comprehensive whole-rock study of mineralogical, chemical, and isotopic attributes of Archean carbonates suggests that their lithologies and facies have been controlled by tectonic setting. In the first two papers of this series they have shown that the dominant lithology of sedimentary carbonates in greenstone belt settings is limestone. In this paper the authors suggest that the Archean shelf sequences are mostly dolostone, and the contemporaneous lacustrine playa lakes are characterized by limestone facies. The present study is of the shelf environments of the Archean, represented by the Pongola Supergroup of South Africa and the Hamersley Group of Australia. Themore » lacustrine playa examples have been sampled from the Ventersdorp Supergroup of South Africa and the Fortescue Group of Australia. Geological, trace element, and oxygen isotope considerations of the shelf carbonates suggest that their original mineralogy may have been aragonite and that the Pongola dolostones probably represent a direct dolomitization product of this precursor. In contrast, the stabilization of the Hamersley carbonates may have involved an additional step of transformation of a metastable precursor into limestone prior to dolomitization.« less

  12. Fiskenaesset Anorthosite Complex: Stable isotope evidence for shallow emplacement into Archean ocean crust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peck, W.H.; Valley, J.W.

    1996-06-01

    Oxygen and hydrogen isotope ratios indicate that unusual rocks at the upper contact of the Archean Fiskenaesset Anorthosite Complex at Fiskenaesset Harbor (southwest Greenland) are the products of hydrothermal alteration by seawater at the time of anorthosite intrusion. Subsequent granulite-facies metamorphism of these Ca-poor and Al- and Mg-rich rocks produced sapphirine- and kornerupine-bearing assemblages. Because large amounts of surface waters cannot penetrate to depths of 30 km during granulite-facies metamorphism, the isotopic signature of the contact rocks must have been obtained prior to regional metamorphism. The stable isotope and geochemical characteristics of the contact rocks support a model of shallowmore » emplacement into Archean ocean crust for the Fiskenaesset Anorthosite Complex. 45 refs., 3 figs., 2 tabs.« less

  13. Li isotopes in archean zircons

    NASA Astrophysics Data System (ADS)

    Bouvier, A.; Ushikubo, T.; Kita, N.; Cavosie, A. J.; Kozdon, R.; Valley, J. W.

    2009-12-01

    Li is a fluid mobile, moderately incompatible element with a large mass difference between its two stable isotopes. Different processes can fractionate 7Li/6Li (fluid-rock interaction, metamorphic reactions, and Li diffusion), leading to variation by over 50‰ of δ7Li for common crustal material. These large variations make δ7Li a potential tracer of continental weathering and of the fluids affecting magma sources. Here, we report δ7Li and trace elements in Archean igneous zircons from TTG and sanukitoid granitoids from the Superior Province (Canada) in order to characterize Li in Archean zircons from well-described samples. These data are compared to detrital zircons from the Jack Hills (Western Australia) for which parent rock-type is uncertain. This study aims to better understand Li substitution in zircon and to evaluate the utility of δ7Li and [Li] for Archean petrogenesis. Zircons (n=71) were analyzed for δ7Li and trace elements (Li, P, Ca, Ti, V, Fe, Y, REE, U, Th) using an IMS-1280 ion microprobe. Most of the zircons display typical igneous REE patterns and zoning by CL. [Li] averages 13.1 ± 9 for TTG, 25.7 ± 19 for Sanukitoid and 31.0 ± 14 ppm for Jack Hills zircons, which are distinct from mantle-related zircons (<0.1 ppm). Values of δ7Li average 1.0 ± 4.5‰ for TTGs, 6.3 ± 4.4‰ for sanukitoids and -2.6 ± 8.8‰ for Jack Hills samples. Trace elements were analyzed from single spots in order to evaluate coupled substitutions. Atomic ratios (3Li+Y+REE)/P average 2.6, showing that Li and trivalent atoms are not charge-balanced by P, and suggesting that Li does not replace Zr, according to the xenotime substitution. However, (Y+REE)/(Li+P) atomic ratios average 1.0 ± 0.6, supporting the hypothesis that Li is interstitial and partly compensates trivalent cations. Several observations in this study suggest that [Li] is primary in the studied zircons: i) if Li is interstitial, charge-balance and slow diffusion of REE would control Li mobility

  14. Pb, Sr, and Nd isotopic compositions of a suite of Late Archean, igneous rocks, eastern Beartooth Mountains: implications for crust-mantle evolution

    USGS Publications Warehouse

    Wooden, J.L.; Mueller, P.A.

    1988-01-01

    A series of compositionally diverse, Late Archean rocks (2.74-2.79 Ga old) from the eastern Beartooth Mountains, Montana and Wyoming, U.S.A., have the same initial Pb, Sr, and Nd isotopic ratios. Lead and Sr initial ratios are higher and Nd initial ratios lower than would be expected for rocks derived from model mantle sources and strongly indicate the involvement of an older crustal reservoir in the genesis of these rocks. Crustal contamination during emplacement can be ruled out for a variety of reasons. Instead a model involving subduction of continental detritus and contamination of the overlying mantle as is often proposed for modern subduction environments is preferred. This contaminated mantle would have all the isotopic characteristics of mantle enriched by internal mantle metasomatism but would require no long-term growth or changes in parent to daughter element ratios. This contaminated mantle would make a good source for some of the Cenozoic mafic volcanics of the Columbia River, Snake River Plain, and Yellowstone volcanic fields that are proposed to come from ancient, enriched lithospheric mantle. The isotopic characteristics of the 2.70 Ga old Stillwater Complex are a perfect match for the proposed contaminated mantle which provides an alternative to crustal contamination during emplacement. The Pb isotopic characteristics of the Late Archean rocks of the eastern Beartooth Mountains are similar to those of other Late Archean rocks of the Wyoming Province and suggest that Early Archean, upper crustal rocks were common in this terrane. The isotopic signatures of Late Archean rocks in the Wyoming Province are distinctive from those of other Archean cratons in North America which are dominated by a MORB-like, Archean mantle source (Superior Province) and/or a long-term depleted crustal source (Greenland). ?? 1988.

  15. Pressure-induced magneto-structural transition in iron via a modified solid-state nudged elastic band method

    NASA Astrophysics Data System (ADS)

    Zarkevich, Nikolai A.; Johnson, Duane D.

    2015-03-01

    Materials under pressure may exhibit critical electronic and structural transitions that affect equation of states, as known for superconductors and the magneto-structural transformations of iron with both geophysical and planetary implications. While experiments often use constant-pressure (diamond-anvil cell, DAC) measurements, many theoretical results address a constant-volume transitions, which avoid issues with magnetic collapse but cannot be directly compared to experiment. We establish a modified solid-state nudge elastic band (MSS-NEB) method to handle magnetic systems that may exhibit moment (and volume) collapse during transformation. We apply it to the pressure-induced transformation in iron between the low-pressure body-centered cubic (bcc) and the high-pressure hexagonal close-packed (hcp) phases, find the bcc-hcp equilibrium coexistence pressure and a transitional pathway, and compare to shock and DAC experiments. We use methods developed with support by the U.S. Department of Energy (DE-FG02-03ER46026 and DE-AC02-07CH11358). Ames Laboratory is operated for the DOE by Iowa State University under contract DE-AC02-07CH11358.

  16. Transition From Archean Plume-Arc Orogens to Phanerozoic Style Convergent Margin Orogens, and Changing Mantle Lithosphere

    NASA Astrophysics Data System (ADS)

    Kerrich, R.; Jia, Y.; Wyman, D.

    2001-12-01

    Mantle plume activity was more intense in the Archean and komatiite-basalt volcanic sequences are a major component of many Archean greenstone belts. Tholeiitic basalts compositionally resemble Phanerozoic and Recent ocean plateau basalts, such as those of Ontong Java and Iceland. However, komatiite-basalt sequences are tectonically imbricated with bimodal arc lavas and associated trench turbidites. Interfingering of komatiite flows with boninite series flows, and primitive to evolved arc basalts has recently been identified in the 2.7 Ga Abitibi greenstone belt, demonstrating spatially and temporally associated plume and arc magmatism. These observations are consistent with an intra-oceanic arc migrating and capturing an ocean plateau, where the plateau jams the arc and imbricated plateau-arc crust forms a greenstone belt orogen. Melting of shallowly subducted plateau basalt crust (high Ba, Th, LREE) accounts for the areally extensive and voluminous syntectonic tonalite batholiths. In contrast, the adakite-Mg-andesite-Niobium enriched basalt association found in Archean greenstone belts and Cenozoic arcs are melts of LREE depleted MORB slab. Buoyant residue from anomalously hot mantle plume melting at > 100km rises to couple with the composite plume-arc crust to form the distinctively thick and refractory Archean continental lithospheric mantle. New geochemical data for structurally hosted ultramafic units along the N. American Cordillera, from S. California to the Yukon, show that these are obducted slices of sub-arc lithospheric mantle. Negatively fractionated HREE with high Al2O3/TiO2 ratios signify prior melt extraction, and variably enriched Th and LREE with negative Nb anomalies a subduction component in a convergent margin. A secular decrease of mantle plume activity and temperature results in plume-arc dominated geodynamics in the Archean with shallow subduction and thick CLM, whereas Phanerozoic convergent margins are dominated by arc-continent, arc

  17. Oxidative Weathering of Archean Sulfides: Implications for the Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Johnson, A.; Romaniello, S. J.; Reinhard, C.; Garcia-Robledo, E.; Revsbech, N. P.; Canfield, D. E.; Lyons, T. W.; Anbar, A. D.

    2015-12-01

    The first widely accepted evidence for oxidation of Earth's atmosphere and oceans occurs ~2.45 Ga immediately prior to the Great Oxidation Event (GOE). A major line of evidence for this transition includes the abundances and isotopic variations of redox-sensitive transition metals in marine sediments (e.g., Fe, Mo, Re, Cr, and U). It is often assumed that oxidative weathering is required to liberate these redox-sensitive elements from sulfide minerals in the crust, and hence that their presence in early Archean marine sediments signifies that oxidative weathering was stimulated by small and/or transient "whiffs" of O2 in the environment.1 However, studies of crustal sulfide reactivity have not been conducted at O2 concentrations as low as those that would have prevailed when O2 began its rise during the late Archean (estimated at <10-5 present atmospheric O2).2 As a result, it is difficult to quantify O2 concentrations implied by observed trace metal variations. As a first step toward providing more quantitative constraints on late Archean pO2, we conducted laboratory studies of pyrite and molybdenite oxidation kinetics at the nanomolar O2 concentrations that are relevant to late Archean environments. These measurements were made using recently developed, highly sensitive optical O2 sensors to monitor the rates at which the powdered minerals consumed dissolved O2 in a range of pH-buffered solutions.3Our data extend the range of experimental pyrite oxidation rates in the literature by three orders of magnitude from ~10-3 present atmospheric O2 to ~10-6. We find that molybdenite and pyrite oxidation continues to <1 nM O2 (4 x 10-6 present atmospheric O2). This implies that oxidative weathering of sulfides could occur under conditions which preserve MIF S fractionation. Furthermore, our results indicate that the rate law and reaction order of pyrite oxidation kinetics change significantly at nanomolar concentrations of O2 when compared to previous compilations.2 Our

  18. Earth's early atmosphere as seen from carbon and nitrogen isotopic analysis of Archean sediments

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Carr, L. P.; Gilmour, I.; Pillinger, C. T.

    1986-01-01

    The origin and evolution of the Earth's early atmosphere has long been a topic of great interest but determination of actual compositions over geologic time is a difficult problem. However, recent systematic studies of stromatolite deposits (Precambrian Paleobiology Research Group) has extended our knowledge of Archean ecosystems. It has been shown that many stromatolite deposits have undergone negligible alteration since their time of formation. The discovery of primary fluid inclusions within unaltered 3.5 b.y. old Archiean sediments and the observation that the 3.3 b.y. old Barberton cherts have remained closed to argon loss and have not been subjected to thermal metamorphism suggests that an opportunity exists for the direct measurement of the volatile constituents present at their time of formation. Of primary interest to this study was the possibility that the stromatolites and other Archean sediments might retain a vestige of the atmosphere and thus afford an indication of the variations in carbon dioxide and nitrogen isotopic compositions with time. A suite of essentially unaltered Archean stromatolites and the cherts of different ages and geologic sites have been analyzed for their trapped carbon dioxide and nitrogen compositions by the stepped combustion extraction tech nique utilizing static mass spectrometers for the isotope measurements.

  19. Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks

    NASA Astrophysics Data System (ADS)

    Avice, G.; Marty, B.; Burgess, R.; Hofmann, A.; Philippot, P.; Zahnle, K.; Zakharov, D.

    2018-07-01

    We have analyzed ancient atmospheric gases trapped in fluid inclusions contained in minerals of Archean (3.3 Ga) to Paleozoic (404 Ma) rocks in an attempt to document the evolution of the elemental composition and isotopic signature of the atmosphere with time. Doing so, we aimed at understanding how physical and chemical processes acted over geological time to shape the modern atmosphere. Modern atmospheric xenon is enriched in heavy isotopes by 30-40‰ u-1 relative to Solar or Chondritic xenon. Previous studies demonstrated that, 3.3 Ga ago, atmospheric xenon was isotopically fractionated (enriched in the light isotopes) relative to the modern atmosphere, by 12.9 ± 1.2 (1σ) ‰ u-1, whereas krypton was isotopically identical to modern atmospheric Kr. Details about the specific and progressive isotopic fractionation of Xe during the Archean, originally proposed by Pujol et al. (2011), are now well established by this work. Xe isotope fractionation has evolved from 21‰ u-1 at 3.5 Ga to 12.9‰ u-1 at 3.3 Ga. The current dataset provides some evidence for stabilization of the Xe fractionation between 3.3 and 2.7 Ga. However, further studies will be needed to confirm this observation. After 2.7 Ga, the composition kept evolving and reach the modern-like atmospheric Xe composition at around 2.1 Ga ago. Xenon may be the second atmospheric element, after sulfur, to show a secular isotope evolution during the Archean that ended shortly after the Archean-Proterozoic transition. Fractionation of xenon indicates that xenon escaped from Earth, probably as an ion, and that Xe escape stopped when the atmosphere became oxygen-rich. We speculate that the Xe escape was enabled by a vigorous hydrogen escape on the early anoxic Earth. Organic hazes, scavenging isotopically heavy Xe, could also have played a role in the evolution of atmospheric Xe. For 3.3 Ga-old samples, Ar-N2 correlations are consistent with a partial pressure of nitrogen (pN2) in the Archean atmosphere

  20. Archean high δ18O Mg-diorite: crustal-derived melt hybridized with enriched mafic accumulated rocks

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Guo, Jing-Hui

    2016-04-01

    The genesis of Mg-diorite or sanukitoids has significances to understand the crustal growth and tectonic style in Archean. The chemical compositions of minerals and rocks, whole-rock Sm-Nd isotope, zircon SIMS U-Pb ages and Hf-O isotopes of Zhulagou (ZLG) Mg-diorite and their mafic enclaves (Yinshan Block, North China Craton) were studied to place constraints on their sources and genesis, and therefore provide information about dynamic processes. The ~2520 Ma ZLG diorites have intermediate SiO2 (59.4-65.5 wt.%), high Mg# (49-52), Cr (90.4-438 ppm), Ni (15.0-95.9 ppm), Sr (436-882 ppm) and Ba (237-1206 ppm) contents with fractionated rare earth elements (REE, LaN/YbN = 9.1-40.5) and depleted high field-strength element (HFSE, e.g. Nb, Ta and Ti). These geochemical signatures are similar to those Archean high-Mg diorites and sanukitoids. However, they are sodic with low K2O/Na2O (0.14-0.49) ratios, exhibiting an affinity with Archean trondhjemite-tonalite-granodiorite (TTG). Abundant coeval amphibole-bearing mafic enclaves (~2525 Ma) are enclosed within the ZLG diorites. They display low SiO2 (46.5-50.3 wt.%) contents but high concentrations of MgO (9.0-14.5 wt.%), Cr (647-1946 ppm) and Ni (197-280 ppm). They are enriched in K2O (0.64-3.43 wt.%) and large ion lithophile element (LILE), depleted in Nb, Ta and Ti. Combined with their concave REE patterns and prominent negative Eu anomaly, we suggest that they are cumulates of the melt which probably derived from subduction-related Archean metasomatized mantle source. Mineral trace element modelling results, similar ɛNd(t) (+0.6 to +2.3) and δ18O(Zrc) values (~8.6-9.0 ‰) of the diorites and mafic enclaves, strongly reflect that they had experienced intense interaction and hybridization. Evolved whole-rock Nd isotopes (TDM = 2.80-2.70 Ga), variable zircon ɛHf (t) (-1.6 to +6.0) and high δ18O (~9.0 ‰) values of the diorites indicate that they most likely originated from melting of an older continental crust (≥ 2

  1. THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, O.; Drake, J. J.; Kota, J.

    2012-11-20

    We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to themore » shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.« less

  2. First Archean Zircons Found in Oceanic Crustal Rocks of Mauritius

    NASA Astrophysics Data System (ADS)

    Ashwal, L. D.; Wiedenbeck, M.; Torsvik, T. H.

    2016-12-01

    A fragment of continental crust has been postulated to underlie the young plume-related lavas of the Indian Ocean island of Mauritius, on both the basis of inversion of gravity anomaly data (crustal thickness) and the recovery of Proterozoic zircons (660-1971 Ma) from basaltic beach sands (Torsvik et al., Nature Geosci. 6, 227, 2013). We recovered 13 zircon grains from a trachyte associated with the Older Series basalts (9.0-4.7 Ma) of Mauritius, the second youngest member of a hot-spot track extending from the active plume site of Réunion. Extreme care was taken to avoid contamination during sample processing. Ten of the 13 grains are featureless, with no internal structures, and SIMS analyses (Cameca 1280-HR instrument) yield 49 spots with Miocene U-Pb systematics and a mean age of 5.7 ± 0.2 Ma (1 sd), constraining the magmatic crystallization age of the trachyte. Three grains with partially resorbed magmatic zoning, partial metamictization and mineral inclusions (quartz, K-feldspar, monazite) show uniquely mid- to late-Archean systematics: 20 spot analyses give concordant to near-concordant ages of 3030 ± 5 Ma to 2766 ± 13 Ma. This suggests that during ascent, the trachytic magmas incorporated silicic continental crustal material that preserves a record of several hundred m.y. of Archean evolution. This is consistent with Sr-Nd isotope systematics of the Mauritian trachytes, which can be modelled as having been contaminated with 0.4-3.5% of ancient granitoid crustal components. Our new age results, combined with the Proterozoic ages of zircons recovered from Mauritian beach sands, are best correlated with continental crust of east-central Madagascar, presently 700 km west of Mauritius, where Archean gneisses and Neoproterozoic intrusive rocks are juxtaposed such that a 2000 km2 area could correspond to a fragment of continent presently underlying Mauritius. This, and other continental fragments formed during Gondwana break-up, may be scattered across the

  3. Archean Age Fossils from Northwestern Australia (Approximately 3.3 to 3.5 GA, Warrawoona Group, Towers Formation)

    NASA Technical Reports Server (NTRS)

    Smith, Penny A. Morris

    1999-01-01

    Archean aged rocks from the Pilbara Block area of western Australia (Warrawoona Group, Towers Formation, -3.3-3.5 Ga) contain microfossils that are composed of various sizes of spheres and filaments. The first descriptions of these microfossils were published in the late 1970's (Dunlop, 1978; Dunlop, et. al., 1978). The authenticity of the microfossils is well established. The small size of the microfossils prevents isotope dating, at least with the present technology. Microbiologists, however, have established guidelines to determine the authenticity of the Archean aged organic remains (Schopf, Walter, 1992).

  4. Age, compositional, and isotopic evidence for crustal recycling in a Late Archean arc, Beartooth Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooden, J.L.; Mueller, P.A.; Graves, M.A.

    1985-01-01

    Late Archean rocks of the eastern Beartooth Mountains range in composition from basaltic andesite to granite and were emplaced 2.73-2.80 Ga ago in a middle to early Archean terrane as indicated by U-Pb zircon studies. Although trace element abundances are extremely variable for this group of rocks, their initial Pb, Sr, and Nd isotopic compositions are remarkably homogenous. A composite Rb-Sr isochron (>30 samples) yield an age of 2.79/plus minus/0.04 Ga with an initial ratio of 0.7022/plus minus/2 while /epsilon/Nd 2.78 Ga ago ranges from -1.5 to -3.1 (av. -2.2). Whole-rock Pb data for these rocks scatter about a 2.75more » Ga isochron and feldspar Pb data suggest initial 206/204 = 13.88, 207/204 = 14.96, and 208/204 = 34.3. These values lie well above values for average crustal leads 2.78 Ga ago as modeled by Stacey and Kramer (1975) and would require development in a reservior with /mu/= 12 from 3.7-2.8 Ga (/mu/= 7.2, 4.5-3.7 Ga). The marked differences between these values and those of the late Archean mantle require that an early to middle Archean crust played a role in the genesis of these rocks. The compositional variety and isotopic homogeneity may have developed as the result of crust-mantle mixing similar to that observed in modern volcanic-plutonic arcs along continental margins where crustal materials can be subducted, and fluids derived from these materials added to the overlying mantle wedge and lower crust. During this period, contaminated mantle may have been generated on a regional scale as evidenced by the isotopic systematics of young mafic volcanics from the northwestern U.S. (e.g. Snake River Plain, Yellowstone, Columbia River).« less

  5. Archean inheritance in zircon from late Paleozoic granites from the Avalon zone of southeastern New England: an African connection

    USGS Publications Warehouse

    Zartman, R.E.; Don, Hermes O.

    1987-01-01

    In southeastern New England the Narragansett Pier Granite locally intrudes Carboniferous metasedimentary rocks of the Narragansett basin, and yields a monazite UPb Permian emplacement age of 273 ?? 2 Ma. Zircon from the Narragansett Pier Granite contains a minor but detectable amount of an older, inherited component, and shows modern loss of lead. Zircon from the late-stage, aplitic Westerly Granite exhibits a more pronounced lead inheritance -permitting the inherited component to be identified as Late Archean. Such old relict zircon has not been previously recognized in Proterozoic to Paleozoic igneous rocks in New England, and may be restricted to late Paleozoic rocks of the Avalon zone. We suggest that the Archean crustal component reflects an African connection, in which old Archean crust was underplated to the Avalon zone microplate in the late Paleozoic during collision of Gondwanaland with Avalonia. ?? 1987.

  6. Organic compounds in fluid inclusions of Archean quartz-Analogues of prebiotic chemistry on early Earth.

    PubMed

    Schreiber, Ulrich; Mayer, Christian; Schmitz, Oliver J; Rosendahl, Pia; Bronja, Amela; Greule, Markus; Keppler, Frank; Mulder, Ines; Sattler, Tobias; Schöler, Heinz F

    2017-01-01

    The origin of life is still an unsolved mystery in science. Hypothetically, prebiotic chemistry and the formation of protocells may have evolved in the hydrothermal environment of tectonic fault zones in the upper continental crust, an environment where sensitive molecules are protected against degradation induced e.g. by UV radiation. The composition of fluid inclusions in minerals such as quartz crystals which have grown in this environment during the Archean period might provide important information about the first organic molecules formed by hydrothermal synthesis. Here we present evidence for organic compounds which were preserved in fluid inclusions of Archean quartz minerals from Western Australia. We found a variety of organic compounds such as alkanes, halocarbons, alcohols and aldehydes which unambiguously show that simple and even more complex prebiotic organic molecules have been formed by hydrothermal processes. Stable-isotope analysis confirms that the methane found in the inclusions has most likely been formed from abiotic sources by hydrothermal chemistry. Obviously, the liquid phase in the continental Archean crust provided an interesting choice of functional organic molecules. We conclude that organic substances such as these could have made an important contribution to prebiotic chemistry which might eventually have led to the formation of living cells.

  7. Emerged Oceanic Plateaux and Their Role in Regulating Archean Ocean and Atmosphere Composition

    NASA Astrophysics Data System (ADS)

    Kamber, B. S.

    2009-05-01

    A geologist associates the Earth's surface division into land and oceans instinctively with continents and oceanic plates. Here I propose that for the Archean eon, we need to break with this concept. As an alternative I propose a three-fold division. Continental land, relatively thin oceanic plates covered by water and also much thicker oceanic plateaux that were at least episodically emerged and contributed ca. 50% of the total land mass. The rationale for this proposal is a long-standing conundrum locked up in ancient hydrogenous sediments precipitated from seawater. They contain elemental and isotopic records with mutually exclusive conclusions regarding the supply of elements. Namely, isotopic data, particularly Sr, are interpreted to imply a preponderance of hydrothermal flux to the ocean. The elemental abundance of Eu, however, apparently requires a much greater flux from land. Yet a higher flux from continental land mass would be visible in the Sr- isotope record. I will present additional evidence from the origin of the marine rare earth element (REE) pattern that deepens the conundrum, which can be solved if the Archean landmass included emerged oceanic plateaux in addition to the continents. The appeal of the idea is that the marine REE inventory, including Eu, is only influenced by relative fluxes from hydrothermal vents and land, regardless of the nature of the land. Strontium isotopes, on the other hand, cannot discriminate between hydrothermal flux and riverine input draining juvenile oceanic plateaux. Using this concept, I will present a simple quantitative model that explains the evidence with a landmass at the end of the Archean that was comparable in area to that of today but made up to ca. 60% by oceanic plateaux. My proposal has implications far beyond the REE and Sr fluxes to the ocean. In particular, it requires the Archean upper mantle to have been relatively cool, potentially allowing for subduction of the thin oceanic lithosphere along

  8. Earth's Archean Impact Record In The ICDP Drilling "Barberton Mountain Land".

    NASA Astrophysics Data System (ADS)

    Fritz, Jörg; Schmitt, Ralf-Thomas; Reimold, Uwe; Koeberl, Christian; Mc Donald, Ian; Hofmann, Axel; Luais, Beatrice

    2013-04-01

    The marine meta-sedimentary successions in the "Barberton Mountain Land" are formed by Archean volcanic and sedimentary rocks including the oldest known impact ejecta layers on Earth. The chemical signature (high iridium concentrations, chromium isotopic ratios) of some of these up to tens of cm thick Archean spherule layers advocate that these ejecta deposits represent mainly extraterrestrial material [1]. These ejecta layers contain millimetre sized spherules that are larger and accumulated thicker layers compared to any impact ejecta layer known from Phanerozoic sediments, including the global ejecta layer of the Chicxulub impact catering event terminating the Mesozoic era of Earth's history [2]. The Archean spherule layers are interpreted as products of large impacts by 20 to >100 km diameter objects [3, 4]. Identifying traces of mega-impacts in Earth's ancient history could be of relevance for the evolution of atmosphere, biosphere, and parts of the Earth's crust during that time. In addition, recognizing global stratigraphic marker horizons is highly valuable for inter-correlating sedimentary successions between Archean cratons [5]. However estimates regarding size of the impact event and correlations between the different outcrops in the Barberton mountain land are complicated by post depositional alterations of the tectonically deformed sediments [6, 7]. The relatively fresh samples recovered from below the water table during the 2011-2012 ICDP drilling "Barberton Mountain Land" are promising samples to investigate and to discriminate primary and secondary features of these rare rocks. We plan to conduct 1) petrographic, micro-chemical and mineralogical characterization of the impact ejecta layers, 2) bulk chemical analyses of major and trace elements, and 3) LAICP- MS elemental mapping of platinum group element (PGE) distributions. and elemental analyses of moderately siderophile elements. This aims at 1) characterization of the ejecta layers, 2

  9. Controls on Atmospheric O2: The Anoxic Archean and the Suboxic Proterozoic

    NASA Astrophysics Data System (ADS)

    Kasting, J. F.

    2015-12-01

    Geochemists have now reached consensus that the Archean atmosphere was mostly anoxic, that a Great Oxidation Event (GOE) occurred at around 2.5 Ga, and that the ensuing Proterozoic atmosphere was consistently oxidized [1,2]. Evidence for this broad-scale change in atmospheric composition comes from a variety of sources, most importantly from multiple sulfur isotopes [3,4]. The details of both the Archean and Proterozoic environments remain controversial, however, as does the underlying cause of the GOE. Evidence of 'whiffs' of oxygen during the Archean [5] now extend back as far as 3.0 Ga, based on Cr isotopes [6]. This suggests that O2 was being produced by cyanobacteria well before the GOE and that the timing of this event may have been determined by secular changes in O2 sinks. Catling et al. [7] emphasized escape of hydrogen to space, coupled with progressive oxidation of the continents and a concomitant decrease in the flux of reduced gases from metamorphism. But hydrogen produced by serpentinization of seafloor could also have been a controlling factor [8]. Higher mantle temperatures during the Archean should have resulted in thicker, more mafic seafloor and higher H2 production; decreasing mantle temperatures during the Proterozoic should have led to seafloor more like that of today and a corresponding decrease in H2 production, perhaps by enough to trigger the GOE. Once the atmosphere became generally oxidizing, it apparently remained that way during the rest of Earth's history. But O2 levels in the mid-Proterozoic could have been as low at 10-3 times the Present Atmospheric Level (PAL) [9]. The evidence, once again, is based on Cr isotopes. Possible mechanisms for maintaining such a 'suboxic' Proterozoic atmosphere will be discussed. Refs: 1. H. D. Holland, Geochim. Cosmochim. Acta 66, 3811 (2002). 2. H. D. Holland, Philosophical Transactions of the Royal Society B-Biological Sciences 361, 903 (Jun 29, 2006). 3. J. Farquhar, H. Bao, M. Thiemans, Science

  10. Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014)

    DOE PAGES

    Kochanov, R. V.; Gordon, I. E.; Rothman, L. S.; ...

    2015-08-25

    In the recent article by Byrne and Goldblatt, "Radiative forcing for 28 potential Archean greenhouse gases", Clim. Past. 10, 1779–1801 (2014), the authors employ the HITRAN2012 spectroscopic database to evaluate the radiative forcing of 28 Archean gases. As part of the evaluation of the status of the spectroscopy of these gases in the selected spectral region (50–1800 cm -1), the cross sections generated from the HITRAN line-by-line parameters were compared with those of the PNNL database of experimental cross sections recorded at moderate resolution. The authors claimed that for NO 2, HNO 3, H 2CO, H 2O 2, HCOOH, Cmore » 2H 4, CH 3OH and CH 3Br there exist large or sometimes severe disagreements between the databases. In this work we show that for only three of these eight gases a modest discrepancy does exist between the two databases and we explain the origin of the differences. For the other five gases, the disagreements are not nearly at the scale suggested by the authors, while we explain some of the differences that do exist. In summary, the agreement between the HITRAN and PNNL databases is very good, although not perfect. Typically differences do not exceed 10 %, provided that HITRAN data exist for the bands/wavelengths of interest. It appears that a molecule-dependent combination of errors has affected the conclusions of the authors. In at least one case it appears that they did not take the correct file from PNNL (N 2O 4 (dimer)+ NO 2 was used in place of the monomer). Finally, cross sections of HO 2 from HITRAN (which do not have a PNNL counterpart) were not calculated correctly in BG, while in the case of HF misleading discussion was presented there based on the confusion by foreign or noise features in the experimental PNNL spectra.« less

  11. Application of ASTER and Landsat 8 imagery data and mathematical evaluation method in detecting iron minerals contamination in the Chadormalu iron mine area, central Iran

    NASA Astrophysics Data System (ADS)

    Moghtaderi, Arsia; Moore, Farid; Ranjbar, Hojjatollah

    2017-01-01

    Satellite images are widely used to map geological and environmental features at different map scales. The ability of visible to near-infrared (VNIR) scanner systems to map gossans, rich in iron and associated with weathered sulfide occurrences, as well as to characterize regoliths, is perhaps one of the most important current applications of this technology. Initial results of this study show that advanced space-borne thermal emission and reflection (ASTER), VNIR, and short-wave infrared radiometer scanner systems can be used successfully to map iron ores. By applying internal average relative reflectance, false color composite, minimum noise fraction transform, and mathematical evaluation method (MEM) techniques, iron contaminations were successfully detected in the Chadormalu iron mine area of central Iran. An attempt was also made to discriminate between the geogenic and anthropogenic iron contaminations in the vicinity of the Chadormalu iron deposit. This research compares ASTER and Landsat 8 data images and the MEM with the band ratio method in a full scope view scale and demonstrates ASTER image data capability in detecting iron contaminations in the Chadormalu area. This indicates that ASTER bands 3, 2, and 1 have a higher spatial (15 m) resolution compared with sensors used in previous works. In addition, the capability of the MEM in detecting Fe-contaminants, unlike the color judgments of the band ratio method, can discriminate between iron pollution in an alluvial plain and the Fe-contents of the host and country rocks in the study area. This study proved that Landsat 8 data illustrate exaggeration both in the MEM and band ratio final results (outputs) and cannot display iron contamination in detail.

  12. When Density Functional Approximations Meet Iron Oxides.

    PubMed

    Meng, Yu; Liu, Xing-Wu; Huo, Chun-Fang; Guo, Wen-Ping; Cao, Dong-Bo; Peng, Qing; Dearden, Albert; Gonze, Xavier; Yang, Yong; Wang, Jianguo; Jiao, Haijun; Li, Yongwang; Wen, Xiao-Dong

    2016-10-11

    Three density functional approximations (DFAs), PBE, PBE+U, and Heyd-Scuseria-Ernzerhof screened hybrid functional (HSE), were employed to investigate the geometric, electronic, magnetic, and thermodynamic properties of four iron oxides, namely, α-FeOOH, α-Fe 2 O 3 , Fe 3 O 4 , and FeO. Comparing our calculated results with available experimental data, we found that HSE (a = 0.15) (containing 15% "screened" Hartree-Fock exchange) can provide reliable values of lattice constants, Fe magnetic moments, band gaps, and formation energies of all four iron oxides, while standard HSE (a = 0.25) seriously overestimates the band gaps and formation energies. For PBE+U, a suitable U value can give quite good results for the electronic properties of each iron oxide, but it is challenging to accurately get other properties of the four iron oxides using the same U value. Subsequently, we calculated the Gibbs free energies of transformation reactions among iron oxides using the HSE (a = 0.15) functional and plotted the equilibrium phase diagrams of the iron oxide system under various conditions, which provide reliable theoretical insight into the phase transformations of iron oxides.

  13. SHRIMP-RG U-Pb isotopic systematics of zircon from the Angel Lake orthogneiss, East Humboldt Range, Nevada: Is this really archean crust?

    USGS Publications Warehouse

    Premo, Wayne R.; Castineiras, Pedro; Wooden, Joseph L.

    2008-01-01

    New SHRIMP-RG (sensitive high-resolution ion microprobe-reverse geometry) data confirm the existence of Archean components within zircon grains of a sample from the orthogneiss of Angel Lake, Nevada, United States, previously interpreted as a nappe of Archean crust. However, the combined evidence strongly suggests that this orthogneiss is a highly deformed, Late Cretaceous monzogranite derived from melting of a sedimentary source dominated by Archean detritus. Zircon grains from the same sample used previously for isotope dilution-thermal ionization mass spectrometry (ID-TIMS) isotopic work were analyzed using the SHRIMP-RG to better define the age and origin of the orthogneiss. Prior to analysis, imaging revealed a morphological variability and intragrain, polyphase nature of the zircon population. The SHRIMP-RG yielded 207Pb/206Pb ages between ca. 2430 and 2580 Ma (a best-fit mean 207Pb/206Pb age of 2531 ± 19 Ma; 95% confidence) from mostly rounded to subrounded zircons and zircon components (cores). In addition, several analyses from rounded to subrounded cores or grains yielded discordant 207Pb/206Pb ages between ca. 1460 and ca. 2170 Ma, consistent with known regional magmatic events. All cores of Proterozoic to latest Archean age were encased within clear, typically low Th/U (206Pb/238U ages between 72 and 91 Ma, consistent with magmatic ages from Lamoille Canyon to the south. An age of ca. 90 Ma is suggested, the younger 206Pb/238U ages resulting from Pb loss. The Cretaceous and Precambrian zircon components also have distinct trace element characteristics, indicating that these age groups are not related to the same igneous source. These results support recent geophysical interpretations and negate the contention that the Archean-Proterozoic boundary extends into the central Great Basin area. They further suggest that the world-class gold deposits along the Carlin Trend are not underlain by Archean cratonal crust, but rather by the Proterozoic Mojave

  14. Age and composition of Archean crystalline rocks from the southern Madison Range, Montana. Implications for crustal evolution in the Wyoming craton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, P.A.; Shuster, R.D.; Wooden, J.L.

    1993-04-01

    The southern Madison Range of southwestern Montana contains two distinct Precambrian lithologic assemblages: (1) a complex of tonalitic to granitic gneisses that has been thrust over (2) a medium-grade metasupracrustal sequence dominated by pelitic schist. Crystallization ages for the protolith of a granodioritic gneiss that intruded the metasupracrustal sequence ([approximately]2.6 Ga)-along with an intercalated meta-andesite ([approximately]2.7 Ga) confirm the sequence as Archean. Chemical (major and trace element), isotopic (Rb-Sr, Sm-Nd, Pb-Pb), and geochronologic (U-Pb zircon) data for selected components of the gneiss complex indicate two groups of gneisses: an older, tonalitic to trondhjemitic group ([approximately]3.3 Ga) and a younger, mostlymore » granitic group ([approximately]2.7 Ga). Both groups of gneisses exhibit the radiogenic Pb and nonradiogenic Nd isotopic signature characteristic of Middle and Late Archean rocks from throughout the Wyoming province. The older gneisses, in particular, appear to be compositionally, isotopically, and chronologically comparable to other Middle Archean gneisses from the northern part of the province (for example, Beartooth Mountains). The Late Archean gneisses, however, exhibit some distinct differences relative to their temporal counterparts, including (1) trace-element patterns that are more suggestive of crustal melts than subduction activity and (2) higher initial Sr isotopic ratios that suggest more involvement of older crust in their petrogenesis. These comparisons suggest that the juxtaposition of Late Archean terranes in the northern Wyoming province was the result, at least in part, of intracratonic processes. 41 refs., 6 figs., 2 tabs.« less

  15. The Janus face of iron on anoxic worlds: iron oxides are both protective and destructive to life on the early Earth and present-day Mars.

    PubMed

    Wadsworth, Jennifer; Cockell, Charles S

    2017-05-01

    The surface of the early Earth was probably subjected to a higher flux of ultraviolet (UV) radiation than today. UV radiation is known to severely damage DNA and other key molecules of life. Using a liquid culture and a rock analogue system, we investigated the interplay of protective and deleterious effects of iron oxides under UV radiation on the viability of the model organism, Bacillus subtilis. In the presence of hydrogen peroxide, there exists a fine balance between iron oxide's protective effects against this radiation and its deleterious effects caused by Photo-Fenton reactions. The maximum damage was caused by a concentration of hematite of ∼1 mg/mL. Concentrations above this confer increasing protection by physical blockage of the UV radiation, concentrations below this cause less effective UV radiation blockage, but also a correspondingly less effective Photo-Fenton reaction, providing an overall advantage. These results show that on anoxic worlds, surface habitability under a high UV flux leaves life precariously poised between the beneficial and deleterious effects of iron oxides. These results have relevance to the Archean Earth, but also the habitability of the Martian surface, where high levels of UV radiation in combination with iron oxides and hydrogen peroxide can be found. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway.

    PubMed

    Keller, Markus A; Zylstra, Andre; Castro, Cecilia; Turchyn, Alexandra V; Griffin, Julian L; Ralser, Markus

    2016-01-01

    Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks.

  17. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway

    PubMed Central

    Keller, Markus A.; Zylstra, Andre; Castro, Cecilia; Turchyn, Alexandra V.; Griffin, Julian L.; Ralser, Markus

    2016-01-01

    Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks. PMID:26824074

  18. Cryptic oxygen oases: Hypolithic photosynthesis in hydrothermal areas and implications for Archean surface oxidation

    NASA Astrophysics Data System (ADS)

    Havig, J. R.; Hamilton, T. L.

    2017-12-01

    Mounting geochemical evidence suggests microorganisms capable of oxygenic photosynthesis (e.g., Cyanobacteria) colonized Archean continental surfaces, driving oxidative weathering of detrital pyrites prior to the 2.5 Ga great oxidation event. Modern terrestrial environments dominated by single-celled phototrophs include hydrothermal systems (e.g., Yellowstone National Park) and hypolithic communities found in arid to hyper-arid deserts (e.g., McMurdo Dry Valleys of Antarctica, Atacama Desert of Chile). Recent work indicates terrestrial hydrothermal systems date back at least as far as 3.5 Ga. Here, we explore phototrophic communities in both hypolithic (sub-sinter) and hydrothermal (subaqueous and subaerial) environments in Yellowstone National Park as potential analogs to Archean continental surfaces. Hydrothermal sub-sinter environments provide ideal conditions for phototrophic microbial communities, including blocking of harmful UV radiation, trapping and retention of moisture, and protection from erosion by rain and surface runoff. Hypolithic communities in geothermal settings were similar in both composition and carbon uptake rates to nearby hot spring communities. We hypothesize that hydrothermal area hypolithic communities represent modern analogs of phototrophic microbial communities that colonized Archean continental surfaces, producing oxygen locally and facilitating microbially-mediated pyrite oxidation prior to the presence of free oxygen in the global atmosphere. These results have implications for oxidation of the early Earth surface, the search for biosignatures in the rock record, as well as for potential harbors of past life on Mars and the search for life on Exoplanets.

  19. Petrochronology in constraining early Archean Earth processes and environments: Barberton greenstone belt, South Africa

    NASA Astrophysics Data System (ADS)

    Grosch, Eugene

    2017-04-01

    Analytical and petrological software developments over the past decade have seen rapid innovation in high-spatial resolution petrological techniques, for example, laser-ablation ICP-MS, secondary ion microprobe (SIMS, nano-SIMS), thermodynamic modelling and electron microprobe microscale mapping techniques (e.g. XMapTools). This presentation will focus on the application of petrochronology to ca. 3.55 to 3.33 billion-year-old metavolcanic and sedimentary rocks of the Onverwacht Group, shedding light on the earliest geologic evolution of the Paleoarchean Barberton greenstone belt (BGB) of South Africa. The field, scientific drilling and petrological research conducted over the past 8 years, aims to illustrate how: (a) LA-ICP-MS and SIMS U-Pb detrital zircon geochronology has helped identify the earliest tectono-sedimentary basin and sediment sources in the BGB, as well as reconstructing geodynamic processes as early as ca. 3.432 billion-years ago; (b) in-situ SIMS multiple sulphur isotope analysis of sulphides across various early Archean rock units help to reconstruct atmospheric, surface and subsurface environments on early Archean Earth and (c) the earliest candidate textural traces for subsurface microbial life can be investigated by in-situ LA-ICP-MS U-Pb dating of titanite, micro-XANES Fe-speciation analysis and metamorphic microscale mapping. Collectively, petrochronology combined with high-resolution field mapping studies, is a powerful multi-disciplinary approach towards deciphering petrogenetic and geodynamic processes preserved in the Paleoarchean Barberton greenstone belt of South Africa, with implications for early Archean Earth evolution.

  20. Evolution of the Archean Mohorovičić discontinuity from a synaccretionary 4.5 Ga protocrust

    NASA Astrophysics Data System (ADS)

    Hamilton, Warren B.

    2013-12-01

    This review evaluates and rejects the currently dominant dogmas of geodynamics and geochemistry, which are based on 1950s-1970s assumptions of a slowly differentiating Earth. Evidence is presented for evolution of mantle, crust, and early Moho that began with fractionation of most crustal components, synchronously with planetary accretion, into mafic protocrust by ~ 4.5 Ga. We know little about Hadean crustal geology (> 3.9 Ga) except that felsic rocks were then forming, but analogy with Venus, and dating from the Moon, indicate great shallow disruption by large and small impact structures, including huge fractionated impact-melt constructs, throughout that era. The mantle sample and Archean (< 3.9 Ga) crustal geology integrate well. The shallow mantle was extremely depleted by early removal of thick mafic protocrust, which was the primary source of the tonalite, trondhjemite, and granodiorite (TTG) that dominate preserved Archean crust to its base, and of the thick mafic volcanic rocks erupted on that crust. Lower TTG crust, kept mobile by its high radioactivity and by insulating upper crust, rose diapirically into the upper crust as dense volcanic rocks sagged synformally. The mobile lower crust simultaneously flowed laterally to maintain subhorizontal base and surface, and dragged overlying brittler granite-and-greenstone upper crust. Petrologically required garnet-rich residual protocrust incrementally delaminated, sank through low-density high-mantle magnesian dunite, and progressively re-enriched upper mantle, mostly metasomatically. Archean and earliest Proterozoic craton stabilization and development of final Mohos followed regionally complete early delamination of residual protocrust, variously between ~ 2.9 and 2.2 Ga. Where some protocrust remained, Proterozoic basins, filled thickly by sedimentary and volcanic rocks, developed on Archean crust, beneath which delamination of later residual protocrust continued top-down enrichment of upper mantle. That

  1. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth

    NASA Astrophysics Data System (ADS)

    Arney, Giada; Domagal-Goldman, Shawn D.; Meadows, Victoria S.; Wolf, Eric T.; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; Hébrard, Eric; Trainer, Melissa G.

    2016-11-01

    Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8-2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ˜ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7-2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO2. Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets.

  2. An Archean Biosphere Initiative

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Boyd, E. S.; Buick, R.; Claire, M.; DesMarais, D.; Domagal-Goldman, D.; Eigenbrode, J.; Erwin, D.; Freeman, K.; Hazen, R.; hide

    2011-01-01

    The search for life on extrasolar planets will necessarily focus on the imprints of biolgy on the composition of planetary atmospheres. The most notable biological imprint on the modern terrestrial atmosphere is the presence of 21 % O2, However, during most of the past 4 billion years, life and the surface environments on Earth were profoundly different than they are today. It is therefore a major goal of the astrobiology community to ascertain how the O2 content of the atmosphere has varied with time. and to understand the causes of these variations. The NAI and NASA Exobiology program have played critical roles in developing our current understanding of the ancient Earth's atmosphere, supporting diverse observational, analytical, and computational research in geoscience, life science, and related fields. In the present incarnation of the NAI, ongoing work is investigating (i) variations in atmospheric O2 in the Archean to the Cambrian, (ii) characterization of the redox state of the oceans shortly before, during and after the Great Oxidation Event (GOE), and (iii) unraveling the complex connections between environmental oxygenation, global climate, and the evolution of life.

  3. Characterisation and Processing of Some Iron Ores of India

    NASA Astrophysics Data System (ADS)

    Krishna, S. J. G.; Patil, M. R.; Rudrappa, C.; Kumar, S. P.; Ravi, B. P.

    2013-10-01

    Lack of process characterization data of the ores based on the granulometry, texture, mineralogy, physical, chemical, properties, merits and limitations of process, market and local conditions may mislead the mineral processing entrepreneur. The proper implementation of process characterization and geotechnical map data will result in optimized sustainable utilization of resource by processing. A few case studies of process characterization of some Indian iron ores are dealt with. The tentative ascending order of process refractoriness of iron ores is massive hematite/magnetite < marine black iron oxide sands < laminated soft friable siliceous ore fines < massive banded magnetite quartzite < laminated soft friable clayey aluminous ore fines < massive banded hematite quartzite/jasper < massive clayey hydrated iron oxide ore < manganese bearing iron ores massive < Ti-V bearing magnetite magmatic ore < ferruginous cherty quartzite. Based on diagnostic process characterization, the ores have been classified and generic process have been adopted for some Indian iron ores.

  4. Early Archean spherule beds of possible impact origin from Barberton, South Africa: A detailed mineralogical and geochemical study

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Reimold, Wolf Uwe; Boer, Rudolf H.

    1992-01-01

    The Barberton Greenstone belt is a 3.5- to 3.2-Ga-old formation situated in the Swaziland Supergroup near Barberton, northeast Transvaal, South Africa. The belt includes a lower, predominantly volcanic sequence, and an upper sedimentary sequence (e.g., the Fig Tree Group). Within this upper sedimentary sequence, Lowe and Byerly identified a series of different beds of spherules with diameters of around 0.5-2 mm. Lowe and Byerly and Lowe et al. have interpreted these spherules to be condensates of rock vapor produced by large meteorite impacts in the early Archean. We have collected a series of samples from drill cores from the Mt. Morgan and Princeton sections near Barberton, as well as samples taken from underground exposures in the Sheba and Agnes mines. These samples seem much better preserved than the surface samples described by Lowe and Byerly and Lowe et al. Over a scale of just under 30 cm, several well-defined spherule beds are visible, interspaced with shales and/or layers of banded iron formation. Some spherules have clearly been deposited on top of a sedimentary unit because the shale layer shows indentions from the overlying spherules. Although fresher than the surface samples (e.g., spherule bed S-2), there is abundant evidence for extensive alteration, presumably by hydrothermal processes. In some sections of the cores sulfide mineralization is common. For our mineralogical and petrographical studies we have prepared detailed thin sections of all core and underground samples (as well as some surface samples from the S-2 layer for comparison). For geochemical work, layers with thicknesses in the order of 1-5 mm were separated from selected core and underground samples. The chemical analyses are being performed using neutron activation analysis in order to obtain data for about 35 trace elements in each sample. Major elements are being determined by XRF and plasma spectrometry. To clarify the history of the sulfide mineralization, sulfur isotopic

  5. Early Archean (approximately 3.4 Ga) prokaryotic filaments from cherts of the apex basalt, Western Australia: The oldest cellularly preserved microfossils now known

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1991-01-01

    In comparison with that known from later geologic time, the Archean fossil record is miniscule: although literally hundreds of Proterozoic formations, containing more that 2800 occurrences of bona fide microfossils are now known, fewer than 30 units containing some 43 categories of putative microfossils (the vast majority of which are of questionable authenticity) have been reported from the Archean. Among the oldest known fossils are Early Archean filaments reported from cherts of the Towers Formation and the Apex Basalt of the 3.3-3.6 Ga-old Warrawoona Group of Western Australia. The paleobiologic significance of the Towers Formation microstructures is open to question: thin aggregated filaments are properly regarded as dubiomicrofossils (perhaps biogenic, but perhaps not); therefore, they cannot be regarded as firm evidence of Archean life. Although authentic, filamentous microfossiles were reported from a second Towers Formation locality, because the precise layer containing the fossiliferous cherts was not relocated, this discovery can neither be reconfirmed by the original collector nor confirmed independently by other investigators. Discovery of microfossils in bedded cherts of the Apex Basalt, the stratigraphic unit immediately overlying the Towers Formation, obviates the difficulties stored above. The cellularly preserved filaments of the Apex Basalt meet all of the criteria required of a bona fide Archean microfossils. Recent studies indicate that the Apex assemblage includes at least six morphotypes of uniseriate filaments, composed of barrel-shaped, discoidal, or quadrate cells and exhibiting rounded or conical terminal cells and medial bifurcated and paired half-cells that reflect the occurrence of prokaryotic binary cell division. Interestingly, the majority of these morphotypes are morphologically more similar to extant cyanobacteria than to modern filamentous bacteria. Prokaryotes seem clearly to have been hypobradytelic, and the evidence suggests

  6. Molybdenum isotopes in modern marine hydrothermal Fe/Mn deposits: Implications for Archean and Paleoproterozoic Mo cycles

    NASA Astrophysics Data System (ADS)

    Goto, K. T.; Hein, J. R.; Shimoda, G.; Aoki, S.; Ishikawa, A.; Suzuki, K.; Gordon, G. W.; Anbar, A. D.

    2016-12-01

    Molybdenum isotope (δ98/95Mo) variations recorded in Archean and Paleoproterozoic Fe/Mn-rich sediments have been used to constrain ocean redox conditions at the time of deposition (Canfield et al., 2013 PNAS; Planavsky et al., 2014 Nat. Geo.; Kurzweil et al., 2015 GCA). However, except for hydrogenous Fe-Mn crusts (Siebert et al., 2003), δ98/95Mo variation of modern Fe and Mn oxide deposits has been poorly investigated. Marine hydrothermal systems are thought to be the major source of Fe and Mn in Archean and Paleoproterozoic Fe- and Mn-rich sediments. Hence, to accurately interpret Mo isotope data of those ancient sedimentary rocks, it is important to evaluate the possible influence of hydrothermally derived Mo on δ98/95Mo of modern Fe- and Mn-rich sediments. In this study, we analyzed Mo isotopic compositions of one hydrothermal Fe oxide and 15 Mn oxides from five different hydrothermal systems in the modern ocean. The Fe oxide is composed mainly of goethite, and has a δ98/95Mo of 0.7‰, which is 1.4‰ lighter than that of present-day seawater. The observed offset is similar to isotope fractionation observed during adsorption experiments of Mo on goethite (Δ98/95Mogoethite-solution = -1.4 ± 0.5%; Goldberg et al., 2009 GCA). The 15 hydrothermal Mn oxides show large variations in δ98/95Mo ranging from -1.7 to 0.5‰. However, most of the values are similar to those of modern hydrogenous Fe-Mn crusts (Siebert et al., 2003 EPSL), and fall within the range of estimated δ98/95Mo of Mn oxides precipitated from present-day seawater using the isotope offset reported from adsorption experiments (Δ98/95Mo = -2.7 ± 0.3‰; Wasylenki et al., 2008 GCA). These findings indicate that seawater is the dominant source of Mo for modern hydrothermal Fe and Mn deposits. However, the observed large variation indicates that the contribution Mo from local hydrothermal systems is not negligible. The oceanic Mo inventory during the Archean and Paleoproterozoic is thought to be

  7. 2.9-1.9 Ga paleoalterations of Archean granitic basement of the Franceville basin (Gabon)

    NASA Astrophysics Data System (ADS)

    Mouélé, Idalina Moubiya; Dudoignon, Patrick; El Albani, Abderrazak; Meunier, Alain; Boulvais, Philippe; Gauthier-Lafaye, François; Paquette, Jean-Louis; Martin, Hervé; Cuney, Michel

    2014-09-01

    The Archean granitoids in the Kiéné area, Gabon, are overlained by the Paleoproterozoic sediments of the Franceville basin (2.1 Ga). The basin is known for its high-grade uranium deposits among which some have been forming natural nuclear fission reactors. Most of the studies were dedicated to the FA-FB Paleoproterozoic sediments hosting these uranium deposits. Little is known on the Archean basement itself and specifically on the hydrous alteration events it experienced before and after the sediment deposition. The present work is focused on their petrographical, mineralogical and geochemical characterization. Dating the successive alteration events has been attempted on altered monazite crystals. Rocks in different alteration states have been sampled from eight drill cores crosscutting the Archean - Paleoproterozoic unconformity. The Archean granitoids observed in the deepest levels exhibit typical petrographical features of a propylitic alteration while they are intensely illitized up to the unconformity. The propylitic alteration is mainly pervasive but the original texture of the granitoïds is conserved in spite of the formation of new minerals: Mg-chlorite, allanite and epidote forming a typical paragenesis. The illitic alteration is much more invasive near the unconformity. The illitization process leads to the replacement of feldspars and the corrosion of quartz crysals by an illitic matrix while the ferromagnesian minerals are pseudomorphosed by a Fe-chlorite + phengite + hematite assemblage. The final fluid-rock interaction step is marked by fissural deposits of calcite and anhydrite. The δ13C isotopic data show that the fissural carbonates precipitated from diagenetic fluids enriched carbon products deriving from the maturation of organic matter. The U-Pb isotopic analyzes performed on monazite crystals have dated three distinct events: 3.0-2.9 Ga (magmatic), 2.6 Ga (propylitic alteration) and 1.9 Ga (diagenetic illitization). The calculation of

  8. Early Archean sialic crust of the Siberian craton: Its composition and origin of magmatic protoliths

    NASA Astrophysics Data System (ADS)

    Vovna, G. M.; Mishkin, M. A.; Sakhno, V. G.; Zarubina, N. V.

    2009-12-01

    This study demonstrates that the base of the Archean deep-seated granulite complexes within the Siberian craton consists of a metabasite-enderbite association. The major and trace element distribution patterns revealed that the protoliths of this association are represented by calc-alkaline andesites and dacites, containing several minor sequences of komatiitic-tholeiitic volcanic rocks. The origin of the primary volcanic rocks of the metabasite-enderbite association is inferred on the basis of a model of mantle plume magmatism, which postulates that both andesitic and dacitic melts were derived from the primary basitic crust at the expense of heat generated by ascending mantle plumes. The formation of the protoliths of the Archen metabasite-enderbite association of the Siberian craton began at 3.4 Ga and continued until the late Archean.

  9. Fractionation products of basaltic komatiite magmas at lower crustal pressures: implications for genesis of silicic magmas in the Archean

    NASA Astrophysics Data System (ADS)

    Mandler, B. E.; Grove, T. L.

    2015-12-01

    Hypotheses for the origin of crustal silicic magmas include both partial melting of basalts and fractional crystallization of mantle-derived melts[1]. Both are recognized as important processes in modern environments. When it comes to Archean rocks, however, partial melting hypotheses dominate the literature. Tonalite-trondhjemite-granodiorite (TTG)-type silicic magmas, ubiquitous in the Archean, are widely thought to be produced by partial melting of subducted, delaminated or otherwise deeply buried hydrated basalts[2]. The potential for a fractional crystallization origin for TTG-type magmas remains largely unexplored. To rectify this asymmetry in approaches to modern vs. ancient rocks, we have performed experiments at high pressures and temperatures to closely simulate fractional crystallization of a basaltic komatiite magma in the lowermost crust. These represent the first experimental determinations of the fractionation products of komatiite-type magmas at elevated pressures. The aim is to test the possibility of a genetic link between basaltic komatiites and TTGs, which are both magmas found predominantly in Archean terranes and less so in modern environments. We will present the 12-kbar fractionation paths of both Al-depleted and Al-undepleted basaltic komatiite magmas, and discuss their implications for the relative importance of magmatic fractionation vs. partial melting in producing more evolved, silicic magmas in the Archean. [1] Annen et al., J. Petrol., 47, 505-539, 2006. [2] Moyen J-F. & Martin H., Lithos, 148, 312-336, 2012.

  10. Idetification of the chemical sedimentary protolish of the early Paleoproterozoic banded iron formation from Wuyang area, in the southern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Lan, C.; Zhao, T.

