Science.gov

Sample records for archean banded iron

  1. Experimental constraints on reconstruction of Archean seawater Ni isotopic composition from banded iron formations

    NASA Astrophysics Data System (ADS)

    Wang, Shui-Jiong; Wasylenki, Laura E.

    2017-06-01

    The Ni isotopic systematics in banded iron formations (BIFs) potentially recorded the Ni isotopic composition of ancient seawater over Precambrian geological history. However, the utility of BIFs as proxies requires quantitative knowledge of how Ni isotopes fractionated as dissolved Ni was initially incorporated into iron-rich sediments and how diagenesis may have affected the Ni isotopic systematics. Here we report results of synthesis experiments to investigate the behavior of Ni isotopes during Ni coprecipitation with ferrihydrite and then transformation of ferrihydrite to hematite. Ferrihydrite coprecipitation experiments at neutral pH demonstrated that the dissolved Ni was variably heavier than coprecipitated Ni (likely a mixture of surface-adsorbed and structurally incorporated Ni), with the isotope fractionation becoming larger as the fraction of Ni associated with solid increased (Δ60/58Nisolution-solid = +0.08 to +0.50‰). Further experiments at lower pH (3.7-6.7), in which structurally incorporated Ni likely dominated in solids, documented a decrease in Δ60/58Nisolution-solid from +0.44‰ to -0.18‰ as the pH decreased. The negative value for Δ60/58Nisolution-solid at low pH indicates the enrichment of heavier isotopes in incorporated Ni relative to dissolved and adsorbed Ni, possibly as a result of the presence of a small amount of tetrahedral Ni2+ in addition to octahedral Ni2+ in the ferrihydrite structure. The results of the ferrihydrite experiments thus reflect equilibrium isotope fractionation between three pools of Ni, with δ60/58Ni values in the order of incorporated > dissolved > adsorbed. Hematite was synthesized by transformation of Ni-bearing ferrihydrite in aqueous solution at ∼100 °C. A significant amount of Ni (up to 60%) was released (desorbed) from solids into solutions as pH dropped from ∼7 to 4.5-5.5 upon phase transformation. Rinsing of the synthesized hematite in 2 M acetic acid released only very small amounts of Ni (<4

  2. A Nd isotopic study of the Hamersley and Michipicoten banded iron formations - The source of REE and Fe in Archean oceans

    NASA Technical Reports Server (NTRS)

    Jacobsen, Stein B.; Pimentel-Klose, Mario R.

    1988-01-01

    A detailed Nd isotopic study of the large and well-dated Hamersley and Michipicoten banded iron formations (BIFs) has been conducted. The Hamersley BIFs (Lake Superior type) are located in the Pilbara craton of Western Australia and the Michipicoten BIFs (Algoma type) are located in the northeastern corner of Lake Superior in Ontario, Canada. Their initial epsilon(Nd) values are variable and in the range of 0 to +4. The Fe/Nd ratio in present-day hydrothermal waters and BIFs are both 100,000, suggesting that the source of much of the Fe in BIFs (and Archean seawater) was hydrothermal water circulating through Archean midocean ridge systems.

  3. Experimental Constraints on Reconstruction of Archean Seawater Ni Isotopic Composition from Banded Iron Formations

    NASA Astrophysics Data System (ADS)

    Wang, S.; Wasylenki, L.

    2016-12-01

    Ni isotope systematics in banded iron formations (BIFs) potentially recorded the Ni isotopic composition of ancient seawater during the Precambrian Eon[1]. The use of BIFs as seawater proxies requires knowing how Ni isotopes fractionated during initial incorporation into iron-rich sediments and during early diagenesis. We conducted experiments to investigate Ni isotope behavior during coprecipitation with ferrihydrite and transformation of ferrihydrite to hematite. Ferrihydrite synthesis at neutral pH demonstrated that dissolved Ni was variably heavier than coprecipitated Ni (Δ60/58Ni = +0.08 to +0.50 ‰), in contrast to the constant offset observed earlier during adsorption to pre-existing ferrihydrite[2]. Experiments at lower pH (<7) yielded negative values of Δ60/58Ni ( -0.18 ‰), suggesting enrichment in heavier isotopes of structurally incorporated Ni relative to dissolved and adsorbed Ni, possibly due to the presence of a small amount of highly fractionated tetrahedral Ni2+ in the ferrihydrite structure. We model our results as equilibrium fractionation among three pools of Ni with systematically varied proportions. We synthesized hematite by transforming Ni-bearing ferrihydrite in aqueous solution at 100 °C and observed significant Ni release from solids (up to 60 %) as pH dropped from 7 to 4.5 - 5.5 during phase transformation. Rinsing hematite with acetic acid released very little Ni (presumably surface-adsorbed) compared to the amounts remaining in solid residues (presumably incorporated). We infer that Δ60/58Ni values (-0.04 to +0.77 ‰) observed in hematite experiments likely reflect Rayleigh fractionation between incorporated and dissolved Ni. The final hematite was slightly lighter than the ferrihydrite had been (by 0.08 ‰), indicating that this phase transformation results in very limited change in Ni isotopic composition, given current analytical uncertainty of ± 0.09 ‰. [1] Wasylenki and Wang (2016) Goldschmidt; [2] Wasylenki et al

  4. In-situ Measurements of Sedimentary Graphites and Sulfides in Early Archean (>3.7 Ga) Banded Iron-Formations from West Greenland: Biological and Atmospheric Influences

    NASA Astrophysics Data System (ADS)

    Mojzsis, S. J.

    2001-05-01

    Stable isotopes of carbon [13C, 12C] and sulfur [32S, 33S, 34S and 36S] are used as tracers for igneous, hydrothermal and biological processes on Earth. Carbon and sulfur are abundant in marine systems and they have been utilized as biomarkers in ancient sediments. Kinetic isotope fractionations between inorganic and bioorganic carbon and sulfur during metabolic cycling results in a marked enrichment of the light isotope in the biological component by several percent. Graphitic inclusions from early Archean banded iron-formations are isotopically light [range δ 13CVPDB = -20 to -50‰ ]; these results are consistent with a biological origin. Bacterial sulfate reduction has been linked to the range of over 150‰ in δ 34S from sulfate and sulfide in the rock record. Mass-dependent sulfur isotope fractionations, commonly expressed as δ 34SCDT values for sulfur-containing minerals, exhibit a small range centered at ~0‰ for terrestrial igneous [0+/-5‰ ] and hydrothermal [0+/-10‰ ] systems. Atmospheric chemical reactions on the low pO2 early Earth are implicated in non-mass-dependent sulfur isotope anomalies [expressed as: Δ 33S=δ 33S-0.520δ 34S] reported from whole-rock analyses of sulfur-containing phases in Precambrian sediments. Only atmospheric processes in planetary environments, and nucleosynthetic, spallation or ion-molecule reactions in the stellar or near-stellar environment, appear capable of producing non-mass-dependent isotope fractionations. To explore how sulfur signatures are preserved in early Archean BIFs new techniques have been developed to obtain precise 32S, 33S and 34S measurements in situ of sulfide grains from sedimentary rocks ranging in age from early Archean [ ~3.83 Ga] to Proterozoic [ ~1.8 Ga]. High-precision simultaneous measurements of multiple sulfur isotopes enable Δ 33S to be evaluated at the sub-grain scale [<30 μm ]. These results may then be compared with previous carbon isotope measurements from the same rocks. How

  5. SIMS analyses of silicon and oxygen isotope ratios for quartz from Archean and Paleoproterozoic banded iron formations

    NASA Astrophysics Data System (ADS)

    Heck, Philipp R.; Huberty, Jason M.; Kita, Noriko T.; Ushikubo, Takayuki; Kozdon, Reinhard; Valley, John W.

    2011-10-01

    Banded iron formations (BIFs) are chemical marine sediments dominantly composed of alternating iron-rich (oxide, carbonate, sulfide) and silicon-rich (chert, jasper) layers. Isotope ratios of iron, carbon, and sulfur in BIF iron-bearing minerals are biosignatures that reflect microbial cycling for these elements in BIFs. While much attention has focused on iron, banded iron formations are equally banded silica formations. Thus, silicon isotope ratios for quartz can provide insight on the sources and cycling of silicon in BIFs. BIFs are banded by definition, and microlaminae, or sub-mm banding, are characteristic of many BIFs. In situ microanalysis including secondary ion mass spectrometry is well-suited for analyzing such small features. In this study we used a CAMECA IMS-1280 ion microprobe to obtain highly accurate (±0.3‰) and spatially resolved (˜10 μm spot size) analyses of silicon and oxygen isotope ratios for quartz from several well known BIFs: Isua, southwest Greenland (˜3.8 Ga); Hamersley Group, Western Australia (˜2.5 Ga); Transvaal Group, South Africa (˜2.5 Ga); and Biwabik Iron Formation, Minnesota, USA (˜1.9 Ga). Values of δ 18O range from +7.9‰ to +27.5‰ and include the highest reported δ 18O values for BIF quartz. Values of δ 30Si have a range of ˜5‰ from -3.7‰ to +1.2‰ and extend to the lowest δ 30Si values for Precambrian cherts. Isua BIF samples are homogeneous in δ 18O to ±0.3‰ at mm- to cm-scale, but are heterogeneous in δ 30Si up to 3‰, similar to the range in δ 30Si found in BIFs that have not experienced high temperature metamorphism (up to 300 °C). Values of δ 30Si for quartz are homogeneous to ±0.3‰ in individual sub-mm laminae, but vary by up to 3‰ between multiple laminae over mm-to-cm of vertical banding. The scale of exchange for Si in quartz in BIFs is thus limited to the size of microlaminae, or less than ˜1 mm. We interpret differences in δ 30Si between microlaminae as preserved from primary

  6. Iron isotopes in an Archean ocean analogue

    NASA Astrophysics Data System (ADS)

    Busigny, Vincent; Planavsky, Noah J.; Jézéquel, Didier; Crowe, Sean; Louvat, Pascale; Moureau, Julien; Viollier, Eric; Lyons, Timothy W.

    2014-05-01

    Iron isotopes have been extensively used to trace the history of microbial metabolisms and the redox evolution of the oceans. Archean sedimentary rocks display greater variability in iron isotope ratios and more markedly negative values than those deposited in the Proterozoic and Phanerozoic. This increased variability has been linked to changes in either water column iron cycling or the extent of benthic microbial iron reduction through time. We tested these contrasting scenarios through a detailed study of anoxic and ferruginous Lac Pavin (France), which can serve as a modern analogue of the Archean ocean. A depth-profile in the water column of Lac Pavin shows a remarkable increase in dissolved Fe concentration (0.1-1200 μM) and δ56Fe values (-2.14‰ to +0.31‰) across the oxic-anoxic boundary to the lake bottom. The largest Fe isotope variability is found at the redox boundary and is related to partial oxidation of dissolved ferrous iron, leaving the residual Fe enriched in light isotopes. The analysis of four sediment cores collected along a lateral profile (one in the oxic layer, one at the redox boundary, one in the anoxic zone, and one at the bottom of the lake) indicates that bulk sediments, porewaters, and reactive Fe mostly have δ56Fe values near 0.0 ± 0.2‰, similar to detrital iron. In contrast, pyrite δ56Fe values in sub-chemocline cores (60, 65, and 92 m) are highly variable and show significant deviations from the detrital iron isotope composition (δ56Fepyrite between -1.51‰ and +0.09‰; average -0.93‰). Importantly, the pyrite δ56Fe values mirror the δ56Fe of dissolved iron at the redox boundary—where near quantitative sulfate and sulfide drawdown occurs—suggesting limited iron isotope fractionation during iron sulfide formation. This finding has important implications for the Archean environment. Specifically, this work suggests that in a ferruginous system, most of the Fe isotope variability observed in sedimentary pyrites can

  7. Micro- and nanobands in late Archean and Palaeoproterozoic banded-iron formations as possible mineral records of annual and diurnal depositions

    NASA Astrophysics Data System (ADS)

    Li, Yi-Liang

    2014-04-01

    The microbands in Precambrian banded-iron formations (BIFs) have been conjectured to record annual or even diurnal depositions. However, these bands have rarely been observed in high resolution at their true (micro) scale. Here, I suggest that nanobands of fine-grained hematite represent possible diurnal depositions and that microbands of chert/jasper represent possible annual depositions in three sets of BIFs: 2460-Myr BIFs from the Kuruman Iron Formation, Transvaal Supergroup of South Africa; 2480-Myr BIFs from the Dales Gorge Member of the Brockman Iron Formation, Western Australia; and 2728-Myr BIFs from the Hunter Mine Group, Abitibi Greenstone Belt, Canada. Observations made using scanning electron microscopy indicate that hematite and chert were syngenetic, and that there was a hiatus between their precipitation and the genesis of the remainder of the minerals containing structural Fe(II). Spindle-like grains of hematite, monocrystals of magnetite, and ferro-dolomite formed microbands of ∼30-70 μm in thickness, which appear cyclically in the matrix of the chert. Neither the band-bound magnetite and dolomite nor the linear formations of the hematite spindles represent annual depositions due to their diagenetic features. The thinnest microbands (∼3-∼12 μm) were observed in the chert and jasper, and indicate depositional rates of 6.6-22.2 m/Myr in the BIFs. These rates are consistent with the integrated deposition rates calculated by geochronologic methods for the BIFs, if annual deposition is assumed. The ∼26-nm nanobands observed only in hematite grains reflect an annual deposition of ∼18.6 μm, or ∼18.6 m/Myr, which is also consistent with the depositional rate calculated by geochronologic methods. It is tentatively suggested that these ∼26-nm nanobands were formed from the diurnal precipitation of Fe(III) resulting from the circadian metabolism of Fe(II)-oxidizing or oxygen-evolving photosynthetic microorganisms, which slowed down the rise

  8. Low Temperature Magnetic Properties of the Late Archean Boolgeeda Iron Formation (Hamersley Group, Western Australia): Environmental Implications

    NASA Astrophysics Data System (ADS)

    Carlut, Julie; Isambert, Aude; Bouquerel, Hélène; Pecoits, Ernesto; Philippot, Pascal; Vennin, Emmanuelle; Ader, Magali; Thomazo, Christophe; Buoncristiani, Jean-François; Baton, Franck; Muller, Elodie; Deldicque, Damien

    2015-05-01

    The origin of the iron oxides in Archean and Paleoproterozoic Banded Iron Formations is still a debated question. We report low and high temperature magnetic properties, susceptibility and saturation magnetization results joined with scanning microscope observations within a 35 meters section of the Late Archean Boolgeeda Iron Formation of the Hamersley Group, Western Australia. With the exception of two volcanoclastic intervals characterized by low susceptibility and magnetization, nearly pure magnetite is identified as the main magnetic carrier in all iron-rich layers including hematite-rich jasper beds. Two populations of magnetically distinct magnetites are reported from a 2 meter-thick interval within the section. Each population shows a specific Verwey transition temperature: one around 120-124 K and the other in the range of 105-110 K. This temperature difference is interpreted to reflect two distinct stoichiometry and likely two episodes of crystallization. The 120-124K transition is attributed to nearly pure stoichiometric magnetite, SEM and microprobe observations suggest that the lower temperature transition is related to chemically impure silician magnetite. Microbial-induced partial substitution of iron by silicon is suggested here. This is supported by an increase in Total Organic Carbon (TOC) in the same interval.

  9. The melting of subducted banded iron formations

    NASA Astrophysics Data System (ADS)

    Kang, Nathan; Schmidt, Max W.

    2017-10-01

    Banded iron formations (BIF) were common shelf and ocean basin sediments 3.5-1.8 Ga ago. To understand the fate of these dense rocks upon subduction, the melting relations of carbonated BIF were determined in Fe-Ca-(Mg)-Si-C-O2 at 950-1400 °C, 6 and 10 GPa, oxidizing (fO2 = hematite-magnetite, HM) and moderately reducing (fO2 ∼CO2-graphite/diamond, CCO) conditions. Solidus temperatures under oxidizing conditions are 950-1025 °C with H2O, and 1050-1150 °C anhydrous, but 250-175 °C higher at graphite saturation (values at 6-10 GPa). The combination of Fe3+ and carbonate leads to a strong melting depression. Solidus curves are steep with 17-20 °C/GPa. Near-solidus melts are ferro-carbonatites with ∼22 wt.% FeOtot, ∼48 wt% CO2 and 1-5 wt.% SiO2 at fO2 ∼ HM and ∼49 wt.% FeOtot, ∼20 wt% CO2 and 19-25 wt.% SiO2 at fO2 ∼ CCO . At elevated subduction geotherms, as likely for the Archean, C-bearing BIF could melt out all carbonate around 6 GPa. Fe-rich carbonatites would rise but stagnate gravitationally near the slab/mantle interface until they react with the mantle through Fe-Mg exchange and partial reduction. The latter would precipitate diamond and yield Fe- and C-rich mantle domains, yet, Fe-Mg is expected to diffusively re-equilibrate over Ga time scales. We propose that the oldest subduction derived diamonds stem from BIF derived melts.

  10. Nd isotopic variations in Precambrian banded iron formations

    NASA Technical Reports Server (NTRS)

    Jacobsen, Stein B.; Pimentel-Klose, Mario R.

    1988-01-01

    The isotopic composition of Nd is reported for eight banded iron formations (BIFs) ranging in age from 0.65 to 3.4 Ga. The data suggest a trend of increasingly positive epsilon(Nd) values with age which is interpreted to reflect isotopic variations in Precambrian seawater. The Urucum (0.65 Ga) and the Gunflint (1.9 Ga) BIFs yield negative epsilon(Nd) values between -6 and 0. The remaining BIFs, with ages of 1.84 to 3.4 Ga, have predominantly positive values between -1 and +4. The Nd isotopic signature of BIFs changes from a principally continental source to a dominantly depleted mantle source from the present into the Archean.

  11. Nd isotopic variations in Precambrian banded iron formations

    NASA Technical Reports Server (NTRS)

    Jacobsen, Stein B.; Pimentel-Klose, Mario R.

    1988-01-01

    The isotopic composition of Nd is reported for eight banded iron formations (BIFs) ranging in age from 0.65 to 3.4 Ga. The data suggest a trend of increasingly positive epsilon(Nd) values with age which is interpreted to reflect isotopic variations in Precambrian seawater. The Urucum (0.65 Ga) and the Gunflint (1.9 Ga) BIFs yield negative epsilon(Nd) values between -6 and 0. The remaining BIFs, with ages of 1.84 to 3.4 Ga, have predominantly positive values between -1 and +4. The Nd isotopic signature of BIFs changes from a principally continental source to a dominantly depleted mantle source from the present into the Archean.

  12. Silicon isotope fractionation during microbial reduction of Fe(III)-Si gels under Archean seawater conditions and implications for iron formation genesis

    NASA Astrophysics Data System (ADS)

    Reddy, Thiruchelvi R.; Zheng, Xin-Yuan; Roden, Eric E.; Beard, Brian L.; Johnson, Clark M.

    2016-10-01

    Microbial dissimilatory iron reduction (DIR) is a deeply rooted metabolism in the Bacteria and Archaea. In the Archean and Proterozoic, the most likely electron acceptor for DIR in marine environments was Fe(III)-Si gels. It has been recently suggested that the Fe and Si cycles were coupled through sorption of aqueous Si to iron oxides/hydroxides, and through release of Si during DIR. Evidence for the close association of the Fe and Si cycles comes from banded iron formations (BIFs), which consist of alternating bands of Fe-bearing minerals and quartz (chert). Although there has been extensive study of the stable Fe isotope fractionations produced by DIR of Fe(III)-Si gels, as well as studies of stable Fe isotope fractionations in analogous abiologic systems, no studies to date have investigated stable Si isotope fractionations produced by DIR. In this study, the stable Si isotope fractionations produced by microbial reduction of Fe(III)-Si gels were investigated in simulated artificial Archean seawater (AAS), using the marine iron-reducing bacterium Desulfuromonas acetoxidans. Microbial reduction produced very large 30Si/28Si isotope fractionations between the solid and aqueous phase at ∼23 °C, where Δ30Sisolid-aqueous isotope fractionations of -3.35 ± 0.16‰ and -3.46 ± 0.09‰ were produced in two replicate experiments at 32% Fe(III) reduction (solid-phase Fe(II)/FeTotal = 0.32). This isotopic fractionation was substantially greater than that observed in two abiologic controls that had solid-phase Fe(II)/FeTotal = 0.02-0.03, which produced Δ30Sisolid-aqueous isotope fractionations of -2.83 ± 0.24‰ and -2.65 ± 0.28‰. In a companion study, the equilibrium Δ30Sisolid-aqueous isotope fractionation was determined to be -2.3‰ for solid-phase Fe(II)/FeTotal = 0. Collectively, these results highlight the importance of Fe(II) in Fe-Si gels in producing large changes in Si isotope fractionations. These results suggest that DIR should produce highly

  13. Flow banding in basaltic pillow lavas from the Early Archean Hooggenoeg Formation, Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Robins, Brian; Sandstå, Nils Rune; Furnes, Harald; de Wit, Maarten

    2010-07-01

    Well-preserved pillow lavas in the uppermost part of the Early Archean volcanic sequence of the Hooggenoeg Formation in the Barberton Greenstone Belt exhibit pronounced flow banding. The banding is defined by mm to several cm thick alternations of pale green and a dark green, conspicuously variolitic variety of aphyric metabasalt. Concentrations of relatively immobile TiO2, Al2O3 and Cr in both varieties of lava are basaltic. Compositional differences between bands and variations in the lavas in general have been modified by alteration, but indicate mingling of two different basalts, one richer in TiO2, Al2O3, MgO, FeOt and probably Ni and Cr than the other, as the cause of the banding. The occurrence in certain pillows of blebs of dark metabasalt enclosed in pale green metabasalt, as well as cores of faintly banded or massive dark metabasalt, suggest that breakup into drops and slugs in the feeder channel to the lava flow initiated mingling. The inhomogeneous mixture was subsequently stretched and folded together during laminar shear flow through tubular pillows, while diffusion between bands led to partial homogenisation. The most common internal pattern defined by the flow banding in pillows is concentric. In some pillows the banding defines curious mushroom-like structures, commonly cored by dark, variolitic metabasalt, which we interpret as the result of secondary lateral flow due to counter-rotating, transverse (Dean) vortices induced by the axial flow of lava towards the flow front through bends, generally downward, in the tubular pillows. Other pillows exhibit weakly-banded or massive, dark, variolitic cores that are continuous with wedge-shaped apophyses and veins that intrude the flow banded carapace. These cores represent the flow of hotter and less viscous slugs of the dark lava type into cooled and stiffened pillows.

  14. Iron isotopes in ancient and modern komatiites: Evidence in support of an oxidised mantle from Archean to present

    NASA Astrophysics Data System (ADS)

    Hibbert, K. E. J.; Williams, H. M.; Kerr, A. C.; Puchtel, I. S.

    2012-03-01

    The mantle of the modern Earth is relatively oxidised compared to the initially reducing conditions inferred for core formation. The timing of the oxidation of the mantle is not conclusively resolved but has important implications for the timing of the development of the hydrosphere and atmosphere. In order to examine the timing of this oxidation event, we present iron isotope data from three exceptionally well preserved komatiite localities, Belingwe (2.7 Ga), Vetreny (2.4 Ga) and Gorgona (0.089 Ga). Measurements of Fe isotope compositions of whole-rock samples are complemented by the analysis of olivine, spinel and pyroxene separates. Bulk-rock and olivine Fe isotope compositions (δ57Fe) define clear linear correlations with indicators of magmatic differentiation (Mg#, Cr#). The mean Fe isotope compositions of the 2.7-2.4 Ga and 0.089 Ga samples are statistically distinct and this difference can be explained by greater extent of partial melting represented by the older samples and higher mantle ambient temperatures in the Archean and early Proterozoic relative to the present day. Significantly, samples of all ages define continuous positive linear correlations between bulk rock δ57Fe and V/Sc and δ57Fe and V, and between V/Sc and V with TiO2, providing evidence for the incompatible behaviour of V (relative to Sc) and of isotopically heavy Fe. Partial melting models calculated using partition coefficients for V at oxygen fugacities (fO2s) of 0 and + 1 relative to the fayalite-magnetite-quartz buffer (FMQ) best match the data arrays, which are defined by all samples, from late Archean to Tertiary. These data, therefore, provide evidence for komatiite generation under moderately oxidising conditions since the late Archean, and argue against a change in mantle fO2 concomitant with atmospheric oxygenation at ~ 2.4 Ga.

  15. Biologically recycled continental iron is a major component in banded iron formations

    PubMed Central

    Li, Weiqiang; Beard, Brian L.; Johnson, Clark M.

    2015-01-01

    Banded iron formations (BIFs) record a time of extensive Fe deposition in the Precambrian oceans, but the sources and pathways for metals in BIFs remain controversial. Here, we present Fe- and Nd-isotope data that indicate two sources of Fe for the large BIF units deposited 2.5 billion y ago. High-εNd and -δ56Fe signatures in some BIF samples record a hydrothermal component, but correlated decreases in εNd- and δ56Fe values reflect contributions from a continental component. The continental Fe source is best explained by Fe mobilization on the continental margin by microbial dissimilatory iron reduction (DIR) and confirms for the first time, to our knowledge, a microbially driven Fe shuttle for the largest BIFs on Earth. Detailed sampling at various scales shows that the proportions of hydrothermal and continental Fe sources were invariant over periods of 100–103 y, indicating that there was no seasonal control, although Fe sources varied on longer timescales of 105–106 y, suggesting a control by marine basin circulation. These results show that Fe sources and pathways for BIFs reflect the interplay between abiologic (hydrothermal) and biologic processes, where the latter reflects DIR that operated on a basin-wide scale in the Archean. PMID:26109570

  16. Biologically recycled continental iron is a major component in banded iron formations.

    PubMed

    Li, Weiqiang; Beard, Brian L; Johnson, Clark M

    2015-07-07

    Banded iron formations (BIFs) record a time of extensive Fe deposition in the Precambrian oceans, but the sources and pathways for metals in BIFs remain controversial. Here, we present Fe- and Nd-isotope data that indicate two sources of Fe for the large BIF units deposited 2.5 billion y ago. High-εNd and -δ(56)Fe signatures in some BIF samples record a hydrothermal component, but correlated decreases in εNd- and δ(56)Fe values reflect contributions from a continental component. The continental Fe source is best explained by Fe mobilization on the continental margin by microbial dissimilatory iron reduction (DIR) and confirms for the first time, to our knowledge, a microbially driven Fe shuttle for the largest BIFs on Earth. Detailed sampling at various scales shows that the proportions of hydrothermal and continental Fe sources were invariant over periods of 10(0)-10(3) y, indicating that there was no seasonal control, although Fe sources varied on longer timescales of 10(5)-10(6) y, suggesting a control by marine basin circulation. These results show that Fe sources and pathways for BIFs reflect the interplay between abiologic (hydrothermal) and biologic processes, where the latter reflects DIR that operated on a basin-wide scale in the Archean.

  17. Band Iron Formations and Satellite Magnetic Anomalies

    NASA Astrophysics Data System (ADS)

    Nazarova, K. A.; Wasilewski, P.

    2005-05-01

    Band Iron Formations (BIF) are mainly Precambrian (2.5-1.8 Ga) sedimentary deposits and are composed of alternating layers of iron rich material and silica (chert). Precambrian BIF mark growth in the level of free oxygen in the atmosphere and the ocean which happened about 2.2 Ga. Distribution of main BIF includes Hamersley Range, Australia; Transvaal-Griquatown, South Africa; Minas Gerais, Brazil; Labrador Trough, Canada, and Kursk-Krivoi Rog (Russia). Together these five very large BIF deposits constitute about 90 percent of Earth's total estimated BIF (5.76*10 14 ). On each continent these ancient rocks usually metamorphosed and crystallized include what are variously described as hematite-quartzites, banded iron formations, banded jaspers or calico-rocks. West African, Hudson Bay and Western Australian Satellite Magnetic Anomalies coincide with distribution BIF deposits. The Kursk Satellite Magnetic Anomaly (KMA) (about 22 nT at the altitude=400km, centered at 51o N, 37o E) also was identified by ground and aeromagnetic observations and is recognized as one of the largest magnetic anomaly on the Earth. Magnetic modeling shows that immense Precambrian iron ore deposits (iron bands) of Voronezh uplift are the main source of KMA. Magnetic properties of 10000 BIF samples outcropped in the KMA area have been measured and analyzed (Krutikhovskaya et al., 1964) Rockmag BIF dataset is presented at: http://core2.gsfc.nasa.gov/MPDB/datasets.html. Mean NRM value is about 42 A/M, Qn about 1.4. Demagnetization tests suggest that hard and stable NRM component is caused by hematite occurring in BIF in different forms and grain sizes. Hematite deposits discovered on Mars in western equatorial area with layered topography of Aram Chaos and Sinus Meridiani could be of hydrothermal origin and may be formed similar to hematite precipitated in BIF on Earth.

  18. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state.

    PubMed

    Rouxel, Olivier J; Bekker, Andrey; Edwards, Katrina J

    2005-02-18

    The response of the ocean redox state to the rise of atmospheric oxygen about 2.3 billion years ago (Ga) is a matter of controversy. Here we provide iron isotope evidence that the change in the ocean iron cycle occurred at the same time as the change in the atmospheric redox state. Variable and negative iron isotope values in pyrites older than about 2.3 Ga suggest that an iron-rich global ocean was strongly affected by the deposition of iron oxides. Between 2.3 and 1.8 Ga, positive iron isotope values of pyrite likely reflect an increase in the precipitation of iron sulfides relative to iron oxides in a redox stratified ocean.

  19. Nonlinear Dynamics of Banded Iron Formation Precipitation

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Xu, H.; Merino, E.

    2010-12-01

    Banded iron formations (BIFs) carry important information on the early evolution of the Earth. The actual mechanisms for their formation remain controversial. We have shown that the passage from predominant occurrence of BIFs in the Archaean-Early Proterozoic to their absence thereafter may have reflected compositional changes in the oceanic crust. Fe-Si-rich geologic fluids can be generated only from Al-poor oceanic crust through hydrothermal leaching by seawater. Al enrichment in the oceanic crust after ~ 1.7 Ga ago tends to prevent BIF formation. We have further shown that periodic precipitation of iron and silica minerals in alternating bands can be induced by positive feedbacks among relevant chemical reactions as a Fe-Si-rich hydrothermal fluid mixes with ambient seawater. Complexation of dissolved Fe(II) with silicic acid plays a crucial role in the self-organized process. Small-scale (< 1 cm) BIF bandings are thus attributed to the internal dynamics of the chemical system, rather than to an outside force such as surface temperature variations. In this presentation, we provide a detailed stability analysis of the model we developed to clarify the physical and chemical conditions for oscillatory precipitation of BIFs.

  20. Suboxic diagenesis in banded iron formations

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.

    1984-01-01

    Anomalous isotopic composition has been reported for the carbon in carbonate minerals of banded iron formations. Well studied examples show an enrichment in the light isotope of carbon, C-12. This enrichment presumably reflects unusual circumstances in the deposition of these sedimentary rocks. It is suggested here that the isotopically light carbonate results from early diagenetic oxidation by bacteria of substantial amounts of isotopically light organic carbon. The electron acceptor that permits oxidation in the absence of free oxygen is presumed to be Fe(III), which may have been significantly more abundant in the initial chemical precipitate than in the postdiagenetic sedimentary rock.

  1. Contrasting behavior of oxygen and iron isotopes in banded iron formation revealed by in situ analysis

    NASA Astrophysics Data System (ADS)

    Beard, B.; Li, W.; Kita, N.; Valley, J. W.; Johnson, C.