    2016-12-01

    The Paleoproterozoic banded iron formation (BIF) from Wuyang area in the southern margin of the North China Craton (NCC) were metamorphosed under granulite facies, and are characterized with an assemblage of clinopyroxene, magnetite and orthopyroxene. Two types of iron ores can be identified on the basis of macro- and micro-textures: banded quartz-clinopyroxene (±othopyroxene) -magnetite ores and massive clinopyroxene-magnetite ores. Two-pyroxene geothermometry indicates that the primary counterparts of these ores have undergone metamorphism with a peak temperature of about 762±9°. Both the banded and massive ores have also similarly BIF-like REE+Y features, and thus are proposed to have all formed from chemical sediments. Similarly, clinopyroxenes from both types have BIF-like rare earth element compositions and are rich in Fe (16-23 wt.% FeOtotoal), further suggesting that they are primary Fe-Mg-Ca-rich chemical sediments during metamorphism. Slight enrichments of TiO2, Al2O3, Zr, Hf, Ta and Th of the Wuyang IF suggest relatively low detritus input. The massive ore have magnetite containing V, Cr and Ti much higher than those of the banded ores, suggesting that they may have undergone stronger secondary alteration possibly related to the intrusion of nearby pyroxenite plutons. Different ores have seawater-like REE+Y patterns with LREE depletions and positive anomalies of La, Eu, and Y, showing that granulite facies metamorphism did not essentially modify the primary compositions of the Wuyang IF deposited from paleo-seawater. Our results suggest less than 0.1% contribution from high-temperature hydrothermal fluids.

  11. Geological Mapping of the North Polar Region of Venus (V-1 Snegurochka Planitia): Significant Problems and Comparisons to the Earth's Archean

    NASA Technical Reports Server (NTRS)

    Head, James W.; Hurwitz, D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil

    2008-01-01

    The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by perspectives from the Archean record of the Earth, to gain new insight into both. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. We have problems on which progress might be made through comparison. Here we present the major goals of the geological mapping of the V-1 Snegurochka Planitia Quadrangle, and themes that could provide important insights into both planets:

  12. Chemistry of sands from the modern Indus River and the Archean Witwatersrand basin: Implications for the composition of the Archean atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maynard, J.B.; Ritger, S.D.; Sutton, S.J.

    1991-03-01

    Both the Indus River and the Witwatersrand basin contain sand with grains of detrital uraninite. Because this mineral is easily oxidized, its presence in Archean strata as a detrital particle has been used as evidence for a low-oxygen atmosphere before 2.5 Ga. However, its presence in modern sand from the Indus River system has been used to argue that detrital uraninite does not provide information about the oxygen concentration of Earth's early atmosphere. Petrographic and chemical study of sand from these two sources reveals differences that suggest the modern Indus sand cannot be used as an analog for the Archeanmore » Witwatersrand occurrences. The Witwatersrand quartzites are depleted in Ca, Mg, and Na, indicating that the original sand from which they formed had been subjected to intense weathering. The chemical index of alteration (CIA), a commonly used indicator of degree of weathering, yields an average value of about 0.80 for Witwatersrand quartzites, comparable to modern tropical streams such as the Orinoco that drain deeply weathered terrains under tropical conditions (CIA=0.75). In contrast, the CIA for Indus sand is 0.45, indicating virtually no chemical weathering. The significance of Archean quartz-pebble conglomerates is not just that they contain unstable detrital phases like uraninite and pyrite, but that these particles are associated with rocks whose compositions suggest intense weathering. These conglomerates must have been subjected to intense weathering under tropical conditions, either in their source area or at the site of deposition, and the preservation of minerals like uraninite such conditions is indeed strong evidence for a low-oxygen atmosphere.« less

  13. Hematite from Natural Iron Stones as Microwave Absorbing Material on X-Band Frequency Ranges

    NASA Astrophysics Data System (ADS)

    Zainuri, Mochamad

    2017-05-01

    This study has been investigated the effect of hematite as microwave absorbing materials (RAM) on X-Band frequency ranges. Hematite was succesfully processed by coprecipitation method and calcined at 500 °C for 5 hour. It was synthesized from natural iron stones from Tanah Laut, South Kalimantan, Indonesia. The products were characterized by X-ray diffraxtion (XRD), conductivity measurement, Vibrating Sample Magnetometer (VSM), and Vector Network Analyzer (VNA). The result was shown that hematite has conductivity value on (2.5-3).10-7 S/cm and be included as dielectric materials. The hysterisis curve was shown that hematite was a super paramagnetic materials. The product was mixed on paint with procentage 10% of total weight and coated on steel grade AH36 with spray methods. Then, the maximum of reflection loss on x - band’s frequency range (8,2-12,4) GHz was -7 dB on frequency of 10.5 GHz. It mean that almost 50% electromagnetic energy was absorbed by hematite.

  14. The F'derik-Zouerate iron district: Mesoarchean and Paleoproterozoic iron formation of the Tiris Complex, Islamic Republic of Mauritania

    USGS Publications Warehouse

    Taylor, Cliff D.; Finn, Carol A.; Anderson, Eric D.; Bradley, Dwight C.; Joud, Mohamed; Taleb Mohamed, Ahmed; Horton, John D.; Johnson, Craig A.; Bouabdellah, Mohammed; Slack, John F.

    2016-01-01

    High-grade hematitic iron ores (of HIF, containing 60-65 wt%Fe) have been mined in Mauritania since 1952 from Superior-type iron deposits of the F'derik-Zouerate district.  Depletion of the high-grade ores in recent years has resulted in new exploration projects focused on lower-grade magnetite ores occurring in Algoma-type banded iron formation (of BIF, containing ca. 35 wt% Fe).  Mauritania is the seventeenth largest iron producer in the world and currently has about 1.1 Gt of crude iron ore reserves. 

  15. Evaluating the earliest traces of Archean sub-seafloor life by NanoSIMS

    NASA Astrophysics Data System (ADS)

    Mcloughlin, N.; Grosch, E. G.; Kilburn, M.; Wacey, D.

    2012-12-01

    The Paleoarchean sub-seafloor has been proposed as an environment for the emergence of life with titanite microtextures in pillow lavas argued to be the earliest traces of microbial micro-tunneling (Furnes et al. 2004). Here we use a nano-scale ion microprobe (NanoSIMS) to evaluate possible geochemical traces of life in 3.45 Ga pillow lavas of the Barberton Greenstone Belt, South Africa. We investigated both surface and drill core samples from the original "Biomarker" outcrop in the Hooggenoeg Fm. Pillow lava metavolcanic glass contain clusters of segmented microcrystalline titanite filaments, ~4μm across and <200μm in length. Their size, shape and distribution have been directly compared to those found in recent oceanic crust. Thus it has been argued that they are the mineralized remains of tunnels formed by microbes that etched volcanic glass in the Archean sub-seafloor (Furnes et al 2004; Banerjee et al. 2006). Elemental mapping by NanoSIMS was undertaken to investigate reports of enrichments in carbon (possibly also nitrogen) along the margins of the microtextures previously interpreted as decayed cellular remains. We mapped for 12C-, 26CN-, 32S- along with 16O-, 28Si-, 24Mg+,27Al+, 40Ca+, 48Ti+ and 56Fe+ in chlorite and quartz hosted examples. The 12C- or 26CN- linings were not found along the margins of the microtextures in neither the original, nor the drill core samples, despite NanoSIMS being a more sensitive and higher-spatial-resolution technique than earlier microprobe X-ray maps. The absence of organic linings in these samples excludes a key line of evidence previously used to support the biogenicity of the microtextures. Sulfur isotopes 32S and 34S were measured by NanoSIMS on two types of sulfide: i) small sulfides (1-15μm) intimately associated with the microtextures and; ii) larger sulfides (10-60μm) that cross-cut the microtextures and are disseminated near a quartz-carbonate vein. The sulfide inclusions in the microtextures have strongly

  16. Development of the archean crust in the medina mountain area, wind river range, wyoming (U.S.A.)

    USGS Publications Warehouse

    Koesterer, M.E.; Frost, C.D.; Frost, B.R.; Hulsebosch, T.P.; Bridgwater, D.; Worl, R.G.

    1987-01-01

    Evidence for an extensive Archean crustal history in the Wind River Range is preserved in the Medina Mountain area in the west-central part of the range. The oldest rocks in the area are metasedimentary, mafic, and ultramafic blocks in a migmatite host. The supracrustal rocks of the Medina Mountain area (MMS) are folded into the migmatites, and include semi-pelitic and pelitic gneisses, and mafic rocks of probable volcanic origin. Mafic dikes intrude the older migmatites but not the MMS, suggesting that the MMS are distinctly younger than the supracrustal rocks in the migmatites. The migmatites and the MMS were engulfed by the late Archean granite of the Bridger, Louis Lake, and Bears Ears batholiths, which constitutes the dominant rock of the Wind River Range. Isotopic data available for the area include Nd crustal residence ages from the MMS which indicate that continental crust existed in the area at or before 3.4 Ga, but the age of the older supracrustal sequence is not yet known. The upper age of the MMS is limited by a 2.7 Ga RbSr age of the Bridger batholith, which was emplaced during the waning stages of the last regional metamorphism. The post-tectonic Louis Lake and Bears Ears batholiths have ages of 2.6 and 2.5 Ga, respectively (Stuckless et al., 1985). At least three metamorphic events are recorded in the area: (1) an early regional granulite event (M1) that affected only the older inclusions within the migmatites, (2) a second regional amphibolite event (M2) that locally reached granulite facies conditions, and (3) a restricted, contact granulite facies event (M3) caused by the intrusion of charnockitic melts associated with the late Archean plutons. Results from cation exchange geobarometers and geothermometers yield unreasonablu low pressures and temperatures, suggesting resetting during the long late Archean thermal evenn. ?? 1987.

  17. Comparative chronology of Archean HT/UHT crustal metamorphism

    NASA Astrophysics Data System (ADS)

    Caddick, Mark; Dragovic, Besim; Guevara, Victor

    2017-04-01

    Attainment of high crustal heat fluxes and consequent partial melting is critical to the stabilization of continental roots. Understanding the processes and timescales behind partial melting of continental crust in the Archean is thus paramount for understanding Archean tectonic modes and how stable cratons formed. High-temperature (HT) to ultrahigh-temperature (UHT) metamorphic rocks can record evidence for dynamic processes that result in advective heat fluxes and a substantial deviation from normal crustal geothermal gradients. Examination of the pressure-temperature conditions and timescales of HT/UHT metamorphism is thus essential to understanding the tectonic processes behind extreme crust heat fluxes and the formation of stable cratonic crust. Here, utilizing both traditional and nontraditional petrologic and geochronologic techniques, we compare the pressure-temperature-time paths of two Neoarchean terranes: the eastern Beartooth Mountains of the Wyoming Craton and the Pikwitonei Granulite Domain of the Superior Province. The Beartooth Mountains of Montana, USA, expose Archean rocks of the Wyoming Craton that are dominated by an ˜2.8 Ga calc-alkaline granitoid batholith known as the Long Lake Magmatic Complex (LLMC). The LLMC contains widespread, up to km-scale metasedimentary roof pendants, with ID-TIMS Sm-Nd garnet geochronology and laser ablation split stream (LASS) monazite geochronology suggesting that metamorphism occurred almost 100 Ma after entrainment by the LLMC [1]. Phase equilibria modeling and Zr-in-rutile thermometry constrain peak pressures and temperatures of ˜6-7 kbar and ˜780-800˚ C. Major element diffusion modeling of garnet suggest that granulite-facies temperatures were only maintained for a short duration, < 2 Ma. In contrast, the Pikwitonei Granulite Domain consists of >150,000 km2 of high-grade metamorphic rocks situated in the NW Superior Province. Phase equilibria modeling and trace element thermometry constrain peak

  18. Evidence for a complex archean deformational history; southwestern Michipicoten Greenstone Belt, Ontario

    NASA Technical Reports Server (NTRS)

    Mcgill, George E.; Shrady, Catherine H.

    1986-01-01

    The Michipicoten Greenstone Belt extends for about 150 km ENE from the northeastern angle of Lake Superior. In common with many other Archean greenstone belts, it is characterized by generally steep bedding dips and a distribution of major lithologic types suggesting a crudely synclinal structure for the belt as a whole. Detailed mapping and determination of structural sequence demonstrates that the structure is much more complex. The Archean history of the belt includes formation of at least three regionally significant cleavages, kilometer-scale overturning, extensive shearing, and diabase intrusion. Most well defined, mappable 'packages' of sedimentary rocks appear to be bounded by faults. These faults were active relatively early in the structural history of the belt, when extensive overturning also occurred. Steepening of dips, NW-SE shortening, development of steep NE cleavage, and pervasive shearing all postdate the early faulting and the regional overturning, obscuring much of the detail needed to define the geometry of the earlier structures. The results obtained so far suggest, however, that the Michipicoten Greenstone Belt underwent an early stage of thrusting and associated isoclinal folding, probably in a convergent tectonic environment.

  19. NanoSIMS Sheds Light on the Origin and Significance of Early Archean Organic Microstructures from the Pilbara of Australia

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Robert, Francois; Meibom, Anders; Mostefaoui, Smail; Selo, Madeleine; Walter, Malcolm, R.; Sugitani, Kenichiro; Allwood, Abigail; Gibson, Everett K.

    2008-01-01

    NanoSIMS was used to characterize sub-micron scale morphology and elemental composition (C, N, S, Si, O) of organic microstructures in Early Archean (3 - 3.4 Ga) charts from the Pilbara of Western Australia. Three categories of structures were analyzed: small spheroids in clusters; spindle-shaped remains; and large spheroids. All are relatively poorly preserved and occur within the chert matrix of the samples. Carbonaceous material in a secondary hydrothermal vein also was analyzed, as an example of non-indigenous organic matter. Comparisons were made of NanoSIMS characteristics of the Archean samples and those from well-preserved, biogenic microfossils in the 0.8 Ga Bitter Springs Formation. The comparisons show that the Pilbara microstructures are generally distinct from material in the hydrothermal vein but similar in morphology and elemental composition to the Bitter Springs microfossils. In addition, the Pilbara structures exhibit a spatial relationship to silicon and oxygen that seemingly reflects silica nucleation on organic surfaces; this argues that the organic frameworks of the Archean structures were present in the sediment during crystallization of the silica matrix. The structures are thus interpreted as being indigenous to the enclosing sediment. While these results are suggestive of Early Archean biogenicity and are consistent with a growing body of data suggesting that life on Earth was well established by 3 to 3.4 Ga, work is continuing to determine the N/C and 13C ratios of individual forms, and this should provide additional insight into the derivation and significance of these ancient organic remains.

  20. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks

    USGS Publications Warehouse

    Tangalos, G.E.; Beard, B.L.; Johnson, C.M.; Alpers, Charles N.; Shelobolina, E.S.; Xu, H.; Konishi, H.; Roden, E.E.

    2012-01-01

    The inventories and Fe isotope composition of aqueous Fe(II) and solid-phase Fe compounds were quantified in neutral-pH, chemically precipitated sediments downstream of the Iron Mountain acid mine drainage site in northern California, USA. The sediments contain high concentrations of amorphous Fe(III) oxyhydroxides [Fe(III)am] that allow dissimilatory iron reduction (DIR) to predominate over Fe–S interactions in Fe redox transformation, as indicated by the very low abundance of Cr(II)-extractable reduced inorganic sulfur compared with dilute HCl-extractable Fe. δ56Fe values for bulk HCl- and HF-extractable Fe were ≈ 0. These near-zero bulk δ56Fe values, together with the very low abundance of dissolved Fe in the overlying water column, suggest that the pyrite Fe source had near-zero δ56Fe values, and that complete oxidation of Fe(II) took place prior to deposition of the Fe(III) oxide-rich sediment. Sediment core analyses and incubation experiments demonstrated the production of millimolar quantities of isotopically light (δ56Fe ≈ -1.5 to -0.5‰) aqueous Fe(II) coupled to partial reduction of Fe(III)am by DIR. Trends in the Fe isotope composition of solid-associated Fe(II) and residual Fe(III)am are consistent with experiments with synthetic Fe(III) oxides, and collectively suggest an equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)am of approximately -2‰. These Fe(III) oxide-rich sediments provide a model for early diagenetic processes that are likely to have taken place in Archean and Paleoproterozoic marine sediments that served as precursors for banded iron formations. Our results suggest pathways whereby DIR could have led to the formation of large quantities of low-δ56Fe minerals during BIF genesis.

  1. Reconciling "Whiffs" of O2 with the Archean MIF S Record: Insights from Sulfide Oxidation Experiments

    NASA Astrophysics Data System (ADS)

    Johnson, A.; Reinhard, C. T.; Romaniello, S. J.; Greaney, A. T.; Garcia-Robledo, E.; Revsbech, N. P.; Canfield, D. E.; Lyons, T. W.; Anbar, A. D.

    2016-12-01

    The Archean-Proterozoic transition is marked by the first appreciable accumulation of O2 in Earth's oceans and atmosphere at 2.4 billion years ago (Ga). However, this Great Oxidation Event (GOE) is not the first evidence for O2 in Earth's surface environment. Paleoredox proxies preserved in ancient marine shales (Mo, Cr, Re, U) suggest transient episodes of oxidative weathering before the GOE, perhaps as early as 3.0 Ga. One marine shale in particular, the 2.5 Ga Mount McRae Shale of Western Australia, contains a euxinic interval with Mo enrichments up to 50 ppm. This enrichment is classically interpreted as the result of oxidative weathering of sulfides on the continental surface. However, prior weathering models based on experiments suggested that sulfides require large amounts of O2 [>10-4 present atmospheric level (PAL) pO2] to produce this weathering signature, in conflict with estimates of Archean pO2 from non-mass-dependent (NMD) sulfur isotope anomalies (<10-5 PAL pO2). To reconcile these datasets, we conducted aqueous oxidation experiments of pyrite and molybdenite from 3 - 700 nM O2 (equivalent at equilibrium to 10-5 - 10-3 PAL) to measure oxidation kinetics as a function of the concentration of dissolved O2. We measured rates by injecting oxygenated water at a steady flow rate and monitoring dissolved O2 concentrations with LUMOS sensors. Our data extend the O2 range explored in pyrite oxidation experiments by three orders of magnitude and provide the first rates for molybdenite oxidation at O2 concentrations potentially analogous to those characteristic of the Archean atmosphere. Our results show that pyrite and molybdenite oxidize significantly more rapidly at lower O2 levels than previously thought. As a result, our revised weathering model demonstrates that the Mo enrichments observed in late Archean marine shales are potentially attainable at extremely low atmospheric pO2 values (e.g., <10-5 PAL), reconciling large sedimentary Mo enrichments with co

  2. IRON-TOLERANT CYANOBACTERIA: IMPLICATIONS FOR ASTROBIOLOGY

    NASA Technical Reports Server (NTRS)

    Brown, Igor I.; Allen, Carlton C.; Mummey, Daniel L.; Sarkisova, Svetlana A.; McKay, David S.

    2006-01-01

    The review is dedicated to the new group of extremophiles - iron tolerant cyanobacteria. The authors have analyzed earlier published articles about the ecology of iron tolerant cyanobacteria and their diversity. It was concluded that contemporary iron depositing hot springs might be considered as relative analogs of Precambrian environment. The authors have concluded that the diversity of iron-tolerant cyanobacteria is understudied. The authors also analyzed published data about the physiological peculiarities of iron tolerant cyanobacteria. They made the conclusion that iron tolerant cyanobacteria may oxidize reduced iron through the photosystem of cyanobacteria. The involvement of both Reaction Centers 1 and 2 is also discussed. The conclusion that iron tolerant protocyanobacteria could be involved in banded iron formations generation is also proposed. The possible mechanism of the transition from an oxygenic photosynthesis to an oxygenic one is also discussed. In the final part of the review the authors consider the possible implications of iron tolerant cyanobacteria for astrobiology.

  3. Iron inhibits hydroxyapatite crystal growth in vitro.

    PubMed

    Guggenbuhl, Pascal; Filmon, Robert; Mabilleau, Guillaume; Baslé, Michel F; Chappard, Daniel

    2008-07-01

    Hemochromatosis is a known cause of osteoporosis in which the pathophysiology of bone loss is largely unknown and the role of iron remains questionable. We have investigated the effects of iron on the growth of hydroxyapatite crystals in vitro on carboxymethylated poly(2-hydroxyethyl methacrylate) pellets. This noncellular and enzyme-independent model mimics the calcification of woven bone (composed of calcospherites made of hydroxyapatite crystals). Polymer pellets were incubated with body fluid containing iron at increasing concentrations (20, 40, 60 micromol/L). Hydroxyapatite growth was studied by chemical analysis, scanning electron microscopy, and Raman microscopy. When incubated in body fluid containing iron, significant differences were observed with control pellets. Iron was detected at a concentration of 5.41- to 7.16-fold that of controls. In pellets incubated with iron, there was a approximately 3- to 4-fold decrease of Ca and P and a approximately 1.3- to 1.4-fold increase in the Ca/P ratio. There was no significant difference among the iron groups of pellets, but a trend to a decrease of Ca with the increase of iron concentration was noted. Calcospherite diameters were significantly lower on pellets incubated with iron. Raman microspectroscopy showed a decrease in crystallinity (measured by the full width of the half height of the 960 Deltacm(-1) band) with a significant increase in carbonate substitution (measured by the intensity ratio of 1071 to 960 Deltacm(-1) band). Energy dispersive x-ray analysis identified iron in the calcospherites. In vitro, iron is capable to inhibit bone crystal growth with significant changes in crystallinity and carbonate substitution.

  4. Leucogranites of the Teton Range, Wyoming: A record of Archean collisional orogeny

    NASA Astrophysics Data System (ADS)

    Frost, Carol D.; Swapp, Susan M.; Frost, B. Ronald; Finley-Blasi, Lee; Fitz-Gerald, D. Braden

    2016-07-01

    Leucogranitic rocks formed by crustal melting are a prominent feature of collisional orogens of all ages. This study describes leucogranitic gneisses associated with an Archean collisional orogeny preserved in the Teton Range of northwestern Wyoming, USA. These leucogneisses formed at 2.68 Ga, and initial Nd isotopic compositions suggest they are derived from relatively juvenile sources. Two distinct groups of leucogneisses, both trondhjemitic, are identified on the basis of field relations, petrology, and geochemistry. The Webb Canyon gneiss forms large, sheet-like bodies of hornblende biotite trondhjemite and granodiorite. This gneiss is silica-rich (SiO2 = 70-80%), strongly ferroan, comparatively low in alumina, and is characterized by high Zr and Y, low Sr, and high REE contents that define ;seagull;-shaped REE patterns. The Bitch Creek gneiss forms small sills, dikes, and plutons of biotite trondhjemite. Silica, Zr, Y, and REE are lower and alumina and Sr are higher than in the Webb Canyon gneiss. These differences reflect different melting conditions: the Webb Canyon gneiss formed by dehydration melting in which amphibole and quartz breaks down, accounting for the low alumina, high FeO, high silica content and observed trace element characteristics. The Bitch Creek gneiss formed by H2O-excess melting in which plagioclase breaks down leaving an amphibole-rich restite, producing magmas higher in alumina and Sr and lower in FeO and HREE. Both melt mechanisms are expected in collisional environments: dehydration melting accompanies gravitational collapse and tectonic extension of dramatically thickened crust, and water-excess melting may occur when collision places a relatively cool, hydrous lower plate beneath a hotter upper plate. The Archean leucogranitic gneisses of the Teton Range are calcic trondhjemites and granodiorites whereas younger collisional leucogranites typically are true granites. The difference in leucogranite composition reflects the

  5. Planktonic Marine Iron-Oxidizers Drive Iron(III) Mineralization Under Low Oxygen Conditions

    NASA Astrophysics Data System (ADS)

    Luther, G. W., III; Field, E.; Findlay, A.; MacDonald, D. J.; Chan, C. S. Y.; Kato, S.

    2016-02-01

    Observations of modern microbes have led to several hypotheses on how microbes precipitated the extensive banded iron formations in the geologic record, but we have yet to resolve the exact microbial contributions. An initial hypotheses was that cyanobacteria produced oxygen that oxidized iron(II) abiotically; however, in modern environments such as microbial mats, where Fe(II) and O2 coexist, we commonly find microaerophilic chemolithotrophic iron(II)-oxidizing bacteria producing Fe(III) oxyhydroxides. This suggests that such iron-oxidizers could have inhabited niches in ancient coastal oceans where Fe(II) and O2 coexisted, and therefore contributed to iron deposits, but there is currently little evidence for planktonic marine iron-oxidizers in modern analogs. Here, we demonstrate successful cultivation of planktonic microaerophilic iron-oxidizing Zetaproteobacteria from the Chesapeake Bay during seasonal stratification. Iron-oxidizers were associated with low oxygen concentrations and active iron redox cycling in the oxic-anoxic transition zone (<3 µM O2, <0.2 µM H2S). While cyanobacteria were also detected in this transition zone, oxygen concentrations were too low to support significant rates of abiotic iron oxidation. Instead, cyanobacteria may be providing oxygen for microaerophilic iron(II) oxidation through a symbiotic relationship that promotes oxygen consumption rather than build-up. Our results suggest that once oxygenic photosynthesis evolved, microaerophilic chemolithotrophic iron(II)-oxidizers were likely important drivers of iron(III) mineralization in ancient oceans.

  6. Tectonic implications of Archean anorthosite occurrences

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.; Morrison, D. A.; Maczuga, D. E.

    1988-01-01

    The occurrences of megacrystic anorthosite and basalt in a variety of geologic settings were reviewed and it was found that these rock types occur in a variety of tectonic settings. Anorthosites and megacrystic basalts are petrogenetically related and are found in oceanic volcanic crust, cratons, and shelf environments. Although megacrystic basalts are most common in Archean terranes, similar occurrences are observed in rocks of early Proterozoic age, and even in young terranes such as the Galapagos hotspot. Based on inferences from experimental petrology, all of the occurrences are apparently associated with similar parental melts that are relatively Fe-rich tholeiites. The megacrystic rocks exhibit a two- (or more)-stage development of plagioclase, with the megacrysts having relatively uniform composition produced under nearly isothermal and isochemical conditions over substantial periods of time. The anorthosites appear to have intruded various crustal levels from very deep to very shallow. The petrogenetic indicators, however, suggest that conditions of formation of the Precambrian examples were different from Phanerozoic occurrences.

  7. Nickel-iron spherules from aouelloul glass

    USGS Publications Warehouse

    Chao, E.C.T.; Dwornik, E.J.; Merrill, C.W.

    1966-01-01

    Nickel-iron spherules, ranging from less than 0.2 to 50 microns in diameter and containing 1.7 to 9.0 percent Ni by weight, occur in glass associated with the Aouelloul crater. They occur in discrete bands of siliceous glass enriched in dissolved iron. Their discovery is significant tangible evidence that both crater and glass originated from terrestrial impact.

  8. Iron mineralogy of the surface of Mars from the 1 μm band spectral properties

    NASA Astrophysics Data System (ADS)

    Carrozzo, F. G.; Altieri, F.; Bellucci, G.; Poulet, F.; D'Aversa, E.; Bibring, J.-P.

    2012-10-01

    We study the 1 μm absorption from OMEGA/MEX spectra to map Martian iron mineralogy at a global scale. This band is covered on the left by the VNIR (visible and near infrared) OMEGA channel and on the right by the SWIR (short wavelengths infrared) one. We first perform a systematic spatial coregistration of the two channels after an improvement of the VNIR radiometric calibration. The update of the VNIR Instrumental Transfer Function (ITF) and the internal stray-light estimation is based on the spectra of the Phobos red units and of the water ice north polar cap of Mars, which have been fitted according to an iterative process. The level of the signal in the blue wavelength range, previously systematically overestimated due to a stray-light residual and the general shape of the spectrum for λ > 0.7 μm are improved . Global maps of the 1 μm signature have been derived from 9 new spectral indices. The largest values of the 1 μm band integral are found in Noachian terrains and in the dunes around the north polar cap. In the south polar region, an area centered at ˜155°W and ˜83°S is mapped as a distinctive spectral unit, dominated by pyroxene. The northern lowlands of Mars together with other dark terrains located in the northern hemisphere show very low values of some spectral indices due to the negative spectral slope in the NIR. This behavior is consistent with the presence of weathered basalts with a possible glassy or amorphous component. Among the hydrated terrains, the only ones that can be isolated by studying the 1 μm band are those located in Terra Meridiani, Aram Chaos and Capri Chasma, enriched in sulfate and hematite. On the other hand, the sulfates of the dark dunes surrounding the northern polar cap and the phyllosilicates of the bright hydrated deposits of Mawrth Vallis cannot be isolated combining the parameters used in this study. This suggests that their distinctive mineralogy does not affect the 1 μm band, remaining similar to the global

  9. Discrimination of iron ore deposits of granulite terrain of Southern Peninsular India using ASTER data

    NASA Astrophysics Data System (ADS)

    Rajendran, Sankaran; Thirunavukkarasu, A.; Balamurugan, G.; Shankar, K.

    2011-04-01

    This work describes a new image processing technique for discriminating iron ores (magnetite quartzite deposits) and associated lithology in high-grade granulite region of Salem, Southern Peninsular India using visible, near-infrared and short wave infrared reflectance data of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Image spectra show that the magnetite quartzite and associated lithology of garnetiferrous pyroxene granulite, hornblende biotite gneiss, amphibolite, dunite, and pegmatite have absorption features around spectral bands 1, 3, 5, and 7. ASTER band ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) in RGB are constructed by summing the bands representing the shoulders of absorption features as a numerator, and the band located nearest the absorption feature as a denominator to map iron ores and band ratios ((2 + 4)/3, (5 + 7)/6, (7 + 9)/8) in RGB for associated lithology. The results show that ASTER band ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) in a Red-Green-Blue (RGB) color combination identifies the iron ores much better than previously published ASTER band ratios analysis. A Principal Component Analysis (PCA) is applied to reduce redundant information in highly correlated bands. PCA (3, 2, and 1 for iron ores and 5, 4, 2 for granulite rock) in RGB enabled the discrimination between the iron ores and garnetiferrous pyroxene granulite rock. Thus, this image processing technique is very much suitable for discriminating the different types of rocks of granulite region. As outcome of the present work, the geology map of Salem region is provided based on the interpretation of ASTER image results and field verification work. It is recommended that the proposed methods have great potential for mapping of iron ores and associated lithology of granulite region with similar rock units of granulite regions of Southern Peninsular India. This work also demonstrates the ability of ASTER's to provide information on iron ores, which is valuable

  10. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere

    PubMed Central

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-01-01

    Sulfur isotopic anomalies (∆33S and ∆36S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ34S values at ∼+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆33S between −1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ34S peak at +9‰ is associated with non–33S-anomalous barites displaying negative ∆36S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere. PMID:27330111

  11. Mineralogical and geochemical characteristics of the Noamundi-Koira basin iron ore deposits (India)

    NASA Astrophysics Data System (ADS)

    Mirza, Azimuddin; Alvi, Shabbar Habib; Ilbeyli, Nurdane

    2015-04-01

    India is one of the richest sources of iron ore deposits in the world; and one of them is located in the Noamundi-Koira basin, Singhbhum-Orissa craton. The geological comparative studies of banded iron formation (BIF) and associated iron ores of Noamundi-Koira iron ore deposits, belonging to the iron ore group in eastern India, focus on the study of mineralogy and major elemental compositions along with the geological evaluation of different iron ores. The basement of the Singhbhum-Orissa craton is metasedimentary rocks which can be traced in a broadly elliptical pattern of granitoids, surrounded by metasediments and metavolcanics of Greenstone Belt association. The Singhbhum granitoid is intrusive into these old rocks and to younger, mid Archaean metasediments, including iron formations, schists and metaquartzites and siliciclastics of the Precambrian Iron Ore Group (Saha et al., 1994; Sharma, 1994). The iron ore of Noamundi-Koira can be divided into seven categories (Van Schalkwyk and Beukes 1986). They are massive, hard laminated, soft laminated, martite-goethite, powdery blue dust and lateritic ore. Although it is more or less accepted that the parent rock of iron ore is banded hematite jasper (BHJ), the presence of disseminated martite in BHJ suggests that the magnetite of protore was converted to martite. In the study area, possible genesis of high-grade hematite ore could have occurred in two steps. In the first stage, shallow, meteoric fluids affect primary, unaltered BIF by simultaneously oxidizing magnetite to martite and replacing quartz with hydrous iron oxides. In the second stage of supergene processes, deep burial upgrades the hydrous iron oxides to microplaty hematite. Removal of silica from BIF and successive precipitation of iron resulted in the formation of martite- goethite ore. Soft laminated ores were formed where precipitation of iron was partial or absent. The leached out space remains with time and the interstitial space is generally filled

  12. A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models

    NASA Astrophysics Data System (ADS)

    Polat, Ali; Wang, Lu; Appel, Peter W. U.

    2015-11-01

    The Archean craton of West Greenland consists of many fault-bounded Eoarchean to Neoarchean tectonic terranes (crustal blocks). These tectonic terranes are composed mainly of tonalite-trondhjemite-granodiorite (TTG) gneisses, granitic gneisses, metavolcanic-dominated supracrustal belts, layered anorthositic complexes, and late- to post-tectonic granites. Rock assemblages and geochemical signatures in these terranes suggest that they represent fragments of dismembered oceanic island arcs, consisting mainly of TTG plutons, tholeiitic to calc-alkaline basalts, boninites, picrites, and cumulate layers of ultramafic rocks, gabbros, leucogabbros and anorthosites, with minor sedimentary rocks. The structural characteristics of the terrane boundaries are consistent with the assembly of these island arcs through modern style of horizontal tectonics, suggesting that the Archean craton of West Greenland grew at convergent plate margins. Several supracrustal belts that occur at or near the terrane boundaries are interpreted as relict accretionary prisms. The terranes display fold and thrust structures and contain numerous 10 cm to 20 m wide bifurcating, ductile shear zones that are characterized by a variety of structures including transposed and redistributed isoclinal folds. Geometrically these structures are similar to those occurring on regional scales, suggesting that the Archean craton of West Greenland can be interpreted as a continental scale accretionary complex, such as the Paleozoic Altaids. Melting of metavolcanic rocks during tectonic thickening in the arcs played an important role in the generation of TTGs. Non-uniformitarian models proposed for the origin of Archean terranes have no analogs in the geologic record and are inconsistent with structural, lithological, petrological and geochemical data collected from Archean terranes over the last four decades. The style of deformation and generation of felsic rocks on outcrop scales in the Archean craton of West

  13. Fluctuation diamagnetism in two-band superconductors

    NASA Astrophysics Data System (ADS)

    Adachi, Kyosuke; Ikeda, Ryusuke

    2016-04-01

    Anomalously large fluctuation diamagnetism around the superconducting critical temperature has been recently observed in iron selenide (FeSe) [Kasahara et al. (unpublished)]. This indicates that superconducting fluctuations (SCFs) play a more significant role in FeSe, which supposedly has a two-band structure, than in the familiar single-band superconductors. Motivated by the data on FeSe, SCF-induced diamagnetism is examined in a two-band system, on the basis of a phenomenological approach with a Ginzburg-Landau functional. The obtained results indicate that the SCF-induced diamagnetism may be more enhanced than that in a single-band system due to the existence of two distinct fluctuation modes. Such enhancement of diamagnetism unique to a two-band system seems consistent with the large diamagnetism observed in FeSe, though still far from a quantitative agreement.

  14. Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia

    NASA Technical Reports Server (NTRS)

    Baur, M. E.; Hayes, J. M.; Studley, S. A.; Walter, M. R.

    1985-01-01

    Several diamond drill cores from formations within the Hamersley Group of Western Australia have been studied for evidence of short-range variations in the isotopic compositions of the carbonates. For a set of 32 adjacent microbands analyzed in a specimen from the Marra Mamba Iron Formation, carbon isotope compositions of individual microbands ranged from -2.8 to -19.8 per mil compared to PDB and oxygen isotope compositions ranged from 10.2 to 20.8 per mil compared to SMOW. A pattern of alternating abundances was present, with the average isotopic contrasts between adjacent microbands being 3.0 per mil for carbon and 3.1 per mil for oxygen. Similar results were obtained for a suite of 34 microbands (in four groups) from the Bruno's Band unit of the Mount Sylvia Formation. Difficulties were experienced in preparing samples of single microbands from the Dales Gorge Member of the Brockman Iron Formation, but overall isotopic compositions were in good agreement with values reported by previous authors. Chemical analyses showed that isotopically light carbon and oxygen were correlated with increased concentrations of iron. The preservation of these millimeter-scale variations in isotopic abundances is interpreted as inconsistent with a metamorphic origin for the isotopically light carbon in the BIF carbonates. A biological origin is favored for the correlated variations in 13C and Fe, and it is suggested that the 13C-depleted carbonates may derive either from fermentative metabolism or from anaerobic respiration. A model is presented in which these processes occur near the sediment-water interface and are coupled with an initial oxidative precipitation of the iron.

  15. Decreasing µ142Nd Variation in the Archean Convecting Mantle from 4.0 to 2.5 Ga: Heterogeneous Domain Mixing or Crustal Recycling?

    NASA Astrophysics Data System (ADS)

    Brandon, A. D.; Debaille, V.

    2014-12-01

    The 146Sm-142Nd (t1/2=68 Ma) chronometer can be used to examine silicate differentiation in the first 400 Ma of Earth history. Early fractionation between Sm and Nd is recorded in cratonic Archean rocks in their 142Nd/144Nd ratios that that deviate up to ±20 ppm, or μ142Nd - ppm deviation relative to the present-day convecting mantle at 0. These values likely record early extraction of incompatible trace element (ITE) enriched material with -μ142Nd, either as crust or late stage residual melt from a magma ocean, and resulting in a complimentary ITE depleted residual mantle with +μ142Nd. If this early-formed ITE-enriched material was re-incorporated rapidly back into the convecting mantle, both ITE-enriched and ITE-depleted mantle domains would have been established in the Hadean. Alternatively, if it was early-formed crust that remained stable it could have slowly eroded and progressively remixed into the convecting mantle as subducted sediment during the Archean. Each of these scenarios could potentially explain the decrease in the maximum variation in µ142Nd from ±20 at 4.0 Ga to 0 at 2.5 Ga [1,2,3]. In the scenario where these variations reflect mixing of mantle domains, this implies long mantle mixing times of greater than 1 Ga in the Archean in order to preserve the early-formed heterogeneities. This can be achieved in a stagnant lid tectonic regime in the Archean with sporadic and short subduction cycles [2]. This scenario would also indicate that mixing times in the convecting mantle were much slower than the previously proposed 100 Ma in the Hadean and Archean. In the alternative scenario, sediment with -µ142Nd was progressively mixed into the mantle via subduction in the Archean [3]. This scenario doesn't require slow mantle mixing times or a stagnant-lid regime. It requires crustal resident times of up to 750 Ma to maintain a steady supply of ancient sediment recycling over the Archean. Each of these scenarios evoke very contrasting conditions for

  16. Recovery of magnetite from low grade banded magnetite quartzite (BMQ) ore

    NASA Astrophysics Data System (ADS)

    Tripathy, Alok; Bagchi, Subhankar; Rao, Danda Srinivas; Nayak, Bijaya Ketana; Rout, Prashanta Kumar; Biswal, Surendra Kumar

    2018-04-01

    There has been a steady increase of iron ore demand in the last few decades. This growing demand could be countered by use of low grade iron ore after beneficiation. Banded iron formations (BIF) are one of the resources of such low grade iron ores. Banded magnetite quartzite (BMQ) is one such BIF and a source of iron phase mineral in the form of magnetite. In the present study a low grade BMQ ore containing around 25.47% Fe was beneficiated for recovery of magnetite. XRD study shows that quartz, magnetite, hematite, and goethite are the major minerals phases present in the low grade BMQ sample. Unit operations such as crushing, scrubbing, grinding, and magnetic separations were used for recovering magnetite. Based on the large scale beneficiation studies the process flowsheet has been developed for enrichment of magnetite. It was found that with the help of developed process flowsheet it is possible to enrich Fe value up to 65.14% in the concentrate with a yield of 24.59%.

  17. Sedimentation patterns in the Barberton Mountain Land, South Africa, and the Pilbara Block, Australia: Evidence for Archean rifted continental margins

    NASA Astrophysics Data System (ADS)

    Eriksson, Kenneth A.

    1982-01-01

    Archean supracrustal sequences in the Barberton Mountain Land, South Africa, and the Pilbara Block, Australia, consist of lower volcanic and upper dominantly terrigenous clastic intervals. As evidenced by the paleoenvironments of intercalated sedimentary horizons, volcanism occurred mainly in shallow waters. The overlying ca 3.3 Ga sedimentary intervals contain various common as well as unique paleoenvironments, the understanding of which places significant constraints on Archean crustal models. Lateral and vertical associations of inferred paleoenvironments are used to interpret the geotectonic history of the Archean depositories. The early sedimentary history of the greenstone belts is characterized by terrestrial and subaqueous graben-fill associations of facies related to the initial rift stage of basin development. Continued rifting and initial spreading produced submarine grabens within which ironformations accumulated in response to waning volcanism. Source area uplift resulted in progradation of submarine fans across the basinal chemical sediments. The turbidites are gradational directly into braided alluvial sediments, in part of fan delta origin, suggesting that the continental to marine transition occurred along a narrow continental shelf. In the Barberton Mountain Land the steep-rift margin was succeeded by the development of a stable continental shelf or shelf rise margin through progradation of the turbidite wedge possibly in association with a eustatic rise in sea-level related to continued spreading. On this shelf extensive tidal, deltaic and barrier beach sediments accumulated. Sedimentation was terminated by closure of the passive margin oceans. The late-Archean Pongola Supergroup in South Africa is considered to be the late-orogenic molasse response to this closure and represents the completion of the Wilson cycle.

  18. The Hardwood Gneiss: Evidence for high P-T Archean metamorphism in the southern province of the Lake Superior region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, J.W.; Geiger, C.A.

    1990-03-01

    The Hardwood Gneiss is an areally small unit of Precambrian granulite-grade rocks exposed in the Archean gneiss terrane of the southern Lake Superior region. The rocks are located in the southwestern portion of the Upper Peninsula of Michigan and consist of a structurally conformable package of quartzitic, metapelitic, amphibolitic, and metabasic units. Three texturally distinct garnet types are present in the metabasites and are interpreted to represent two metamorphic events. Geothermobarometry indicates conditions of {approximately}8.2-11.6 kbar and {approximately}770C for M1, and conditions of {approximately}6.0-10.1 kbar and {approximately}610-740C for M2. It is proposed that M1 was Archean and contemporaneous with amore » high-grade metamorphic event recorded in the Minnesota River Valley. The M2 event was probably Early Proterozoic and pre-Penokean, with metamorphic conditions more intense than those generally ascribed to the Penokean Orogeny in Michigan, but similar to the conditions reported for the Kapuskasing zone of Ontario. The high paleopressures and temperatures of the M1 event make the Hardwood Gneiss distinct from any rocks previously described in the southern Lake Superior region, and suggest intense tectonic activity during the Archean.« less

  19. A potential new biosignature of life in iron-rich extreme environments: An iron (III) complex of scytonemin and proposal for its identification using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Varnali, Tereza; Edwards, Howell G. M.

    2013-07-01

    Scytonemin is a cyanobacterial sheath pigment with potent UV absorbing (UV-A, UV-B and UV-C) properties. The importance of this biomolecule is its photoprotective function which is one of the major survival strategies adopted by extremophiles to combat high energy radiation insolation in environmentally stressed conditions. Also, iron (III) oxides offering an additional UV-protecting facility to subsurface biological colonization as well as banded iron formations with zones of iron depletion in rock matrices have attracted attention with special interest in the mobilisation and transportation of iron compounds through the rock. This study represents a novel proposal that an iron-scytonemin complex could facilitate the movement of iron through the subsurface rock as part of the this extremophilic survival strategy. The predicted Raman wavenumbers for the proposed scytonemin complex of iron(III) are derived computationally using DFT calculations. Comparison of the experimentally observed Raman spectra of scytonemin with the theoretically predicted Raman spectra of the iron-scytonemin complex show that the latter may be discriminated and the expected characteristic bands are reported in relation to structural changes that are effected upon complexation. This information will inform the future search for experimental evidence for an iron-scytonemin complex, which has not been recognised hitherto and which could provide a novel biosignature for the extremophilic colonization of terrestrial iron-rich geological matrices. Such a terrestrial scenario would be potentially of significance for the remote robotic analytical exploration of the iron-rich surface and immediate subsurface of Mars.

  20. Evidence for reactive reduced phosphorus species in the early Archean ocean

    PubMed Central

    Pasek, Matthew A.; Harnmeijer, Jelte P.; Buick, Roger; Gull, Maheen; Atlas, Zachary

    2013-01-01

    It has been hypothesized that before the emergence of modern DNA–RNA–protein life, biology evolved from an “RNA world.” However, synthesizing RNA and other organophosphates under plausible early Earth conditions has proved difficult, with the incorporation of phosphorus (P) causing a particular problem because phosphate, where most environmental P resides, is relatively insoluble and unreactive. Recently, it has been proposed that during the Hadean–Archean heavy bombardment by extraterrestrial impactors, meteorites would have provided reactive P in the form of the iron–nickel phosphide mineral schreibersite. This reacts in water, releasing soluble and reactive reduced P species, such as phosphite, that could then be readily incorporated into prebiotic molecules. Here, we report the occurrence of phosphite in early Archean marine carbonates at levels indicating that this was an abundant dissolved species in the ocean before 3.5 Ga. Additionally, we show that schreibersite readily reacts with an aqueous solution of glycerol to generate phosphite and the membrane biomolecule glycerol–phosphate under mild thermal conditions, with this synthesis using a mineral source of P. Phosphite derived from schreibersite was, hence, a plausible reagent in the prebiotic synthesis of phosphorylated biomolecules and was also present on the early Earth in quantities large enough to have affected the redox state of P in the ocean. Phosphorylated biomolecules like RNA may, thus, have first formed from the reaction of reduced P species with the prebiotic organic milieu on the early Earth. PMID:23733935

  1. EPR study of thermally treated Archean microbial mats analogues and comparison with Archean cherts: towards a possible marker of oxygenic photosynthesis?

    NASA Astrophysics Data System (ADS)

    Bourbin, M.; Derenne, S.; Westall, F.; Gourier, D.; Gautret, P.; Rouzaud, J.-N.; Robert, F.

    2012-04-01

    The datation of photosynthesis apparition remains an open question nowadays: did oxygenic photosynthesis appear just before the Great Oxidation Event (GOE) of the atmosphere, 2.3 to 2.4 Gyr ago, or does it originate much earlier? It is therefore of uttermost interest to find markers of oxygenic photosynthesis, applicable to samples of archean age. In order to handle this problem, Microcoleus Chtonoplastes cyanobacteria and Chloroflexus-like non-oxygenic photosynthetic bacteria, were studied using Electron Paramagnetic Resonance (EPR) spectroscopy, a high sensitivity technique for the study of organic radicals in mature geological samples (coals, cherts, meteorites...). M. chtonoplastes and Chloroflexus-like bacteria were sampled in mats from the hypersaline lake "La Salada de Chiprana" (Spain), an analogue to an Archean environment, and were submitted to accelerated ageing through cumulative thermal treatments. For thermal treatment temperatures higher than 620° C, a drastic increase in the EPR linewidth of the oxygenic photosynthetic bacteria (M. chtonoplastes) occurred, as compared with the anoxygenic photosynthetic one (Chloroflexus-like). The EPR study of a thermally treated mixture of the two bacteria evidences that this linewidth increase is driven by catalytic reaction at high temperatures on an element selectively fixed by M. chtonoplastes. Based on comparative EDS analyses, Mg is a potential candidate for this catalytic activity but its precise role and the nature of the reaction are still to be determined. The EPR study of organic radicals in chert rocks of ages ranging from 0.42 to 3.5 Gyr, from various localities and that underwent various metamorphisms, revealed a dispersion of the signal width for the most mature samples. This comparative approach between modern bacterial samples and Precambrian cherts leads to propose the EPR linewidth of mature organic matter in cherts as a potential marker of oxygenic photosynthesis. If confirmed, this marker

  2. Relationship between rabbit transferrin electrophoretic patterns and plasma iron concentrations.

    PubMed

    Zaragoza, P; Arana, A; Amorena, B

    1987-01-01

    Rabbit transferrin (Tf) was studied electrophoretically using 1141 blood samples from individuals belonging to seven populations (Spanish Common, Spanish Giant, Butterfly, Lyoné de Bourgogne, New Zealand White, Californian and New Zealand White X Californian hybrids). No Tf polymorphism was found by starch gel electrophoresis, but six patterns, differing in the presence and/or intensity of three bands ('a', anodic; 'b', intermediate; and 'c', cathodic) were observed by polyacrylamide gel electrophoresis. No genetic model could explain these patterns, since they reflect differences in plasma Tf iron content. The electrophoretic test allowed a direct observation of the relative in vivo levels of the different Tf molecular species; saturated (band 'a', Fe2Tf); semi-saturated (band 'b', Fe1Tf); and without iron (band 'c' Fe0Tf, apotransferrin). The degree of iron saturation of Tf varied among individuals and throughout the individual's life. Specifically, in pregnant females, Fe2Tf and Fe1Tf are generally observed, except in late pregnancy (from day 25 to parturition), when mainly apotransferrin is observed. Significantly, within 24 h post-partum, high levels of Fe2Tf are reached in the female's serum.

  3. Evidence of biogeochemical processes in iron duricrust formation

    NASA Astrophysics Data System (ADS)

    Levett, Alan; Gagen, Emma; Shuster, Jeremiah; Rintoul, Llew; Tobin, Mark; Vongsvivut, Jitraporn; Bambery, Keith; Vasconcelos, Paulo; Southam, Gordon

    2016-11-01

    Canga is a moderately hard iron-rich duricrust primarily composed of goethite as a result of the weathering of banded iron formations. Canga duricrusts lack a well-developed soil profile and consequently form an innate association with rupestrian plants that may become ferruginised, contributing to canga possessing macroscopic biological features. Examination of polished canga using a field emission scanning electron microscope (FE-SEM) revealed the biological textures associated with canga extended to the sub-millimetre scale in petrographic sections and polished blocks. Laminae that formed by abiotic processes and regions where goethite cements were formed in association with microorganisms were observed in canga. Biological cycling of iron within canga has resulted in two distinct forms of microbial fossilisation: permineralisation of multispecies biofilms and mineralisation of cell envelopes. Goethite permineralised biofilms frequently formed around goethite-rich kaolinite grains in close proximity to goethite bands and were composed of micrometre-scale rod-shaped, cocci and filamentous microfossils. In contrast, the cell envelopes immobilised by authigenic iron oxides were primarily of rod-shaped microorganisms, were not permineralised and occurred in pore spaces within canga. Complete mineralisation of intact rod-shaped casts and the absence of permineralisation suggested mineralised cell envelopes may represent fossilised iron-oxidising bacteria in the canga ecosystem. Replication of these iron-oxidising bacteria appeared to infill the porous regions within canga. Synchrotron-based Fourier transform infrared (FTIR) microspectroscopy demonstrated that organic biomarkers were poorly preserved with only weak bands indicative of aliphatic methylene (CH2) associated with permineralised microbial biofilms. High resolution imaging of microbial fossils in canga that had been etched with oxalic acid supported the poor preservation of organic biomarkers within canga

  4. An Archean Geomagnetic Reversal in the Kaap Valley Pluton, South Africa

    PubMed

    Layer; Kroner; McWilliams

    1996-08-16

    The Kaap Valley pluton in South Africa is a tonalite intrusion associated with the Archean Barberton Greenstone Belt. Antipodal paleomagnetic directions determined from the central and marginal parts of the pluton record a geomagnetic reversal that occurred as the pluton cooled. The age of the reversal is constrained by an 40Ar/39Ar plateau age from hornblende at 3214 +/- 4 million years, making it the oldest known reversal. The data presented here suggest that Earth has had a reversing, perhaps dipolar, magnetic field since at least 3.2 billion years ago.

  5. Strontium and neodymium isotopic variations in early Archean gneisses affected by middle to late Archean high-grade metamorphic processes: West Greenland and Labrador

    NASA Technical Reports Server (NTRS)

    Collerson, K. D.; Mcculloch, M. T.; Bridgwater, D.; Mcgregor, V. R.; Nutman, A. P.

    1986-01-01

    Relicts of continental crust formed more than 3400 Ma ago are preserved fortuitously in most cratons. The cratons provide the most direct information about crust and mantle evolutionary processes during the first billion years of Earth history. In view of their polymetamorphic character, these terrains are commonly affected by subsequent tectonothermal events. Hence, their isotope systematics may be severely disturbed as a result of bulk chemical change or local isotopic homogenization. This leads to equivocal age and source information for different components within these terrains. The Sr and Nd isotopic data are presented for early Archean gneisses from the North Atlantic Craton in west Greenland and northern Labrador which were affected by younger metamorphic events.

  6. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2017-12-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  7. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents.

    PubMed

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2017-12-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H 2 and CO 2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  8. Effect of iron II on hydroxyapatite dissolution and precipitation in vitro.

    PubMed

    Delbem, A C B; Alves, K M R P; Sassaki, K T; Moraes, J C S

    2012-01-01

    The aim of this study was to evaluate the effect of iron II on the dissolution and precipitation of synthetic hydroxyapatite (HA). HA powder was suspended in solutions of iron (0.84 µg/ml, Fe0.84; 18.0 µg/ml, Fe18; 70.0 µg/ml, Fe70), fluoride (1,100 µg/ml, F1,100), and deionized water and submitted to pH cycling. After pH cycling, the samples were analyzed by infrared spectroscopy and X-ray diffraction. The concentrations of fluoride, calcium, phosphorus, and iron were also analyzed. The data were submitted to ANOVA, and analyzed by Tukey's test (p < 0.05). The infrared spectrum showed a reduction in all bands corresponding to phosphates and hydroxyls and an increase in the carbonate band in the groups with iron. The intensity of the phosphate bands increased and that of the hydroxyl bands decreased in the group F1,100. It was observed that there was a higher concentration of Ca in the group F1,100, with no significant difference between the groups Fe18 and Fe70 (p > 0.05). There was an increase in Fe concentration in the HA directly related to the Fe concentration of the treatment solutions. Results show that the presence of Fe causes the precipitation of apatite with high solubility. Copyright © 2012 S. Karger AG, Basel.

  9. Archean evolution of the Leo Rise and its Eburnean reworking

    NASA Astrophysics Data System (ADS)

    Thiéblemont, Denis; Goujou, Jean Christian; Egal, Emmanuel; Cocherie, Alain; Delor, Claude; Lafon, Jean Michel; Fanning, C. Mark

    2004-06-01

    Recent geological mapping in southeastern Guinea, supported by zircon dating, has called into question traditional understanding concerning the evolution of the Leo Rise. Gneiss dated at about 3540 Ma appears to constitute the earliest evidence for continental accretion within the Leo Rise. The existence of a Leonian depositional cycle at about 3000 Ma is confirmed, marked by volcanic and sedimentary rocks that can be correlated with the Loko Group in Sierra Leone. The span of ages (3244-3050 Ma) suggests that the Leonian cycle comprises different episodes whose respective chronology is as yet uncertain. Clearly distinct from the Leonian cycle, the Liberian cycle (˜2900-2800 Ma) is represented in Guinea by granite and migmatite (˜2910-2800 Ma), reflecting remobilization of the ancient Archean basement and deformation of the Leonian rocks; no deposition is associated with this cycle. After the Liberian, the Nimba and Simandou successions, containing Liberian detrital zircons, are assigned to the Birimian (˜2200-2000 Ma). Finally, Eburnean tectonism caused intense deformation of the Archean craton, accompanied by high-grade metamorphism and the intrusion of granite and syenite with ages between 2080 and 2020 Ma. The evolution of the Kénéma-Man domain, attributed to the cumulated effect of the Leonian and Liberian cycles, is thus in part Eburnean. We can suppose, therefore, that the NNE-SSW-trending structures attributed to the Liberian in Sierra Leone are, in fact, Eburnean. The Kambui Supergroup, also affected by this tectonism, should thus be assigned to the Birimian rather than the Liberian, which would explain its similarities with the Nimba and Simandou successions.

  10. Syntheses, crystal and band structures, and optical properties of a selenidoantimonate and an iron polyselenide

    NASA Astrophysics Data System (ADS)

    Liu, Guang-Ning; Zhu, Wen-Juan; Zhang, Ming-Jian; Xu, Bo; Liu, Qi-Sheng; Zhang, Zhen-Wei; Li, Cuncheng

    2014-10-01

    A new selenidoantimonate (CH3NH4)[Mn(phen)2](SbSe4)·phen (1, phen=1,10-phenanthroline) and an iron polyselenide [Fe(phen)2](Se4) (2) were obtained under hydro(solvo)thermal conditions. Compound 1 represents the first example of a selenidoantimonate anion as a ligand to a transition-metal π-conjugated ligand complex cation. Compound 2 containing a κ2Se1,Se4 chelating tetraselenide ligand, represents the only example of a tetraselenide ligand to a Fe complex cation. Compounds 1 and 2 exhibit optical gaps of 1.71 and 1.20 eV, respectively and their thermal stabilities have been investigated by thermogravimetric analyses. The electronic band structure along with the density of states calculated by the DFT method indicate that the optical absorptions mainly originate from the charge transitions from the Se 4p and Mn 3d states to the phen p-π* orbital for 1 and the Se 4p and Fe 3d states to the phen p-π* orbital for 2.

  11. Earth's earliest biosphere-a proposal to develop a collection of curated archean geologic reference materials

    NASA Technical Reports Server (NTRS)

    Lindsay, John F.; McKay, David S.; Allen, Carlton C.

    2003-01-01

    The discovery of evidence indicative of life in a Martian meteorite has led to an increase in interest in astrobiology. As a result of this discovery, and the ensuing controversy, it has become apparent that our knowledge of the early development of life on Earth is limited. Archean stratigraphic successions containing evidence of Earth's early biosphere are well preserved in the Pilbara Craton of Western Australia. The craton includes part of a protocontinent consisting of granitoid complexes that were emplaced into, and overlain by, a 3.51-2.94 Ga volcanigenic carapace - the Pilbara Supergroup. The craton is overlain by younger supracrustal basins that form a time series recording Earth history from approximately 2.8 Ga to approximately 1.9 Ga. It is proposed that a well-documented suite of these ancient rocks be collected as reference material for Archean and astrobiological research. All samples would be collected in a well-defined geological context in order to build a framework to test models for the early evolution of life on Earth and to develop protocols for the search for life on other planets.

  12. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life.