    2012-12-01

    Banded iron formations (BIFs) record a period of dramatic secular change in Earth's geologic history, when abundant aqueous Fe(II) was removed from Archean and Proterozoic oceans by oxidation. BIFs are characterized by co-existing of quartz and iron minerals, including oxides and carbonates, and alternating iron-rich and iron-poor layers range from m to Iron Formation, Hamersley Group, Western Australia. Oxygen isotope ratios were measured by Secondary Ion Mass Spectrometry (SIMS), and Fe isotope ratios were measured by femtosecond Laser ablation Multi-Collector ICP-MS (fs-LA-MC-ICP-MS), with spatial resolutions of 15 mm (O) and 30-50 mm (Fe), and external precisions (2s) of +0.7 ‰ for δ18O and +0.2 ‰ for δ56Fe, respectively. Analysis of δ18O in iron oxides by SIMS employed special tuning with a 3kV primary beam to minimize orientation effects (Huberty et al. 2010 ). For hematite, δ18O values range from -7.1 ‰ to -0.6 ‰, with the majority of data clustering around -4.5 ‰, and δ56Fe values range from -0.50 ‰ to +1.53‰. Magnetite has a δ18O range of -5.6 ‰ to +5.6 ‰ and a δ56Fe range of -0.76 ‰ to +1.33 ‰. Notably, magnetite shows significant O isotope heterogeneity at a mineral grain scale, and the highest δ18O values were commonly measured from Si-rich (1-3 wt% SiO2) magnetite overgrowths or magnetite grains that have a recrystallization texture. In contrast, lowest δ18O values were measured from magnetite that contains less than 1 wt% SiO2. Individual magnetite grains can have up to 6 ‰ variation in δ18O values between low-Si core and Si-rich overgrowth. Iron

  2. High-grade iron ore at Windarling, Yilgarn Craton: a product of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy

    NASA Astrophysics Data System (ADS)

    Angerer, Thomas; Hagemann, Steffen G.; Danyushevsky, Leonid

    2013-08-01

    Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda-Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite-martite-goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in `least-altered' hematite-magnetite-metachert-BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe-Ca-Mg-Ni-Co-P-REE metasomatism that produced local Ni-REE-rich Fe-dolomite-magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle-ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni-Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite-hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)-Fe-dolomite-quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides

  3. Comment on "Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state".

    PubMed

    Yamaguchi, Kosei E; Ohmoto, Hiroshi

    2006-01-13

    Rouxel et al. (Reports, 18 February 2005, p. 1088) argued that changes in the iron isotopic composition of sedimentary sulfides reflect changes in the oxidation state of the atmosphere-ocean system between 2.3 and 1.8 million years ago. We show that misinterpretations of the origins of these minerals undermine their conclusions.

  4. Leaching of silica bands and concentration of magnetite in Archean BIF by hypogene fluids: Beebyn Fe ore deposit, Yilgarn Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Duuring, Paul; Hagemann, Steffen

    2013-03-01

    The ~2,752-Ma Weld Range greenstone belt in the Yilgarn Craton of Western Australia hosts several Fe ore deposits that provide insights into the role of early hypogene fluids in the formation of high-grade (>55 wt% Fe) magnetite-rich ore in banded iron formation (BIF). The 1.5-km-long Beebyn orebody comprises a series of steeply dipping, discontinuous, <50-m-thick lenses of magnetite-(martite)-rich ore zones in BIF that extend from surface to vertical depths of at least 250 m. The ore zones are enveloped by a 3-km-long, 150-m-wide outer halo of hypogene siderite and ferroan dolomite in BIF and mafic igneous country rocks. Ferroan chlorite characterises 20-m-wide proximal alteration zones in mafic country rocks. The magnetite-rich Beebyn orebody is primarily the product of hypogene fluids that circulated through reverse shear zones during the formation of an Archean isoclinal fold-and-thrust belt. Two discrete stages of hypogene fluid flow caused the pseudomorphic replacement of silica-rich bands in BIF by Stage 1 siderite and magnetite and later by Stage 2 ferroan dolomite. The resulting carbonate-altered BIF is markedly depleted in SiO2 and enriched in CaO, MgO, LOI, P2O5 and Fe2O3(total) compared with the least-altered BIF. Subsequent reactivation of these shear zones and circulation of hypogene fluids resulted in the leaching of existing hypogene carbonate minerals and the concentration of residual magnetite-rich bands. These Stage 3 magnetite-rich ore zones are depleted in SiO2 and enriched in K2O, CaO, MgO, P2O5 and Fe2O3(total) relative to the least-altered BIF. Proximal wall rock hypogene alteration zones in mafic igneous country rocks (up to 20 m from the BIF contact) are depleted in SiO2, CaO, Na2O, and K2O and are enriched in Fe2O3(total), MgO and P2O5 compared with distal zones. Recent supergene alteration affects all rocks within about 100 m below the present surface, disturbing hypogene mineral and the geochemical zonation patterns associated with

  5. Fossilized iron bacteria reveal a pathway to the biological origin of banded iron formation.

    PubMed

    Chi Fru, Ernest; Ivarsson, Magnus; Kilias, Stephanos P; Bengtson, Stefan; Belivanova, Veneta; Marone, Federica; Fortin, Danielle; Broman, Curt; Stampanoni, Marco

    2013-01-01

    Debates on the formation of banded iron formations in ancient ferruginous oceans are dominated by a dichotomy between abiotic and biotic iron cycling. This is fuelled by difficulties in unravelling the exact processes involved in their formation. Here we provide fossil environmental evidence for anoxygenic photoferrotrophic deposition of analogue banded iron rocks in shallow marine waters associated with an Early Quaternary hydrothermal vent field on Milos Island, Greece. Trace metal, major and rare earth elemental compositions suggest that the deposited rocks closely resemble banded iron formations of Precambrian origin. Well-preserved microbial fossils in combination with chemical data imply that band formation was linked to periodic massive encrustation of anoxygenic phototrophic biofilms by iron oxyhydroxide alternating with abiotic silica precipitation. The data implicate cyclic anoxygenic photoferrotrophy and their fossilization mechanisms in the construction of microskeletal fabrics that result in the formation of characteristic banded iron formation bands of varying silica and iron oxide ratios.

  6. Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland.

    PubMed

    Dauphas, Nicolas; van Zuilen, Mark; Wadhwa, Meenakshi; Davis, Andrew M; Marty, Bernard; Janney, Philip E

    2004-12-17

    Archean rocks may provide a record of early Earth environments. However, such rocks have often been metamorphosed by high pressure and temperature, which can overprint the signatures of their original formation. Here, we show that the early Archean banded rocks from Isua, Akilia, and Innersuartuut, Greenland, are enriched in heavy iron isotopes by 0.1 to 0.5 per mil per atomic mass unit relative to igneous rocks worldwide. The observed enrichments are compatible with the transport, oxidation, and subsequent precipitation of ferrous iron emanating from hydrothermal vents and thus suggest that the original rocks were banded iron formations (BIFs). These variations therefore support a sedimentary origin for the Akilia banded rocks, which represent one of the oldest known occurrences of water-laid deposits on Earth.

  7. Phosphogenesis in the 2460 and 2728 million-year-old banded iron formations as evidence for biological cycling of phosphate in the early biosphere.

    PubMed

    Li, Yi-Liang; Sun, Si; Chan, Lung S

    2012-01-01

    The banded iron formation deposited during the first 2 billion years of Earth's history holds the key to understanding the interplay between the geosphere and the early biosphere at large geological timescales. The earliest ore-scale phosphorite depositions formed almost at ∼2.0-2.2 billion years ago bear evidence for the earliest bloom of aerobic life. The cycling of nutrient phosphorus and how it constrained primary productivity in the anaerobic world of Archean-Palaeoproterozoic eons are still open questions. The controversy centers about whether the precipitation of ultrafine ferric oxyhydroxide due to the microbial Fe(II) oxidation in oceans earlier than 1.9 billion years substantially sequestrated phosphate, and whether this process significantly limited the primary productivity of the early biosphere. In this study, we report apatite radial flowers of a few micrometers in the 2728 million-year-old Abitibi banded iron formation and the 2460 million-year-old Kuruman banded iron formation and their similarities to those in the 535 million-year-old Lower Cambrian phosphorite. The lithology of the 535 Million-year-old phosphorite as a biosignature bears abundant biomarkers that reveal the possible similar biogeochemical cycling of phosphorus in the Later Archean and Palaeoproterozoic oceans. These apatite radial flowers represent the primary precipitation of phosphate derived from the phytoplankton blooms in the euphotic zones of Neoarchean and Palaoeproterozoic oceans. The unbiased distributions of the apatite radial flowers within sub-millimeter bands do not support the idea of an Archean Crisis of Phosphate. This is the first report of the microbial mediated mineralization of phosphorus before the Great Oxidation Event when the whole biosphere was still dominated by anaerobic microorganisms.

  8. Availability of free oxygen in deep bottom water of some Archean-Early Paleoproterozoic ocean basins as derived from iron formation facies analyses

    NASA Astrophysics Data System (ADS)

    Beukes, N. J.; Smith, A.

    2013-12-01

    Archean to Early Paleoproterozoic ocean basins are commonly, although not exclusively, depicted as rather static systems; either permanently stratified with shallow mixed oxygenated water overlying anoxic deep water or with a totally anoxic water column. The anoxic water columns are considered enriched in dissolved ferrous iron derived from hydrothermal plume activity. These sourced deposition of iron formations through precipitation of mainly ferrihydrite via reaction with free oxygen in the stratified model or anaerobic iron oxidizing photoautotrophs in the anoxic model. However, both these models face a simple basic problem if detailed facies reconstructions of deepwater microbanded iron formations (MIFs) are considered. In such MIFs it is common that the deepest water and most distal facies is hematite rich followed shoreward by magnetite, iron silicate and siderite facies iron formation. Examples of such facies relations are known from jaspilitic iron formation of the ~3,2 Ga Fig Tree Group (Barberton Mountainland), ~ 2,95 Ga iron formations of the Witwatersrand-Mozaan basin and the ~2,5 Ga Kuruman Iron Formation, Transvaal Supergroup, South Africa. Facies relations of these MIFs with associated siliciclastics or carbonates also indicate that the upper water columns of the basins, down to below wave base, were depleted in iron favoring anoxic-oxic stratification rather than total anoxia. In the MIFs it can be shown that hematite in the distal facies represents the earliest formed diagenetic mineral; most likely crystallized from primary ferrihydrite. The problem is one of how ferrihydrite could have been preserved on the ocean floor if it was in direct contact with reducing ferrous deep bottom water. Rather dissolved ferrous iron would have reacted with ferrihydrite to form diagenetic magnetite. This dilemma is resolved if in the area of deepwater hematite MIF deposition, the anoxic ferrous iron enriched plume was detached from the basin floor due to buoyancy

  9. Ni Isotope Signatures in Banded Iron Formations Before, During, and After the Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Wasylenki, L.; Wang, S.

    2016-12-01

    We have measured the Ni isotope compositions of banded iron formations (BIF) in an effort to test the hypothesis of Konhauser et al. that a decrease in supply of Ni to the Late Archean oceans may have triggered a decline in methanogen productivity [1,2]. These microorganisms are critically dependent on Ni, and their decline may have triggered a drop in atmospheric CH4 that allowed the first sustained rise of free O2 in the atmosphere at 2.4 Ga. While simultaneously considering other processes that may have controlled the Ni isotope composition of Precambrian seawater, and in turn the BIF, we are looking for a shift in δ60/58Ni over time that correlates with the decrease in BIF Ni/Fe ratios documented previously [1,2] and that possibly reflects a dramatic change in methanogen Ni status over that same time interval (2.7-2.4 Ga). Our preliminary results indicate that the ocean's Ni isotope composition has varied considerably over geologic time. Using results from an accompanying experimental study of Ni fractionation during incorporation into ferric oxyhydroxides/oxides, we can reconstruct the Ni isotope compositions of seawater from which BIF precipitated. We observe that Precambrian seawater was generally considerably enriched in light isotopes of Ni relative to modern seawater. So far we observe the widest range of δ60/58Ni values in those BIF samples aged 2.7-2.4 Ga, implying significant changes in the controls on δ60/58Ni in the Late Archean Eon and possibly much greater sensitivity of the biogeochemical cycle of Ni to perturbations in Ni sources, such as oxidative weathering of sulfides, input/output fluxes, or biological uptake. [1] Konhauser et al. (2009) Nature 458,750; [2] Konhauser et al. (2015) Astrobiology 15,804.

  10. An Episode of Late Archean Euxinia and Enhanced Continental Weathering Revealed by Iron Speciation in the Mt. McRae Shale

    NASA Astrophysics Data System (ADS)

    Reinhard, C. T.; Raiswell, R.; Anbar, A.; Lyons, T.

    2008-12-01

    Recent high-resolution chemostratigraphy for sediments of the late Archean Hamersley Basin has revealed an episode of pronounced enrichment of the redox-sensitive elements molybdenum and rhenium, a primary sedimentary feature that has been accurately dated to 2501.1 ± 8.2 Ma. These enrichments are not easily explained through postdepositional addition or syndepositional hydrothermal input to the ocean and have thus been interpreted to reflect mild oxidative weathering 50-100 million years prior to the significant increase in Earth's atmospheric oxygen level referred to as the "Great Oxidation Event." To further explore this feature of the late Archean record, we have generated complementary high-resolution iron speciation data for the Mt. McRae Shale and the underlying Mt. Sylvia Formation. Using a calibrated sequential extraction, biogeochemically reactive iron phases were separated into Fecarb (siderite or dolomite-ankerite), FeOx (reducible iron oxides such as goethite or hematite), Femag (magnetite), and FePY (pyrite). Values for FeOx are uniformly low for the entire Mt. McRae Shale, indicating water column and pore fluid conditions that were reducing with respect to iron. The observation of FePY concentrations of 0.4-1.5 wt% in the lower Mt. McRae Shale suggests significant sulfide production by microbial sulfate reduction, but values of FePY/FeHR averaging ~0.3 for this unit indicate reactive iron in excess of dissolved sulfide. This reactive iron may have been repartitioned in situ by dissimilatory iron reduction, as reducible iron oxide concentrations are low ([FeOx] ~ 0.1- 0.2 wt%), but may also have been externally sourced by hydrothermal fluids. As a result of this reactive iron excess, variations in FeHR within the lower Mt. McRae Shale are governed primarily by differences in Fecarb, suggesting conditions that were anoxic but non-sulfidic. Values for FePY/FeHR in the upper Mt. McRae Shale generally exceed 0.8, and for many samples are ~1.0, indicating

  11. Fe and Si isotopic composition of banded iron formation determined by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Steinhöfel, G.; Horn, I.; v. Blanckenburg, F.; Chmeleff, J.

    2006-12-01

    The investigation of stable Fe and Si isotopes in banded iron formations (BIFs) can refine our understanding of the Precambrian Fe and Si cycle in the ancient ocean. BIFs are the product of initial precipitation from seawater and subsequent depositional, diagenetic and metamorphic processes. In order to study these processes we have determined Fe isotopes ratios in Fe-oxides and Si isotopes ratios in cherts from two BIFs of different ages and composition. The development of a UV-femtosecond laser ablation system coupled to a MC-ICP-MS provides us now with a tool to determine δ^{56}Fe and δ^{30}Si values in situ at a spatial resolution of 30μm and less with a precision of 0.1‰. The formation of BIFs involves redox reactions, dissolution and subsequent precipitation of Fe resulting in the fractionation of Fe isotopes. The hematite-chert BIF of the Proterozoic Transvaal Supergroup shows a maximal range in δ^{56}Fe from -1.17 to -0.27‰ for hematite in a single microband within the same stratigraphical level. A similar range is observed in several sequenced microbands while the average Fe isotopic composition remains surprisingly constant with δ^{56}Fe being -0.41±0.13‰ (2σ). The carbonate-magnetite-chert BIF of the Archean Shurugwi Greenstone exhibits a similar heterogeneity in the Fe isotopic composition for magnetite in single magnetite-rich bands showing a variation of up to 0.40‰ in δ^{56}Fe while the average of the bands is again uniform with δ^{56}Fe being +0.73±0.10‰ (2σ). The observed isotopic inhomogeneities are in part the result of isotopic zonation of the individually analysed magnetite crystals. The small-scale variability in the Fe isotope composition suggests relocation of Fe during diagenesis and metamorphism associated with recrystallization and crystal growth. This process took place locally and varied in both intensity and reaction rate at a sub- millimetre scale. However, the overall process and the Fe sources remained steady

  12. Hafnium and iron isotopes in early Archean komatiites record a plume-driven convection cycle in the Hadean Earth

    NASA Astrophysics Data System (ADS)

    Nebel, Oliver; Campbell, Ian H.; Sossi, Paolo A.; Van Kranendonk, Martin J.

    2014-07-01

    Archean (>2.5 billion years) komatiites are considered expressions of mantle plumes that originate from and thereby sample the lowermost mantle overlying the Earth's core. Some komatiites have reported Hf isotope signatures that require a mantle source with a time-integrated Lu/Hf that is appreciably higher than average modern depleted mantle. The systematic study of the time and locus of parent-daughter fractionation of the mantle sources of these komatiites potentially constrains differentiation processes in the early Earth, and subsequent distribution and storage of early mantle reservoirs. We present radiogenic Hf and stable Fe isotopes for a series of komatiites from the Pilbara craton in Western Australia (aged 3.5 to 2.9 Ga). After careful evaluation of the effects of alteration, we find that pristine samples are characterised by a light Fe isotope mantle source and initial 176Hf/177Hf well above the age-corrected depleted mantle. Taken together these observations require a component of an old, melt-depleted reservoir in their mantle source. The Hf isotope signature of this component appears to be complementary to the first terrestrial crust, as preserved in Hadean (i.e., >4 Ga) detrital zircon cores, suggesting a causal relationship and a Hadean age for this depletion event. We propose that this Early Refractory Reservoir (ERR) is the residue formed by deep melting in hot Hadean mantle plumes, which then accumulated at the base of the first crust. Parts of this primordial lithosphere were destabilised and sank to the core-mantle boundary in cold drips and subsequently returned in hot mantle plumes, whose thermal capacity allows melting of such refractory mantle with its archetype isotope signature. The cycling of this material via cold drips and hot plumes suggests a plume-dominated convection prior to ∼3.9 Ga, which is then replaced by Archean-style plate tectonics.

  13. Isotopic, petrologic and biogeochemical investigations of banded iron-formations

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Kaufman, A. J.; Klein, C.; Studley, S. A.; Baur, M. E.; Walter, M. R.

    1986-01-01

    It is recognized that the first occurrence of banded iron-formations (BIFs) clearly predates biological oxygenation of the atmosphere-hydrosphere system and that their last occurrences extend beyond plausible dates of pervasive biological oxygenation. For this reason, and because enormous quantities of oxidizing power have been sequestered in them, it is widely thought that these massive, but enigmatic, sediments must encode information about the mechanism and timing of the rise of atmospheric O2. By coupling isotopic analyses of iron-formation carbonates with biogeochemical and petrologic investigations, we are studying (1) the mechanism of initial sedimentation of iron; (2) the role of iron in microbially mediated diagenetic processes in fresh iron-formation sediments; and (3) the logical integration of mechanisms of deposition with observed levels of banding. Thus far, it has been shown that (1) carbonates in BIFs of the Hamersley Group of Western Australia are isotopically inhomogenous; (2) the nature and pattern of isotopic ordering is not consistent with a metamorphic origin for the overall depletion of C-13 observed in the carbonates; (3) if biological, the origin of the C-13 depleted carbonate could be either respiratory or fermentative; (4) iron may have been precipitate d as Fe(3+), then reduced to Fe(2+) within the sediment; and (5) sedimentary biogeochemical systems may have been at least partially closed to mass transport of carbonate species.

  14. Isotopic, petrologic and biogeochemical investigations of banded iron-formations

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Kaufman, A. J.; Klein, C.; Studley, S. A.; Baur, M. E.; Walter, M. R.

    1986-01-01

    It is recognized that the first occurrence of banded iron-formations (BIFs) clearly predates biological oxygenation of the atmosphere-hydrosphere system and that their last occurrences extend beyond plausible dates of pervasive biological oxygenation. For this reason, and because enormous quantities of oxidizing power have been sequestered in them, it is widely thought that these massive, but enigmatic, sediments must encode information about the mechanism and timing of the rise of atmospheric O2. By coupling isotopic analyses of iron-formation carbonates with biogeochemical and petrologic investigations, we are studying (1) the mechanism of initial sedimentation of iron; (2) the role of iron in microbially mediated diagenetic processes in fresh iron-formation sediments; and (3) the logical integration of mechanisms of deposition with observed levels of banding. Thus far, it has been shown that (1) carbonates in BIFs of the Hamersley Group of Western Australia are isotopically inhomogenous; (2) the nature and pattern of isotopic ordering is not consistent with a metamorphic origin for the overall depletion of C-13 observed in the carbonates; (3) if biological, the origin of the C-13 depleted carbonate could be either respiratory or fermentative; (4) iron may have been precipitate d as Fe(3+), then reduced to Fe(2+) within the sediment; and (5) sedimentary biogeochemical systems may have been at least partially closed to mass transport of carbonate species.

  15. Presumably bacterial remains in banded iron formations: beginning of investigations

    NASA Astrophysics Data System (ADS)

    Astafieva, M.

    2014-04-01

    Ancient Archaean and Protherozoic rocks are the model objects for investigation of rocks comprising astromaterials. Judging by their age these terrestrial rocks are the nearest to the rocks of meteorites. They are represented as a rule by deeply metamorphized layers of volcanogenic and volcanogenic-sedimentary rocks and bacterial-paleontological investigations of these rocks usually meet some difficulties. But paleontological studies of these rocks usually meet some difficulties. One of these difficulties is usual high metamorphization of rocks. That is why investigation of Archaean banded iron formations is of great importance. Banded iron formations are known everywhere. The oldest banded iron formations are met in Archaean. Their widest distribution was in Proterozoic. They are constituent part of metamorphic complexes of all ancient shields. Formation of these units ended in Phanerozoic. Peculiarity of their development in time, thin layering, rhythmyc repetitiveness are reasons of great interest to these formations. Banded iron formations are sedimentary rocks. Interbedding of ferrigenous (magnetite, hematite, siderite etc.) interlayers and siliceous layers are typical to these formations. Stratificatification is thin, thickness of interlayers is less than 1-2 mm. Iron content exceeds 15%. Potentially all minerals of ferrigenous interlayers could be of biogenic nature because both for oxygenized (hematite) and reduced (magnetite and siderite) minerals direct mechanism of bacterial production is established by microbiologists. Basic ore mineral of banded iron formations is magnetite. But magnetite origin is not clear till nowadays and this problem is very actual [2]. Nevertheless bacterial remains by themselves have not been found and it is not surprising. It is proved that finely dispersed non-completely formed magnetite compose basic mass of magnetite formed for example by thermophylic iron-reducing bacteria. Processes of structure arrangement and crystal

  16. Geology and geochemistry of the Macheng Algoma-type banded iron-formation, North China Craton: Constraints on mineralization events and genesis of high-grade iron ores

    NASA Astrophysics Data System (ADS)

    Wu, Huaying; Niu, Xianglong; Zhang, Lianchang; Pirajno, Franco; Luo, Huabao; Qin, Feng; Cui, Minli; Wang, Changle; Qi, Min

    2015-12-01

    The Macheng iron deposit is located in the eastern Hebei province of the North China Craton (NCC). It is hosted in Neoarchean metamorphic rocks of Baimiaozi formation in the Dantazi Group, consisting of biotite-leptynite, plagioclase-gneiss, plagioclase-amphibolite, migmatite, migmatitic granite and quartz schist. Geochemical analyses of the host biotite leptynite and plagioclase amphibolites show that their protoliths are both volcanics, inferred to be trachytic basalt and basaltic andesite, respectively. Based on the geochemical signature of the host rocks, together with geology of the iron deposit, it is inferred that the Macheng BIF is an Algoma-type iron exhalative formation, formed in an arc-related basin in the Neoarchean. Post-Archean Australian Shale (PAAS)-normalized rare earth elements (REEs) plus yttrium (Y) concentrations of different BIF ores with gneissic, striated and banded structure in the Macheng deposit, show similar patterns with depletions in light rare earth elements (LREEs) and middle rare earth elements (MREEs) relative to heavy rare earth elements (HREEs) and with apparently positive La, Y and Eu anomalies. Y/Ho ratios of the gneissic, striated and banded BIF ores vary from 37 to 56. These geochemical features of the BIF ores reveal their affinity with the sea water and the presence of a high-temperature hydrothermal component, indicating that both the seawater and high temperature hydrothermal fluids derived from alteration of oceanic basalts and komatiites may contribute to formation of the Macheng BIF. Geological, mineralogical and geochemical studies of the Macheng deposit recognized two kinds of high-grade iron ores. One is massive oxidized high-grade ore (Fe2O3T = 74.37-86.20 wt.%), mainly consisting of hematite with some magnetite, which shows geochemical characteristics of the gneissic, striated and banded BIF ores. The other type is magnetite high-grade ore, also massive and consisting of magnetite, with distinct characteristics

  17. Reconciling atmospheric temperatures in the early Archean

    NASA Astrophysics Data System (ADS)

    Pope, E. C.; Rosing, M.; Bird, D. K.; Albarede, F.

    2012-12-01

    Average surface temperatures of Earth in the Archean remain unresolved despite decades of diverse approaches to the problem. As in the present, early Earth climates were complex systems dependent on many variables. With few constraints on such variables, climate models must be relatively simplistic, and consider only one or two factors that drive Archean climate (e.g. a fainter young sun, a low albedo, the extent and effect of cloud cover, or the presence and abundance of a wide array of greenhouse and icehouse gasses). Compounded on the limitations of modeling is the sparse and often ambiguous Archean rock record. The goal of this study is to compile and reconcile Archean geologic and geochemical features that are in some way controlled by surface temperature and/or atmospheric composition, so that at the very least paleoclimate models can be checked by physical limits. Data used to this end include the oxygen isotope record of chemical sediments and ancient ocean crust, chemical equilibria amongst primary phases in banded iron formations (BIFs), sedimentary features indicative of temperate or glacial environments, and paleosol indicators of atmospheric CO2. Further, we explore the extent to which hydrogen isotopes contribute to the geologic record as a signal for glaciations, continental growth and atmospheric methane levels. Oceanic serpentinites and subduction-related volcanic and hydrothermal environments obtain their hydrogen isotope signature from seawater, and thus may be used to calculate secular variation in δDSEAWATER which may fluctuate significantly due to hydrogen escape, continental growth and large-scale glaciation events. Further, ancient records of low-δD meteoric fluids signal both cooler temperatures and the emergence of large continents (increasing the effects of continental weathering on climate). Selective alteration of δD in Isua rocks to values of -130 to -100‰ post-dates ca. 3.55Ga Ameralik dikes, but may be associated with a poorly

  18. Phosphogenesis in the 2460 and 2728 million-year-old banded iron formations as evidence for biological cycling of phosphate in the early biosphere

    PubMed Central

    Li, Yi-Liang; Sun, Si; Chan, Lung S

    2013-01-01

    The banded iron formation deposited during the first 2 billion years of Earth's history holds the key to understanding the interplay between the geosphere and the early biosphere at large geological timescales. The earliest ore-scale phosphorite depositions formed almost at ∼2.0–2.2 billion years ago bear evidence for the earliest bloom of aerobic life. The cycling of nutrient phosphorus and how it constrained primary productivity in the anaerobic world of Archean–Palaeoproterozoic eons are still open questions. The controversy centers about whether the precipitation of ultrafine ferric oxyhydroxide due to the microbial Fe(II) oxidation in oceans earlier than 1.9 billion years substantially sequestrated phosphate, and whether this process significantly limited the primary productivity of the early biosphere. In this study, we report apatite radial flowers of a few micrometers in the 2728 million-year-old Abitibi banded iron formation and the 2460 million-year-old Kuruman banded iron formation and their similarities to those in the 535 million-year-old Lower Cambrian phosphorite. The lithology of the 535 Million-year-old phosphorite as a biosignature bears abundant biomarkers that reveal the possible similar biogeochemical cycling of phosphorus in the Later Archean and Palaeoproterozoic oceans. These apatite radial flowers represent the primary precipitation of phosphate derived from the phytoplankton blooms in the euphotic zones of Neoarchean and Palaoeproterozoic oceans. The unbiased distributions of the apatite radial flowers within sub-millimeter bands do not support the idea of an Archean Crisis of Phosphate. This is the first report of the microbial mediated mineralization of phosphorus before the Great Oxidation Event when the whole biosphere was still dominated by anaerobic microorganisms. PMID:23404127

  19. Partition coefficients for iron between plagioclase and basalt as a function of oxygen fugacity - Implications for Archean and lunar anorthosites

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.

    1992-01-01

    As a prelude to determinations of the content of total iron as FeO(T) in melts in equilibrium with calcic anorthosites, the partition coefficients (Ds) for FeO(T) between calcic plagioclase and basaltic melt were determined, as a function of oxygen fugacity (f(O2)), for a basaltic composition that occurs as matrices for plagioclase megacrysts. Results showed that, at the liquidus conditions, the value of D for FeO(T) between calcic plagioclase and tholeiitic basalt changed little (from 0.030 to 0.044) between the very low f(O2) of the iron-wustite buffer and that of the quartz-fayalite-magnetite (QFM) buffer. At fugacities above QFM, the value for D increased rapidly to 0.14 at the magnetite-hematite buffer and to 0.33 in air. The increase in D results from the fact that, at f(O2) below QFM, nearly all of the Fe is in the Fe(2+) state; above QFM, the Fe(3+)/Fe(2+) ratio in the melt increases rapidly, causing more Fe to enter the plagioclase which accepts Fe(3+) more readily than Fe(2+).

  20. Partition coefficients for iron between plagioclase and basalt as a function of oxygen fugacity - Implications for Archean and lunar anorthosites

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.

    1992-01-01

    As a prelude to determinations of the content of total iron as FeO(T) in melts in equilibrium with calcic anorthosites, the partition coefficients (Ds) for FeO(T) between calcic plagioclase and basaltic melt were determined, as a function of oxygen fugacity (f(O2)), for a basaltic composition that occurs as matrices for plagioclase megacrysts. Results showed that, at the liquidus conditions, the value of D for FeO(T) between calcic plagioclase and tholeiitic basalt changed little (from 0.030 to 0.044) between the very low f(O2) of the iron-wustite buffer and that of the quartz-fayalite-magnetite (QFM) buffer. At fugacities above QFM, the value for D increased rapidly to 0.14 at the magnetite-hematite buffer and to 0.33 in air. The increase in D results from the fact that, at f(O2) below QFM, nearly all of the Fe is in the Fe(2+) state; above QFM, the Fe(3+)/Fe(2+) ratio in the melt increases rapidly, causing more Fe to enter the plagioclase which accepts Fe(3+) more readily than Fe(2+).

  1. Ultrafast band-gap oscillations in iron pyrite

    SciTech Connect

    Kolb, B; Kolpak, AM

    2013-12-20

    With its combination of favorable band gap, high absorption coefficient, material abundance, and low cost, iron pyrite, FeS2, has received a great deal of attention over the past decades as a promising material for photovoltaic applications such as solar cells and photoelectrochemical cells. Devices made from pyrite, however, exhibit open circuit voltages significantly lower than predicted, and despite a recent resurgence of interest in the material, there currently exists no widely accepted explanation for this disappointing behavior. In this paper, we show that phonons, which have been largely overlooked in previous efforts, may play a significant role. Using fully self-consistent GW calculations, we demonstrate that a phonon mode related to the oscillation of the sulfur-sulfur bond distance in the pyrite structure is strongly coupled to the energy of the conduction-band minimum, leading to an ultrafast (approximate to 100 fs) oscillation in the band gap. Depending on the coherency of the phonons, we predict that this effect can cause changes of up to +/- 0.3 eV relative to the accepted FeS2 band gap at room temperature. Harnessing this effect via temperature or irradiation with infrared light could open up numerous possibilities for novel devices such as ultrafast switches and adaptive solar absorbers.

  2. Ultrafast band-gap oscillations in iron pyrite

    NASA Astrophysics Data System (ADS)

    Kolb, Brian; Kolpak, Alexie M.

    2013-12-01

    With its combination of favorable band gap, high absorption coefficient, material abundance, and low cost, iron pyrite, FeS2, has received a great deal of attention over the past decades as a promising material for photovoltaic applications such as solar cells and photoelectrochemical cells. Devices made from pyrite, however, exhibit open circuit voltages significantly lower than predicted, and despite a recent resurgence of interest in the material, there currently exists no widely accepted explanation for this disappointing behavior. In this paper, we show that phonons, which have been largely overlooked in previous efforts, may play a significant role. Using fully self-consistent GW calculations, we demonstrate that a phonon mode related to the oscillation of the sulfur-sulfur bond distance in the pyrite structure is strongly coupled to the energy of the conduction-band minimum, leading to an ultrafast (≈100 fs) oscillation in the band gap. Depending on the coherency of the phonons, we predict that this effect can cause changes of up to ±0.3 eV relative to the accepted FeS2 band gap at room temperature. Harnessing this effect via temperature or irradiation with infrared light could open up numerous possibilities for novel devices such as ultrafast switches and adaptive solar absorbers.

  3. Mineral ecophysiological evidence for microbial activity in banded iron formation

    SciTech Connect

    Li, Dr. Yi-Liang; Konhauser, Dr, Kurt; Cole, David R; Phelps, Tommy Joe

    2011-01-01

    The phosphorus composition of banded-iron formations (BIFs) has been used as a proxy for Precambrian seawater composition and the paleoeredox state of Earth's surface environment. However, it is unclear whether the phosphorus in BIFs originally entered the sediment as a sorbed component of the iron oxyhydroxide particles, or whether it was incorporated into the biomass of marine phytoplankton. We conducted high-resolution mineral analyses and report here the first detection of an Fe(III) acetate salt, as well as nanocrystals of apatite in association with magnetite, in the 2.48 Ga Dales Gorge Member of the Brockman Iron Formation (a BIF), Hamersley, Western Australia. The clusters of apatite are similar in size and morphology to biogenic apatite crystals resulting from biomass decay in Phanerozoic marine sediments, while the formation of an Fe(III) acetate salt and magnetite not only implies the original presence of biomass in the BIF sediments, but also that organic carbon likely served as an electron donor during bacterial Fe(III) reduction. This study is important because it suggests that phytoplankton may have played a key role in the transfer of phosphorus (and other trace elements) from the photic zone to the seafloor.

  4. Identification of an Archean marine oxygen oasis

    SciTech Connect

    Riding, Dr Robert E; Fralick, Dr Philip; Liang, Liyuan

    2014-01-01

    The early Earth was essentially anoxic. A number of indicators suggest the presence of oxygenic photosynthesis 2700 3000 million years (Ma) ago, but direct evidence for molecular oxygen (O2) in seawater has remained elusive. Here we report rare earth element (REE) analyses of 2800 million year old shallowmarine limestones and deep-water iron-rich sediments at Steep Rock Lake, Canada. These show that the seawater from which extensive shallow-water limestones precipitated was oxygenated, whereas the adjacent deeper waters where iron-rich sediments formed were not. We propose that oxygen promoted limestone precipitation by oxidative removal of dissolved ferrous iron species, Fe(II), to insoluble Fe(III) oxyhydroxide, and estimate that at least 10.25 M oxygen concentration in seawater was required to accomplish this at Steep Rock. This agrees with the hypothesis that an ample supply of dissolved Fe(II) in Archean oceans would have hindered limestone formation. There is no direct evidence for the oxygen source at Steep Rock, but organic carbon isotope values and diverse stromatolites in the limestones suggest the presence of cyanobacteria. Our findings support the view that during the Archean significant oxygen levels first developed in protected nutrient-rich shallow marine habitats. They indicate that these environments were spatially restricted, transient, and promoted limestone precipitation. If Archean marine limestones in general reflect localized oxygenic removal of dissolved iron at the margins of otherwise anoxic iron-rich seas, then early oxygen oases are less elusive than has been assumed.

  5. Petrogenesis and Fluid inclusions of the Band-e Narges skarn iron ore, Central Iran

    NASA Astrophysics Data System (ADS)

    Nazari, Maliheh; Lotfi, Mohammad; Omran, Neematollah R. N.

    2015-04-01

    The Band Narges iron deposit is located approximately 205km NE of Isfhan and is a small area in the NE of Urumieh- Dokhtar Magmatic Arc, Iran. The skarn hosted in a Cretaceous limestone, intruded by granite and granodiorite. The calcic skarn has experienced two stages of metamorphism: 1) prograde stage, which include endoskarn and exoskarnfacies with clinopyroxene, garnet, scapolite and albite mineralization, and 2) retrograde stage which produced actinolite, epidote, chlorite and apatite assemblage through retrograde alteration. The ore minerals in Band-e Nargesskarn are magnetite, with minor chalcopyrite, pyrrhotite and pyrite. Gange minerals are predominantly diopside, andradite, epidote, chlorite, quartz and calcite. Micro-thermometric measurements yield a homogenization temperature range for skarn alteration of 414 to 448°C, with a salinity of 11 to 13.186 wt.%NaCl equivalent. Fluid inclusions in calcite associated with mineralization generally consist of a vapor bubble and a liquid phase with a rare occurrence of three-phase inclusions. Homogenization temperatures for two phase inclusions vary from 168 °C to 203 °C with a salinity of 0.5 to 2 wt% NaCl equivalent. Homogenization of three phase inclusions was observed between 162 °C to 278 °C with salinity of 4 to 23 wt.%NaCl equivalent. The high-temperature and high-salinity of fluids indicate magmatic nature of the trapped fluids within progradeskarn mineral assemblages in contrast the fluids with lower temprature and lower salinity displaying a possible meteoric source within the retrograde skarn assemblages. Therefore moderate temperature and high-salinity fluids could infer to possible isothermal mixing between the fluids. Key word:Skarn,Band-e Narges,fluid inclusion

  6. Identification of biologically recycled continental materials in banded iron formations

    NASA Astrophysics Data System (ADS)

    Li, W.; Beard, B. L.; Johnson, C.

    2015-12-01

    The controversy on the origin of banded iron formations (BIFs) has lasted for many decades. Studies prior to the 1970s suggested that Fe in BIFs was supplied from continental riverine inputs[1], but discovery of midocean ridge hydrothermal systems in the 1970s and identification of positive Eu anomaly in BIF samples led to an alternative model where hydrothermal vents provided Fe in BIFs[2]. Although the latter model has became widely accepted, it should be noted that interpretations of Fe sources for BIFs using the abundance and isotopic composition of rare earth elements (REEs) are based on an assumption that transport and deposition of REEs and Fe were coupled. We address the question of Fe sources and pathways for BIFs by combining stable Fe isotopes with radiogenic Nd isotopes as well as REE measurements to test proposals that Fe in BIFs was hydrothermally sourced. The samples investigated are from a type section of the Dales Gorge member of the 2.5 Ga Brockman Iron Formation, the world's most extensive Superior-type BIF that represents the climax of BIF deposition in the geologic record. Large variations were observed in both Fe and Nd isotope compositions of the BIF samples, and there is a positive correlation between the bulk rock ɛNd and δ56Fe values. In addition, there is a negative corelation between ɛNd and Sm/Nd ratios. In order to explain the observed correlations in those isotopic and elemental data, a two-component model, where mixing between a high ɛNd, low Sm/Nd hydrothermal endmember and a low ɛNd, low δ56Fe, but high Sm/Nd continental endmember occurred prior to deposition of the BIF, is required. The low-δ56Fe, high-Sm/Nd endmember is best explained by microbial dissimilatory iron reduction (DIR) in the coastal sediments, which fractionated Fe isotopes and REEs and released these components back to water column that were ultimately precipitated in BIFs. The range and distribution of ɛNdvalues in the BIF samples suggest that the amount

  7. Dismembered Archean ophiolite in the SE. Wind River Mountains, Wyoming

    SciTech Connect

    Harper, G.D.

    1985-01-01

    Ophiolitic rocks occur as wall rocks of the 2.7 Ga Louis Lake batholith near Atlantic City, Wyoming. All of the Archean rocks are strongly deformed and metamorphosed to a greenschist and amphibolite facies, but relict structures and textures are commonly preserved. These include the following, from west to east: (1) metadiabase with rare coarse-grained metagabbro; (2) ultramafic rocks and metagabbro; (3) amphibolite, locally pillowed, overlain(.) by pelitic schist, banded iron formation, and quartzite; and (4) pillow lavas, massive sills or flows, and minor metasedimentary rocks. Slice 1 locally contains parallel dike margins and rare metagabbro screens; these features suggest that it may represent a sheeted dike complex. Slice 2 locally contains ultramafic rocks having relict cumulus textures and igneous layering, corresponding to the cumulus portion of an ophiolite. The pillow lavas of slice 4 and possibly slice 3 are interpreted as comprising the extrusive portion of the ophiolite. The immobile trace element chemistry (Ti, V, Zr, Y, Cr, Ni) of slice 1 and 4 is very similar and supports a cogenetic origin, whereas pillow lavas of slice 3 are somewhat distinct. The metadiabases and lavas of slices 1 and 4 are similar to modern mid-ocean ridge basalt, whereas lavas of slice 3 are more similar to island-arc tholeiites. Rare high-Ti basaltic komatiites occur in slices 1 and 4, but have very distinct trace element chemistry and probably represent later off-axis dikes. The ophiolitic rocks are interpreted to represent the remains of Archean oceanic crust.

  8. Magnetic Properties through the Archean/Paleoproterozoic Transition from the Pilbara Craton, Western Australia: Bio-environmental Implications

    NASA Astrophysics Data System (ADS)

    Isambert, A.; Carlut, J. H.; Bouquerel, H.; Pecoits, E.; Philippot, P.; Vennin, E.; Ader, M.; Thomazo, C.; Buoncristiani, J. F.; Baton, F.; Le Huen, A. L.; Muller, E.; Deldicque, D.; Sforna, M. C.

    2015-12-01

    The origin of iron oxides in Archean and Paleoproterozoic Banded Iron Formations is still a matter of debate. We report here low and high temperature magnetic properties, susceptibility and saturation magnetization results coupled with scanning microscope, transmission electron microscopy, Raman observations and microprobe analyses along a 60 meters section, which encompasses the uppermost Archean Boolgeeda Iron Formation and its transition into the lower Paleoproterozoic Kungarra Formation in the Pilbara Craton, Western Australia. With the exception of two volcanoclastic intervals characterized by low susceptibility and magnetization, nearly pure magnetite is identified as the main magnetic carrier in all iron-rich layers including hematite-bearing jasper beds. The relative magnetic contribution of magnetite and hematite throughout the section is evidenced by IRM acquisition curves. We observed a sharp decrease in magnetization at the Archean-Proterozoic transition and a general trend in the Verwey temperature. Two populations of magnetically distinct magnetites are reported from a 2 meter-thick interval lying within the late Archean section of the core. Each population shows a specific Verwey transition temperature: one around 120-124K and the other in the range of 105-110K. The two Verwey transitions are interpreted to reflect two distinct stoichiometry and likely two stages of magnetite crystallization. The 120-124K transition is attributed to nearly pure stoichiometric magnetite, whereas SEM, TEM and microprobe observations suggest that the lower temperature transition is related to chemically impure silician magnetite. Microbial-induced partial substitution of iron by silicon is suggested here. This is supported by an increase in Total Organic Carbon (TOC) in the same interval and Raman spectroscopy data showing a close association of organic carbon with magnetite.

  9. High-Precision Fe Isotope Measurements of the 3.7-3.8 Ga Isua Banded Iron Formation

    NASA Astrophysics Data System (ADS)

    Herrick, M. J.; Johnson, C. M.; Beard, B. L.; Klein, C.; Dymek, R. F.; Moorbath, S.

    2006-12-01

    Banded Iron Formations (BIFs) from the 3.7-3.8 Ga Isua supracrustal belt bear on the iron cycle during the Archean. High-precision Fe-isotope measurements (±0.06 ‰ 2σ external) of individual magnetite layers and co-existing magnetite-Fe silicate pairs document fine-scale heterogeneity and constrain the effects of high-grade metamorphism. The Fe isotope compositions of whole rock samples of a wide range in chemical composition were also determined. Magnetite δ56Fe values range from +0.4‰ to +1.1‰ among different bands, but within individual layers magnetite is homogenous. The positive δ56Fe values are well explained through partial oxidation of Fe2+-rich ocean water, and this may occur through abiologic fractionation, UV-photo-oxidation, or anoxygenic photosynthetic bacteria. Bulk rock δ56Fe-SiO2 variations are negatively correlated, whereas δ56Fe-total Fe2O3 variations are positively correlated, reflecting variations in the Fe-bearing assemblages. High SiO2, low total Fe2O3 samples have high modal ratios of Fe silicate to magnetite. Based on the sequence of diagenetic and early metamorphic Fe silicates during BIF genesis, we interpret the δ56Fe values of the Fe silicate-rich samples to lie close to that of the original Fe2+-rich pore waters, which is estimated to have had δ56Fe~0. For samples that contain magnetite and Fe silicates, measured inter-mineral fractionations of ~0.7‰ are interpreted to reflect isotopic exchange during metamorphism. Although metamorphic effects in the Isua rocks have yet to be fully understood, comparison of the Fe isotope data from Isua BIFs with those from the 2.5 Ga BIFs from the Hamersley basin and Transvaal cratons suggests a striking difference in Fe sources and pathways, where the significantly lower δ56Fe values in the 2.5 Ga BIFs may indicate a role for bacteria. The absence of low δ56Fe values in the Isua BIFs may indicate formation before bacterial iron reduction developed on Earth.

  10. Teleseismic investigation of the upper mantle beneath the Archean Slave craton, Northwest Canada, and of the Moho beneath Canadian broad-band stations

    NASA Astrophysics Data System (ADS)

    Bank, Carl-Georg

    In this thesis I apply various algorithmic techniques to teleseismic data with a twofold objective: to investigate upper mantle structure beneath the Archean Slave craton to gain an understanding of early craton formation and kimberlite genesis, and to characterize elastic properties, including anisotropy, at Moho levels beneath Canadian seismic stations. The Archean Slave craton is the site of the oldest known rocks on Earth and of numerous diamondiferous kimberlites. The Yellowknife seismic array and 13 temporary stations recorded teleseisms between November 1996 and May 1998. P-wave travel-time tomography reveals the oldest part of the craton, the Central Slave Basement Complex, to be underlain by the fastest seismic velocities. Receiver function analysis requires only the Moho as a major S-wave velocity discontinuity and points to a fairly constant crustal thickness throughout the craton. SKS splitting analysis shows little variation in results across the array, supporting present-day plate motion as the primary cause for mantle fabric beneath the area. Furthermore, the Mackenzie plume seems to not have had any seismologically detectable effect on the Slave lithosphere. I speculate on a genetic link between a low seismic velocity anomaly at depth with the overlying Lac de Gras kimberlite field. To characterize elastic properties at Moho levels beneath Canadian broadband stations I use the Moho P-to-S converted phase in the P-coda, and linearized scattering theory combined with singular value decomposition. I first identify those parameter combinations to which idealized teleseismic data sets are most sensitive. Five independent parameter combinations are potentially resolvable, one of which is sensitive to isotropy whereas the remainder quantify different harmonic orders (1theta and 2theta) of back-azimuthal response. I then use these parameter combinations to compare Moho anisotropy at 25 sites. The isotropic component dominates at all stations and corresponds

  11. Oxidative Weathering and Euxinia in the Late Archean (Invited)

    NASA Astrophysics Data System (ADS)

    Reinhard, C.; Raiswell, R.; Scott, C.; Anbar, A. D.; Lyons, T. W.

    2009-12-01

    A large body of evidence points to a sharp rise in the concentration of atmospheric oxygen during the Paleoproterozoic between 2.45 and 2.32 billion years ago (Ga), but the history of deep ocean oxygenation is less well known. The deposition of banded iron formation (BIF) during the Archean and early Proterozoic (~3.8 - 1.8 Ga) has been taken to imply that deep ocean water masses were anoxic and rich in dissolved ferrous iron (Fe2+) derived from high temperature weathering of seafloor basalt under low oceanic sulfate (SO42-) concentrations. Reducing and iron-rich (ferruginous) deep ocean conditions are thought to have persisted for most of Earth’s early history, although a notable lack of BIF between 2.4 - 2.0 Ga has rendered deep ocean chemistry during this period obscure. In any case, the cessation of BIF deposition at ~1.8 Ga is generally linked to the oxygenation of the atmosphere through the eventual removal of Fe2+ from the ocean either as ferric (hydr)oxides or as pyrite in euxinic (anoxic and sulfidic) basins. A corollary of the latter model is that oxidative delivery of sulfate to the ocean was not sufficient to remove reactive iron, via microbial sulfide production, before ~1.8 Ga. However, recent studies of the late Archean Mt. McRae Formation suggest that oxidative sulfur cycling may have preceded the Paleoproterozoic rise in atmospheric oxygen and that conditions sufficient to authigenically enrich molybdenum (Mo) in marine sediments existed at ~2.5 Ga. On the modern Earth, significant enrichment of Mo into sediments occurs following the conversion of soluble molybdate (MoO42-) to particle-reactive thiomolybdates (MoO4-xSx2-) in stable sulfidic environments, indicating that the Mo enrichments seen in the Mt. McRae shale may have resulted from the accumulation of free sulfide in the water column. Here, we present iron speciation data for the late Archean Mt. McRae Shale that provide evidence for a euxinic water column at ~2.5 Ga. Sulfur isotope data

  12. The formation of magnetite in the early Archean oceans

    NASA Astrophysics Data System (ADS)

    Li, Yi-Liang; Konhauser, Kurt O.; Zhai, Mingguo

    2017-05-01

    Banded iron formations (BIFs) are iron- and silica-rich chemical sedimentary rocks that were deposited throughout much of the Precambrian. The biological oxidation of dissolved Fe(II) led to the precipitation of a ferric oxyhydroxide phase, such as ferrihydrite, in the marine photic zone. Upon burial, ferrihydrite was either transformed into hematite through dehydration or it was reduced to magnetite via biological or abiological Fe(III) reduction coupled to the oxidation of buried microbial biomass. However, it has always been intriguing as to why the oldest BIFs are characteristically magnetite-rich, while BIFs formed after the Neoarchean are dominated by hematite. Here, we propose that some magnetite in early Archean BIF could have precipitated directly from seawater through the reaction of settling ferrihydrite and hot, Fe(II)-rich hydrothermal fluids that existed in the deeper waters. We conducted experiments that showed the reaction of Fe(II) with biogenic ferric iron mats under strict anoxic conditions lead to the formation of a metastable green rust phase that within hours transformed into magnetite. Our model further posits that with the progressive cooling and oxidation of the Earth's oceans, the above reaction shuts off, and magnetite was subsequently restricted to reactions associated with diagenesis and metamorphism.

  13. The Archean Dongwanzi ophiolite complex, North China craton: 2.505-billion-year-old oceanic crust and mantle.

    PubMed

    Kusky, T M; Li, J H; Tucker, R D

    2001-05-11

    We report a thick, laterally extensive 2505 +/- 2.2-million-year-old (uranium-lead ratio in zircon) Archean ophiolite complex in the North China craton. Basal harzburgite tectonite is overlain by cumulate ultramafic rocks, a mafic-ultramafic transition zone of interlayered gabbro and ultramafic cumulates, compositionally layered olivine-gabbro and pyroxenite, and isotropic gabbro. A sheeted dike complex is rooted in the gabbro and overlain by a mixed dike-pillow lava section, chert, and banded iron formation. The documentation of a complete Archean ophiolite implies that mechanisms of oceanic crustal accretion similar to those of today were in operation by 2.5 billion years ago at divergent plate margins and that the temperature of the early mantle was not extremely elevated, as compared to the present-day temperature. Plate tectonic processes similar to those of the present must also have emplaced the ophiolite in a convergent margin setting.

  14. Mineralogy and geochemistry of banded iron formation and iron ores from eastern India with implications on their genesis

    NASA Astrophysics Data System (ADS)

    Roy, Subrata; Venkatesh, A. S.

    2009-12-01

    The geological complexities of banded iron formation (BIF) and associated iron ores of Jilling-Langalata iron ore deposits, Singhbhum-North Orissa Craton, belonging to Iron Ore Group (IOG) eastern India have been studied in detail along with the geochemical evaluation of different iron ores. The geochemical and mineralogical characterization suggests that the massive, hard laminated, soft laminated ore and blue dust had a genetic lineage from BIFs aided with certain input from hydrothermal activity. The PAAS normalized REE pattern of Jilling BIF striking positive Eu anomaly, resembling those of modern hydrothermal solutions from mid-oceanic ridge (MOR). Major part of the iron could have been added to the bottom sea water by hydrothermal solutions derived from hydrothermally active anoxic marine environments. The ubiquitous presence of intercalated tuffaceous shales indicates the volcanic signature in BIF. Mineralogical studies reveal that magnetite was the principal iron oxide mineral, whose depositional history is preserved in BHJ, where it remains in the form of martite and the platy hematite is mainly the product of martite. The different types of iron ores are intricately related with the BHJ. Removal of silica from BIF and successive precipitation of iron by hydrothermal fluids of possible meteoric origin resulted in the formation of martite-goethite ore. The hard laminated ore has been formed in the second phase of supergene processes, where the deep burial upgrades the hydrous iron oxides to hematite. The massive ore is syngenetic in origin with BHJ. Soft laminated ores and biscuity ores were formed where further precipitation of iron was partial or absent.

  15. Microbes: mini iron factories.

    PubMed

    Joshi, Kumar Batuk

    2014-12-01

    Microbes have flourished in extreme habitats since beginning of the Earth and have played an important role in geological processes like weathering, mineralization, diagenesis, mineral formation and destruction. Biotic mineralization is one of the most fascinating examples of how microbes have been influencing geological processes. Iron oxidizing and reducing bacteria are capable of precipitating wide varieties of iron oxides (magnetite), carbonates (siderite) and sulphides (greigite) via controlled or induced mineralization processes. Microbes have also been considered to play an important role in the history of evolution of sedimentary rocks on Earth from the formation of banded iron formations during the Archean to modern biotic bog iron and ochre deposits. Here, we discuss the role that microbes have been playing in precipitation of iron and the role and importance of interdisciplinary studies in the field of geology and biology in solving some of the major geological mysteries.

  16. The Archean Nickel Famine Revisited.

    PubMed

    Konhauser, Kurt O; Robbins, Leslie J; Pecoits, Ernesto; Peacock, Caroline; Kappler, Andreas; Lalonde, Stefan V

    2015-10-01

    Iron formations (IF) preserve a history of Precambrian oceanic elemental abundance that can be exploited to examine nutrient limitations on early biological productivity. However, in order for IF to be employed as paleomarine proxies, lumped-process distribution coefficients for the element of interest must be experimentally determined or assumed. This necessitates consideration of bulk ocean chemistry and which authigenic ferric iron minerals controlled the sorption reactions. It also requires an assessment of metal mobilization reactions that might have occurred in the water column during particle descent and during post-depositional burial. Here, we summarize recent developments pertaining to the interpretation and fidelity of the IF record in reconstructions of oceanic trace element evolution. Using an updated compilation, we reexamine and validate temporal trends previously reported for the nickel content in IF (see Konhauser et al., 2009 ). Finally, we reevaluate the consequences of methanogen Ni starvation in the context of evolving views of the Archean ocean-climate system and how the Ni famine may have ultimately facilitated the rise in atmospheric oxygen.

  17. Magnetic Lifshitz transition and its consequences in multi-band iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Ptok, Andrzej; Kapcia, Konrad J.; Cichy, Agnieszka; Oleś, Andrzej M.; Piekarz, Przemysław

    2017-02-01

    In this paper we address Lifshitz transition induced by applied external magnetic field in a case of iron-based superconductors, in which a difference between the Fermi level and the edges of the bands is relatively small. We introduce and investigate a two-band model with intra-band pairing in the relevant parameters regime to address a generic behaviour of a system with hole-like and electron-like bands in external magnetic field. Our results show that two Lifshitz transitions can develop in analysed systems and the first one occurs in the superconducting phase and takes place at approximately constant magnetic field. The chosen sets of the model parameters can describe characteristic band structure of iron-based superconductors and thus the obtained results can explain the experimental observations in FeSe and Co-doped BaFe2As2 compounds.

  18. Magnetic Lifshitz transition and its consequences in multi-band iron-based superconductors

    PubMed Central

    Ptok, Andrzej; Kapcia, Konrad J.; Cichy, Agnieszka; Oleś, Andrzej M.; Piekarz, Przemysław

    2017-01-01

    In this paper we address Lifshitz transition induced by applied external magnetic field in a case of iron-based superconductors, in which a difference between the Fermi level and the edges of the bands is relatively small. We introduce and investigate a two-band model with intra-band pairing in the relevant parameters regime to address a generic behaviour of a system with hole-like and electron-like bands in external magnetic field. Our results show that two Lifshitz transitions can develop in analysed systems and the first one occurs in the superconducting phase and takes place at approximately constant magnetic field. The chosen sets of the model parameters can describe characteristic band structure of iron-based superconductors and thus the obtained results can explain the experimental observations in FeSe and Co-doped BaFe2As2 compounds. PMID:28165043

  19. The Archean kerogen paradox

    NASA Astrophysics Data System (ADS)

    Ohmoto, H.

    2012-12-01

    The constituents of organic matter buried in sediments (kerogen) are classified into three types: (1) liable components that may be decomposed by aerobic and anaerobic microbes during the early diagenesis of sediments, and by thermal decomposition during the burial at ~3-5 km depths (T = 100 ~150°C) to generate bitumen (oil); (2) refractory components that may decompose into gaseous components at greater depths (T = 150-230°C); and (iii) inert components that may be converted to graphite during high temperature metamorphism. Laboratory experiments and field observations indicate that matured kerogen (i.e., refractory and inert components) is decomposed during the weathering under an oxygenated atmosphere by reaction C + O2 → CO2, promoted by aerobic organisms. This has resulted in the general absence of old detrital kerogen (except debris of vascular plants) in Phanerozoic-aged sedimentary rocks. In contrast, matured kerogen would not be decomposed during the weathering under a reducing atmosphere, because the reactions C + 2H2 → CH4, C + 2H2O → CO2 + 2H2 and 2C + 2H2O → CO2 + CH4 would not proceed at low temperatures even with the aid of anaerobic organisms. If such reactions could occur at low temperatures, sedimentary rocks, regardless of their age, would have lost all their kerogen before being buried to depths ~3 km. If the Archean atmosphere had been reducing, as postulated by the dominant paradigm of the early Earth, detrital kerogen should be ubiquitously present in Archean-aged sedimentary rocks. We should also find general increasing trends in both the ratio of detrital/syngenetic kerogens and the total amount of reduced C (syngenetic and detrital kerogens) in sedimentary rocks from ~3.8 Ga to ~2.5 Ga in age. Because the detrital kerogen had been subjected to metamorphism and weathering before being transported to the oceans, detrital kerogen would have different structures, textures, and elemental and isotopic ratios compared to the syngenetic

  20. Functional renormalization group study of an eight-band model for the iron arsenides

    NASA Astrophysics Data System (ADS)

    Lichtenstein, J.; Maier, S. A.; Honerkamp, C.; Platt, C.; Thomale, R.; Andersen, O. K.; Boeri, L.

    2014-06-01

    We investigate the superconducting pairing instabilities of eight-band models for the iron arsenides. Using a functional renormalization group treatment, we determine how the critical energy scale for superconductivity depends on the electronic band structure. Most importantly, if we vary the parameters from values corresponding to LaFeAsO to SmFeAsO, the pairing scale is strongly enhanced, in accordance with the experimental observation. We analyze the reasons for this trend and compare the results of the eight-band approach to those found using five-band models.

  1. Functional renormalization group study of an 8-band model for the iron arsenides

    NASA Astrophysics Data System (ADS)

    Honerkamp, Carsten; Lichtenstein, Julian; Maier, Stefan A.; Platt, Christian; Thomale, Ronny; Andersen, Ole Krogh; Boeri, Lilia

    2014-03-01

    We investigate the superconducting pairing instabilities of eight-band models for 1111 iron arsenides. Using a functional renormalization group treatment, we determine how the critical energy scale for superconductivity depends on the electronic band structure. Most importantly, if we vary the parameters from values corresponding to LaFeAsO to SmFeAsO, the pairing scale is strongly enhanced, in accordance with the experimental observation. We analyze the reasons for this trend and compare the results of the eight-band approach to those found using five-band models.

  2. Features of the band structure for semiconducting iron, ruthenium, and osmium monosilicides

    SciTech Connect

    Shaposhnikov, V. L. Migas, D. B.; Borisenko, V. E.; Dorozhkin, N. N.

    2009-02-15

    The pseudopotential method has been used to optimize the crystal lattice and calculate the energy band spectra for iron, ruthenium and, osmium monosilicides. It is found that all these compounds are indirect-gap semiconductors with band gaps of 0.17, 0.22, and 0.50 eV (FeSi, RuSi, and OsSi, respectively). A distinctive feature of their band structure is the 'loop of extrema' both in the valence and conduction bands near the center of the cubic Brillouin zone.

  3. Examining Archean methanotrophy

    NASA Astrophysics Data System (ADS)

    Slotznick, Sarah P.; Fischer, Woodward W.

    2016-05-01

    The carbon isotope ratios preserved in sedimentary rocks can be used to fingerprint ancient metabolisms. Organic carbon in Late Archean samples stands out from that of other intervals with unusually low δ13C values (∼-45 to -60‰). It was hypothesized that these light compositions record ecosystem-wide methane cycling and methanotrophy, either of the aerobic or anaerobic variety. To test this idea, we studied the petrography and carbon and oxygen isotope systematics of well-known and spectacular occurrences of shallow water stromatolites from the 2.72 Ga Tumbiana Formation of Western Australia. We examined the carbonate cements and kerogen produced within the stromatolites, because methanotrophy is expected to leave an isotopic fingerprint in these carbon reservoirs. Mathematical modeling of Archean carbonate chemistry further reveals that methanotrophy should still have a discernible signature preserved in the isotopic record, somewhat diminished from those observed in Phanerozoic sedimentary basins due to higher dissolved inorganic carbon concentrations. These stromatolites contain kerogen with δ13Corg values of ∼ - 50 ‰. By microsampling different regions and textures within the stromatolites, we determined that the isotopic compositions of the authigenic calcite cements show a low degree of variation and are nearly identical to values estimated for seawater at this time; the lack of low and variable δ13Ccarb values implies that methanotrophy does not explain the low δ13Corg seen in the coeval kerogen. These observations do not support a methanotrophy hypothesis, but instead hint that the Late Archean may constitute an interval wherein autotrophs employed markedly different biochemical processes of energy conservation and carbon fixation.