    PubMed

    Pons, Marie-Laure; Quitté, Ghylaine; Fujii, Toshiyuki; Rosing, Minik T; Reynard, Bruno; Moynier, Frederic; Douchet, Chantal; Albarède, Francis

    2011-10-25

    The Isua Supracrustal Belt, Greenland, of Early Archean age (3.81-3.70 Ga) represents the oldest crustal segment on Earth. Its complex lithology comprises an ophiolite-like unit and volcanic rocks reminiscent of boninites, which tie Isua supracrustals to an island arc environment. We here present zinc (Zn) isotope compositions measured on serpentinites and other rocks from the Isua supracrustal sequence and on serpentinites from modern ophiolites, midocean ridges, and the Mariana forearc. In stark contrast to modern midocean ridge and ophiolite serpentinites, Zn in Isua and Mariana serpentinites is markedly depleted in heavy isotopes with respect to the igneous average. Based on recent results of Zn isotope fractionation between coexisting species in solution, the Isua serpentinites were permeated by carbonate-rich, high-pH hydrothermal solutions at medium temperature (100-300 °C). Zinc isotopes therefore stand out as a pH meter for fossil hydrothermal solutions. The geochemical features of the Isua fluids resemble the interstitial fluids sampled in the mud volcano serpentinites of the Mariana forearc. The reduced character and the high pH inferred for these fluids make Archean serpentine mud volcanoes a particularly favorable setting for the early stabilization of amino acids.

  13. Morphological and chemical evidence of stromatolitic deposits in the 2.75 Ga Carajás banded iron formation, Brazil

    USGS Publications Warehouse

    Ribeiro da Luz, Beatriz; Crowley, James K.

    2012-01-01

    We describe evidence of biogenicity in the morphology and carbon content of well-preserved, Neoarchean samples of banded iron formation (BIF) from Carajás, Brazil. Silica-rich BIF layers contain translucent ellipsoidal or trapezoidal structures (∼5–10 μm diameter) composed of silica, hematite, and kerogen, which are arranged in larger ring-like forms (rosettes). Stable carbon isotope analysis yields a δ13C value of −24.5‰ indicating that the contained carbon is likely biogenic. Raman and SEM analyses, as well as wavelength-dispersive X-ray elemental maps, show kerogen inside the rosette forms. Within the iron-rich BIF layers, tubular structures (0.5–5 μm) were observed between hematite granules and blades. Kerogen and kaolinite are present in these structures. Both the rosettes and the tubular structures resemble morphologies that are characteristic of some bacterial species.We hypothesize that the Carajás BIFs originated as biomats formed by one or more species that over time produced large stromatolitic structures. The rosettes and the tubular structures, associated with chert-rich and iron-rich BIF layers, respectively, may represent two different species, or perhaps, two phases of a bacterium life cycle. For example, some modern myxobacteria exhibit similar morphologies in their resting and vegetative stages.Fe(III) precipitation may have occurred by contact of Fe(II) with bacterial slime, leading to oxidation by chemical reactions with exposed polysaccharide hydroxyl and carboxyl groups. The Fe(III) would then have been available for use as a source of energy in a dissimilatory iron reduction type of metabolism. Organic carbon input presumably came from primary producers (not necessarily aerobic) within the local water column, perhaps in shallow-water communities. Alternatively, the carbon may have originated by Fischer–Tropsch synthesis at ocean hydrothermal vents. The observed lateral continuity of BIF layers may perhaps be explained by

  14. Extraction of dielectric and magnetic properties of carbonyl iron powder composites at high frequencies

    NASA Astrophysics Data System (ADS)

    Zivkovic, I.; Murk, A.

    2012-06-01

    In this paper, we examine carbonyl iron composites in silicone rubber and epoxy matrices. Transmission measurements were performed at W (70 to 110 GHz) and Ka (26 to 40 GHz) bands and effective permittivity and permeability of composites with 10% volume fraction of carbonyl iron powder (CIP) were extracted at these frequencies. To extract permittivity and permeability of carbonyl iron powder in W and Ka bands, we use Looyenga formula. We extract permittivity and permeability of CIP from both silicone rubber and epoxy based composites and good agreement is achieved.

  15. Fabrication, characterization and applications of iron selenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Raja Azadar, E-mail: hussainazadar@yahoo.com; Badshah, Amin; Lal, Bhajan

    This review article presents fabrication of FeSe by solid state reactions, solution chemistry routes, chemical vapor deposition, spray pyrolysis and chemical vapor transport. Different properties and applications such as crystal structure and phase transition, band structure, spectroscopy, superconductivity, photocatalytic activity, electrochemical sensing, and fuel cell activity of FeSe have been discussed. - Graphical abstract: Iron selenide can be synthesized by solid state reactions, chemical vapor deposition, solution chemistry routes, chemical vapor transport and spray pyrolysis. - Highlights: • Different fabrication methods of iron selenide (FeSe) have been reviewed. • Crystal structure, band structure and spectroscopy of FeSe have been discussed.more » • Superconducting, catalytic and fuel cell application of FeSe have been presented.« less

  16. Decoding mass-independent fractionation of sulfur isotopes in modern atmosphere using cosmogenic 35S: A five-isotope approach and possible implications for Archean sulfur isotope records

    NASA Astrophysics Data System (ADS)

    Lin, M.; Thiemens, M. H.; Shen, Y.; Zhang, X.; Huang, X.; Chen, K.; Zhang, Z.; Tao, J.

    2017-12-01

    The signature of sulfur isotopic mass-independent fractionation (S-MIF) observed in Archean sediments have been interpreted as a proxy of the origins and evolution of atmospheric oxygen and early life on Earth [1]. Photochemistry of SOx in the short (< 290 nm) wavelength region accounts for much of the Archean record, but the S-MIF widely observed in modern tropospheric sulfate aerosols remains unexplained, indicating embedded uncertainties in interpreting Archean S-MIF records [2]. Here we present combined measurements of cosmogenic 35S (a stratospheric tracer) [3] and all four stable sulfur isotopes in the same modern atmospheric sulfate samples to define the mechanisms. The five-sulfur-isotope approach reveals that an altitude-dependent process (probably SOx photochemistry) mainly contributes to a positive Δ33S and a combustion-related process mainly leads to a negative Δ36S. After eliminating combustion impacts, the obtained Δ36S/Δ33S slope of -4.0 in the modern atmosphere is close to the Δ36S/Δ33S slope (-3.6) in some records from Paleoarchean [4], an era probably with active volcanism [5]. The significant role of volcanic OCS in the Archean atmosphere has been called for in terms of its ability to provide a continual SO2 high altitude source for photolysis [2]. The strong but previously underappreciated stratospheric signature of S-MIF in tropospheric sulfates suggests that a more careful investigation of wavelength-dependent sulfur isotopic fractionation at different altitudes are required. The combustion-induced negative Δ36S may be linked to recombination reactions of elemental sulfur [6], and relevant experiments are being conducted to test the isotope effect. Although combustion is unlikely in Archean, recombination reactions may occur in other previously unappreciated processes such as volcanism and may contribute in part to the heavily depleted 36S in some Paleoarchean records [5,7]. The roles of both photochemical and non

  17. Petrogenesis of basalts from the Archean Matachewan Dike Swarm Superior Province of Canada

    NASA Technical Reports Server (NTRS)

    Nelson, Dennis O.

    1987-01-01

    The Matachewan Dike swarm of eastern Ontario comprises Archean age basalts that were emplaced in the greenstone, granite-greenstone, and metasedimentary terrains of the Superior Province of Canada. The basalts are Fe-rich tholeiites, characterized by the near ubiquitos presence of large, compositionally uniform, calcic plagioclase. Major and trace element whole-rock compositions, along with microprobe analyses of constituent phases, from a group of dikes from the eastern portion of the province, were evaluated to constrain petrological processes that operated during the formation and evolution of the magmas. Three compositional groupings, were identified within the dikes. One group has compositional characteristics similar to modern abyssal tholeiites and is termed morb-type. A second group, enriched in incompatible elements and light-REE enriched, is referred to as the enriched group. The third more populated group has intermediate characteristics and is termed the main group. The observation of both morb-type and enriched compositions within a single dike strongly argues for the contemporaneous existence of magmas derived through different processes. Mixing calculations suggest that two possibilities exist. The least evolved basalts lie on a mixing line between the morb-type and enriched group, suggesting mixing of magmas derived from heterogeneous mantle. Mixing of magmas derived from a depleted mantle with heterogeneous Archean crust can duplicate certain aspects of the Matachewan dike composition array.

  18. Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean

    PubMed Central

    Kendall, Brian; Creaser, Robert A.; Reinhard, Christopher T.; Lyons, Timothy W.; Anbar, Ariel D.

    2015-01-01

    It is not known whether environmental O2 levels increased in a linear fashion or fluctuated dynamically between the evolution of oxygenic photosynthesis and the later Great Oxidation Event. New rhenium-osmium isotope data from the late Archean Mount McRae Shale, Western Australia, reveal a transient episode of oxidative continental weathering more than 50 million years before the onset of the Great Oxidation Event. A depositional age of 2495 ± 14 million years and an initial 187Os/188Os of 0.34 ± 0.19 were obtained for rhenium- and molybdenum-rich black shales. The initial 187Os/188Os is higher than the mantle/extraterrestrial value of 0.11, pointing to mild environmental oxygenation and oxidative mobilization of rhenium, molybdenum, and radiogenic osmium from the upper continental crust and to contemporaneous transport of these metals to seawater. By contrast, stratigraphically overlying black shales are rhenium- and molybdenum-poor and have a mantle-like initial 187Os/188Os of 0.06 ± 0.09, indicating a reduced continental flux of rhenium, molybdenum, and osmium to seawater because of a drop in environmental O2 levels. Transient oxygenation events, like the one captured by the Mount McRae Shale, probably separated intervals of less oxygenated conditions during the late Archean. PMID:26702438

  19. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life

    PubMed Central

    Pons, Marie-Laure; Quitté, Ghylaine; Fujii, Toshiyuki; Rosing, Minik T.; Reynard, Bruno; Moynier, Frederic; Douchet, Chantal; Albarède, Francis

    2011-01-01

    The Isua Supracrustal Belt, Greenland, of Early Archean age (3.81–3.70 Ga) represents the oldest crustal segment on Earth. Its complex lithology comprises an ophiolite-like unit and volcanic rocks reminiscent of boninites, which tie Isua supracrustals to an island arc environment. We here present zinc (Zn) isotope compositions measured on serpentinites and other rocks from the Isua supracrustal sequence and on serpentinites from modern ophiolites, midocean ridges, and the Mariana forearc. In stark contrast to modern midocean ridge and ophiolite serpentinites, Zn in Isua and Mariana serpentinites is markedly depleted in heavy isotopes with respect to the igneous average. Based on recent results of Zn isotope fractionation between coexisting species in solution, the Isua serpentinites were permeated by carbonate-rich, high-pH hydrothermal solutions at medium temperature (100–300 °C). Zinc isotopes therefore stand out as a pH meter for fossil hydrothermal solutions. The geochemical features of the Isua fluids resemble the interstitial fluids sampled in the mud volcano serpentinites of the Mariana forearc. The reduced character and the high pH inferred for these fluids make Archean serpentine mud volcanoes a particularly favorable setting for the early stabilization of amino acids. PMID:22006301

  20. Atmospheric hydrogen peroxide and Eoarchean iron formations.

    PubMed

    Pecoits, E; Smith, M L; Catling, D C; Philippot, P; Kappler, A; Konhauser, K O

    2015-01-01

    It is widely accepted that photosynthetic bacteria played a crucial role in Fe(II) oxidation and the precipitation of iron formations (IF) during the Late Archean-Early Paleoproterozoic (2.7-2.4 Ga). It is less clear whether microbes similarly caused the deposition of the oldest IF at ca. 3.8 Ga, which would imply photosynthesis having already evolved by that time. Abiological alternatives, such as the direct oxidation of dissolved Fe(II) by ultraviolet radiation may have occurred, but its importance has been discounted in environments where the injection of high concentrations of dissolved iron directly into the photic zone led to chemical precipitation reactions that overwhelmed photooxidation rates. However, an outstanding possibility remains with respect to photochemical reactions occurring in the atmosphere that might generate hydrogen peroxide (H2 O2 ), a recognized strong oxidant for ferrous iron. Here, we modeled the amount of H2 O2 that could be produced in an Eoarchean atmosphere using updated solar fluxes and plausible CO2 , O2 , and CH4 mixing ratios. Irrespective of the atmospheric simulations, the upper limit of H2 O2 rainout was calculated to be <10(6) molecules cm(-2) s(-1) . Using conservative Fe(III) sedimentation rates predicted for submarine hydrothermal settings in the Eoarchean, we demonstrate that the flux of H2 O2 was insufficient by several orders of magnitude to account for IF deposition (requiring ~10(11) H2 O2 molecules cm(-2) s(-1) ). This finding further constrains the plausible Fe(II) oxidation mechanisms in Eoarchean seawater, leaving, in our opinion, anoxygenic phototrophic Fe(II)-oxidizing micro-organisms the most likely mechanism responsible for Earth's oldest IF. © 2014 John Wiley & Sons Ltd.

  1. Chromosomal intrachanges induced by swift iron ions

    NASA Astrophysics Data System (ADS)

    Horstmann, M.; Durante, M.; Johannes, C.; Obe, G.

    We measured the induction of structural aberrations in human chromosome 5 induced by iron ions using the novel technique of multicolor banding in situ hybridization (mBAND). Human lymphocytes isolated from whole blood were exposed in vitro to 500 MeV/n (LET = 200 keV/μm, doses 1 or 4 Gy) Fe nuclei at the HIMAC accelerator in Chiba (Japan). Chromosomes were prematurely condensed by calyculin A after 48 h in culture and slides were painted by mBAND. We found a frequency of 0.11 and 0.57 residual breakpoints per chromosome 5 after 1 and 4 Gy Fe-ions, respectively. Inter-chromosomal exchanges were the prevalent aberration type measured at both doses, followed by terminal deletions, and by intra-chromosomal exchanges. Among intra-chromosomal exchanges, intra-arm events were more frequent than inter-arm, but a significant number of intra-changes was associated to inter-changes involving the same chromosome after 4 Gy of iron ions. These events show that the complexity of chromosomal exchanges induced by heavy ions can be higher than expected by previous FISH studies.

  2. Microfossils of the Early Archean Apex chert - New evidence of the antiquity of life

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1993-01-01

    Eleven taxa (including eight heretofore undescribed species) of cellularly preserved filamentous microbes, among the oldest fossils known, have been discovered in a bedded chert unit of the Early Archean Apex Basalt of northwestern Western Australia. This prokaryotic assemblage establishes that trichomic cyanobacteriumlike microorganisms were extant and morphologically diverse at least as early as about 3465 million years ago and suggests that oxygen-producing photoautotrophy may have already evolved by this early stage in biotic history.

  3. Missing Fe: hydrogenated iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Bilalbegović, G.; Maksimović, A.; Mohaček-Grošev, V.

    2017-03-01

    Although it was found that the FeH lines exist in the spectra of some stars, none of the spectral features in the interstellar medium (ISM) have been assigned to this molecule. We suggest that iron atoms interact with hydrogen and produce Fe-H nanoparticles which sometimes contain many H atoms. We calculate infrared spectra of hydrogenated iron nanoparticles using density functional theory methods and find broad, overlapping bands. Desorption of H2 could induce spinning of these small Fe-H dust grains. Some of hydrogenated iron nanoparticles possess magnetic and electric moments and should interact with electromagnetic fields in the ISM. FenHm nanoparticles could contribute to the polarization of the ISM and the anomalous microwave emission. We discuss the conditions required to form FeH and FenHm in the ISM.

  4. Iron and its complexes in silicon

    NASA Astrophysics Data System (ADS)

    Istratov, A. A.; Hieslmair, H.; Weber, E. R.

    This article is the first in a series of two reviews on the properties of iron in silicon. It offers a comprehensive of the current state of understanding of fundamental physical properties of iron and its complexes in silicon. The first section of this review discusses the position of iron in the silicon lattice and the electrical properties of interstitial iron. Updated expressions for the solubility and the diffusivity of iron in silicon are presented, and possible explanations for conflicting experimental data obtained by different groups are discussed. The second section of the article considers the electrical and the structural properties of complexes of interstitial iron with shallow acceptors (boron, aluminum, indium, gallium, and thallium), shallow donors (phosphorus and arsenic) and other impurities (gold, silver, platinum, palladium, zinc, sulfur, oxygen, carbon, and hydrogen). Special attention is paid to the kinetics of iron pairing with shallow acceptors, the dissociation of these pairs, and the metastability of iron-acceptor pairs. The parameters of iron-related defects in silicon are summarized in tables that include more than 30 complexes of iron as detected by electron paramagnetic resonance (EPR) and almost 20 energy levels in the band gap associated with iron. The data presented in this review illustrate the enormous complexing activity of iron, which is attributed to the partial or complete (depending on the temperature and the conductivity type) ionization of iron as well as the high diffusivity of iron in silicon. It is shown that studies of iron in silicon require exceptional cleanliness of experimental facilities and highly reproducible diffusion and temperature ramping (quenching) procedures. Properties of iron that are not yet completely understood and need further research are outlined.

  5. X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Radu, T.; Iacovita, C.; Benea, D.; Turcu, R.

    2017-05-01

    We report X-ray photoelectron spectroscopy (XPS) results on iron oxide magnetic nanoparticle (Fe3O4) synthesized using solvothermal reduction in the presence of polyethylene glycol. The magnetite obtained was employed as precursor for the synthesis of γ-Fe2O3 (by oxygen dissociation) which in turn was transformed into α-Fe2O3. We confirmed the magnetite, maghemite and hematite structure by Fourier Transformed Spectroscopy (FTIR) and X-ray diffraction (XRD). The analysis of the XPS core level and valence band (VB) photoemission spectra for all investigated samples is discussed in terms of the degree of iron oxidation. This is of fundamental importance to better understand the electronic structure of the obtained iron oxide nanoparticles in order to control and improve their quality for specific biomedical applications. Moreover, theoretical band structure calculations are performed for magnetite and the separate contributions of Fe in tetragonal and octahedral environment are shown.

  6. Paleomagnetism of Hadean and Archean Detrital Zircons from the Jack Hills, Western Australia

    NASA Astrophysics Data System (ADS)

    Weiss, B. P.; Lima, E. A.; Alexander, E.; Bell, E. A.; Boehnke, P.; Wielicki, M. M.; Harrison, M.; Fu, R. R.; Kehayias, P.; Glenn, D. R.; Walsworth, R. L.; Araujo, J. F. D.; Einsle, J. F.; Harrison, R.; Trail, D.; Watson, E. B.

    2016-12-01

    Determining the history of Earth's dynamo prior to the oldest known well-preserved rock record is one of the ultimate challenges in the field of paleomagnetism. The dynamo's early history has major implications for the evolution of the core, the initiation of plate tectonics, the physics of magnetic field generation, and the habitability of the early Earth. The only known minerals that might retain paleomagnetic records from well before 3.5 billion years ago (Ga) are detrital zircon crystals found in sedimentary rocks in Western Australia. Ranging up to 4.38 Ga in age, they are the oldest known terrestrial minerals. Tarduno et al. (2015) argued that detrital zircons contain records of an active dynamo dating back to 4.2 Ga. However, it has not been demonstrated that the zircons have escaped remagnetization during the intervening time since their formation (Weiss et al. 2016). Therefore, the age of magnetization in the Jack Hills zircons and the existence of a dynamo prior to 3.5 Ga have yet to be established. To address this issue, we have been studying the magnetism and thermal and aqueous alteration histories of single Archean and Hadean Jack Hills zircon crystals. Peak unblocking temperatures combined with electron backscatter diffraction indicate that the zircons contain inclusions of magnetite and hematite. Electron microscopy, X-ray tomography, and quantum diamond magnetometry indicate that much of the iron oxides in the zircons are associated with cracks and are therefore likely secondary. However, our newly developed Li-in-zircon geospeedometry technique shows for the first time that a small fraction of Hadean zircons retain sharp gradients in Li concentration (see figure), indicating they likely have never heated above the magnetite Curie temperature since their formation at >4 Ga. We describe thermal demagnetization and Thellier-Thellier paleointensity studies of these zircons and implications for the existence of a Hadean dynamo.

  7. Two distinct origins for Archean greenstone belts

    NASA Astrophysics Data System (ADS)

    Smithies, R. Hugh; Ivanic, Tim J.; Lowrey, Jack R.; Morris, Paul A.; Barnes, Stephen J.; Wyche, Stephen; Lu, Yong-Jun

    2018-04-01

    Applying the Th/Yb-Nb/Yb plot of Pearce (2008) to the well-studied Archean greenstone sequences of Western Australia shows that individual volcanic sequences evolved through one of two distinct processes reflecting different modes of crust-mantle interaction. In the Yilgarn Craton, the volcanic stratigraphy of the 2.99-2.71 Ga Youanmi Terrane mainly evolved through processes leading to Th/Yb-Nb/Yb trends with a narrow range of Th/Nb ('constant-Th/Nb' greenstones). In contrast, the 2.71-2.66 Ga volcanic stratigraphy of the Eastern Goldfields Superterrane evolved through processes leading to Th/Yb-Nb/Yb trends showing a continuous range in Th/Nb ('variable-Th/Nb' greenstones). Greenstone sequences of the Pilbara Craton show a similar evolution, with constant-Th/Nb greenstone evolution between 3.13 and 2.95 Ga and variable-Th/Nb greenstone evolution between 3.49 and 3.23 Ga and between 2.77 and 2.68 Ga. The variable-Th/Nb trends dominate greenstone sequences in Australia and worldwide, and are temporally associated with peaks in granite magmatism, which promoted crustal preservation. The increasing Th/Nb in basalts correlates with decreasing εNd, reflecting variable amounts of crustal assimilation during emplacement of mantle-derived magmas. These greenstones are typically accompanied in the early stages by komatiite, and can probably be linked to mantle plume activity. Thus, regions such as the Eastern Goldfields Superterrane simply developed as plume-related rifts over existing granite-greenstone crust - in this case the Youanmi Terrane. Their Th/Nb trends are difficult to reconcile with modern-style subduction processes. The constant-Th/Nb trends may reflect derivation from a mantle source already with a high and constant Th/Nb ratio. This, and a lithological association including boninite-like lavas, basalts, and calc-alkaline andesites, all within a narrow Th/Nb range, resembles compositions typical of modern-style subduction settings. These greenstones are very

  8. A Wide Band Absorbing Material Design Using Band-Pass Frequency Selective Surface

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Xu, Qiang; Liu, Ting; Zheng, Dianliang; Zhou, Li

    2018-03-01

    Based on the high frequency advantage characteristics of the Fe based absorbing coating, a method for designing the structure of broadband absorbing structure by using frequency selective surface (FSS) is proposed. According to the transmission and reflection characteristic of the different size FSS structure, the frequency variation characteristic was simulated. Secondly, the genetic algorithm was used to optimize the high frequency broadband absorbing materials, including the single and double magnetic layer material. Finally, the absorbing characteristics in iron layer were analyzed as the band pass FSS structure was embedded, the results showed that the band-pass FSS had the influence on widening the absorbing frequency. As the FSS was set as the bottom layer, it was effective to achieve the good absorbing property in low frequency and the high frequency absorbing performance was not weakened, because the band-pass FSS led the low frequency absorption and the high frequency shielding effect. The results of this paper are of guiding significance for designing and manufacturing the broadband absorbing materials.

  9. Multiple sulfur isotopes monitor fluid evolution of an Archean orogenic gold deposit

    NASA Astrophysics Data System (ADS)

    LaFlamme, Crystal; Sugiono, Dennis; Thébaud, Nicolas; Caruso, Stefano; Fiorentini, Marco; Selvaraja, Vikraman; Jeon, Heejin; Voute, François; Martin, Laure

    2018-02-01

    The evolution of a gold-bearing hydrothermal fluid from its source to the locus of gold deposition is complex as it experiences rapid changes in thermochemical conditions during ascent through the crust. Although it is well established that orogenic gold deposits are generated during time periods of abundant crustal growth and/or reworking, the source of fluid and the thermochemical processes that control gold precipitation remain poorly understood. In situ analyses of multiple sulfur isotopes offer a new window into the relationship between source reservoirs of Au-bearing fluids and the thermochemical processes that occur along their pathway to the final site of mineralisation. Whereas δ34S is able to track changes in the evolution of the thermodynamic conditions of ore-forming fluids, Δ33S is virtually indelible and can uniquely fingerprint an Archean sedimentary reservoir that has undergone mass independent fractionation of sulfur (MIF-S). We combine these two tracers (δ34S and Δ33S) to characterise a gold-bearing laminated quartz breccia ore zone and its sulfide-bearing alteration halo in the (+6 Moz Au) structurally-controlled Archean Waroonga deposit located in the Eastern Goldfields Superterrane of the Yilgarn Craton, Western Australia. Over 250 analyses of gold-associated sulfides yield a δ34S shift from what is interpreted as an early pre-mineralisation phase, with chalcopyrite-pyrrhotite (δ34S = +0.7‰ to +2.9‰) and arsenopyrite cores (δ34S = ∼-0.5‰), to a syn-mineralisation stage, reflected in Au-bearing arsenopyrite rims (δ34S = -7.6‰ to +1.5‰). This shift coincides with an unchanging Δ33S value (Δ33S = +0.3‰), both temporally throughout the Au-hosting hydrothermal sulfide paragenesis and spatially across the Au ore zone. These results indicate that sulfur is at least partially recycled from MIF-S-bearing Archean sediments. Further, the invariant nature of the observed MIF-S signature demonstrates that sulfur is derived from a

  10. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1987-01-01

    Simple (one-dimensional) climate models suggest that carbon dioxide concentrations during the Archean must have been at least 100-1000 times the present level to keep the Earth's surface temperature above freezing in the face of decreased solar luminosity. Such models provide only lower bounds on CO2, so it is possible that CO2 levels were substantially higher than this and that the Archean climate was much warmer than today. Periods of extensive glaciation during the early and late Proterozoic, on the other hand, indicate that the climate at these times was relatively cool. To be consistent with climate models CO2 partial pressures must have declined from approximately 0.03 to 0.3 bar around 2.5 Ga ago to between 10(-3) and 10(-2) bar at 0.8 Ga ago. This steep decrease in carbon dioxide concentrations may be inconsistent with paleosol data, which implies that pCO2 did not change appreciably during that time. Oxygen was essentially absent from the Earth's atmosphere and oceans prior to the emergence of a photosynthetic source, probably during the late Archean. During the early Proterozoic the atmosphere and surface ocean were apparently oxidizing, while the deep ocean remained reducing. An upper limit of 6 x 10(-3) bar for pO2 at this time can be derived by balancing the burial rate of organic carbon with the rate of oxidation of ferrous iron in the deep ocean. The establishment of oxidizing conditions in the deep ocean, marked by the disappearance of banded iron formations approximately 1.7 Ga ago, permitted atmospheric oxygen to climb to its present level. O2 concentrations may have remained substantially lower than today, however, until well into the Phanerozoic.

  11. Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring

    NASA Technical Reports Server (NTRS)

    Pierson, B. K.; Parenteau, M. N.; Griffin, B. M.

    1999-01-01

    At Chocolate Pots Hot Springs in Yellowstone National Park the source waters have a pH near neutral, contain high concentrations of reduced iron, and lack sulfide. An iron formation that is associated with cyanobacterial mats is actively deposited. The uptake of [(14)C]bicarbonate was used to assess the impact of ferrous iron on photosynthesis in this environment. Photoautotrophy in some of the mats was stimulated by ferrous iron (1.0 mM). Microelectrodes were used to determine the impact of photosynthetic activity on the oxygen content and the pH in the mat and sediment microenvironments. Photosynthesis increased the oxygen concentration to 200% of air saturation levels in the top millimeter of the mats. The oxygen concentration decreased with depth and in the dark. Light-dependent increases in pH were observed. The penetration of light in the mats and in the sediments was determined. Visible radiation was rapidly attenuated in the top 2 mm of the iron-rich mats. Near-infrared radiation penetrated deeper. Iron was totally oxidized in the top few millimeters, but reduced iron was detected at greater depths. By increasing the pH and the oxygen concentration in the surface sediments, the cyanobacteria could potentially increase the rate of iron oxidation in situ. This high-iron-content hot spring provides a suitable model for studying the interactions of microbial photosynthesis and iron deposition and the role of photosynthesis in microbial iron cycling. This model may help clarify the potential role of photosynthesis in the deposition of Precambrian banded iron formations.

  12. Electron Paramagnetic Resonance Study of a Photosynthetic Microbial Mat and Comparison with Archean Cherts

    NASA Astrophysics Data System (ADS)

    Bourbin, M.; Derenne, S.; Gourier, D.; Rouzaud, J.-N.; Gautret, P.; Westall, F.

    2012-12-01

    Organic radicals in artificially carbonized biomass dominated by oxygenic and non-oxygenic photosynthetic bacteria, Microcoleus chthonoplastes-like and Chloroflexus-like bacteria respectively, were studied by Electron Paramagnetic Resonance (EPR) spectroscopy. The two bacteria species were sampled in mats from a hypersaline lake. They underwent accelerated ageing by cumulative thermal treatments to induce progressive carbonization of the biological material, mimicking the natural maturation of carbonaceous material of Archean age. For thermal treatments at temperatures higher than 620 °C, a drastic increase in the EPR linewidth is observed in the carbonaceous matter from oxygenic photosynthetic bacteria and not anoxygenic photosynthetic bacteria. This selective EPR linewidth broadening reflects the presence of a catalytic element inducing formation of radical aggregates, without affecting the molecular structure or the microstructure of the organic matter, as shown by Raman spectroscopy and Transmission Electron Microscopy. For comparison, we carried out an EPR study of organic radicals in silicified carbonaceous rocks (cherts) from various localities, of different ages (0.42 to 3.5 Gyr) and having undergone various degrees of metamorphism, i.e. various degrees of natural carbonization. EPR linewidth dispersion for the most primitive samples was quite significant, pointing to a selective dipolar broadening similar to that observed for carbonized bacteria. This surprising result merits further evaluation in the light of its potential use as a marker of past bacterial metabolisms, in particular oxygenic photosynthesis, in Archean cherts.

  13. Modeling Archean Subduction Initiation from Continental Spreading with a Free-Surface

    NASA Astrophysics Data System (ADS)

    Adams, A.; Thielmann, M.; Golabek, G.

    2017-12-01

    Earth is the only planet known to have plate tectonics, however the onset of plate tectonics and Earth's early tectonic environment are highly uncertain. Modern plate tectonics are characterized by the sinking of dense lithosphere at subduction zones; however this process may not have been feasible if Earth's interior was hotter in the Archean, resulting in thicker and more buoyant oceanic lithosphere than observed at present [van Hunen and van den Berg, 2008]. Previous studies have proposed gravitational spreading of early continents at passive margins as a mechanism to trigger early episodes of plate subduction using numerical simulations with a free-slip upper boundary condition [Rey et al., 2014]. This study utilizes 2D thermo-mechanical numerical experiments using the finite element code MVEP2 [Kaus, 2010; Thielmann et al., 2014] to investigate the viability of this mechanism for subduction initiation in an Archean mantle for both free-slip and free-surface models. Radiogenic heating, strain weakening, and eclogitization were systematically implemented to determine critical factors for modeling subduction initiation. In free-slip models, results show episodes of continent spreading and subduction initiation of oceanic lithosphere for low limiting yield stresses (100-150 MPa) and increasing continent width with no dependency on radiogenic heating, strain weakening, or eclogitization. For models with a free-surface, subduction initiation was observed at low limiting yield stresses (100-225 MPa) with increasing continent width and only in models with eclogitization. Initial lithospheric stress states were studied as a function of density and viscosity ratios between continent and oceanic lithosphere, and results indicate the magnitude of lithospheric stresses increases with increasing continental buoyancy. This work suggests continent spreading may trigger episodes of subduction in models with a free-surface with critical factors being low limiting yield stresses

  14. The longevity of Archean mantle residues in the convecting upper mantle and their role in young continent formation

    NASA Astrophysics Data System (ADS)

    Liu, Jingao; Scott, James M.; Martin, Candace E.; Pearson, D. Graham

    2015-08-01

    The role played by ancient melt-depleted lithospheric mantle in preserving continental crust through time is critical in understanding how continents are built, disrupted and recycled. While it has become clear that much of the extant Archean crust is underpinned by Archean mantle roots, reports of Proterozoic melt depletion ages for peridotites erupted through Phanerozoic terranes raise the possibility that ancient buoyant lithospheric mantle acts as a "life-raft" for much of the Earth's continental crust. Here we report the largest crust-lithospheric mantle age decoupling (∼2.4 Ga) so far observed on Earth and examine the potential cause for such extreme age decoupling. The Phanerozoic (<300 Ma) continental crust of West Otago, New Zealand, is intruded by Cenozoic diatremes that have erupted cratonic mantle-like highly depleted harzburgites and dunites. These peridotites have rhenium depletion Os model ages that vary from 0.5 to 2.7 Ga, firmly establishing the record of an Archean depletion event. However, the vast range in depletion ages does not correlate with melt depletion or metasomatic tracer indices, providing little support for the presence of a significant volume of ancient mantle root beneath this region. Instead, the chemical and isotopic data are best explained by mixing of relict components of Archean depleted peridotitic mantle residues that have cycled through the asthenosphere over Ga timescales along with more fertile convecting mantle. Extensive melt depletion associated with the "docking" of these melt residues beneath the young continental crust of the Zealandia continent explains the decoupled age relationship that we observe today. Hence, the newly formed lithospheric root incorporates a mixture of ancient and modern mantle derived from the convecting mantle, cooled and accreted in recent times. We argue that in this case, the ancient components played no earlier role in continent stabilization, but their highly depleted nature along with

  15. The anatomy of an anomaly. [data on LANDSAT multispectral band scanning in Wyoming

    NASA Technical Reports Server (NTRS)

    Short, N. M.; Marrs, R. W.

    1975-01-01

    An anomalous tonal pattern, apparently associated with the Beaver Creek oil field in central Wyoming, was identified using an MSS Band 5 to 4 ratio image made from digital LANDSAT data. This pattern was attributed to an increase in iron with rocks and/or soils which might have resulted from escaping hydrocarbons. The nature of this anomaly was investigated by producing several different combinations of band ratios and by conducting appropriate field studies. The results indicated (1) the existence of a well-defined oval feature related to exposure of iron-cemented red sandstones in a badlands topography, (2) a broader iron-influenced anomaly surrounding this feature, and (3) a spectral response of the rocks, soils, and alluvium making up this iron-colored surface that is readily distinguishable from that of iron-rich reddish Chugwater siltstones exposed in nearby anticlines. The general pattern of the broad anomaly extending beyond the Beaver Creek field is controlled by several factors including variations in vegetation (mainly sage and tall grasses), soil composition and moisture, and topography in addition to variations in iron content of the rock materials. From the available evidence, there is no provable correlation between the oval or the broad anomalies and the distribution of petroleum-producing structures or possible surface alteration effects related to uranium deposits known to occur within this region.

  16. Band gap variations in ferritin-templated nanocrystals

    NASA Astrophysics Data System (ADS)

    Colton, John; Erickson, Stephen; Smith, Trevor; Watt, Richard

    2014-03-01

    Ferritin is a 12 nm diameter protein shell with an 8 nm ``cage'' inside that can be used as a template for nanoparticle formation. The native particle is an iron oxide, ferrihydrite, but can be altered or replaced. We have used optical absorption spectroscopy to study the band gap of the ferrihydrite nanoparticles as they age (and become more crystalline), and as they respond to surface interactions with ions in solution. We will also present results of particle composition variations due to incorporation of oxo-anions into the interior of the nanoparticles and substitution of iron with other metals such as cobalt and manganese.

  17. Calculated and Experimental Vibrational Properties of P700 and the Iron Sulfur Cluster in Photosystem I

    NASA Astrophysics Data System (ADS)

    Lamichhane, Hari; Hastings, Gary

    2009-11-01

    Density functional theory (DFT) based vibrational frequency calculations of Fe4S4(SR)4^n- clusters show that the intense iron-sulfur stretching modes lie in the frequency region between 300-400 cm-1. Among them the iron-sulfur ligand (Fe-S^t) stretching modes are more intense and ˜ 30 cm-1 lower in frequency than the iron-sulfur body (Fe-S^b) stretching modes. Calculations in tetrahydrofuran (THF) show that all these iron-sulfur stretching modes of vibration downshift by ˜ 20 cm-1 upon reduction of the molecule. On the other hand, we have not observed any intense bands from chlorophyll a in the frequency region 400 to 320 cm-1 from the calculations. In an attempt to detect modes associated with iron sulfur clusters in PS I we have obtained light induced (P700^+ - P700) FTIR difference spectra for PSI particles from S. 6803 in the far infrared region. We observe difference bands at many frequencies in the 600-300 cm-1 region. Based on our calculations and literature values we claim that the negative bands at 388 cm-1 and 353 cm-1 in the (P700^+ - P700) FTIR difference spectra be assigned to Fe-S^b and Fe-S^t stretching modes of the ground state of the iron-sulfur cluster FB.

  18. The western Wabigoon Subprovince, Superior Province, Canada: Archean greenstone succession in rifted basement complex

    NASA Technical Reports Server (NTRS)

    Edwards, G. R.; Davis, D. W.

    1986-01-01

    The Wabigoon Subprovince, interposed between the predominantly metasedimentary-plutonic and gneissic English River and Quetico Subprovinces to the north and south respectively, exposed Archean greenstone and granitoid rocks for a strike length of greater than 700 km. Based on predominating rock types, the western part of the subprovince is divided into two terrains: the northern Wabigoon volcano-sedimentary and pluonic terrain (NWW) and the Wabigoon Diapiric Axis terrain (WDA). Both the NWW and WDA are described according to volcanic sequence, geological faults, chemical composition and evolutionary history.

  19. The transition from an Archean granite-greenstone terrain into a charnockite terrain in southern India

    NASA Technical Reports Server (NTRS)

    Condie, K. C.; Allen, P.

    1983-01-01

    In southern India, it is possible to study the transition from an Archean granite-greenstone terrain (the Karnataka province) into high grade charnockites. The transition occurs over an outcrop width of 20-35 km and appears to represent burial depths ranging from 15 to 20 km. Field and geochemical studies indicate that the charnockites developed at the expense of tonalites, granites, and greenstones. South of the transition zone, geobarometer studies indicate burial depths of 7-9 kb.

  20. Mesoarchean BIF and iron ores of the Badampahar greenstone belt, Iron Ore Group, East Indian Shield

    NASA Astrophysics Data System (ADS)

    Ghosh, Rupam; Baidya, Tapan Kumar

    2017-12-01

    Banded iron formations (BIFs) are chemically precipitated sedimentary rock characterized by alternating Fe-rich and Si-rich bands. The origin of BIF has remained controversial despite years of diligent research. Most models proposed for the BIF origin are based on the observations of well-preserved Neoarchean to Paleoproterozoic BIFs. The present paper is focused on the origin of Mesoarchean BIFs present in the Badampahar greenstone belt (3.3-3.1 Ga), East Indian Shield. Here, BIF is interlayered with metavolcanic rocks, quartzite, phyllite and chert representing a typical greenstone sequence. Geochemical and sedimentological evidence suggest deposition of BIF below the wave base as part of a back-arc basin with insignificant detrital input. Interaction of seawater and volcanogenic high temperature hydrothermal fluids, generated from back-arc spreading centre, supplied metals for BIF deposition. Distinctly negative Ce anomalies in some lower BIF horizons indicate Fe2+ oxidation in an oxygenated hydrosphere and derivation of free oxygen from microbial photosynthesis. Subsequent stages of deformation, metamorphism, hydrothermal and supergene processes after deposition led to the formation of the iron ore bodies at present.

  1. Mineral inclusions in diamonds from the Kelsey Lake Mine, Colorado, USA: Depleted Archean mantle beneath the Proterozoic Yavapai province

    NASA Astrophysics Data System (ADS)

    Schulze, Daniel J.; Coopersmith, Howard G.; Harte, Ben; Pizzolato, Lori-Ann

    2008-03-01

    Thirty-four silicate and oxide inclusions large enough for in situ WDS electron microprobe analysis were exposed by grinding/polishing of 19 diamonds from the Kelsey Lake Mine in the Colorado-Wyoming State Line Kimberlite district. Eighteen olivines, seven Cr-pyropes, four Mg-chromites, and one orthopyroxene in 15 stones belong to the peridotite (P) suite and three garnets and one omphacite in three stones belong to the eclogite (E) suite. The fact that this suite is dominated by the peridotite population is in stark contrast to the other diamond suites studied in the State Line district (Sloan, George Creek), which are overwhelmingly eclogitic. Kelsey Lake olivine inclusions are magnesian (17 of 18 grains in 9 stones are in the range Fo 92.7-93.1), typical of harzburgitic P-suite stones worldwide, but unlike the more Fe-rich (lherzolitic) Sloan olivine suite. Mg-chromites (wt% MgO = 12.8-13.8; wt% Cr 2O 3 = 61.4-66.6) are in the lower MgO range of diamond inclusion chromites worldwide. Seven harzburgitic Cr-pyropes in five stones have moderately low calcium contents (wt% CaO = 3.3-4.3) but are very Cr-rich (wt% Cr 2O 3 = 9.7-16.7). A few stones have been analyzed by SIMS for carbon isotope composition and nitrogen abundance. One peridotitic stone is apparently homogeneous in carbon isotope composition (δ 13C PDB = -6.2‰) but with variable nitrogen abundance (1296-2550 ppm). Carbon isotopes in eclogitic stones range from "normal" for the upper mantle (δ 13C PDB = -5.5‰) to somewhat low (δ 13C PDB = -10.2‰), with little internal variation in individual stones (maximum difference is 3.6‰). Nitrogen contents (2-779 ppm) are lower than in the peridotitic stone, and are lower in cores than in rims. As, worldwide, harzburgite-suite diamonds have been shown to have formed in Archean time, we suggest that the Kelsey Lake diamond population was derived from a block of Archean lithosphere that, at the time of kimberlite eruption, existed beneath the Proterozoic

  2. Geochemical and Nd isotopic constraints for the origin of Late Archean turbidites from the Yellowknife area, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Yamashita, Katsuyuki; Creaser, Robert A.

    1999-10-01

    A detailed geochemical and isotopic study of Late Archean turbidites and volcanic rocks from the Yellowknife area, Slave province, was undertaken to constrain the nature of exposed crust at the time of 2.6 to 2.7 Ga crustal consolidation. The ɛNdT values of the volcanic rocks range from +1.7 to -4.4. This variation can be produced by assimilation of pre-2.8 Ga basement by a depleted mantle-derived magma, possibly followed by fractional crystallization. The turbidites are typically metamorphosed to greenschist to amphibolite facies, and where metamorphosed to greenschist facies, different units of Bouma sequence can be observed. The different units of Bouma sequence were sampled and analyzed separately to evaluate the possible differences in geochemical and isotopic signatures. The geochemical data presented here is in accord with the previously proposed model that argues for a mixture of 20% mafic-intermediate volcanic rocks, +55% felsic volcanic rocks, and +25% granitic rocks as a source of these turbidites. However, our revised calculation with the new data presented here argues for 1 to 2% input from an ultramafic source, as well as somewhat higher input from mafic-intermediate volcanic sources in the upper shale units compared to the lower sand units. The ɛNdT values of the turbidites generally are lower in the upper shale units compared to the lower sand units. Detailed inspection of trace-element data suggest that this is not an artifact of rare earth element-rich heavy minerals concentrating in the lower sand units of the turbidites, but rather is a result of “unmixing” of detritus with different ɛNdT values during sediment transportation and deposition. The upper shale units of the turbidites are isotopically compatible with a derivation mainly from crustally contaminated volcanic rocks, similar to those exposed in the Yellowknife area. The lower sand units contain a higher proportion of westerly derived plutonic rock detritus, characterized by

  3. SHRIMP-RG U-Pb isotopic systematics of zircon from the Angel Lake orthogneiss, East Humboldt Range, Nevada: is this really Archean crust? REPLY

    USGS Publications Warehouse

    Premo, Wayne R.

    2010-01-01

    The comments from McGrew and Snoke are well received and their concerns for the interpretations in our paper (Premo et al., 2008), which questions the original contention that the Angel Lake orthogneiss is an Archean rock, are many and varied—all of which we will attempt to address. As they point out, this issue is an important one as this particular crustal exposure may delimit the southwestern extent of the Archean Wyoming province (Foster et al., 2006; Mueller and Frost, 2006), which has implications for the true crustal evolution of this region of the Great Basin and perhaps more importantly its relationship (if any) to the location of the world-class gold deposits of north-central Nevada (e.g., Howard, 2003).

  4. Regional Surface Waves from Mesabi Range Mine Blasts (Northern Minnesota)

    DTIC Science & Technology

    1991-10-29

    rocks within the Archean basement which underlies the Animikie basin near the source areas. The final analysis was two dimensional raytracing which...overlying the Archean basement. Overlying the Pokegama Quartzite is the Biwabik Iron Formation and the Virginia Formation (Morey, 1983, Southwick and others...composed of intercalated mudstone and siltstone turbidite deposits which thicken and coarsen progressively from north to south across the basin (Morey and

  5. Origin of Archean migmatites from the Gwenoro Dam area, Zimbabwe-Rhodesia

    NASA Astrophysics Data System (ADS)

    Condie, Kent C.; Allen, Philip

    1980-09-01

    Archean migmatites in the vicinity of Gwenoro Dam in Zimbabwe-Rhodesia are composed chiefly of trondhjemite gneiss (TR), mafic tonalite (MT), amphibolite (AM), leuco-trondhjemite veins (LTR), and pegmatites. The gneiss is intruded in nearby areas with small tonalite plutons (TN). Geochemical model studies together with field relationships are consistent with the following model for migmatite production: AM is produced by partial melting of a partly depleted ultramafic parent in which neither garnet nor amphibole remain in the residue; TR and TN are produced by partial melting of undepleted to variably depleted amphibolite in which garnet does not remain in the residue; MT is produced by mixing of plagioclase-rich TR with AM; and LTR represents the solid residue after fractional crystallization of TR.

  6. Reconstructed ancestral enzymes suggest long-term cooling of Earth's photic zone since the Archean

    NASA Astrophysics Data System (ADS)

    Garcia, Amanda K.; Schopf, J. William; Yokobori, Shin-ichi; Akanuma, Satoshi; Yamagishi, Akihiko

    2017-05-01

    Paleotemperatures inferred from the isotopic compositions (δ18O and δ30Si) of marine cherts suggest that Earth’s oceans cooled from 70 ± 15 °C in the Archean to the present ˜15 °C. This interpretation, however, has been subject to question due to uncertainties regarding oceanic isotopic compositions, diagenetic or metamorphic resetting of the isotopic record, and depositional environments. Analyses of the thermostability of reconstructed ancestral enzymes provide an independent method by which to assess the temperature history inferred from the isotopic evidence. Although previous studies have demonstrated extreme thermostability in reconstructed archaeal and bacterial proteins compatible with a hot early Earth, taxa investigated may have inhabited local thermal environments that differed significantly from average surface conditions. We here present thermostability measurements of reconstructed ancestral enzymatically active nucleoside diphosphate kinases (NDKs) derived from light-requiring prokaryotic and eukaryotic phototrophs having widely separated fossil-based divergence ages. The ancestral environmental temperatures thereby determined for these photic-zone organisms--shown in modern taxa to correlate strongly with NDK thermostability--are inferred to reflect ancient surface-environment paleotemperatures. Our results suggest that Earth's surface temperature decreased over geological time from ˜65-80 °C in the Archean, a finding consistent both with previous isotope-based and protein reconstruction-based interpretations. Interdisciplinary studies such as those reported here integrating genomic, geologic, and paleontologic data hold promise for providing new insight into the coevolution of life and environment over Earth history.

  7. Reconstructed ancestral enzymes suggest long-term cooling of Earth's photic zone since the Archean.

    PubMed

    Garcia, Amanda K; Schopf, J William; Yokobori, Shin-Ichi; Akanuma, Satoshi; Yamagishi, Akihiko

    2017-05-02

    Paleotemperatures inferred from the isotopic compositions (δ 18 O and δ 30 Si) of marine cherts suggest that Earth's oceans cooled from 70 ± 15 °C in the Archean to the present ∼15 °C. This interpretation, however, has been subject to question due to uncertainties regarding oceanic isotopic compositions, diagenetic or metamorphic resetting of the isotopic record, and depositional environments. Analyses of the thermostability of reconstructed ancestral enzymes provide an independent method by which to assess the temperature history inferred from the isotopic evidence. Although previous studies have demonstrated extreme thermostability in reconstructed archaeal and bacterial proteins compatible with a hot early Earth, taxa investigated may have inhabited local thermal environments that differed significantly from average surface conditions. We here present thermostability measurements of reconstructed ancestral enzymatically active nucleoside diphosphate kinases (NDKs) derived from light-requiring prokaryotic and eukaryotic phototrophs having widely separated fossil-based divergence ages. The ancestral environmental temperatures thereby determined for these photic-zone organisms--shown in modern taxa to correlate strongly with NDK thermostability--are inferred to reflect ancient surface-environment paleotemperatures. Our results suggest that Earth's surface temperature decreased over geological time from ∼65-80 °C in the Archean, a finding consistent both with previous isotope-based and protein reconstruction-based interpretations. Interdisciplinary studies such as those reported here integrating genomic, geologic, and paleontologic data hold promise for providing new insight into the coevolution of life and environment over Earth history.

  8. Weak-coupling superconductivity in a strongly correlated iron pnictide

    PubMed Central

    Charnukha, A.; Post, K. W.; Thirupathaiah, S.; Pröpper, D.; Wurmehl, S.; Roslova, M.; Morozov, I.; Büchner, B.; Yaresko, A. N.; Boris, A. V.; Borisenko, S. V.; Basov, D. N.

    2016-01-01

    Iron-based superconductors have been found to exhibit an intimate interplay of orbital, spin, and lattice degrees of freedom, dramatically affecting their low-energy electronic properties, including superconductivity. Albeit the precise pairing mechanism remains unidentified, several candidate interactions have been suggested to mediate the superconducting pairing, both in the orbital and in the spin channel. Here, we employ optical spectroscopy (OS), angle-resolved photoemission spectroscopy (ARPES), ab initio band-structure, and Eliashberg calculations to show that nearly optimally doped NaFe0.978Co0.022As exhibits some of the strongest orbitally selective electronic correlations in the family of iron pnictides. Unexpectedly, we find that the mass enhancement of itinerant charge carriers in the strongly correlated band is dramatically reduced near the Γ point and attribute this effect to orbital mixing induced by pronounced spin-orbit coupling. Embracing the true band structure allows us to describe all low-energy electronic properties obtained in our experiments with remarkable consistency and demonstrate that superconductivity in this material is rather weak and mediated by spin fluctuations. PMID:26729630

  9. Electron Spectroscopy Studies of Iron, Iron Sulfides and Supported Iron Surfaces: Chemisorption of Simple Gases.

    NASA Astrophysics Data System (ADS)

    Lee, Yiu Chung

    EELS was used to investigate the chemisorption of oxygen and carbon on iron. The EELS spectra of oxidized iron show characteristic features with strong enhancement of the interband transitions involving the Fe 3d band (4.6 and 7.5 eV) and moderate enhancement of the M(,2,3) transition doublet (54.4 and 58.2 eV). The changes in the electron energy loss structures with an overlayer of graphitic or carbidic carbon were investigated. The adsorption and growth of iron on Ni(100) has been studied using the combined techniques of LEED and EELS. Initially iron grows by a layer-by-layer mechanism for the first few layers. High iron coverages result in the observation of complex LEED patterns with satellites around the main (1 x 1) diffraction sports. This is due to the formation of b.c.c. Fe(110) crystallites arranged in domains with different orientations. EELS studies show the presence of three stages in the growth of iron on Ni(100): low-coverage, film-like and bulk-like. Auger and EELS were used to study the iron sulfide (FeS(,2), Fe(,7)S(,8) and FeS) surfaces. A characteristic M(,2,3) VV Auger doublet with a separation of 5.0 eV was observed on the sulfides. An assignment of the electron energy loss peaks was made based on the energy dependence of the loss peaks and previous photoemission results. The effect of argon ion bombardment was studied. Peaks with strong iron and sulfur character were observed. Heating the damaged sulfides results in reconstruction of the sulfide surfaces. The reactions of the sulfides with simple gases, such as H(,2), CO, CH(,4), C(,2)H(,4), NH(,3) and O(,2) were also studied. Using XPS, the chemisorption of SO(,2) on CaO(100) has been studied. The chemical state of sulfur has been identified as that of sulfate. The kinetics of SO(,2) chemisorption on CaO are discussed. The binding states of Fe and Na on CaO were determined to be Fe('2+) and Na('+) respectively. At low Fe or Na coverages (< 0.5 ML), there is a large increase in the rate of

  10. The Orosirian-Statherian banded iron formation-bearing sequences of the southern border of the Espinhaço Range, Southeast Brazil

    NASA Astrophysics Data System (ADS)

    Rolim, Vassily Khoury; Rosière, Carlos A.; Santos, João Orestes Schneider; McNaughton, Neal J.

    2016-01-01

    The Serra da Serpentina and the Serra de São José groups are two distinct banded iron formation-bearing metasedimentary sequences along the eastern border of the southern Espinhaço Range that were deposited on the boundary between the Orosirian and Statherian periods. The Serra da Serpentina Group (SSG) has an Orosirian maximum depositional age (youngest detrital zircon grain age = 1990 ± 16 Ma) and consists of fine clastic metasediments at the base and chemical sediments, including banded iron formations (BIFs), on the top, corresponding to the Meloso and Serra do Sapo formations, respectively, and correlating with the pre-Espinhaço Costa Sena Group. The SSG represents sedimentary deposition on an epicontinental-epeiric, slow downwarping sag basin with little tectonic activity. The younger Serra de São José Group (SJG) is separated from the older SSG by an erosional unconformity and was deposited in a tectonically active continental rift-basin in the early stages of the opening of the Espinhaço Trough. The Serra do São José sediments stretch along the north-south axis of the rift and comprise a complete cycle of transgressive sedimentary deposits, which were subdivided, from base to top, into the Lapão, Itapanhoacanga, Jacém and Canjica formations. The Itapanhoacanga Formation has a maximum depositional age of 1666 ± 32 Ma (Statherian), which coincides with the maximum depositional age (i.e., 1683 ± 11 Ma) of the São João da Chapada Formation, one of the Espinhaço Supergroup's basal units. The Serra de São José Rift and the Espinhaço Rift likely represent the same system, with basal units that are facies variations of the same sequence. The supracrustal rocks have undergone two stages of deformation during the west-verging Brasiliano orogeny that affected the eastern margin of the São Francisco Craton and generated a regional-scale, foreland N-S trending fold-thrust belt, which partially involved the crystalline basement. Thrust faults have

  11. Archean recycled oceanic crust sampled in Azores lavas

    NASA Astrophysics Data System (ADS)

    Beguelin, P.; Bizimis, M.; Beier, C.; Turner, S.

    2016-12-01

    Azores lava compositions extend below the mantle array in ɛNd-ɛHf space and define the steepest slope of all plume provinces [1], but this pattern is largely controlled by low ɛHf lavas from Eastern São Miguel island (SM). Here we present new Hf isotope data on well-characterized on-land and submarine Azores lavas from several islands, the Terceira Rift and João do Castro seamount (JdC), in order to further constrain this trend. While Azores lavas fall along the mantle array with relatively steep slopes (e.g. São Jorge slope = 2.1), both SM and JdC fall below the mantle array as two distinct steep arrays with slopes of 2.0 and 2.6 respectively, extending to ɛHf = 0 at ɛNd = 2 (SM) and 4 (JdC). This is a unique feature in OIBs. The new Hf-Nd data overlaps the HIMU-type Mangaia and St Helena compositions. However, SM and JdC have distinctly less radiogenic and more variable Pb isotopes (e.g. 206Pb/204Pb = 18.8 to 20.2) than HIMU. Hf-Nd isotope decoupling below the mantle array is therefore not an exclusive HIMU signature. The coupled Hf-Nd-Pb-Sr isotope compositions of the enriched SM and JdC end-members can be modeled by recycled 2.5-3.0 Ga N-MORB, with some E-MORB affinity for SM. Unlike HIMU however, no Pb-loss during subduction is required for recycled MORB to explain their Pb isotopes. The relatively high κ (232Th/238U 4.3) required by the Azores data is also consistent with a high Th/U Archean mantle [2]. Aged, metasomatised mantle lithosphere based on a global peridotite and pyroxenite compilation is too variable and only fortuitously could explain the Azores compositions. Both enriched JdC and SM endmembers can therefore be explained by a recycled Archean oceanic crust that is locally heterogeneous, as presently observed in some MOR segments where N-and E-MORB exist closely [3, 4]. The lack of mixing between SM and JdC end-members some 100 km apart further implies that this recycled crust has retained its distinct signature through mantle convection

  12. Late Archean greenstone tectonics: Evidence for thermal and thrust-loading lithospheric subsidence from stratigraphic sections in the Slave Province, Canada

    NASA Technical Reports Server (NTRS)

    Kidd, W. S. F.; Kusky, T. M.; Bradley, D. C.

    1988-01-01

    How late Archean tectonics could be seen to have operated in the Slave Province is illustrated. Lithospheric thinning and stretching, with the formation of rifted margins (to continental or island arc fragments), and lithospheric flexural loading of the kind familiar in arcs and mountain belts could be discerned.

  13. Iron Deficiency Induces a Partial Inhibition of the Photosynthetic Electron Transport and a High Sensitivity to Light in the Diatom Phaeodactylum tricornutum.

    PubMed

    Roncel, Mercedes; González-Rodríguez, Antonio A; Naranjo, Belén; Bernal-Bayard, Pilar; Lindahl, Anna M; Hervás, Manuel; Navarro, José A; Ortega, José M

    2016-01-01

    Iron limitation is the major factor controlling phytoplankton growth in vast regions of the contemporary oceans. In this study, a combination of thermoluminescence (TL), chlorophyll fluorescence, and P700 absorbance measurements have been used to elucidate the effects of iron deficiency in the photosynthetic electron transport of the marine diatom P. tricornutum. TL was used to determine the effects of iron deficiency on photosystem II (PSII) activity. Excitation of iron-replete P. tricornutum cells with single turn-over flashes induced the appearance of TL glow curves with two components with different peaks of temperature and contributions to the total signal intensity: the B band (23°C, 63%), and the AG band (40°C, 37%). Iron limitation did not significantly alter these bands, but induced a decrease of the total TL signal. Far red excitation did not increase the amount of the AG band in iron-limited cells, as observed for iron-replete cells. The effect of iron deficiency on the photosystem I (PSI) activity was also examined by measuring the changes in P700 redox state during illumination. The electron donation to PSI was substantially reduced in iron-deficient cells. This could be related with the important decline on cytochrome c 6 content observed in these cells. Iron deficiency also induced a marked increase in light sensitivity in P. tricornutum cells. A drastic increase in the level of peroxidation of chloroplast lipids was detected in iron-deficient cells even when grown under standard conditions at low light intensity. Illumination with a light intensity of 300 μE m(-2) s(-1) during different time periods caused a dramatic disappearance in TL signal in cells grown under low iron concentration, this treatment not affecting to the signal in iron-replete cells. The results of this work suggest that iron deficiency induces partial blocking of the electron transfer between PSII and PSI, due to a lower concentration of the electron donor cytochrome c 6. This

  14. Iron Deficiency Induces a Partial Inhibition of the Photosynthetic Electron Transport and a High Sensitivity to Light in the Diatom Phaeodactylum tricornutum

    PubMed Central

    Roncel, Mercedes; González-Rodríguez, Antonio A.; Naranjo, Belén; Bernal-Bayard, Pilar; Lindahl, Anna M.; Hervás, Manuel; Navarro, José A.; Ortega, José M.

    2016-01-01

    Iron limitation is the major factor controlling phytoplankton growth in vast regions of the contemporary oceans. In this study, a combination of thermoluminescence (TL), chlorophyll fluorescence, and P700 absorbance measurements have been used to elucidate the effects of iron deficiency in the photosynthetic electron transport of the marine diatom P. tricornutum. TL was used to determine the effects of iron deficiency on photosystem II (PSII) activity. Excitation of iron-replete P. tricornutum cells with single turn-over flashes induced the appearance of TL glow curves with two components with different peaks of temperature and contributions to the total signal intensity: the B band (23°C, 63%), and the AG band (40°C, 37%). Iron limitation did not significantly alter these bands, but induced a decrease of the total TL signal. Far red excitation did not increase the amount of the AG band in iron-limited cells, as observed for iron-replete cells. The effect of iron deficiency on the photosystem I (PSI) activity was also examined by measuring the changes in P700 redox state during illumination. The electron donation to PSI was substantially reduced in iron-deficient cells. This could be related with the important decline on cytochrome c6 content observed in these cells. Iron deficiency also induced a marked increase in light sensitivity in P. tricornutum cells. A drastic increase in the level of peroxidation of chloroplast lipids was detected in iron-deficient cells even when grown under standard conditions at low light intensity. Illumination with a light intensity of 300 μE m-2 s-1 during different time periods caused a dramatic disappearance in TL signal in cells grown under low iron concentration, this treatment not affecting to the signal in iron-replete cells. The results of this work suggest that iron deficiency induces partial blocking of the electron transfer between PSII and PSI, due to a lower concentration of the electron donor cytochrome c6. This

  15. Rhizosphere Microbial Community Structure in Relation to Root Location and Plant Iron Nutritional Status

    PubMed Central

    Yang, Ching-Hong; Crowley, David E.

    2000-01-01

    Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. To examine this question, we performed an experiment with barley (Hordeum vulgare) plants under iron-limiting and iron-sufficient growth conditions. Plants were grown in an iron-limiting soil in root box microcosms. One-half of the plants were treated with foliar iron every day to inhibit phytosiderophore production and to alter root exudate composition. After 30 days, the bacterial communities associated with different root zones, including the primary root tips, nonelongating secondary root tips, sites of lateral root emergence, and older roots distal from the tip, were characterized by using 16S ribosomal DNA (rDNA) fingerprints generated by PCR-denaturing gradient gel electrophoresis (DGGE). Our results showed that the microbial communities associated with the different root locations produced many common 16S rDNA bands but that the communities could be distinguished by using correspondence analysis. Approximately 40% of the variation between communities could be attributed to plant iron nutritional status. A sequence analysis of clones generated from a single 16S rDNA band obtained at all of the root locations revealed that there were taxonomically different species in the same band, suggesting that the resolving power of DGGE for characterization of community structure at the species level is limited. Our results suggest that the bacterial communities in the rhizosphere are substantially different in different root zones and that a rhizosphere community may be altered by changes in root exudate composition caused by changes in plant iron nutritional status. PMID:10618246

  16. Self-organized iron-oxide cementation geometry as an indicator of paleo-flows

    DOE PAGES

    Wang, Yifeng; Chan, Marjorie A.; Merino, Enrique

    2015-06-30

    Widespread iron oxide precipitation from groundwater in fine-grained red beds displays various patterns, including nodulation, banding and scallops and fingers. Hematite nodules have been reported also from the Meridiani Planum site on Mars and interpreted as evidence for the ancient presence of water on the red planet. Here we show that such patterns can autonomously emerge from a previously unrecognized Ostwald ripening mechanism and they capture rich information regarding ancient chemical and hydrologic environments. A linear instability analysis of the reaction-transport equations suggests that a pattern transition from nodules to bands may result from a symmetry breaking of mineral dissolutionmore » and precipitation triggered by groundwater advection. Round nodules tend to develop under nearly stagnant hydrologic conditions, while repetitive bands form in the presence of persistent water flows. Since water circulation is a prerequisite for a sustainable subsurface life, a Martian site with iron oxide precipitation bands, if one were found, may offer a better chance for detecting extraterrestrial biosignatures on Mars than would sites with nodules.« less

  17. Characterizing the Purple Earth: Modeling the globally integrated spectral variability of the Archean Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanromá, E.; Pallé, E.; López, R.

    2014-01-01

    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. However, the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3.0 Gyr ago. At thatmore » time, one of the more widespread life forms on the planet was purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and purple bacteria concentration/distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.« less

  18. The petrology, structure and geochemistry of an Archean terrane in the North Snowy Block, Beartooth Mountains, Montana

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.

    1984-12-01

    Six major rock units in the North Snowy Block in an Archean mobile belt are recognized between all units representing discontinuities in metamorphic grade, structural style, geochemistry, and isotopic ages. Four of the units occur in NE trending linear belts; the Basement Gneiss; the phyllitic Davis Creek Schist; the mount cowen augen gneis; the Paragneiss unit. Overlying the linear units is the 3.2 Ga old Pine Creek Nappe Complex, an isoclinally folded, middle to upper amphibolite facies, thrust nappe consisting of the Barney Creek Amphibolite, George Lake Marble and Jewel Quartzite. The highest structural units, including a thick sequence of upper amphibolite grade supracrustal rocks and a lower section of injected 3.4 Ga old granitic to tonalitic migmatitic rocks were emplaced on the Columbine Thrust. It is shown that there was secular variation in tectonic style in the Archean of southwest Montana. Three stages are recognized: (1) melting of ancient matic crust produced trondhjemitic continental nuclei; (2) numerous ensialic basins were created and destroyed, resulting in high grade metamorphism and mignatization of supracrustal rocks; and (3) contemporary style plate tectonics resulted in generation of large volumes of andesities and calc-alkaline granitic rocks, transcurrent faulting, and thrust faulting.

  19. Helium in the Archean komatiites revisited: significantly high 3He/ 4He ratios revealed by fractional crushing gas extraction

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuya; Seta, Akihiro; Matsuda, Jun-ichi; Takebe, Masamichi; Chen, Yuelong; Arai, Shoji

    2002-03-01

    In order to provide constraints on 3He/ 4He ratios in the Archean mantle source, we have analyzed helium isotopic compositions in 2.7 Ga old Archean komatiites from the Abitibi green stone belt, Ontario, Canada. Two spinifex-textured komatiites yielded significantly high 3He/ 4He ratios of about 30 Ra (where Ra denotes the atmospheric 3He/ 4He ratio) in fractions released by sequential crushing. These results are the first confirmation of the occurrence of high 3He/ 4He ratios in Archean komatiites after the intriguing finding by Richard et al. [Science 273 (1996) 93-95] in komatiites from a nearby locality, Alexo. We also found that the crystal structure of the komatiites was significantly enriched in a radiogenic component ( 4He) and that this 4He was actually degassed by crushing gas extraction, indicating that the nominal 3He/ 4He ratios measured by crushing are lower limits for the 3He/ 4He ratio of the intrinsic component. By constraining the release behavior of radiogenic 4He by crushing, we have estimated the initial 3He/ 4He ratio of the inclusion-trapped component to be 73.0 +7.8-5.5 Ra. A mantle source with such a high 3He/ 4He ratio at 2.7 Ga, if evolved in a closed system, would have a present-day 3He/ 4He ratio of 46-60 Ra, indicating that the komatiites from Munro have trapped their helium from a mantle reservoir with a very high 3He/ 4He ratio in the context of the present-day value. However, whether or not such a source can be considered as equivalent to the primitive mantle source (such that sampled at hotspots) is highly model-dependent. If a closed system evolution model is assumed, helium in the Munro komatiites is not likely to be derived from the mid-ocean ridge basalt (MORB) source-like reservoir. However, the notion that the komatiites may be derived from a depleted reservoir in terms of trace elemental and isotopic geochemistry might require an alternative view for the 3He/ 4He evolution in ancient mantle reservoirs, as has been

  20. Banded iron-formations of late Proterozoic age in the central eastern desert, Egypt: geology and tectonic setting.

    USGS Publications Warehouse

    Sims, P.K.; James, H.L.

    1984-01-01

    Iron-formation occurs as stratigraphic units within a layered andesite-basalt sequence. The sequence is metamorphosed to greenschist facies, intruded by syntectonic granodiorite and post-tectonic granite, and complexly deformed and grossly fragmented; the rocks are allochthonous along thrust faults. The iron deposits are chemical precipitates, accumulated during lulls in volcanism, apparently in an intraoceanic island-arc environment. The deposits are of the Algoma type of iron-formation.-G.J.N.

  1. Cannon Wear and Erosion Science and Technology Objective Program (STO) 155-mm Projectile Rotating Band/Obturation for Extended Range

    DTIC Science & Technology

    2015-06-01

    loading of the projectile steel against the gun tube with concomitant increased gun tube wear. Chromium Nodules and Thermal Gouging Chromium nodules...40 mm and 80-mm anti-aircraft gun ) and the fact that welded rotating bands in the past were made from ARMCO Inc. iron. Stainless steel was selected...down the gun tube. Nickel rotating band Stainless steel rotating band Figure 12 Redesigned band configurations Based on the results

  2. Quantitative mapping of particulate iron in an ocean dump using remotely sensed data

    NASA Technical Reports Server (NTRS)

    Ohlhorst, C. W.; Bahn, G. S.

    1978-01-01

    A remote sensing experiment was conducted at the industrial acid waste ocean dump site located approximately 38 n mi SE of Cape Henlopen, Delaware, to see if there was a relationship between aircraft remotely sensed spectral signatures and the iron concentration measured in the plume. Results are presented which show that aircraft remotely sensed spectral data can be used to quantify and map an acid waste dump in terms of its particulate iron concentration. A single variable equation using the ratio of band 2 (440-490 nm) radiance to band 4 (540-580 nm) radiance was used to quantify the acid plume and the surrounding water. The acid waste varied in age from freshly dumped to 3 1/2 hours old. Particulate iron concentrations in the acid waste were estimated to range up to 1.1 mg/liter at the 0.46 meter depth. A classification technique was developed to remove sunglitter-affected pixels from the data set.

  3. Indentation and Lateral Escape in Western Ishtar Terra, Venus — An Analog for Deformation of the Archean Abitibi Subprovince, Superior Craton, Canada Without Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Harris, L. B.; Bédard, J. H.

    2015-05-01

    Radar about Lakshmi Planum, Venus, shows regional transcurrent shear zones, folds and thrusts formed by indentation and lateral escape. The Archean Abitibi subprovince Canada shows identical structures suggesting a similar, non-plate tectonic origin.

  4. Assessment of the U-Th-Pb system in two Archean metabasalts - Deciphering the complex histories of sulfides and silicates using acid leaching methods

    NASA Astrophysics Data System (ADS)

    Smith, Patrick E.; Farquhar, Ronald M.; Tatsumoto, Mitsunobo

    1989-08-01

    A detailed U-Th-Pb isotopic study of two Archean basalts from two greenstone belts in the eastern Wawa Subprovince of the Canadian shield was carried out on samples that were either dissolved at once or leached in either 1N HNO3, 2N HCl, or 6N HCl. The abundances and isotopic compositions from these samples suggest that variable disturbances had occurred in both rock systems, which can be attributed to Pb mobility, particularly in the form of sulphide addition at various times, and, in one case, by recent Pb loss. The Pb isotopic compositions of the sulphides record late events which affected the greenstone terrains. The results also indicate that the sulphides and silicate rocks could have originated from a common source. The isotopic compositions of the basalt suggest that, in the Archean, both depleted and enriched mantle sources existed beneath the Wawa Subprovince.

  5. Geochemical differences of magnetite from the Algoma- and Superior- type banded iron formations based on in situ LA-ICP-MS analysis

    NASA Astrophysics Data System (ADS)

    Moon, I.; Lee, I.; Park, J. W.; Yang, X.

    2017-12-01

    Precambrian banded iron formations (BIFs) have been highly attractive study issues for decades about their genesis. Recently, more detailed geochemical studies have been conducted on mineral chemistry of magnetite using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Magnetite geochemistry enables us to constrain the physicochemical controlling factors for abundance of trace elements in magnetite and understand depositional environment of BIFs. In this study, we provide results of magnetite trace elemental features from two representative types of BIFs which are Algoma- and Superior- type BIF in the world, with aims to understand systematic differences in magnetite compositions between Algoma- and Superior- type BIF. The magnetites are divided into two groups according to their Al, Mn, Ti, V, and Ni concentration. The magnetites from the Algoma-type BIFs are more enriched in trace elements than those from the Superior-type. The geochemical differences are caused by difference precipitation condition including oxygen fugacity, temperature and fluid source.

  6. Electronic origin of strain effects on solute stabilities in iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Li, Xiangyan; Xu, Yichun, E-mail: xuyichun@issp.ac.cn, E-mail: csliu@issp.ac.cn

    2016-08-21

    Nonuniform strain fields might induce the segregation of alloying solutes and ultimately lead to the mechanical performance degradation of body-centered-cubic (bcc) Fe based steels serving in extreme environments, which is worthy of investigation. In this paper, two typical volume-conserving strains, shear strain (SS) and normal strain (NS), are proposed to investigate the strain effects on solute stabilities in bcc iron by first-principles calculations. For solutes in each transition metal group, the calculated substitution energy change due to SS exhibits a linear dependence on the valence d radius of the solutes, and the slope decreases in an exponential manner as amore » function of the absolute difference between the Watson's electronegativity of iron and the averaged value of each transition metal group. This regularity is attributed to the Pauli repulsion between the solutes and the nearest neighboring Fe ions modulated by the hybridization of valence d bands and concluded to be originated from the characteristics of valence d bonding between the transition-metal solutes and Fe ions under SS. For main-group and post transition-metal solutes, the considerable drop of substitution energy change due to NS is concluded to be originated from the low-energy side shift of the widened valence s and p bands of the solutes. Our results indicate that the stabilities of substitutional solutes in iron under volume-conserving strain directly correlate with the intrinsic properties of the alloying elements, such as the valence d radius and occupancy, having or not having valence s and p bands.« less

  7. Superconductivity between standard types: Multiband versus single-band materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vagov, A.; Shanenko, A. A.; Milošević, M. V.

    In the nearest vicinity of the critical temperature, types I and II of conventional single-band superconductors interchange at the Ginzburg-Landau parameter κ = 1/√2. At lower temperatures this point unfolds into a narrow but finite interval of κ’s, shaping an intertype (transitional) domain in the (κ,T ) plane. In the present work, based on the extended Ginzburg-Landau formalism, we show that the same picture of the two standard types with the transitional domain in between applies also to multiband superconductors. However, the intertype domain notably widens in the presence of multiple bands and can become extremely large when the systemmore » has a significant disparity between the band parameters. It is concluded that many multiband superconductors, such as recently discovered borides and iron-based materials, can belong to the intertype regime.« less

  8. Interaction of fluorescent sensor with superparamagnetic iron oxide nanoparticles.

    PubMed

    Karunakaran, Chockalingam; Jayabharathi, Jayaraman; Sathishkumar, Ramalingam; Jayamoorthy, Karunamoorthy

    2013-06-01

    To sense superparamagnetic iron oxides (Fe2O3 and Fe3O4) nanocrystals a sensitive bioactive phenanthroimidazole based fluorescent molecule, 2-(4-fluorophenyl)-1-phenyl-1H-phenanthro [9,10-d] imidazole has been designed and synthesized. Electronic spectral studies show that phenanthroimidazole is bound to the surface of iron oxide semiconductors. Fluorescent enhancement has been explained on the basis of photo-induced electron transfer (PET) mechanism and apparent binding constants have been deduced. Binding of phenanthroimidazole with iron oxide nanoparticles lowers the HOMO and LUMO energy levels of phenanthroimidazole molecule. Chemical affinity between the nitrogen atom of the phenanthroimidazole and Fe(2+) and Fe(3+) ions on the surface of the nano-oxide may result in strong binding of the phenanthroimidazole derivative with the nanoparticles. The electron injection from the photoexcited phenanthroimidazole to the iron oxides conduction band explains the enhanced fluorescence. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Archean crustal evolution of the Narryer Gneiss Terrane, Western Australia, as revealed by the U-Pb age and Hf-isotope compositions of zircon from the granitic gneisses

    NASA Astrophysics Data System (ADS)

    Sylvester, P.; Souders, K.; Crowley, J. L.; Myers, J.

    2011-12-01

    The Narryer Gneiss Terrane of the Yilgarn Craton, Western Australia, is an important area for studies of early crustal evolution because of the preservation of (1) detrital zircons of Hadean to Archean age in the Jack Hills and Mt. Narryer metasedimentary belts, and (2) several widespread units of granitic gneisses emplaced between ca. 3.7 and 2.6 Ga. We have analyzed the U-Pb geochronology and Hf-isotope geochemistry of magmatic zircons from 38 samples of the granitic gneisses using laser ablation - (multicollector) - ICPMS. The sample suite is dominated by the Meeberrie gneiss, a banded quartz-microcline-oligoclase-biotite gneiss of monzogranite to granodiorite composition, and the Dugel gneiss, a leucocratic, pegmatite-layered syenogranite gneiss, but gneisses of dioritic to tonalitic composition, as well as less deformed granite sheets, are also represented. Magmatic zircons were identified on the basis of the preservation of oscillatory zoning in BSE and CL images, igneous Th/U ratios (>0.2), and concordant U-Pb isotopic systematics with low common Pb contents. The results indicate many of the gneisses are composed of the products of multiple magmatic events, as has been reported previously for samples of the Meeberrie gneiss (Kinny & Nutman, 1996, Precambrian Res. 78, 165-178). Major ages of magmatism preserved in the gneisses occurred at ca. 3685-3665 Ma, 3620-3565 Ma, 3495-3440 Ma, 3375-3330 Ma, and 3300-3260 Ma. The late granite sheets crystallized at 2710-2645 Ma. Hf-isotope compositions of the zircons trend to less radiogenic values with decreasing age, with ɛHf values of ca. 0 to -5 for 3.7-3.4 Ga gneisses, ca. -1 to -9 for 3.4-3.2 Ga gneisses and ca. -5 to -20 for the late granite sheets. The array of the Hf isotopic compositions with time for the entire sample set are fit well by a regression indicating a source reservoir with a 176Lu/177Hf of 0.022 extracted from the depleted mantle at 3.9 Ga. This suggests that the Narryer gneisses and late granite

  10. Zircon geochronology of the Webb Canyon Gneiss and the Mount Owen Quartz Monzonite, Teton Range, Wyoming: Significance to dating late Archean metamorphism in the Wyoming craton

    USGS Publications Warehouse

    Zartman, R.E.; Reed, J.C.

    1998-01-01

    The Webb Canyon Gneiss is a strongly foliated and lineated orthogneiss intercalated with layered Archean gneisses in the northern part of the Teton Range in northwestern Wyoming. The Mount Owen Quartz Monzonite is a non-foliated or weakly flow foliated rock which forms a discordant pluton exposed in the central part of the range and that cuts the Webb Canyon Gneiss and the associated layered gneisses. U-Pb zircon geochronology reported here indicates that euhedral pink zircon grew in the Webb Canyon Gneiss at about 2680 Ma, probably during the peak of regional metamorphism and that the Mount Owen was emplaced at 2547??3 Ma. These dates provide the best constraints so far reported on the age of Late Archean regional metamorphism in the western part of the Wyoming craton.

  11. The Penokean orogeny in the Lake Superior region

    USGS Publications Warehouse

    Schulz, K.J.; Cannon, W.F.

    2007-01-01

    The Penokean orogeny began at about 1880 Ma when an oceanic arc, now the Pembine-Wausau terrane, collided with the southern margin of the Archean Superior craton marking the end of a period of south-directed subduction. The docking of the buoyant craton to the arc resulted in a subduction jump to the south and development of back-arc extension both in the initial arc and adjacent craton margin to the north. A belt of volcanogenic massive sulfide deposits formed in the extending back-arc rift within the arc. Synchronous extension and subsidence of the Superior craton resulted in a broad shallow sea characterized by volcanic grabens (Menominee Group in northern Michigan). The classic Lake Superior banded iron-formations, including those in the Marquette, Gogebic, Mesabi and Gunflint Iron Ranges, formed in that sea. The newly established subduction zone caused continued arc volcanism until about 1850 Ma when a fragment of Archean crust, now the basement of the Marshfield terrane, arrived at the subduction zone. The convergence of Archean blocks of the Superior and Marshfield cratons resulted in the major contractional phase of the Penokean orogeny. Rocks of the Pembine-Wausau arc were thrust northward onto the Superior craton causing subsidence of a foreland basin in which sedimentation began at about 1850 Ma in the south (Baraga Group rocks) and 1835 Ma in the north (Rove and Virginia Formations). A thick succession of arc-derived turbidites constitutes most of the foreland basin-fill along with lesser volcanic rocks. In the southern fold and thrust belt tectonic thickening resulted in high-grade metamorphism of the sediments by 1830 Ma. At this same time, a suite of post-tectonic plutons intruded the deformed sedimentary sequence and accreted arc terranes marking the end of the Penokean orogeny. The Penokean orogen was strongly overprinted by younger tectonic and thermal events, some of which were previously ascribed to the Penokean. Principal among these was a

  12. Study of corrosion using long period fiber gratings coated with iron exposed to salty water

    NASA Astrophysics Data System (ADS)

    Coelho, L.; Santos, J. L.; Jorge, P. A. S.; de Almeida, J. M. M.

    2017-04-01

    A study of long period fiber gratings (LPFG) over coated with iron (Fe) and subjected to oxidation in water with different sodium chloride (NaCl) concentrations is presented. The formation of iron oxides and hydroxides was monitored in real time by following the features of the LPFG attenuation band. Preliminary results show that Fe coated LPFGs can be used as sensors for early warning of corrosion in offshore and in coastal projects where metal structures made of iron alloys are in contact with sea or brackish water.

  13. The Effect of Wavelength-Dependent Emissivity on the Melting Temperatures of Iron From Shock Wave Measurements

    NASA Astrophysics Data System (ADS)

    Heinz, D. L.; Mark, H.

    2012-12-01

    The high-pressure melting curve of iron at the conditions of the outer core is anchored by the shock wave measurements of Bass et. al. 1987. They used spectral radiometric techniques, looking at shocked iron films or foils through a transparent anvil. They assumed that the emissivity of the iron was independent of wavelength. The wavelength dependence of the emissivity of fcc and bcc iron was measured by Taylor, 1952. Both structures have a change in emissivity of 20% over 200nm in the visible, although the absolute magnitude of the emissivity is different. In the measurement of temperature using spectral radiometry, the absolute value of the emissivity does not effect the temperature measurement. In iron the 3d-bands straddle the Fermi Energy in any close packed structure (Boness and Brown, 1990). The electrons at the Fermi Energy can easily be promoted into the empty states of the conduction band, and thus are the basis of the electronic contribution to the heat capacity. It is these same electrons in the 3d-bands that also control the emissivity. With increasing wavelength, more electrons are promoted into the conduction band, which means the emissivity is higher at shorter wavelengths than at longer wavelengths. We reanalyzed the shock wave data of Bass et. al. using the wavelength dependent emissivity. The corrected melting temperature of iron at 243 GPa is 5900 +/-500 K compared to Bass et. al.'s determination of 6700 +/- 400 K. This is just slightly higher then the estimate (based upon the assumption of the heat capacity being equal to 5R) of Brown and McQueen, 1986 of 5000-5700 K, and in good agreement with theoretical calculations of Alfe, 2010. Alfe, D., 2010, Rev. Min. and Geochem., 71, 337-354. Bass, J. D., B. Svendsen, and T. J. Ahrens, 1987, M. H. Manghnani and Y. Syono, Terra Scientific Publishing Co. / American Geophysical Union, Washington, D. C., 393-402. Boness, D. A., and J. M. Brown, 1990, JGR, 95, 21,721-30. Brown, J. M. and R. G. Mc

  14. Timing and sources of late Archean magmatism, Kolar area, south India: Implications for Archean tectonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogstad, E.J.

    1988-01-01

    The N-S trending 80 km long by 4-8 km wide Kolar Schist Belt in the Achean Dharwar craton of south India is bounded on its east and west by gneiss terranes. The contacts between the schist belt and surrounding gneisses are tectonic, rather than intrusive or unconformable. On the west side of the schist belt, monzodioritic to granitic gneisses have U-Pb zircon ages of 2631 +6.5/{minus}6 Ma, 2610 +10/{minus}10 Ma, and 2551 +3/{minus}3 Ma. The U-Pb sphene ages of these orthogneisses are between 2553 and 2551 Ma. Later granitic intrusions have U-Pb sphene and garnet ages as young as 2400more » Ma. Gneisses occurring as tectonic and magmatic inclusions in the area contain zircons older than 3140 Ma. The dominant gneiss unit on the east side of the schist belt has a U-Pb zircon age of 2532 +3.5/{minus}3Ma; U-Pb sphene ages east of the belt range from 2520 to 2500 Ma. The last major shearing episode, probably represented by Pb-Pb K-feldspar-whole rock ages on both sides of the schist belt, and by an {sup 40}Ar/{sup 39}Ar muscovite plateau age from sheared gneisses, occurred between 2520 and 2420 Ma. Pb, Nd and Sr initial ratios for the western gneisses suggest that their parent magmas were mantle-derived, but were contaminated by continental crust older than 3200 Ma. Nd, Sr and Pb initial ratios for the eastern gneisses show no evidence of older continental crust either having contaminated the magmas, or acting as part of the source materials. The Kolar Schist Belt is interpreted as the site of a latest Archean or earliest Proterozoic (2520 to 2420 Ma) suture zone where newly generated continental crust on the east was tectonically accreted to the margin of an older (3400 to 2550 Ma) continental nucleus to the west.« less

  15. Effect of inversion layer at iron pyrite surface on photovoltaic device

    NASA Astrophysics Data System (ADS)

    Uchiyama, Shunsuke; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2018-03-01

    Iron pyrite has great potential as a thin-film solar cell material because it has high optical absorption, low cost, and is earth-abundant. However, previously reported iron pyrite solar cells showed poor photovoltaic characteristics. Here, we have numerically simulated its photovoltaic characteristics and band structures by utilizing a two-dimensional (2D) device simulator, ATLAS, to evaluate the effects of an inversion layer at the surface and a high density of deep donor defect states in the bulk. We found that previous device structures did not consider the inversion layer at the surface region of iron pyrite, which made it difficult to obtain the conversion efficiency. Therefore, we remodeled the device structure and suggested that removing the inversion layer and reducing the density of deep donor defect states would lead to a high conversion efficiency of iron pyrite solar cells.

  16. The preservation and degradation of filamentous bacteria and biomolecules within iron oxide deposits at Rio Tinto, Spain.

    PubMed

    Preston, L J; Shuster, J; Fernández-Remolar, D; Banerjee, N R; Osinski, G R; Southam, G

    2011-05-01

    One of the keys to understanding and identifying life on other planets is to study the preservation of organic compounds and their precursor micro-organisms on Earth. Rio Tinto in southwestern Spain is a well documented site of microbial preservation within iron sulphates and iron oxides over a period of 2.1 Ma. This study has investigated the preservation of filamentous iron oxidising bacteria and organics through optical microscopy, scanning electron microscopy (SEM) and Fourier transform infra-red (FTIR) spectroscopy, from laboratory cultures of natural samples to contemporary natural materials to million-year old river terraces. Up to 40% elemental carbon and >7% nitrogen has been identified within microbial filaments and cell clusters in all samples through SEM EDS analyses. FTIR spectroscopy identified C-H(x) absorption bands between 2960 and 2800 cm(-1), Amide I and II absorption bands at 1656 and 1535 cm(-1), respectively and functional group vibrations from within nucleic acids at 917, 1016 and 1124 cm(-1). Absorption bands tracing the diagenetic transformation of jarosite to goethite to hematite through the samples are also identified. This combination of mineralogy, microbial morphology and biomolecular evidence allows us to further understand how organic fossils are created and preserved in iron-rich environments, and ultimately will aid in the search for the earliest life on Earth and potential organics on Mars. © 2011 Blackwell Publishing Ltd.

  17. Evidence for Archean inheritance in the pre-Panafrican crust of Central Cameroon: Insight from zircon internal structure and LA-MC-ICP-MS Usbnd Pb ages

    NASA Astrophysics Data System (ADS)

    Ganwa, Alembert Alexandre; Klötzli, Urs Stephan; Hauzenberger, Christoph

    2016-08-01

    sources. It is likely that erosion, transport and deposition took place between 2116 and 821 Ma. Geochemical data show that the REE, Y, Yb, Sr/Y of some samples are similar to the known Archean craton formations (depletion in REE, Y ≤ 10 ppm, Yb ≤ 1 ppm, Sr/Y ≥ 30). These characteristics are known as specific for the Archean TTG (Tonalite-Trondhjemite-Granodiorite). It means that: i) Archean TTG contribute significantly to the detritus of the sedimentary basin, ii) The depositional basin and the source rock were close and the detritus was immature. Our results show that the Pre-Panafrican history of central Cameroon includes Meso- to Neo-Archean crustal accretion and associated magmatism prior to the Paleoproterozoic event of the West Central African Belt. In respect to this new insight, any evolutionary reconstruction of the area should integrate the presence of Archean crust.

  18. Revisiting the Si Isotope Record of Precambrian Cherts and Banded Iron Formations Using New Experimental Results

    NASA Astrophysics Data System (ADS)

    Zheng, X. Y.; Satkoski, A.; Beard, B. L.; Reddy, T. R.; Beukes, N. J.; Johnson, C.

    2017-12-01

    Precambrian Banded iron formations (BIFs) and cherts provide a record of Fe and Si biogeochemical cycling in early Earth marine environments. Much of the focus on BIFs has been the origin and pathways for Fe, but Si is intimately tied to BIF genesis through its connection to Fe minerals, either through direct structural bonding or through sorption. In the Precambrian ocean, aqueous Si contents were high, and it is increasingly recognized that Fe(III)-Si gels were the most likely precursor to BIFs [1]. It is known that Fe-Si bonding affects stable Fe isotope fractionations [2], and our recent experimental work shows this to be true for stable Si isotope fractionations [3, 4]. Silicon isotope fractionations in the Fe-Si system vary from 0‰ to nearly 4‰ in 30Si/28Si ratios with the solid phase being isotopically light depending on Fe:Si ratio [3, 4, and this study], a range far larger than that of 56Fe/54Fe ratios, highlighting the fact that Si isotopes are a highly sensitive tracer of the Fe-Si cycle. This range in Si isotope fractionation factors for the Fe-Si system can explain the full range of δ30Si values measured in Precambrian BIFs, providing a new framework to interpret Precambrian δ30Si records. Our results provide strong support for a model where Fe(III)-Si gels are the precursor phase for BIFs, which in turn affects estimates for the aqueous Fe and Si contents of the Precambrian oceans through changes in Fe-Si gel solubility. Our experiments also showed that microbial dissimilatory iron reduction (DIR) of Fe(III)-Si gel can easily produce a solid with Fe(II)-Fe(III) stoichiometry equal to magnetite, in marked contrast to abiotic incorporation of Fe(II) into Fe(III)-Si gel that resulted in a solid with Fe(II)-Fe(III) stoichiometry much lower than magnetite. Moreover, this DIR process produces a unique, negative δ30Si signature that should be eventually preserved in quartz closely associated with magnetite upon phase transformation of Fe-Si gel, and

  19. Reduction Pathways of Cyclooctatetraene Iron Tricarbonyl as Examined Using Infrared Spectroelectrochemistry.

    DTIC Science & Technology

    1987-09-25

    173/175/179 potentiostat system was used for voltammetric measurements and thin-layer electrolyses . Cyclooctatetraene iron tricarbonyl was synthesised...the subsequent addftion of water . 3 The infrared spectrum for this species contains similar features to those, in Fig. 3B, including a band around 1670

  20. Analysis of ablation debris from natural and artificial iron meteorites

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Davis, A. S.

    1977-01-01

    Artificial ablation studies were performed on iron and nickel-iron samples using an arc-heated plasma of ionized air. Experiment conditions simulated a meteoroid traveling about 12 km/sec at an altitude of 70 km. The artificially produced fusion crusts and ablation debris show features very similar to natural fusion crusts of the iron meteorites Boguslavka, Norfork, and N'Kandhla and to magnetic spherules recovered from Mn nodules. X-ray diffraction, electron microprobe, optical, and scanning electron microscope analyses reveal that important mineralogical, elemental, and textural changes occur during ablation. Some metal is melted and ablated. The outer margin of the melted rind is oxidized and recrystallizes as a discontinuous crust of magnetite and wustite. Adjacent to the oxidized metallic ablation zone is an unoxidized metallic ablation zone in which structures such as Widmannstatten bands are obliterated as the metal is transformed to unequilibrated alpha 2 nickel-iron. Volatile elements are vaporized and less volatile elements undergo fractionation.

  1. Evaluation of Changes in Iron Interfacial Composition Using Surface Spectroscopy

    NASA Astrophysics Data System (ADS)

    Vikesland, P. J.; Kohn, T.; Ball, W. P.; Fairbrother, D.; Roberts, A.

    2001-12-01

    Although the ability of granular cast iron permeable reactive barriers to attenuate many persistent groundwater contaminants is well established, many uncertainties remain about the interactions that occur between cast iron and contaminant species. To better understand these interactions we set out to evaluate how various inorganic species and organic contaminants affect the interfacial composition of the iron over time. Column studies using granular iron enable us to observe changes in iron interfacial composition as a function of distance along the column as well as of column "age". The spectroscopic evaluations reported here are for ten columns that were fed continuously with simulated anoxic groundwaters of different chemistries. Nine of these columns were packed with untreated sieved cast iron and one was packed with a mixture of cast iron and the aluminosilicate mineral albite. Of the ten columns, seven have been continually fed chlorinated hydrocarbons (CHCs), one has been continually fed nitroaromatic compounds (NACs), and two have only periodically been fed CHCs in their influent. Six of these ten columns were operated for 1100 days and the remaining four were operated for 475 days. In an anaerobic glovebox, sample grains were extracted for surface spectroscopic characterization using solid sampling ports drilled into the columns. At each port, several iron grains were removed and immediately put into headspace free vials containing porewater obtained from the nearest aqueous sampling port. Samples were then analyzed using in-situ Raman analysis, Auger electron spectroscopy (AES), and transmission electron microscopy (TEM). Raman spectra indicate that the interfacial composition of the iron grains changes substantially between the inlet and the outlet of a given column. Near the inlet, Raman bands corresponding to the iron oxides goethite and magnetite are prevalent, whereas grains from a port near the column outlet exhibit bands at 425 and 504 cm-1

  2. Molecular fossils and the late rise of oxygenic photosynthesis

    NASA Astrophysics Data System (ADS)

    Brocks, J. J.

    2012-04-01

    of oxygenic photosynthesis, and an anoxygenic phototrophic origin of the vast deposits of Archean banded iron formation. Brocks et al. (1999) Science 285, 1033-1036. Brocks (2011) Geochim. Cosmochim. Acta, 75, 3196-3213. Rasmussen et al. (2008) Nature 455, 1101-1104. Summons et al. (1999) Nature 400, 554-557.

  3. The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER

    NASA Astrophysics Data System (ADS)

    Izenberg, Noam R.; Klima, Rachel L.; Murchie, Scott L.; Blewett, David T.; Holsclaw, Gregory M.; McClintock, William E.; Malaret, Erick; Mauceri, Calogero; Vilas, Faith; Sprague, Ann L.; Helbert, Jörn; Domingue, Deborah L.; Head, James W.; Goudge, Timothy A.; Solomon, Sean C.; Hibbitts, Charles A.; Dyar, M. Darby

    2014-01-01

    The MESSENGER spacecraft's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) obtained more than 1.6 million reflectance spectra of Mercury's surface from near-ultraviolet to near-infrared wavelengths during the first year of orbital operations. A global analysis of spectra in the wavelength range 300-1450 nm shows little regional variation in absolute reflectance or spectral slopes and a lack of mineralogically diagnostic absorptions. In particular, reflectance spectra show no clear evidence for an absorption band centered near 1 μm that would be associated with the presence of ferrous iron in silicates. There is, however, evidence for an ultraviolet absorption possibly consistent with a very low iron content (2-3 wt% FeO or less) in surface silicates and for the presence of small amounts of metallic iron or other opaque minerals in the form of nano- or micrometer-sized particles. These findings are consistent with MESSENGER X-ray and gamma-ray measurements of Mercury's surface iron abundance. Although X-ray and gamma-ray observations indicate higher than expected quantities of sulfur on the surface, reflectance spectra show no absorption bands diagnostic of sulfide minerals. Whereas there is strong evidence of water ice in permanently shadowed craters near Mercury's poles, MASCS spectra provide no evidence for hydroxylated materials near permanently shadowed craters.

  4. Characterization of iron in silicon by low-temperature photoluminescence and deep-level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Minoru; Murakami, Susumu; Udono, Haruhiko

    2018-03-01

    We investigate the relationship between the intensity of band-edge (BDE) photoluminescence (PL) from 10 to 70 K and the concentration of iron diffused in boron-doped p-type silicon. Because of the nonradiative recombination activity of the interstitial iron-boron complex (FeiB center), the BDE-PL intensity at each temperature varies distinctively and systematically with the iron concentration, which means that this method has the potential to make the accurate measurements of a wide range of interstitial iron concentrations in silicon. The iron precipitates formed in the bulk and/or at the surface are found to exert much weaker recombination activity for excess carriers than FeiB center by exploiting both PL and deep-level transient spectroscopy (DLTS) measurements. The unexpected enhancement in BDE-PL intensity from iron-diffused silicon between 20 and 50 K is attributed to the passivation of the Si-oxide/Si interface by iron. For the samples diffused with trace amounts of iron, the iron concentration within 20 μm of the surface is significantly greater than that in the bulk, as measured by DLTS. This result is tentatively attributed to the affinity of iron with the Si-oxide.

  5. The late Archean Schreiber Hemlo and White River Dayohessarah greenstone belts, Superior Province: collages of oceanic plateaus, oceanic arcs, and subduction accretion complexes

    NASA Astrophysics Data System (ADS)

    Polat, A.; Kerrich, R.; Wyman, D. A.

    1998-04-01

    The late Archean (ca. 2.80-2.68 Ga) Schreiber-Hemlo and White River-Dayohessarah greenstone belts of the Superior Province, Canada, are supracrustal lithotectonic assemblages of ultramafic to tholeiitic basalt ocean plateau sequences, and tholeiitic to calc-alkaline volcanic arc sequences, and siliciclastic turbidites, collectively intruded by arc granitoids. The belts have undergone three major phases of deformation; two probably prior to, and one during the assembly of the southern Superior Province. Imbricated lithotectonic assemblages are often disrupted by syn-accretion strike-slip faults, suggesting that strike-slip faulting was an important aspect of greenstone belt evolution. Field relations, structural characteristics, and high-precision ICP-MS trace-element data obtained for representative lithologies of the Schreiber-Hemlo and White River-Dayohessarah greenstone belts suggest that they represent collages of oceanic plateaus, juvenile oceanic island arcs, in subduction-accretion complexes. Stratigraphic relationships, structural, and geochemical data from these Archean greenstone belts are consistent with a geodynamic evolution commencing with the initiation of a subduction zone at the margins of an oceanic plateau, similar to the modern Caribbean oceanic plateau and surrounding subduction-accretion complexes. All supracrustal assemblages include both ocean plateau and island-arc geochemical characteristics. The structural and geochemical characteristics of vertically and laterally dismembered supracrustal units of the Schreiber-Hemlo and White River-Dayohessarah greenstone belts cannot be explained either by a simple tectonic juxtaposition of lithotectonic assemblages with stratified volcanic and sedimentary units, or cyclic mafic to felsic bimodal volcanism models. A combination of out-of-sequence thrusting, and orogen-parallel strike-slip faulting of accreted ocean plateaus, oceanic arcs, and trench turbidites can account for the geological and

  6. Quantifying precambrian crustal extraction: The root is the answer

    USGS Publications Warehouse

    Abbott, D.; Sparks, D.; Herzberg, C.; Mooney, W.; Nikishin, A.; Zhang, Y.-S.

    2000-01-01

    We use two different methods to estimate the total amount of continental crust that was extracted by the end of the Archean and the Proterozoic. The first method uses the sum of the seismic thickness of the crust, the eroded thickness of the crust, and the trapped melt within the lithospheric root to estimate the total crustal volume. This summation method yields an average equivalent thickness of Archean crust of 49 ?? 6 km and an average equivalent thickness of Proterozoic crust of 48 ?? 9 km. Between 7 and 9% of this crust never reached the surface, but remained within the continental root as congealed, iron-rich komatiitic melt. The second method uses experimental models of melting, mantle xenolith compositions, and corrected lithospheric thickness to estimate the amount of crust extracted through time. This melt column method reveals that the average equivalent thickness of Archean crust was 65 ?? 6 km. and the average equivalent thickness of Early Proterozoic crust was 60 ?? 7 km. It is likely that some of this crust remained trapped within the lithospheric root. The discrepancy between the two estimates is attributed to uncertainties in estimates of the amount of trapped, congealed melt, overall crustal erosion, and crustal recycling. Overall, we find that between 29 and 45% of continental crust was extracted by the end of the Archean, most likely by 2.7 Ga. Between 51 and 79% of continental crust was extracted by the end of the Early Proterozoic, most likely by 1.8-2.0 Ga. Our results are most consistent with geochemical models that call upon moderate amounts of recycling of early extracted continental crust coupled with continuing crustal growth (e.g. McLennan, S.M., Taylor, S.R., 1982. Geochemical constraints on the growth of the continental crust. Journal of Geology, 90, 347-361; Veizer, J., Jansen, S.L., 1985. Basement and sedimentary recycling - 2: time dimension to global tectonics. Journal of Geology 93(6), 625-643). Trapped, congealed, iron

  7. Variability in Rock Thermal Properties in the Late Archean Crust of the Kapuskasing Structural Zone and Implications for its Thermal Structure and Metamorphic History.

    NASA Astrophysics Data System (ADS)

    Merriman, J. D.; Whittington, A. G.; Hofmeister, A. M.

    2017-12-01

    The thermal properties of rocks such as internal heat production and thermal diffusivity (α) play a key role in determining the thermal structure of the lithosphere, and consequently, the rates and styles of metamorphism within the crust. Over the last decade, measurements of α using the method laser flash analysis have shown the ability of a rock to conduct heat can vary by as much as a factor of 5 between common rock types, and decrease by up to a factor of 10 for the same rock between 25-1000°C. Here we present a preliminary model for the variability in rock throughout the crust based on measurements of the α of a suite of 100 samples from late Archean crust exposed in and around the Kapuskasing Structural Zone in Ontario, Canada. Preliminary results suggest that α is controlled primarily by mineralogy, and can vary not only between different rock types as described above, but also within the same rock by a factor of 1.5 (or more). Thermal diffusivity results were combined with heat producing element concentrations measured with ICP-MS to create a thermal model of the Kapuskasing Structural Zone prior its uplift and exposure. To provide additional constraints for P-T conditions within the pre-uplift KSZ crust, a combination of trace-element and pseudosection thermobarometry was used to estimate metamorphic temperatures during an extended period of crustal stability at the end of the Archean. Preliminary results were compared to finite-difference numerical models of the steady-state geothermal gradient using heat production back-calculated to 2.6 Ga. Results suggest a minimum thickness of the continental lithosphere during the late Archean of at least 150 km. To test the response of the crust to the effects of large thermal events such as pluton emplacement, we also performed time-dependent models of the thermal structure of the pre-uplift KSZ crust. These models suggest that heat from thermal events in the upper and middle crust result in a more insulating

  8. Surface Behavior of Iron Sulfide Ore during Grinding with Alumina Media

    NASA Astrophysics Data System (ADS)

    Martín, Reyes P.; Elia, Palácios B.; Patiño, Francisco C.; Escudero, Ramiro G.; Mizraim, Uriel Flores G.; Reyes, Iván A. D.; Palazuelos, Laura Angeles

    This research was conducted to study the oxidation and surface modification of pyrite in an inert mill and alumina grinding media at different pH values. The extent and progress of the oxidation function of milling time, by measuring some physicochemical variables, zeta potential (ZP), infrared analysis and monitoring. The results indicate pyrite oxidation during grinding, releasing iron and sulfur ions to the solution increasing its concentration with the initial pH and the milling time, the ORP and DO decrease the grinding time, on the other hand presents negative values ZP pH of 9, 11 and 12, whereas at pH 5, 7 and 13, the ZP is positive, FTIR generally detect the presence of free sulfate ion molecule 1084 cm-1, goethite with the absorption band at about 794 cm-1, also occurs in a band assigned to 470 cm-1 lepidocrocite oxy iron hydroxide γ- FeOOH, nucleated species or formed during milling.

  9. Origin of the X-ray Spectral Variation and Seemingly Broad Iron Line Strucuture in the Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Ebisawa, Ken; Naoki, Iso

    2012-07-01

    X-ray intensities and spectra of the Seyfert galaxies are known to be variable. Some of the sources have characteristic seemingly broad iron line structure, and their spectral variations are small in the iron line energy band. MCG-6-30-15 is such an archetypal source, and Miyakawa (2011) proposed a "Variable Partial Covering (VPC)" model to explain its continuum spectral variation, seemingly broad iron line structure, and small spectral variation in the iron energy band simultaneously, only due to variation of a single parameter. That single parameter is the "partial covering fraction" to describe the geometrical fraction of the X-ray emitting area covered by the ionized absorbers in the line of sight. The intrinsic X-ray luminosity is hardly variable in this model. We have applied the VPC model to the 27 Seyfert galaxies observed with Suzaku, and found that spectral variations of the 22 sources are successfully explained by this model only varying the partial covering fraction. Intrinsic X-ray luminosities of Seyfert galaxies are not variable, as opposed to what they apparently seem, and gravitationally red-shifted iron line is not necessary. Those ionized absorbing clouds are most likely to be Broad Line Region (BLR) clouds, and we will be able to constrain the BLR structure from X-ray observations.

  10. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides

    DOE PAGES

    Yi, M.; Liu, Z. -K.; Zhang, Y.; ...

    2015-07-23

    Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe 0.56Se 0.44, monolayer FeSe grown on SrTiO 3 and K 0.76Fe 1.72Se 2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the dxy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds frommore » a metallic state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. As a result, these observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors.« less

  11. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides

    PubMed Central

    Yi, M.; Liu, Z-K; Zhang, Y.; Yu, R.; Zhu, J.-X.; Lee, J.J.; Moore, R.G.; Schmitt, F.T.; Li, W.; Riggs, S.C.; Chu, J.-H.; Lv, B.; Hu, J.; Hashimoto, M.; Mo, S.-K.; Hussain, Z.; Mao, Z.Q.; Chu, C.W.; Fisher, I.R.; Si, Q.; Shen, Z.-X.; Lu, D.H.

    2015-01-01

    Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe0.56Se0.44, monolayer FeSe grown on SrTiO3 and K0.76Fe1.72Se2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the dxy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds from a metallic state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. These observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors. PMID:26204461

  12. 182W and HSE constraints from 2.7 Ga komatiites on the heterogeneous nature of the Archean mantle

    NASA Astrophysics Data System (ADS)

    Puchtel, Igor S.; Blichert-Toft, Janne; Touboul, Mathieu; Walker, Richard J.

    2018-05-01

    While the isotopically heterogeneous nature of the terrestrial mantle has long been established, the origin, scale, and longevity of the heterogeneities for different elements and isotopic systems are still debated. Here, we report Nd, Hf, W, and Os isotopic and highly siderophile element (HSE) abundance data for the Boston Creek komatiitic basalt lava flow (BCF) in the 2.7 Ga Abitibi greenstone belt, Canada. This lava flow is characterized by strong depletions in Al and heavy rare earth elements (REE), enrichments in light REE, and initial ε143Nd = +2.5 ± 0.2 and intial ε176Hf = +4.2 ± 0.9 indicative of derivation from a deep mantle source with time-integrated suprachondritic Sm/Nd and Lu/Hf ratios. The data plot on the terrestrial Nd-Hf array suggesting minimal involvement of early magma ocean processes in the fractionation of lithophile trace elements in the mantle source. This conclusion is supported by a mean μ142Nd = -3.8 ± 2.8 that is unresolvable from terrestrial standards. By contrast, the BCF exhibits a positive 182W anomaly (μ182W = +11.7 ± 4.5), yet is characterized by chondritic initial γ187Os = +0.1 ± 0.3 and low inferred source HSE abundances (35 ± 5% of those estimated for the present-day Bulk Silicate Earth, BSE). Collectively, these characteristics are unique among Archean komatiite systems studied so far. The deficit in the HSE, coupled with the chondritic Os isotopic composition, but a positive 182W anomaly, are best explained by derivation of the parental BCF magma from a mantle domain characterized by a predominance of HSE-deficient, differentiated late accreted material. According to the model presented here, the mantle domain that gave rise to the BCF received only ∼35% of the present-day HSE complement in the BSE before becoming isolated from the rest of the convecting mantle until the time of komatiite emplacement at 2.72 Ga. These new data provide strong evidence for a highly heterogeneous Archean mantle in terms of absolute

  13. UAV Photogrammetry of Inflated Komatiite Flow Lobes in an Archean Bimodal Volcanic Terrane, Yilgarn Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Barnes, S. J.; Dering, G.

    2016-12-01

    Previous studies of large komatiite fields in Archean greenstone belts in Western Australia and elsewhere have led to the suggestion that komatiite lavas were emplaced by similar mechanisms to modern pahoehoe flows, notwithstanding the very low viscosities and sea-floor eruption setting. Of komatiites. We use UAV photogrammetry to identify and map inflation features characteristic of modern pahoehoe flows in Archean komatiites at the Gordon Sirdar Lake locality near Kalgoorlie. Komatiite lavas, forming part of the 2705 Ma old plume-related bimodal volcanic sequence of the Eastern Goldfields Superterrane, Yilgarn Craton, were emplaced within a sequence of dacitic lava flows and semi-consolidated tuffs. The sequence was tilted to the vertical on the flanks of a regional isoclinal fold, and is exposed as partially weathered outcrop in the bed of a playa lake. Komatiite lava lobes form characteristic lenticular cross sections ranging from 1-6 m thick and up to 20m long, in some cases with lower margins draped over pre-existing dacite flow tops, and in others showing invasive textures implying eruption onto or into wet sediment. Inflation features include tumuli, inflation clefts, breakouts, and terraced margins. Spinifex textures are preserved locally at flow tops and rarely at bases. High temperature (>1400 C) and low viscosities (<50 Pa s) of komatiites evidently do not preclude inflation as an emplacement mechanism of individual flows. Flow-top morphology has been used to identify inflation of basaltic lava flows in Martian environments. We suggest these criteria may be extended to the possible recognition of Martian komatiites.

  14. Quantum oscillations and upper critical magnetic field of the iron-based superconductor FeSe

    NASA Astrophysics Data System (ADS)

    Audouard, Alain; Duc, Fabienne; Drigo, Loïc; Toulemonde, Pierre; Karlsson, Sandra; Strobel, Pierre; Sulpice, André

    2015-01-01

    Shubnikov-de Haas (SdH) oscillations and upper critical magnetic field (Hc2) of the iron-based superconductor FeSe (Tc = 8.6 \\text{K}) have been studied by tunnel diode oscillator-based measurements in magnetic fields of up to 55 T and temperatures down to 1.6 K. Several Fourier components enter the SdH oscillations spectrum with frequencies definitely smaller than predicted by band structure calculations indicating band renormalization and reconstruction of the Fermi surface at low temperature, in line with previous ARPES data. The Werthamer-Helfand-Hohenberg model accounts for the temperature dependence of (Hc2) for magnetic field applied both parallel (\\textbf{H} \\| ab) and perpendicular (\\textbf{H} \\| c) to the iron conducting plane, suggesting that one band mainly controls the superconducting properties in magnetic fields despite the multiband nature of the Fermi surface. Whereas Pauli pair breaking is negligible for \\textbf{H} \\| c , a Pauli paramagnetic contribution is evidenced for \\textbf{H} \\| ab with Maki parameter α = 2.1 , corresponding to Pauli field HP = 36.5 \\text{T} .

  15. Spectral Studies of Iron Coordination in Hemeprotein Complexes

    PubMed Central

    Brill, Arthur S.; Sandberg, Howard E.

    1968-01-01

    In order to evaluate the feasibility of observing the spectral behavior of protein groups in the coordination sphere of the iron in hemeproteins, criteria are developed to determine whether or not the application of difference absorption spectroscopy to the study of complex formation will be successful. Absolute absorption spectra, 300-1100 mμ, from bacterial catalase complexes are displayed, and the infrared bands correlated with magnetic susceptibility values of similar complexes of other hemeproteins. Dissociation constants for the formation of cyanide and azide complexes of metmyoglobin, methemoglobin, bacterial catalase, and horseradish peroxidase are given. Difference spectra, 210-280 mμ, are displayed for cyanide and azide complexes of these hemeproteins. A band at 235-241 mμ is found in the difference spectra of all low-spin vs. high-spin complexes. The factors which favor the assignment of this band to a transition involving a histidine residue are presented. PMID:5699802

  16. Iron Homeostasis and Nutritional Iron Deficiency123

    PubMed Central

    Theil, Elizabeth C.

    2011-01-01

    Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins encoded in iron responsive element (IRE)-mRNA. The noncoding IRE-mRNA structures bind protein repressors, IRP1 or 2, during iron deficiency. Integration of the IRE-RNA in translation regulators (near the cap) or turnover elements (after the coding region) increases iron uptake (DMT1/TRF1) or decreases iron storage/efflux (FTN/FPN) when IRP binds. An antioxidant response element in FTN DNA binds Bach1, a heme-sensitive transcription factor that coordinates expression among antioxidant response proteins like FTN, thioredoxin reductase, and quinone reductase. FTN, an antioxidant because Fe2+ and O2 (reactive oxygen species generators) are consumed to make iron mineral, is also a nutritional iron concentrate that is an efficiently absorbed, nonheme source of iron from whole legumes. FTN protein cages contain thousands of mineralized iron atoms and enter cells by receptor-mediated endocytosis, an absorption mechanism distinct from transport of nonheme iron salts (ferrous sulfate), iron chelators (ferric-EDTA), or heme. Recognition of 2 nutritional nonheme iron sources, small and large (FTN), will aid the solution of iron deficiency, a major public health problem, and the development of new policies on iron nutrition. PMID:21346101

  17. Reflectance Spectroscopy of Palagonite and Iron-Rich Montmorillonite Clay Mixtures: Implications for the Surface Composition of Mars

    NASA Technical Reports Server (NTRS)

    Orenberg, James; Handy, Jonathan

    1992-01-01

    Mixtures of a Hawaiian palagonite and an iron-rich, montmorillonite clay (15.8 +/- 0.4 wt% Fe as Fe2O3) were evaluated as Mars surface spectral analogs from their diffuse reflectance spectra. The presence of the 2.2 microns absorption band in the reflectance spectrum of clays and its absence in the Mars spectrum have been interpreted as indicating that highly crystalline aluminous hydroxylated clays cannot be a major mineral component of the soil on Mars. The palagonite sample used in this study does not show this absorption feature in its spectrum. In mixtures of palagonite and iron-rich montmorillonite, the 2.2 microns Al-OH clay lattice band is not seen below 15 wt% montmorillonite. This suggests the possibility that iron-rich montmorillonite clay may be present in the soil of Mars at up to 15 wt% in combination with palagonite, and remain undetected in remotely sensed spectra of Mars.

  18. Chemical compositional study of 35 iron meteorites and its application in taxonomy

    NASA Technical Reports Server (NTRS)

    Wang, D.; Malvin, D. J.; Wasson, J. T.

    1985-01-01

    Structural and compositional data are reported as a guide to the classification of 35 iron meteorites. The Xinjiang iron meteorite, previously classified as III AB, is reclassified as III E on the basis of its lower Ga/Ni and Ge/Ni ratios, its wider, swollen kamacite bands, and the ubiquitous presence of haxonite, (Fe,Ni)22C. The Dongling (III CD) appears not to be a new meteorite, but to be paired with the Nantan. Four Antarctic iron meteorites, IAB Allan Hills A77250, A77263, A77289, and A77290, are classified as a paired meteorite because of their similarities in structure and in concentrations of various elements. It is shown that Cu shares certain properties with Ga and Ge, which makes them excellent taxonomic parameters.

  19. Iron oxide bands in the visible and near-infrared reflectance spectra of primitive asteroids

    NASA Technical Reports Server (NTRS)

    Jarvis, Kandy S.; Vilas, Faith; Gaffey, Michael J.

    1993-01-01

    High resolution reflectance spectra of primitive asteroids (C, P, and D class and associated subclasses) have commonly revealed an absorption feature centered at 0.7 microns attributed to an Fe(2+)-Fe(3+) charge transfer transition in iron oxides and/or oxidized iron in phyllosilicates. A smaller feature identified at 0.43 microns has been attributed to an Fe(3+) spin-forbidden transition in iron oxides. In the spectra of the two main-belt primitive asteroids 368 Haidea (D) and 877 Walkure (F), weak absorption features which were centered near the location of 0.60-0.65 microns and 0.80-0.90 microns prompted a search for features at these wavelengths and an attempt to identify their origin(s). The CCD reflectance spectra obtained between 1982-1992 were reviewed for similar absorption features located near these wavelengths. The spectra of asteroids in which these absorption features have been identified are shown. These spectra are plotted in order of increasing heliocentric distance. No division of the asteroids by class has been attempted here (although the absence of these features in the anhydrous S-class asteroids, many of which have presumably undergone full heating and differentiation should be noted). For this study, each spectrum was treated as a continuum with discrete absorption features superimposed on it. For each object, a linear least squares fit to the data points defined a simple linear continuum. The linear continuum was then divided into each spectrum, thus removing the sloped continuum and permitting the intercomparison of residual spectral features.

  20. Tetrahedrally Coordinated Fe3+ in Silicate Glasses: A Mossbauer, Iron K-edge XANES and Raman Spectroscopies Study

    NASA Astrophysics Data System (ADS)

    Cochain, B.; Neuville, D. R.; McCammon, C.; Henderson, G. S.; de Ligny, D.; Pinet, O.; Richet, P.