  4. Petrological and geochemical features of the Jingtieshan banded iron formation (BIF): A unique type of BIF from the Northern Qilian Orogenic Belt, NW China

    NASA Astrophysics Data System (ADS)

    Yang, Xiu-Qing; Zhang, Zuo-Heng; Duan, Shi-Gang; Zhao, Xin-Min

    2015-12-01

    The Jingtieshan banded iron formation (BIF) is located in the Northern Qilian Orogenic Belt (NQOB) in NW China. The BIFs are hosted in Mesoproterozoic Jingtieshan Group, a dominantly clastic-carbonate sedimentary formation, and was metamorphosed to lower greenschist facies. The Jingtieshan BIFs include oxide-, carbonate- and mixed carbonate-oxide facies, and consist of alternating iron-rich and silica-rich bands. The BIFs are composed essentially of specularite and jasper, with minor carbonate minerals and barite. The SiO2 + Fe2O3 content is markedly high in the oxide facies BIF, followed by FeO, CO2 and Ba, with the other elements usually lower than 1%, suggesting that the original chemical sediments were composed of Fe, Si, CO32- and Ba. The positive correlation between Al2O3, TiO2 and Zr in the BIFs indicates that these chemical sediments incorporate minor detrital components. Oxide facies BIF shows low HFSE, low ∑REE and low Y/Ho. The Post Archean Australian Shale-normalized REE patterns for Jingtieshan BIFs are characterized slight LREE depletion, strong positive Eu anomalies and lack of significant negative Ce anomalies. Siderite in the carbonate- and mixed carbonate-oxide facies BIF shows negative δ13C values varying from -8.4‰ to -3.0‰, and δ18O values show a range of -16.6‰ to -11.7‰. The geochemical signatures and carbon-oxygen isotopes suggest origin from high-temperature hydrothermal fluids with weak seawater signature for the sediments of Jingtieshan BIFs. The absence of negative Ce anomalies and the high Fe3+/∑Fe ratios of the oxide facies BIF do not support ocean anoxia. In contrast to the three main types (Algoma-, Superior- and Rapitan-type) of global BIFs, the Jingtieshan BIFs represent a unique type with features similar to those of sedimentary-exhalative mineralization.

  5. Melting in the FeOsbnd SiO2 system to deep lower-mantle pressures: Implications for subducted Banded Iron Formations

    NASA Astrophysics Data System (ADS)

    Kato, Chie; Hirose, Kei; Nomura, Ryuichi; Ballmer, Maxim D.; Miyake, Akira; Ohishi, Yasuo

    2016-04-01

    Banded iron formations (BIFs), consisting of layers of iron oxide and silica, are far denser than normal mantle material and should have been subducted and sunk into the deep lower mantle. We performed melting experiments on Fe2SiO4 from 26 to 131 GPa in a laser-heated diamond-anvil cell (DAC). The textural and chemical characterization of a sample recovered from the DAC revealed that SiO2 is the liquidus phase for the whole pressure range examined in this study. The chemical compositions of partial melts are very rich in FeO, indicating that the eutectic melt compositions in the FeOsbnd SiO2 binary system are very close to the FeO end-member. The eutectic temperature is estimated to be 3540 ± 150 K at the core-mantle boundary (CMB), which is likely to be lower than the temperature at the top of the core at least in the Archean and Paleoproterozoic eons, suggesting that subducted BIFs underwent partial melting in a thermal boundary layer above the CMB. The FeO-rich melts formed by partial melting of the BIFs were exceedingly dense and therefore migrated downward. We infer that such partial melts have caused iron enrichment in the bottom part of the mantle, which may have contributed to the formation of ultralow velocity zones (ULVZs) observed today. On the other hand, solid residues left after the segregation of the FeO-rich partial melts have been almost pure SiO2, and therefore buoyant in the deep lower mantle to be entrained in mantle upwellings. They have likely been stretched and folded repeatedly by mantle flow, forming SiO2 streaks within the mantle ;marble cake;. Mantle packages enhanced by SiO2 streaks may be the origin of seismic scatterers in the mid-lower mantle.

  6. Neodymium isotopic studies of Precambrian banded iron formations

    SciTech Connect

    Pimentel-Klose, M.R.

    1986-01-01

    The isotopic composition of Nd is reported for 11 different Precambrian BIFs and suggests a trend of increasingly positive epsilon/sub Nd/(T) values with age. This trend is interpreted to reflect isotopic variations in precambrian sea water. The Urucum and the Gunflint BIFs, both younger than 1.8 AE, yield negative epsilon/sub Nd/(T) values, between -4.6 and -1.1. The remaining BIFs, with ages between 1.85 and 3.4 AE, have predominantly positive values, between -0.7 and +4.0. The low UXSm/ UUNd ratio in BIFs is inconsistent with their REE being derived from rivers draining large proportions of greenstones. The positive, mantle-like values of BIFs older than 1.8 AE contrasts strongly with the negative, continental-like values of Phanerozoic sea water. Therefore, the REE budget of the oceans during most of the Precambrian was probably dominated by the hydrothermal circulation of sea water through MORBs and not by river waters, as today. A one order of magnitude higher hydrothermal contribution of Nd is suggested by the data for the Early Precambrian. This is most likely due to a higher hydrothermal water to river water flux ratio and/or a higher Nd concentration in hotter hydrothermal waters (>375 C) during this period. The large hydrothermal contribution of REE during the Early Precambrian can be explained best if the temperature of sea water fluxing through MORBs was higher than today. Experiments investigating the interaction between sea water and basalt have shown that the concentration of iron might have been about 20 times larger if the temperature of interaction was about 425 C. Such hot hydrothermal solutions could have been the most important source of iron in Precambrian BIFs.

  7. Trace-Element Analyses of Carbonate Minerals in the Gunflint Banded Iron Formation

    NASA Technical Reports Server (NTRS)

    Pun, Aurora; Papike, James J.; Shearer, C. K.

    2002-01-01

    We report on the petrography, mineralogy and trace-element abundances of individual carbonate grains in the Early Proterozoic Gunflint BIF (Banded Iron Formation). Trace-element data may be used as environmental recorders of the fluid evolution from which the various carbonate phases precipitated. Additional information is contained in the original extended abstract.

  8. Trace-Element Analyses of Carbonate Minerals in the Gunflint Banded Iron Formation

    NASA Technical Reports Server (NTRS)

    Pun, Aurora; Papike, James J.; Shearer, C. K.

    2002-01-01

    We report on the petrography, mineralogy and trace-element abundances of individual carbonate grains in the Early Proterozoic Gunflint BIF (Banded Iron Formation). Trace-element data may be used as environmental recorders of the fluid evolution from which the various carbonate phases precipitated. Additional information is contained in the original extended abstract.

  9. Geochemistry of banded iron formation (BIF) host rocks, Yishui county, North China : major element, REE and other trace element analyses

    NASA Astrophysics Data System (ADS)

    Moon, I.; Lee, I.; Yang, X.

    2013-12-01

    Banded iron formation (BIF) in Yishui area, Western Shangdong Province in North China was formed from late Archean to early Paleoproterizoic (2.6Ga-2.5Ga). Amphibolite, metasediment (schist, gneiss) and migmatitic granite consist of host rocks of the BIF in North China. To find characteristics of BIF host rocks, major element, rare earth element and trace element analyses of whole rocks were conducted. Major elements are analyzed using X-ray Fluorescene Spectrometer (XRF) and REE and trace elements are analyzed by Inductively Coupled Plazma Mass Spectrometer (ICP-MS). Amphibolites show large negative Eu anomalies ([Eu]/[Eu*]=0.91~0.99) and ranges of REE are ∑REE=305~380 ppm. LREE/HREE ratios are (La/Lu)cn=21.07~26.12. SiO2 contents are 35.1~44.2 wt% and some samples have high Loss On Ignition values ([LOI]=8.35-10.06 wt%) compared to other amphibolites. LOI value is related to water and volatile contents in the rocks and it reflects amphibolite got high degree of alteration. The Fe and Mg mobility effects are shown by Fe2O3/MgO ratios which are 4.7~5.7. The Mg# varies from 25.6 to 29.3. Migmatitic granites have various range of ∑REE=21~241 ppm. They show both Eu negative anomalies ([Eu]/[Eu*]=0.53~0.71) and positive Eu anomalies ([Eu]/[Eu*]=1.95). Migmatitic granites have high SiO2 contents (68.8~72.2 wt%) and Al2O3 (13.4~14.2 wt%) contents. They have relatively low TiO2 (<0.5 wt%), MgO ( <0.6 wt%) and P2O5 (<0.2 wt%) contents. Gneiss samples were collected either from core or from mine pit. Core samples have negative Eu anomalies ([Eu]/[Eu*]=0.27~0.62) and show enriched LREE than HREE ((La/Lu)cn=45.60~62.32). Mine pit samples have positive Eu anomalies ([Eu]/[Eu*]=1.64~2.87) and almost flatten pattern except Eu anomalies ((La/Lu)cn=2.19~2.37). Core samples have higher Al2O3, TiO2, Na2O and K2O contents than mine pit samples. But remarkably mine pit samples have high contents of Fe2O3 (>40.4 wt%). Schists are divided into two types following REE patterns. Some

  10. Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland)

    NASA Astrophysics Data System (ADS)

    Czaja, Andrew D.; Johnson, Clark M.; Beard, Brian L.; Roden, Eric E.; Li, Weiqiang; Moorbath, Stephen

    2013-02-01

    The redox balance of the Archean atmosphere-ocean system is among the most significant uncertainties in our understanding of the earliest history of Earth's surface zone. Most workers agree that oxygen did not constitute a significant proportion of the atmosphere until after ca. 2.45 Ga, after the Great Oxidation Event, but there is less agreement on when O2 production began, and how this may have been consumed by reduced species such as Fe(II) in the oceans. The Fe redox cycle through time has been traced using banded iron formations (BIFs), and Fe isotopes are increasingly used to constrain the conditions of Earth's paleoenvironments, including the pathways of formation of BIFs. Iron isotope analyses of BIFs from the 3.7 to 3.8 Ga Isua Supracrustal Belt (ISB), obtained by micro-sampling of magnetite-rich layers and conventional analysis, as well as by in situ femtosecond laser ablation (fs-LA-ICP-MS), indicate a consistently narrow range of non-zero δ56Fe values. Analysis of magnetite by fs-LA-ICP-MS allows for precise and accurate micron-scale analyses without the problems of orientation effects that are associated with secondary ion mass spectrometry (SIMS) analyses. Magnetite δ56Fe values range from +0.4‰ to +1.1‰ among different bands, but within individual layers magnetite grains are mostly homogeneous. Although these BIFs have been metamorphosed to amphibolite-facies, the metamorphism can neither explain the range in Fe isotope compositions across bands, nor that between hand samples. The isotopic compositions therefore reflect “primary”, low-temperature sedimentary values. The positive δ56Fe values measured from the ISB magnetites are best explained by deposition of Fe(III)-oxides produced by partial oxidation of Fe(II)-rich ocean water. A dispersion/reaction model, which accounts for rates of hydrothermal Fe(II)aq input, rates of oxidation, and rates of Fe(OH)3 settling suggests exceptionally low O2 contents, <0.001% of modern O2 contents in

  11. Archean geotherms and supracrustal assemblages

    NASA Astrophysics Data System (ADS)

    Condie, Kent C.

    1984-06-01

    Metamorphic mineral assemblages suggest the existence of variable geotherms and lithospheric thicknesses beneath late Archean continental crust. Archean granite-greenstone terranes reflect steep geotherms (50-70°C/km) while high-grade terranes reflect moderate geotherms similar to present continental crust with high heat flow (25-40°C/km). Corresponding lithosphere thicknesses for each terrane during the late Archean are 35-50 km and 50-75 km, respectively. Early Archean (⩾ 3.0 b.y.) greenstones differ from late Archean (˜ 2.7 b.y.) greenstones by the rarity or absence of andesite and graywacke and the relative abundance of pelite, quartzite, and komatiite. Mature clastic sediments in early greenstones reflect shallow-water, stable-basin deposition. Such rocks, together with granite-bearing conglomerate and felsic volcanics imply the existence of still older granitic source terranes. The absence or rarity of andesite in early greenstones reflects the absence of tectonic conditions in which basaltic and tonalitic magmas are modified to produce andesite. A model is presented in which early Archean greenstones form at the interface between tonalite islands and oceanic lithosphere, over convective downcurrents; high-grade supracrustals form on stable continental edges or interiors; and late Archean greenstones form in intracontinental rifts over mantle plumes.

  12. Banded Iron Formations of the Cauê Formation, Quadrilátero Ferrífero Minas Gerais, Brazil: A novel pre-GOE record of biospheric evolution

    NASA Astrophysics Data System (ADS)

    Lee, B. K.; Tsikos, H.; Oliveira, E. P.; Lyons, T.

    2016-12-01

    The rise of atmospheric oxygen (O2) is a milestone in the history of life on Earth. Banded Iron Formations (BIFs) record major episodes of chemical sedimentation, while providing multiple lines of evidence for the environmental conditions present at the time of their deposition during the Archean and Paleoproterozoic. They are direct products of seawater redox, specifically of the balance between iron, sulfide, and oxygen availability. At the same, they are recorders of the broader isotopic and elemental compositions of seawater, which reflect diverse processes in the ocean and on land. In addition to their relevance to the history of environmental oxygen levels, BIFs also have enormous economic importance. BIFs from the Cauê Formation of the Minas Supergroup in the Quadrilátero Ferrífero (QF) ("Iron Quadrangle") are located on the southern edge of the São Francisco Craton. The Cauê Formation, a superior-type iron formation, is likely coeval with iron formations of the Transvaal and Hamersley basins. The geochemical properties of BIFs from the QF are poorly known, although previous studies suggest mild oxygenation of seawater at the depositional onset of the Cauê formation around 200 million years before the Great Oxidation Event (GOE) based on negative anomalies of Ce and Th/U ratios. The ultimate goal of this study is to evaluate environmental conditions proximal to the Archean-Paleoproterozoic boundary, but particularly prior to the GOE, as recorded in the Cauê Formation. Our drill core samples are unweathered and among the least altered materials available from the Itabira Group. These 197 samples cover the entire sequence of the Cauê Formation (dated at 2.65 Ga) as well as the overlying Gandarela Formation (2.4 Ga). We will look at the redox cycling of iron (Fe) and manganese (Mn) from these samples by analyzing variations on Fe and Mn concentrations as well as Fe isotope signatures that will potentially fingerprint the pathways of precipitation of

  13. Geophysical investigation of banded iron ore mineralization at Ero, North - Central Nigeria

    NASA Astrophysics Data System (ADS)

    Oyedele, Kayode; Oladele, Sunday; Salami, Anthony

    2016-09-01

    The banded iron ore mineralization at Ero was investigated using aeromagnetic, resistivity and induced polarization (IP) methods with the aim of characterizing the deposit. Analysis of the aeromagnetic data involved the application of reduced-to-equator transformation, derivative filters, analytic signal and source parameter imaging techniques. Computer modelling of some of the identified anomalies was undertaken. The electrical resistivity and IP methods helped in discriminating between the iron ore and the host rock. The results showed that the banded iron formations (BIFs) were characterized by spherical analytic signal anomalies ranging from 0.035 nT/m to 0.06 nT/m within the granite gneiss and magnetic susceptibility of 0.007-0.014 SI. The iron ore had low chargeability (0.1-5.0 msec) and resistivity (1.5 × 102 to 2.5 × 103 Ωm). Structural features trending in the NE-SW, E-W, and NW-SE were identified, suggesting that the area had undergone many episodes of tectonic events. Depth to the BIF varied from the surface up to about 200 m. The chargeability response of the iron bodies suggested an average grade of 20%-40%, making the prospect for economic exploitation attractive.

  14. Iron-absorption band analysis for the discrimination of iron-rich zones

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Analysis of ERTS-1 images of Nevada has followed two courses: comparative lineament mapping and spectral reflectance evaluation. The comparative lineament mapping was conducted by mapping lineaments on 9 x 9 inch prints of MSS bands 5 and 7, transferring the data to a base map, and comparing the results with existing geologic maps. The most significant results are that lineaments are more numerous on the band 7 images, and approximately 100 percent more were mapped than appear on existing maps. Geologic significance of these newly mapped lineaments will not be known until they are checked in the field: many are probably faults. Spectral analysis has been limited to visual comparison among the four MSS bands. In general, higher scene contrast is shown in the near infrared bands (6 and 7) than in the visible wavelength bands (4 and 5). The economic implications of these results derive chiefly from the greater efficiency that can be obtained by using near infrared as well as visible wavelength images.

  15. Geologic and metallogenic aspects concerning the Nahuelbuta mountains banded iron formation, Chile

    NASA Astrophysics Data System (ADS)

    Oyarzún, R.; Clemmey, H.; Collao, S.

    1986-07-01

    Paleozoic banded-iron-formation (BIF) deposits occur within the Nahuelbuta-Queule Complex (south central Chile) which hosts the following stratigraphic units: Cabo Tirúa (green schists, mica schists, and metacherts), Lleu-Lleu (iron-bearing metacherts, mica schists, and serpentinites), and Colcura (metagraywackes and metapelites). The lithological, structural, and geochemical characteristics of the Lleu-Lleu and Cabo Tirúa units indicate that they were part of a tectonic mélange accreted to the South American paleocontinent during the Paleozoic. BIF ores are restricted to the Lleu-Lleu metacherts and are characterized by oxide-silicate-sulfide BIF facies. The iron-bearing metacherts present mineralogical and geochemical characteristics close to the volcanogenic BIF types and are thought to have been formed by submarine volcanic exhalative activity.

  16. Iron absorption band analysis for the discrimination of iron rich zones

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A lineament study of the Nevada test site is near completion. Two base maps (1:500,000) have been prepared, one of band 7 lineaments and the other of band 5 lineaments. In general, more lineaments and more faults are seen on band 5. About 45% of the lineaments appear to be faults and contacts, the others being predominantly streams, roads, railway tracks, and mountain crests. About 25% of the lineaments are unidentified so far. Special attention is being given to unmapped extensions of faults, groups of unmapped lineaments, and known mineralized areas and alteration zones. Earthquake epicenters recorded from 1869 to 1963 have been plotted on the two base maps. Preliminary examination as yet indicates no basic correlation with the lineaments. Attempts are being made to subtract bands optically, using an I2S viewer, an enlarger, and a data color viewer. Success has been limited so far due to technical difficulties, mainly vignetting and poor light sources, within the machines. Some vegetation and rock type differences, however, have been discerned.

  17. An Archean Biosphere Initiative

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Boyd, E. S.; Buick, R.; Claire, M.; DesMarais, D.; Domagal-Goldman, D.; Eigenbrode, J.; Erwin, D.; Freeman, K.; Hazen, R.; hide

    2011-01-01

    The search for life on extrasolar planets will necessarily focus on the imprints of biolgy on the composition of planetary atmospheres. The most notable biological imprint on the modern terrestrial atmosphere is the presence of 21 % O2, However, during most of the past 4 billion years, life and the surface environments on Earth were profoundly different than they are today. It is therefore a major goal of the astrobiology community to ascertain how the O2 content of the atmosphere has varied with time. and to understand the causes of these variations. The NAI and NASA Exobiology program have played critical roles in developing our current understanding of the ancient Earth's atmosphere, supporting diverse observational, analytical, and computational research in geoscience, life science, and related fields. In the present incarnation of the NAI, ongoing work is investigating (i) variations in atmospheric O2 in the Archean to the Cambrian, (ii) characterization of the redox state of the oceans shortly before, during and after the Great Oxidation Event (GOE), and (iii) unraveling the complex connections between environmental oxygenation, global climate, and the evolution of life.

  18. Exchange splitting of adsorbate-induced bands on thin iron films

    NASA Astrophysics Data System (ADS)

    Getzlaff, M.; Bansmann, J.; Westphal, C.; Schönhense, G.

    1992-02-01

    Adsorbate-induced bands are investigated using energy-, angle- and spin-resolving photoelectron spectroscopy. With a ferromagnetic substrate these bands can show an exchange splitting. By means of epitaxial growth on W(110) or Au(100) we produced thin bcc iron films, layer-by-layer growth was monitored by means of MEED-oscillations. Spin-resolved spectra for different coverages with chemisorbed oxygen or CO or physisorbed Xe are shown. We found values of up to 1 eV exchange splitting of the oxygen 2p-derived band, analogous to prior measurements on bulk-crystals. Even for the physisorbed species magnetic interaction is evident. Aspects of the angular dependence as well as systematic differences of the line profiles of adsorbate-induced structures in the majority- and minority-spin channels are discussed.

  19. Magnetite: What it reveals about the origin of the banded iron formations. [Abstract only

    NASA Technical Reports Server (NTRS)

    Schwartz, D. E.; Mancinelli, R. L.; White, M. R.

    1994-01-01

    Magnetite, Fe3O4 is produced abiotically and biotically. Abiotically, magnetite is a late magmatic mineral and forms as a consequence of the cooling of iron rich magma. Biotically, magnetite is produced by several organisms, including magnetotactic bacteria. Hematite, Fe2O3, is also produced abiotically and biotically. Abiotically, hematite rarely occurs as a primary mineral in igneous rocks, but is common as an alteration product, fumarole deposit, and in some metamorphosed Fe-rich rocks. Biotically, hematite is produced by several types of microorganisms. Biologically-produced magnetite and hematite are formed under the control of the host organism, and consequently, have characteristics not found in abiotically produced magnetite and hematite crystals. To determine if the magnetite and hematite in the Banded Iron Formation was biologically or abiotically produced, the characteristics of biologically-produced magnetite and hematite (concentrated from Aquaspirillum magnetotacticum) and abiotically-produced magnetite and hematite obtained from Wards Scientific Supply Company, were compared with characteristics of magnetite and hematite concentrated from the Gunflint Banded Iron Formation (Ontario, Canada) using thermal and crystallographic analytical techniques. Whole rock analysis of the Gunflint Banded Iron Formation by x-ray diffraction (XRD) and differential thermal analysis (DTA) revealed the presence of quartz, hematite, siderite and dolomite as the major minerals, and magnetite, greenalite, pyrite, pyrrhotite and apatite as the minor minerals. Analysis of a crude magnetic fraction of the Gunflint showed the minerals quartz, hematite, siderite, dolomite, and magnetite. Analysis of the crude magnetic fraction from Aquaspirillum magnetotacticum revealed organic compounds plus hematite and magnetite. The mineral identification and particle size distribution data obtained from the DTA along with XRD data indicate that the magnetite and hematite from the Gunflint

  20. A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Brocks, Jochen J.; Buick, Roger; Summons, Roger E.; Logan, Graham A.

    2003-11-01

    Bitumens extracted from 2.7 to 2.5 billion-year-old (Ga) shales of the Fortescue and Hamersley Groups in the Pilbara Craton, Western Australia, contain traces of molecular fossils. Based on a combination of molecular characteristics typical of many Precambrian bitumens, their consistently and unusually high thermal maturities, and their widespread distribution throughout the Hamersley Basin, the bitumens can be characterized as 'probably of Archean age'. Accepting this interpretation, the biomarkers open a new window on Archean biodiversity. The presence of hopanes in the Archean rocks confirms the antiquity of the domain Bacteria, and high relative concentrations of 2α-methylhopanes indicate that cyanobacteria were important primary producers. Oxygenic photosynthesis therefore evolved > 2.7 Ga ago, and well before independent evidence suggests significant levels of oxygen accumulated in the atmosphere. Moreover, the abundance of cyanobacterial biomarkers in shales interbedded with oxide-facies banded iron formations (BIF) indicates that although some Archean BIF might have been formed by abiotic photochemical processes or anoxygenic phototrophic bacteria, those in the Hamersley Group formed as a direct consequence of biological oxygen production. Biomarkers of the 3β-methylhopane series suggest that microaerophilic heterotrophic bacteria, probably methanotrophs or methylotrophs, were active in late Archean environments. The presence of steranes in a wide range of structures with relative abundances like those from late Paleoproterozoic to Phanerozoic sediments is convincing evidence for the existence of eukaryotes in the late Archean, 900 Ma before visible fossil evidence indicates that the lineage arose. Sterol biosynthesis in extant eukaryotes requires molecular oxygen. The presence of steranes together with biomarkers of oxygenic photosynthetic cyanobacteria suggests that the concentration of dissolved oxygen in some regions of the upper water column was

  1. High-energy electronic interaction in the 3 d band of high-temperature iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Evtushinsky, D. V.; Yaresko, A. N.; Zabolotnyy, V. B.; Maletz, J.; Kim, T. K.; Kordyuk, A. A.; Viazovska, M. S.; Roslova, M.; Morozov, I.; Beck, R.; Aswartham, S.; Harnagea, L.; Wurmehl, S.; Berger, H.; Rogalev, V. A.; Strocov, V. N.; Wolf, T.; Zhigadlo, N. D.; Büchner, B.; Borisenko, S. V.

    2017-08-01

    One of the most unique and robust experimental facts about iron-based superconductors is the renormalization of the electronic band dispersion by factor of 3 and more near the Fermi level. Obviously related to the electron pairing, this prominent deviation from the band theory lacks understanding. Experimentally studying the entire spectrum of the valence electrons in iron arsenides, we have found an unexpected depletion of the spectral weight in the middle of the iron-derived band, which is accompanied by a drastic increase of the scattering rate. At the same time, the measured arsenic-derived band exhibits very good agreement with theoretical calculations. We show that the low-energy Fermi velocity renormalization should be viewed as a part of the modification of the spectral function by a strong electronic interaction. Such an interaction with an energy scale of the whole d band appears to be a hallmark of many families of unconventional superconductors.

  2. Geochemistry of precambrian carbonates. II. Archean greenstone belts and Archean sea water

    SciTech Connect

    Veizer, J. ); Hoefs, J. ); Lowe, D.R. ); Thurston, P.C. )

    1989-04-01

    Carbonate rocks with geological attributes of marine sediments are a minor component of the Archean greenstone belts. Despite their relative scarcity, these rocks are important because they record chemical and isotopic properties of coeval oceans. The greenstones containing such carbonates appear to cluster at {approximately}2.8 {plus minus} 0.2 and {approximately}3.5 {plus minus} 0.1 Ga ago. The samples for the younger group are from the Abitibi, Yellowknife, Wabigoon, Michipicoten and Uchi greenstone belts of Canada and the Upper Greenstones of Zimbabwe. The older group includes the Swaziland Supergroup of South Africa, Warrawoona Group of Australia and the Sargur marbles of India. Mineralogically, the carbonates of the younger greenstones are mostly limestones and of the older ones, ferroan dolomites (ankerites); the latter with some affinities to hydrothermal carbonates. In mineralized areas with iron ores, the carbonate minerals are siderite {plus minus} ankerite, irrespective of the age of the greenstones. Iron-poor dolomites represent a later phase of carbonate generation, related to post-depositional tectonic faulting. The original mineralogy of limestone sequences appears to have been an Sr-rich aragonite. The Archean carbonates yield near-mantle Sr isotopic values, with ({sup 87}Sr/{sup 86}Sr){sub o} of 0.7025 {plus minus} 0.0015 and 0.7031 {plus minus} 0.0008 for younger and older greenstones, respectively. The mineralogical and chemical attributes of Archean carbonates are consistent with the proposition that the composition of the coeval oceans may have been buffered by a pervasive interaction with the mantle, that is, with the oceanic crust and the coeval ubiquitous volcanosedimentary piles derived from mantle sources.

  3. Sulfate-rich Archean Oceans

    NASA Astrophysics Data System (ADS)

    Brainard, J. L.; Choney, A. P.; Ohmoto, H.

    2012-12-01

    There is a widely held belief that prior to 2.4 Ga, the Archean oceans and atmosphere were reducing, and therefore sulfate poor (concentrations <0.1 mmol). However, there is mounting evidence from diverse rock types of Archean ages that sulfate concentrations were likely similar to those in the modern ocean (~28 mmol). In this study we demonstrate that in different lithologies, representing a wide range of marine environments, there is ubiquitous evidence for abundant seawater sulfate. One of the more apparent lines of evidence for sulfate rich Archean waters are bedded barite (BaSO4) deposits, such as those in the ~3.4 Ga Fig Tree Group, South Africa and ~3.5 Ga Dresser Formation, Western Australia (WA). These deposits are thick (>100 m), widely distributed (> km2), and contain only minor amounts of sulfides. These barite beds may have developed from reactions between Ba-rich hydrothermal fluids and evaporate bodies. Simple mass balance calculations suggest that the sulfate contents of the pre-evaporitic seawater must have been greater than ~1 mM. Some researchers have suggested that the SO4 for these beds was derived from the hydrolysis of SO2-rich magmatic fluids. However, this was unlikely as the reaction, 4SO2 + 4H2O → 3H2SO4 + H2S would have produced large amounts of sulfide, as well as sulfate minerals. Many Archean-aged volcanogenic massive sulfide (VMS) deposits, much like those of the younger ages, record evidence for abundant seawater sulfate. As VMS deposits are most likely formed by submarine hydrothermal fluids that developed from seawater circulating through the seafloor rock, much of the seawater sulfate is reduced to from sulfides at depths. However, some residual sulfate in the hydrothermal fluids, with or without the addition of sulfate from the local seawater, can form sulfate minerals such as barite at near the seafloor. The d34S relationships between barites and pyrites in the Archean VMS deposits are similar to those of the younger VMS

  4. Archean sedimentary systems and crustal evolution

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1985-01-01

    Current knowledge of preserved Archean sedimentary rocks suggests that they accumulated in at least three major depositional settings. These are represented generally by sedimentary units: (1) in early Archean, pre-3.0 Ga old greenstone belts, (2) on late Archean sialic cratons, and (3) in late Archean, post-3.0 Ga old greenstone belts. Research suggests that the Archean was characterized by at least two distinctive and largely diachronous styles of crustal evolution. Thick, stable early Archean simatic platforms, perhaps analogous to modern oceanic islands formed over hot spots, underwent a single cycle of cratonization to form stable continental blocks in the early Archean. Later formed Archean continents show a two stage evolution. The initial stage is reflected in the existence of older sialic material, perhaps representing incompletely cratonized areas or microcontinents of as yet unknown origin. During the second stage, late Archean greenstone belts, perhaps analogous to modern magmatic arcs or back arc basins, developed upon or adjacent to these older sialic blocks. The formation of this generation of Archean continents was largely complete by the end of the Archean. These results suggest that Archean greenstone belts may represent a considerable range of sedimentological and tectonic settings.

  5. Phosphate microaggregates in Archean sediments. [Abstract only

    NASA Technical Reports Server (NTRS)

    Mojzsis, S.; Fan, G. Y.; Arrhenius, G.

    1994-01-01

    Light microscopy conducted on samples of Archean sediments reveals phosphate microaggregates which are suggestive of a biotic origin (Arrhenius et al., 1993). These aggregates, typically 15 micrometers wide and 50 micrometers long, are thought to be the mineral remains of colonies of microorganisms that lived during the late Archean Eon (greater than or equal to 2.5 Ga). Confocal microscopy was used to study the structures of these microaggregates in three dimensions. Samples used in this study are from the lowermost section of drill core taken from the Dales Gorge Member of the Brockman Iron-Formation (Hamersley Basin) in Western Australia. These sediments are well-preserved and escaped extensive metamorphism typically experienced by older rocks of this type. Two types of samples were prepared for study under the microscope: thin sections (30 micrometers) for transmitted light microscopy to study the general rock texture and to locate the grains of interest, and thick sections (3mm) for confocal microscopy to determine the 3-D structure of the aggregates in situ. The samples have been carefully polished so that they may be directly placed on the oil-immersion lens without the use of a cover slip. No chemical treatments of the surfaces have been performed. The aggregates often form clusters, although isolated aggregates have also been found. The clusters tend to distribute along microbands in the rocks. Electron microprobe analyses show that the phosphate grains and their inclusions, besides calcium and phosphorus, contain no major elements heavier than sodium. The proportions of calcium to phosphorus, the absence of stoichiometric amounts of other cations such as magnesium and iron, as well as optical properties suggest apatite as the mineral form.