    2009-05-01

    In natural or industrial glasses, iron is the most abundant transition metal. A good knowledge of its redox equilibrium is important to better understand the chemical and structural evolution of magmas (crystallization, viscosity), and also to optimize vitrification processes and properties of iron-bearing glasses. To study the role of iron in silicate glasses and melts, we have used in a consistent manner the Mössbauer, iron K-edge XANES and Raman spectroscopies to investigate several series of silicate glasses as a function of redox state. The samples were selected to cover a wide composition range and to investigate the interactions of iron with two network forming cations, namely, Al3+ and B3+. The glasses investigated were synthesized at high temperature under various conditions of oxygen fugacity to achieve different redox ratios for each composition. Therefore, the iron redox state was varied from the most oxidized to the most reduced. Iron redox ratios were first determined by wet chemical analysis and in some cases by room temperature Mossbauer spectroscopy. This experimental method was also used to determine the local structure of iron of some of the investigated glasses. These results where compared to iron K-edge XANES/EXAFS spectroscopy results, which lead to the iron redox state and indicate that Fe2+ is in octahedral coordination whereas Fe3+ is in tetrahedral coordination. In addition, Raman spectroscopy gave us information on the network polymerization of glasses. Clearly changes in Raman spectra are visible with the evolution of iron redox ratio. For a given composition, we observed systematically, in the 800-1200 cm-1 envelope, which is sensitive to the environment of tetrahedrally coordinated cations, the growth of a band with the iron content and the oxidation state of the sample. The peak area of this band, which we attribute to vibrational modes involving tetrahedrally coordinated Fe3+, increases with the oxidation of the sample. This

  1. The solar flare iron line to continuum ratio and the coronal abundances of iron and helium

    NASA Technical Reports Server (NTRS)

    Mckenzie, D. L.

    1975-01-01

    Narrow band Ross filter measurements of the Fe 25 line flux around 0.185 nm and simultaneous broadband measurements during a solar flare were used to determine the relationship between the solar coronal abundances of iron and helium. The Fe 25 ion population was also determined as a function of time. The proportional counter and the Ross filter on OSO-7 were utilized. The data were analyzed under the separate assumptions that (1) the electron density was high enough that a single temperature could characterize the continuum spectrum and the ionization equilibrium, and that (2) the electron density was low so that the ion populations trailed the electron temperature in time. It was found that the density was at least 5x10 to the 9th power, and that the high density assumption was valid. It was also found that the iron abundance is 0.000011 for a helium abundance of 0.2, relative to hydrogen.

  2. Petrogenesis, detrital zircon SHRIMP U-Pb geochronology, and tectonic implications of the Upper Paleoproterozoic Seosan iron formation, western Gyeonggi Massif, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Chang Seong; Jang, Yirang; Samuel, Vinod O.; Kwon, Sanghoon; Park, Jung-Woo; Yi, Keewook; Choi, Seon-Gyu

    2018-05-01

    This study involves investigations on the Upper Paleoproterozoic iron formation (viz., Seosan iron formation) from the Seosan Group, Gyeonggi Massif of the southwestern Korean Peninsula. It occurs as thin banded layers within meta-arkosic sandstone, formed by alternating processes of chemical (hydrothermal) and detrital depositions under a shallow marine environment. It mainly consists of alternating layers of iron oxides, mostly hematite, and quartz. Minor amounts of magnetite surrounded by muscovite, clinopyroxene and amphibole indicate hydrothermal alteration since its formation. Meta-arkosic sandstone is composed of recrystallized or porphyroclastic quartz and microcline, with small amounts of hematite and pyrite clusters. The Seosan iron formation has high contents of total Fe2O3 and SiO2 with positive Eu anomalies similar to those of other Precambrian banded iron formations, and its formation is clearly related to hydrothermal alteration since its deposition. Detrital zircon SHRIMP U-Pb geochronology data from a meta-arkosic sandstone (SN-1) and an iron formation (SN-2) show mainly two age groups of ca. 2.5 Ga and ca. 1.9-1.75 Ga. This together with intrusion age of the granite gneiss (ca. 1.70-1.65 Ga) clearly indicate that the iron formations were deposited during the Upper Paleoproterozoic. The dominant Paleoproterozoic detrital zircon bimodal age peaks preserved in the Seosan iron formation compare well with those from the South China Craton sedimentary basins, reflecting global tectonic events related to the Columbia supercontinent in East Asia.

  3. Archean foreland basin tectonics in the Witwatersrand, South Africa

    NASA Technical Reports Server (NTRS)

    Burke, K.; Kidd, W. S. F.; Kusky, T. M.

    1986-01-01

    The Witwatersrand Basin of South Africa is the best-known of Archean sedimentary basins and contains some of the largest gold reserves in the world. Sediments in the basin include a lower flysch-type sequence and an upper molassic facies, both of which contain abundant silicic volcanic detritus. The strata are thicker and more proximal on the northwestern side of the basin which is, at least locally, bound by thrust faults. These features indicate that the Witwatersrand strata may have been deposited in a foreland basin and a regional geologic synthesis suggests that this basin developed initially on the cratonward side of an Andean-type arc. Remarkably similar Phanerozoic basins may be found in the southern Andes above zones of shallow subduction. It is suggested that the continental collision between the Kaapvaal and Zimbabwe Cratons at about 2.7 Ga caused further subsidence and deposition in the Witwatersrand Basin. Regional uplift during this later phase of development placed the basin on the cratonward edge of a collision-related plateau, now represented by the Limpopo Province. Similarities are seen between this phase of Witwatersrand Basin evolution and that of active basins north of the Tibetan Plateau. The geologic evidence does not agree with earlier suggestions that the Witwatersrand strata were deposited in a rift or half-graben.

  4. Carbon, nitrogen, and sulfur geochemistry of Archean and Proterozoic shales from the Kaapvaal Craton, South Africa

    NASA Astrophysics Data System (ADS)

    Watanabe, Yumiko; Naraoka, Hiroshi; Wronkiewicz, David J.; Condie, Kent C.; Ohmoto, Hiroshi

    1997-08-01

    The C, N, and S contents and VC and δ 13Cδ 34S values were analyzed for 100 shale samples from ten formations, 3.0 to 2.1 Ga in age, in the central and eastern regions of the Kaapvaal Craton, South Africa. The Kaapvaal shales are characterized by generally low contents of organic C (range 0.06-2.79 wt%, average 0.47 wt%), N (range <0.01-0.09 wt%, average 0.1 wt%), and S (range <0.01-1.63 wt%, average 0.1 wt%). The low N/C (<0.005) and H/C (mostly ˜0.2) atomic ratios in kerogens from the shales indicated that the Kaapvaal shales lost considerable amounts of N, C, S, and H during diagenesis and regional metamorphism (up to the greenschist facies). From the theoretical relationships between the H/C ratios of kerogen and organic C contents of shales, the original C contents of the Archean and Proterozoic shales from the Kaapvaal Craton are estimated to be on average ˜2 wt%. These values are similar to the average organic C content of modern marine sediments. This suggests that the primary organic productivity and the preservation of organic matter in the ocean during the period of 3.0 to 2.1 Ga were similar to those in the Phanerozoic era, provided the flux of clastic sediments to the ocean was similar. This would also imply that the rate of O 2 accumulation in the atmosphere-ocean system, which has equaled the burial rate of organic matter in sediments, has been the same since ˜3.0 Ga. The δ 34S values of bulk-rock sulfides (mostly pyrite) range from +2.7 to +7.4%‰ for seven sulfide-rich samples of ˜2.9 Ga to ˜2.6 Ga. These values are consistent with a suggestion by Ohmoto (1992) and Ohmoto et al. (1993) that most pyrite crystals in Archean shales were formed by bacterial reduction of seawater sulfate with δ 34S values between +2 and +10‰, and that the Archean seawater was sulfate rich. Changes in the δ 13C org values during maturation of kerogen were evaluated with theoretical calculations from the experimental data of Peters et al. (1981) and Lewan

  5. The provenance of Archean clastic metasediments in the Narryer Gneiss Complex, Western Australia: Trace element geochemistry, Nd isotopes, and U-Pb ages for detrital zircons

    NASA Astrophysics Data System (ADS)

    Maas, Roland; McCulloch, Malcolm T.

    1991-07-01

    Clastic metasedimentary rocks of mid-Archean age from the Mt. Narryer and Jack Hills metasedimentary belts have REE patterns resembling those of mid- to late-Archean pelitic-quartzitic cratonic sequences elsewhere, and post-Archean continental rocks in general. Detrital zircons in the metasediments range in age from ca. 3000 to 3700 Ma. This indicates a provenance from mature cratonic sources controlled by K-rich granitic rocks. Additional minor sediment sources were identified as older, mainly chemical sedimentary sequences, ultramafic rocks, and felsic rocks characterized by low HREE contents, perhaps of tonalitic affinity. The association of the near-shore/fluviatile clastic association studied here with extensive turbiditic and chemical sedimentary sequences indicates these sources formed part of a (rifted ?) cratonic margin ca. 3 Ga ago. Differences between sedimentary REE patterns and those in the surrounding 3.73-3.0 Ga orthogneiss terrain, and between detrital zircon ages and the age distribution in the gneisses, suggest that the present association of the metasedimentary belts with the orthogneiss terrain is of tectonic origin. The occurrence of detrital zircons with U-Pb ages > 4 Ga in certain quartzites and conglomerates of the Jack Hills and Mt. Narryer metasedimentary sequences indicates a further, most likely granitic, source. ɛNd( TDep) values in Jack Hills metasediments vary widely (+5 to -12) but have a smaller range in the Mt. Narryer belt (-5 to -9). The lowest ɛNd values of both sequences are interpreted to reflect the presence of detritus derived from 4.1-4.2 Ga old LREE-enriched continental crust in proportions considerably larger (≥ 10%) than estimated previously from the abundance of pre-4 Ga detrital zircons (≈3%). This would imply the former existence of significant volumes of pre-4 Ga continental crust in the provenance of the Mt. Narryer and Jack Hills metasediments.

  6. The provenance of Archean clastic metasediments in the Narryer Gneiss Complex, western Australia: Trace element geochemistry, Nd isotopes, and U-Pb ages for detrital zircons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maas, R.; McCulloch, M.T.

    1991-07-01

    Clastic metasedimentary rocks of mid-Archean age from the Mt. Narryer and Jack Hills metasedimentary belts have REE patterns resembling those of mid- to late-Archean pelitic-quartzitic cratonic sequences elsewhere, and post-Archean continental rocks in general. Detrital zircons in the metasediments range in age from ca. 3,000 to 3,700 Ma. This indicates a provenance from mature cratonic sources controlled by K-rich granitic rocks. Additional minor sediment sources were identified as older, mainly chemical sedimentary sequences, ultramafic rocks, and felsic rocks characterized by low HREE contents, perhaps of tonalitic affinity. Differences between sedimentary REE patterns and those in the surrounding 3.73-3.0 Ga orthogneissmore » terrain, and between detrital zircon ages and the age distribution in the gneisses, suggest that the present association of the metasedimentary belts with the orthogneiss terrain is of tectonic origin. The occurrence of detrital zircons with U-Pb ages > 4 Ga in certain quartzites and conglomerates of the Jack Hills and Mt. Narryer metasedimentary sequences indicates a further, most likely granitic, source. {epsilon}{sub Nd}(T{sub Dep}) values in Jack Hills metasediments vary widely (+5 to {minus}12) but have a smaller range in the Mt. Narryer belt ({minus}5 to {minus}9). The lowest {epsilon}{sub Nd} values of both sequences are interpreted to reflect the presence of detritus derived from 4.1-4.2 Ga old LREE-enriched continental crust in proportions considerably larger ({ge} 10%) than estimated previously from the abundance of pre-4 Ga detrital zircons ({approx}3%). This would imply the former existence of significant volumes of pre-4 Ga continental crust in the provenance of the Mt. Narryer and Jack Hills metasediments.« less

  7. Exploration of faint absorption bands in the reflectance spectra of the asteroids by method of optimal smoothing: Vestoids

    NASA Astrophysics Data System (ADS)

    Shestopalov, D. I.; McFadden, L. A.; Golubeva, L. F.

    2007-04-01

    An optimization method of smoothing noisy spectra was developed to investigate faint absorption bands in the visual spectral region of reflectance spectra of asteroids and the compositional information derived from their analysis. The smoothing algorithm is called "optimal" because the algorithm determines the best running box size to separate weak absorption bands from the noise. The method is tested for its sensitivity to identifying false features in the smoothed spectrum, and its correctness of forecasting real absorption bands was tested with artificial spectra simulating asteroid reflectance spectra. After validating the method we optimally smoothed 22 vestoid spectra from SMASS1 [Xu, Sh., Binzel, R.P., Burbine, T.H., Bus, S.J., 1995. Icarus 115, 1-35]. We show that the resulting bands are not telluric features. Interpretation of the absorption bands in the asteroid spectra was based on the spectral properties of both terrestrial and meteorite pyroxenes. The bands located near 480, 505, 530, and 550 nm we assigned to spin-forbidden crystal field bands of ferrous iron, whereas the bands near 570, 600, and 650 nm are attributed to the crystal field bands of trivalent chromium and/or ferric iron in low-calcium pyroxenes on the asteroids' surface. While not measured by microprobe analysis, Fe 3+ site occupancy can be measured with Mössbauer spectroscopy, and is seen in trace amounts in pyroxenes. We believe that trace amounts of Fe 3+ on vestoid surfaces may be due to oxidation from impacts by icy bodies. If that is the case, they should be ubiquitous in the asteroid belt wherever pyroxene absorptions are found. Pyroxene composition of four asteroids of our set is determined from the band position of absorptions at 505 and 1000 nm, implying that there can be orthopyroxenes in all range of ferruginosity on the vestoid surfaces. For the present we cannot unambiguously interpret of the faint absorption bands that are seen in the spectra of 4005 Dyagilev, 4038

  8. Photocatalytic hydrogen evolution over β-iron silicide under infrared-light irradiation.

    PubMed

    Yoshimizu, Masaharu; Kobayashi, Ryoya; Saegusa, Makoto; Takashima, Toshihiro; Funakubo, Hiroshi; Akiyama, Kensuke; Matsumoto, Yoshihisa; Irie, Hiroshi

    2015-02-18

    We investigated the ability of β-iron silicide (β-FeSi2) to serve as a hydrogen (H2)-evolution photocatalyst due to the potential of its conduction band bottom, which may allow thermodynamically favorable H2 evolution in spite of its small band-gap of 0.80 eV. β-FeSi2 had an apparent quantum efficiency for H2 evolution of ∼24% up to 950 nm (near infrared light), in the presence of the dithionic acid ion (S2O6(2-)) as a sacrificial agent. It was also sensitive to infrared light (>1300 nm) for H2 evolution.

  9. Recycled Archean sulfur in the mantle wedge of the Mariana Forearc and microbial sulfate reduction within an extremely alkaline serpentine seamount

    NASA Astrophysics Data System (ADS)

    Aoyama, Shinnosuke; Nishizawa, Manabu; Miyazaki, Junichi; Shibuya, Takazo; Ueno, Yuichiro; Takai, Ken

    2018-06-01

    The identification of microbial activity under extreme conditions is important to define potential boundaries of the habitable and uninhabitable zones of terrestrial and extraterrestrial living forms. The subseafloor regimes of serpentinite seamounts in the Mariana Forearc are among the most extreme environments for life on earth owing to the widespread presence of highly alkaline fluids with pH values greater than 12. The potential activity of sulfate-reducing microorganisms has been suggested within the South Chamorro serpentinite seamounts on the basis of depletion of sulfate and enrichment of dissolved sulfide in pore water. However, the vertical distribution of sulfate-reducing microorganisms and the origin of sulfate are still uncertain. To address these issues, we analyzed quadruple sulfur isotopes of sulfide minerals and pore water sulfate in the upper 56 m of sedimentary sequences at the summit of the S. Chamorro Seamount and those of dissolved sulfate in upwelling fluids collected as deep as 202 mbsf (meters below the seafloor) in a cased hole near the summit of the same seamount. The depth profiles of the concentrations and the δ34S and Δ33S‧ values of sulfide minerals and pore water sulfate indicate microbial sulfate reduction as deep as 30 mbsf. Further, apparent isotopic fractionations (34ε) and exponents of mass dependent relationships (33λ) during sulfate reduction are estimated to be 62 ± 14‰ and 0.512 ± 0.002, respectively. The upwelling fluids show both the chlorine depletion relative to seawater and the negative δ15N values of ammonia (-4‰). Although these signatures point to dehydration of the subducting oceanic plate, the negative Δ33S‧ values of sulfate (-0.16‰ to -0.26‰ with analytical errors of ±0.01‰) are unlikely to originate from surrounding modern crusts. Instead, sulfate in the upwelling fluid likely possess non-mass-dependent (NMD) sulfur. Because NMD sulfur was produced primarily in the Archean atmosphere, our

  10. Evidence for crustal recycling during the Archean: The parental magmas of the stillwater complex

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.

    1988-01-01

    The petrology and geochemistry of the Stillwater Complex, an Archean (2.7 Ga) layered mafic intrusion in the Beartooth Mountains of Montana is discussed. Efforts to reconstruct the compositions of possible parental magmas and thereby place some constraints on the composition and history of their mantle source regions was studied. A high-Mg andesite or boninite magma best matches the crystallization sequences and mineral compositions of Stillwater cumulates, and represents either a primary magma composition or a secondary magma formed, for example, by assimilation of crustal material by a very Mg-rich melt such as komatiite. Isotopic data do not support the extensive amounts of assimilation required by the komatiite parent hypothesis, and it is argued that the Stillwater magma was generated from a mantle source that had been enriched by recycling and homogenization of older crustal material over a large area.

  11. A non-zircon Hf isotope record in Archean black shales from the Pilbara craton confirms changing crustal dynamics ca. 3 Ga ago.

    PubMed

    Nebel-Jacobsen, Yona; Nebel, Oliver; Wille, Martin; Cawood, Peter A

    2018-01-17

    Plate tectonics and associated subduction are unique to the Earth. Studies of Archean rocks show significant changes in composition and structural style around 3.0 to 2.5 Ga that are related to changing tectonic regime, possibly associated with the onset of subduction. Whole rock Hf isotope systematics of black shales from the Australian Pilbara craton, selected to exclude detrital zircon components, are employed to evaluate the evolution of the Archean crust. This approach avoids limitations of Hf-in-zircon analyses, which only provide input from rocks of sufficient Zr-concentration, and therefore usually represent domains that already underwent a degree of differentiation. In this study, we demonstrate the applicability of this method through analysis of shales that range in age from 3.5 to 2.8 Ga, and serve as representatives of their crustal sources through time. Their Hf isotopic compositions show a trend from strongly positive εHf initial values for the oldest samples, to strongly negative values for the younger samples, indicating a shift from juvenile to differentiated material. These results confirm a significant change in the character of the source region of the black shales by 3 Ga, consistent with models invoking a change in global dynamics from crustal growth towards crustal reworking around this time.

  12. In-beam spectroscopy of the k π=0- bands in230 236U

    NASA Astrophysics Data System (ADS)

    Zeyen, P.; Ackermann, B.; Dämmrich, U.; Euler, K.; Grafen, V.; Günther, C.; Herzog, P.; Marten-Tölle, M.; Prillwitz, B.; Tölle, R.; Lauterbach, Ch.; Maier, H. J.

    1987-12-01

    The K π=0- bands in even uranium nuclei were studied in the compound reactions231Pa( p, 2 n)230U,230, 232Th( α,2 n)232, 234U and236U( d, pn)236U. In-beam γ-rays were measured in coincidence with conversion-electrons, which were detected with an iron-free orange spectrometer. The negative-parity levels are observed up to intermediate spins ( I<13-). In addition, the 1- and 3- levels in230U were confirmed by a decay study with an isotope separated230Pa source. For the heavier isotopes ( A≥232) the properties of the K π=0- bands (energies and γ-branchings) are consistent with a vibrational character of these bands. For230U the K π=0- band lies at rather low energy ( E(1-)=367 keV), and the level spacings within this band are very similar to those of the isotones228Th and226Ra, which might indicate the onset of a stable octupole deformation.

  13. Iron

    MedlinePlus

    ... too little iron, you may develop iron deficiency anemia. Causes of low iron levels include blood loss, poor diet, or an inability to absorb enough iron from foods. People at higher risk of having too little iron are young children and women who are pregnant or have periods. ...

  14. Iron and alloys of iron. [lunar resources

    NASA Technical Reports Server (NTRS)

    Sastri, Sankar

    1992-01-01

    All lunar soil contains iron in the metallic form, mostly as an iron-nickel alloy in concentrations of a few tenths of 1 percent. Some of this free iron can be easily separated by magnetic means. It is estimated that the magnetic separation of 100,000 tons of lunar soil would yield 150-200 tons of iron. Agglutinates contain metallic iron which could be extracted by melting and made into powder metallurgy products. The characteristics and potential uses of the pure-iron and iron-alloy lunar products are discussed. Processes for working iron that might be used in a nonterrestrial facility are also addressed.

  15. Seismic anisotropy of the Archean crust in the Minnesota River Valley, Superior Province

    NASA Astrophysics Data System (ADS)

    Ferré, Eric C.; Gébelin, Aude; Conder, James A.; Christensen, Nik; Wood, Justin D.; Teyssier, Christian

    2014-03-01

    The Minnesota River Valley (MRV) subprovince is a well-exposed example of late Archean lithosphere. Its high-grade gneisses display a subhorizontal layering, most likely extending down to the crust-mantle boundary. The strong linear fabric of the gneisses results from high-temperature plastic flow during collage-related contraction. Seismic anisotropies measured up to 1 GPa in the laboratory, and seismic anisotropies calculated through forward-modeling indicate ΔVP ~5-6% and ΔVS ~3%. The MRV crust exhibits a strong macroscopic layering and foliation, and relatively strong seismic anisotropies at the hand specimen scale. Yet the horizontal attitude of these structures precludes any substantial contribution of the MRV crust to shear wave splitting for vertically propagating shear waves such as SKS. The origin of the regionally low seismic anisotropy must lie in the upper mantle. A horizontally layered mantle underneath the United States interior could provide an explanation for the observed low SWS.

  16. Iron excretion in iron dextran-overloaded mice

    PubMed Central

    Musumeci, Marco; Maccari, Sonia; Massimi, Alessia; Stati, Tonino; Sestili, Paola; Corritore, Elisa; Pastorelli, Augusto; Stacchini, Paolo; Marano, Giuseppe; Catalano, Liviana

    2014-01-01

    Background Iron homeostasis in humans is tightly regulated by mechanisms aimed to conserve iron for reutilisation, with a negligible role played by excretory mechanisms. In a previous study we found that mice have an astonishing ability to tolerate very high doses of parenterally administered iron dextran. Whether this ability is linked to the existence of an excretory pathway remains to be ascertained. Materials and methods Iron overload was generated by intraperitoneal injections of iron dextran (1 g/kg) administered once a week for 8 weeks in two different mouse strains (C57bl/6 and B6D2F1). Urinary and faecal iron excretion was assessed by inductively coupling plasma-mass spectrometry, whereas cardiac and liver architecture was evaluated by echocardiography and histological methods. For both strains, 24-hour faeces and urine samples were collected and iron concentration was determined on days 0, 1 and 2 after iron administration. Results In iron-overloaded C57bl/6 mice, the faecal iron concentration increased by 218% and 157% on days 1 and 2, respectively (p<0.01). The iron excreted represented a loss of 14% of total iron administered. Similar but smaller changes was also found in B6D2F1 mice. Conversely, we found no significant changes in the concentration of iron in the urine in either of the strains of mice. In both strains, histological examination showed accumulation of iron in the liver and heart which tended to decrease over time. Conclusions This study indicates that mice have a mechanism for removal of excess body iron and provides insights into the possible mechanisms of excretion. PMID:24960657

  17. Non-transferrin bound iron: a key role in iron overload and iron toxicity.

    PubMed

    Brissot, Pierre; Ropert, Martine; Le Lan, Caroline; Loréal, Olivier

    2012-03-01

    Besides transferrin iron, which represents the normal form of circulating iron, non-transferrin bound iron (NTBI) has been identified in the plasma of patients with various pathological conditions in which transferrin saturation is significantly elevated. To show that: i) NTBI is present not only during chronic iron overload disorders (hemochromatosis, transfusional iron overload) but also in miscellaneous diseases which are not primarily iron overloaded conditions; ii) this iron species represents a potentially toxic iron form due to its high propensity to induce reactive oxygen species and is responsible for cellular damage not only at the plasma membrane level but also towards different intracellular organelles; iii) the NTBI concept may be expanded to include intracytosolic iron forms which are not linked to ferritin, the major storage protein which exerts, at the cellular level, the same type of protective effect towards the intracellular environment as transferrin in the plasma. Plasma NTBI and especially labile plasma iron determinations represent a new important biological tool since elimination of this toxic iron species is a major therapeutic goal. The NTBI approach represents an important mechanistic concept for explaining cellular iron excess and toxicity and provides new important biochemical diagnostic tools. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Microbial Biosignatures in High Iron Thermal Springs

    NASA Astrophysics Data System (ADS)

    Parenteau, M. N.; Embaye, T.; Jahnke, L. L.; Cady, S. L.

    2003-12-01

    The emerging anoxic source waters at Chocolate Pots hot springs in Yellowstone National Park contain 2.6 to 11.2 mg/L Fe(II) and are 51-54° C and pH 5.5-6.0. These waters flow down the accumulating iron deposits and over three major phototrophic mat communities: Synechococcus/Chloroflexus at 51-54° C, Pseudanabaena at 51-54° C, and a narrow Oscillatoria at 36-45° C. We are assessing the contribution of the phototrophs to biosignature formation in this high iron system. These biosignatures can be used to assess the biological contribution to ancient iron deposits on Earth (e.g. Precambrian Banded Iron Formations) and, potentially, to those found on Mars. Most studies to date have focused on chemotrophic iron-oxidizing communities; however, recent research has demonstrated that phototrophs have a significant physiological impact on these iron thermal springs (Pierson et al. 1999, Pierson and Parenteau 2000, and Trouwborst et al., 2003). We completed a survey of the microfossils, biominerals, biofabrics, and lipid biomarkers in the phototrophic mats and stromatolitic iron deposits using scanning and transmission electron microscopy (SEM and TEM), energy dispersive spectrometry (EDS), powder X-ray diffraction (XRD), and gas chromatography-mass spectroscopy (GC-MS). The Synechococcus/Chloroflexus mat was heavily encrusted with iron silicates while the narrow Oscillatoria mat was encrusted primarily with iron oxides. Encrustation of the cells increased with depth in the mats. Amorphous 2-line ferrihydrite is the primary precipitate in the spring and the only iron oxide mineral associated with the mats. Goethite, hematite, and siderite were detected in dry sediment samples on the face of the main iron deposit. Analysis of polar lipid fatty acid methyl esters (FAME) generated a suite of lipid biomarkers. The Synechococcus/Chloroflexus mat contained two mono-unsaturated isomers of n-C18:1 with smaller amounts of polyunsaturated n-C18:2, characteristic of cyanobacteria

  19. Atmospheric record in the Hadean Eon from multiple sulfur isotope measurements in Nuvvuagittuq Greenstone Belt (Nunavik, Quebec).

    PubMed

    Thomassot, Emilie; O'Neil, Jonathan; Francis, Don; Cartigny, Pierre; Wing, Boswell A

    2015-01-20

    Mass-independent fractionation of sulfur isotopes (S-MIF) results from photochemical reactions involving short-wavelength UV light. The presence of these anomalies in Archean sediments [(4-2.5 billion years ago, (Ga)] implies that the early atmosphere was free of the appropriate UV absorbers, of which ozone is the most important in the modern atmosphere. Consequently, S-MIF is considered some of the strongest evidence for the lack of free atmospheric oxygen before 2.4 Ga. Although temporal variations in the S-MIF record are thought to depend on changes in the abundances of gas and aerosol species, our limited understanding of photochemical mechanisms complicates interpretation of the S-MIF record in terms of atmospheric composition. Multiple sulfur isotope compositions (δ(33)S, δ(34)S, and δ(36)S) of the >3.8 billion-year-old Nuvvuagittuq Greenstone Belt (Ungava peninsula) have been investigated to track the early origins of S-MIF. Anomalous S-isotope compositions (Δ(33)S up to +2.2‰) confirm a sedimentary origin of sulfide-bearing banded iron and silica-rich formations. Sharp isotopic transitions across sedimentary/igneous lithological boundaries indicate that primary surficial S-isotope compositions have been preserved despite a complicated metamorphic history. Furthermore, Nuvvuagittuq metasediments recorded coupled variations in (33)S/(32)S, (34)S/(32)S, and (36)S/(32)S that are statistically indistinguishable from those identified several times later in the Archean. The recurrence of the same S-isotope pattern at both ends of the Archean Eon is unexpected, given the complex atmospheric, geological, and biological pathways involved in producing and preserving this fractionation. It implies that, within 0.8 billion years of Earth's formation, a common mechanism for S-MIF production was established in the atmosphere.

  20. Exploring Microbial Iron Oxidation in Wetland Soils

    NASA Astrophysics Data System (ADS)

    Wang, J.; Muyzer, G.; Bodelier, P. L. E.; den Oudsten, F.; Laanbroek, H. J.

    2009-04-01

    sequences all represented novel culturable iron oxidizers most closely related to Gallionella spp. Based on their nucleotide sequences four groups could be identified, which were comparable to the DGGE banding pattern obtained before with the gradient tubes enrichments. The above mentioned nested PCR-DGGE method was used to study the distribution and community composition of Gallionella-like iron-oxidizing bacteria under the influence of plants species, soil depth, as well as season. Soil samples from Appels, Belgium, an intertidal, freshwater marsh known to hold intensive iron cycling, were taken from 5 different vegetation types in April, July and October 2007. Soil cores were sliced at 1-cm intervals and subjected to chemical and molecular analyses. The DGGE patterns showed that the community of iron-oxidizing bacteria differed with vegetation type, and sediment depth. Samples taken in autumn held lower diversity in Gallionella-related iron oxidizers than those sampled in spring and summer.

  1. Site-selective detection of vibrational modes of an iron atom in a trinuclear complex

    NASA Astrophysics Data System (ADS)

    Faus, Isabelle; Rackwitz, Sergej; Wolny, Juliusz A.; Banerjee, Atanu; Kelm, Harald; Krüger, Hans-Jörg; Schlage, Kai; Wille, Hans-Christian; Schünemann, Volker

    2016-12-01

    Nuclear inelastic scattering (NIS) experiments on the trinuclear complex [57Fe{L-N4(CH2Fc)2} (CH3CN)2](ClO4)2 have been performed. The octahedral iron ion in the complex was labelled with 57Fe and thereby exclusively the vibrational modes of this iron ion have been detected with NIS. The analysis of nuclear forward scattering (NFS) data yields a ferrous low-spin state for the 57Fe labelled iron ion. The simulation of the partial density of states (pDOS) for the octahedral low-spin iron(II) ion of the complex by density functional theory (DFT) calculations is in excellent agreement with the experimental pDOS of the complex determined from the NIS data obtained at 80 K. Thereby it was possible to assign almost each of the experimentally observed NIS bands to the corresponding molecular vibrational modes.

  2. High-K granites of the Rum Jungle Complex, N-Australia: Insights into the Late Archean crustal evolution of the North Australian Craton

    NASA Astrophysics Data System (ADS)

    Drüppel, K.; McCready, A. J.; Stumpfl, E. F.

    2009-08-01

    The Late Archean (c. 2.54-2.52 Ga) high-K granitoids of the Rum Jungle Complex, Northern Australia, display the igneous mineral assemblage of K-feldspar, quartz, plagioclase, biotite, and magnetite, and accessories such as zircon, monazite, titanite, allanite, apatite, and ilmenite. The granites underwent a variably severe greenschist facies alteration and associated deformation during the Barramundi Orogeny (1.88-1.85 Ga). The K-rich granitoids have variable compositions, mainly comprising syenogranite and quartz-monzonite. They can be subdivided into two major groups, (1) felsic granites and (2) intermediate to felsic granites, quartz-monzonites, and diorite. The felsic group (69-76 wt.% SiO 2) shares many features with typical Late Archean potassic granites. They are K- and LILE-rich and show marked depletion in Sr and Eu and the high field strength elements (HFSE), particularly Nb and Ti, relative to LILE and LREE. Compared to the average upper crust they have anomalously high Th (up to 123 ppm) and U (up to 40 ppm). The intermediate to felsic group (56-69 wt.% SiO 2) differs from the felsic group in having weakly lower Th and U but higher Mg#, Ti, Ba, Sr, Ni, Cr and REE, with a less pronounced negative Eu anomaly. This group displays well-defined trends in Harker diagrams, involving a negative correlation of Si with Sr, Ca, Na, and P whereas K, Rb, and Ba increase in the same direction, suggesting fractional crystallization of feldspar was more prominent than in the felsic suite. The mineralogical and geochemical characteristics of the felsic group are consistent with granite formation by intracrustal melting of plagioclase-rich igneous protoliths, probably of tonaltic to granodioritic composition, at moderate crustal levels. The intermediate to felsic granites, on the other hand, appear to be the products of mantle-crust interaction, possibly by melting of or mixing with more mafic igneous rocks. As evidenced by the presence of older inherited zircons crustal

  3. Early Proterozoic activity on Archean faults in the western Superior province - evidence from pseudotachylite

    USGS Publications Warehouse

    Peterman, Z.E.; Day, W.

    1989-01-01

    Major transcurrent faults in the Superior province developed in the Late Archean at the close of the Kenoran orogeny. Reactivation of some of these faults late in the Early Proterozoic is indicated by Rb-Sr analyses of pseudotachylite from the Rainy Lake-Seine River and Quetico faults in the Rainy Lake region of Minnesota and Ontario. Fault veins of pseudotachylite and immediately adjacent country rock at two localities yielded subparallel isochrons that are pooled for an age of 1947??23 Ma. K-Ar and Rb-Sr biotite ages register earlier regional cooling of the terrane at about 2500 Ma with no evidence of younger thermal overprinting at temperatures exceeding 300??C. Accordingly, the 1947??23 Ma age is interpreted as dating the formation of the pseudotachylite. Reactivation of existing faults at this time was caused by stresses transmitted from margins of the Superior province where compressional tectonic events were occurring. -Authors

  4. Hexagonal platelet-like magnetite as a biosignature of thermophilic iron-reducing bacteria and its applications to the exploration of the modern deep, hot biosphere and the emergence of iron-reducing bacteria in early precambrian oceans.

    PubMed

    Li, Yi-Liang

    2012-12-01

    Dissimilatory iron-reducing bacteria are able to enzymatically reduce ferric iron and couple to the oxidation of organic carbon. This mechanism induces the mineralization of fine magnetite crystals characterized by a wide distribution in size and irregular morphologies that are indistinguishable from authigenic magnetite. Thermoanaerobacter are thermophilic iron-reducing bacteria that predominantly inhabit terrestrial hot springs or deep crusts and have the capacity to transform amorphous ferric iron into magnetite with a size up to 120 nm. In this study, I first characterize the formation of hexagonal platelet-like magnetite of a few hundred nanometers in cultures of Thermoanaerobacter spp. strain TOR39. Biogenic magnetite with such large crystal sizes and unique morphology has never been observed in abiotic or biotic processes and thus can be considered as a potential biosignature for thermophilic iron-reducing bacteria. The unique crystallographic features and strong ferrimagnetic properties of these crystals allow easy and rapid screening for the previous presence of iron-reducing bacteria in deep terrestrial crustal samples that are unsuitable for biological detection methods and, also, the search for biogenic magnetite in banded iron formations that deposited only in the first 2 billion years of Earth with evidence of life.

  5. Early Archean Spherule Beds: Chromium Isotopes Confirm Origin Through Multiple Impacts of Projectiles of Carbonaceous Chondrite Type

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.; Shukolyukov, Alex; Lugmair, Guenter W.; Lowe, Donald R.; Byerly, Gary R.

    2003-01-01

    Three Early Archean spherule beds from Barberton, South Africa, have anomalous Cr isotope compositions in addition to large Ir anomalies, confirming the presence of meteoritic material with a composition similar to that in carbonaceous chondrites. The extra-terrestrial components in beds S2, S3, and S4 are estimated to be approx. l%, 50% - 60%, and 15% - 30%, respectively. These beds are probably the distal, and possibly global, ejecta from major large-body impacts. These impacts were probably much larger than the Cretaceous-Tertiary event, and all occurred over an interval of approx. 20 m.y., implying an impactor flux at 3.2 Ga that was more than an order of magnitude greater than the present flux.

  6. Alternative model for the Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Bekker, A.

    2014-12-01

    Transition from the Archean, largely anoxic atmosphere and ocean to the Proterozoic oxidizing surface conditions has been inferred in Zimbabwe from the geochemical and geological evidence as early as 1927. Subsequent studies provided additional support for this interpretation, bracketed the transition between 2.45 and 2.32 Ga, and suggested temporal and cause-and-effect relationship with a series of the early Paleoproterozoic ice ages (including 4 discrete events). Recently recognized transient oxidation events of the Archean add texture to this pattern, but do not change it. The rise of atmospheric oxygen requires a misbalance between oxygen sinks and sources and most attention was focused on sinks. In contrast, change in oxygen supply related to low organic productivity in Archean oceans with limited nutrient contents are considered here. Although carbon isotope values of carbonates and organic carbon indicate substantial relative burial rate of organic carbon during the Archean, most of the earlier buried organic matter at that time was recycled to sediments during continental weathering, implying very low productivity and burial of 'new' organic carbon. Low contents of redox-sensitive elements, such as Mo, Cu, Zn, and V, in Archean seawater could have kept organic productivity and oxygen production at low levels. The GOE was immediately preceded by deposition of giant iron formations, accounting for more than 70% of world iron resources, and worldwide emplacement of a number of LIPs between 2.5 and 2.45 Ga, indicating enhanced delivery of nutrients and redox-sensitive elements to the oceans via submarine hydrothermal processes and continental weathering under CO2- and SO2-rich atmosphere and associated terrestrial acidic runoff. This enhanced emplacement of LIPs has been linked with the growth of continental crust, emergence of the first supercontinent, and mantle overturn at the Archean-Proterozoic boundary. The GOE could have thus been triggered by enhanced

  7. Photoionization Modeling and the K Lines of Iron

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; Palmeri, P.; Bautista, M. A.; Mendoza, C.; Krolik, J. H.

    2004-01-01

    We calculate the efficiency of iron K line emission and iron K absorption in photoionized models using a new set of atomic data. These data are more comprehensive than those previously applied to the modeling of iron K lines from photoionized gases, and allow us to systematically examine the behavior of the properties of line emission and absorption as a function of the ionization parameter, density and column density of model constant density clouds. We show that, for example, the net fluorescence yield for the highly charged ions is sensitive to the level population distribution produced by photoionization, and these yields are generally smaller than those predicted assuming the population is according to statistical weight. We demonstrate that the effects of the many strongly damped resonances below the K ionization thresholds conspire to smear the edge, thereby potentially affecting the astrophysical interpretation of absorption features in the 7-9 keV energy band. We show that the centroid of the ensemble of K(alpha) lines, the K(beta) energy, and the ratio of the K(alpha(sub 1)) to K(alpha(sub 2)) components are all diagnostics of the ionization parameter of our model slabs.

  8. Orbital loop currents in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Klug, Markus; Kang, Jian; Fernandes, Rafael M.; Schmalian, Jörg

    2018-04-01

    We show that the antiferromagnetic state commonly observed in the phase diagrams of the iron-based superconductors necessarily triggers loop currents characterized by charge transfer between different Fe 3 d orbitals. This effect is rooted on the glide-plane symmetry of these materials and on the existence of an atomic spin-orbit coupling that couples states at the X and Y points of the 1-Fe Brillouin zone. In the particular case in which the magnetic moments are aligned parallel to the magnetic ordering vector direction, which is the moment configuration most commonly found in the iron-based superconductors, these loop currents involve the dx y orbital and either the dy z orbital (if the moments point along the y axis) or the dx z orbitals (if the moments point along the x axis). We show that the two main manifestations of the orbital loop currents are the emergence of magnetic moments in the pnictide/chalcogen site and an orbital-selective band splitting in the magnetically ordered state, both of which could be detected experimentally. Our results highlight the unique intertwining between orbital and spin degrees of freedom in the iron-based superconductors, and reveal the emergence of an unusual correlated phase that may impact the normal state and superconducting properties of these materials.

  9. Band alignments in Fe/graphene/Si(001) junctions studied by x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Le Breton, J.-C.; Tricot, S.; Delhaye, G.; Lépine, B.; Turban, P.; Schieffer, P.

    2016-08-01

    The control of tunnel contact resistance is of primary importance for semiconductor-based spintronic devices. This control is hardly achieved with conventional oxide-based tunnel barriers due to deposition-induced interface states. Manipulation of single 2D atomic crystals (such as graphene sheets) weakly interacting with their substrate might represent an alternative and efficient way to design new heterostructures for a variety of different purposes including spin injection into semiconductors. In the present paper, we study by x-ray photoemission spectroscopy the band alignments and interface chemistry of iron-graphene-hydrogenated passivated silicon (001) surfaces for a low and a high n-doping concentration. We find that the hydrogen passivation of the Si(001) surface remains efficient even with a graphene sheet on the Si(001) surface. For both doping concentrations, the semiconductor is close to flat-band conditions which indicates that the Fermi level is unpinned on the semiconductor side of the Graphene/Si(001):H interface. When iron is deposited on the graphene/Si(001):H structures, the Schottky barrier height remains mainly unaffected by the metallic overlayer with a very low barrier height for electrons, a sought-after property in semiconductor based spintronic devices. Finally, we demonstrate that the graphene layer intercalated between the metal and semiconductor also serves as a protection against iron-silicide formation even at elevated temperatures preventing from the formation of a Si-based magnetic dead layer.

  10. Reading data stored in the state of metastable defects in silicon using band-band photoluminescence: Proof of concept and physical limits to the data storage density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rougieux, F. E.; Macdonald, D.

    2014-03-24

    The state of bistable defects in crystalline silicon such as iron-boron pairs or the boron-oxygen defect can be changed at room temperature. In this letter, we experimentally demonstrate that the chemical state of a group of defects can be changed to represent a bit of information. The state can then be read without direct contact via the intensity of the emitted band-band photoluminescence signal of the group of defects, via their impact on the carrier lifetime. The theoretical limit of the information density is then computed. The information density is shown to be low for two-dimensional storage but significant formore » three-dimensional data storage. Finally, we compute the maximum storage capacity as a function of the lower limit of the photoluminescence detector sensitivity.« less

  11. River Valley pluton, Ontario - A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    NASA Technical Reports Server (NTRS)

    Ashwal, Lewis D.; Wooden, Joseph L.

    1989-01-01

    This paper presents Nd, Sr, and Pb isotopic data indicating a late-Archean/early-Proterozoic age for the River Valley anorthositic pluton of the southwestern Grenville Province of Sudbury, Ontario. Pb-Pb isotopic data on 10 whole-rock samples ranging in composition from anorthosite to gabbro yield an age of 2560 + or - 155 Ma. The River Valley pluton is thus the oldest anorthositic intrusive yet recognized within the Grenville Province. The Sm-Nd isotopic system records an age of 2377 + or - 68 Ma. High Pb-208/Pb-204 of deformed samples relative to igneous-textured rocks implies Th introduction and/or U loss during metamorphism in the River Valley area. Rb-Sr data from igneous-textured and deformed samples and from mineral separates give an age of 2185 + or - 105 Ma, indicating substantial disturbance of the Rb-Sr isotopic system.

  12. Nanophase iron phosphate, iron arsenate, iron vanadate, and iron molybdate minerals synthesized within the protein cage of ferritin.

    PubMed

    Polanams, Jup; Ray, Alisha D; Watt, Richard K

    2005-05-02

    Nanoparticles of iron phosphate, iron arsenate, iron molybdate, and iron vanadate were synthesized within the 8 nm interior of ferritin. The synthesis involved reacting Fe(II) with ferritin in a buffered solution at pH 7.4 in the presence of phosphate, arsenate, vanadate, or molybdate. O2 was used as the oxidant to deposit the Fe(III) mineral inside ferritin. The rate of iron incorporation into ferritin was stimulated when oxo-anions were present. The simultaneous deposition of both iron and the oxo-anion was confirmed by elemental analysis and energy-dispersive X-ray analysis. The ferritin samples containing iron and one of the oxo-anions possessed different UV/vis spectra depending on the anion used during mineral formation. TEM analysis showed mineral cores with approximately 8 nm mineral particles consistent with the formation of mineral phases inside ferritin.

  13. Intravenous iron-dextran: studies on unsaturated iron-binding capacity

    PubMed Central

    Cox, J. S. G.; Moss, G. F.; Bremner, I.; Reason, Janet

    1968-01-01

    A method is described for measuring the plasma unsaturated iron-binding capacity in the presence of very high concentrations of iron as iron-dextran. The procedure utilizes 59Fe to label the apotransferrin with subsequent separation of ionic iron from transferrin-bound iron on an ion exchange or Sephadex G.25 column. The unsaturated iron-binding capacity has been measured in rabbits and dogs after intravenous injection of iron-dextran and in human subjects after total dose infusion of iron-dextran. No evidence of saturation of the unsaturated iron-binding capacity was found even when the plasma iron values were greater than 40,000 μg Fe/100 ml. PMID:5697365

  14. Iron and sulfur isotope constraints on redox conditions associated with the 3.2 Ga barite deposits of the Mapepe Formation (Barberton Greenstone Belt, South Africa)

    NASA Astrophysics Data System (ADS)

    Busigny, Vincent; Marin-Carbonne, Johanna; Muller, Elodie; Cartigny, Pierre; Rollion-Bard, Claire; Assayag, Nelly; Philippot, Pascal

    2017-08-01

    The occurrence of Early Archean barite deposits is intriguing since this type of sediment requires high availability of dissolved sulfate (SO42-), the oxidized form of sulfur, although most authors argued that the Archean eon was dominated by reducing conditions, with low oceanic sulfate concentration (<10 μM) relative to present day levels of 28,000 μM. In order to better assess the redox state of the paleo-atmosphere and -oceans, we examined Fe and S isotope compositions in a sedimentary sequence from the 3.2 Ga-old Mendon and Mapepe formations (Kaapvaal craton, South Africa), recovered from the drill-core BBDP2 of the Barberton Barite Drilling Project. Major elements were also analyzed to constrain the respective imprints of detrital vs metasomatic processes, in particular using Al, Ti and K interrelations. Bulk rock Fe isotope compositions are linked to mineralogy, with δ56Fe values varying between -2.04‰ in Fe sulfide-dominated barite beds, to +2.14‰ in Fe oxide-bearing cherts. δ34S values of sulfides vary between -10.84 and +3.56‰, with Δ33S in a range comprised between -0.35 and +2.55‰, thus supporting an O2-depleted atmosphere (<10-5 PAL). Iron isotope variations together with major element correlations show that, although the sediments experienced a pervasive stage of hydrothermal alteration, the rocks preserved a primary/authigenic signature predating subsequent hydrothermal stage. Highly positive δ56Fe values recorded in primary Fe-oxides from ferruginous cherts support partial Fe oxidation in a reducing oceanic environment (O2 < 10-4 μM), but are incompatible with a model of complete oxidation at the redox boundary of a stratified water column. Iron oxide precipitation under low O2 levels was likely mediated by anoxygenic photosynthesis, and/or abiotic photo-oxidation processes. Our results are consistent with global anoxic conditions in the 3.2 Ga-old sediments, implying that the barite deposits were most likely sourced by atmospheric

  15. Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora

    NASA Astrophysics Data System (ADS)

    Groiss, Silvia; Selvaraj, Raja; Varadavenkatesan, Thivaharan; Vinayagam, Ramesh

    2017-01-01

    In the present investigation, the leaf extract of Cynometra ramiflora was used to synthesize iron oxide nanoparticles. Within minutes of adding iron sulphate to the leaf extract, iron oxide nanoparticles were formed and thus, the method is very simple and fast. UV-VIS spectra showed the strong absorption band in the visible region. SEM images showed discrete spherical shaped particles and EDS spectra confirmed the iron and oxygen presence. The XRD results depicted the crystalline structure of iron oxide nanoparticles. FT-IR spectra portrayed the existence of functional groups of phytochemicals which are probably involved in the formation and stabilization of nanoparticles. The iron oxide nanoparticles exhibited effective inhibition against E. coli and S. epidermidis which may find its applications in the antibacterial drug development. Furthermore, the catalytic activity of the nanoparticles as Fenton-like catalyst was successfully investigated for the degradation of Rhodamine-B dye. This outcome could play a prominent role in the wastewater treatment.

  16. Ferritin accumulation under iron scarcity in Drosophila iron cells.

    PubMed

    Mehta, A; Deshpande, A; Bettedi, L; Missirlis, F

    2009-10-01

    Ferritins are highly stable, multi-subunit protein complexes with iron-binding capacities that reach 4500 iron atoms per ferritin molecule. The strict dependence of cellular physiology on an adequate supply of iron cofactors has likely been a key driving force in the evolution of ferritins as iron storage molecules. The insect intestine has long been known to contain cells that are responsive to dietary iron levels and a specialized group of "iron cells" that always accumulate iron-loaded ferritin, even when no supplementary iron is added to the diet. Here, we further characterize ferritin localization in Drosophila melanogaster larvae raised under iron-enriched and iron-depleted conditions. High dietary iron intake results in ferritin accumulation in the anterior midgut, but also in garland (wreath) cells and in pericardial cells, which together filter the circulating hemolymph. Ferritin is also abundant in the brain, where levels remain unaltered following dietary iron chelation, a treatment that depletes ferritin from the aforementioned tissues. We attribute the stability of ferritin levels in the brain to the function of the blood-brain barrier that may shield this organ from systemic iron fluctuations. Most intriguingly, our dietary manipulations demonstrably iron-depleted the iron cells without a concomitant reduction in their production of ferritin. Therefore, insect iron cells may constitute an exception from the evolutionary norm with respect to iron-dependent ferritin regulation. It will be of interest to decipher both the physiological purpose served and the mechanism employed to untie ferritin regulation from cellular iron levels in this cell type.

  17. Preliminary Iron Distribution on Vesta

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Mittlefehldt, David W.

    2013-01-01

    The distribution of iron on the surface of the asteroid Vesta was investigated using Dawn's Gamma Ray and Neutron Detector (GRaND) [1,2]. Iron varies predictably with rock type for the howardite, eucrite, and diogenite (HED) meteorites, thought to be representative of Vesta. The abundance of Fe in howardites ranges from about 12 to 15 wt.%. Basaltic eucrites have the highest abundance, whereas, lower crustal and upper mantle materials (cumulate eucrites and diogenites) have the lowest, and howardites are intermediate [3]. We have completed a mapping study of 7.6 MeV gamma rays produced by neutron capture by Fe as measured by the bismuth germanate (BGO) detector of GRaND [1]. The procedures to determine Fe counting rates are presented in detail here, along with a preliminary distribution map, constituting the necessary initial step to quantification of Fe abundances. We find that the global distribution of Fe counting rates is generally consistent with independent mineralogical and compositional inferences obtained by other instruments on Dawn such as measurements of pyroxene absorption bands by the Visual and Infrared Spectrometer (VIR) [4] and Framing Camera (FC) [5] and neutron absorption measurements by GRaND [6].

  18. Trapped Melt in IIIAB Irons: Solid/Liquid Elemental Partitioning During the Fractionation of the IIIAB Magma

    NASA Technical Reports Server (NTRS)

    Wasson, John T.

    1999-01-01

    Group IIIAB, the largest iron-meteorite group, shows compositional trends (including a three-order-of-magnitude It concentration range) indicating that it formed by fractional crystallization of a metallic magma. Because about 200 irons are available, and all degrees of crystallization are well represented, IIIAB offers an excellent set of samples for the study of crystallization at all depths of the asteroidal core. On log-log Ir-Au, and Ir-As diagrams IIIAB forms a broad band; the breadth represents real meteorite-to-meteorite variations, far outside experimental or sampling uncertainties. A successful model must explain the width of this band; I suggest that it mainly resulted from the trapping of parental magma within the crystallizing solid. Because S is essentially insoluble in metal, the abundance of FeS is a measure of the fraction of trapped liquid. The trapped-melt model is supported by the observation that irons having higher S contents plot closer to the inferred composition of the magmatic parental liquid. The lowest S values are found in the irons occupying the left envelope of the IIIAB Ir-Au or Ir-As compositional fields, thus it is this set of irons that should be interpreted as the solid products of a fractionating magma. This simplifies the modeling of the crystallization process and allows inferences regarding the distribution ratios for other elements in the evolved IIIAB system. The large (multiton) Cape York irons show wide variations in their trapped-melt fractions; their compositions seem best understood in terms of a low initial S content of the IIIAB magma, about 20 mg/g. The inferred initial IIIAB distribution coefficient for Ir, 4.6, is much higher than published values based on laboratory studies of low-S systems; I suggest that low-S (and low-P) partition-ratio measurements tend to err in the direction of unity. In IIIAB distribution coefficients for Au, As, and Ni were still < 1 when the most evolved IIIAB irons formed, another

  19. Functional Characterization of the FoxE Iron Oxidoreductase from the Photoferrotroph Rhodobacter ferrooxidans SW2*

    PubMed Central

    Saraiva, Ivo H.; Newman, Dianne K.; Louro, Ricardo O.

    2012-01-01

    Photoferrotrophy is presumed to be an ancient type of photosynthetic metabolism in which bacteria use the reducing power of ferrous iron to drive carbon fixation. In this work the putative iron oxidoreductase of the photoferrotroph Rhodobacter ferrooxidans SW2 was cloned, purified, and characterized for the first time. This protein, FoxE, was characterized using spectroscopic, thermodynamic, and kinetic techniques. It is a c-type cytochrome that forms a trimer or tetramer in solution; the two hemes of each monomer are hexacoordinated by histidine and methionine. The hemes have positive reduction potentials that allow downhill electron transfer from many geochemically relevant ferrous iron forms to the photosynthetic reaction center. The reduction potentials of the hemes are different and are cross-assigned to fast and slow kinetic phases of ferrous iron oxidation in vitro. Lower reactivity was observed at high pH and may contribute to prevent ferric iron precipitation inside or at the surface of the cell. These results help fill in the molecular details of a metabolic process that likely contributed to the deposition of precambrian banded iron formations, globally important sedimentary rocks that are found on every continent today. PMID:22661703

  20. Cyclic formation and stabilization of Archean lithosphere by accretionary orogenesis: Constraints from TTG and potassic granitoids, North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Cawood, Peter A.; Liu, Shuwen; Guo, Rongrong; Bai, Xiang; Wang, Kang

    2017-09-01

    Accretionary orogens are major sites of modern continental growth, yet their role in the development of Archean continental crust remains enigmatic. Diverse granitoid suites from tonalite-trondhjemite-granodiorite (TTG) to potassic granitoids appeared during late Archean, representing a period of major continental formation and stabilization. In this study, whole-rock geochemical and zircon U-Pb and Lu-Hf isotopic data are reported for Neoarchean granitoid gneisses from the Northern Liaoning Terrane, northeastern North China Craton (NCC). Older granitoid gneisses ( 2592-2537 Ma) define three magmatic zones migrating from southeast to northwest, each showing a common magmatic evolution from high-pressure TTGs to medium-/low-pressure TTGs and potassic granitoids. They have depleted zircon ƐHf(t) of +0.5 to +8.7. Younger 2529-2503 Ma potassic granitoids and TTGs occur throughout the terrane, which are marked by variable zircon ƐHf(t) of -4.7 to +8.1, and are coeval with regional high-grade metamorphism. Petrogenetic modeling and changing Sr/Y and (La/Yb)N of the granitoids suggest that the crust experienced episodic thickening and thinning and became progressively evolved through development of potassic granitoids and sedimentary successions. The metavolcanic basement to the granitoids display tholeiitic to calc-alkaline affinities, together with the top-to-the-northwest thrusting and associated volcanogenic massive sulfide-type Cu-Zn deposits, suggesting cyclic crustal formation of Northern Liaoning within an accretionary orogen with a SE-dipping subduction polarity. Cyclic crustal thickening and thinning is related to tectonic switching from advancing to retreating relations between the downgoing and overriding plate. After 2530 Ma, this accretionary system accreted to the ancient continental nucleus of NCC (Anshan-Benxi Terrane), signifying final lithosphere stabilization.

  1. Iron deficiency and iron deficiency anaemia in women.

    PubMed

    Percy, Laura; Mansour, Diana; Fraser, Ian

    2017-04-01

    Iron deficiency (ID) is the most common micronutrient deficiency worldwide with >20% of women experiencing it during their reproductive lives. Hepcidin, a peptide hormone mostly produced by the liver, controls the absorption and regulation of iron. Understanding iron metabolism is pivotal in the successful management of ID and iron deficiency anaemia (IDA) using oral preparations, parenteral iron or blood transfusion. Oral preparations vary in their iron content and can result in gastrointestinal side effects. Parenteral iron is indicated when there are compliance/tolerance issues with oral iron, comorbidities which may affect absorption or ongoing iron losses that exceed absorptive capacity. It may also be the preferred option when rapid iron repletion is required to prevent physiological decompensation or given preoperatively for non-deferrable surgery. As gynaecologists, we focus on managing women's heavy menstrual bleeding (HMB) and assume that primary care clinicians are treating the associated ID/IDA. We now need to take the lead in diagnosing, managing and initiating treatment for ID/IDA and treating HMB simultaneously. This dual management will significantly improve their quality of life. In this chapter we will summarise the importance of iron in cellular functioning, describe how to diagnose ID/IDA and help clinicians choose between the available treatment options. Copyright © 2016. Published by Elsevier Ltd.

  2. Sonochemically synthesized iron-doped zinc oxide nanoparticles: Influence of precursor composition on characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Anirban; Maitra, Saikat; Ghosh, Sobhan

    Highlights: • Sonochemical synthesis of iron-doped zinc oxide nanoparticles. • Green synthesis without alkali at room temperature. • Characterization by UV–vis spectroscopy, FESEM, XRD and EDX. • Influence of precursor composition on characteristics. • Composition and characteristics are correlated. - Abstract: Iron-doped zinc oxide nanoparticles have been synthesized sonochemically from aqueous acetyl acetonate precursors of different proportions. Synthesized nanoparticles were characterized with UV–vis spectroscopy, X-ray diffraction and microscopy. Influences of precursor mixture on the characteristics have been examined and modeled. Linear correlations have been proposed between dopant dosing, extent of doping and band gap energy. Experimental data corroborated with themore » proposed models.« less

  3. Inferring episodic atmospheric iron fluxes in the Western South Atlantic

    NASA Astrophysics Data System (ADS)

    Evangelista, Heitor; Maldonado, Juan; dos Santos, Elaine A.; Godoi, Ricardo H. M.; Garcia, Carlos A. E.; Garcia, Virginia M. T.; Jonhson, Erling; Dias da Cunha, Kenya; Leite, Carlos Barros; Van Grieken, René; Van Meel, Katleen; Makarovska, Yaroslava; Gaiero, Diego M.