  6. Phosphate microaggregates in Archean sediments. [Abstract only

    NASA Technical Reports Server (NTRS)

    Mojzsis, S.; Fan, G. Y.; Arrhenius, G.

    1994-01-01

    Light microscopy conducted on samples of Archean sediments reveals phosphate microaggregates which are suggestive of a biotic origin (Arrhenius et al., 1993). These aggregates, typically 15 micrometers wide and 50 micrometers long, are thought to be the mineral remains of colonies of microorganisms that lived during the late Archean Eon (greater than or equal to 2.5 Ga). Confocal microscopy was used to study the structures of these microaggregates in three dimensions. Samples used in this study are from the lowermost section of drill core taken from the Dales Gorge Member of the Brockman Iron-Formation (Hamersley Basin) in Western Australia. These sediments are well-preserved and escaped extensive metamorphism typically experienced by older rocks of this type. Two types of samples were prepared for study under the microscope: thin sections (30 micrometers) for transmitted light microscopy to study the general rock texture and to locate the grains of interest, and thick sections (3mm) for confocal microscopy to determine the 3-D structure of the aggregates in situ. The samples have been carefully polished so that they may be directly placed on the oil-immersion lens without the use of a cover slip. No chemical treatments of the surfaces have been performed. The aggregates often form clusters, although isolated aggregates have also been found. The clusters tend to distribute along microbands in the rocks. Electron microprobe analyses show that the phosphate grains and their inclusions, besides calcium and phosphorus, contain no major elements heavier than sodium. The proportions of calcium to phosphorus, the absence of stoichiometric amounts of other cations such as magnesium and iron, as well as optical properties suggest apatite as the mineral form.

  7. Geochemistry of Precambrian carbonates: II. Archean greenstone belts and Archean sea water.

    PubMed

    Veizer, J; Hoefs, J; Lowe, D R; Thurston, P C

    1989-01-01

    Carbonate rocks with geological attributes of marine sediments are a minor component of the Archean greenstone belts. Despite their relative scarcity, these rocks are important because they record chemical and isotopic properties of coeval oceans. The greenstones containing such carbonates appear to cluster at approximately 2.8 +/- 0.2 and approximately 3.5 +/- 0.1 Ga ago. The samples for the younger group are from the Abitibi, Yellowknife, Wabigoon (Steep Rock Lake), Michipicoten and Uchi greenstone belts of Canada and the "Upper Greenstones" of Zimbabwe. The older group includes the Swaziland Supergroup of South Africa, Warrawoona Group of Australia and the Sargur marbles of India. Mineralogically, the carbonates of the younger greenstones are mostly limestones and of the older ones, ferroan dolomites (ankerites); the latter with some affinities to hydrothermal carbonates. In mineralized areas with iron ores, the carbonate minerals are siderite +/- ankerite, irrespective of the age of the greenstones. Iron-poor dolomites represent a later phase of carbonate generation, related to post-depositional tectonic faulting. The original mineralogy of limestone sequences appears to have been an Sr-rich aragonite. The Archean carbonates yield near-mantle Sr isotopic values, with (87Sr/86Sr)o of 0.7025 +/- 0.0015 and 0.7031 +/- 0.0008 for younger and older greenstones, respectively. The best preserved samples give delta 13C of +1.5 +/- 1.5% PDB, comparable to their Phanerozoic counterparts. In contrast, the best estimate for delta 18O is -7% PDB. Archean limestones, compared to Phanerozoic examples, are enriched in 16O as well as in Mn2+ and Fe2+, and these differences are not a consequence of post-depositional alteration phenomena. The mineralogical and chemical attributes of Archean carbonates (hence sea water) are consistent with the proposition that the composition of the coeval oceans may have been buffered by a pervasive interaction with the "mantle", that is, with

  8. Extremely flat transmission band of forward volume spin wave using gold and yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Shimada, Kei; Goto, Taichi; Kanazawa, Naoki; Takagi, Hiroyuki; Nakamura, Yuichi; Uchida, Hironaga; Inoue, Mitsuteru

    2017-07-01

    An extremely flat transmission band for a forward volume spin wave (SW) propagating in an SW waveguide composed of yttrium iron garnet film and SW absorbers was obtained, using the finite integration technique. Three-dimensional analysis of the calculated results showed that the transmission ripples of the SWs propagating in the waveguide were caused by SW interference, especially that due to two standing waves originating from the waveguide edge-edge and the waveguide-antenna edge. To suppress these waves, SW absorbers composed of gold film were introduced and the resultant positions and shapes were investigated precisely. Hence, an extremely flat transmission band was obtained. The results of this study have potential application in the development of one- and two-dimensional magnonic crystals for integrated SW devices.

  9. Spin-induced band modifications of graphene through intercalation of magnetic iron atoms.

    PubMed

    Sung, S J; Yang, J W; Lee, P R; Kim, J G; Ryu, M T; Park, H M; Lee, G; Hwang, C C; Kim, Kwang S; Kim, J S; Chung, J W

    2014-04-07

    Intercalation of magnetic iron atoms through graphene formed on the SiC(0001) surface is found to induce significant changes in the electronic properties of graphene due mainly to the Fe-induced asymmetries in charge as well as spin distribution. From our synchrotron-based photoelectron spectroscopy data together with ab initio calculations, we observe that the Fe-induced charge asymmetry results in the formation of a quasi-free-standing bilayer graphene while the spin asymmetry drives multiple spin-split bands. We find that Fe adatoms are best intercalated upon annealing at 600 °C, exhibiting split linear π-bands, characteristic of a bilayer graphene, but much diffused. Subsequent changes in the C 1s, Si 2p, and Fe 3p core levels are consistently described in terms of Fe-intercalation. Our calculations together with a spin-dependent tight binding model ascribe the diffuse nature of the π-bands to the multiple spin-split bands originated from the spin-injected carbon atoms residing only in the lower graphene layer.

  10. Two-band model of Raman scattering on iron pnictide Ba(As)2 superconductors

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Lu, Hong-Yan; Wu, W. C.

    2014-06-01

    Based on a two-band model, we theoretically study the electronic Raman scattering spectra in both normal and superconducting states of iron-pnictide Ba()As2 superconductors. In the normal state, due to the match or mismatch of band hybridization and Raman vertex symmetries, overall B2g Raman intensity is found to be much stronger than that of the B1g channel. Besides, in the non-resonant limit, there could exhibit an interband excitation peak at high frequency ω≃7.3t1(6.8t1) in the B1g (B2g) channel with t1 the nearest-neighbor hopping. In the superconducting state, due to the composite effect of Raman vertex, gap symmetry, and Fermi surface topology, both B1g and B2g Raman intensities are dominated by α- (β-) band contribution for the extended s-wave (d-wave) pairing, whereas both bands are equally important for the s±-wave pairing. It is shown that both extended s- and s±-wave pairings can lead to a good fitting for the reported B1g data Muschler et al. (2009) [11], while the d-wave pairing seems not favorable.

  11. Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton

    NASA Astrophysics Data System (ADS)

    Johnson, Clark; Beard, Brian; Beukes, Nicolas; Klein, Cornelis; O'Leary, Julie

    2002-11-01

    Variations in the isotopic composition of Fe in Late Archean to Early Proterozoic Banded Iron Formations (BIFs) from the Transvaal Supergroup, South Africa, span nearly the entire range yet measured on Earth, from -2.5 to +1.0‰ in 56Fe/54Fe ratios relative to the bulk Earth. With a current state-of-the-art precision of +/-0.05‰ for the 56Fe/54Fe ratio, this range is 70 times analytical error, demonstrating that significant Fe isotope variations can be preserved in ancient rocks. Significant variation in Fe isotope compositions of rocks and minerals appears to be restricted to chemically precipitated sediments, and the range measured for BIFs stands in marked contrast to the isotopic homogeneity of igneous rocks, which have δ56Fe=0.00+/-0.05‰, as well as the majority of modern loess, aerosols, riverine loads, marine sediments, and Proterozoic shales. The Fe isotope compositions of hematite, magnetite, Fe carbonate, and pyrite measured in BIFs appears to reflect a combination of (1) mineral-specific equilibrium isotope fractionation, (2) variations in the isotope compositions of the fluids from which they were precipitated, and (3) the effects of metabolic processing of Fe by bacteria. For minerals that may have been in isotopic equilibrium during initial precipitation or early diagenesis, the relative order of δ56Fe values appears to decrease in the order magnetite > siderite > ankerite, similar to that estimated from spectroscopic data, although the measured isotopic differences are much smaller than those predicted at low temperature. In combination with on-going experimental determinations of equilibrium Fe isotope fractionation factors, the data for BIF minerals place additional constraints on the equilibrium Fe isotope fractionation factors for the system Fe(III)-Fe(II)-hematite-magnetite-Fe carbonate. δ56Fe values for pyrite are the lowest yet measured for natural minerals, and stand in marked contrast to the high δ56Fe values that are predicted from

  12. The Photochemical Oxidation of Siderite That Drove Hydrogen Based Microbial Redox Reactions in The Archean Biosphere

    NASA Astrophysics Data System (ADS)

    Kim, J. D.; Yee, N.; Falkowski, P. G.

    2012-12-01

    Hydrogen is the most abundant element in the universe and molecular hydrogen (H2) is a rich source of electron in a mildly reducing environment for microbial redox reactions, such as anoxygenic photosynthesis and methanogenesis. Subaerial volcanoes, ocean crust serpentinization and mid-ocean ridge volcanoes have been believed to be the major source of the hydrogen flux to the atmosphere. Although ferrous ion (Fe2+) photooxidation has been proposed as an alternative mechanism by which hydrogen gas was produced, ferruginous water in contact with a CO2-bearing atmosphere is supersaturated with respect to FeCO3 (siderite), thus the precipitation of siderite would have been thermodynamically favored in the Archean environment. Siderite is the critical mineral component of the oldest fossilized microbial mat. It has also been inferred as a component of chemical sedimentary protolith in the >3750 Ma Nuvvuagittuq supracrustal belt, Canada and the presence of siderite in the protolith suggests the occurrence of siderite extends to Hadean time. Analyses of photooxidation of siderite suggest a significant flux of hydrogen in the early atmosphere. Our estimate of the hydrogen production rate under Archean solar flux is approximately 50 times greater than the estimated hydrogen production rate by the volcanic activity based on a previous report (Tian et al. Science 2005). Our analyses on siderite photooxidation also suggest a mechanism by which banded iron formation (BIF) was formed. The photooxidation transforms siderite to magnetite/maghemite (spinnel iron oxide), while oxygenic oxidation of siderite leads to goethite, and subsequently to hematite (Fe3+2O3) upon dehydration. We will discuss the photochemical reaction, which was once one of the most ubiquitous photochemical reactions before the rise of oxygen in the atmosphere. Photooxidation of siderite over time by UV light From left to right: UV oxidized siderite, pristine siderite, oxidized siderite by oxygen

  13. Increasing the band gap of iron pyrite by alloying with oxygen

    NASA Astrophysics Data System (ADS)

    Law, Matthew; Hu, Jun; Zhang, Yanning; Wu, Ruqian

    2013-03-01

    Systematic density functional theory studies and model analyses have been used to show that the band gap of iron pyrite (FeS2) can be increased from ~ 1.0 to 1.2 -1.3 eV by replacing ~ 10% of the sulfur atoms with oxygen atoms (i.e., ~ 10% OS impurities). OS formation is exothermic, and the oxygen atoms tend to avoid O-O dimerization, which favors the structural stability of homogeneous FeS2-xOx alloys and frustrates phase separation into FeS2 and iron oxides. With an ideal band gap, absence of OSinduced gap states, high optical absorptivity, and low electron effective mass, FeS2-xOx alloys are promising for the development of pyrite-based heterojunction solar cells that feature large photovoltages and high device efficiencies. Acknowledgement: We thank the NSF SOLAR Program (Award CHE-1035218) and the UCI School of Physical Sciences Center for Solar Energy for support of this work. Calculations were performed on parallel computers at NERSC and at NSF supercomputer centers.

  14. Micro-scale characterization of iron ores from a banded iron formation in Yishui county, western Shandong province of North China Craton

    NASA Astrophysics Data System (ADS)

    Moon, I.; Lee, I.; Yang, X.

    2016-12-01

    Banded iron formations (BIFs) are widely distributed in North China Craton (NCC). Yishui BIF is located in Yishui county, western Shandong Province of NCC and is categorized as Algoma-type. The origin of iron and silica of BIFs in this region have been studied extensively for decades. The trace elemental concentrations of magnetite and hematite in iron ores from Yishui BIF are focused in this study to better understand the origins of BIF. To discuss micro-structural signatures of iron ores, X-ray diffraction (XRD), Raman spectrometer, electron microprobe (EPMA) and laser ablation inductively-coupled plasma mass spectrometer (LA-ICP-MS) were utilized. Overall geochemical data represents abundance of trace elements, oxygen fugacity (fO2) condition during the formation of iron oxides, depositional environment of Yishui BIF, implying the involvement of volcanic eruption and hydrothermal exhalation during the chemical deposition.

  15. Iron-absorption band analysis for the discrimination of iron-rich zones. [infrared spectral reflectance of Nevada iron deposits

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Most major rock units and unaltered and altered areas in the study area can be discriminated on the basis of visible and near-infrared spectral reflectivity differences recorded from satellite altitude. These subtle spectral differences are detectable by digital ratioing of the MSS bands and subsequent stretching to increase the contrast to enhance spectral differences. Hydrothermally altered areas appear as anomalous color patches within the volcanic-rock areas. A map has been prepared which can be regarded as an excellent reconnaissance exploration map, for use in targeting areas for more detailed geological, geochemical, and geophysical studies. Mafic and felsic rock types are easily discriminated on the color stretched-ratio composite. The ratioing process minimizes albedo effects, leaving only the recorded characteristic spectral response. The spectra of unaltered rocks appear different from those of altered rocks, which are typically dominated by limonite and clay minerals. It seems clear that differences in spectral shape can provide a basis for discrimination of geologic material, although the relations between visible and near-infrared spectral reflectivity and mineralogical composition are not yet entirely understood.

  16. Absorption band III kinetics probe the picosecond heme iron motion triggered by nitric oxide binding to hemoglobin and myoglobin.

    PubMed

    Yoo, Byung-Kuk; Kruglik, Sergei G; Lamarre, Isabelle; Martin, Jean-Louis; Negrerie, Michel

    2012-04-05

    To study the ultrafast movement of the heme iron induced by nitric oxide (NO) binding to hemoglobin (Hb) and myoglobin (Mb), we probed the picosecond spectral evolution of absorption band III (∼760 nm) and vibrational modes (iron-histidine stretching, ν(4) and ν(7) in-plane modes) in time-resolved resonance Raman spectra. The time constants of band III intensity kinetics induced by NO rebinding (25 ps for hemoglobin and 40 ps for myoglobin) are larger than in Soret bands and Q-bands. Band III intensity kinetics is retarded with respect to NO rebinding to Hb and to Mb. Similarly, the ν((Fe-His)) stretching intensity kinetics are retarded with respect to the ν(4) and ν(7) heme modes and to Soret absorption. In contrast, band III spectral shift kinetics do not coincide with band III intensity kinetics but follows Soret kinetics. We concluded that, namely, the band III intensity depends on the heme iron out-of-plane position, as theoretically predicted ( Stavrov , S. S. Biopolymers 2004 , 74 , 37 - 40 ).

  17. Precambrian geology and bedded iron deposits of the southwestern Ruby Range, Montana

    SciTech Connect

    James, H.L.

    1990-01-01

    The Precambrian crystalline rocks of the southwestern Ruby Range, an area of about 100 square miles, can be divided roughly into three northeast-trending belts, progressively younger to the west.The oldest and most easterly belt consists of an ill-defined sequence of Early( ) or Middle( ) Archean older gneiss and schist that underlies, with structural conformity, a central belt underlain in turn by a rudely tabular mass of Middle or late Archean quartzofeldspathic gneiss that forms the crest of the range for much of its length. This quartzofeldspathic gneiss forms a basement complex to an overlying sequence of metasedimentary strata that make up the most westerly of the three belts. The Middle or Late Archean metasedimentary sequence, here named the Christensen Ranch Metasedimentary Suite, consisted originally of miogeoclinal-type sedimentary rocks, now represented by dolomite marble, diopsidic and hornblendic gneiss and schist, quartzite, mica and garnet schist, and banded iron-formation. Amphibolite of Middle or Late Archean age is an abundant rock type, occurring as generally conformable screens and sheets, some as much as several thousand feet in thickness, in each of the three main rock groups. Known or potential mineral resources include talc, graphite, and banded iron-formation. The iron-formation has been explored extensively in the Carter Creek area; these deposits are estimated to contain about 95 million tons of rock containing 28-29% iron recoverable as magnetite. The Kelly iron deposit is in the northeastern part of the Ruby Range. The iron-formation in this upthrust block has been explored by test pits and drill holes, but despite a favorable composition, the economic potential is low; deposits are estimated to be about 15 million tons containing 33% iron recoverable as magnetite.

  18. Microstructure and electronic band structure of pulsed laser deposited iron fluoride thin film for battery electrodes.

    PubMed

    Santos-Ortiz, Reinaldo; Volkov, Vyacheslav; Schmid, Stefan; Kuo, Fang-Ling; Kisslinger, Kim; Nag, Soumya; Banerjee, Rajarshi; Zhu, Yimei; Shepherd, Nigel D

    2013-04-10

    Battery electrodes in thin-film form are free of the binders used with traditional powder electrodes and present an ideal platform to obtain basic insight to the evolution of the electrode-electrolyte interface passivation layer, the formation of secondary phases, and the structural underpinnings of reversibility. This is particularly relevant to the not yet fully understood conversion electrode materials, which possess enormous potential for providing transformative capacity improvements in next-generation lithium-ion batteries. However, this necessitates an understanding of the electronic charge transport properties and band structure of the thin films. This work presents an investigation of the electron transport properties of iron fluoride (FeF2) thin-film electrodes for Li-ion batteries. FeF2 thin films were prepared by pulsed-laser deposition, and their phase purity was characterized by electron microscopy and diffraction. The grown materials are polycrystalline FeF2 with a P42/mnm crystallographic symmetry. Room-temperature Hall measurements reveal that as-deposited FeF2 is n-type: the Hall coefficients were negative, electron mobility was 0.33 cm2/(V s) and resistivity was 0.255 Ω cm. The electronic band diagram of FeF2 was obtained using a combination of ultraviolet photoelectron spectroscopy, photoluminescence, photoluminescence excitation and optical absorption, which revealed that FeF2 is a direct bandgap, n-type semiconductor whose band structure is characterized by a 3.4 eV bandgap, a workfunction of ∼4.51 eV, and an effective Fermi level that resides approximately 0.22 eV below the conduction band edge. We propose that the shallow donor levels at 0.22 eV are responsible for the measured n-type conductivity. The band diagram was used to understand electron transport in FeF2 thin film and FeF2-C composite electrodes.

  19. Origin of iron oxide spherules in the banded iron formation of the Bababudan Group, Dharwar Craton, Southern India

    NASA Astrophysics Data System (ADS)

    Orberger, Beate; Wagner, Christiane; Wirth, Richard; Quirico, Eric; Gallien, Jean Paul; Derré, Colette; Montagnac, Gilles; Noret, Aurélie; Jayananda, Mudlappa; Massault, Marc; Rouchon, Virgile

    2012-06-01

    The banded iron formation of the Bababudan Group (Western Dharwar Craton, India) is composed of millimetric to centimetric alternating quartz and grey to red Fe-oxide bands. Major phases are quartz and martite (hematized magnetite) with minor Fe-sulfides and Ca-Mg-Fe-carbonates. Micrometric Fe-oxide spherules fill cavities in discontinuous micrometric layers of Fe-oxides that occur in the massive quartz layers and at the interface of massive Fe-oxide and quartz layers. The spherules are composed of micrometric radial plates of hematite intergrown with nanometric magnetite. These spherules contain carbonaceous matter (CM) with nanometric Fe-particles and have low N contents (˜900 ppm; CM1). The spherule formation is attributed to a low temperature hydrothermal process (150-200 °C) at around 2.52 Ga, possibly favored by the presence of CM. These hydrothermal fluids dissolved diagenetic interstitial sulfides or carbonates creating cavities which, provided space for the spherule precipitation. Carbonaceous matter of semi-anthracite maturity is encapsulated in quartz grains adjacent to the Fe-oxide spherules (CM2) and it is thus concluded that CM1 and CM2 are most likely contemporaneous and of the same origin, either incorporated at the time of BIF formation or during the hydrothermal event at 2.52 Ga from the underlying phyllitised black shales. Carbonaceous matter (CM3) was also found around the Fe-oxide spherules and the martite grains. CM3 has much higher N contents (>5000 ppm), is of a lower maturity than CM1 and CM2, and is related to weathering, which is also indicated by the presence of goethite and kaolinite. The δ13C of all CMs varies from -19.4 to -24.7‰, similar to values measured in the underlying phyllitised black shales and likely reflect denitrifying microbial activity.

  20. Iron Reduction and Carbonate Precipitation by Shewanella oneidensis

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Tice, M. M.

    2011-12-01

    This study is to contribute to better understanding of how Archean microbes induced carbonate diagenesis in mats and stromatolites. Previous studies showed sulfate reduction, a common promoter of carbonate precipitation in modern mats[1], is likely to have been less effective in Archean mats in marine fluids lower in sulfate[2]. Alternatively, iron reduction produces far more alkalinity per unit carbon respired than sulfate reduction. Therefore, we hypothesize iron reduction can promote much more carbonate precipitation than sulfate reduction. Our study might also have some relevance to banded iron formation on which microbial iron reduction played a potential role[3]. To test our hypothesis, Shewanella oneidensis MR-1, a dissimilatory iron reducing bacterium will be cultured anaerobically (79%N2, 20%CO2 and 1%H2) in basal medium to trigger iron reduction. Lactate will be used as electron donor, and the electron acceptor will be fresh ferrihydrite. Culture medium will be added with various metal ions, such as Ca2+ and Mg2+, to obtain potential carbonate precipitate. Escherichia coli (with fumarate added as an electron acceptor) will be used to provide a comparison to live but non-iron- reduction cells. After 20 days incubation, precipitate will be collected, washed and identified by X-ray diffraction (XRD). Besides, iron reduction rate (ferrozine assay)[4], PH and amount of precipitate (carbonate and oxidize fractions)[5] will be measured over time to well understand how S. oneidensis drives carbonate precipitation.

  1. Composition and Origin of Archean Migmatites from Iisalmi, Central Finland

    NASA Astrophysics Data System (ADS)

    Brueckner, S. M.; Foley, S. F.; Nehring, F.; Hölttä, P.; von der Handt, A.

    2008-12-01

    Besides greenstone belts, the most known prominent rock type of the Archean is tonalite-trondhjemite- granodiorite (TTG) representing continental crust. Changes in the geochemical behavior of TTG during the Archean are explained by increasingly deep melting of the subducted slab towards the end of the Archean, resulting in increasing interaction of slab melts with the overlying mantle wedge [1]. We present major and trace element data for migmatized, late-Archean TTGs and associated amphibolites from three different locations in Central Finland. We investigated in particular the content of the transition trace elements Cr, Ni, Co and Zn within mesosome and neosome (leucosome + melanosome) of metatexitic TTGs to ascertain whether they developed by metamorphic segregation and partial melting or by another process. Our data show that some melanosomes have elevated Cr (> 70 ppm) and Ni (> 40 ppm) contents, and cannot be produced by simple partial melting of unmodified TTG with subsequent metamorphic segregation and fractional crystallization of the neosome. Rather, these 'melanosomes' represent basaltic melts, now amphibolites, which intruded syn- to early post-tectonically into the TTGs, and were subsequently deformed, giving the appearance of strongly banded metatexitic migmatites. In contrast to these 'contaminated' TTGs, most of the investigated samples show typical TTG characteristics, but no particular geochemical evidence for an increasing interaction with an overlying mantle wedge. Contamination by basaltic dyking may be an alternative explanation for the increase in MgO and decrease in SiO2 of migmatitic TTG with time during the Archean. [1] Martin, H. and Moyen, J.-F., 2002: Geology 30: 319-322.

  2. Photosynthesis in the Archean era.

    PubMed

    Olson, John M

    2006-05-01

    The earliest reductant for photosynthesis may have been H2. The carbon isotope composition measured in graphite from the 3.8-Ga Isua Supercrustal Belt in Greenland is attributed to H2-driven photosynthesis, rather than to oxygenic photosynthesis as there would have been no evolutionary pressure for oxygenic photosynthesis in the presence of H2. Anoxygenic photosynthesis may also be responsible for the filamentous mats found in the 3.4-Ga Buck Reef Chert in South Africa. Another early reductant was probably H2S. Eventually the supply of H2 in the atmosphere was likely to have been attenuated by the production of CH4 by methanogens, and the supply of H2S was likely to have been restricted to special environments near volcanos. Evaporites, possible stromatolites, and possible microfossils found in the 3.5-Ga Warrawoona Megasequence in Australia are attributed to sulfur-driven photosynthesis. Proteobacteria and protocyanobacteria are assumed to have evolved to use ferrous iron as reductant sometime around 3.0 Ga or earlier. This type of photosynthesis could have produced banded iron formations similar to those produced by oxygenic photosynthesis. Microfossils, stromatolites, and chemical biomarkers in Australia and South Africa show that cyanobacteria containing chlorophyll a and carrying out oxygenic photosynthesis appeared by 2.8 Ga, but the oxygen level in the atmosphere did not begin to increase until about 2.3 Ga.

  3. Using modern ferruginous habitats to interpret Precambrian banded iron formation deposition

    NASA Astrophysics Data System (ADS)

    Koeksoy, Elif; Halama, Maximilian; Konhauser, Kurt O.; Kappler, Andreas

    2016-07-01

    Early Earth processes are typically identified through the study of mineralogical, elemental and isotopic features in the rock record, including Precambrian banded iron formations (BIF). However, post-depositional processes often obscure the primary geochemical signals, making the use of BIF as proxies for paleo-seawater and the paleo-biosphere potentially imprecise. Thus, alternative approaches are required to complement the information gained from the rock record in order to fully understand the distinctive biogeochemical processes on ancient Earth. Simulating these conditions in the laboratory is one approach, but this approach can never fully replicate the complexity of a natural environment. Therefore, finding modern environments with a unique set of geochemical and microbiological characteristics to use as analogues for BIF depositional environments can provide invaluable information. In this review, we provide an overview of the chemical, physical and biological parameters of modern, ferruginous lakes that have been used as analogue BIF environments.

  4. The photochemistry of manganese and the origin of banded iron formations

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Holland, H. D.

    1992-01-01

    The origin of the deposition of superior-type Precambrian banded iron formations (BIFs) is investigated in experiments where the effect of UV radiation on dissolved manganese was studied to determine if the commonly accepted photochemical model for BIF formation is consistent with the distribution of Mn in BIFs. Solutions containing 0.56 M NaCl and about 180 microM MnCl2, with or without 3 to 200 microM FeCl2 were irradiated with filtered and unfiltered UV light for up to 8 hrs; the solutions were deaerated and buffered to a pH of 7, and the experiments were conducted under oxygen-free atmosphere. Data on the rate of manganese photooxidation confirmed that a photochemical model for the origin of oxide facies BIFs is consistent with field observations.

  5. The photochemistry of manganese and the origin of banded iron formations

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Holland, H. D.

    1992-01-01

    The origin of the deposition of superior-type Precambrian banded iron formations (BIFs) is investigated in experiments where the effect of UV radiation on dissolved manganese was studied to determine if the commonly accepted photochemical model for BIF formation is consistent with the distribution of Mn in BIFs. Solutions containing 0.56 M NaCl and about 180 microM MnCl2, with or without 3 to 200 microM FeCl2 were irradiated with filtered and unfiltered UV light for up to 8 hrs; the solutions were deaerated and buffered to a pH of 7, and the experiments were conducted under oxygen-free atmosphere. Data on the rate of manganese photooxidation confirmed that a photochemical model for the origin of oxide facies BIFs is consistent with field observations.

  6. Extraterrestrial demise of banded iron formations 1.85 billion years ago

    USGS Publications Warehouse

    Slack, J.F.; Cannon, W.F.

    2009-01-01

    In the Lake Superior region of North America, deposition of most banded iron formations (BIFs) ended abruptly 1.85 Ga ago, coincident with the oceanic impact of the giant Sudbury extraterrestrial bolide. We propose a new model in which this impact produced global mixing of shallow oxic and deep anoxic waters of the Paleoproterozoic ocean, creating a suboxic redox state for deep seawater. This suboxic state, characterized by only small concentrations of dissolved O2 (???1 ??M), prevented transport of hydrothermally derived Fe(II) from the deep ocean to continental-margin settings, ending an ???1.1 billion-year-long period of episodic BIF mineralization. The model is supported by the nature of Precambrian deep-water exhalative chemical sediments, which changed from predominantly sulfide facies prior to ca. 1.85 Ga to mainly oxide facies thereafter. ?? 2009 Geological Society of America.

  7. Reassignment of the Iron (3) Absorption Bands in the Spectra of Mars

    NASA Technical Reports Server (NTRS)

    Sherman, D. M.

    1985-01-01

    Absorption features in the near-infrared and visible region reflectance spectra of Mars have been assigned to specific Fe (3+) crystal-field and o(2-) yields Fe(3+) charge transfer transitions. Recently, near-ultraviolet absorption spectra of iron oxides were obtained and the energies of o(2-) yields Fe(3+) charge-transfer (LMCT) transitions were determined from accurate SCF-X # alpha-SW molecular orbital calculations on (FeO6)(9-) and (FeO4)(5-) clusters. Both the theoretical and experimental results, together with existing data in the literature, show that some of the previous Fe(3+) band assignments in the spectra of Mars need to be revised. The theory of Fe(3+) spectra in minerals is discussed and applied to the spectrum of Mars.

  8. Anoxygenic growth of cyanobacteria on Fe(II) and their associated biosignatures: Implications for biotic contributions to Precambrian Banded Iron Formations

    NASA Astrophysics Data System (ADS)

    Parenteau, M.; Jahnke, L. L.; Cady, S. L.; Pierson, B.

    2011-12-01

    Banded Iron Formations (BIFs) are widespread Precambrian sedimentary deposits that accumulated in deep ocean basins or shallow platformal areas with inputs of reduced iron (Fe(II)) and silica from deep ocean hydrothermal activity. There is debate as to whether abiotic or biotic mechanisms were responsible for the oxidation of aqueous Fe(II) and the subsequent accumulation of ferric iron (Fe(III)) mineral assemblages in BIFs. Biotic Fe(II) oxidation could have occurred indirectly as a result of the photosynthetic production of oxygen by cyanobacteria, or could have been directly mediated by anoxygenic phototrophs or chemolithotrophs. The anoxygenic use of Fe(II) as an electron donor for photosynthesis has also been hypothesized in cyanobacteria, representing another biotic mechanism by which Fe(II) could be oxidized in BIFs. This type of photoferrotrophic metabolism may also represent a key step in the evolution of oxygenic photosynthesis. Members of our group have speculated that an intermediate reductant such as Fe(II) could have acted as a transitional electron donor before water. The widespread abundance of Fe(II) in Archean and Neoproterozoic ferruginous oceans would have made it particularly suitable as an electron donor for photosynthesis. We have been searching for modern descendants of such an ancestral "missing link" cyanobacterium in the phototrophic mats at Chocolate Pots, a hot spring in Yellowstone National Park with a constant outflow of anoxic Fe(II)-rich thermal water. Our physiological ecology study of the Synechococcus-Chloroflexi mat using C-14 bicarbonate uptake and autoradiography experiments revealed that the cyanobacteria grow anoxygenically using Fe(II) as an electron donor for photosynthesis in situ. An initial set of similar experiments substituting C-13 bicarbonate as the tracer was used to characterize labeling of the community lipid biomarker signature and confirm the C-14 results. Under light conditions with and without Fe(II), the C

  9. Iron isotope and REE+Y composition of the Cauê banded iron formation and related iron ores of the Quadrilátero Ferrífero, Brazil

    NASA Astrophysics Data System (ADS)

    Mendes, Mônica; Lobato, Lydia M.; Kunzmann, Marcus; Halverson, Galen P.; Rosière, Carlos A.

    2017-02-01

    The Minas Supergroup banded iron formations (BIFs) of the Brazilian Quadrilátero Ferrífero (QF) mineral province experienced multiple deformational events synchronous with hypogene mineralization, which resulted in the metamorphism of BIFs to itabirites and their upgrade to high-grade iron ore. Here, we present rare earth element and yttrium (REE+Y) compositions together with iron isotope ratios of itabirites and their host iron orebodies from 10 iron deposits to constrain environmental conditions during BIF deposition and the effects of hypogene iron enrichment. The REE+Y characteristics of itabirites (positive Eu anomaly and LREE depletion) indicate hydrothermal iron contribution to the Minas basin. Iron isotope data and Ce anomalies suggest BIFs were precipitated by a combination of anoxic biological-mediated ferrous iron oxidation and abiotic oxidation in an environment with free oxygen (such as an oxygen oasis), perhaps related to increase in oxygen concentrations before the Great Oxidation Event (GOE). The similarity of the REE+Y composition of the itabirites from the different QF deformational domains, as well as to other Superior-type BIFs, indicates that the metamorphism and synchronous hydrothermal mineralization did not significantly affect the geochemical signature of the original BIFs. However, iron isotope compositions of iron ore vary systematically between deformational domains of the QF, likely reflecting the specific mineralization features in each domain.

  10. Iron isotope and REE+Y composition of the Cauê banded iron formation and related iron ores of the Quadrilátero Ferrífero, Brazil

    NASA Astrophysics Data System (ADS)

    Mendes, Mônica; Lobato, Lydia M.; Kunzmann, Marcus; Halverson, Galen P.; Rosière, Carlos A.

    2016-04-01

    The Minas Supergroup banded iron formations (BIFs) of the Brazilian Quadrilátero Ferrífero (QF) mineral province experienced multiple deformational events synchronous with hypogene mineralization, which resulted in the metamorphism of BIFs to itabirites and their upgrade to high-grade iron ore. Here, we present rare earth element and yttrium (REE+Y) compositions together with iron isotope ratios of itabirites and their host iron orebodies from 10 iron deposits to constrain environmental conditions during BIF deposition and the effects of hypogene iron enrichment. The REE+Y characteristics of itabirites (positive Eu anomaly and LREE depletion) indicate hydrothermal iron contribution to the Minas basin. Iron isotope data and Ce anomalies suggest BIFs were precipitated by a combination of anoxic biological-mediated ferrous iron oxidation and abiotic oxidation in an environment with free oxygen (such as an oxygen oasis), perhaps related to increase in oxygen concentrations before the Great Oxidation Event (GOE). The similarity of the REE+Y composition of the itabirites from the different QF deformational domains, as well as to other Superior-type BIFs, indicates that the metamorphism and synchronous hydrothermal mineralization did not significantly affect the geochemical signature of the original BIFs. However, iron isotope compositions of iron ore vary systematically between deformational domains of the QF, likely reflecting the specific mineralization features in each domain.

  11. Deformation-induced silica redistribution in banded iron formation, Hamersley Province, Australia

    NASA Astrophysics Data System (ADS)

    Egglseder, Mathias S.; Cruden, Alexander R.; Tomkins, Andrew G.; Wilson, Christopher J. L.

    2016-12-01

    The formation of banded iron formations (BIF) remains controversial despite their potential to provide key information on Precambrian atmospheres and hydrospheres. It is widely agreed that BIF are chemical sedimentary rocks comprising alternating layers of iron oxides and chert formed from poorly known precursor phases. Many models address the chemical transformation of such precursor iron oxide phases into BIF during compaction and diagenesis. However, the formation of chert and the influence of physical forces in this process have received less attention. Microstructural analysis of BIF from the Hamersley Province (Western Australia) reveals that significant amounts of silica were redistributed by dissolution-precipitation creep during both diagenesis and regional-scale deformation. This physicochemical process led to silica remobilisation and volume loss by stress-induced dissolution of microcrystalline quartz in an aqueous fluid. The dissolved solid phase was transported by diffusion and fluid flow along grain boundaries or within available porosity and then reprecipitated in low-pressure zones, leading to local volume increase. These processes were further enhanced by rheological contrasts between different minerals, resulting in significant variations of chert band thickness. Microstructural observations combined with quantitative microfabric analysis reveal domains of crystallographic preferred orientations (CPO) in quartz grains within chert layers. The CPO fabrics record strain regimes (e.g., pure and simple shear, extension and shortening) that modified quartz aggregates by dissolution-precipitation creep, providing new insights into the metamorphic and deformation history of BIF. We document microstructures that indicate that non-coaxial deformation was active during diagenesis and subsequent deformation of the Hamersley Province BIF. Further, relatively undeformed chert layers may have been similarly affected by significant amounts of dissolution

  12. Phase equilibria at alkali-rich early proterozoic banded iron formation, Kursk magnetic anomaly, Russia

    NASA Astrophysics Data System (ADS)

    Sayko, K. A.; Gerasimov, V. Yu.; Poskryakova, M. V.

    2003-04-01

    Banded iron formation (BIF) rocks of Kursk Magnetic anomaly (KMA) are distinguished from well known Precambrian BIF by the alkali enrichment and aluminum depletion and as a total absence of the aluminum bearing minerals. From layered silicates the maximum saturated potassium phases seladonite and tetraferribiotite are of widespread occurrence instead stilpnomelane, minnesotaite and greenalite commonplace for low grade BIF. It has been widely distribution of the seladonite with the assemblage of tetraferribiotite, magnetite, hematite, and quartz distinguish ferruginous quartzites Mikhailovsk iron deposit (KMA) from well known Precambrian BIF of the ancient shields. From Fe-Mg silicates the aegirine, ribeckite and aluminum-less chlorite are present. The hematite and magnetite stability in the ferruginous quartzites assemblages suggest the high values of the oxygen fugacity near magnetite-hematite buffer. This is confirmed by somewhat increasing XMg values for seladonite, tetraferribiotite, chlorite, and ribeckite. The minerals producing with large amounts of ferric iron (seladonite, tetraferribiotite) in the ferruginous quartzites of Mikhailovsk iron deposit is caused by the oxygen fugacity high values. For example the ferrichamosite (Fe_5Fe3+(Fe3+Si_3)O10(OH)_8) is produced in place of the commonplace for the low-grade BIF greenalite (Fe_6Si_4O10(OH)_8). As a whole chlorites are a rarity in BIFs (Laird, 1989) through low rocks aluminum content and represent by chamosite (Gole, 1981), clinochlore and ripidolite (Miyano, Beukes, 1997). Chlorite in studied ferruginous quartzites has a uncommon aluminumless composition with high Fe3+ content and corresponds hypothetical end-member of chamosite - "ferrichamosite" and "ferriclinochlore" - "ferrichamosite" series (Burt, 1989). Uncommon aluminumless chlorite composition assumes that it appears during low-grade metamorphism and possible catagenesis: Mag + Hem + Qtz rightarrow H_2O rightarrow Fe-Chm + O_2 Sid + Qtz + Mag

  13. Empirical Records of Environmental Change across the Archean-Proterozoic Transition

    NASA Astrophysics Data System (ADS)

    Kaufman, A. J.

    2011-12-01

    Time-series geochemical analyses of scientific drill cores intersecting the Archean-Proterozoic transition suggest a coupling of environmental and biological change that culminated in the pervasive oxygenation of Earth's atmosphere and oceans. Elemental and multiple isotope measurements of sedimentary archives, including carbonate, shale, and banded iron-formation from Western Australia, South Africa, Brazil, and southern Canada, indicate important changes in the carbon, sulfur, and nitrogen cycles that monitor the redox state of the oceans and the cyanobacterial buildup of atmospheric oxygen and ozone. In response, continental weathering would have increased, resulting in the enhanced delivery of sulfate and nutrients to seawater, further stimulating photoautotrophic fluxes of oxygen to surface environments. The positive feedback may additionally be responsible for the decline of atmospheric methane and surface refrigeration, represented by a series of discrete ice ages beginning around 2.4 billion years ago, due to the loss of greenhouse capacity during a time of lower solar luminosity. While speculative, the linkage of surface oxidation with enhanced nutrient supply and development of stratospheric sunscreen soon after the Archean-Proterozoic boundary suggests that the earliest perturbation in the carbon cycle may be associated with the rapid expansion of single-celled eukaryotes. Both sterol synthesis in eukaryotes and aerobic respiration require significant levels of oxygen in the ambient environment. Hence, Earth's earliest ice age(s) and onset of a modern and far more energetic carbon cycle may have been directly related to the global expansion of cyanobacteria that released oxygen to the environment, and of eukaryotes that respired it.

  14. Biosignatures of early life in >3.8Ga Banded Iron Formations?

    NASA Astrophysics Data System (ADS)

    Dodd, Matthew; Papineau, Dominic

    2015-04-01

    Almost all Eoarchean sedimentary rocks have undergone high grade metamorphism. However, small enclaves of Banded Iron Formations (BIFs) from the south-west margin of the Nuvvuagittuq supracrustal belt (NSB-Canada) are now the first candidate Eoarchean BIFs metamorphosed to only around the greenschist facies. Ellipsoidal ribbons of microcrystalline hematite in 1-4 micron chert and chert-hematite rosettes are preserved and largely undeformed, which point to diagenetic structures metamorphosed at low grade facies. Stilpnomelane is common as a prograde mineral in these rocks, which suggests the upper limits of metamorphic conditions where 430-500˚C at 5-6 Kbars; this is reinforced by the presence of ripidolite which is not seen in BIFs subjected to above 500˚C (Miyano & Klein, 1989). The exceptional low metamorphic grade of these Eoarchean rocks has enabled the preservation of diagenetic structures and mineral associations of disordered organic carbon with pyrite, apatite, carbonate and phyllosilicates, thus providing excellent opportunities to search for possible remains of some of the most primitive life. Noteworthy mineral assemblages include microscopic apatite and carbon inclusions in phyllosilicate and layered-pyritiferous, ring structures that contain disordered organic carbon. Raman spectra display broad D and G peaks and lack 2nd-order carbon peaks, which are indicative of disordered carbon, also raman peaks around 1440 cm-1 represent stretching of C-H bonds in the carbonaceous material. Focused ion beam milling and transmission electron microscope analysis of the milled foils reveals the structure and chemistries of these potential biosignatures down to the nanoscale and details the diverse relations of organic carbon in Earth's oldest sedimentary rocks. References Miyano, T. & Klein, C., 1989. Phase equilibria in the system K20 - FeO - MgO - AIzO3 - SiO2 - H20 - CO2 and the stability limit of stilpnomelane in metamorphosed Precambrian iron

  15. Stable Ni Isotope Fractionation In Systems Relevant To Banded Iron-Formations

    NASA Astrophysics Data System (ADS)

    Howe, H.; Spivak-Birndorf, L.; Newkirk, D.; Wasylenki, L. E.

    2013-12-01

    An important event in the evolution of life was the rise of atmospheric oxygen during the Proterozoic. Preceding the rise in O2 was a decline in atmospheric methane concentrations, likely due to decreased productivity of methanogenic Archaea. Based on Ni concentrations in banded iron formations (BIF), Konhauser et al. (2009) hypothesized that mantle cooling during the Archaean reduced the amount of Ni present in igneous rocks and in oceans, causing a Ni shortage for methanogens. Methanogens use Ni for cofactor F430, a catalyst during methanogenesis. To confirm Konhauser's hypothesis, a proxy for methanogen productivity in the rock record is necessary, in order to determine whether a decline in methanogen populations correlated with the observed decrease in maximum Ni contents in rocks from the Archaean. Ni isotope ratios recorded in BIF (oceanic sediments consisting of layered iron oxides and cherts) may provide evidence of a decline in methane production. Cameron et al. (2009) have shown that methanogens preferentially assimilate light Ni isotopes. Thus Ni isotopes in BIF have potential use as biomarkers for methanogenesis. Ferrihydrite was almost certainly the dominant Fe-oxide phase precipitating during BIF deposition. Ferrihydrite nanoparticles have large surface areas and are able to remove aqueous metals from solution through multiple sorption mechanisms. Thus we investigated experimentally the relationship between Ni isotopes in solution and Ni associated with ferrihydrite. We experimented with two different sorption mechanisms: adsorption of aqueous Ni onto surfaces of synthetic ferrihydrite and coprecipitation of aqueous Ni with ferrihydrite. Preliminary results indicate that light isotopes are preferentially associated with ferrihydrite in both adsorption and coprecipitation experiments, with an average fractionation of 0.3‰ in terms of δ60/58 Ni. Future experiments will investigate whether the observed isotope fractionations reflect kinetics or

  16. Early diagenetic quartz formation at a deep iron oxidation front in the Eastern Equatorial Pacific - A modern analogue for banded iron/chert formations?

    NASA Astrophysics Data System (ADS)

    Meister, Patrick; Chapligin, Bernhard; Picard, Aude; Meyer, Hanno; Fischer, Cornelius; Rettenwander, Daniel; Amthauer, Georg; Vogt, Christoph; Aiello, Ivano W.

    2014-07-01

    concentration is locally decreased below opal-A and opal-CT saturation allowing for precipitation of the thermodynamically more stable phase: quartz. This mechanism of chert formation at the iron oxidation front in suboxic zones may explain why early-diagenetic microcrystalline chert only occurs sporadically in modern marine sediments. It may also serve as a modern analogue for the deposition of much more abundant banded iron/chert formations at the time of the great oxidation event around 2.4 Ga BP, which was probably the largest iron oxidation front in Earth's history.

  17. The reliability of ∼2.9 Ga old Witwatersrand banded iron formations (South Africa) as archives for Mesoarchean seawater: Evidence from REE and Nd isotope systematics

    NASA Astrophysics Data System (ADS)

    Viehmann, Sebastian; Bau, Michael; Smith, Albertus J. B.; Beukes, Nicolas J.; Dantas, Elton L.; Bühn, Bernhard

    2015-11-01

    Pure marine chemical sediments, such as (Banded) Iron Formations, (B)IFs, are archives of geochemical proxies for the composition of Precambrian seawater and may provide information about the ancient hydrosphere-atmosphere system. We here present rare earths and yttrium (REY) and high precision Sm-Nd isotope data of ∼2.90 Ga old Superior-type BIFs from the Witwatersrand Supergroup, South Africa, and compare those with data for near-contemporaneous BIFs from the correlative Pongola Supergroup (Superior-type BIF) and from the Pietersburg Greenstone Belt (Algoma-type IF), respectively. All Witwatersrand samples studied display the typical general REY distribution of Archean seawater, but their REY anomalies are less pronounced and their immobile element concentrations are higher than those of other pure (B)IFs. These observations indicate the presence of significant amounts of detrital aluminosilicates in the Witwatersrand BIFs and question the reliability of the Contorted Bed and Water Tower BIFs (Parktown Formation, West Rand Group) as archives of Mesoarchean seawater. Significant post-depositional alteration of the REY budget and the Sm-Nd isotope system is not observed. The Nd isotopic compositions of the purest BIF samples, i.e. the most reliable archives for Witwatersrand seawater, show initial εNd values between -3.95 and -2.25. This range is more negative than what is observed in ambient shales, indicating a decoupling of suspended and dissolved loads in the "near-shore" Witwatersrand Basin seawater. However, εNd range overlaps with that of the correlative Pongola BIF (Alexander et al., 2008). The deeper-water Algoma-type Pietersburg BIF shows more positive (i.e. more mantle-like) εNd2.9Ga values, supporting the hypothesis that a significant amount of its REY inventory was derived from black smoker-style, high-temperature hydrothermal fluids that had altered seafloor basalts. In marked contrast, the dissolved REY budgets (including the Nd isotopic

  18. The photochemistry of manganese and the origin of Banded Iron Formations.

    PubMed

    Anbar, A D; Holland, H D

    1992-07-01

    The photochemical oxidation of Fe(2+) -hydroxide complexes dissolved in anoxic Precambrian oceans has been suggested as a mechanism to explain the deposition of Banded Iron Formations (BIFs). Photochemical studies have not yet addressed the low levels of manganese in many of these deposits, which probably precipitated from solutions bearing similar concentrations of Fe2+ and Mn2+. Depositional models must also explain the stratigraphic separation of iron and manganese ores in manganiferous BIFs. In this study, solutions containing 0.56 M NaCl and approximately 180 micromoles MnCl2 with or without 3 to 200 micromoles FeCl2 were irradiated with filtered and unfiltered UV light from a medium-pressure mercury-vapor lamp for up to 8 hours. The solutions were deaerated and buffered to pH approximately 7, and all experiments were conducted under O2-free (< 1 ppm) atmospheres. In experiments with NaCl + MnCl2, approximately 20% of the Mn2+ was oxidized and precipitated as birnessite in 8 hours. Manganese precipitation was only observed when light with lambda < 240 nm was used. In experiments with NaCl + MnCl2 + FeCl2, little manganese was lost from solution, while Fe2+ was rapidly oxidized to Fe3+ and precipitated as gamma-FeOOH or as amorphous ferric hydroxide. The Mn:Fe ratio of these precipitates was approximately 1:50, similar to the ratios observed in BIFs. A strong upper limit on the rate of manganese photo-oxidation during the Precambrian is estimated to be 0.1 mg cm-2 yr-1, a factor of 10(3) slower than the rate of iron photo-oxidation considered reasonable in BIF depositional basins. Thus, a photochemical model for the origin of oxide facies BIFs is consistent with field observations, although models that invoke molecular O2 as the oxidant of Fe2+ and Mn2+ are not precluded. Apparently, oxide facies BIFs could have formed under anoxic, as well as under mildly oxygenated atmospheres.

  19. Syntheses, crystal and band structures, and optical properties of a selenidoantimonate and an iron polyselenide

    SciTech Connect

    Liu, Guang-Ning; Zhu, Wen-Juan; Zhang, Ming-Jian; Xu, Bo; Liu, Qi-Sheng; Zhang, Zhen-Wei; Li, Cuncheng

    2014-10-15

    A new selenidoantimonate (CH{sub 3}NH{sub 4})[Mn(phen){sub 2}](SbSe{sub 4})·phen (1, phen=1,10-phenanthroline) and an iron polyselenide [Fe(phen){sub 2}](Se{sub 4}) (2) were obtained under hydro(solvo)thermal conditions. Compound 1 represents the first example of a selenidoantimonate anion as a ligand to a transition-metal π-conjugated ligand complex cation. Compound 2 containing a κ{sup 2}Se{sup 1},Se{sup 4} chelating tetraselenide ligand, represents the only example of a tetraselenide ligand to a Fe complex cation. Compounds 1 and 2 exhibit optical gaps of 1.71 and 1.20 eV, respectively and their thermal stabilities have been investigated by thermogravimetric analyses. The electronic band structure along with the density of states calculated by the DFT method indicate that the optical absorptions mainly originate from the charge transitions from the Se 4p and Mn 3d states to the phen p–π{sup ⁎} orbital for 1 and the Se 4p and Fe 3d states to the phen p–π{sup ⁎} orbital for 2. - Graphical abstract: Two metal–Se complexes, representing the only example of a selenidoantimonate ligand to a TM π-conjugated ligand complex, and a tetraselenide ligand to a Fe complex cation, were synthesized. - Highlights: • The first π-conjugated ligand complex containing selenidoantimonate was isolated. • The first example of a tetraselenide ligand to a Fe complex cation was reported. • We found that phen can adjust the optical band gaps of metal–Se complexes.

  20. Spectral properties of Lake Superior banded iron formation: application to Martian hematite deposits.

    PubMed

    Fallacaro, Alicia; Calvin, Wendy M

    2006-08-01

    Several locations have been identified on Mars that expose bulk, coarsely crystalline gray hematite. These deposits have been interpreted as being sedimentary and formed in aqueous environments. Lake Superior Type (LST) banded iron formation (BIF) was investigated as a spectral and possible process analog to these deposits. In northern Michigan, LST BIF formed in a sedimentary, continental shelf or shallow basin environment under stable tectonic conditions, and the oxide facies contains gray, crystalline hematite. These deposits are Proterozoic in age and contain microfossils associated with the early diversification of life on Earth. Samples of the hematite-bearing oxide facies, as well as the carbonate facies, were collected and analyzed for their spectral and geochemical characteristics. Sample spectra were measured in the visible, near-infrared, and thermal infrared for comparison with remote and in situ spectra obtained at Mars. Thin section analysis, as well as X-ray diffraction and scanning electron microscopy measurements, were performed to determine detailed geochemistry. There is no evidence for BIF at Opportunity's Meridiani landing site, and the results of this work will provide useful data for determining whether BIFs exist elsewhere on Mars and are, thus, relevant to current and future Mars exploration missions.

  1. Petrology and geochemistry of REE-rich Mafé banded iron formations (Bafia group, Cameroon)

    NASA Astrophysics Data System (ADS)

    Nkoumbou, Charles; Gentry, Fuh Calistus; Tchakounte Numbem, Jacqueline; Belle Ekwe Lobé, Yolande Vanessa; Nwagoum Keyamfé, Christin Steve

    2017-07-01

    Archaean-Paleoproterozoic foliated amphibole-gneisses and migmatites interstratified with amphibolites, pyroxeno-amphibolites and REE-rich banded-iron formations outcrop at Mafé, Ndikinimeki area. The foliation is nearly vertical due to tight folds. Flat-lying quartz-rich mica schists and quartzites, likely of Pan-African age, partly cover the formations. Among the Mafé BIFs, the oxide BIF facies shows white layers of quartz and black layers of magnetite and accessory hematite, whereas the silicate BIF facies is made up of thin discontinuous quartz layers alternating with larger garnet (almandine-spessartine) + chamosite + ilmenite ± Fe-talc layers. REE-rich oxide BIFs compositions are close to the East Pacific Rise (EPR) hydrothermal deposit; silicate BIFs plot midway between EPR and the associated amphibolite, accounting for a contamination by volcanic materials, in addition to the hydrothermal influence during their oceanic deposition. The association of an oceanic setting with alkaline and tholeiitic magmatism is typical of the Algoma-type BIF deposit. The REE-rich BIFs indices recorded at Mafé are interpreted as resulting from an Archaean-Paleoproterozoic mineralization.

  2. Hematite from Natural Iron Stones as Microwave Absorbing Material on X-Band Frequency Ranges

    NASA Astrophysics Data System (ADS)

    Zainuri, Mochamad

    2017-05-01

    This study has been investigated the effect of hematite as microwave absorbing materials (RAM) on X-Band frequency ranges. Hematite was succesfully processed by coprecipitation method and calcined at 500 °C for 5 hour. It was synthesized from natural iron stones from Tanah Laut, South Kalimantan, Indonesia. The products were characterized by X-ray diffraxtion (XRD), conductivity measurement, Vibrating Sample Magnetometer (VSM), and Vector Network Analyzer (VNA). The result was shown that hematite has conductivity value on (2.5-3).10-7 S/cm and be included as dielectric materials. The hysterisis curve was shown that hematite was a super paramagnetic materials. The product was mixed on paint with procentage 10% of total weight and coated on steel grade AH36 with spray methods. Then, the maximum of reflection loss on x - band’s frequency range (8,2-12,4) GHz was -7 dB on frequency of 10.5 GHz. It mean that almost 50% electromagnetic energy was absorbed by hematite.

  3. The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations

    SciTech Connect

    Derry, L.A.; Jacobsen, S.B. )

    1990-11-01

    The authors present REE patterns determined by isotope dilution mass spectrometry from 20 Precambrian banded iron formation (BIF) samples, ranging in age from 3.4 to 0.65 Ga. The samples studied represent a variety of depositional settings and sedimentary facies. The oxide facies BIFs typically show LREE depleted patterns relative to shales, with (La/Nd){sub N} {ge} 1 and (La/Yb){sub N} mostly 0.3-0.8. The NASC-normalized REE patterns from the oxide facies BIFs are similar to modern metalliferous sediments, except for Ce and Eu. Positive Eu anomalies were found in all BIF samples, whereas Ce anomalies were variable. Both the oxide facies BIFs and modern metalliferous sediments typically have La/Yb ratios slightly higher than seawater. The REE data suggest that the Fe and REEs in BIFs coprecipitated from seawater as Fe oxy-hydroxides. The variable Ce anomalies are probably the result of diagenetic processes and redox cycling, similar to modern reducing environments. Comparison of mass balance estimates for REEs in the oceans based on Nd isotopic composition and on Eu anomalies results in a large discrepancy, which probably is a result of non-conservative behavior of Eu during mining of hydrothermal waters with ambient seawater. The REE data are consistent with a model for BIFs in which Fe and REEs derived from submarine hydrothermal systems are upwelled from the deep ocean, mixing with oxidizing surface water (with some continentally derived REEs), and deposited on the continental margins.

  4. Composition and origin of Archean lower crust, Northern Tanzania

    NASA Astrophysics Data System (ADS)

    Mansur, A. T.; Manya, S.; Rudnick, R.

    2008-12-01

    Granulite-facies xenoliths from tuff cones erupted on the margin of the Tanzanian craton and within the adjacent Mozambique belt in northern Tanzania offer an opportunity to assess the role of lower crustal processes in the tectonic evolution of these two terranes. Both terranes are Archean, but record very different histories, starting in the Proterozoic and continuing today. Whereas the craton experienced little metamorphism or igneous activity following its stabilization around 2.8 Ga, Archean rocks of the Mozambique belt in the study area experienced at least one episode of high-grade metamorphism during the East African orogeny (ca. 640 Ma). Today, the East African rift exists at the contact between the Mozambique belt and the craton, implying a fundamental lithospheric weakness at this boundary. Granulite xenoliths come from Labait, on the craton margin, and Lashaine and Naibor Soito in the metamorphic belt. Most xenoliths are mafic and all are igneous in origin. Cratonic xenoliths (pl- opx±cpx±gt±hbl) are primarily anhydrous two-pyroxene granulites that likely originated as crystallized high-Ni, Archean basaltic melts. Xenoliths from the Mozambique belt are dominated by mafic granulites (pl-cpx-gt±opx) at Lashaine and banded, mafic to intermediate granulites at Naibor Soito. Positive Sr and Eu anomalies imply that the Lashaine granulites originated as plagioclase cumulates. The wide range in SiO2 (47-65 wt%) and correlation of Ni-MgO in the Naibor Soito xenoliths suggests they may have originated as igneous rocks that subsequently underwent partial melting to form the mafic (pl- opx±cpx±gt±hbl±bt) and felsic bands (pl-qtz-opx±kfs). U-Pb zircon ages for xenoliths from both terranes are Archean, as are most TDM ages, though younger TDM ages are seen in some Lashaine samples that were contaminated by rift magma. High pressures (up to 2.7GPa) are recorded by the Mozambique belt xenoliths, suggesting equilibration in thickened crust during the East

  5. Electromagnetic properties and microwave absorption properties of BaTiO 3-carbonyl iron composite in S and C bands

    NASA Astrophysics Data System (ADS)

    Rui-gang, Yang

    2011-07-01

    BaTiO3 powders are prepared by sol-gel method. The carbonyl iron powder is prepared via thermal decomposition of iron pentacarbonyl. Then BaTiO3-carbonyl iron composite with different mixture ratios was prepared using the as-prepared material. The structure, morphology, and properties of the composites are characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, scanning electron microscopy (SEM), and a network analyzer. The complex permittivity and reflection loss of the composites have been measured at different microwave frequencies in S- and C-bands employing vector network analyzer model PNA 3629D vector. The effect of the mass ratio of BaTiO3/carbonyl iron on the microwave loss properties of the composites is investigated. A possible microwave absorbing mechanism of BaTiO3-carbonyl iron composite has been proposed. The BaTiO3-carbonyl iron composite can find applications in suppression of electromagnetic interference, and reduction of radar signature.

  6. Spin-wave band-pass filters based on yttrium iron garnet films for tunable microwave photonic oscillators

    NASA Astrophysics Data System (ADS)

    Ustinov, A. B.; Drozdovskii, A. V.; Nikitin, A. A.; Kalinikos, B. A.

    2015-12-01

    The paper reports on development of tunable band-pass microwave filters for microwave photonic generators. The filters were fabricated with the use of epitaxial yttrium iron garnet films. Principle of operation of the filters was based on excitation, propagation, and reception of spin waves. In order to obtain narrow pass band, the filtering properties of excitation and reception antennas were exploited. The filters demonstrated insertion losses of 2-3 dB, bandwidth of 25-35 MHz, and tuning range of up to 1.5 GHz in the range 3-7 GHz.

  7. Large S-33 Anomalies in Late Archean Carbonacous Shales

    NASA Astrophysics Data System (ADS)

    Ono, S.; Rumble, D.; Pavlov, A.; Kharecha, P.; Kasting, J. F.

    2002-12-01

    been favored in an anoxic and iron-rich ocean in the late Archean Earth.

  8. Assessing the effects of ultraviolet radiation on the photosynthetic potential in Archean marine environments

    NASA Astrophysics Data System (ADS)

    Avila-Alonso, Dailé; Baetens, Jan M.; Cardenas, Rolando; de Baets, Bernard

    2017-07-01

    In this work, the photosynthesis model presented by Avila et al. in 2013 is extended and more scenarios inhabited by ancient cyanobacteria are investigated to quantify the effects of ultraviolet (UV) radiation on their photosynthetic potential in marine environments of the Archean eon. We consider ferrous ions as blockers of UV during the Early Archean, while the absorption spectrum of chlorophyll a is used to quantify the fraction of photosynthetically active radiation absorbed by photosynthetic organisms. UV could have induced photoinhibition at the water surface, thereby strongly affecting the species with low light use efficiency. A higher photosynthetic potential in early marine environments was shown than in the Late Archean as a consequence of the attenuation of UVC and UVB by iron ions, which probably played an important role in the protection of ancient free-floating bacteria from high-intensity UV radiation. Photosynthetic organisms in Archean coastal and ocean environments were probably abundant in the first 5 and 25 m of the water column, respectively. However, species with a relatively high efficiency in the use of light could have inhabited ocean waters up to a depth of 200 m and show a Deep Chlorophyll Maximum near 60 m depth. We show that the electromagnetic radiation from the Sun, both UV and visible light, could have determined the vertical distribution of Archean marine photosynthetic organisms.

  9. Experimental observation of incoherent-coherent crossover and orbital-dependent band renormalization in iron chalcogenide superconductors

    DOE PAGES

    Liu, Z. K.; Yi, M.; Zhang, Y.; ...