    2010-02-01

    Iron (Fe) and other trace elements such as Zn, Mn, Ni and Cu are known as key-factors in marine biogeochemical cycles. It is believed that ocean primary productivity blooms in iron deficient regions can be triggered by iron in aeolian dust. Up to now, scarce aerosol elemental composition, based on measurements over sea at the Western South Atlantic (WSA), exist. An association between the Patagonian semi-desert dust/Fe and chlorophyll-a variability at the Argentinean continental shelf is essentially inferred from models. We present here experimental data of Fe enriched aerosols over the WSA between latitudes 22°S-62°S, during 4 oceanographic campaigns between 2002 and 2005. These data allowed inferring the atmospheric Fe flux onto different latitudinal bands which varied from 30.4 to 1688 nmolFe m -2 day -1 (October 29th-November 15th, 2003); 5.83-1586 nmolFe m -2 day -1 (February 15th-March 6th, 2004) and 4.73-586 nmolFe m -2 day -1(October 21st-November 5th, 2005).

  4. 46 CFR 56.60-10 - Cast iron and malleable iron.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Cast iron and malleable iron. 56.60-10 Section 56.60-10... APPURTENANCES Materials § 56.60-10 Cast iron and malleable iron. (a) The low ductility of cast iron and... avoided. Cast iron and malleable iron components shall not be used at temperatures above 450 °F. Cast iron...

  5. The Khida terrane - Geochronological and isotopic evidence for Paleoproterozoic and Archean crust in the eastern Arabian Shield of Saudi Arabia

    USGS Publications Warehouse

    Whitehouse, M.J.; Stoeser, D.B.; Stacey, J.S.

    2001-01-01

    The Khida terrane of the eastern Arabian Shield of Saudi Arabia has been proposed as being underlain by Paleoproterozoic to Archean continental crust (Stoeser and Stacey, 1988). Detailed geological aspects of the Khida terrane, particularly resulting from new fieldwork during 1999, are discussed in a companion abstract (Stoeser et al., this volume). We present conventional and ion- microprobe U-Pb zircon geoenronology, Nd whole-rock, and feldspar Pb isotopic data that further elucidate the pre-Pan-African evolution of the Khida terrane. Locations for the Muhayil samples described below are shown in figure 2 of Stoeser et al. (this volume). 

  6. Electronic properties and surface reactivity of SrO-terminated SrTiO3 and SrO-terminated iron-doped SrTiO3

    PubMed Central

    Staykov, Aleksandar; Tellez, Helena; Druce, John; Wu, Ji; Ishihara, Tatsumi; Kilner, John

    2018-01-01

    Abstract Surface reactivity and near-surface electronic properties of SrO-terminated SrTiO3 and iron doped SrTiO3 were studied with first principle methods. We have investigated the density of states (DOS) of bulk SrTiO3 and compared it to DOS of iron-doped SrTiO3 with different oxidation states of iron corresponding to varying oxygen vacancy content within the bulk material. The obtained bulk DOS was compared to near-surface DOS, i.e. surface states, for both SrO-terminated surface of SrTiO3 and iron-doped SrTiO3. Electron density plots and electron density distribution through the entire slab models were investigated in order to understand the origin of surface electrons that can participate in oxygen reduction reaction. Furthermore, we have compared oxygen reduction reactions at elevated temperatures for SrO surfaces with and without oxygen vacancies. Our calculations demonstrate that the conduction band, which is formed mainly by the d-states of Ti, and Fe-induced states within the band gap of SrTiO3, are accessible only on TiO2 terminated SrTiO3 surface while the SrO-terminated surface introduces a tunneling barrier for the electrons populating the conductance band. First principle molecular dynamics demonstrated that at elevated temperatures the surface oxygen vacancies are essential for the oxygen reduction reaction. PMID:29535797

  7. Higher iron bioavailability of a human-like collagen iron complex.

    PubMed

    Zhu, Chenhui; Yang, Fan; Fan, Daidi; Wang, Ya; Yu, Yuanyuan

    2017-07-01

    Iron deficiency remains a public health problem around the world due to low iron intake and/or bioavailability. FeSO 4 , ferrous succinate, and ferrous glycinate chelate are rich in iron but have poor bioavailability. To solve the problem of iron deficiency, following previous research studies, a thiolated human-like collagen-ironcomplex supplement with a high iron content was prepared in an anaerobic workstation. In addition, cell viability tests were evaluated after conducting an MTT assay, and a quantitative analysis of the thiolated human-like collagen-iron digesta samples was performed using the SDS-PAGE method coupled with gel filtration chromatography. The iron bioavailability was assessed using Caco-2 cell monolayers and iron-deficiency anemia mice models. The results showed that (1) one mole of thiolated human-like collagen-iron possessed approximately 35.34 moles of iron; (2) thiolated human-like collagen-iron did not exhibit cytotoxity and (3) thiolated human-like collagen- iron digesta samples had higher bioavailability than other iron supplements, including FeSO 4 , ferrous succinate, ferrous glycine chelate and thiolated human-like collagen-Fe iron. Finally, the iron bioavailability was significantly enhanced by vitamin C. These results indicated that thiolated human-like collagen-iron is a promising iron supplement for use in the future.

  8. Evidence of Mott physics in iron pnictides from x-ray spectroscopy

    DOE PAGES

    Lafuerza, S.; Gretarsson, H.; Hardy, F.; ...

    2017-07-24

    The existence of large instantaneous local magnetic moments in paramagnetic phases is a direct signature of Mott localization. In order to track the doping evolution of fluctuating local moments in iron-based superconductors, we jointly use two fast probes, x-ray emission and absorption spectroscopies. Exploring K- and Cr-hole-doped BaF e 2 A s 2 , we also find a systematic increase in the local moment with hole-doping, in contrast with inelastic neutron scattering measurements, which suggest an opposite trend. The results support the theoretical scenario in which a Mott insulating state that would be realized for half-filled conduction bands has anmore » influence throughout the phase diagram of these iron pnictides.« less

  9. Pb, Sr, and Nd isotopic compositions of a suite of Large Archean, igneous rocks, eastern Beartooth Mountains - Implications for crust-mantle evolution

    NASA Technical Reports Server (NTRS)

    Wooden, J. L.; Mueller, P. A.

    1988-01-01

    Compositionally diverse Late Archean rocks (2.74-2.79 Ga old) from the eastern Beartooth Mountains (Montana and Wyoming) were studied and shown to have the same initial Pb, Sr, and Nd isotopic ratios. Lead and Sr initial ratios are higher and Nd initial values lower than predicted for rocks derived from model mantle sources and strongly indicate the involvement of an older crustal reservoir in the genesis of these rocks. A model involving subduction of continental detritus and contamination of the overlying mantle is suggested.

  10. Magmatism and Tectonics in the Meso-Archean Pongola Supergroup, South Africa

    NASA Astrophysics Data System (ADS)

    Wilson, Allan

    2013-04-01

    The Pongola Supergroup is one of the most extensive and well preserved volcano-sedimentary successions emplaced in a continental setting in the Meso-Archean (c. 2.95 Ga). It contrasts with both the older (Barberton type c.3.5 Ga) and younger (Belingwe type c.2.7 Ga) greenstone belts in southern Africa in that the sequence has not undergone the strong horizontal compressional tectonics typically related to greenstone belt-TTG environments. However, it is appropriate to compare this sequence with rocks of the Barberton greenstone belt by which the final phase of deposition preceded that of the juxtaposed Pongola basin with a relatively small time interval. The Pongola succession, which commenced with the first major magmatic event after the Barberton greenstone belt, overlies granitoids and remnants of greenstone belts in SE South Africa and in SW Swaziland. Formation was not in a continental rift environment but most likely in a marginal epicontinental basin with syn-depositional subsidence in a half-graben fault system in the type area. The Pongola rocks occur in two domains related to a NW-trending central basement high in the Kaapvaal Craton and achieving a maximum thickness of 8 km in the northern areas. The lower section (Nsuze group 3.7 km thick) is made up mainly of lavas and pyroclastic rocks and the upper section (Mozaan Group 4.3 km thick) is aranaceous sediments and argillites with a thick volcanic unit observed in the south-eastern facies. Chemical affinities of the lavas include tholeiite and calc-alkaline over the compositional range of basalt to rhyolite. There is a preponderance of andesites in the compositional array. The preservation of these rocks gives insight into the range of volcanic processes that took place at this stage of Earth history and in some areas it is possible to identify eruptions from a single source over several kilometres, as well as feeder-dyke systems to the lava flows. Simultaneous eruption of contrasting magmas from several

  11. Accretionary history of the Archean Barberton Greenstone Belt (3.55-3.22 Ga), southern Africa

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1994-01-01

    The 3.55-3.22 Ga Barberton Greenstone Belt, South Africa and Swaziland, and surrounding coeval plutons can be divided into four tectono-stratigraphic blocks that become younger toward the northwest. Each block formed through early mafic to ultramafic volcanism (Onverwacht Group), probably in oceanic extensional, island, or plateau settings. Volcanism was followed by magmatic quiescence and deposition of fine-grained sediments, possibly in an intraplate setting. Late evolution involved underplating of the mafic crust by tonalitic intrusions along a subduction-related magmatic arc, yielding a thickened, buoyant protocontinental block. The growth of larger continental domains occurred both through magmatic accretion, as new protocontinental blocks developed along the margins of older blocks, and when previously separate blocks were amalgamated through tectonic accretion. Evolution of the Barberton Belt may reflect an Early Archean plate tectonic cycle that characterized a world with few or no large, stabilized blocks of sialic crust.

  12. Evidence that stainable bone marrow iron following parenteral iron therapy does not correlate with serum iron studies and may not represent readily available storage iron.

    PubMed

    Thomason, Ronald W; Almiski, Muhamad S

    2009-04-01

    We recently reported that parenteral iron therapy is associated with a characteristic pattern of iron staining on bone marrow aspirate smears. We now present clinical information from 6 patients who received parenteral iron and, at one or more points in follow-up, were found to have low or borderline low serum ferritin levels and/or serum iron levels, even though marrow aspirate smears revealed abundant stainable iron in the pattern characteristic of prior parenteral iron therapy. We conclude that stainable iron seen in this pattern does not correlate with serum iron studies and may not represent functionally available storage iron. This pattern of iron staining should not be used as evidence to withhold further iron therapy in patients who otherwise continue to have features of iron deficiency anemia.

  13. J-Band Infrared Spectroscopy of a Sample of Brown Dwarfs Using NIRSPEC on Keck II.

    PubMed

    McLean; Wilcox; Becklin; Figer; Gilbert; Graham; Larkin; Levenson; Teplitz; Kirkpatrick

    2000-04-10

    Near-infrared spectroscopic observations of a sample of very cool, low-mass objects are presented with higher spectral resolution than in any previous studies. Six of the objects are L dwarfs, ranging in spectral class from L2 to L8/9, and the seventh is a methane or T dwarf. These new observations were obtained during commissioning of the near-infrared spectrometer (NIRSPEC), the first high-resolution near-infrared cryogenic spectrograph for the Keck II 10 m telescope on Mauna Kea, Hawaii. Spectra with a resolving power of R approximately 2500 from 1.135 to 1.360 µm (approximately J band) are presented for each source. At this resolution, a rich spectral structure is revealed, much of which is due to blending of unresolved molecular transitions. Strong lines due to neutral potassium (K i) and bands due to iron hydride (FeH) and steam (H2O) change significantly throughout the L sequence. Iron hydride disappears between L5 and L8, the steam bands deepen, and the K i lines gradually become weaker but wider because of pressure broadening. An unidentified feature occurs at 1.22 µm that has a temperature dependence like FeH but has no counterpart in the available FeH opacity data. Because these objects are 3-6 mag brighter in the near-infrared compared with the I band, spectral classification is efficient. One of the objects studied (2MASSW J1523+3014) is the coolest L dwarf discovered so far by the 2 Micron All-Sky Survey (2MASS), but its spectrum is still significantly different from the methane-dominated objects such as Gl 229B or SDSS 1624+0029.

  14. Quantifying the timescales of Archean UHT metamorphism through U-Pb monazite and zircon petrochronology

    NASA Astrophysics Data System (ADS)

    Guevara, V.; MacLennan, S. A.; Schoene, B.; Dragovic, B.; Caddick, M. J.; Kylander-Clark, A. R.; Couëslan, C. G.

    2016-12-01

    Unraveling the timescales of metamorphism is crucial to understanding the mechanisms behind mass/heat transfer through Earth's crust. Though such mechanisms and their durations are becoming well constrained in modern (Phanerozoic) settings, the drivers of metamorphism in the ancient geologic record remain more enigmatic. The development of accessory phase petrochronology has allowed metamorphic evolution to be closely linked to isotopic dates, ultimately improving quantification of metamorphic durations. While in-situ petrochronological methods preserve textural and spatial context, they often lack the temporal resolution required to accurately quantify metamorphic duration in Archean terranes. Here we combine in-situ U-Pb monazite (mnz) and zircon (zrn) laser ablation split-stream (LASS) and high-precision ID-TIMS-TEA petrochronology of distinct grain domains to resolve the timescales of ultrahigh temperature (UHT) metamorphism in the Archean Pikwitonei granulite domain (PGD). The PGD encompasses >1.5x105 km2 of granulite-facies rocks on the NW edge of the Superior Province. Themodynamic modelling of a pelite from the western part of the PGD suggests peak P-T conditions of >8 kbar, 900-940 °C and UHT decompression to 8 kbar followed by cooling. LASS analysis of zrn inclusions in garnet (grt) yields a date of 2701 Ma, with Ti in zrn thermometry yielding T of 800-900 °C. LASS analysis of mnz yields dates of 2720-2680 Ma for low HREE domains with no to shallow negative Eu anomalies, suggestive of growth during plagioclase (plg) breakdown and grt stability. ID-TIMS analysis of a mnz fragment with a strong negative Eu anomaly, suggestive of growth during plg stability, gives a concordant 207Pb/206Pb date of 2666 Ma, consistent with LASS results of 2660-2640 Ma for chemically similar domains. ID-TIMS analyses of zrn rims yield a range of 207Pb/206Pb dates from 2671 to 2656 Ma (±<1 Ma). Ti in zrn yields 800 °C for these rims, indicating they grew at similar T

  15. Magmatic @d^1^8O in 4400-3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean [rapid communication

    NASA Astrophysics Data System (ADS)

    Cavosie, A. J.; Valley, J. W.; Wilde, S. A.

    2005-07-01

    Ion microprobe analyses of δ 18O in 4400-3900 Ma igneous zircons from the Jack Hills, Western Australia, provide a record of the oxygen isotope composition of magmas in the earliest Archean. We have employed a detailed analysis protocol aimed at correlating spatially related micro-volumes of zircon concordant in U/Pb age with δ 18O and internal zoning. Simultaneous analysis of 18O and 16O with dual Faraday cup detectors, combined with frequent standardization, has yielded data with improved accuracy and precision over prior studies, and resulted in a narrower range of what is interpreted as magmatic δ 18O in > 3900 Ma zircons. Preserved magmatic δ 18O values from individual zircons (Zrc) range from 5.3‰ to 7.3‰ (VSMOW), and increasingly deviate from the mantle range of 5.3 ± 0.3‰ as zircons decrease in age from 4400 to 4200 Ma. Elevated δ 18O (Zrc) values up to 6.5‰ occur as early as 4325 Ma, which suggests that evolved rocks were incorporated into magmas within ˜230 Ma of Earth's accretion. Values of magmatic δ 18O (Zrc) as high as 7.3‰ are recorded in zircons by 4200 Ma, and are common thereafter. The protoliths of the magmas these zircons crystallized in were altered by low temperature interaction with liquid water near Earth's surface. These results provide the strongest evidence yet for the existence of liquid water oceans and supracrustal rocks by approximately 4200 Ma, and possibly as early as 4325 Ma. The range of magmatic δ 18O values in the 4400-3900 Ma zircons is indistinguishable from Archean igneous zircons, suggesting similar magmatic processes occurred over the first two billion years of recorded Earth history. Zircons with sub-solidus alteration histories, identified by the presence of disturbed internal zoning patterns, record δ 18O values both below (4.6‰) and above (10.3‰) the observed range for primary magmatic zircon, and are unreliable indicators of Early Archean magma chemistry.

  16. Dietary iron intake, iron status, and gestational diabetes.

    PubMed

    Zhang, Cuilin; Rawal, Shristi

    2017-12-01

    Pregnant women are particularly vulnerable to iron deficiency and related adverse pregnancy outcomes and, as such, are routinely recommended for iron supplementation. Emerging evidence from both animal and population-based studies, however, has raised potential concerns because significant associations have been observed between greater iron stores and disturbances in glucose metabolism, including increased risk of type 2 diabetes among nonpregnant individuals. Yet, the evidence is uncertain regarding the role of iron in the development of gestational diabetes mellitus (GDM), a common pregnancy complication which has short-term and long-term adverse health ramifications for both women and their children. In this review, we critically and systematically evaluate available data examining the risk of GDM associated with dietary iron, iron supplementation, and iron status as measured by blood concentrations of several indicators. We also discuss major methodologic concerns regarding the available epidemiologic studies on iron and GDM. © 2017 American Society for Nutrition.

  17. The Irony of Iron – Biogenic Iron Oxides as an Iron Source to the Ocean

    PubMed Central

    Emerson, David

    2016-01-01

    Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe) to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidizing bacteria (FeOB) that live by oxidizing iron and producing biogenic iron oxides as waste products. The presence and ubiquity of FeOB both at hydrothermal systems and in sediments is only beginning to be appreciated. The biogenic oxides they produce have unique properties that could contribute significantly to the dynamics of dFe in the ocean. Changes in the physical and chemical characteristics of the ocean due to climate change and ocean acidification will undoubtedly impact the microbial iron cycle. A better understanding of the contemporary role of microbes in the iron cycle will help in predicting how these changes could ultimately influence marine primary productivity. PMID:26779157

  18. Spin excitations in hole-overdoped iron-based superconductors.

    PubMed

    Horigane, K; Kihou, K; Fujita, K; Kajimoto, R; Ikeuchi, K; Ji, S; Akimitsu, J; Lee, C H

    2016-09-12

    Understanding the overall features of magnetic excitation is essential for clarifying the mechanism of Cooper pair formation in iron-based superconductors. In particular, clarifying the relationship between magnetism and superconductivity is a central challenge because magnetism may play a key role in their exotic superconductivity. BaFe2As2 is one of ideal systems for such investigation because its superconductivity can be induced in several ways, allowing a comparative examination. Here we report a study on the spin fluctuations of the hole-overdoped iron-based superconductors Ba1-xKxFe2As2 (x = 0.5 and 1.0; Tc = 36 K and 3.4 K, respectively) over the entire Brillouin zone using inelastic neutron scattering. We find that their spin spectra consist of spin wave and chimney-like dispersions. The chimney-like dispersion can be attributed to the itinerant character of magnetism. The band width of the spin wave-like dispersion is almost constant from the non-doped to optimum-doped region, which is followed by a large reduction in the overdoped region. This suggests that the superconductivity is suppressed by the reduction of magnetic exchange couplings, indicating a strong relationship between magnetism and superconductivity in iron-based superconductors.

  19. Two-band induced superconductivity in single-layer graphene and topological insulator bismuth selenide

    NASA Astrophysics Data System (ADS)

    Talantsev, E. F.; Crump, W. P.; Tallon, J. L.

    2018-01-01

    Proximity-induced superconductivity in single-layer graphene (SLG) and in topological insulators represent almost ideal examples of superconductivity in two dimensions. Fundamental mechanisms governing superconductivity in the 2D limit are of central interest for modern condensed-matter physics. To deduce fundamental parameters of superconductor/graphene/superconductor and superconductor/bismuth selenide/superconductor junctions we investigate the self-field critical currents in these devices using the formalism of the Ambegaokar-Baratoff model. Our central finding is that the induced superconducting state in SLG and bismuth selenide each exhibits gapping on two superconducting bands. Based on recent results obtained on ultra-thin films of natural superconductors, including single-atomic layer of iron selenide, double and triple atomic layers of gallium, and several atomic layer tantalum disulphide, we conclude that a two-band induced superconducting state in SLG and bismuth selenide is part of a wider, more general multiple-band phenomenology of currently unknown origin.

  20. Effects of calcium on hepatocyte iron uptake from transferrin, iron-pyrophosphate and iron-ascorbate.

    PubMed

    Nilsen, T

    1991-10-16

    Calcium stimulates hepatocyte iron uptake from transferrin, ferric-iron-pyrophosphate and ferrous-iron-ascorbate. Maximal stimulation of iron uptake is observed at 1-1.5 mM of extra-cellular calcium and the effect is reversible and immediate. Neither the receptor affinity for transferrin, nor the total amounts of transferrin associated with the cells or the rate of transferrin endocytosis are significantly affected by calcium. In the presence of calcium the rate of iron uptake of non-transferrin bound iron increases abruptly at approximate 17 degrees C and 27 degrees C and as assessed by Arrhenius plots, the activation energy is reduced in a calcium dependent manner at approx. 27 degrees C. At a similar temperature, i.e., between 25 degrees C and 28 degrees C, calcium increases the rates of cellular iron uptake from transferrin in a way that is not reflected in the rate of transferrin endocytosis. By the results of this study it is concluded that calcium increases iron transport across the plasma membrane by a mechanism dependent on membrane fluidity.

  1. Response to parenteral iron therapy distinguish unexplained refractory iron deficiency anemia from iron-refractory iron deficiency anemia.

    PubMed

    Akin, M; Sarbay, H; Guler, S; Balci, Y I; Polat, A

    2016-04-01

    We evaluated that response to parenteral iron therapy could be helpful in distinguishing the types of iron deficiency anemia. This study analyzed responses to IV iron sucrose therapy of 15 children with unexplained refractory iron deficiency anemia (URIDA). We compared the results at diagnosis, 6 weeks and 6 months after the therapy. Results were compared with responses of 11 patients' results with iron-refractory iron deficiency anemia (IRIDA) from our previous study. Six weeks after the start of treatment, ferritin, MCV, MCH and Hb values were in normal range in 10 patients. The increase in Hb, MCH, MCV, and ferritin values ranged 2.6-3.5 g/dL, 1.7-4.2 pg, 2-9 fL, and 13-25 ng/mL, respectively. In five patients, Hb, MCH, and MCV mean (range) values [11.2 g/dL (11-12.2), 24.5 pg (24-25.6), and 67 fL (65-70)] were nearly normal but ferritin mean (range) values [9.8 ng/mL (8-11)] were below normal. Six weeks after the start of treatment, Hb, MCH, MCV and ferritin values of patients with IRIDA were increased. The increase in Hb, MCH, MCV, and ferritin values ranged 0.8-2.7 g/dL, 1.7-4.2 pg, 2-9 fL, and 13-25 ng/mL, respectively. IRIDA is only partially responsive to parenteral iron supplementation. In conclusion, this study demonstrated that the response to intravenous iron therapy for the URIDA cases improved blood parameters more effectively than hereditary IRIDA. Response to parenteral iron therapy would be helpful to distinguish unexplained refractory IDA from hereditary IRIDA for clinicians who do not have access to hepcidin or TMPRS6 mutation analysis. © 2016 John Wiley & Sons Ltd.

  2. Experimentally Determined Emplacement Conditions of the Ultra-Depleted Komatiites of Commondale, South Africa: More wet Archean Komatiites

    NASA Astrophysics Data System (ADS)

    Barr, J. A.; Grove, T. L.; Wilson, A. H.; Singh, R.

    2005-12-01

    This study examines the emplacement conditions of the 3.33 Ga ultramafic suite from Commondale, South Africa. With a parental liquid Mg# of 0.91, Al2O3 wt% / TiO2 wt% of 80, and SiO2 content of 49.7wt%, the suite of magmas represent some of the most compositionally distinct examples of Archean komatiites yet identified (Wilson, Nature 2003, 423, 858). The well-preserved lavas contain spinifex zones, cumulate zones and well preserved chill margins. Orthopyroxene is present in both spinifex and cumulate zones; another unique characteristic of these komatiites. Phase equilibrium experiments performed under anhydrous conditions at 0.1 MPa (1 bar) indicate an olivine liquidus temperature of 1540°C. A very low-Ca pyroxene (protoenstatite) joins olivine as a crystallizing phase at 1335°C. Despite the late appearance of this initial pyroxene, the Mg# is 0.95. In the Commondale lavas, orthopyroxene is present in the cores of unaltered pyroxene grains. These natural pyroxenes are less primitive, with the average natural pyroxene having an Mg# of 0.88. The minor element compositions of the 1-atm experimental pyroxenes also do not match those from the natural samples, with Al2O3 being 1.00 wt% in the 1-atm pyroxenes compared to 2.85 wt% for the natural samples. Preliminary experiments under water saturated conditions at 200 MPa (2 kbar) indicate that the appearance of pyroxene is suppressed by >200°C, similar to the behavior seen in Barberton komatiite experiments (Parman, EPSL 1997, 150, 323). This serves to stabilize orthopyroxene, decrease the initial Mg#, and increase the amount of Al2O3 present in the equilibrium crystals, causing them to better mimic the composition of natural samples. The initial liquid composition, under water saturated conditions, would have contained >5.0 wt% H2O. Thus, mineral chemistry supports a high H2O content and hydrous melting origin for these Early Archean komatiites.

  3. Characterization of a tricationic trigonal bipyramidal iron(IV) cyanide complex, with a very high reduction potential, and its iron(II) and iron(III) congeners.

    PubMed

    England, Jason; Farquhar, Erik R; Guo, Yisong; Cranswick, Matthew A; Ray, Kallol; Münck, Eckard; Que, Lawrence

    2011-04-04

    Currently, there are only a handful of synthetic S = 2 oxoiron(IV) complexes. These serve as models for the high-spin (S = 2) oxoiron(IV) species that have been postulated, and confirmed in several cases, as key intermediates in the catalytic cycles of a variety of nonheme oxygen activating enzymes. The trigonal bipyramidal complex [Fe(IV)(O)(TMG(3)tren)](2+) (1) was both the first S = 2 oxoiron(IV) model complex to be generated in high yield and the first to be crystallographically characterized. In this study, we demonstrate that the TMG(3)tren ligand is also capable of supporting a tricationic cyanoiron(IV) unit, [Fe(IV)(CN)(TMG(3)tren)](3+) (4). This complex was generated by electrolytic oxidation of the high-spin (S = 2) iron(II) complex [Fe(II)(CN)(TMG(3)tren)](+) (2), via the S = 5/2 complex [Fe(III)(CN)(TMG(3)tren)](2+) (3), the progress of which was conveniently monitored by using UV-vis spectroscopy to follow the growth of bathochromically shifting ligand-to-metal charge transfer (LMCT) bands. A combination of X-ray absorption spectroscopy (XAS), Mössbauer and NMR spectroscopies was used to establish that 4 has a S = 0 iron(IV) center. Consistent with its diamagnetic iron(IV) ground state, extended X-ray absorption fine structure (EXAFS) analysis of 4 indicated a significant contraction of the iron-donor atom bond lengths, relative to those of the crystallographically characterized complexes 2 and 3. Notably, 4 has an Fe(IV/III) reduction potential of ∼1.4 V vs Fc(+/o), the highest value yet observed for a monoiron complex. The relatively high stability of 4 (t(1/2) in CD(3)CN solution containing 0.1 M KPF(6) at 25 °C ≈ 15 min), as reflected by its high-yield accumulation via slow bulk electrolysis and amenability to (13)C NMR at -40 °C, highlights the ability of the sterically protecting, highly basic peralkylguanidyl donors of the TMG(3)tren ligand to support highly charged high-valent complexes.

  4. Characterization of a Tricationic Trigonal Bipyramidal Iron(IV) Cyanide Complex, with a Very High Reduction Potential, and Its Iron(II) and Iron(III) Congeners

    PubMed Central

    England, Jason; Farquhar, Erik R.; Guo, Yisong; Cranswick, Matthew A.; Ray, Kallol

    2011-01-01

    Currently, there are only a handful of synthetic S = 2 oxoiron(IV) complexes. These serve as models for the high-spin (S = 2) oxoiron(IV) species that have been postulated, and confirmed in several cases, as key intermediates in the catalytic cycles of a variety of non-heme oxygen activating enzymes. The trigonal bipyramidal complex [FeIV(O)(TMG3tren)]2+ (1) was both the first S = 2 oxoiron(IV) model complex to be generated in high yield and the first to be crystallographically characterized. In this study, we demonstrate that the TMG3tren ligand is also capable of supporting a tricationic cyanoiron(IV) unit, [FeIV(CN)(TMG3tren)]3+ (4). This complex was generated by electrolytic oxidation of the high-spin (S = 2) iron(II) complex [FeII(CN)(TMG3tren)]+ (2), via the S = 5/2 complex [FeIII(CN)(TMG3tren)]2+ (3), the progress of which was conveniently monitored by using UV-Vis spectroscopy to follow the growth of bathochromically shifting LMCT bands. A combination of XAS, Mössbauer and NMR spectroscopies was used to establish that 4 has a S = 0 iron(IV) center. Consistent with its diamagnetic iron(IV) ground state, EXAFS analysis of 4 indicated a significant contraction of the iron-donor atom bond lengths, relative to those of the crystallographically characterized complexes 2 and 3. Notably, 4 has an FeIV/III reduction potential of ~1.4 V vs Fc+/o, the highest value yet observed for a monoiron complex. The relatively high stability of 4 (t1/2 in CD3CN solution containing 0.1 M KPF6 at 25 °C ≈ 15 min), as reflected by its high-yield accumulation via slow bulk electrolysis and amenability to 13C NMR at −40 °C, highlights the ability of the sterically protecting, highly basic peralkylguanidyl donors of the TMG3tren ligand to support highly charged high-valent complexes. PMID:21381646

  5. The Effect Of Local Coal And Smelting Sponge Iron On Iron Content Of Pig Iron

    NASA Astrophysics Data System (ADS)

    Oediyani, Soesaptri; Juwita Sari, Pramita; Hadi P, Djoko

    2018-03-01

    The new regulation on mineral resources was announced by Ministry of Energy and Mineral resources (ESDM) of Indonesia at 2014 which it called Permen ESDM No 1/2014. Therefore, this research was conducted to add the value of local iron ores by using smelting technology. The objective of the research is to produce pig iron that meet the requirement of the new regulation of mineral resources such as 90% Fe. First, iron ores and coal mixed together with lime as a flux, then smelted in a Electric Arc Furnace at 1800°C. The process variables are (1; 1.25; 1.5; 1.75; 2.0) and the composition of coal (0.8%, 1.6%, 3.0%). The type of coal that used in this research was bituminous coal from Kalimantan and also the iron ores from Kalimantan. The products of the smelting technology are Pig iron and slag. Both pig iron and slag then analyzed by SEM-EDS to measure the iron content. The result shows that the maximum iron content on pig iron is about 95.04% meanwhile the minimum iron content on slag is about 3.66%. This result achieved at 1.6% coal and 2.0.

  6. Molecular control of vertebrate iron homeostasis by iron regulatory proteins

    PubMed Central

    Wallander, Michelle L.; Leibold, Elizabeth A.; Eisenstein, Richard S.

    2008-01-01

    Both deficiencies and excesses of iron represent major public health problems throughout the world. Understanding the cellular and organismal processes controlling iron homeostasis is critical for identifying iron-related diseases and in advancing the clinical treatments for such disorders of iron metabolism. Iron regulatory proteins (IRPs) 1 and 2 are key regulators of vertebrate iron metabolism. These RNA binding proteins post-transcriptionally control the stability or translation of mRNAs encoding proteins involved in iron homeostasis thereby controlling the uptake, utilization, storage or export of iron. Recent evidence provides insight into how IRPs selectively control the translation or stability of target mRNAs, how IRP RNA binding activity is controlled by iron-dependent and iron-independent effectors, and the pathological consequences of dysregulation of the IRP system. PMID:16872694

  7. Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity.

    PubMed

    Okazaki, K; Ito, Y; Ota, Y; Kotani, Y; Shimojima, T; Kiss, T; Watanabe, S; Chen, C-T; Niitaka, S; Hanaguri, T; Takagi, H; Chainani, A; Shin, S

    2014-02-28

    Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe(0.6)Se(0.4)(Tc = 14.5 K ~ 1.2 meV) in an accessible range below and above the Fermi level(EF) using ultra-high resolution laser angle-resolved photoemission spectroscopy. We uncover an electron band lying just 0.7 meV (~8 K) above EF at the Γ-point, which shows a sharp superconducting coherence peak with gap formation below Tc. The estimated superconducting gap Δ and Fermi energy [Symbol: see text]F indicate composite superconductivity in an iron-based superconductor, consisting of strong-coupling BEC in the electron band and weak-coupling BCS-like superconductivity in the hole band. The study identifies the possible route to BCS-BEC superconductivity.

  8. Iron regulatory proteins and their role in controlling iron metabolism.

    PubMed

    Kühn, Lukas C

    2015-02-01

    Cellular iron homeostasis is regulated by post-transcriptional feedback mechanisms, which control the expression of proteins involved in iron uptake, release and storage. Two cytoplasmic proteins with mRNA-binding properties, iron regulatory proteins 1 and 2 (IRP1 and IRP2) play a central role in this regulation. Foremost, IRPs regulate ferritin H and ferritin L translation and thus iron storage, as well as transferrin receptor 1 (TfR1) mRNA stability, thereby adjusting receptor expression and iron uptake via receptor-mediated endocytosis of iron-loaded transferrin. In addition splice variants of iron transporters for import and export at the plasma-membrane, divalent metal transporter 1 (DMT1) and ferroportin are regulated by IRPs. These mechanisms have probably evolved to maintain the cytoplasmic labile iron pool (LIP) at an appropriate level. In certain tissues, the regulation exerted by IRPs influences iron homeostasis and utilization of the entire organism. In intestine, the control of ferritin expression limits intestinal iron absorption and, thus, whole body iron levels. In bone marrow, erythroid heme biosynthesis is coordinated with iron availability through IRP-mediated translational control of erythroid 5-aminolevulinate synthase mRNA. Moreover, the translational control of HIF2α mRNA in kidney by IRP1 coordinates erythropoietin synthesis with iron and oxygen supply. Besides IRPs, body iron absorption is negatively regulated by hepcidin. This peptide hormone, synthesized and secreted by the liver in response to high serum iron, downregulates ferroportin at the protein level and thereby limits iron absorption from the diet. Hepcidin will not be discussed in further detail here.

  9. Granitoid formation is ineffective in isotopically homogenizing continental crust: Evidence from archean rocks of the Wind River Mountains, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, C.D.; Hulsebosch, T.P.; Chamberlain, K.R.

    1992-01-01

    The Archean core of the Laramide Wind River uplift records evidence of at least three major granitoid-forming episodes. The oldest, the Dry Creek gneiss (DCG), was emplaced by 2.8 Ga and occupies the northeastern part of the range. Mafic, pelitic and ultramafic inclusions occur in the DCG. Elsewhere in the Wind River Mountains there is evidence for crustal components as old as 3.8 Ga. The Bridger batholith (BB), intruded at 2.67 Ga, is found in the west-central Wind River Mountains. The Wind River batholith (WRB) refers to the youngest Late Archean granodiorites and granites which are found throughout the rangemore » and includes granitoids previously name the Louis Lake, Bears Ears, Popo Agie, and Middle Mountain intrusions. Although granitoids of the Wind River batholith have been dated at 2.63 and 2.55 Ga, they are considered together here because there is a complete gradation in rock type and because definite intrusive contacts are scarce. The DCG, BB, and WRB each span the metaluminous/peraluminous boundary and are indistinguishable on Harker diagrams. Each has variable trace element and isotopic characteristics which do not correlate with silica content. Although the isotopic characteristics of these granitoids may be explained by mixing of variable amounts of preexisting continental crust and contemporary depleted mantle, this hypothesis is difficult to reconcile with the evolved nature of even those samples with the most mantle-like isotopic signatures. The authors suggest that each of these granitoid batholiths was formed primarily by remelting of pre-existing heterogeneous continental crust, and that the granite-forming process was not effective in obliterating these trace element and isotopic heterogeneities. Isotopic homogeneity in granitoid batholiths may reflect the isotopic homogeneity of their sources rather than an effective magmatic mixing process.« less

  10. Diamonds in an Archean greenstone belt: Diamond suites in unconventional rocks of Wawa, Northern Ontario (Canada)

    NASA Astrophysics Data System (ADS)

    Kopylova, Maya; Bruce, Loryn; Ryder, John

    2010-05-01

    Diamonds typically are found on Archean cratons entrained by younger Phanerozoic kimberlites. In contrast, Wawa diamonds are hosted in "unconventional", non-kimberlitic rocks that formed contemporaneously with the mafic and sedimentary rocks of the Archean Michipicoten Greenstone Belt (MGB). We studied two diamond suites that occur within the 2.9-2.7 Ga greenschist facies rocks of MGB located in the southwest portion of the Superior Craton (E. Canada). The first diamond suite henceforth referred to as the Wawa breccia diamonds (384 stones), are hosted in the 2618-2744 Ma calc-alkaline lamprophyres and volcaniclastic breccias, contemporaneous with pillow basalts and felsic volcanics of MGB. The second suite, the Wawa conglomerate diamonds (80 crystals), are hosted in the 2697-2700 Ma poorly sorted sedimentary polymictic conglomerate which is interpreted as a proximal alluvial fan debris flow in a fan-delta environment. The majority of the diamonds was found within the matrix of the conglomerate. The diamondiferous breccia occurs 20 km north of the town of Wawa, whereas the conglomerate is found 12 km northeast of Wawa. Diamonds from the 2 occurrences were characterized and described for provenance studies. Both the breccia and conglomerate diamonds show similar crystal habits, with the predominance of octahedral single crystals and ~ 10% of cubes. The conglomerate diamonds are significantly less resorbed (no resorbtion in 43% of the stones) than the breccia diamonds (8% non-resorbed stones). In both suites, only 21-24% show high degrees of resorption. The majority of crystals in both suites are colourless, with some yellow, brown and grey stones. Conglomerate diamonds had a wider variety of colours that were not seen in the breccia diamonds, including green and pink. The breccia diamonds contain 0-740 ppm N and show two modes of N aggregation at 0-30 and 60-95%. Among the breccia diamonds, Type IaA stones comprise 17%, whereas IaAB stones make up 49% of the

  11. Iron and molecular opacities and the evolution of Population I stars

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Chin, Chao-Wen

    1993-01-01

    Effects of recent opacity revisions on the evolution of Population I stars are explored over the range 1.5-60 solar masses. Opacity parameters considered include the angular momentum coupling scheme for iron, the relative iron abundance, the total metal abundance, and diatomic and triatomic molecular sources. Only the total metal abundance exerts an important control over the evolutionary tracks. Blue loops on the H-R diagram during core helium burning can be very sensitive to opacity, but only insofar as the simple formation or suppression of a blue loop is concerned. The blue loops are most robust for stellar masses around 10 solar masses. We confirm, from a comparison of stellar models with observational data, that the total metal abundance is close to solar and that convective core overshooting is likely to be very slight. The new models predict the existence of an iron convection zone in the envelope and a great widening of the main-sequence band in the H-R diagram at luminosities brighter than 100,000 solar luminosities.

  12. DETERMINATION OF FERRITIN AND HEMOSIDERIN IRON IN PATIENTS WITH NORMAL IRON STORES AND IRON OVERLOAD BY SERUM FERRITIN KINETICS

    PubMed Central

    SAITO, HIROSHI; TOMITA, AKIHIRO; OHASHI, HARUHIKO; MAEDA, HIDEAKI; HAYASHI, HISAO; NAOE, TOMOKI

    2012-01-01

    ABSTRACT We attempted to clarify the storage iron metabolism from the change in the serum ferritin level. We assumed that the nonlinear decrease in serum ferritin was caused by serum ferritin increase in iron mobilization. Under this assumption, we determined both ferritin and hemosiderin iron levels by computer-assisted simulation of the row of decreasing assay-dots of serum ferritin in 11 patients with normal iron stores free of both iron deficiency and iron overload; chronic hepatitis C (CHC) and iron deficiency anemia after treatment, and 11 patients with iron overload; hereditary hemochromatosis (HH) and transfusion-dependent anemias (TD). We determined the iron removal rates of 20 and 17 mg/day by administering mean doses of deferasirox at 631 and 616 mg/day in 2 TD during the period of balance of iron addition and removal as indicated by the serum ferritin returned to the previous level. The ferritin-per-hemosiderin ratio was almost the same in both HH and CHC. This matched the localized hepatic hemosiderin deposition in CHC with normal iron stores. We detected the ferritin increased by utilizing the hemosiderin iron in iron removal and the ferritin reduced by transforming ferritin into hemosiderin in iron additions. The iron storing capacity of hemosiderin was limitless, while that of ferritin was suppressed when ferritin iron exceeded around 5 grams. We confirmed the pathway of iron from hemosiderin to ferritin in iron mobilization, and that from ferritin to hemosiderin in iron deposition. Thus, serum ferritin kinetics enabled us to be the first to clinically clarify storage iron metabolism. PMID:22515110

  13. MR characterization of hepatic storage iron in transfusional iron overload.

    PubMed

    Tang, Haiying; Jensen, Jens H; Sammet, Christina L; Sheth, Sujit; Swaminathan, Srirama V; Hultman, Kristi; Kim, Daniel; Wu, Ed X; Brown, Truman R; Brittenham, Gary M

    2014-02-01

    To quantify the two principal forms of hepatic storage iron, diffuse, soluble iron (primarily ferritin), and aggregated, insoluble iron (primarily hemosiderin) using a new MRI method in patients with transfusional iron overload. Six healthy volunteers and 20 patients with transfusion-dependent thalassemia syndromes and iron overload were examined. Ferritin- and hemosiderin-like iron were determined based on the measurement of two distinct relaxation parameters: the "reduced" transverse relaxation rate, RR2 , and the "aggregation index," A, using three sets of Carr-Purcell-Meiboom-Gill (CPMG) datasets with different interecho spacings. Agarose phantoms, simulating the relaxation and susceptibility properties of tissue with different concentrations of dispersed (ferritin-like) and aggregated (hemosiderin-like) iron, were used for validation. Both phantom and in vivo human data confirmed that transverse relaxation components associated with the dispersed and aggregated iron could be separated using the two-parameter (RR2 , A) method. The MRI-determined total hepatic storage iron was highly correlated (r = 0.95) with measurements derived from biopsy or biosusceptometry. As total hepatic storage iron increased, the proportion stored as aggregated iron became greater. This method provides a new means for noninvasive MRI determination of the partition of hepatic storage iron between ferritin and hemosiderin in iron overload disorders. Copyright © 2013 Wiley Periodicals, Inc.

  14. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides.

    PubMed

    Charnukha, A; Evtushinsky, D V; Matt, C E; Xu, N; Shi, M; Büchner, B; Zhigadlo, N D; Batlogg, B; Borisenko, S V

    2015-12-18

    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.

  15. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides

    NASA Astrophysics Data System (ADS)

    Charnukha, A.; Evtushinsky, D. V.; Matt, C. E.; Xu, N.; Shi, M.; Büchner, B.; Zhigadlo, N. D.; Batlogg, B.; Borisenko, S. V.

    2015-12-01

    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.

  16. Quantification of body iron and iron absorption in the REDS-II Donor Iron Status Evaluation (RISE) study.

    PubMed

    Kiss, Joseph E; Birch, Rebecca J; Steele, Whitney R; Wright, David J; Cable, Ritchard G

    2017-07-01

    Repeated blood donation alters the iron balance of blood donors. We quantified these effects by analyzing changes in body iron as well as calculating iron absorbed per day for donors enrolled in a prospective study. For 1308 donors who completed a final study visit, we calculated total body iron at the enrollment and final visits and the change in total body iron over the course of the study. Taking into account iron lost from blood donations during the study and obligate losses, we also calculated the average amount of iron absorbed per day. First-time/reactivated donors at enrollment had iron stores comparable to previous general population estimates. Repeat donors had greater donation intensity and greater mean iron losses than first-time/reactivated donors, yet they had little change in total body iron over the study period, whereas first-time/reactivated donors had an average 35% drop. There was higher estimated iron absorption in the repeat donors (men: 4.49 mg/day [95% confidence interval [CI], 4.41-4.58 mg/day]; women: 3.75 mg/day [95% CI, 3.67-3.84 mg/day]) compared with estimated iron absorption in first-time/reactivated donors (men: 2.89 mg/day [95% CI, 2.75-3.04 mg/day]; women: 2.76 mg/day [95% CI, 2.64-2.87 mg/day]). The threshold for negative estimated iron stores (below "0" mg/kg stores) was correlated with the development of anemia at a plasma ferritin value of 10 ng/mL. These analyses provide quantitative data on changes in estimated total body iron for a broad spectrum of blood donors. In contrast to using ferritin alone, this model allows assessment of the iron content of red blood cells and the degree of both iron surplus and depletion over time. © 2017 AABB.

  17. Orbital-selective pairing and superconductivity in iron selenides

    NASA Astrophysics Data System (ADS)

    Nica, Emilian M.; Yu, Rong; Si, Qimiao

    2017-12-01

    An important challenge in condensed matter physics is understanding iron-based superconductors. Among these systems, the iron selenides hold the record for highest superconducting transition temperature and pose especially striking puzzles regarding the nature of superconductivity. The pairing state of the alkaline iron selenides appears to be of d-wave type based on the observation of a resonance mode in neutron scattering, while it seems to be of s-wave type from the nodeless gaps observed everywhere on the Fermi surface. Here we propose an orbital-selective pairing state, dubbed sτ3, as a natural explanation of these disparate properties. The pairing function, containing a matrix τ3 in the basis of 3d-electron orbitals, does not commute with the kinetic part of the Hamiltonian. This dictates the existence of both intraband and interband pairing terms in the band basis. A spin resonance arises from a d-wave-type sign change in the intraband pairing component, whereas the quasiparticle excitation is fully gapped on the FS due to an s-wave-like form factor associated with the addition in quadrature of the intraband and interband pairing terms. We demonstrate that this pairing state is energetically favored when the electron correlation effects are orbitally selective. More generally, our results illustrate how the multiband nature of correlated electrons affords unusual types of superconducting states, thereby shedding new light not only on the iron-based materials but also on a broad range of other unconventional superconductors such as heavy fermion and organic systems.

  18. The origin and evolution of sulfur in an Archean volcano-sedimentary basin, Deer Lake area, Minnesota. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Nicol, D. L.

    1980-01-01

    Rocks of the Deer Lake area, northcentral Minnesota, consist of Archean (age greater than 2.6 billion years) metasediments and metavolcanics intruded by mafic layered sills. Geologic and sulfur isotopic data suggest that sulfides in the sediments are bacteriogenic, having formed in response to the activity of sulfate reducing bacteria during diagenesis. Deposition of the sediments appears to have occurred in a deep marine basin with restricted circulation of sea water. The bulk of the sulfur in the igneous rocks is of deep seated origin, but basal contacts of the sills show evidence of assimilation of biogenic sulfur from the intruded sediments. This assimilation of biogenic sulfur is the primary geochemical control of local Cu-Ni sulfide mineralization.

  19. [Iron concentration and acceptation of yoghurt prepared in casting iron pots (iron migration and acceptation of yogurt)].

    PubMed

    Quintaes, Késia Diego; Almeyda Haj-Isa, Niurka M; Morgano, Marcelo Antônio

    2005-12-01

    Food fortification is an interesting strategy to treat and prevent iron anemia. This study aims to quantify the iron in yoghurt, with gelatin and sugar and without, prepared in iron and glass containers. Sensorial test was use to evaluate the acceptance and preference of the both products. The yoghurt was prepared in containers of iron and glass with UHT milk, powder milk and natural industrialized yoghurt. After fermentation, half of the product received addition of sugar and strawberry flavor gelatin. The collected samples get the total iron quantified by ICP OES. Sensorial analysis involving 105 consumers was use to determine the acceptance and preference of the products. 0,018 and 0,882mg of iron per 100g added in the natural yoghurt prepared in the glass and in the iron pots, respectively. The yoghurt with gelatin presented 0,037 and 1,302mg of iron per 100g when prepared in the glass and in the iron pots, respectively. The preference was low for the yoghurt prepared in the iron pot (29,5%), but when added strawberry gelatin it was about 51,5%. The yoghurt prepared in iron pots, is easily home made and adds important amount of iron. Add gelatin and sugar can favored its consumption.

  20. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the service...

  1. Enhanced antioxidation and microwave absorbing properties of SiO2-coated flaky carbonyl iron particles

    NASA Astrophysics Data System (ADS)

    Zhou, Yingying; Xie, Hui; Zhou, Wancheng; Ren, Zhaowen

    2018-01-01

    SiO2 was successfully coated on the surface of flaky carbonyl iron particles using a chemical bath deposition method in the presence of 3-aminopropyl triethoxysilane (APTES). The morphologies, composition, valence states of elements, as well as antioxidation and electromagnetic properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and microwave network analyzer. TG curve shows the obvious weight gain of carbonyl iron was deferred to 360 °C after SiO2-coated, which can be ascribed to the exits of SiO2 overlayer. Compared with the raw carbonyl iron, SiO2-coated sample shows good wave absorption performance due to its impedance matching. The electromagnetic properties of raw and SiO2-coated carbonyl iron particles were characterized in X band before and after heat treatment at 250 °C for 10 h. It was established that SiO2-coated carbonyl iron demonstrate good thermal stability, indicating SiO2-coating is useful in the usage of microwave absorbers operating at temperature up to 250 °C.

  2. Nanophase Iron Oxides as an Ultraviolet Sunscreen for Ancient Photosynthetic Microbes: A Possible Link Between Early Organisms, Banded-Iron Formations, and the Oxygenation of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Rothschild, Lynn J.; Rothschild, Lynn J.; Rogoff, Dana A.

    2006-01-01

    We propose that nanophase iron oxide-bearing materials provided important niches for ancient photosynthetic microbes on the early Earth that ultimately led to the oxygenation of the Earth s atmosphere and the formation of iron oxide deposits. Atmospheric oxygen and ozone attenuate UV radiation on the Earth today providing substantial protection for photosynthetic organisms. With ultraviolet radiation fluxes likely to have been even higher on the early Earth than today, accessing solar radiation was particularly risky for early organisms. Yet, we know that photosynthesis arose then and played a critical role in subsequent evolution. Of primary importance was protection at approx.250-290 nm, where peak nucleic acid (approx.260 nm) and protein (approx.280 nm) absorptions occur. Nanophase ferric oxide/oxyhydroxide minerals absorb, and thus block, the lethal UV radiation, while transmitting light through much of the visible and near-infrared regions of interest to photosynthesis (400 to 1100 nm). Further, they were available in early environments, and are synthesized by many organisms. Based on ferric oxide/oxyhydroxide spectral properties, likely geologic processes, and the results of experiments with the photosynthetic organisms, Euglena sp. and Chlumydomonus reinhardtii, we propose a scenario where photosynthesis, and ultimately the oxygenation of the atmosphere, depended on the protection of early microbes by nanophase ferric oxides/oxyhydroxides. The results of this study are also applicable to other potentially habitable iron-bearing planetary bodies because of the evolutionary pressure to utilize solar radiation when available as an energy source.

  3. The hierarchically organized splitting of chromosome bands into sub-bands analyzed by multicolor banding (MCB).

    PubMed

    Lehrer, H; Weise, A; Michel, S; Starke, H; Mrasek, K; Heller, A; Kuechler, A; Claussen, U; Liehr, T

    2004-01-01

    To clarify the nature of chromosome sub-bands in more detail, the multicolor banding (MCB) probe-set for chromosome 5 was hybridized to normal metaphase spreads of GTG band levels at approximately 850, approximately 550, approximately 400 and approximately 300. It could be observed that as the chromosomes became shorter, more of the initial 39 MCB pseudo-colors disappeared, ending with 18 MCB pseudo-colored bands at the approximately 300-band level. The hierarchically organized splitting of bands into sub-bands was analyzed by comparing the disappearance or appearance of pseudo-color bands of the four different band levels. The regions to split first are telomere-near, centromere-near and in 5q23-->q31, followed by 5p15, 5p14, and all GTG dark bands in 5q apart from 5q12 and 5q32 and finalized by sub-band building in 5p15.2, 5q21.2-->q21.3, 5q23.1 and 5q34. The direction of band splitting towards the centromere or the telomere could be assigned to each band separately. Pseudo-colors assigned to GTG-light bands were resistant to band splitting. These observations are in concordance with the recently proposed concept of chromosome region-specific protein swelling. Copyright 2003 S. Karger AG, Basel

  4. Iron lines in model disk spectra of Galactic black hole binaries

    NASA Astrophysics Data System (ADS)

    Różańska, A.; Madej, J.; Konorski, P.; SaḐowski, A.

    2011-03-01

    Context. We present angle-dependent, broad-band intensity spectra from accretion disks around black holes of 10 M⊙. In our computations disks are assumed to be slim, which means that the radial advection is taken into account while computing the effective temperature of the disk. Aims: We attempt to reconstruct continuum and line spectra of X-ray binaries in soft state, i.e. dominated by the disk component of multitemperature shape. We follow how the iron-line complex depends on the external irradiation, an accretion rate, and a black hole spin. Methods: Full radiative transfer is solved including effects of Compton scattering, free-free and all important bound-free transitions of 10 main elements. We assume the LTE equation of state. Moreover, we include here the fundamental series of iron lines from helium-like and hydrogen-like ions, and fluorescent Kα and Kβ lines from low ionized iron. We consider two cases: nonrotating black hole, and black hole rotating with almost maximum spin a = 0.98, and obtain spectra for five accretion disks from hard X-rays to the infrared. Results: In nonirradiated disks, resonance lines from He-like and H-like iron appear mostly in absorption. Such disk spectra exhibit limb darkening in the whole energy range. External irradiation causes that iron resonance lines appear in emission. Furthermore, depending on disk effective temperature, fluorescent iron Kα and Kβ lines are present in disk emitting spectra. All models with irradiation exhibit limb brightening in their X-ray reflected continua. Conclusions: We show that the disk around stellar black hole itself is hot enough to produce strong-absorption resonance lines of iron. Emission lines can only be observed if heating by external X-rays dominates thermal processess in a hot disk atmosphere. Irradiated disks are usually brighter in X-ray continuum when seen edge on, and fainter when seen face on.

  5. One possible source of mass-independent fractionation of sulfur isotopes in the Archean atmosphere of Earth

    NASA Astrophysics Data System (ADS)

    Babikov, Dmitri; Semenov, Alexander; Teplukhin, Alexander

    2017-05-01

    Energy transfer mechanism for recombination of two sulfur atoms into a diatomic molecule, S2, is studied theoretically and computationally to determine whether the rate coefficient of this process can be significantly affected by isotopic substitutions, and whether the resultant isotope effect is expected to be mass-dependent or mass-independent. This is one of sulfur polymerization processes thought to be important in the anoxic atmosphere of the Archean Earth and, potentially, relevant to mass-independent fractionation of sulfur isotopes. A simplified theoretical approach is employed, in which all properties of S2 molecule are characterized rather accurately, whereas the process of stabilization of metastable S2∗ by bath gas collisions is described approximately. Properties of individual scattering resonances in S2 are studied in detail, and it is found that most important contributions to the recombination process come from ro-vibrational states formed near the top of centrifugal barrier, and that the number of such states is about 50 (in 32S32S). Absolute value of recombination rate coefficient is computed to be 1.22 × 10-33 cm6/s (for 32S32S at room temperature and atmospheric pressure), close to experimental result. Two distinct isotope effects are identified. One is a classical mass-dependent effect due to translational partition function, which leads to a weak, smooth, and negative mass-dependence of rate coefficient (4% decrease when the mass is raised from 32S32S to 34S34S). Second effect, due to quantized resonances, is two orders of magnitude stronger, but is local. In practice, due to presence of multiple individual resonances, this phenomenon leads to irregular mass-independent variations of rate coefficients in the ranges ±5%. It is also demonstrated that in real molecules this irregular behavior is expected to be somewhat smoother, and the isotope effect is somewhat smaller, due to dependence of stabilization cross section on properties of

  6. Iron state in iron nanoparticles with and without zirconium

    NASA Astrophysics Data System (ADS)

    Filippov, V. P.; Khasanov, A. M.; Lauer, Yu. A.

    2017-11-01

    Mössbauer and X-ray methods are used for investigations of structure, stability and characteristics of pure-iron grain and two iron-zirconium alloys such as Fe + 5 wt.% Zr and Fe + 10 wt.% Zr. The used powder was ground for 24 h in a SPEX Model 8000 mill shaker. Complex nanoparticles are found, which change their properties under milling. Mössbauer spectral parameters are obtained for investigated materials. Milling results in formation of nanosized particles with two states of iron atoms: one main part is pure α-Fe and another part of iron atoms displaced in grain boundaries or defective zones in which hyperfine magnetic splitting decrease to ˜ 30.0 T. In alloys with Zr three iron states are formed in each alloy, main part of iron is in the form of α-Fe and another two states depend on the concentration of Zr and represent iron in grain boundaries with Zr atoms in nearest neighbor. The changing of iron states is discussed.

  7. Studying Irony Detection Beyond Ironic Criticism: Let's Include Ironic Praise

    PubMed Central

    Bruntsch, Richard; Ruch, Willibald

    2017-01-01

    Studies of irony detection have commonly used ironic criticisms (i.e., mock positive evaluation of negative circumstances) as stimulus materials. Another basic type of verbal irony, ironic praise (i.e., mock negative evaluation of positive circumstances) is largely absent from studies on individuals' aptitude to detect verbal irony. However, it can be argued that ironic praise needs to be considered in order to investigate the detection of irony in the variety of its facets. To explore whether the detection ironic praise has a benefit beyond ironic criticism, three studies were conducted. In Study 1, an instrument (Test of Verbal Irony Detection Aptitude; TOVIDA) was constructed and its factorial structure was tested using N = 311 subjects. The TOVIDA contains 26 scenario-based items and contains two scales for the detection of ironic criticism vs. ironic praise. To validate the measurement method, the two scales of the TOVIDA were experimentally evaluated with N = 154 subjects in Study 2. In Study 3, N = 183 subjects were tested to explore personality and ability correlates of the two TOVIDA scales. Results indicate that the co-variance between the ironic TOVIDA items was organized by two inter-correlated but distinct factors: one representing ironic praise detection aptitude and one representing ironic criticism detection aptitude. Experimental validation showed that the TOVIDA items truly contain irony and that item scores reflect irony detection. Trait bad mood and benevolent humor (as a facet of the sense of humor) were found as joint correlates for both ironic criticism and ironic praise detection scores. In contrast, intelligence, trait cheerfulness, and corrective humor were found as unique correlates of ironic praise detection scores, even when statistically controlling for the aptitude to detect ironic criticism. Our results indicate that the aptitude to detect ironic praise can be seen as distinct from the aptitude to detect ironic criticism. Generating

  8. METABOLISM OF IRON STORES

    PubMed Central

    SAITO, HIROSHI

    2014-01-01

    ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since the pioneering research by Shoden in 1953. However, we recently developed a new method for determining ferritin iron and hemosiderin iron by computer-assisted serum ferritin kinetics. Serum ferritin increase or decrease curves were measured in patients with normal storage iron levels (chronic hepatitis C and iron deficiency anemia treated by intravenous iron injection), and iron overload (hereditary hemochromatosis and transfusion dependent anemia). We thereby confirmed the existence of two iron pathways where iron flows followed the numbered order (1) labile iron, (2) ferritin and (3) hemosiderin in iron deposition and mobilization among many previously proposed but mostly unproven routes. We also demonstrated the increasing and decreasing phases of ferritin iron and hemosiderin iron in iron deposition and mobilization. The author first demonstrated here the change in proportion between pre-existing ferritin iron and new ferritin iron synthesized by removing iron from hemosiderin in the course of iron removal. In addition, the author disclosed the cause of underestimation of storage iron turnover rate which had been reported by previous investigators in estimating storage iron turnover rate of normal subjects. PMID:25741033

  9. Relationship Between Iron Valence States of Serpentine in CM Chondrites and Their Aqueous Alteration Degrees

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Zolensky, M.; Satake, W.; Le, L.

    2012-01-01

    The 0.6-0.7 micron absorption band observed for C-type asteroids is caused by the presence of Fe(3+) in phyllosilicates . Because Fe-bearing phyllosilicates, especially serpentine, are the most dominant product of aqueous alteration in the most abundant carbonaceous chondrites, CM chondrites, it is important to understand the crystal chemistry of serpentine in CM chondrites to better understand spectral features of C-type asteroids. CM chondrites show variable degrees of aqueous alteration, which should be related to iron valences in serpentine. It is predicted that the Fe(3+)/Sum of (Fe) ratios of serpentine in CM chondrites decrease as alteration proceeds by Si and Fe(3+) substitutions from end-member cronstedtite to serpentine, which should be apparent in the absorption intensity of the 0.6-0.7 micron band from C-type asteroids. In fact, the JAXA Hayabusa 2 target (C-type asteroid: 1993 JU3) exhibits heterogeneous spectral features (0.7 micron absorption band disappears by rotation). From these points of view, we have analyzed iron valences of matrix serpentine in several CM chondrites which span the entire observed range of aqueous alteration using Synchrotron Radiation X-ray Absorption Near-Edge Structure (SR-XANES). In this abstract we discuss the relationship between obtained Fe(3+)/Sum of (Fe) ratios and alteration degrees by adding new data to our previous studies

  10. Redox Reactions of the Iron-Sulfur Cluster in a Ribosomal RNA Methyltransferase, RumA

    PubMed Central

    Agarwalla, Sanjay; Stroud, Robert M.; Gaffney, Betty J.

    2005-01-01

    An unprecedented [4Fe-4S] iron-sulfur cluster was found in RumA, the enzyme that methylates U1939 in Escherichia coli 23 S ribosomal RNA (Agarwalla, S., Kealey, J. T., Santi, D. V., and Stroud, R. M. (2002) J. Biol. Chem. 277, 8835–8840; Lee, T. T., Agarwalla, S., and Stroud, R. M. (2004) Structure 12, 397–407). Methyltransferase reactions do not involve a redox step. To understand the structural and functional roles of the cluster in RumA, we have characterized redox reactions of the iron-sulfur cluster. As isolated aerobically, RumA exhibits a visible absorbance maximum at 390 nm and is EPR silent. It cannot be reduced by anaerobic additions of dithionite. Photoreduction by deazariboflavin/EDTA gives EPR spectra, the quantity (56% of S = 1/2 species) and details (gav ~ 1.96–1.93) of which indicate a [4Fe-4S]1+ cluster in the reduced RumA. Oxidation of RumA by ferricyanide leads to loss of the 390-nm band and appearance of lower intensity bands at 444 and 520 nm. EPR spectra of ferricyanide-oxidized RumA show a fraction (<8%) of the FeS cluster trapped in the [3Fe-4S]1+ form (gav ~ 2.011) together with unusual radical-like spectrum (g′ values 2.015, 2.00, and 1.95). RumA also reacts with nitric oxide to give EPR spectra characteristic of the protein-bound iron dinitrosyl species. Oxidation of the cluster leads to its decomposition and that could be a mechanism for regulating the activity of RumA under conditions of oxidative stress in the cell. Sequence data base searches revealed that RumA homologs are widespread in various kingdoms of life and contain a conserved and unique iron-sulfur cluster binding motif, CX5CGGC. PMID:15181002

  11. New developments and controversies in iron metabolism and iron chelation therapy

    PubMed Central

    Kontoghiorghe, Christina N; Kontoghiorghes, George J

    2016-01-01

    Iron is essential for all organisms including microbial, cancer and human cells. More than a quarter of the human population is affected by abnormalities of iron metabolism, mainly from iron deficiency and iron overload. Iron also plays an important role in free radical pathology and oxidative damage which is observed in almost all major diseases, cancer and ageing. New developments include the complete treatment of iron overload and reduction of morbidity and mortality in thalassaemia using deferiprone and selected deferiprone/deferoxamine combinations and also the use of the maltol iron complex in the treatment of iron deficiency anaemia. There is also a prospect of using deferiprone as a universal antioxidant in non iron overloaded diseases such as neurodegenerative, cardiovascular, renal, infectious diseases and cancer. New regulatory molecules of iron metabolism such as endogenous and dietary chelating molecules, hepcidin, mitochondrial ferritin and their role in health and disease is under evaluation. Similarly, new mechanisms of iron deposition, removal, distribution and toxicity have been identified using new techniques such as magnetic resonance imaging increasing our understanding of iron metabolic processes and the targeted treatment of related diseases. The uniform distribution of iron in iron overload between organs and within each organ is no longer valid. Several other controversies such as the toxicity impact of non transferrin bound iron vs injected iron, the excess levels of iron in tissues causing toxicity and the role of chelation on iron absorption need further investigation. Commercial interests of pharmaceutical companies and connections to leading journals are playing a crucial role in shaping worldwide medical opinion on drug sales and use but also patients’ therapeutic outcome and safety. Major controversies include the selection criteria and risk/benefit assessment in the use of deferasirox in thalassaemia and more so in idiopathic

  12. Field occurrence and lithology of Archean hydrothermal systems in the 3.2Ga Dixon Island Formation, Western Australia

    NASA Astrophysics Data System (ADS)

    Aihara, Y.; Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Horie, K.; Sakamoto, R.; Miki, T.

    2013-12-01

    Stratigraphic transition of black chert to iron-rich sedimentary rocks above volcanic sequences with hydrothermal systems is common and characteristic feature of Archean greenstone belts. The 3.2 Ga Dixon Island Formation, exposed along the northern coast of Dixon Island located in the coastal Pilbara terrane, Western Australia, is one of such units and the focus of our study. We introduce field occurrence and lithology of the Dixon Island Formation that preserves features of paleohydrohermal environment in the Mesoarchean ocean. The Dixon Island Formation is composed of the following three members (in ascending order): Komatiite-Rhyolite Tuff, Black Chert, and Varicolored Chert members (Kiyokawa and Taira, 1998). Here we focus on the Komatiite-Rholite Tuff member. It preserves two cycles of highly altered komatiite lavas and well-stratified rhyolite tuff. Komatiite lavas include dendritic crystals of chrome spinel and ghosts of spinifex, euhedral and sheet-like olivines and pyroxenes. These rocks are now composed of granular microcrystalline quartz with chromian muscovite, chrome spinel and chrorite that formed by intense silicification. Its upper part contains hydrothermal veining and alteration (i.e., many vein swarms composed of veins of quartz and organic carbon-rich black chert). Most black chert veins intrude vertically into overlying layers, and contain barite, pyrite, monazite and clay minerals which were least affected by silicificatio. Based on the cross-cutting relationship seen in the outcrops, we recognized two generations of black chert veins (type 1 and type 2 veins; Kiyokawa et al., 2006). Type 1 veins are mainly composed of carbonaceous peloids in a microcrystalline quartz matrix. Euhedral and xenocrystic tourmaline are found only in Type1 veins. Type 2 veins are organic carbon-poor and contain fragments of black chert and siliceous volcanic breccia (Kiyokawa et al., 2006). Intense silicification of komatiitic volcaniclastics and lava, enriched in

  13. Geobacteraceae Community Composition Is Related to Hydrochemistry and Biodegradation in an Iron-Reducing Aquifer Polluted by a Neighboring Landfill†

    PubMed Central

    Lin, Bin; Braster, Martin; van Breukelen, Boris M.; van Verseveld, Henk W.; Westerhoff, Hans V.; Röling, Wilfred F. M.

    2005-01-01

    Relationships between community composition of the iron-reducing Geobacteraceae, pollution levels, and the occurrence of biodegradation were established for an iron-reducing aquifer polluted with landfill leachate by using cultivation-independent Geobacteraceae 16S rRNA gene-targeting techniques. Numerical analysis of denaturing gradient gel electrophoresis (DGGE) profiles and sequencing revealed a high Geobacteraceae diversity and showed that community composition within the leachate plume differed considerably from that of the unpolluted aquifer. This suggests that pollution has selected for specific species out of a large pool of Geobacteraceae. DGGE profiles of polluted groundwater taken near the landfill (6- to 39-m distance) clustered together. DGGE profiles from less-polluted groundwater taken further downstream did not fall in the same cluster. Several individual DGGE bands were indicative of either the redox process or the level of pollution. This included a pollution-indicative band that dominated the DGGE profiles from groundwater samples taken close to the landfill (6 to 39 m distance). The clustering of these profiles and the dominance by a single DGGE band corresponded to the part of the aquifer where organic micropollutants and reactive dissolved organic matter were attenuated at relatively high rates. PMID:16204512

  14. Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats

    PubMed Central

    Walter, Patrick B.; Knutson, Mitchell D.; Paler-Martinez, Andres; Lee, Sonia; Xu, Yu; Viteri, Fernando E.; Ames, Bruce N.

    2002-01-01

    Approximately two billion people, mainly women and children, are iron deficient. Two studies examined the effects of iron deficiency and supplementation on rats. In study 1, mitochondrial functional parameters and mitochondrial DNA (mtDNA) damage were assayed in iron-deficient (≤5 μg/day) and iron-normal (800 μg/day) rats and in both groups after daily high-iron supplementation (8,000 μg/day) for 34 days. This dose is equivalent to the daily dose commonly given to iron-deficient humans. Iron-deficient rats had lower liver mitochondrial respiratory control ratios and increased levels of oxidants in polymorphonuclear-leukocytes, as assayed by dichlorofluorescein (P < 0.05). Rhodamine 123 fluorescence of polymorphonuclear-leukocytes also increased (P < 0.05). Lowered respiratory control ratios were found in daily high-iron-supplemented rats regardless of the previous iron status (P < 0.05). mtDNA damage was observed in both iron-deficient rats and rats receiving daily high-iron supplementation, compared with iron-normal rats (P < 0.05). Study 2 compared iron-deficient rats given high doses of iron (8,000 μg) either daily or every third day and found that rats given iron supplements every third day had less mtDNA damage on the second and third day after the last dose compared to daily high iron doses. Both inadequate and excessive iron (10 × nutritional need) cause significant mitochondrial malfunction. Although excess iron has been known to cause oxidative damage, the observation of oxidant-induced damage to mitochondria from iron deficiency has been unrecognized previously. Untreated iron deficiency, as well as excessive-iron supplementation, are deleterious and emphasize the importance of maintaining optimal iron intake. PMID:11854522

  15. Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters, and iron storage proteins.

    PubMed

    Niles, Brad J; Clegg, Michael S; Hanna, Lynn A; Chou, Susan S; Momma, Tony Y; Hong, Heeok; Keen, Carl L

    2008-02-22

    One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.

  16. Selection of Portable Spectrometers for Planetary Exploration: A Comparison of 532 nm and 785 nm Raman Spectroscopy of Reduced Carbon in Archean Cherts

    PubMed Central

    Hutchinson, Ian B.; Ingley, Richard; Marshall, Craig P.; Olcott Marshall, Alison; Edwards, Howell G.M.

    2015-01-01

    Abstract Knowledge and understanding of the martian environment has advanced greatly over the past two decades, beginning with NASA's return to the surface of Mars with the Pathfinder mission and its rover Sojourner in 1997 and continuing today with data being returned by the Curiosity rover. Reduced carbon, however, is yet to be detected on the martian surface, despite its abundance in meteorites originating from the planet. If carbon is detected on Mars, it could be a remnant of extinct life, although an abiotic source is much more likely. If the latter is the case, environmental carbonaceous material would still provide a source of carbon that could be utilized by microbial life for biochemical synthesis and could therefore act as a marker for potential habitats, indicating regions that should be investigated further. For this reason, the detection and characterization of reduced or organic carbon is a top priority for both the ESA/Roscosmos ExoMars rover, currently due for launch in 2018, and for NASA's Mars 2020 mission. Here, we present a Raman spectroscopic study of Archean chert Mars analog samples from the Pilbara Craton, Western Australia. Raman spectra were acquired with a flight-representative 532 nm instrument and a 785 nm instrument with similar operating parameters. Reduced carbon was successfully detected with both instruments; however, its Raman bands were detected more readily with 785 nm excitation, and the corresponding spectra exhibited superior signal-to-noise ratios and reduced background levels. Key Words: Raman spectroscopy—Archean—Organic matter—Planetary science—Mars. Astrobiology 15, 420–429. PMID:26060980

  17. Out of Balance—Systemic Iron Homeostasis in Iron-Related Disorders

    PubMed Central

    Steinbicker, Andrea U.; Muckenthaler, Martina U.

    2013-01-01

    Iron is an essential element in our daily diet. Most iron is required for the de novo synthesis of red blood cells, where it plays a critical role in oxygen binding to hemoglobin. Thus, iron deficiency causes anemia, a major public health burden worldwide. On the other extreme, iron accumulation in critical organs such as liver, heart, and pancreas causes organ dysfunction due to the generation of oxidative stress. Therefore, systemic iron levels must be tightly balanced. Here we focus on the regulatory role of the hepcidin/ferroportin circuitry as the major regulator of systemic iron homeostasis. We discuss how regulatory cues (e.g., iron, inflammation, or hypoxia) affect the hepcidin response and how impairment of the hepcidin/ferroportin regulatory system causes disorders of iron metabolism. PMID:23917168

  18. Mammalian iron metabolism and its control by iron regulatory proteins☆

    PubMed Central

    Anderson, Cole P.; Shen, Lacy; Eisenstein, Richard S.; Leibold, Elizabeth A.

    2013-01-01

    Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP–IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22610083

  19. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation

    PubMed Central

    Kobayashi, Takanori; Nagasaka, Seiji; Senoura, Takeshi; Itai, Reiko Nakanishi; Nakanishi, Hiromi; Nishizawa, Naoko K.

    2013-01-01

    Iron is essential for most living organisms. Plants transcriptionally induce genes involved in iron acquisition under conditions of low iron availability, but the nature of the deficiency signal and its sensors are unknown. Here we report the identification of new iron regulators in rice, designated Oryza sativa Haemerythrin motif-containing Really Interesting New Gene (RING)- and Zinc-finger protein 1 (OsHRZ1) and OsHRZ2. OsHRZ1, OsHRZ2 and their Arabidopsis homologue BRUTUS bind iron and zinc, and possess ubiquitination activity. OsHRZ1 and OsHRZ2 are susceptible to degradation in roots irrespective of iron conditions. OsHRZ-knockdown plants exhibit substantial tolerance to iron deficiency, and accumulate more iron in their shoots and grains irrespective of soil iron conditions. The expression of iron deficiency-inducible genes involved in iron utilization is enhanced in OsHRZ-knockdown plants, mostly under iron-sufficient conditions. These results suggest that OsHRZ1 and OsHRZ2 are iron-binding sensors that negatively regulate iron acquisition under conditions of iron sufficiency. PMID:24253678

  20. Ferritin iron minerals are chelator targets, antioxidants, and coated, dietary iron.

    PubMed

    Theil, Elizabeth C

    2010-08-01

    Cellular ferritin is central for iron balance during transfusions therapies; serum ferritin is a small fraction of body ferritin, albeit a convenient reporter. Iron overload induces extra ferritin protein synthesis but the protein is overfilled with the extra iron that damages ferritin, with conversion to toxic hemosiderin. Three new approaches that manipulate ferritin to address excess iron, hemosiderin, and associated oxidative damage in Cooley's Anemia and other iron overload conditions are faster removal of ferritin iron with chelators guided to ferritin gated pores by peptides; more ferritin protein synthesis using ferritin mRNA activators, by metal complexes that target mRNA 3D structures; and determining if endocytotic absorption of iron from legumes, which is mostly ferritin, is regulated during iron overload to prevent excess iron entry while providing protein. More of a focus on ferritin features, including protein cage structure, iron mineral, regulatable mRNA, and specific gut absorption properties, will achieve the three novel experimental goals for managing iron homeostasis with transfusion therapies.

  1. Siderophore-mediated iron trafficking in humans is regulated by iron

    PubMed Central

    Liu, Zhuoming; Lanford, Robert; Mueller, Sebastian; Gerhard, Glenn S.; Luscieti, Sara; Sanchez, Mayka; Devireddy, L.

    2013-01-01

    Siderophores are best known as small iron binding molecules that facilitate microbial iron transport. In our previous study we identified a siderophore-like molecule in mammalian cells and found that its biogenesis is evolutionarily conserved. A member of the short chain dehydrogenase family of reductases, 3-OH butyrate dehydrogenase (BDH2) catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore. We have shown that depletion of the mammalian siderophore by inhibiting expression of bdh2 results in abnormal accumulation of cellular iron and mitochondrial iron deficiency. These observations suggest that the mammalian siderophore is a critical regulator of cellular iron homeostasis and facilitates mitochondrial iron import. By utilizing bioinformatics, we identified an iron-responsive element (IRE; a stem-loop structure that regulates genes expression post-transcriptionally upon binding to iron regulatory proteins or IRPs) in the 3′-untranslated region (3′-UTR) of the human BDH2 (hBDH2) gene. In cultured cells as well as in patient samples we now demonstrate that the IRE confers iron-dependent regulation on hBDH2 and binds IRPs in RNA electrophoretic mobility shift assays. In addition, we show that the hBDH2 IRE associates with IRPs in cells and that abrogation of IRPs by RNAi eliminates the iron-dependent regulation of hBDH2 mRNA. The key physiologic implication is that iron-mediated post-transcriptional regulation of hBDH2 controls mitochondrial iron homeostasis in human cells. These observations provide a new and an unanticipated mechanism by which iron regulates its intracellular trafficking. PMID:22527885

  2. Iron overdose

    MedlinePlus

    ... 1222) from anywhere in the United States. Poisonous Ingredient Iron can be harmful in large amounts. Where Found Iron is an ingredient in many mineral and vitamin supplements. Iron supplements ...

  3. Tertiary structural changes and iron release from human serum transferrin.

    PubMed

    Mecklenburg, S L; Donohoe, R J; Olah, G A

    1997-08-01

    Iron release from human serum transferrin was investigated by comparison of the extent of bound iron, measured by charge transfer absorption band intensity (465 nm), with changes observed by small-angle solution X-ray scattering (SAXS) for a series of equilibrated samples between pH 5.69 and 7.77. The phosphate buffers used in this study promote iron release at relatively high pH values, with an empirical pK of 6.9 for the convolved release from the two sites. The spectral data reveal that the N-lobe release is nearly complete by pH 7.0, while the C-lobe remains primarily metal-laden. Conversely, the radius of gyration, Rg, determined from the SAXS data remains constant between pH 7.77 and 7.05, and the evolution of Rg between its value observed for the diferric protein at pH 7.77 (31.2+/-0.2 A) and that of the apo protein at pH 5.69 (33.9+/-0.4 A) exhibits an empirical pK of 6.6. While Rg is effectively constant in the pH range associated with iron release from the N-lobe, the radius of gyration of cross-section, Rc, increases from 16.9+/-0.2 A to 17.6+/-0.2 A. Model simulations suggest that two different rotations of the NII domain relative to the NI domain about a hinge deep in the iron-binding cleft of the N-lobe, one parallel with and one perpendicular to the plane of the iron-binding site, can be significantly advanced relative to their holo protein positions while yielding constant Rg and increased Rc values consistent with the scattering data. Rotation of the CII domain parallel with the C-lobe iron-binding site plane can partially account for the increased Rg values measured at low pH; however, no reasonable combined repositioning of the NII and CII domains yields the experimentally observed increase in Rg.

  4. Iron release from the Lucky Iron Fish®: safety considerations.

    PubMed

    Armstrong, Gavin R; Dewey, Cate E; Summerlee, Alastair Js

    2017-01-01

    The principal objective was to explore in greater detail safety issues with regard to the use of the Lucky Iron Fish® (fish) as a treatment for iron deficiency and iron deficiency anaemia in women in rural Cambodia. Experiments were done to determine: (1) purity of the iron in the fish by mass spectroscopy; (2) release of iron and contaminants released during boiling in water using inductive-ly-coupled plasma optical emission spectroscopy; (3) the impact of cooking time, acidity and number of fish in acidified water and two types of Khmer soups; and (4) drinkability of the water after boiling with different num-bers of fish. The fish is composed primarily of ferrous iron with less than 12% non-ferrous iron. Contaminants were either not detectable or levels were below the acceptable standards set by the World Health Organization. The length of time boiling the fish and the acidity of the water increased iron release but even with 5 fish boiled for 60 minutes, iron levels only approached levels where side effects are observed. Boiling one fish in water did not affect the perception of colour, smell or taste of the water but boiling in water with two or more fish resulted in the water being unpalatable which further limits the potential for iron toxicity from using the fish. The results suggest that the Lucky Iron Fish™ may be a safe treatment for iron deficiency.

  5. New insights into iron deficiency and iron deficiency anemia.

    PubMed

    Camaschella, Clara

    2017-07-01

    Recent advances in iron metabolism have stimulated new interest in iron deficiency (ID) and its anemia (IDA), common conditions worldwide. Absolute ID/IDA, i.e. the decrease of total body iron, is easily diagnosed based on decreased levels of serum ferritin and transferrin saturation. Relative lack of iron in specific organs/tissues, and IDA in the context of inflammatory disorders, are diagnosed based on arbitrary cut offs of ferritin and transferrin saturation and/or marker combination (as the soluble transferrin receptor/ferritin index) in an appropriate clinical context. Most ID patients are candidate to traditional treatment with oral iron salts, while high hepcidin levels block their absorption in inflammatory disorders. New iron preparations and new treatment modalities are available: high-dose intravenous iron compounds are becoming popular and indications to their use are increasing, although long-term side effects remain to be evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Impact of Iron Adsorption on the Electronic and Photocatalytic Properties of the Zinc Oxide (0001) Surface: A First-Principles Study.

    PubMed

    Cheng, Jingsi; Wang, Ping; Hua, Chao; Yang, Yintang; Zhang, Zhiyong

    2018-03-12

    The structural stability, electronic structure, and optical properties of an iron-adsorbed ZnO (0001) surface with three high-symmetry adsorption sites are investigated with first-principle calculations on the basis of density functional theory and the Hubbard-U method. It is found that the iron adatom in the H₃ adsorption site of ZnO (0001) surface has the lowest adsorption energy of -5.665 eV compared with T₄ and Top sites. For the Top site, compared with the pristine ZnO (0001) surface, the absorption peak located at 1.17 eV has a red shift, and the elevation of the absorption coefficient is more pronounced in the visible-light region, because the Fe-related levels are introduced in the forbidden band and near the Fermi level. The electrostatic potential computation reveals that the work function of the ZnO (0001) surface is significantly decreased from 2.340 to 1.768 eV when iron is adsorbed on the Top site. Furthermore, the degradation mechanism based on the band structure is analyzed. It can be concluded that the adsorption of iron will promote the separation of photoinduced carriers, thus improving the photocatalytic activity of ZnO (0001) surface. Our study benefits research on the photocatalytic activity of ZnO and the utilization rate of solar energy.

  7. Reducing iron deficiency anemia in Bolivian school children: calcium and iron combined versus iron supplementation alone.

    PubMed

    Miranda, Melissa; Olivares, Manuel; Brito, Alex; Pizarro, Fernando

    2014-01-01

    The aim of this study was to determine the effect of combined calcium and iron versus single iron supplementation on iron status in Bolivian schoolchildren. Children ages 6 to 10 y old (N = 195), were randomly assigned to receive either 700 mg Ca (as calcium carbonate) plus 30 mg Fe (as ferrous sulfate) (Ca + Fe group) or 30 mg Fe (as ferrous sulfate) (Fe group). The doses were administered daily, from Monday to Friday, between meals at school over 3 mo. Iron status was assessed at baseline and after intervention. Additionally, overall nutritional status was assessed by anthropometry and an estimation of dietary intake. At baseline, the prevalence of anemia in the Ca + Fe group and the Fe group were 15% and 21.5%, respectively. After 3 mo follow-up, the prevalence of iron deficiency anemia dropped significantly (P < 0.001) to 3% in both groups (χ(2) = NS). Iron dietary intake was within recommended levels, but calcium intake only covered 39% of the Recommended Daily Intake. Combined calcium and iron supplementation is equally as effective as single iron supplementation in reducing the prevalence of iron deficiency anemia in Bolivian school children. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A Simple Band for Gastric Banding.

    PubMed

    Broadbent

    1993-08-01

    The author has noted that flexible gastric bands have occasionally stenosed the gastric stoma or allowed it to dilate. A band was developed using a soft outer silicone rubber tube over a holding mechanism made out of a nylon cable tie passed within the silicone tube. This simple, easily applied band is rigid, resisting scar contracture and dilatation.

  9. Alginate-Iron Speciation and Its Effect on In Vitro Cellular Iron Metabolism

    PubMed Central

    Horniblow, Richard D.; Dowle, Miriam; Iqbal, Tariq H.; Latunde-Dada, Gladys O.; Palmer, Richard E.

    2015-01-01

    Alginates are a class of biopolymers with known iron binding properties which are routinely used in the fabrication of iron-oxide nanoparticles. In addition, alginates have been implicated in influencing human iron absorption. However, the synthesis of iron oxide nanoparticles employs non-physiological pH conditions and whether nanoparticle formation in vivo is responsible for influencing cellular iron metabolism is unclear. Thus the aims of this study were to determine how alginate and iron interact at gastric-comparable pH conditions and how this influences iron metabolism. Employing a range of spectroscopic techniques under physiological conditions alginate-iron complexation was confirmed and, in conjunction with aberration corrected scanning transmission electron microscopy, nanoparticles were observed. The results infer a nucleation-type model of iron binding whereby alginate is templating the condensation of iron-hydroxide complexes to form iron oxide centred nanoparticles. The interaction of alginate and iron at a cellular level was found to decrease cellular iron acquisition by 37% (p < 0.05) and in combination with confocal microscopy the alginate inhibits cellular iron transport through extracellular iron chelation with the resulting complexes not internalised. These results infer alginate as being useful in the chelation of excess iron, especially in the context of inflammatory bowel disease and colorectal cancer where excess unabsorbed luminal iron is thought to be a driver of disease. PMID:26378798

  10. Formation of an Archean tectonic mélange in the Schreiber-Hemlo greenstone belt, Superior Province, Canada: Implications for Archean subduction-accretion process

    NASA Astrophysics Data System (ADS)

    Polat, Ali; Kerrich, Robert

    1999-10-01

    The late Archean (circa 2750-2670 Ma) Schreiber-Hemlo greenstone belt, Superior Province, Canada, is composed of tectonically juxtaposed fragments of oceanic plateaus (circa 2750-2700 Ma), oceanic island arcs (circa 2720-2695 Ma), and siliciclastic trench turbidites (circa 2705-2697 Ma). Following juxtaposition, these lithotectonic assemblages were collectively intruded by synkinematic tonalite-trondhjemite-granodiorite (TTG) plutons (circa 2720-2690 Ma) and ultramafic to felsic dikes and sills (circa 2690-2680 Ma), with subduction zone geochemical signatures. Overprinting relations between different sequences of structures suggest that the belt underwent at least three phases of deformation. During D1 (circa 2695-2685 Ma), oceanic plateau basalts and associated komatiites, arc-derived trench turbidites, and oceanic island arc sequences were all tectonically juxtaposed as they were incorporated into an accretionary complex. Fragmentation of these sequences resulted in broken formations and a tectonic mélange in the Schreiber assemblage of the belt. D2 (circa 2685-2680 Ma) is consistent with an intra-arc, right-lateral transpressional deformation. Fragmentation and mixing of D2 synkinematic dikes and sills suggest that mélange formation continued during D2. The D1 to D2 transition is interpreted in terms of a trenchward migration of the magmatic arc axis due to continued accretion and underplating. The D2 intra-arc strike-slip faults may have provided conduits for uprising melts from the descending slab, and they may have induced decompressional partial melting in the subarc mantle wedge, to yield synkinematic ultramafic to felsic intrusions. A similar close relationship between orogen-parallel strike-slip faulting and magmatism has recently been recognized in several Phanerozoic transpressional orogenic belts, suggesting that as in Phanerozoic counterparts, orogen-parallel strike-slip faulting in the Schreiber-Hemlo greenstone belt played an important role in

  11. [Old and new iron parameters in iron metabolism and diagnostics].

    PubMed

    Graf, Lukas; Herklotz, Roberto; Huber, Andreas R; Korte, Wolfgang

    2008-09-01

    Iron is an element which is essential to life but also potentially toxic. Therefore, clever mechanisms exist in the human body for uptake, transport and storage of iron. Hepcidin, which seems to be the master protein for regulation of intestinal iron absorption, is known for a short time. The expression of hepcidin is not only influenced by iron levels but also by mediators of inflammation and growth factors of erythropoiesis. Hence hepcidin plays also a crucial role in the development of anemia of chronic disease and iron overload due to ineffective erythropoiesis. Serum ferritin is a reliable parameter to estimate the storage iron. It is an acute phase protein which is elevated during infections and inflammations, though. In these situations, measurement of soluble transferrin receptors is a useful tool to differentiate between iron deficiency and anemia of chronic disease. Newer parameters as erythrocyte zink protoporphyrin or percentage of hypochromic erythrocytes (%HYPO) are suited to detect a functional iron deficiency. Early diagnosis of iron overload is essential to prevent organ damage. Serum ferritin and transferrin are useful parameters to screen for iron overload. If no clear reason for a secondary iron overload can be found, the search for a hereditary haemochromatosis is recommended. Most of these hereditary haemochromatoses are a result of mutations in the HFE gene (homozygous state for Cys282Tyr or compound heterozygosity for Cys282Tyr/ His63Asp) which can be detected by PCR technique. Liver biopsy is still the gold standard for quantification of storage iron. However, a method of increasing importance for quantification of iron overload is magnetic resonance imaging with new approaches as for example T2*.

  12. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    NASA Astrophysics Data System (ADS)

    Scholz, Florian; Löscher, Carolin R.; Fiskal, Annika; Sommer, Stefan; Hensen, Christian; Lomnitz, Ulrike; Wuttig, Kathrin; Göttlicher, Jörg; Kossel, Elke; Steininger, Ralph; Canfield, Donald E.

    2016-11-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface. Even in the anoxic water of oxygen minimum zones, where iron solubility should be enhanced, most of the iron is rapidly re-precipitated. To constrain the mechanism(s) of iron removal in anoxic ocean regions we explored the sediment and water in the oxygen minimum zone off Peru. During our sampling campaign the water column featured two distinct redox boundaries separating oxic from nitrate-reducing (i.e., nitrogenous) water and nitrogenous from weakly sulfidic water. The sulfidic water mass in contact with the shelf sediment contained elevated iron concentrations >300 nM. At the boundary between sulfidic and nitrogenous conditions, iron concentrations dropped sharply to <20 nM coincident with a maximum in particulate iron concentration. Within the iron gradient, we found an increased expression of the key functional marker gene for nitrate reduction (narG). Part of this upregulation was related to the activity of known iron-oxidizing bacteria. Collectively, our data suggest that iron oxidation and removal is induced by nitrate-reducing microbes, either enzymatically through anaerobic iron oxidation or by providing nitrite for an abiotic reaction. Given the important role that iron plays in nitrogen fixation, photosynthesis and respiration, nitrate-dependent iron oxidation likely represents a key-link between the marine biogeochemical cycles of nitrogen, oxygen and carbon.

  13. Iron Chelation

    MedlinePlus

    ... fortified cereals and eggs. What is Iron Chelation Therapy? Drugs called iron chelators remove extra iron from ... form that must be dissolved in juice or water and taken (by mouth) once a day. Most ...

  14. Mineral resource assessment of the Iron River 1 degree x 2 degrees Quadrangle, Michigan and Wisconsin

    USGS Publications Warehouse

    Cannon, William F.

    1983-01-01

    The Iron River 1? x 2? quadrangle contains identified resources of copper and iron. Copper-rich shale beds in the north part of the quadrangle contain 12.2 billion pounds (5.5 billion kilograms) of copper in well-studied deposits including 9.2 billion pounds (4.2 billion kilograms) that are economically minable by 1980 standards. At least several billion pounds of copper probably exist in other parts of the same shale beds, but not enough data are available to measure the amount. A small amount, about 250 million pounds (113 million kilograms), of native copper is known to remain in one abandoned mine, and additional but unknown amounts remain in other abandoned mines. About 13.25 billion tons (12.02 billion metric tons) of banded iron-formation averaging roughly 30 percent iron are known within 500 feet (152.4 meters) of the surface in the Gogebic, Marquette, and Iron River-Crystal Falls districts. A small percentage of that might someday be minable as taconite, but none is now believed to be economic. Some higher grade iron concentrations exist in the same iron-formations. Such material was the basis of former mining of iron in the region, but a poor market for such ore and depletion of many deposits have led to the decline of iron mining in the quadrangle. Iron mines of the quadrangle were not being worked in 1980. Many parts of the quadrangle contain belts of favorable host rocks for mineral deposits. Although deposits are not known in these belts, undiscovered deposits of copper, zinc, lead, silver, uranium, phosphate, nickel, chromium, platinum, gold, and diamonds could exist.

  15. Magnetic Resonance Characterization of Hepatic Storage Iron in Transfusional Iron Overload

    PubMed Central

    Tang, Haiying; Jensen, Jens H.; Sammet, Christina L.; Sheth, Sujit; Swaminathan, Srirama V.; Hultman, Kristi; Kim, Daniel; Wu, Ed X.; Brown, Truman R.; Brittenham, Gary M.

    2013-01-01

    Purpose To quantify the two principal forms of hepatic storage iron, diffuse, soluble iron (primarily ferritin), and aggregated, insoluble iron (primarily hemosiderin) using a new MRI method in patients with transfusional iron overload. Materials and Methods Six healthy volunteers and twenty patients with transfusion-dependent thalassemia syndromes and iron overload were examined. Ferritin- and hemosiderin-like iron were determined based on the measurement of two distinct relaxation parameters: the “reduced” transverse relaxation rate, RR2 and the “aggregation index,” A, using three sets of Carr-Purcell-Meiboom-Gill (CPMG) datasets with different interecho spacings. Agarose phantoms, simulating the relaxation and susceptibility properties of tissue with different concentrations of dispersed (ferritin-like) and aggregated (hemosiderin-like) iron, were employed for validation. Results Both phantom and in vivo human data confirmed that transverse relaxation components associated with the dispersed and aggregated iron could be separated using the two-parameter (RR2, A) method. The MRI-determined total hepatic storage iron was highly correlated (r = 0.95) with measurements derived from biopsy or biosusceptometry. As total hepatic storage iron increased, the proportion stored as aggregated iron became greater. Conclusion This method provides a new means for non-invasive MRI determination of the partition of hepatic storage iron between ferritin and hemosiderin in iron overload disorders. PMID:23720394

  16. Efficacy of iron fortification compared to iron supplementation among Vietnamese schoolchildren

    PubMed Central

    Thi Le, Huong; Brouwer, Inge D; Burema, Jan; Nguyen, Khan Cong; Kok, Frans J

    2006-01-01

    The effect of iron fortification is generally assumed to be less than iron supplementation; however, the magnitude of difference in effects is not known. The present study aims to compare the efficacy of these two strategies on anaemia and iron status. After screening on low Hb, 425 anaemic children in six primary schools in Tam Nong district of Phu Tho province were included in a randomized, placebo-controlled trial comparing two groups receiving iron fortified instant noodles or iron supplementation for 6 months and a control group, with children in all groups having been dewormed. Blood samples were collected before and after intervention for haemoglobin, serum ferritin (SF), serum transferrin receptor (TfR), C-reactive protein (CRP), and haemoglobinopathies analysis. Regression analysis was used to assess the effect of iron fortification and iron supplementation on haemoglobin concentration, SF, TfR, body iron, and anaemic status as outcome variables. The improvement of haemoglobin, SF, and body iron level in the group receiving iron fortification was 42% (2.6 g/L versus 6.2 g/L), 20% (23.5 μg/L versus 117.3 μg/L), and 31.3% (1.4 mg/kg versus 4.4 mg/kg) of that in the iron supplementation group. The prevalence of anaemia dropped to 15.1% in the control group, with an additional reduction of anaemia of 8.5% in the iron supplementation group. The additional reduction due to iron fortification was 5.4%, which amounts to well over 50% of the impact of supplementation. In conclusion, the efficacy of iron fortification based on reduction of prevalence of anaemia, and on the change in haemoglobin level, is about half of the maximum impact of supplementation in case of optimal compliance. Thus, in a population of anaemic children with mild iron deficiency, iron fortification should be the preferred strategy to combat anaemia. PMID:17147795

  17. Efficacy of iron fortification compared to iron supplementation among Vietnamese schoolchildren.

    PubMed

    Thi Le, Huong; Brouwer, Inge D; Burema, Jan; Nguyen, Khan Cong; Kok, Frans J

    2006-12-05

    The effect of iron fortification is generally assumed to be less than iron supplementation; however, the magnitude of difference in effects is not known. The present study aims to compare the efficacy of these two strategies on anaemia and iron status. After screening on low Hb, 425 anaemic children in six primary schools in Tam Nong district of Phu Tho province were included in a randomized, placebo-controlled trial comparing two groups receiving iron fortified instant noodles or iron supplementation for 6 months and a control group, with children in all groups having been dewormed. Blood samples were collected before and after intervention for haemoglobin, serum ferritin (SF), serum transferrin receptor (TfR), C-reactive protein (CRP), and haemoglobinopathies analysis. Regression analysis was used to assess the effect of iron fortification and iron supplementation on haemoglobin concentration, SF, TfR, body iron, and anaemic status as outcome variables. The improvement of haemoglobin, SF, and body iron level in the group receiving iron fortification was 42% (2.6 g/L versus 6.2 g/L), 20% (23.5 microg/L versus 117.3 microg/L), and 31.3% (1.4 mg/kg versus 4.4 mg/kg) of that in the iron supplementation group. The prevalence of anaemia dropped to 15.1% in the control group, with an additional reduction of anaemia of 8.5% in the iron supplementation group. The additional reduction due to iron fortification was 5.4%, which amounts to well over 50% of the impact of supplementation. In conclusion, the efficacy of iron fortification based on reduction of prevalence of anaemia, and on the change in haemoglobin level, is about half of the maximum impact of supplementation in case of optimal compliance. Thus, in a population of anaemic children with mild iron deficiency, iron fortification should be the preferred strategy to combat anaemia.

  18. Early Archean spherule layers from the Barberton Greenstone Belt, South Africa: Mineralogy and geochemistry of the spherule beds in the CT3 drill core

    NASA Astrophysics Data System (ADS)

    Ozdemir, Seda; Schulz, Toni; Koeberl, Christian; Reimold, Wolf Uwe; Mohr-Westheide, Tanja; Hoehnel, Desiree; Schmitt, Ralf Thomas

    2017-12-01

    Little is known about the Hadean and the Archean impact record on Earth. In the CT3 drill core from the Fig Tree Group of the northern Barberton Greenstone Belt, 17 spherule layer intersections occur, which, provide an outstanding new opportunity to gain insights into meteorite bombardment of the early Earth. CT3 spherules, as primary features, mostly exhibit textural patterns similar to those of the other Barberton spherule layers, but locally mineralogical and chemical compositional differences are observed, likely as a result of various degrees of alteration. The observed mineralogy of the spherule layers is of secondary origin and comprises K-feldspar, phyllosilicates, carbonates, sulfides, and oxides, with the exception of secondary Ni-Cr spinel that is of primary origin. Our petrographic investigations suggest alteration by K-metasomatism, sericitization, silicification, and carbonatization. Siderophile element contents of bulk samples show significant enrichments in Ni (up to 2 wt%) and Ir (up to 3 ppm), similar to previously studied Archean spherule layers. These values are indicative of the presence of a meteoritic component. On the other hand, lithophile and chalcophile element abundances indicate hydrothermal overprint on the CT3 samples; this may also have influenced the redistribution of the meteoritic component(s). Last, we group the CT3 spherule layers, which occur in three intervals (A, B, and C), according to their petrographic and geochemical features, which indicate evidence for at least three distinct impact events before tectonic overprint that affected the original deposits.

  19. High efficiency iron electrode and additives for use in rechargeable iron-based batteries

    DOEpatents

    Narayan, Sri R.; Prakash, G. K. Surya; Aniszfeld, Robert; Manohar, Aswin; Malkhandi, Souradip; Yang, Bo

    2017-02-21

    An iron electrode and a method of manufacturing an iron electrode for use in an iron-based rechargeable battery are disclosed. In one embodiment, the iron electrode includes carbonyl iron powder and one of a metal sulfide additive or metal oxide additive selected from the group of metals consisting of bismuth, lead, mercury, indium, gallium, and tin for suppressing hydrogen evolution at the iron electrode during charging of the iron-based rechargeable battery. An iron-air rechargeable battery including an iron electrode comprising carbonyl iron is also disclosed, as is an iron-air battery wherein at least one of the iron electrode and the electrolyte includes an organosulfur additive.

  20. Integrated amateur band and ultra-wide band monopole antenna with multiple band-notched

    NASA Astrophysics Data System (ADS)

    Srivastava, Kunal; Kumar, Ashwani; Kanaujia, B. K.; Dwari, Santanu

    2018-05-01

    This paper presents the integrated amateur band and ultra-wide band (UWB) monopole antenna with integrated multiple band-notched characteristics. It is designed for avoiding the potential interference of frequencies 3.99 GHz (3.83 GHz-4.34 GHz), 4.86 GHz (4.48 GHz-5.63 GHz), 7.20 GHz (6.10 GHz-7.55 GHz) and 8.0 GHz (7.62 GHz-8.47 GHz) with VSWR 4.9, 11.5, 6.4 and 5.3, respectively. Equivalent parallel resonant circuits have been presented for each band-notched frequencies of the antenna. Antenna operates in amateur band 1.2 GHz (1.05 GHz-1.3 GHz) and UWB band from 3.2 GHz-13.9 GHz. Different substrates are used to verify the working of the proposed antenna. Integrated GSM band from 0.6 GHz to 1.8 GHz can also be achieved by changing the radius of the radiating patch. Antenna gain varied from 1.4 dBi to 9.8 dBi. Measured results are presented to validate the antenna performances.

  1. Iron K Lines from Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; Meszaros, P.; Rees, M. J.

    2003-01-01

    We present models for reprocessing of an intense flux of X-rays and gamma rays expected in the vicinity of gamma ray burst sources. We consider the transfer and reprocessing of the energetic photons into observable features in the X-ray band, notably the K lines of iron. Our models are based on the assumption that the gas is sufficiently dense to allow the microphysical processes to be in a steady state, thus allowing efficient line emission with modest reprocessing mass and elemental abundances ranging from solar to moderately enriched. We show that the reprocessing is enhanced by down-Comptonization of photons whose energy would otherwise be too high to absorb on iron, and that pair production can have an effect on enhancing the line production. Both "distant" reprocessors such as supernova or wind remnants and "nearby" reprocessors such as outer stellar envelopes can reproduce the observed line fluxes with Fe abundances 30-100 times above solar, depending on the incidence angle. The high incidence angles required arise naturally only in nearby models, which for plausible values can reach Fe line to continuum ratios close to the reported values.

  2. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to a... 49 Transportation 3 2011-10-01 2011-10-01 false Remedial measures: Cast iron and ductile iron...

  3. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to a... 49 Transportation 3 2010-10-01 2010-10-01 false Remedial measures: Cast iron and ductile iron...

  4. Shuttle Ku-band and S-band communications implementations study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.; Nessibou, T.; Nilsen, P. W.; Simon, M. K.; Weber, C. L.

    1979-01-01

    The interfaces between the Ku-band system and the TDRSS, between the S-band system and the TDRSS, GSTDN and SGLS networks, and between the S-band payload communication equipment and the other Orbiter avionic equipment were investigated. The principal activities reported are: (1) performance analysis of the payload narrowband bent-pipe through the Ku-band communication system; (2) performance evaluation of the TDRSS user constraints placed on the S-band and Ku-band communication systems; (3) assessment of the shuttle-unique S-band TDRSS ground station false lock susceptibility; (4) development of procedure to make S-band antenna measurements during orbital flight; (5) development of procedure to make RFI measurements during orbital flight to assess the performance degradation to the TDRSS S-band communication link; and (6) analysis of the payload interface integration problem areas.

  5. The application of inelastic neutron scattering to explore the significance of a magnetic transition in an iron based Fischer-Tropsch catalyst that is active for the hydrogenation of CO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warringham, Robbie; McFarlane, Andrew R.; Lennon, David, E-mail: David.Lennon@Glasgow.ac.uk

    2015-11-07

    An iron based Fischer-Tropsch synthesis catalyst is evaluated using CO hydrogenation at ambient pressure as a test reaction and is characterised by a combination of inelastic neutron scattering (INS), powder X-ray diffraction, temperature-programmed oxidation, Raman scattering, and transmission electron microscopy. The INS spectrum of the as-prepared bulk iron oxide pre-catalyst (hematite, α-Fe{sub 2}O{sub 3}) is distinguished by a relatively intense band at 810 cm{sup −1}, which has previously been tentatively assigned as a magnon (spinon) feature. An analysis of the neutron scattering intensity of this band as a function of momentum transfer unambiguously confirms this assignment. Post-reaction, the spinon featuremore » disappears and the INS spectrum is characterised by the presence of a hydrocarbonaceous overlayer. A role for the application of INS in magnetic characterisation of iron based FTS catalysts is briefly considered.« less

  6. Results of the First American Prospective Study of Intravenous Iron in Oral Iron-Intolerant Iron-Deficient Gravidas.

    PubMed

    Auerbach, Michael; James, Stephanie E; Nicoletti, Melissa; Lenowitz, Steven; London, Nicola; Bahrain, Huzefa F; Derman, Richard; Smith, Samuel

    2017-12-01

    Anemia affects up to 42% of gravidas. Neonatal iron deficiency is associated with low birth weight, delayed growth and development, and increased cognitive and behavioral abnormalities. While oral iron is convenient, up to 70% report significant gastrointestinal toxicity. Intravenous iron formulations allowing replacement in one visit with favorable side-effect profiles decrease rates of anemia with improved hemoglobin responses and maternal fetal outcomes. Seventy-four oral iron-intolerant, second- and third-trimester iron-deficient gravidas were questioned for oral iron intolerance and treated with intravenous iron. All received 1000 mg of low-molecular-weight iron dextran in 250 mL normal saline. Fifteen minutes after a test dose, the remainder was infused over the balance of 1 hour. Subjects were called at 1, 2, and 7 days to assess delayed reactions. Four weeks postinfusion or postpartum, hemoglobin levels and iron parameters were measured. Paired t test was used for hemoglobin and iron; 58/73 women were questioned about interval growth and development of their babies. Seventy-three of 74 enrolled subjects completed treatment. Sixty had paired pre- and posttreatment data. The mean pre- and posthemoglobin concentrations were 9.7 and 10.8 g/dL (P < .00001), transferrin saturations 11.7% and 22.6% (P = .0003), and ferritins 14.5 and 126.3 ng/mL, respectively (P < .000001). Six experienced minor infusion reactions. All resolved. Data for 58 infants were available; one was low on its growth charts for 11 months. The remaining 57 were normal. None were diagnosed with iron deficiency anemia. Intravenous iron has less toxicity and is more effective, supporting moving it closer to frontline therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Iron Dextran Injection

    MedlinePlus

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  8. 187Os-enriched domain in an Archean mantle plume: evidence from 2.8 Ga komatiites of the Kostomuksha greenstone belt, NW Baltic Shield

    NASA Astrophysics Data System (ADS)

    Puchtel, Igor S.; Brügmann, Gerhard E.; Hofmann, Albrecht W.

    2001-04-01

    The Re-Os data on Archean komatiites from the Kostomuksha greenstone belt in the Baltic Shield are presented. This greenstone belt has been previously interpreted to represent a former oceanic plateau formed by the emplacement of an ancient plume head [Puchtel et al., Earth Planet. Sci. Lett. 155 (1998) 57-74]. Samples of flowtop breccia, spinifex-textured and cumulate komatiites and a chromite separate, all collected from the core of a 300 m deep diamond drill hole, yielded a Re-Os isochron with an age of 2795±40 Ma and an initial 187Os/188Os of 0.1117±0.0011 (γ187Os=+3.6±1.0). The high positive γ187Os(T) implies that the komatiites were derived from a mantle source with a time-integrated suprachondritic Re/Os ratio. Recycling of oceanic lithosphere to produce the enriched 187Os isotope signature is considered unlikely, as 15-25% crustal component is required to be incorporated into the plume source as early as 3.5-4.3 Ga. Such a substantial proportion of mafic material in the source would likely destroy the major and trace element characteristics of the komatiites. Our tentative interpretation is that the 187Os-enrichment in the Kostomuksha plume represents an outer core signature. If confirmed by the ongoing Pt-Os isotope studies, the results would provide evidence for the existence of whole-mantle convection in the late Archean, and might place constraints on the timing of core differentiation in the early Earth.

  9. Modeling tool for calculating dietary iron bioavailability in iron-sufficient adults.

    PubMed

    Fairweather-Tait, Susan J; Jennings, Amy; Harvey, Linda J; Berry, Rachel; Walton, Janette; Dainty, Jack R

    2017-06-01

    Background: Values for dietary iron bioavailability are required for setting dietary reference values. These are estimated from predictive algorithms, nonheme iron absorption from meals, and models of iron intake, serum ferritin concentration, and iron requirements. Objective: We developed a new interactive tool to predict dietary iron bioavailability. Design: Iron intake and serum ferritin, a quantitative marker of body iron stores, from 2 nationally representative studies of adults in the United Kingdom and Ireland and a trial in elderly people in Norfolk, United Kingdom, were used to develop a model to predict dietary iron absorption at different serum ferritin concentrations. Individuals who had raised inflammatory markers or were taking iron-containing supplements were excluded. Results: Mean iron intakes were 13.6, 10.3, and 10.9 mg/d and mean serum ferritin concentrations were 140.7, 49.4, and 96.7 mg/L in men, premenopausal women, and postmenopausal women, respectively. The model predicted that at serum ferritin concentrations of 15, 30, and 60 mg/L, mean dietary iron absorption would be 22.3%, 16.3%, and 11.6%, respectively, in men; 27.2%, 17.2%, and 10.6%, respectively, in premenopausal women; and 18.4%, 12.7%, and 10.5%, respectively, in postmenopausal women. Conclusions: An interactive program for calculating dietary iron absorption at any concentration of serum ferritin is presented. Differences in iron status are partly explained by age but also by diet, with meat being a key determinant. The effect of the diet is more marked at lower serum ferritin concentrations. The model can be applied to any adult population in whom representative, good-quality data on iron intake and iron status have been collected. Values for dietary iron bioavailability can be derived for any target concentration of serum ferritin, thereby giving risk managers and public health professionals a flexible and transparent basis on which to base their dietary recommendations. This

  10. Trace element differences between Archean, Proterozoic and Phanerozoic crustal components: Implications for crustal growth processes

    NASA Technical Reports Server (NTRS)

    Tarney, J.; Wyborn, L. E. A.; Sheraton, J. W.; Wyborn, D.

    1988-01-01

    Critical to models for continental crust growth and recycling are the processes through which crustal growth takes place. In particular, it is important to know whether these processes have changed fundamentally with time in response to the earth's thermal evolution, and whether the crustal compositions generated are compatible with crustal remobilization, crustal recycling, or represent primary additions. There are some significant and consistent differences in the major and trace element compositions of crustal components with time which have important implications for crustal growth processes. These will be illustrated with reference to Archean rocks from a number of shield areas, Proterozoic granitoids from Australia and elsewhere, Palaeozoic granitoids from Australia and Scotland, and Mesozoic - recent granitoids from present continental margin belts. Surprisingly some rather simple and consistent patterns energy using this technique. There are then significant differences in compositions of granitoid crustal additions throughout geological time, with a particular type of granitoid apparently dominating a particular time period. This implies that the tectonic processes giving rise to granite generation have changed in response to the earth's thermal evolution.

  11. Redox State of the Neoarchean Earth Environment

    NASA Technical Reports Server (NTRS)

    Zerkle, Aubrey L.; Claire, Mark W.; Domagal-Goldman, Shawn; Farquhar, James; Poulton, Simon W.

    2011-01-01

    A Titan-like organic haze has been hypothesized for Earth's atmosphere prior to widespread surface oxygenation approx.2.45 billion years ago (Ga). We present a high-resolution record of quadruple sulfur isotopes, carbon isotopes, and Fe speciation from the approx.2.65-2.5 Ga Ghaap Group, South Africa, which suggest a linkage between organic haze and the biogeochemical cycling of carbon, sulfur, oxygen, and iron on the Archean Earth. These sediments provide evidence for oxygen production in microbial mats and localized oxygenation of surface waters. However, this oxygen production occurred under a reduced atmosphere which existed in multiple distinct redox states that correlate to changes in carbon and sulfur isotopes. The data are corroborated by photochemical model results that suggest bi-stable transitions between organic haze and haze-free atmospheric conditions in the Archean. These geochemical correlations also extend to other datasets, indicating that variations in the character of anomalous sulfur fractionation could provide insight into the role of carbon-bearing species in the reducing Archean atmosphere.

  12. Iron homeostasis and its disruption in mouse lung in iron deficiency and overload.

    PubMed

    Giorgi, Gisela; D'Anna, María Cecilia; Roque, Marta Elena

    2015-10-01

    What is the central question of this study? The aim was to explore the role and hitherto unclear mechanisms of action of iron proteins in protecting the lung against the harmful effects of iron accumulation and the ability of pulmonary cells to mobilize iron in iron deficiency. What is the main finding and its importance? We show that pulmonary hepcidin appears not to modify cellular iron mobilization in the lung. We propose pathways for supplying iron to the lung in iron deficiency and for protecting the lung against iron excess in iron overload, mediated by the co-ordinated action of iron proteins, such as divalent metal transporter 1, ZRT-IRE-like-protein 14, transferrin receptor, ferritin, haemochromatosis-associated protein and ferroportin. Iron dyshomeostasis is associated with several forms of chronic lung disease, but its mechanisms of action remain to be elucidated. The aim of the present study was to determine the role of the lung in whole-animal models with iron deficiency and iron overload, studying the divalent metal transporter 1 (DMT1), ZRT-IRE-like protein 14 (ZIP14), transferrin receptor (TfR), haemochromatosis-associated protein (HFE), hepcidin, ferritin and ferroportin (FPN) expression. In each model, adult CF1 mice were divided into the following groups (six mice per group): (i) iron-overload model, iron saccharate i.p. and control group (iron adequate), 0.9% NaCl i.p.; and (ii) iron-deficiency model, induced by repeated bleeding, and control group (sham operated). Proteins were assessed by immunohistochemistry and Western blot. In control mice, DMT1 was localized in the cytoplasm of airway cells, and in iron deficiency and overload it was in the apical membrane. Divalent metal transporter 1 and TfR increased in iron deficiency, without changes in iron overload. ZRT-IRE-like protein 14 decreased in airway cells in iron deficiency and increased in iron overload. In iron deficiency, HFE and FPN were immunolocalized close to the apical membrane

  13. Facilitated citrate-dependent iron translocation increases rice endosperm iron and zinc concentrations.

    PubMed

    Wu, Ting-Ying; Gruissem, Wilhelm; Bhullar, Navreet K

    2018-05-01

    Iron deficiency affects one third of the world population. Most iron biofortification strategies have focused on genes involved in iron uptake and storage but facilitating internal long-distance iron translocation has been understudied for increasing grain iron concentrations. Citrate is a primary iron chelator, and the transporter FERRIC REDUCTASE DEFECTIVE 3 (FRD3) loads citrate into the xylem. We have expressed AtFRD3 in combination with AtNAS1 (NICOTIANAMINE SYNTHASE 1) and PvFER (FERRITIN) or with PvFER alone to facilitate long-distance iron transport together with efficient iron uptake and storage in the rice endosperm. The citrate and iron concentrations in the xylem sap of transgenic plants increased two-fold compared to control plants. Iron and zinc levels increased significantly in polished and unpolished rice grains to more than 70% of the recommended estimated average requirement (EAR) for iron and 140% of the recommended EAR for zinc in polished rice grains. Furthermore, the transformed lines showed normal phenotypic growth, were tolerant to iron deficiency and aluminum toxicity, and had grain cadmium levels similar to control plants. Together, our results demonstrate that deploying FRD for iron biofortification has no obvious anti-nutritive effects and should be considered as an effective strategy for reducing human iron deficiency anemia. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Stratigraphy, petrography, and provenance of Archean sedimentary rocks of the Nsuze Group, Pongola Supergroup, in the Wit M'folozi Inlier, South Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamero de Villarroel, H.; Lowe, D.R.