    2015-12-22

    The level of electronic correlation has been one of the key questions in understanding the nature of superconductivity. Among the iron-based superconductors, the iron chalcogenide family exhibits the strongest electron correlations. To gauge the correlation strength, we performed a systematic angle-resolved photoemission spectroscopy study on the iron chalcogenide series Fe1+ySexTe1-x (0 < x < 0.59), a model system with the simplest structure. Our measurement reveals an incoherent-to-coherent crossover in the electronic structure as the selenium ratio increases and the system evolves from a weakly localized to a more itinerant state. Furthermore, we found that the effective mass of bands dominatedmore » by the dxy orbital character significantly decreases with increasing selenium ratio, as compared to the dxz/dyz orbital-dominated bands. The orbital-dependent change in the correlation level agrees with theoretical calculations on the band structure renormalization, and may help to understand the onset of superconductivity in Fe1+ySexTe1-x.« less

  10. Experimental observation of incoherent-coherent crossover and orbital-dependent band renormalization in iron chalcogenide superconductors

    SciTech Connect

    Liu, Z. K.; Yi, M.; Zhang, Y.; Hu, J.; Yu, R.; Zhu, J. -X.; He, R. -H.; Chen, Y. L.; Hashimoto, M.; Moore, R. G.; Mo, S. -K.; Hussain, Z.; Si, Q.; Mao, Z. Q.; Lu, D. H.; Shen, Z. -X.

    2015-12-22

    The level of electronic correlation has been one of the key questions in understanding the nature of superconductivity. Among the iron-based superconductors, the iron chalcogenide family exhibits the strongest electron correlations. To gauge the correlation strength, we performed a systematic angle-resolved photoemission spectroscopy study on the iron chalcogenide series Fe1+ySexTe1-x (0 < x < 0.59), a model system with the simplest structure. Our measurement reveals an incoherent-to-coherent crossover in the electronic structure as the selenium ratio increases and the system evolves from a weakly localized to a more itinerant state. Furthermore, we found that the effective mass of bands dominated by the dxy orbital character significantly decreases with increasing selenium ratio, as compared to the dxz/dyz orbital-dominated bands. The orbital-dependent change in the correlation level agrees with theoretical calculations on the band structure renormalization, and may help to understand the onset of superconductivity in Fe1+ySexTe1-x.

  11. Asteroid mega-impacts and Precambrian banded iron formations: 2.63 Ga and 2.56 Ga impact ejecta/fallout at the base of BIF/argillite units, Hamersley Basin, Pilbara Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew; Vickers, John

    2007-02-01

    The temporal association between late Archaean to earliest Proterozoic asteroid impact ejecta/fallout units and overlying banded iron formations suggests that, in some instances, these impacts were closely followed by significant transformation in the nature of source terrains of the sediments. The Jeerinah Impact Layer (JIL) [B.M. Simonson, D. Davies, S.W. Hassler, Discovery of a layer of probable impact melt spherules in the late Archean Jeerinah Formation, Fortescue Group, Western Australia. Aust. J. Earth Sci. 47 (2000) 315-325; B.M. Simonson, S.W. Hassler, Revised correlations in the early Precambrian Hamersley Basin based on a horizon of resedimented impact spherules. Aust. J. Earth Sci. 44 (1997) 37-48; B.M. Simonson, B.P. Glass, Spherule layers - records of ancient impacts. Ann. Rev. Earth Planet. Sci. 32 (2004) 329-361; A.Y. Glikson, Early Precambrian asteroid impact-triggered tsunami: excavated seabed, debris flows, exotic boulders, and turbulence features associated with 3.47-2.47 Ga-old asteroid impact fallout units, Pilbara Craton, Western Australia. Astrobiology 4 (2001) 19-50; S.W. Hassler, B.M. Simonson, D.Y. Sumner, D. Murphy, Neoarchaean impact spherule layers in the Fortescue and Hamersley Groups, Western Australia: stratigraphic and depositional implications of re-correlation. Aust. J. Earth Sci. 52 (2005) 759-772; B. Rasmussen, C. Koeberl, Iridium anomalies and shocked quartz in a late Archean spherule layer from the Pilbara Craton: new evidence for a major asteroid impact at 2.63 Ga. Geology 32 (2004) 1029-1032; B. Rasmussen, T.S. Blake, I.R. Fletcher, U-Pb zircon age constraints on the Hamersley spherule beds: Evidence for a single 2.63 Ga Jeerinah-Carawine impact ejecta layer. Geology, 33 (2005) 725-728.] overlies an argillite-dominated unit (Jeerinah Formation, 2684 ± 6 Ma [A.F. Trendall, W. Compston, D.R. Nelson, J.R. deLaeter, V.C. Bennett, SHRIMP zircon ages constraining the depositional chronology of the Hamersley Group, Western

  12. The role of microaerophilic Fe-oxidizing micro-organisms in producing banded iron formations.

    PubMed

    Chan, C S; Emerson, D; Luther, G W

    2016-09-01

    Despite the historical and economic significance of banded iron formations (BIFs), we have yet to resolve the formation mechanisms. On modern Earth, neutrophilic microaerophilic Fe-oxidizing micro-organisms (FeOM) produce copious amounts of Fe oxyhydroxides, leading us to wonder whether similar organisms played a role in producing BIFs. To evaluate this, we review the current knowledge of modern microaerophilic FeOM in the context of BIF paleoenvironmental studies. In modern environments wherever Fe(II) and O2 co-exist, microaerophilic FeOM proliferate. These organisms grow in a variety of environments, including the marine water column redoxcline, which is where BIF precursor minerals likely formed. FeOM can grow across a range of O2 concentrations, measured as low as 2 μm to date, although lower concentrations have not been tested. While some extant FeOM can tolerate high O2 concentrations, many FeOM appear to prefer and thrive at low O2 concentrations (~3-25 μm). These are similar to the estimated dissolved O2 concentrations in the few hundred million years prior to the 'Great Oxidation Event' (GOE). We compare biotic and abiotic Fe oxidation kinetics in the presence of varying levels of O2 and show that microaerophilic FeOM contribute substantially to Fe oxidation, at rates fast enough to account for BIF deposition. Based on this synthesis, we propose that microaerophilic FeOM were capable of playing a significant role in depositing the largest, most well-known BIFs associated with the GOE, as well as afterward when global O2 levels increased.

  13. Archean hydrothermal oceanic floor sedimentary environments: DXCL drilling project of the 3.2 Ga Dixon Island Formation, Pilbara, Australia

    NASA Astrophysics Data System (ADS)

    Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Naraoka, H.; Sakamoto, R.; Suganuma, Y.

    2009-12-01

    Many place in Archean greenstone belts have been reported of the black chert to Iron rich sediments above volcanic sequence. The chemical sedimentary sequence has been recognized to form by as hydrothermal siliceous sequence. These sediments contain the hint to understand the Archean ocean and earth surface environments. Here, we will focus the Dixon Island and Cleaverville formations, which are one of the best preserved Archean hydrothermal sedimentary sequence in the world, to recognized detail stratigraphy and restored deep ocean environment. We did scientific drilling, which is called ‘DXCL drilling project’, at 2007 summer. This drilling project had been selected two coastal sites; CL site at lower part of the Cleaverville Formation, and another is DX site at the upper Dixon Island Formation. A systematic combinations of geological, sedimentological, geochemical, and geobiological approaches will be applied to the fresh samples. Here we will show the recent result of this sequence, which will be key evidence to understand the nature of the middle Archean (3.2 Ga) marine environment influenced by hydrothermal activity. The 3.2 Ga Dixon Island -Cleaverville formations composed of volcanic rock units and chemical-volcanosedimentary sequence which are identified by accreted immature island arc setting. The ~350m-thick Dixon Island Formation which is overlie by pillow basalt consists mainly of highly silicified volcanic-siliceous sequences that contain apparent microbial mats and bacterial fossil-like structure within black chert and also includes a komatiite-rhyolite sequences bearing hydrothermal veins. The >300m-thick Cleaverville Formation, which conformably overlay pillow basalt, contains a thick unit of reddish shale, bedded red-white chert and banded iron formation. It partly contains chert fragments-bearing pyroclastic beds. In detail lithology from the drill cores, the CL and DX contain different type of organic rocks. The CL 1 and CL2 core samples

  14. Mesoarchean Banded Iron Formation sequences in Dixon Island-Cleaverville Formation, Pilbara Australia: Oxygenic signal from DXCL project

    NASA Astrophysics Data System (ADS)

    Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Naraoka, H.; Onoue, T.; Horie, K.; Sakamoto, R.; Aihara, Y.; Miki, T.

    2013-12-01

    The 3.2-3.1 Ga Dixon island-Cleaverville formations are well-preserved Banded Iron Formation (BIF) within hydrothermal oceanic sequence at oceanic island arc setting (Kiyokawa et al., 2002, 2006, 2012). The stratigraphy of the Dixon Island (3195+15Ma) -Cleaverville (3108+13Ma) formations shows the well preserved environmental condition at the Mesoarchean ocean floor. The stratigraphy of these formations are formed about volcano-sedimentary sequences with hydrothermal chert, black shale and banded iron formation to the top. Based on the scientific drilling of DXCL project at 2007 and 2011, detail lithology between BIF sequence was clearly understood. Four drilling holes had been done at coastal sites; the Dixon Island Formation is DX site (100m) and the Cleaverville Formation is CL2 (40m), CL1 (60m) and CL3 (200m) sites and from stratigraphic bottom to top. Coarsening and thickening upward black shale-BIF sequences are well preserved of the stratigraphy form the core samples. The Dixon Island Formation consists komatiite-rhyolite sequences with many hydrothermal veins and very fine laminated cherty rocks above them. The Cleaverville Formation contains black shale, fragments-bearing pyroclastic beds, white chert, greenish shale and BIF. The CL3 core, which drilled through BIF, shows siderite-chert beds above black shale identified before magnetite lamination bed. U-Pb SHRIMP data of the tuff in lower Dixon Island Formation is 3195+15 Ma and the pyroclastic sequence below the Cleaverville BIF is 3108+13 Ma. Sedimentation rate of these sequence is 2-8 cm/ 1000year. The hole section of the organic carbon rich black shales below BIF are similar amount of organic content and 13C isotope (around -30per mill). There are very weak sulfur MIF signal (less 0.2%) in these black shale sequence. Our result show that thick organic rich sediments may be triggered to form iron rich siderite and magnetite iron beds. The stratigraphy in this sequence quite resemble to other Iron

  15. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean.

    PubMed

    Keller, Markus A; Turchyn, Alexandra V; Ralser, Markus

    2014-04-25

    The reaction sequences of central metabolism, glycolysis and the pentose phosphate pathway provide essential precursors for nucleic acids, amino acids and lipids. However, their evolutionary origins are not yet understood. Here, we provide evidence that their structure could have been fundamentally shaped by the general chemical environments in earth's earliest oceans. We reconstructed potential scenarios for oceans of the prebiotic Archean based on the composition of early sediments. We report that the resultant reaction milieu catalyses the interconversion of metabolites that in modern organisms constitute glycolysis and the pentose phosphate pathway. The 29 observed reactions include the formation and/or interconversion of glucose, pyruvate, the nucleic acid precursor ribose-5-phosphate and the amino acid precursor erythrose-4-phosphate, antedating reactions sequences similar to that used by the metabolic pathways. Moreover, the Archean ocean mimetic increased the stability of the phosphorylated intermediates and accelerated the rate of intermediate reactions and pyruvate production. The catalytic capacity of the reconstructed ocean milieu was attributable to its metal content. The reactions were particularly sensitive to ferrous iron Fe(II), which is understood to have had high concentrations in the Archean oceans. These observations reveal that reaction sequences that constitute central carbon metabolism could have been constrained by the iron-rich oceanic environment of the early Archean. The origin of metabolism could thus date back to the prebiotic world.

  16. Iron

    MedlinePlus

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  17. Subducted banded iron formations as a source of ultralow-velocity zones at the core-mantle boundary.

    PubMed

    Dobson, David P; Brodholt, John P

    2005-03-17

    Ultralow-velocity zones (ULVZs) are regions of the Earth's core-mantle boundary about 1-10 kilometres thick exhibiting seismic velocities that are lower than radial-Earth reference models by about 10-20 per cent for compressional waves and 10-30 per cent for shear waves. It is also thought that such regions have an increased density of about 0-20 per cent (ref. 1). A number of origins for ULVZs have been proposed, such as ponding of dense silicate melt, core-mantle reaction zones or underside sedimentation from the core. Here we suggest that ULVZs might instead be relics of banded iron formations subducted to the core-mantle boundary between 2.8 and 1.8 billion years ago. Consisting mainly of interbedded iron oxides and silica, such banded iron formations were deposited in the world's oceans during the late Archaean and early Proterozoic eras. We argue that these layers, as part of the ocean floor, would be recycled into the Earth's interior by subduction, sink to the bottom of the mantle and may explain all of the observed features of ULVZs.

  18. The nature of Mesoarchaean seawater and continental weathering in 2.85 Ga banded iron formation, Slave craton, NW Canada

    NASA Astrophysics Data System (ADS)

    Haugaard, Rasmus; Ootes, Luke; Creaser, Robert A.; Konhauser, Kurt O.

    2016-12-01

    Banded iron formations (BIF) have been extensively used as proxies to infer the chemical composition of ancient bulk seawater. However, their proximity to ancient crust suggests that they might also be used to reveal the composition of emergent continental landmass at the time of their deposition. Here we use the combination of geochemistry and Sm-Nd isotopes on a layer-by-layer basis to interpret the relative contributions of hydrothermal, hydrogenous and terrestrial input to one of the oldest documented Superior-type BIF in the world. The ∼2.85 Ga Central Slave Cover Group BIF is deposited within a rift basin related to a continental margin and is found associated with basement gneisses, as well as shoreline and shallow-shelf type facies, such as fuchsitic quartzite and pebble-to-cobble conglomerate, that confirm a near-shore depositional setting for the BIF. The BIF ranges from a pure chemical oxide (magnetite)-silicate (grunerite + actinolite) sediment with low Al2O3 (<1 wt.%) into a mixture of chemical and clastic sediment characterized by higher Al2O3 (⩽10 wt.%) and the occurrence of ferro-hornblende, biotite and garnet. The silica bands have low trace metal content (e.g., Ni), low ∑REE (average of 6 ppm) and a shale-normalized rare earth and yttrium (REY) pattern that is HREE-to-LREE enriched with (Pr/Yb)SN values reaching <0.2. The iron bands are more enriched, with average ∑REE of 26 and with a more uniform and less fractionated REY pattern (average (Pr/Yb)SN of 0.5). During active rifting of the basement, excess of Eu2+ impacted the basin yielding seawater with Eu anomalies [(Eu/Eu∗)SN] as high as 3.85 (average 2.75), larger than similarly-aged BIF. High-resolution geochemistry shows that there is more silica (19.4 wt.% SiO2) in the iron bands than iron (8.7 wt.% Fe2O3) in the silica bands, implying that dissolved Fe2+ came to the BIF site in pulses and that silica likely represents background deposition. Consistently radiogenic εNd(t) values

  19. Oxygen in the Martian atmosphere: Regulation of PO2 by the deposition of iron formations on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    During Earth's early history, and prior to the evolution of its present day oxygenated atmosphere, extensive iron rich siliceous sedimentary rocks were deposited, consisting of alternating layers of silica (chert) and iron oxide minerals (hematite and magnetite). The banding in iron formations recorded changes of atmosphere-hydrosphere interactions near sea level in the ancient ocean, which induced the oxidation of dissolved ferrous iron, precipitation of insoluble ferric oxides and silica, and regulation of oxygen in Earth's early atmosphere. Similarities between the Archean Earth and the composition of the present day atmosphere on Mars, together with the pervasive presence of ferric oxides in the Martian regolith suggest that iron formation might also have been deposited on Mars and influenced the oxygen content of the Martian atmosphere. Such a possibility is discussed here with a view to assessing whether the oxygen content of the Martian atmosphere has been regulated by the chemical precipitation of iron formations on Mars.

  20. RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES: NLTE EFFECTS IN J-BAND IRON AND TITANIUM LINES

    SciTech Connect

    Bergemann, Maria; Kudritzki, Rolf-Peter; Lind, Karin; Plez, Bertrand; Davies, Ben; Gazak, Zach E-mail: klind@mpa-garching.mpg.de E-mail: zgazak@ifa.hawaii.edu E-mail: bdavies@ast.cam.ac.uk

    2012-06-01

    Detailed non-LTE (NLTE) calculations for red supergiant (RSG) stars are presented to investigate the influence of NLTE on the formation of atomic iron and titanium lines in the J band. With their enormous brightness at J band RSG stars are ideal probes of cosmic abundances. Recent LTE studies have found that metallicities accurate to 0.15 dex can be determined from medium-resolution spectroscopy of individual RSGs in galaxies as distant as 10 Mpc. The NLTE results obtained in this investigation support these findings. NLTE abundance corrections for iron are smaller than 0.05 dex for effective temperatures between 3400 K and 4200 K and 0.1 dex at 4400 K. For titanium the NLTE abundance corrections vary smoothly between -0.4 dex and +0.2 dex as a function of effective temperature. For both elements, the corrections also depend on stellar gravity and metallicity. The physical reasons behind the NLTE corrections and the consequences for extragalactic J-band abundance studies are discussed.

  1. Silicon Isotopic Composition of Isua BIF and Other Early Archean Supracrustal Rocks: a Tracer for Early Life?

    NASA Astrophysics Data System (ADS)

    André, L.; Cardinal, D.; Alleman, L. Y.; Moorbath, S.

    2004-12-01

    High temperature vapor condensations and stardust forming stellar outflows strongly differentiate Si-isotopes (-650\\permil<\\delta29Si<+200\\permil). In contrast, on Earth, the major cause of slight Si isotope fractionation (-1.8\\permil <\\delta29Si <+1.5\\permil) is related to preferential biological uptake of 28Si by diatoms, radiolarian, sponges and plants in building their opaline frustules, spicules and phytoliths. As a consequence, modern waters, clays, soils and sediments are also fractionated: -0.9\\permil<\\delta29Si<+1.7\\permil, while Phanerozoic magmatic and metamorphic processes leave terrestrial crystalline rocks almost unfractionated: -0.4\\permil <\\delta29Si <+0.2\\permil. Spectacular claims for discovery of oldest evidence for terrestrial life in early Archean (ca 3.7-3.8 Ga) metamorphosed rocks from southern West Greenland have been challenged in a series of studies, and there is need for some independent tracer to gain new insights into the quest for primitive life. In order to unravel potentialities of silicon isotopes, we determined the Si-isotope composition of four groups of rocks from the Isua Greenstone Belt: magnetite-quartz "Banded Iron Formations" (BIF); mica-feldspar-quartz-(garnet) schists of potential pelitic origin; a series of tonalitic gneisses, metabasalt pillows, volcanogenic sediments and hydrothermal quartz veins and vesicles. Specimens were powdered using diamond-coated microdrills. Si was purified by TEA molybdate co-precipitation and measured on a Nu Plasma MC-ICP-MS using Mg external doping in dry plasma mode following Cardinal et al's (2003) methodology. Measured 29Si/28Si are expressed with the \\delta29Si notation relative to the NBS28 quartz standard. Overall reproducibility assessed on 5 BIF duplicates is better than 0.08\\permil. Merck Quartz aliquots processed in the same way as the Isua specimens are unfractionated, showing that our chemical procedure does not produce any isotopic artefacts. Metasediments yield

  2. Near infrared iron absorption bands: Applications to geologic mapping and mineral exploration

    NASA Technical Reports Server (NTRS)

    Rowan, L. C.

    1972-01-01

    A spectroscopic analysis of the difference in reflectance of iron-rich and iron-poor minerals was made. Attempts were made to use these minima contrast in geological mapping and metallic mineral exploration of large areas from near infrared and visible satellite images. Data cover pertinent laboratory spectroscopic investigations, applications of spectral differences to the discrimination of two important metamorphic rock types, and mineral exploration by aircraft in Beartooth Mountains, Montana.

  3. Near infrared iron absorption bands: Applications to geologic mapping and mineral exploration

    NASA Technical Reports Server (NTRS)

    Rowan, L. C.

    1972-01-01

    A spectroscopic analysis of the difference in reflectance of iron-rich and iron-poor minerals was made. Attempts were made to use these minima contrast in geological mapping and metallic mineral exploration of large areas from near infrared and visible satellite images. Data cover pertinent laboratory spectroscopic investigations, applications of spectral differences to the discrimination of two important metamorphic rock types, and mineral exploration by aircraft in Beartooth Mountains, Montana.

  4. Cooper pairing in the insulating valence band in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Hu, Lun-Hui; Chen, Wei-Qiang; Zhang, Fu-Chun

    2015-04-01

    Conventional Cooper pairing arises from attractive interaction of electrons in the metallic bands. A recent experiment on Co-doped LiFeAs shows superconductivity in the insulating valence band, which is evolved from a metallic hole band upon doping. Here we examine this phenomenon by studying superconductivity in a three-orbital Hamiltonian relevant to the doped LiFeAs. We show explicitly that Cooper pairing of the insulating hole band requires a finite pairing interaction strength. For strong coupling, the superconductivity in the hole band is robust against the sink of the hole band below the Fermi level. Our theory predicts a substantial upward shift of the chemical potential in the superconducting transition for Co-doped LiFeAs.

  5. Archean sedimentary styles and early crustal evolution

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1986-01-01

    The distinctions between and implications of early and late Archean sedimentary styles are presented. Early Archean greenstone belts, such as the Barberton of South Africa and those in the eastern Pilbar Block of Australia are characterized by fresh or slightly reworked pyroclastic debris, orthochemical sediments such as carbonates, evaporites, and silica, and biogenic deposits including cherts and stromatolitic units. Terrigenous deposits are rare, and it is suggested that early Archean sediments were deposited on shallow simatic platforms, with little or no components derived from sialic sources. In contrast, late Archean greenstone belts in the Canadian Shield and the Yilgarn Block of Australia contain coarse terrigenous clastic rocks including conglomerate, sandstone, and shale derived largely from sialic basement. Deposition appears to have taken place in deepwater, tectonically unstable environments. These observations are interpreted to indicate that the early Archean greenstone belts formed as anorogenic, shallow water, simatic platforms, with little or no underlying or adjacent continental crust, an environment similar to modern oceanic islands formed over hot spots.

  6. Electronic coupling in iron oxide-modified TiO2 leads to a reduced band gap and charge separation for visible light active photocatalysis.

    PubMed

    Nolan, Michael

    2011-10-28

    In recent experiments Tada et al. have shown that TiO(2) surfaces modified with iron oxide display visible light photocatalytic activity. This paper presents first principles simulations of iron oxide clusters adsorbed at the rutile TiO(2) (110) surface to elucidate the origin of the visible light photocatalytic activity of iron oxide modified TiO(2). Small iron oxide clusters adsorb at rutile (110) surface and their presence shifts the valence band so that the band gap of the composite is narrowed towards the visible, thus confirming the origin of the visible light activity of this composite material. The presence of iron oxide at the TiO(2) surface leads to charge separation, which is the origin of enhanced photocatalytic efficiency, consistent with experimental photoluminesence and photocurrent data. Surface modification of a metal oxide is thus an interesting route in the development of visible light photocatalytic materials.

  7. Spin excitations in antiferromagnetic metallic phase of iron pnictides analyzed with a five-band itinerant model

    NASA Astrophysics Data System (ADS)

    Kaneshita, Eiji; Tohyama, Takami

    2011-03-01

    We investigate the spin wave excitation in the metallic antiferromagnetic phase of iron pnictide superconductors based on calculated neutron scattering spectra by mean-field calculations with a random phase approximation in a five-band itinerant model [E.K. & T.T., RPB 82, 094441 (2010)]. The calculated excitation spectra reproduce well spin-wave dispersions observed in inelastic neutron scattering, with a realistic magnetic moment for CaFe 2 As 2 . A particle-hole gap is found to be crucial to obtain consistent results; we predict the spin wave in LaFeAsO disappears at a lower energy than in CaFe 2 As 2 .

  8. Electromagnetic characteristics of surface modified iron nanowires at x-band frequencies

    NASA Astrophysics Data System (ADS)

    Liang, W. F.; Yang, R. B.; Lin, W. S.; Jian, Z. J.; Tsay, C. Y.; Wu, S. H.; Lin, H. M.; Choi, S. T.; Lin, C. K.

    2012-04-01

    Surface modified iron nanowire nanoparticles were prepared via reduction of iron salts (FeCl3. 6H2O) under an applied magnetic field. To minimize the surface oxidation, dextran (0.05 and 0.25 wt. %) was added during the process and formed a thin passive layer over iron nanowires with alcohol and acetone used to wash iron nanowires. The complex permittivity (ɛ'-jɛ'') and permeability (μ'-jμ″) of absorbers are measured by a cavity perturbation method from 7 to 14 GHz. In the present study, the iron nanowire prepared with 0.25 wt. % dextran and washed by acetone (D25AC) exhibited the best microwave absorption performance. Depending on the test frequency, D25AC possessed the largest permittivity loss ranged from 0.14 to 0.17 and relatively small permeability loss (<0.05). Its high permittivity dissipation is responsible for the excellent microwave absorption performance where the reflection loss was-7.7 dB at a matching frequency of 9.0 GHz.

  9. Photochemistry and climate on the Archean earth

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexander Anatolevich

    The purpose of my thesis was to explore the consequences of reduced levels of oxygen and reduced solar luminosity, both of which should have affected atmospheric composition and climate. Recent studies of Archean sediments discovered evidence of mass-independent sulfur isotope fractionation in sulfides and sulfates. This type of fractionation pattern cannot be produced by aqueous-phase chemical or biochemical reactions. Mass independent fractionation (MIF) is observed, however, in atmospheric photochemical reactions (photolysis of SO2, H2S). Using laboratory data on SO2 photolysis, I calculated how sulfur isotopic fractionation propagates to other sulfur-bearing species (HA S, SO, H 2SO4) by means of atmospheric chemical reactions. I have been able to estimate what types of isotopic separation must have occurred in order to produce the observed fractionation pattern in Archean sediments. Although mass-independent fractionation continued to occur in the post-Archean atmosphere, its signature was lost before being preserved in sediments because all sulfur-bearing species were re-homogenized as oceanic sulfate. To transfer the mass-independent fractionation pattern from the atmosphere into sediments, the Archean atmosphere must have contained virtually no free oxygen (<10 -5 PAL [times the Present Atmospheric Level]). High concentrations of greenhouse gases would have been required to offset low solar luminosity early in Earth's history. Enhanced CO2 levels are probably at least part of the solution, but CH4 (in an anoxic Archean atmosphere) may have played a significant role as well, particularly during the Late Archean era, 2.5--3.0 Ga, when methanogenic bacteria were almost certainly present. Moreover, biological CH4 production should have led to CO 2 drawdown by way of a negative feedback loop involving the carbonate-silicate geochemical cycle. I suggest here that the atmospheric CH4/CO 2 ratio approached the value of ˜1 needed to trigger the formation of Titan

  10. Strong Phylogeographic Structure in a Millipede Indicates Pleistocene Vicariance between Populations on Banded Iron Formations in Semi-Arid Australia

    PubMed Central

    Nistelberger, Heidi; Byrne, Margaret; Coates, David; Roberts, J. Dale

    2014-01-01

    The Yilgarn Banded Iron Formations of Western Australia are topographical features that behave as terrestrial islands within the otherwise flat, semi-arid landscape. The formations are characterised by a high number of endemic species, some of which are distributed across multiple formations without inhabiting the intervening landscape. These species provide an ideal context for phylogeographic analysis, to investigate patterns of genetic variation at both spatial and temporal scales. We examined genetic variation in the spirostreptid millipede, Atelomastix bamfordi, found on five of these Banded Iron Formations at two mitochondrial loci and 11 microsatellite loci. Strong phylogeographic structuring indicated the five populations became isolated during the Pleistocene, a period of intensifying aridity in this landscape, when it appears populations have been restricted to pockets of moist habitat provided by the formations. The pattern of reciprocal monophyly identified within the mtDNA and strong differentiation within the nuclear microsatellite data highlight the evolutionary significance of these divergent populations and we suggest the degree of differentiation warrants designation of each as a conservation unit. PMID:24663390

  11. Mineral ecophysiological evidence for biogeochemical cycles in 2461-2495 million year old banded iron formations (BIF).

    SciTech Connect

    Li, Y; Konhauser, Dr, Kurt; Cole, David; Mildner, David; Phelps, Tommy Joe

    2011-01-01

    The phosphorus composition of banded-iron formations (BIFs) has been used as a proxy for Precambrian seawater composition and the paleoeredox state of Earth's surface environment. However, it is unclear whether the phosphorus in BIFs originally entered the sediment as a sorbed component of the iron oxyhydroxide particles, or whether it was incorporated into the biomass of marine phytoplankton. We conducted high-resolution mineral analyses and report here the first detection of an Fe(III) acetate salt, as well as nanocrystals of apatite in association with magnetite, in the 2.48 Ga Dales Gorge Member of the Brockman Iron Formation (a BIF), Hamersley, Western Australia. The clusters of apatite are similar in size and morphology to biogenic apatite crystals resulting from biomass decay in Phanerozoic marine sediments, while the formation of an Fe(III) acetate salt and magnetite not only implies the original presence of biomass in the BIF sediments, but also that organic carbon likely served as an electron donor during bacterial Fe(III) reduction. This study is important because it suggests that phytoplankton may have played a key role in the transfer of phosphorus (and other trace elements) from the photic zone to the seafloor.

  12. Ridge-trench collision in Archean and Post-Archean crustal growth: Evidence from southern Chile

    NASA Technical Reports Server (NTRS)

    Nelson, E. P.; Forsythe, R. D.

    1988-01-01

    The growth of continental crust at convergent plate margins involves both continuous and episodic processes. Ridge-trench collision is one episodic process that can cause significant magmatic and tectonic effects on convergent plate margins. Because the sites of ridge collision (ridge-trench triple junctions) generally migrate along convergent plate boundaries, the effects of ridge collision will be highly diachronous in Andean-type orogenic belts and may not be adequately recognized in the geologic record. The Chile margin triple junction (CMTJ, 46 deg S), where the actively spreading Chile rise is colliding with the sediment-filled Peru-Chile trench, is geometrically and kinematically the simplest modern example of ridge collision. The south Chile margin illustrates the importance of the ridge-collision tectonic setting in crustal evolution at convergent margins. Similarities between ridge-collision features in southern Chile and features of Archean greenstone belts raise the question of the importance of ridge collision in Archean crustal growth. Archean plate tectonic processes were probably different than today; these differences may have affected the nature and importance of ridge collision during Archean crustal growth. In conclusion, it is suggested that smaller plates, greater ridge length, and/or faster spreading all point to the likelihood that ridge collision played a greater role in crustal growth and development of the greenstone-granite terranes during the Archean. However, the effects of modern ridge collision, and the processes involved, are not well enough known to develop specific models for the Archean ridge collison.

  13. Venus and the Archean Earth: Thermal considerations

    NASA Technical Reports Server (NTRS)

    Sleep, N. H.

    1989-01-01

    The Archean Era of the Earth is not a direct analog of the present tectonics of Venus. In this regard, it is useful to review the state of the Archean Earth. Most significantly, the temperature of the adiabatic interior of the Earth was 200 to 300 C hotter than the current temperature. Preservation biases limit what can be learned from the Archean record. Archean oceanic crust, most of the planetary surface at any one time, has been nearly all subducted. More speculatively, the core of the Earth has probably cooled more slowly than the mantle. Thus the temperature contrast above the core-mantle boundary and the vigor of mantle plumes has increased with time on the Earth. The most obvious difference between Venus and the present Earth is the high surface temperature and hence a low effective viscosity of the lithosphere. In addition, the temperature contrast between the adiabatic interior and the surface, which drives convection, is less on Venus than on the Earth. It appears that the hot lithosphere enhanced tectonics on the early Venus significantly enough that its interior cooled faster than the Earth's. The best evidence for a cool interior of Venus comes from long wavelength gravity anomalies. The low interior temperatures retard seafloor spreading on Venus. The high surface temperatures on Venus enhance crustal deformation. That is, the lower crust may become ductile enough to permit significant flow between the upper crust and the mantle. There is thus some analogy to modern and ancient areas of high heat flow on the Earth. Archean crustal blocks typically remained stable for long intervals and thus overall are not good analogies to the deformation style on Venus.