    1993-02-01

    The Upper Archean Pongola Supergroup is a succession of clastic and volcanic rocks that represents the oldest relatively unmetamorphosed sedimentary sequence deposited on the basement of the 3.5-3.2 Ga-old Kaapvaal Craton. The Pongola Supergroup includes two subdivisions, the Nsuze and the Mozaan Groups. The Nsuze Group is composed of clastic rocks, minor carbonate units, and basalt. Nsuze sandstones are dominated by granite-derived sediments, and minor basaltic-derived detritus. Most Nsuze sedimentary rocks are sandstones that include both quartz-fieldspar and lithic-rich varieties. The mineralogy of Nsuze sandstones reflects the mixing of debris derived from two distinctive sources: (1) a sialic plutonic sourcemore » yielding quartz and microcline and (2) a basaltic source yielding basaltic lithic detritus and plagioclase. The most likely source rocks for the Nsuze sandstones in the Wit M'folozi Inlier were Archean granitic basement, represented by the Mpuluzi batholith, and Nsuze basaltic volcanic rocks. Both continental arc and rift settings have been proposed for the Pongola Supergroup. Nsuze sandstones show similarities to continental arc sandstone suites. However, there is no report of the existence of high standing stratovolcanoes, calc-alkaline plutonism, or contact and regional metamorphism of the intruded volcanic-sedimentary and basement rocks in the Pongola basin, features that are typically associated with continental arcs. The dominance of continent-derived detritus in the Nsuze Group argues that volcanic rocks made up a minor part of the exposed source area and that volcanism was largely restricted to the basin of deposition. Collectively, available evidence favors an intracratonic rift for the depositional setting of the Nsuze Group.« less

  15. Metasomatic alteration of an early Archean komatiite sequence into chert: field and petrographic evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchac, K.C.; Hanor, J.S.

    Stratiform units of pervasively silicified ultramafic rock occur near the top of the Onverwacht group, Barberton Mountian Land, South Africa. The origin of these units has been variously ascribed to early Archean subaerial weathering, submarine weathering, cataclastic metamorphism, and the alteration of silicic tuffs at the top of mafic to felsic volcanic sequences. The authors have studied a 40 m thick stratigraphic sequence that is exceptionally well-exposed for 1.5 km within the Skokohla River valley. Well-preserved ghosts of spinifex- and cumulate-olivines and pyroxenes establish the komatiitic ancestry of these rocks. The entire sequence has been pervasively altered, however, to chertsmore » dominated by quartz and Cr-rich muscovite and containing lesser and variable amounts of chlorite, dolomite, rutile, and chrome spinel. The present Skokohla rocks can be divided into five distinct correlatable facies of laterally variable thickness which probably represent different flow units. Alteration apparently occurred early, prior to any significant tectonic deformation. The observed pervasive sericitization is inconsistent with an origin by subaerial weathering. It is most likely that the sequence was altered by large volumes of ascending hydrothermal fluids.« less

  16. Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake

    PubMed Central

    2016-01-01

    Mycobacterium tuberculosis requires iron for normal growth but faces a limitation of the metal ion due to its low solubility at biological pH and the withholding of iron by the mammalian host. The pathogen expresses the Fe3+-specific siderophores mycobactin and carboxymycobactin to chelate the metal ion from insoluble iron and the host proteins transferrin, lactoferrin, and ferritin. Siderophore-mediated iron uptake is essential for the survival of M. tuberculosis, as knockout mutants, which were defective in siderophore synthesis or uptake, failed to survive in low-iron medium and inside macrophages. But as excess iron is toxic due to its catalytic role in the generation of free radicals, regulation of iron uptake is necessary to maintain optimal levels of intracellular iron. The focus of this review is to present a comprehensive overview of iron homeostasis in M. tuberculosis that is discussed in the context of mycobactin biosynthesis, transport of iron across the mycobacterial cell envelope, and storage of excess iron. The clinical significance of the serum iron status and the expression of the iron-regulated protein HupB in tuberculosis (TB) patients is presented here, highlighting the potential of HupB as a marker, notably in extrapulmonary TB cases. PMID:27402628

  17. Optical Analysis of Iron-Doped Lead Sulfide Thin Films for Opto-Electronic Applications

    NASA Astrophysics Data System (ADS)

    Chidambara Kumar, K. N.; Khadeer Pasha, S. K.; Deshmukh, Kalim; Chidambaram, K.; Shakil Muhammad, G.

    Iron-doped lead sulfide thin films were deposited on glass substrates using successive ionic layer adsorption and reaction method (SILAR) at room temperature. The X-ray diffraction pattern of the film shows a well formed crystalline thin film with face-centered cubic structure along the preferential orientation (1 1 1). The lattice constant is determined using Nelson Riley plots. Using X-ray broadening, the crystallite size is determined by Scherrer formula. Morphology of the thin film was studied using a scanning electron microscope. The optical properties of the film were investigated using a UV-vis spectrophotometer. We observed an increase in the optical band gap from 2.45 to 3.03eV after doping iron in the lead sulfide thin film. The cutoff wavelength lies in the visible region, and hence the grown thin films can be used for optoelectronic and sensor applications. The results from the photoluminescence study show the emission at 500-720nm. The vibrating sample magnetometer measurements confirmed that the lead sulfide thin film becomes weakly ferromagnetic material after doping with iron.

  18. Iron Isotope Systematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dauphas, Nicolas; John, Seth G.; Rouxel, Olivier

    Iron is a ubiquitous element with a rich (i.e., complex) chemical behavior. It possesses three oxidation states, metallic iron (Fe0), ferrous iron (Fe2+) and ferric iron (Fe3+). The distribution of these oxidation states is markedly stratified in the Earth.

  19. Compacted graphite iron: Cast iron makes a comeback

    NASA Astrophysics Data System (ADS)

    Dawson, S.

    1994-08-01

    Although compacted graphite iron has been known for more than four decades, the absence of a reliable mass-production technique has resulted in relatively little effort to exploit its operational benefits. However, a proven on-line process control technology developed by SinterCast allows for series production of complex components in high-quality CGI. The improved mechanical properties of compacted graphite iron relative to conventional gray iron allow for substantial weight reduction in gasoline and diesel engines or substantial increases in horsepower, or an optimal combination of both. Concurrent with these primary benefits, CGI also provides significant emissions and fuel efficiency benefits allowing automakers to meet legislated performance standards. The operational and environmental benefits of compacted graphite iron together with its low cost and recyclability reinforce cast iron as a prime engineering material for the future.

  20. Rhenium-osmium isotopes and highly siderophile elements in ultramafic rocks from the Eoarchean Saglek Block, northern Labrador, Canada: implications for Archean mantle evolution

    NASA Astrophysics Data System (ADS)

    Ishikawa, Akira; Suzuki, Katsuhiko; Collerson, Kenneth D.; Liu, Jingao; Pearson, D. Graham; Komiya, Tsuyoshi

    2017-11-01

    We determined highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) concentrations and 187Os/188Os ratios for ultramafic rocks distributed over the Eoarchean gneiss complex of the Saglek-Hebron area in northern Labrador, Canada in order to constrain to what extent variations in HSE abundances are recorded in Early Archean mantle that have well-resolved 182W isotope anomalies relative to the present-day mantle (∼+11 ppm: Liu et al., 2016). The samples analysed here have been previously classified into two suites: mantle-derived peridotites occurring as tectonically-emplaced slivers of lithospheric mantle, and metakomatiites comprising mostly pyroxenitic layers in supracrustal units dominated by amphibolites. Although previous Sm-Nd and Pb-Pb isotope studies provided whole-rock isochrons indicative of ∼3.8 Ga protolith formation for both suites, our whole-rock Re-Os isotope data on a similar set of samples yield considerably younger errorchrons with ages of 3612 ± 130 Ma (MSWD = 40) and 3096 ± 170 Ma (MSWD = 10.2) for the metakomatiite and lithospheric mantle suites, respectively. The respective initial 187Os/188Os = 0.10200 ± 18 for metakomatiites and 0.1041 ± 18 for lithospheric mantle rocks are within the range of chondrites. Re-depletion Os model ages for unradiogenic samples from the two suites are consistent with the respective Re-Os errorchrons (metakomatiite TRD = 3.4-3.6 Ga; lithospheric mantle TRD = 2.8-3.3 Ga). These observations suggest that the two ultramafic suites are not coeval. However, the estimated mantle sources for the two ultramafics suites are similar in terms of their broadly chondritic evolution of 187Os/188Os and their relative HSE patterns. In detail, both mantle sources show a small excess of Ru/Ir similar to that in modern primitive mantle, but a ∼20% deficit in absolute HSE abundances relative to that in modern primitive mantle (metakomatiite 74 ± 18% of PUM; lithospheric mantle 82 ± 10% of PUM), consistent with the

  1. Iron deficiency anemia

    MedlinePlus

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  2. Does Iron Supplementation Improve Performance in Iron-Deficient Nonanemic Athletes?

    PubMed

    Rubeor, Amity; Goojha, Carmen; Manning, Jeffrey; White, Jordan

    2018-05-01

    Supplementing iron-deficient nonanemic (IDNA) athletes with iron to improve performance is a trend in endurance sports. To investigate the benefits of iron on performance, identify a ferritin level cutoff in IDNA athletes, and determine which iron supplementation regimens are most effective. A search of the PubMed, CINAHL, Embase, ERIC, and Cochrane databases was performed in 2014 including all articles. Citations of pertinent review articles were also searched. In 2017, the search was repeated. Inclusion criteria comprised studies of level 1 to 3 evidence, written in the English language, that researched iron supplementation in nonanemic athletes and reported performance outcomes. Systematic review. Level 3. The search terms used included athletic performance, resistance training, athletes, physical endurance, iron, iron deficiency, supplement, non-anemic, low ferritin, ferritin, ferritin blood level, athletes, and sports. A total of 1884 studies were identified through the initial database search, and 13 were identified through searching references of relevant review articles. A subsequent database search identified 46 studies. Following exclusions, 12 studies with a total of 283 participants were included. Supplementing IDNA athletes with iron improved performance in 6 studies (146 participants) and did not improve performance in the other 6 studies (137 participants). In the 6 studies that showed improved performance with iron supplementation, all used a ferritin level cutoff of ≤20 μg/L for treatment. Additionally, all studies that showed improved performance used oral iron as a supplement. The evidence is equivocal as to whether iron supplementation in IDNA athletes improves athletic performance. Supplementing athletes with ferritin levels <20 μg/L may be more beneficial than supplementing athletes with higher baseline ferritin levels.

  3. Effects of a Tripeptide Iron on Iron-Deficiency Anemia in Rats.

    PubMed

    Xiao, Chen; Lei, Xingen; Wang, Qingyu; Du, Zhongyao; Jiang, Lu; Chen, Silu; Zhang, Mingjie; Zhang, Hao; Ren, Fazheng

    2016-02-01

    This study aims to investigate the effects of a tripeptide iron (REE-Fe) on iron-deficiency anemia rats. Sprague-Dawley rats were randomly divided into seven groups: a normal control group, an iron-deficiency control group, and iron-deficiency groups treated with ferrous sulfate (FeSO4), ferrous glycinate (Fe-Gly), or REE-Fe at low-, medium-, or high-dose groups. The rats in the iron-deficiency groups were fed on an iron-deficient diet to establish iron-deficiency anemia (IDA) model. After the model established, different iron supplements were given to the rats once a day by intragastric administration for 21 days. The results showed that REE-Fe had effective restorative action returning body weight, organ coefficients, and hematological parameters in IDA rats to normal level. In addition, comparing with FeSO4 or Fe-Gly, high-dose REE-Fe was more effective on improving the levels of renal coefficient, total iron-binding capacity, and transferrin. Furthermore, the liver hepcidin messenger RNA (mRNA) expression in the high-dose group was significantly higher (p < 0.05) than that in the FeSO4 or Fe-Gly group and showed no significant difference (p > 0.05) with the normal control group. The findings suggest that REE-Fe is an effective source of iron supplement for IDA rats and might be exploited as a new iron fortifier.

  4. Effects of Doping Ratio of Cobalt and Iron on the Structure and Optical Properties of Bi3.25La0.75Fe(x)Co(1-x)Ti2O12 (X = 0, 0.25, 0.5, 0.75, 1).

    PubMed

    Song, Myoung Geun; Han, Jun Young; Bark, Chung Wung

    2015-10-01

    The wide band gap of complex oxides is one of the major obstacles limiting their use in photovoltaic cells. To identify an effective route for tailoring the band gap of complex oxides, this study examined the effects of cobalt and iron doping on lanthanum-modified Bi4Ti3O2-based oxides synthesized using a solid reaction. The structural and optical properties were analyzed by X-ray diffraction and ultraviolet-visible absorption spectroscopy. As a result, the optimal iron to cobalt doping ratio in bismuth titanate powder resulted in an ~1.8 eV decrease in the optical band gap. This new route to reduce the optical bandgap can be adapted to the synthesis of other complex oxides.

  5. Iron

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of iron: U.S. Department of Agriculture's (USDA) National Nutrient Database Nutrient List for Iron ( ...

  6. Systems analysis of iron metabolism: the network of iron pools and fluxes

    PubMed Central

    2010-01-01

    Background Every cell of the mammalian organism needs iron as trace element in numerous oxido-reductive processes as well as for transport and storage of oxygen. The very versatility of ionic iron makes it a toxic entity which can catalyze the production of radicals that damage vital membranous and macromolecular assemblies in the cell. The mammalian organism maintains therefore a complex regulatory network of iron uptake, excretion and intra-body distribution. Intracellular regulation in different cell types is intertwined with a global hormonal signalling structure. Iron deficiency as well as excess of iron are frequent and serious human disorders. They can affect every cell, but also the organism as a whole. Results Here, we present a kinematic model of the dynamic system of iron pools and fluxes. It is based on ferrokinetic data and chemical measurements in C57BL6 wild-type mice maintained on iron-deficient, iron-adequate, or iron-loaded diet. The tracer iron levels in major tissues and organs (16 compartment) were followed for 28 days. The evaluation resulted in a whole-body model of fractional clearance rates. The analysis permits calculation of absolute flux rates in the steady-state, of iron distribution into different organs, of tracer-accessible pool sizes and of residence times of iron in the different compartments in response to three states of iron-repletion induced by the dietary regime. Conclusions This mathematical model presents a comprehensive physiological picture of mice under three different diets with varying iron contents. The quantitative results reflect systemic properties of iron metabolism: dynamic closedness, hierarchy of time scales, switch-over response and dynamics of iron storage in parenchymal organs. Therefore, we could assess which parameters will change under dietary perturbations and study in quantitative terms when those changes take place. PMID:20704761

  7. Obesity alters adipose tissue macrophage iron content and tissue iron distribution.

    PubMed

    Orr, Jeb S; Kennedy, Arion; Anderson-Baucum, Emily K; Webb, Corey D; Fordahl, Steve C; Erikson, Keith M; Zhang, Yaofang; Etzerodt, Anders; Moestrup, Søren K; Hasty, Alyssa H

    2014-02-01

    Adipose tissue (AT) expansion is accompanied by the infiltration and accumulation of AT macrophages (ATMs), as well as a shift in ATM polarization. Several studies have implicated recruited M1 ATMs in the metabolic consequences of obesity; however, little is known regarding the role of alternatively activated resident M2 ATMs in AT homeostasis or how their function is altered in obesity. Herein, we report the discovery of a population of alternatively activated ATMs with elevated cellular iron content and an iron-recycling gene expression profile. These iron-rich ATMs are referred to as MFe(hi), and the remaining ATMs are referred to as MFe(lo). In lean mice, ~25% of the ATMs are MFe(hi); this percentage decreases in obesity owing to the recruitment of MFe(lo) macrophages. Similar to MFe(lo) cells, MFe(hi) ATMs undergo an inflammatory shift in obesity. In vivo, obesity reduces the iron content of MFe(hi) ATMs and the gene expression of iron importers as well as the iron exporter, ferroportin, suggesting an impaired ability to handle iron. In vitro, exposure of primary peritoneal macrophages to saturated fatty acids also alters iron metabolism gene expression. Finally, the impaired MFe(hi) iron handling coincides with adipocyte iron overload in obese mice. In conclusion, in obesity, iron distribution is altered both at the cellular and tissue levels, with AT playing a predominant role in this change. An increased availability of fatty acids during obesity may contribute to the observed changes in MFe(hi) ATM phenotype and their reduced capacity to handle iron.

  8. Observation of an electron band above the Fermi level in FeTe₀.₅₅Se₀.₄₅ from in-situ surface doping

    DOE PAGES

    Zhang, P.; Richard, P.; Xu, N.; ...

    2014-10-27

    We used in-situ potassium (K) evaporation to dope the surface of the iron-based superconductor FeTe₀.₅₅Se₀.₄₅. The systematic study of the bands near the Fermi level confirms that electrons are doped into the system, allowing us to tune the Fermi level of this material and to access otherwise unoccupied electronic states. In particular, we observe an electron band located above the Fermi level before doping that shares similarities with a small three-dimensional pocket observed in the cousin, heavily-electron-doped KFe₂₋ xSe₂ compound.

  9. Iron status and dietary iron intake of vegetarian children from Poland.

    PubMed

    Gorczyca, Daiva; Prescha, Anna; Szeremeta, Karolina; Jankowski, Adam

    2013-01-01

    In Poland, vegetarian diets are becoming more and more popular. The aim of this study was to examine the effect of iron intake on iron status in vegetarian children. Dietary iron intake, iron food sources, blood count, serum iron, ferritin level and total iron-binding capacity were estimated in two groups of children, namely vegetarians (n = 22) and omnivores (n = 18) of both sexes, aged from 2 to 18 years. Seven-day food records were used to assess their diet. Dietary iron intake in vegetarians and omnivores was low (up to 65.0 and 60.1% of the recommended dietary allowance). A significantly higher intake of vitamin C was observed in vegetarians compared with omnivores (p = 0.019). The main sources of iron in vegetarians were cereal products, followed by vegetables and mushroom products, then fruit. The prevalence of iron deficiency (ID) was higher in the vegetarian group (p = 0.023). The serum ferritin level and mean corpuscular volume in the vegetarians were also lower than in the omnivores (p = 0.01 and p = 0.014, respectively). Children who follow a vegetarian diet may suffer from ID in spite of having a high vitamin C intake. This indicates the need to introduce dietary education and iron status monitoring. Copyright © 2013 S. Karger AG, Basel.

  10. Iron deficiency anemia: pregnancy outcomes with or without iron supplementation.

    PubMed

    Bánhidy, Ferenc; Acs, Nándor; Puhó, Erzsébet H; Czeizel, Andrew E

    2011-01-01

    To estimate the efficacy of iron supplementation in anemic pregnant women on the basis of occurrence of pregnancy complications and birth outcomes. Comparison of the occurrence of medically recorded pregnancy complications and birth outcomes in pregnant women affected with medically recorded iron deficiency anemia and iron supplementation who had malformed fetuses/newborns (cases) and who delivered healthy babies (controls) in the population-based Hungarian Case-Control Surveillance System of Congenital Abnormalities. Of 22,843 cases with congenital abnormalities, 3242 (14.2%), while of 38,151 controls, 6358 (16.7%) had mothers with anemia. There was no higher rate of preterm births and low birth weight in the newborns of anemic pregnant women supplemented by iron. However, anemic pregnant women without iron treatment had a significantly shorter gestational age at delivery with a somewhat higher rate of preterm births but these adverse birth outcomes were prevented with iron supplementation. The rate of total and some congenital abnormalities was lower than expected and explained mainly by the healthier lifestyle and folic acid supplements. The secondary findings of the study showed a higher risk of constipation-related hemorrhoids and hypotension in anemic pregnant women with iron supplementation. A higher rate of preterm birth was found in anemic pregnant women without iron treatment but this adverse birth outcome was prevented with iron supplementation. There was no higher rate of congenital abnormalities in the offspring of anemic pregnant women supplemented with iron and/or folic acid supplements. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Iron homeostasis during pregnancy.

    PubMed

    Fisher, Allison L; Nemeth, Elizabeta

    2017-12-01

    During pregnancy, iron needs to increase substantially to support fetoplacental development and maternal adaptation to pregnancy. To meet these iron requirements, both dietary iron absorption and the mobilization of iron from stores increase, a mechanism that is in large part dependent on the iron-regulatory hormone hepcidin. In healthy human pregnancies, maternal hepcidin concentrations are suppressed in the second and third trimesters, thereby facilitating an increased supply of iron into the circulation. The mechanism of maternal hepcidin suppression in pregnancy is unknown, but hepcidin regulation by the known stimuli (i.e., iron, erythropoietic activity, and inflammation) appears to be preserved during pregnancy. Inappropriately increased maternal hepcidin during pregnancy can compromise the iron availability for placental transfer and impair the efficacy of iron supplementation. The role of fetal hepcidin in the regulation of placental iron transfer still remains to be characterized. This review summarizes the current understanding and addresses the gaps in knowledge about gestational changes in hematologic and iron variables and regulatory aspects of maternal, fetal, and placental iron homeostasis. © 2017 American Society for Nutrition.

  12. Iron balance and iron supplementation for the female athlete: A practical approach.

    PubMed

    Pedlar, Charles R; Brugnara, Carlo; Bruinvels, Georgie; Burden, Richard

    2018-03-01

    Maintaining a positive iron balance is essential for female athletes to avoid the effects of iron deficiency and anaemia and to maintain or improve performance. A major function of iron is in the production of the oxygen and carbon dioxide carrying molecule, haemoglobin, via erythropoiesis. Iron balance is under the control of a number of factors including the peptide hormone hepcidin, dietary iron intake and absorption, environmental stressors (e.g. altitude), exercise, menstrual blood loss and genetics. Menstruating females, particularly those with heavy menstrual bleeding are at an elevated risk of iron deficiency. Haemoglobin concentration [Hb] and serum ferritin (sFer) are traditionally used to identify iron deficiency, however, in isolation these may have limited value in athletes due to: (1) the effects of fluctuations in plasma volume in response to training or the environment on [Hb], (2) the influence of inflammation on sFer and (3) the absence of sport, gender and individually specific normative data. A more detailed and longitudinal examination of haematology, menstrual cycle pattern, biochemistry, exercise physiology, environmental factors and training load can offer a superior characterisation of iron status and help to direct appropriate interventions that will avoid iron deficiency or iron overload. Supplementation is often required in iron deficiency; however, nutritional strategies to increase iron intake, rest and descent from altitude can also be effective and will help to prevent future iron deficient episodes. In severe cases or where there is a time-critical need, such as major championships, iron injections may be appropriate.

  13. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA)

    PubMed Central

    Finberg, Karin E; Heeney, Matthew M; Campagna, Dean R; Aydınok, Yeşim; Pearson, Howard A; Hartman, Kip R; Mayo, Mary M; Samuel, Stewart M; Strouse, John J; Markianos, Kyriacos; Andrews, Nancy C; Fleming, Mark D

    2011-01-01

    Iron deficiency is usually attributed to chronic blood loss or inadequate dietary intake. Here, we show that iron deficiency anemia refractory to oral iron therapy can be caused by germline mutations in TMPRSS6, which encodes a type II transmembrane serine protease produced by the liver that regulates the expression of the systemic iron regulatory hormone hepcidin. These findings demonstrate that TMPRSS6 is essential for normal systemic iron homeostasis in humans. PMID:18408718

  14. Key parameters for low-grade fine-grained iron ore valorization: lower environmental impact through reduced waste.

    NASA Astrophysics Data System (ADS)

    Wagner, Christiane; Orberger, Beate; Tudryn, Alina; Baptiste, Benoît; Wirth, Richard; Morgan, Rachel; Miska, Serge

    2016-04-01

    In low-grade banded iron formations (BIFs), a large part of the iron is related to micro- and nano- metric iron-bearing inclusions within quartz and/or carbonates, mainly dolomite (~ 20 to 50 μm). Low-grade fine grained iron ore present two types of environmental risks: a) they are often stocked as tailings. For example, the recent disaster (5th of November 2015) in the Minas Gerais district, Brazil, was caused by the collapse of the Fundão tailings dam at an open cast mine; b) during beneficiation significant amounts of dust are generated also leading to metal loss. A laminated BIF studied from a drill core at Àguas Claras Mine, Quadrilátero Ferrífero, Brazil, contains 26.71 wt. % total iron, 0.2 wt. % SiO2, 0.32 wt.% MnO, 15.46 wt. % MgO, 22.32 wt.% CaO, 0.09 wt. % P2O5, < 0.05 wt. % Al2O3, 0.15 wt. % H2O and 34.08 wt. % CO2. Environmental hazardous elements are present as traces (As: 3-20 ppm, Cd: 0-0.7 ppm; Cr: 0.05-60 ppm, Pb: up to 55 ppm; U: up to 8 ppm). Dolomite and quartz bands alternate with hematite bands. Raman spectroscopy, X-ray diffraction and FIB-TEM analyses reveal that the micro- and nano- metric inclusions in dolomite are hematite and minor goethite, partly occurring as clusters in voids. Curie Balance analyses were carried out at different heating steps and temperatures on whole rock samples and a synthetic mix of decarbonated sample and pure dolomite. X-ray diffraction on the products of the heating experiments shows that that hematite is stable and new phases: magnesioferrite (MgFe2O4), lime (CaO), periclase (MgO), portlandite (Ca(OH)2) and srebrodoskite (Ca2Fe2O5) were formed between 680 °C and 920 °C. These findings promote the economic use of low grade ores rather than their stockpiling as tailings. The presence of OH-bearing goethite reduces the sintering temperature. After having separated coarse hematite from barren dolomite and quartz, a low temperature sintering of the inclusion-bearing dolomite/quartz leads to transformations

  15. Iron deficiency anaemia.

    PubMed

    Lopez, Anthony; Cacoub, Patrice; Macdougall, Iain C; Peyrin-Biroulet, Laurent

    2016-02-27

    Anaemia affects roughly a third of the world's population; half the cases are due to iron deficiency. It is a major and global public health problem that affects maternal and child mortality, physical performance, and referral to health-care professionals. Children aged 0-5 years, women of childbearing age, and pregnant women are particularly at risk. Several chronic diseases are frequently associated with iron deficiency anaemia--notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease. Measurement of serum ferritin, transferrin saturation, serum soluble transferrin receptors, and the serum soluble transferrin receptors-ferritin index are more accurate than classic red cell indices in the diagnosis of iron deficiency anaemia. In addition to the search for and treatment of the cause of iron deficiency, treatment strategies encompass prevention, including food fortification and iron supplementation. Oral iron is usually recommended as first-line therapy, but the most recent intravenous iron formulations, which have been available for nearly a decade, seem to replenish iron stores safely and effectively. Hepcidin has a key role in iron homoeostasis and could be a future diagnostic and therapeutic target. In this Seminar, we discuss the clinical presentation, epidemiology, pathophysiology, diagnosis, and acute management of iron deficiency anaemia, and outstanding research questions for treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. 3. 96 Ga zircons from an Archean quartzite, Beartooth Mountains, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, P.A.; Wooden, J.L.; Nutman, A.P.

    1992-04-01

    U-Pb isotopic systematics of detrital zircons incorporated in a middle Archean quartzite from the Beartooth Mountains, Montana, were investigated with the SHRIMP ion microprobe. These new data reveal an extended and previously unrecognized record of crustal evolution for the northern Wyoming province. Seventy-eight analyses of 67 grains yielded a range of {sup 207}Pb/{sup 206}Pb ages from 2.69 to 3.96 Ga. Concordant analyses from 43 separate grains defined a maximum age for the deposition of the quartzite of 3.30 Ga; other provenance ages extend to 3.96 Ga. Ages of < 3.30 Ga are generally discordant, and appear to reflect late Archeanmore » disturbance of the U-Pb system, including metamorphism at {approximately}2.8 Ga. The predominance of ages at {approximately}3.3 Ga is interpreted to represent the last major episode of crust formation prior to deposition of the quartzite. The concordant analyses of > 3.30 Ga indicate that older crustal components with ages up to 3.96 Ga, or detritus from them, were also in the provenance of this quartzite. This older age is equivalent to that of the oldest known rock from the Acasta gneisses of the Slave province and is exceeded only by the > 4.0 Ga age of detrital zircons of the Yilgarn block of Western Australia. These data support an increased probability for the survival of sialic crust created before the cessation of the late bombardment at 3.8 to 3.9 Ga.« less

  17. Archean geochemistry of formaldehyde and cyanide and the oligomerization of cyanohydrin

    NASA Technical Reports Server (NTRS)

    Arrhenius, T.; Arrhenius, G.; Paplawsky, W.

    1994-01-01

    The sources and speciation of reduced carbon and nitrogen inferred for the early Archean are reviewed in terms of current observations and models, and known chemical reactions. Within this framework hydrogen cyanide and cyanide ion in significant concentration would have been eliminated by reaction with excess formaldehyde to form cyanohydrin (glycolonitrile), and with ferrous ion to formferrocyanide. Natural reactions of these molecules would under such conditions deserve special consideration in modeling of primordial organochemical processes. As a step in this direction, transformation reactions have been investigated involving glycolonitrile in the presence of water. We find that glycolonitrile, formed from formaldehyde and hydrogen cyanide or cyanide ion, spontaneously cyclodimerizes to 4-amino-2-hydroxymethyloxazole. The crystalline dimer is the major product at low temperatue (approximately 0 C); the yield diminishes with increasing temperature at the expense of polymerization and hydrolysis products. Hydrolysis of glycolamide and of oxazole yields a number of simpler organic molecules, including ammonia and glycolamide. The spontaneous polymerization of glycolonitrile and its dimer gives rise to soluble, cationic oligomers of as yet unknown structure, and, unless arrested, to a viscous liquid, insoluble in water. A loss of cyanide by reaction with formaldehyde, inferred for the early terrestrial hydrosphere and cryosphere would present a dilemma for hypotheses invoking cyanide and related compounds as concentrated reactants capable of forming biomolecular precursor species. Attempts to escape from its horns may take advantage of the efficient concentration and separation of cyanide as solid ferriferrocyanide, and most directly of reactions of glycolonitrile and its derivatives.

  18. Iron, ferritin, and nutrition.

    PubMed

    Theil, Elizabeth C

    2004-01-01

    Ferritin, a major form of endogenous iron in food legumes such as soybeans, is a novel and natural alternative for iron supplementation strategies where effectiveness is limited by acceptability, cost, or undesirable side effects. A member of the nonheme iron group of dietary iron sources, ferritin is a complex with Fe3+ iron in a mineral (thousands of iron atoms inside a protein cage) protected from complexation. Ferritin illustrates the wide range of chemical and biological properties among nonheme iron sources. The wide range of nonheme iron receptors matched to the structure of the iron complexes that occurs in microorganisms may, by analogy, exist in humans. An understanding of the chemistry and biology of each type of dietary iron source (ferritin, heme, Fe2+ ion, etc.), and of the interactions dependent on food sources, genes, and gender, is required to design diets that will eradicate global iron deficiency in the twenty-first century.

  19. Chromosomal intrachanges induced by swift iron ions

    NASA Astrophysics Data System (ADS)

    Horstmann, M.; Durante, M.; Johannes, C.; Obe, G.

    We measured the induction of aberrations in human chromosome 5 by iron ions using the novel technique of multicolor banding in situ hybridization (mBAND). Human lymphocytes isolated from whole blood were exposed in vitro to 500 MeV/n (LET=200 keV/μ m, doses 1 or 4 Gy) 56Fe nuclei at the HIMAC accelerator in Chiba (Japan). Chromosomes were prematurely condensed by calyculin A after 48 h in culture, and slides were painted by mBAND (MetaSystems). We found a frequency of 0.11 and 0.57 residual breakpoints per chromosome 5 after 1 Gy and 4 Gy Fe-ions, respectively. The distribution per unit length were similar in the p- and q-arm of chromosome 5, and >50% of the observed fragments measured <30% of the whole chromosome length. Only small fragments (<40% of the chromosome size) were involved in intra-chromosomal exchanges (interstitial deletions or inversions), whereas fragments up to 75% of the whole chromosome 5 were found in inter-chromosomal exchanges. We measured more inter-changes than intra-changes, and more intra-arm than inter-arm exchanges at both doses. No significant differences in the ratios of these aberrations were detected with respect to X-rays. On the other hand, Fe-ions induced a significantly higher fraction of complex-type exchanges when compared to sparsely ionizing radiation. Work supported by DLR, BMBF, INTAS and NIRS-HIMAC.

  20. Dietary Factors Modulate Iron Uptake in Caco-2 Cells from an Iron Ingot Used as a Home Fortificant to Prevent Iron Deficiency

    PubMed Central

    Rodriguez-Ramiro, Ildefonso; Perfecto, Antonio; Fairweather-Tait, Susan J.

    2017-01-01

    Iron deficiency is a major public health concern and nutritional approaches are required to reduce its prevalence. The aim of this study was to examine the iron bioavailability of a novel home fortificant, the “Lucky Iron Fish™” (LIF) (www.luckyironfish.com/shop, Guelph, Canada) and the impact of dietary factors and a food matrix on iron uptake from LIF in Caco-2 cells. LIF released a substantial quantity of iron (about 1.2 mM) at pH 2 but this iron was only slightly soluble at pH 7 and not taken up by cells. The addition of ascorbic acid (AA) maintained the solubility of iron released from LIF (LIF-iron) at pH 7 and facilitated iron uptake by the cells in a concentration-dependent manner. In vitro digestion of LIF-iron in the presence of peas increased iron uptake 10-fold. However, the addition of tannic acid to the digestion reduced the cellular iron uptake 7.5-fold. Additionally, LIF-iron induced an overproduction of reactive oxygen species (ROS), similar to ferrous sulfate, but this effect was counteracted by the addition of AA. Overall, our data illustrate the major influence of dietary factors on iron solubility and bioavailability from LIF, and demonstrate that the addition of AA enhances iron uptake and reduces ROS in the intestinal lumen. PMID:28895913

  1. Improved Band-to-Band Registration Characterization for VIIRS Reflective Solar Bands Based on Lunar Observations

    NASA Technical Reports Server (NTRS)

    Wang, Zhipeng; Xiong, Xiaoxiong; Li, Yonghong

    2015-01-01

    Spectral bands of the Visible Infrared Imaging Radiometer Suite (VIIRS) instrumentaboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite are spatially co-registered.The accuracy of the band-to-band registration (BBR) is one of the key spatial parameters that must becharacterized. Unlike its predecessor, the Moderate Resolution Imaging Spectroradiometer (MODIS), VIIRS has no on-board calibrator specifically designed to perform on-orbit BBR characterization.To circumvent this problem, a BBR characterization method for VIIRS reflective solar bands (RSB) based on regularly-acquired lunar images has been developed. While its results can satisfactorily demonstrate that the long-term stability of the BBR is well within +/- 0.1 moderate resolution bandpixels, undesired seasonal oscillations have been observed in the trending. The oscillations are most obvious between the visiblenear-infrared bands and short-middle wave infrared bands. This paper investigates the oscillations and identifies their cause as the band spectral dependence of the centroid position and the seasonal rotation of the lunar images over calibration events. Accordingly, an improved algorithm is proposed to quantify the rotation and compensate for its impact. After the correction, the seasonal oscillation in the resulting BBR is reduced from up to 0.05 moderate resolution band pixels to around 0.01 moderate resolution band pixels. After removing this spurious seasonal oscillation, the BBR, as well as its long-term drift are well determined.

  2. Oral sucrosomial iron versus intravenous iron in anemic cancer patients without iron deficiency receiving darbepoetin alfa: a pilot study.

    PubMed

    Mafodda, Antonino; Giuffrida, D; Prestifilippo, A; Azzarello, D; Giannicola, R; Mare, M; Maisano, R

    2017-09-01

    Erythropoiesis-stimulating agents (ESAs) are often used in treatment of patients with chemotherapy-induced anemia. Many studies have demonstrated an improved hemoglobin (Hb) response when ESA is combined with intravenous iron supplementation and a higher effectiveness of intravenous iron over traditional oral iron formulations. A new formulation of oral sucrosomial iron featuring an increased bioavailability compared to traditional oral formulations has recently become available and could provide a valid alternative to those by intravenous (IV) route. Our study evaluated the performance of sucrosomial iron versus intravenous iron in increasing hemoglobin in anemic cancer patients receiving chemotherapy and darbepoetin alfa, as well as safety, need of transfusion, and quality of life (QoL). The present study considered a cohort of 64 patients with chemotherapy-related anemia (Hb >8 g/dL <10 g/dL) and no absolute or functional iron deficiency, scheduled to receive chemotherapy and darbepoetin. All patients received darbepoetin alfa 500 mcg once every 3 weeks and were randomly assigned to receive 8 weeks of IV ferric gluconate 125 mg weekly or oral sucrosomial iron 30 mg daily. The primary endpoint was to demonstrate the performance of oral sucrosomial iron in improving Hb response, compared to intravenous iron. The Hb response was defined as the Hb increase ≥2 g/dL from baseline or the attainment Hb ≥ 12 g/dL. There was no difference in the Hb response rate between the two treatment arms. Seventy one percent of patients treated with IV iron achieved an erythropoietic response, compared to 70% of patients treated with oral iron. By conventional criteria, this difference is considered to be not statistically significant. There were also no differences in the proportion of patients requiring red blood cell transfusions and changes in QoL. Sucrosomial oral iron was better tolerated. In cancer patients with chemotherapy-related anemia receiving

  3. 35. GREY IRON TUMBLERS, IN THE GREY IRON FOUNDRY ROTATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. GREY IRON TUMBLERS, IN THE GREY IRON FOUNDRY ROTATE CASTINGS WITH SHOT TO REMOVE AND SURFACE OXIDES AND REMAINING EXCESS METALS. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  4. Intravenous Iron Therapy in Patients with Iron Deficiency Anemia: Dosing Considerations

    PubMed Central

    Myers, Jennifer; Goodnough, Lawrence Tim

    2015-01-01

    Objective. To provide clinicians with evidence-based guidance for iron therapy dosing in patients with iron deficiency anemia (IDA), we conducted a study examining the benefits of a higher cumulative dose of intravenous (IV) iron than what is typically administered. Methods. We first individually analyzed 5 clinical studies, averaging the total iron deficit across all patients utilizing a modified Ganzoni formula; we then similarly analyzed 2 larger clinical studies. For the second of the larger studies (Study 7), we also compared the efficacy and retreatment requirements of a cumulative dose of 1500 mg ferric carboxymaltose (FCM) to 1000 mg iron sucrose (IS). Results. The average iron deficit was calculated to be 1531 mg for patients in Studies 1–5 and 1392 mg for patients in Studies 6-7. The percentage of patients who were retreated with IV iron between Days 56 and 90 was significantly (p < 0.001) lower (5.6%) in the 1500 mg group, compared to the 1000 mg group (11.1%). Conclusions. Our data suggests that a total cumulative dose of 1000 mg of IV iron may be insufficient for iron repletion in a majority of patients with IDA and a dose of 1500 mg is closer to the actual iron deficit in these patients. PMID:26257955

  5. Temporal changes in community composition of heterotrophic bacteria during in situ iron enrichment in the western subarctic Pacific (SEEDS-II)

    NASA Astrophysics Data System (ADS)

    Kataoka, Takafumi; Suzuki, Koji; Hayakawa, Maki; Kudo, Isao; Higashi, Seigo; Tsuda, Atsushi

    2009-12-01

    Little is known about the effects of iron enrichment in high-nitrate low-chlorophyll (HNLC) waters on the community composition of heterotrophic bacteria, which are crucial to nutrient recycling and microbial food webs. Using denaturing gradient gel electrophoresis (DGGE) of 16S rDNA fragments, we investigated the heterotrophic eubacterial community composition in surface waters during an in situ iron-enrichment experiment (SEEDS-II) in the western subarctic Pacific in the summer of 2004. DGGE fingerprints representing the community composition of eubacteria differed inside and outside the iron-enriched patch. Sequencing of DGGE bands revealed that at least five phylotypes of α-proteobacteria including Roseobacter, Cytophaga-Flavobacteria- Bacteroides (CFB), γ-proteobacteria, and Actinobacteria occurred in almost all samples from the iron-enriched patch. Diatoms did not bloom during SEEDS-II, but the eubacterial composition in the iron-enriched patch was similar to that in diatom blooms observed previously. Although dissolved organic carbon (DOC) accumulation was not detected in surface waters during SEEDS-II, growth of the Roseobacter clade might have been particularly stimulated after iron additions. Two identified phylotypes of CFB were closely related to the genus Saprospira, whose algicidal activity might degrade the phytoplankton assemblages increased by iron enrichment. These results suggest that the responses of heterotrophic bacteria to iron enrichment could differ among phylotypes during SEEDS-II.

  6. Iron and vegetarian diets.

    PubMed

    Saunders, Angela V; Craig, Winston J; Baines, Surinder K; Posen, Jennifer S

    2013-08-19

    Vegetarians who eat a varied and well balanced diet are not at any greater risk of iron deficiency anaemia than non-vegetarians. A diet rich in wholegrains, legumes, nuts, seeds, dried fruits, iron-fortified cereals and green leafy vegetables provides an adequate iron intake. Vitamin C and other organic acids enhance non-haem iron absorption, a process that is carefully regulated by the gut. People with low iron stores or higher physiological need for iron will tend to absorb more iron and excrete less. Research to date on iron absorption has not been designed to accurately measure absorption rates in typical Western vegetarians with low ferritin levels.

  7. Laparoscopic gastric banding

    MedlinePlus

    ... adjustable gastric banding; Bariatric surgery - laparoscopic gastric banding; Obesity - gastric banding; Weight loss - gastric banding ... gastric banding is not a "quick fix" for obesity. It will greatly change your lifestyle. You must ...

  8. Nitrosative Stress and Apoptosis by Intravenous Ferumoxytol, Iron Isomaltoside 1000, Iron Dextran, Iron Sucrose, and Ferric Carboxymaltose in a Nonclinical Model.

    PubMed

    Toblli, J E; Cao, G; Giani, J F; Dominici, F P; Angerosa, M

    2015-07-01

    Iron is involved in the formation as well as in the scavenging of reactive oxygen and nitrogen species. Thus, iron can induce as well as inhibit both oxidative and nitrosative stress. It also has a key role in reactive oxygen and nitrogen species-mediated apoptosis. We assessed the differences in tyrosine nitration and caspase 3 expression in the liver, heart, and kidneys of rats treated weekly with intravenous ferumoxytol, iron isomaltoside 1000, iron dextran, iron sucrose and ferric carboxymaltose (40 mg iron/kg body weight) for 5 weeks. Nitrotyrosine was quantified in tissue homogenates by Western blotting and the distribution of nitrotyrosine and caspase 3 was assessed in tissue sections by immunohistochemistry. Ferric carboxymaltose and iron sucrose administration did not result in detectable levels of nitrotyrosine or significant levels of caspase 3 vs. control in any of the tissue studied. Nitrotyrosine and caspase 3 levels were significantly (p<0.01) increased in all assessed organs of animals treated with iron dextran and iron isomaltoside 1000, as well as in the liver and kidneys of ferumoxytol-treated animals compared to isotonic saline solution (control). Nitrotyrosine and caspase 3 levels were shown to correlate positively with the amount of Prussian blue-detectable iron(III) deposits in iron dextran- and iron isomaltoside 1000-treated rats but not in ferumoxytol-treated rats, suggesting that iron dextran, iron isomaltoside 1000 and ferumoxytol induce nitrosative (and oxidative) stress as well as apoptosis via different mechanism(s). © Georg Thieme Verlag KG Stuttgart · New York.

  9. A Novel Ku-Band/Ka-Band and Ka-Band/E-Band Multimode Waveguide Couplers for Power Measurement of Traveling-Wave Tube Amplifier Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.

    2015-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).

  10. Characterization of a Novel Iron Acquisition Activity That Coordinates the Iron Response with Population Density under Iron-Replete Conditions in Bacillus subtilis.

    PubMed

    Roy, Emily M; Griffith, Kevin L

    2017-01-01

    Iron is an essential micronutrient required for the viability of many organisms. Under oxidizing conditions, ferric iron is highly insoluble (∼10 -9 to 10 -18 M), yet bacteria typically require ∼10 -6 M for survival. To overcome this disparity, many bacteria have adopted the use of extracellular iron-chelating siderophores coupled with specific iron-siderophore uptake systems. In the case of Bacillus subtilis, undomesticated strains produce the siderophore bacillibactin. However, many laboratory strains, e.g., JH642, have lost the ability to produce bacillibactin during the process of domestication. In this work, we identified a novel iron acquisition activity from strain JH642 that accumulates in the growth medium and coordinates the iron response with population density. The molecule(s) responsible for this activity was named elemental Fe(II/III) (Efe) acquisition factor because efeUOB (ywbLMN) is required for its activity. Unlike most iron uptake molecules, including siderophores and iron reductases, Efe acquisition factor is present under iron-replete conditions and is regulated independently of Fur repressor. Restoring bacillibactin production in strain JH642 inhibits the activity of Efe acquisition factor, presumably by sequestering available iron. A similar iron acquisition activity is produced from a mutant of Escherichia coli unable to synthesize the siderophore enterobactin. Given the conservation of efeUOB and its regulation by catecholic siderophores in B. subtilis and E. coli, we speculate that Efe acquisition factor is utilized by many bacteria, serves as an alternative to Fur-mediated iron acquisition systems, and provides cells with biologically available iron that would normally be inaccessible during aerobic growth under iron-replete conditions. Iron is an essential micronutrient required for a variety of biological processes, yet ferric iron is highly insoluble during aerobic growth. In this work, we identified a novel iron acquisition

  11. Iron mineralization at the Songhu deposit, Chinese Western Tianshan: a type locality with regional metallogenic implications

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Long; Wang, Yi-Tian; Dong, Lian-Hui; Qin, Ke-Zhang; Evans, Noreen J.; Zhang, Bing; Ren, Yi

    2018-01-01

    Hosted by volcaniclastics of the Carboniferous Dahalajunshan Formation, the Songhu iron deposit is located in the central segment of the Awulale metallogenic belt, Chinese Western Tianshan. Mineralization and alteration are structurally controlled by orogen-parallel NWW-striking faults. Integrating with mineralogical and stable isotopic analyses based on paragenetic relationships, two types of iron mineralization have been identified. The deuteric mineralization (Type I) represented by brecciated, banded, and disseminated-vein ores juxtaposed with potassic-calcic alteration in the inner zone, which was formed from a magmatic fluid generated during the late stages of regional volcanism. In contrast, the volcanic-hydrothermal mineralization (Type II) is characterized by hydrothermal features occurring in massive and agglomerated ores with abundant sulfides, and was generated from the magmatic fluid with seawater contamination. Two volcaniclastic samples from the hanging and footwall of the main orebody yield zircon U-Pb ages of 327.8 ± 3.1 and 332.0 ± 2.0 Ma, respectively, which indicate Middle Carboniferous volcanism. Timing for iron mineralization can be broadly placed in the same epoch. By reviewing geological, mineralogical, and geochemical features of the primary iron deposits in the Awulale metallogenic belt, we propose that the two types of iron mineralization in the Songhu iron deposit are representative regionally. A summary of available geochronological data reveals Middle-Late Carboniferous polycyclic ore-related volcanism, and nearly contemporaneous iron mineralization along the belt. Furthermore, petro-geochemistry of volcanic-volcaniclastic host rocks indicates that partial melting of a metasomatized mantle wedge under a continental arc setting could have triggered the continuous volcanic activities and associated metallogenesis.

  12. Lasing in optimized two-dimensional iron-nail-shaped rod photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Soon-Yong; Moon, Seul-Ki; Yang, Jin-Kyu, E-mail: jinkyuyang@kongju.ac.kr

    2016-03-15

    We demonstrated lasing at the Γ-point band-edge (BE) modes in optimized two-dimensional iron-nail-shaped rod photonic crystals by optical pulse pumping at room temperature. As the radius of the rod increased quadratically toward the edge of the pattern, the quality factor of the Γ-point BE mode increased up to three times, and the modal volume decreased to 56% compared with the values of the original Γ-point BE mode because of the reduction of the optical loss in the horizontal direction. Single-mode lasing from an optimized iron-nail-shaped rod array with an InGaAsP multiple quantum well embedded in the nail heads was observedmore » at a low threshold pump power of 160 μW. Real-image-based numerical simulations showed that the lasing actions originated from the optimized Γ-point BE mode and agreed well with the measurement results, including the lasing polarization, wavelength, and near-field image.« less

  13. Current understanding of iron homeostasis.

    PubMed

    Anderson, Gregory J; Frazer, David M

    2017-12-01

    Iron is an essential trace element, but it is also toxic in excess, and thus mammals have developed elegant mechanisms for keeping both cellular and whole-body iron concentrations within the optimal physiologic range. In the diet, iron is either sequestered within heme or in various nonheme forms. Although the absorption of heme iron is poorly understood, nonheme iron is transported across the apical membrane of the intestinal enterocyte by divalent metal-ion transporter 1 (DMT1) and is exported into the circulation via ferroportin 1 (FPN1). Newly absorbed iron binds to plasma transferrin and is distributed around the body to sites of utilization with the erythroid marrow having particularly high iron requirements. Iron-loaded transferrin binds to transferrin receptor 1 on the surface of most body cells, and after endocytosis of the complex, iron enters the cytoplasm via DMT1 in the endosomal membrane. This iron can be used for metabolic functions, stored within cytosolic ferritin, or exported from the cell via FPN1. Cellular iron concentrations are modulated by the iron regulatory proteins (IRPs) IRP1 and IRP2. At the whole-body level, dietary iron absorption and iron export from the tissues into the plasma are regulated by the liver-derived peptide hepcidin. When tissue iron demands are high, hepcidin concentrations are low and vice versa. Too little or too much iron can have important clinical consequences. Most iron deficiency reflects an inadequate supply of iron in the diet, whereas iron excess is usually associated with hereditary disorders. These disorders include various forms of hemochromatosis, which are characterized by inadequate hepcidin production and, thus, increased dietary iron intake, and iron-loading anemias whereby both increased iron absorption and transfusion therapy contribute to the iron overload. Despite major recent advances, much remains to be learned about iron physiology and pathophysiology. © 2017 American Society for Nutrition.

  14. Pathogenic Mechanisms Underlying Iron Deficiency and Iron Overload: New Insights for Clinical Application

    PubMed Central

    van Velden, DP; van Rensburg, SJ; Erasmus, R

    2009-01-01

    Iron uptake, utilisation, release and storage occur at the gene level. Individuals with variant forms of genes involved in iron metabolism may have different requirements for iron and are likely to respond differently to the same amount of iron in the diet, a concept termed nutrigenetics. Iron deficiency, iron overload and the anemia of inflammation are the commonest iron-related disorders. While at least four types of hereditary iron overload have been identified to date, our knowledge of the genetic basis and consequences of inherited iron deficiency remain limited. The importance of genetic risk factors in relation to iron overload was highlighted with the identification of the HFE gene in 1996. Deleterious mutations in this gene account for 80-90% of inherited iron overload and are associated with loss of iron homeostasis, alterations in inflammatory responses, oxidative stress and in its most severe form, the disorder hereditary haemochromatosis (HH). Elucidation of the genetic basis of HH has led to rapid clinical benefit through drastic reduction in liver biopsies performed as part of the diagnostic work-up of affected patients. Today, detection of a genetic predisposition in the presence of high serum ferritin and transferrin saturation levels is usually sufficient to diagnose HH, thereby addressing the potential danger of inherited iron overload which starts with the same symptoms as iron deficiency, namely chronic fatigue. This review provides the scientific back-up for application of pathology supported genetic testing, a new test concept that is well placed for optimizing clinical benefit to patients with regard to iron status. PMID:27683335

  15. Iron and iron-related proteins in asbestosis.

    EPA Science Inventory

    ABSTRACT: We tested the postulate that iron homeostasis is altered among patients diagnosed to have asbestosis. Lung tissue from six individuals diagnosed to have had asbestosis at autopsy was stained for iron, ferritin, divalent metal transporter 1 (DMT1), and ferroportin 1 (FP...

  16. Glutathione, Glutaredoxins, and Iron.

    PubMed

    Berndt, Carsten; Lillig, Christopher Horst

    2017-11-20

    Glutathione (GSH) is the most abundant cellular low-molecular-weight thiol in the majority of organisms in all kingdoms of life. Therefore, functions of GSH and disturbed regulation of its concentration are associated with numerous physiological and pathological situations. Recent Advances: The function of GSH as redox buffer or antioxidant is increasingly being questioned. New functions, especially functions connected to the cellular iron homeostasis, were elucidated. Via the formation of iron complexes, GSH is an important player in all aspects of iron metabolism: sensing and regulation of iron levels, iron trafficking, and biosynthesis of iron cofactors. The variety of GSH coordinated iron complexes and their functions with a special focus on FeS-glutaredoxins are summarized in this review. Interestingly, GSH analogues that function as major low-molecular-weight thiols in organisms lacking GSH resemble the functions in iron homeostasis. Since these iron-related functions are most likely also connected to thiol redox chemistry, it is difficult to distinguish between mechanisms related to either redox or iron metabolisms. The ability of GSH to coordinate iron in different complexes with or without proteins needs further investigation. The discovery of new Fe-GSH complexes and their physiological functions will significantly advance our understanding of cellular iron homeostasis. Antioxid. Redox Signal. 27, 1235-1251.

  17. Crustal structure and tectonics of the northern part of the Southern Granulite Terrane, India

    USGS Publications Warehouse

    Rao, V.V.; Sain, K.; Reddy, P.R.; Mooney, W.D.

    2006-01-01

    Deep seismic reflection studies investigating the exposed Archean lower continental crust of the Southern Granulite Terrane, India, yield important constraints on the nature and evolution of the deep crust, including the formation and exhumation of granulites. Seismic reflection images along the Kuppam-Bhavani profile reveal a band of reflections that dip southward from 10.5 to 15.0??s two-way-time (TWT), across a distance of 50??km. The bottom of these reflections beneath the Dharwar craton is interpreted as the Moho. Further south, another reflection band dipping northward is observed. These bands of reflectivity constitute a divergent reflection fabric that converges at the Moho boundary observed at the Mettur shear zone. Reflection fabrics that intersect at a steep angle are interpreted as a collisional signature due to the convergence of crustal blocks, which we infer resulted in crustal thickening and the formation of granulites. Anomalous gravity and magnetic signatures are also observed across the Mettur shear zone. The gravity model derived from the Bouguer gravity data corroborates seismic results. The tectonic regime and seismic reflection profiles are combined in a 3-D representation that illustrates our evidence for paleo-subduction at a collision zone. The structural dissimilarities and geophysical anomalies suggest that the Mettur shear zone is a suture between the Dharwar craton in the north and another crustal block in the south. This study contributes significantly to our understanding of the operation of Archean plate tectonics, here inferred to involve collision and subduction. Furthermore, it provides an important link between the Gondwanaland and global granulite evolution occurring throughout the late Archean. ?? 2006 Elsevier B.V. All rights reserved.

  18. Iron-heme-Bach1 axis is involved in erythroblast adaptation to iron deficiency.

    PubMed

    Kobayashi, Masahiro; Kato, Hiroki; Hada, Hiroshi; Itoh-Nakadai, Ari; Fujiwara, Tohru; Muto, Akihiko; Inoguchi, Yukihiro; Ichiyanagi, Kenji; Hojo, Wataru; Tomosugi, Naohisa; Sasaki, Hiroyuki; Harigae, Hideo; Igarashi, Kazuhiko

    2017-03-01

    Iron plays the central role in oxygen transport by erythrocytes as a constituent of heme and hemoglobin. The importance of iron and heme is also to be found in their regulatory roles during erythroblast maturation. The transcription factor Bach1 may be involved in their regulatory roles since it is deactivated by direct binding of heme. To address whether Bach1 is involved in the responses of erythroblasts to iron status, low iron conditions that induced severe iron deficiency in mice were established. Under iron deficiency, extensive gene expression changes and mitophagy disorder were induced during maturation of erythroblasts. Bach1 -/- mice showed more severe iron deficiency anemia in the developmental phase of mice and a retarded recovery once iron was replenished when compared with wild-type mice. In the absence of Bach1, the expression of globin genes and Hmox1 (encoding heme oxygenase-1) was de-repressed in erythroblasts under iron deficiency, suggesting that Bach1 represses these genes in erythroblasts under iron deficiency to balance the levels of heme and globin. Moreover, an increase in genome-wide DNA methylation was observed in erythroblasts of Bach1 -/- mice under iron deficiency. These findings reveal the principle role of iron as a regulator of gene expression in erythroblast maturation and suggest that the iron-heme-Bach1 axis is important for a proper adaptation of erythroblast to iron deficiency to avoid toxic aggregates of non-heme globin. Copyright© Ferrata Storti Foundation.

  19. Formation of iron disilicide on amorphous silicon

    NASA Astrophysics Data System (ADS)

    Erlesand, U.; Östling, M.; Bodén, K.

    1991-11-01

    Thin films of iron disilicide, β-FeSi 2 were formed on both amorphous silicon and on crystalline silicon. The β-phase is reported to be semiconducting with a direct band-gap of about 0.85-0.89 eV. This phase is known to form via a nucleation-controlled growth process on crystalline silicon and as a consequence a rather rough silicon/silicide interface is usually formed. In order to improve the interface a bilayer structure of amorphous silicon and iron was sequentially deposited on Czochralski <111> silicon in an e-gun evaporation system. Secondary ion mass spectrometry profiling (SIMS) and scanning electron micrographs revealed an improvement of the interface sharpness. Rutherford backscattering spectrometry (RBS) and X-ray diffractiometry showed β-FeSi 2 formation already at 525°C. It was also observed that the silicide growth was diffusion-controlled, similar to what has been reported for example in the formation of NiSi 2 for the reaction of nickel on amorphous silicon. The kinetics of the FeSi 2 formation in the temperature range 525-625°C was studied by RBS and the activation energy was found to be 1.5 ± 0.1 eV.

  20. Differential Roles of Iron Storage Proteins in Maintaining the Iron Homeostasis in Mycobacterium tuberculosis

    PubMed Central

    Tyagi, Anil K.

    2017-01-01

    Ferritins and bacterioferritins are iron storage proteins that represent key players in iron homeostasis. Several organisms possess both forms of ferritins, however, their relative physiological roles are less understood. Mycobacterium tuberculosis possesses both ferritin (BfrB) and bacterioferritin (BfrA), playing an essential role in its pathogenesis as reported by us earlier. This study provides insights into the role of these two proteins in iron homeostasis by employing M. tuberculosis bfr mutants. Our data suggests that BfrA is required for efficient utilization of stored iron under low iron conditions while BfrB plays a crucial role as the major defense protein under excessive iron conditions. We show that these two proteins provide protection against oxidative stress and hypoxia. Iron incorporation study showed that BfrB has higher capacity for storing iron than BfrA, which augurs well for efficient iron quenching under iron excess conditions. Moreover, iron release assay demonstrated that BfrA has 3 times superior ability to release stored iron emphasizing its requirement for efficient iron release under low iron conditions, facilitated by the presence of heme. Thus, for the first time, our observations suggest that the importance of BfrA or BfrB separately might vary depending upon the iron situation faced by the cell. PMID:28060867