  14. Venus and the Archean Earth: Thermal considerations

    NASA Technical Reports Server (NTRS)

    Sleep, N. H.

    1989-01-01

    The Archean Era of the Earth is not a direct analog of the present tectonics of Venus. In this regard, it is useful to review the state of the Archean Earth. Most significantly, the temperature of the adiabatic interior of the Earth was 200 to 300 C hotter than the current temperature. Preservation biases limit what can be learned from the Archean record. Archean oceanic crust, most of the planetary surface at any one time, has been nearly all subducted. More speculatively, the core of the Earth has probably cooled more slowly than the mantle. Thus the temperature contrast above the core-mantle boundary and the vigor of mantle plumes has increased with time on the Earth. The most obvious difference between Venus and the present Earth is the high surface temperature and hence a low effective viscosity of the lithosphere. In addition, the temperature contrast between the adiabatic interior and the surface, which drives convection, is less on Venus than on the Earth. It appears that the hot lithosphere enhanced tectonics on the early Venus significantly enough that its interior cooled faster than the Earth's. The best evidence for a cool interior of Venus comes from long wavelength gravity anomalies. The low interior temperatures retard seafloor spreading on Venus. The high surface temperatures on Venus enhance crustal deformation. That is, the lower crust may become ductile enough to permit significant flow between the upper crust and the mantle. There is thus some analogy to modern and ancient areas of high heat flow on the Earth. Archean crustal blocks typically remained stable for long intervals and thus overall are not good analogies to the deformation style on Venus.

  15. Stratigraphic and geochemical characteristics of banded iron formation of 0.7Ga in El Dabbah, Eastern Egypt

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Kiyokawa, S.; Sano, T.; Ikehara, M.

    2016-12-01

    In the Eastern Desert of Egypt, Neoproterozoic banded iron formations have been reported within Arabian-Nubian greenstone belts (El-Gaby et al., 1990, Stern et al., 2011). However its deposition field has not been studied much. It is still not well known in the greenstone stratigraphic sequence. We established the geological structure to reconstruct the stratigraphy of banded iron formation (BIF) in the El Dabbah area, which is lower and less deformed than other greenstone area, and revealed characteristics of BIF by microscopic observation and chemical analysis. Four domains of blocks were subdivided in the El Dabbah area. In the southeastern block of the El Dabbah area, coarse-grained volcaniclastic rocks, pillow lavas, several thin black shales and BIFs formed alternating layers. The total thickness of this sequence is at least 4000m. Black shales and BIFs are repeated at least three times in volcaniclastic rock layers. Volcaniclastic rocks are poor in quartz and rich in plagioclase. BIF sequences are sandwiched between massive and pillow lava sections and repeatedly preserved. Most BIFs occur within laminated green shale and black shale sequences. Each BIF beds are 30 380cm in thickness. They form hematite layers with fine laminas and nodules of jasper. The layer thickness gets thinner towards the top of the stratigraphy. REE analyses of BIFs are rich in light rare-earth elements and show negative Eu anomalies. In addition, volcaniclastic rocks are rich in large ion lithophile elements and poor in high field strength elements. The greenstone area of the El Dabbah area has a depositional environment of volcaniclastic rocks with volcanic arc origin. BIFs have been deposited with the black shales and fine volcaniclastic rocks during the quiescent state of the interval of volcanic activity. Iron formations show negative Eu anomalies, which suggest that it was strongly affected by igneous activity of island arc. We conclude that the precipitation of iron happened

  16. Iron oxide bands in the visible and near-infrared reflectance spectra of primitive asteroids

    NASA Technical Reports Server (NTRS)

    Jarvis, Kandy S.; Vilas, Faith; Gaffey, Michael J.

    1993-01-01

    High resolution reflectance spectra of primitive asteroids (C, P, and D class and associated subclasses) have commonly revealed an absorption feature centered at 0.7 microns attributed to an Fe(2+)-Fe(3+) charge transfer transition in iron oxides and/or oxidized iron in phyllosilicates. A smaller feature identified at 0.43 microns has been attributed to an Fe(3+) spin-forbidden transition in iron oxides. In the spectra of the two main-belt primitive asteroids 368 Haidea (D) and 877 Walkure (F), weak absorption features which were centered near the location of 0.60-0.65 microns and 0.80-0.90 microns prompted a search for features at these wavelengths and an attempt to identify their origin(s). The CCD reflectance spectra obtained between 1982-1992 were reviewed for similar absorption features located near these wavelengths. The spectra of asteroids in which these absorption features have been identified are shown. These spectra are plotted in order of increasing heliocentric distance. No division of the asteroids by class has been attempted here (although the absence of these features in the anhydrous S-class asteroids, many of which have presumably undergone full heating and differentiation should be noted). For this study, each spectrum was treated as a continuum with discrete absorption features superimposed on it. For each object, a linear least squares fit to the data points defined a simple linear continuum. The linear continuum was then divided into each spectrum, thus removing the sloped continuum and permitting the intercomparison of residual spectral features.

  17. Low noise Kα-band hopping reflectometer based on yttrium iron garnet sources at TEXTOR

    NASA Astrophysics Data System (ADS)

    Soldatov, S.; Krämer-Flecken, A.; Zorenko, O.

    2011-03-01

    The heterodyne hopping reflectometer system based on wide-tuned low noise yttrium iron garnet sources was developed for TEXTOR experiment. Being installed in 1998 it successfully operates more than 10 years providing the measurements of plasma density fluctuations. Owing to the advance multihorn antennae systems installed at three different positions around the tokamak, the correlation properties as well as the propagation measurements of plasma density fluctuations are realized. The reflectometer operates in ordinary polarization mode providing the access mostly to plasma gradient and pedestal region. The capabilities of the diagnostic are illustrated with the examples of measured fluctuation characteristics in the variety of TEXTOR plasmas.

  18. Deep-Time drilling in the Australian Archean: the Agouron Institute geobiological drilling project. (Invited)

    NASA Astrophysics Data System (ADS)

    Buick, R.

    2010-12-01

    of the Hamersley Group near Yilgalong Creek. This location had been previously drilled by a mining company in the 1980’s and the core provided the highest biomarker yields of any Archean rocks thus far sampled. As it has been suggested that these biomarkers are non-indigenous contaminants, one possibility is that they were introduced into the drill-core at some time between drilling and sampling, so this hole tests that hypothesis. If biomarker concentrations and ratios differ significantly between the two adjacent holes with differing exposures to post-drilling contaminants, then clearly contamination has affected one or other of the cores. The third hole sampled an off-shore equivalent, through banded irons and kerogenous shales of the ~2.65 Ga Marra Mamba and Jeerinah Formations of the Hamersley Group near Cowcumba Creek. Another opportunity for contamination may arise during post-depositional but pre-drilling hydrocarbon migration, when biomarkers can potentially be introduced into previously barren rocks by younger oils, so this hole tests that possibility. As it was drilled through the same stratigraphic interval and structural domain as the second hole but in a different environment, biomarker ratios should be similar if contaminated but different if indigenous.

  19. Texture-specific Si isotope variations in Barberton Greenstone Belt cherts record low temperature fractionations in early Archean seawater

    NASA Astrophysics Data System (ADS)

    Stefurak, Elizabeth J. T.; Fischer, Woodward W.; Lowe, Donald R.

    2015-02-01

    Sedimentary cherts are unusually abundant in early Archean (pre-3.0 Ga) sequences, suggesting a silica cycle that was profoundly different than the modern system. Previously applied for the purpose of paleothermometry, Si isotopes in ancient cherts can offer broader insight into mass fluxes and mechanisms associated with silica concentration, precipitation, diagenesis, and metamorphism. Early Archean cherts contain a rich suite of sedimentological and petrographic textures that document a history of silica deposition, cementation, silicification, and recrystallization. To add a new layer of insight into the chemistry of early cherts, we have used wavelength-dispersive spectroscopy and then secondary ion mass spectrometry (SIMS) to produce elemental and Si and O isotope ratio data from banded black-and-white cherts from the Onverwacht Group of the Barberton Greenstone Belt, South Africa. This geochemical data is then interpreted in the framework of depositional and diagenetic timing of silica precipitation provided by geological observations. SIMS allows the comparison of Si and O isotope ratios of distinct silica phases, including black carbonaceous chert beds and bands (many including well-defined sedimentary grains), white relatively pure chert bands including primary silica granules, early cavity-filling cements, and later quartz-filled veins. Including all chert types and textures analyzed, the δ30Si dataset spans a range from -4.78‰ to +3.74‰, with overall mean 0.20‰, median 0.51‰, and standard deviation 1.30‰ (n = 1087). Most samples have broadly similar δ30Si distributions, but systematic texture-specific δ30Si differences are observed between white chert bands (mean +0.60‰, n = 750), which contain textures that represent primary and earliest diagenetic silica phases, and later cavity-filling cements (mean -1.41‰, n = 198). We observed variations at a ∼100 μm scale indicating a lack of Si isotope homogenization at this scale during

  20. Building Archean cratons from Hadean mafic crust

    NASA Astrophysics Data System (ADS)

    O'Neil, Jonathan; Carlson, Richard W.

    2017-03-01

    Geologic processing of Earth’s surface has removed most of the evidence concerning the nature of Earth’s first crust. One region of ancient crust is the Hudson Bay terrane of northeastern Canada, which is mainly composed of Neoarchean felsic crust and forms the nucleus of the Northeastern Superior Province. New data show these ~2.7-billion-year-old rocks to be the youngest to yield variability in neodymium-142 (142Nd), the decay product of short-lived samarium-146 (146Sm). Combined 146-147Sm-142-143Nd data reveal that this large block of Archean crust formed by reworking of much older (>4.2 billion-year-old) mafic crust over a 1.5-billion-year interval of early Earth history. Thus, unlike on modern Earth, mafic crust apparently could survive for more than 1 billion years to form an important source rock for Archean crustal genesis.

  1. Reappraisal of hydrocarbon biomarkers in Archean rocks

    PubMed Central

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-01-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387

  2. Tracing Archean sulfur across stitched lithospheric blocks

    NASA Astrophysics Data System (ADS)

    LaFlamme, Crystal; Fiorentini, Marco; Lindsay, Mark; Wing, Boswell; Selvaraja, Vikraman; Occhipinti, Sandra; Johnson, Simon; Bui, Hao Thi

    2017-04-01

    Craton margins are loci for volatile exchange among lithospheric geochemical reservoirs during crust formation processes. Here, we seek to revolutionise the current understanding of the planetary flux and lithospheric transfer of volatiles during supercontinent formation by tracing sulfur from the atmosphere-hydrosphere through to the lithosphere during crust formation. To do so, we trace the transfer of sulfur by following mass independently fractionated sulfur at ancient tectonic boundaries has the potential to. Mass independent fractionation of sulfur (MIF-S) is a signature (quantified as Δ33S and Δ36S) that is unique to the Archean sedimentary rock record and imparted to sulfur reservoirs that interacted with the oxygen-poor atmosphere before the Great Oxidation Event (GOE) at ca. 2.4 Ga. Here we present multiple sulfur isotopes from across a Proterozoic post-GOE orogenic belt, formed when Archean cratons were stitched together during supercontinent amalgamation. For the first time, multiple sulfur isotope data are presented spatially to elucidate volatile pathways across lithospheric blocks. Across the orogenic belt, the Proterozoic granitoid and hydrothermal rock records proximal to Archean cratons preserve values of Δ33S up to +0.8\\permil and a Δ33S-Δ36S array of -1.2, whereas magmatic and hydrothermal systems located more distally from the margin do not display any evidence of MIF-S. This is the first study to identify MIF-S in a Proterozoic orogen indicates that tectonic processes controlling lithospheric evolution and crust formation at tectonic boundaries are able to transfer sulfur from Archean supracrustal rock reservoirs to newly formed Proterozoic granitoid crust. The observation of MIF-S in the Proterozoic granitoid rock record has the potential to revolutionise our understanding of secular changes in the evolution of crust formation mechanisms through time.

  3. Reappraisal of hydrocarbon biomarkers in Archean rocks.

    PubMed

    French, Katherine L; Hallmann, Christian; Hope, Janet M; Schoon, Petra L; Zumberge, J Alex; Hoshino, Yosuke; Peters, Carl A; George, Simon C; Love, Gordon D; Brocks, Jochen J; Buick, Roger; Summons, Roger E

    2015-05-12

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼ 2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories.

  4. Reappraisal of hydrocarbon biomarkers in Archean rocks

    NASA Astrophysics Data System (ADS)

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-05-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories.

  5. Was there a late Archean biospheric explosion?

    PubMed

    Lindsay, John F

    2008-08-01

    There is a growing body of evidence which suggests that the evolution of the planet drives the evolution of the biosphere. There have been 2 significant stages in Earth history when atmospheric oxygen levels rose rapidly, and both appear to be associated with supercontinent cycles. The earlier biospheric event, which extends across the Archean-Proterozoic boundary (ca. 3.0-2.2 Ga), has received little attention and is the focus of this study. Recent work on the Pilbara Craton of Western Australia has shown that concretion formed by microbial activity during the diagenesis of these sediments are absent from early Archean sediments but abundant in late Archean and early Paleoproterozoic successions of the Hamersley Basin, appearing abruptly in sedimentary rocks younger than 2.7 Ga. This study suggests that their internal architecture may have been defined by the diffusion of humic acids and the formation of polymer gels during diagenesis. The data imply that the biosphere expanded suddenly shortly after 3.0 Ga and may have begun to raise the oxygen levels of the oceanic water column earlier than thought-possibly as much as 300 my earlier.

  6. First-Principles Momentum-Dependent Local Ansatz Wavefunction and Momentum Distribution Function Bands of Iron

    NASA Astrophysics Data System (ADS)

    Kakehashi, Yoshiro; Chandra, Sumal

    2016-04-01

    We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi-Dirac function for the d electrons with eg symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data.

  7. Tracing fluid pathways in Archean hydrothermal systems with imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    von Ruitenbeek, F. J. A.; Cudahy, T.; Hale, M.; van der Werff, H. M. A.; van der Meer, F. D.

    2008-09-01

    Abstract Fossil submarine hydrothermal systems in Archean greenstone belts and other geologic terranes are important because of their relationship with volcanic massive sulfide (VMS) mineral deposits and their association with environments that are favorable for early forms of life. Interpretation and reconstruction of these systems is difficult because of their geologic complexity. Airborne imaging spectroscopy provides information about the presence, abundance, and composition of near-infrared active minerals at continuous spatial coverage and high spatial resolution, and can therefore be used to obtain new geologic insights into of the Archean hydrothermal systems. It was applied to the Panorama VMS-district in the Soanesville greenstone belt, Western Australia. Results from the analyses of 189 hand specimen showed that the wavelength position of the main absorption feature of white micas, a proxy for their Al content, varied between 2195 nm and 2225 nm. These wavelength variations and the relative abundance of white micas were used to reconstruct fossil fluid pathways from low-temperature recharge to hightemperature discharge zones. Results also showed that the absorption-wavelength variations of white micas could be mapped from airborne imaging spectroscopy using a stochastic method where the presence of white mica minerals and their absorption wavelengths in field measurements were predicted from hyperspectral band ratios. Analysis of the spatial patterns in segmented images, covering 52 km2, of white mica probability and their absorption wavelengths and their comparison with field data resulted in the identification of regional scale hydrothermal fluid pathways, a regional-scale K alteration event, and differences in hydrothermal regime between the northern and southern parts of the test area.

  8. Multi-band reflectance spectroscopy of carbonaceous lithium iron phosphate battery electrodes versus state of charge

    NASA Astrophysics Data System (ADS)

    Norris, R.; Iyer, K.; Chabot, V.; Nieva, P.; Yu, A.; Khajepour, A.; Wang, J.

    2014-03-01

    This study aims to expand the body of knowledge about the optical properties of battery cathode materials. Although some studies have been conducted on the optical properties of Lithium Iron Phosphate (LiFePO4), to the authors' knowledge, this is the first study of its kind on electrodes extracted from commercially available LiFePO4 batteries. The use of Vis/NIR and FTIR spectroscopy provides for a methodology to study the optical properties of LiFePO4 and may allow for the characterization of other properties such as particle size and the proportions of LiFePO4 versus FePO4 material. Knowledge of these properties is important for the development of a mechanism to measure the state-of charge (SOC) in lithium ion batteries. These properties are also important in a host of other applications including battery modeling and materials characterization. Cylindrical LiFePO4 batteries (from A123 Systems Inc.) were acquired from the commercial market and charged to 10 different states between 30% and 80% of their nominal capacity using a constant-current, constant-voltage (CCCV) cycling method. Visual inspection of the extracted electrodes shows that the LiFePO4/C-cathodes display subtle changes in color (shades of grey) with respect to SOC. Vis/NIR measurements support the visual observation of uniform intensity variations versus SOC. FTIR measurements show an absorbance signature that varies with SOC and is distinct from results found in the literature for similar LiFePO4-based material systems, supporting the uniqueness of the absorbance fingerprint.

  9. Archaean asteroid impacts, banded iron formations and MIF-S anomalies: A discussion

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew

    2010-05-01

    on impact spherule size distribution ( Melosh, H.J., Vickery, A.M. [1991] Nature, 350, 494-497) suggest projectiles several tens of kilometers in diameter (Byerly and Lowe, 1994; Shukloyukov, A., Kyte, F.T., Lugmair, G.W., Lowe, D.R., Byerly, G.R. [2000]. In: Koeberl, C., Gilmour, I. (Eds.), Impacts and the Early Earth, Springer-Verlag, Berlin, pp. 99-116; Kyte, F.T., Shukloyukov, A., Lugmair, G.W., Lowe, D.R., Byerly, G.R. [2003] Geology, 31, 283-286). Due to incomplete preservation these impacts represent a minimum rate of the Archaean impact flux. High UV radiation associated with low ozone levels in the Archaean atmosphere may have been further enhanced by large impacts, accentuating MIF-S anomalies. The appearance of iron-rich sediments above late and mid-Archaean impact ejecta units (Glikson, A.Y. [2006] Earth Planet. Sci. Lett., 246, 149-160; Glikson, A.Y., Vickers, J. [2007] Earth Planet. Sci. Lett., 254, 214-226) may be related either to microbial oxidation of ferrous iron or, alternatively, photochemical oxidation of ferrous to ferric iron. Given post-2.45 Ga diluting of possible MIF-S anomalies by the oxygenating ocean sulfate reservoir (Pavlov, A.A., Kasting, J.F. [2002] Astrobiology, 2, 27-41), similar MIF-S anomalies may have been associated with Proterozoic and Phanerozoic impacts, although to date little evidence exists in this regard (Marouka, T., Koeberl, C., Newton, J., Gilmour, I., Bohor, B.F. [2002] Geological Society of America Special Paper 356, pp. 337-344; Koeberl, C., Thiemens, M. [2008] Multi-sulfur isotopes in cretaceous-tertiary boundary samples from the Western interior-search for photochemical effects 2008. Joint Meeting of the Geological Society of America, Soil Science Society of America, American Society of Agronomy, Crop Science Society of America, Gulf Coast Association of Geological Societies with the Gulf Coast Section of SEPM. (abstract)). Detailed sampling and

  10. Interpretation of high resolution aeromagnetic data for lineaments study and occurrence of Banded Iron Formation in Ogbomoso area, Southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Oladunjoye, Michael Adeyinka; Olayinka, Abel Idowu; Alaba, Mustapha; Adabanija, Moruffdeen Adedapo

    2016-02-01

    The quest for solid mineral resource as an alternative for oil income in Nigeria presents opportunity to diversify the resource base of the country. To fill some information gap on the long abandoned Ajase and Gbede Banded Iron Formations (BIF) in Ogbomoso area, Southwestern Nigeria, high resolution aeromagnetic data of Ogbomoso - Sheet 222 was interpreted; to provide a better understanding of the mode of occurrence of the iron ore and associated structural features and geologic model. These were accomplished by subjecting reduced-to-pole (RTP) residual aeromagnetic intensity map to various data filtering and processing involving total horizontal derivative, vertical derivative, Upward Continuation (UC), Downward Continuation (DC), Euler Deconvolution at different Spectral Indices (SI), and Analytical signal using Geosoft Oasis Montaj 6.4.2 (HJ) data processing and analysis software. The resultants maps were overlain, compared and or plotted on RTP residual aeromagnetic intensity map and or geological map and interpreted in relation to the surface geological map. Positive magnetic anomalies observed on the RTP residual aeromagnetic intensity map ranged from 2.1 to 94.0 nT and associated with contrasting basement rocks, Ajase and Gbede BIF; while negative magnetic anomalies varied between -54.7 nT and -2.8 nT and are associated with intrusive bodies. Interpreted lineaments obtained from total horizontal derivative map were separated into two categories namely ductile and brittle based on their character vis-à-vis magnetic anomalies on RTP intensity map. Whilst the brittle lineaments were interpreted as fracture or faults; the ductile lineaments were interpreted as folds or representing the internal fabric of the rock units. In addition prominent magnetic faults mainly due to offset of similar magnetic domain/gradient were also interpreted. The iron ore mineralization is distributed within the eastern portion of the study area with Ajase BIF at relatively greater

  11. Reconstructing Earth's Surface Oxidation Across The Archean- Proterozoic Transition

    NASA Astrophysics Data System (ADS)

    Kaufman, A. J.; Guo, Q.; Strauss, H.; Schröder, S.; Gutzmer, J.; Wing, B. A.; Baker, M.; Bekker, A.; Jin, Q.; Kim, S.; Farquhar, J.

    2010-12-01

    The Archean-Proterozoic transition is characterized by the widespread deposition of organic-rich shale, sedimentary iron formation, glacial diamictite, and marine carbonates recording profound carbon isotope anomalies, but notably lacks bedded evaporites. All deposits reflect environmental changes in oceanic and atmospheric redox states, in part associated with Earth’s earliest ice ages. Time-series data for multiple sulfur isotopes from carbonate associated sulfate as well as sulfides in the glaciogenic Duitschland Formation of the Transvaal Supergroup, South Africa, capture the concomitant buildup of sulfate in the ocean and the loss of mass independent sulfur isotope fractionation. This is arguably associated with the atmospheric rise of oxygen (as well as the protective ozone layer) coincident with profound changes in ocean chemistry and biology. The loss of the MIF signal within the Duitschland succession is in phase with the earliest recorded positive carbon isotope anomaly, convincingly linking these environmental perturbations to the Great Oxidation Event (ca. 2.3 Ga). The emergence of cyanobacteria and oxygenic photosynthesis may be associated with a geochemical “whiff of oxygen” recorded in 2.5 Ga sediments. If true, the delay in the GOE can then be understood in terms of a finite sink for molecular oxygen - ferrous iron, which was abundant in deep Neoarchean seawater and sequestered in a worldwide episode of iron formation deposition ending shortly before accumulation of the Duitschland Formation. Insofar as early Paleoproterozoic glaciation is associated with oxygenation of a methane-rich atmosphere, we conclude that Earth’s earliest ice age(s) and the onset of a modern and far more energetic carbon cycle are directly related to the global expansion of cyanobacteria that released oxygen to the environment, and of eukaryotes that respired it.

  12. Single-Crystal 57Fe Q-Band ENDOR Study of the 4 Iron-4 Sulfur Cluster in its Reduced [4Fe-4S] 1+ State

    NASA Astrophysics Data System (ADS)

    Moriaud, Fabrice; Gambarelli, Serge; Lamotte, Bernard; Mouesca, Jean-Marie

    2001-12-01

    57Fe Q-band ENDOR has been used to study the [4Fe-4S]1+ state created by γ irradiation of single crystals of the synthetic model compound [N(C2H5)4]2[Fe4S4(SCH2C6H5)4] enriched in 57Fe. This compound is an excellent biomimetic model of the active sites of many 4 iron-4 sulfur proteins, enabling detailed and systematic studies of its oxidized [4Fe-4S]3+ and reduced [4Fe-4S]1+ paramagnetic states. Taking advantage of the fact that Q-band ENDOR, in contrast with X-Band ENDOR, allows for a very good separation of the 57Fe transitions from those of the protons, the complete hyperfine tensors of the four iron atoms for the [4Fe-4S]1+ species has been measured with precision. For each iron atom, the electron orbital and electron spin isotropic contributions have been determined separately. Moreover, it is remarkable that two 57Fe hyperfine tensors attributed to the ferrous pair of iron atoms are very different. In effect, one tensor presents a much larger anisotropic part and a much smaller isotropic part than those of the other. This difference has been interpreted in terms of a differential electron orbital hyperfine interaction among the two ferrous ions.

  13. Late-Archean continental emergence: consequences for the rise of atmospheric oxygen

    NASA Astrophysics Data System (ADS)

    Flament, N. E.; Coltice, N.; Rey, P. F.

    2008-12-01

    The balance between the secular cooling of the Earth's mantle and the growth of the continental crust implies changes in the isostatic equilibrium between continents and oceans, in the oceanic bathymetry, and in the area of emerged continental crust. The evolution of the latter is of fundamental importance to the geochemical coupling between the continental crust, the atmosphere and the oceans. The area of emerged land can be estimated from models that depend on mantle temperature, continental area and continental hypsometry. In the Archean, the mantle was probably 150-200°C hotter than present and the continental area could have increased from 20% of present at ~~3.5Ga to 80% of present by ~~2.5Ga. Using these values, and comparing different thermal evolution models for the Earth, we calculate that the area of emerged continental crust would be reduced to 1-12% of the Earth's area during the Archean (compared to 27.5% for present-day Earth). As for the continental hypsometry, a greater radiogenic crustal heat production and a greater mantle heat flow would have reduced the strength of the continental lithosphere in the Archean, thus limiting the crustal thickening due to mountain building processes and the maximum elevation in the Earth's topography [Rey and Coltice, Geology 36, 635-638 (2008)]. Taking this into account, we show that the continents were mostly flooded until the end of the Archean and that less than 3% of the Earth's area (which is roughly the superficy of South America) consisted of emerged continental crust by ~~2.5~Ga. These results are consistent with widespread Archean submarine continental flood basalts, and with the emergence of a sialic geochemical reservoir recorded from ~~2.5~Ga in (a) the composition of shales, (b) the isotopic ratio 87Sr/86Sr of marine carbonates and (c) the δ18O signature of igneous zircons. The progressive emergence of the continents as shown by our models from the late-Archean

  14. Two-band and pauli-limiting effects on the upper critical field of 112-type iron pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Xing, Xiangzhuo; Zhou, Wei; Wang, Jinhua; Zhu, Zengwei; Zhang, Yufeng; Zhou, Nan; Qian, Bin; Xu, Xiaofeng; Shi, Zhixiang

    2017-04-01

    The temperature dependence of upper critical field μ0Hc2 of Ca0.83La0.17FeAs2 and Ca0.8La0.2Fe0.98Co0.02As2 single crystals are investigated by measuring the resistivity for the inter-plane (H//c) and in-plane (H//ab) directions in magnetic fields up to 60 T. It is found that μ0Hc2(T) of both crystals for H//c presents a sublinear temperature dependence with decreasing temperature, whereas the curve of μ0Hc2(T) for H//ab has a convex curvature and gradually tends to saturate at low temperatures. μ0Hc2(T) in both crystals deviates from the conventional Werthamer-Helfand-Hohenberg (WHH) theoretical model without considering spin paramagnetic effect for H//c and H//ab directions. Detailed analyses show that the behavior of μ0Hc2(T) in 112-type Iron-based superconductors (IBSs) is similar to that of most IBSs. Two-band model is required to fully reproduce the behavior of μ0Hc2(T) for H//c, while the effect of spin paramagnetic effect is responsible for the behavior of μ0Hc2(T) for H//ab.

  15. Thermal Conductivity of the Iron-Based Superconductor FeSe: Nodeless Gap with a Strong Two-Band Character.

    PubMed

    Bourgeois-Hope, P; Chi, S; Bonn, D A; Liang, R; Hardy, W N; Wolf, T; Meingast, C; Doiron-Leyraud, N; Taillefer, Louis

    2016-08-26

    The thermal conductivity κ of the iron-based superconductor FeSe was measured at temperatures down to 75 mK in magnetic fields up to 17 T. In a zero magnetic field, the electronic residual linear term in the T=0  K limit, κ_{0}/T, is vanishingly small. The application of a magnetic field B causes an exponential increase in κ_{0}/T initially. Those two observations show that there are no zero-energy quasiparticles that carry heat and therefore no nodes in the superconducting gap of FeSe. The full field dependence of κ_{0}/T has the classic two-step shape of a two-band superconductor: a first rise at very low field, with a characteristic field B^{⋆}≪B_{c2}, and then a second rise up to the upper critical field B_{c2}. This shows that the superconducting gap is very small (but finite) on one of the pockets in the Fermi surface of FeSe. We estimate that the minimum value of the gap, Δ_{min}, is an order of magnitude smaller than the maximum value, Δ_{max}.

  16. Magneto-structural transformations via a solid-state nudged elastic band method: Application to iron under pressure.

    PubMed

    Zarkevich, N A; Johnson, D D

    2015-08-14

    We extend the solid-state nudged elastic band method to handle a non-conserved order parameter, in particular, magnetization, that couples to volume and leads to many observed effects in magnetic systems. We apply this formalism to the well-studied magneto-volume collapse during the pressure-induced transformation in iron-from ferromagnetic body-centered cubic (bcc) austenite to hexagonal close-packed (hcp) martensite. We find a bcc-hcp equilibrium coexistence pressure of 8.4 GPa, with the transition-state enthalpy of 156 meV/Fe at this pressure. A discontinuity in magnetization and coherent stress occurs at the transition state, which has a form of a cusp on the potential-energy surface (yet all the atomic and cell degrees of freedom are continuous); the calculated pressure jump of 25 GPa is related to the observed 25 GPa spread in measured coexistence pressures arising from martensitic and coherency stresses in samples. Our results agree with experiments, but necessarily differ from those arising from drag and restricted parametrization methods having improperly constrained or uncontrolled degrees of freedom.

  17. Dual-band microwave absorption properties of metamaterial absorber composed of split ring resonator on carbonyl iron powder composites

    NASA Astrophysics Data System (ADS)

    Lim, Jun-Hee; Ryu, Yo-Han; Kim, Sung-Soo

    2015-05-01

    This study investigated the dual-band absorption properties of metamaterial absorbers composed of a split ring resonator (SRR) on a grounded magnetic substrate. Polymer composites of carbonyl iron powders (CIP) of high permeability and magnetic loss were used as the substrate material. Computational tools were used to model the interaction between electromagnetic waves and materials with the SRR structure. For perpendicular polarization with an electric field (E) perpendicular to the SRR gap, dualband absorption peaks are predicted in the simulation result of reflection loss. Magnetic resonance resulting from antiparallel currents between the SRR and the ground plane is observed at the frequencies of two absorption peaks. The first strong absorption peak at the lower frequency (3.3 GHz) is due to magnetic resonance at the wire part of the SRR. The second absorption peak at the higher frequency (7.2 GHz) is due to magnetic resonance at the SRR split gap. The decreased capacitance with increased gap spacing moves the second absorption frequency to higher frequencies, while the first absorption peak is invariant with gap spacing. In the case of dual gaps at the opposite sides of the SRR, a single absorption peak is predicted due to the elimination of low-frequency resonance. For parallel polarization with the E-field parallel to the SRR gap, a single absorption peak is predicted, corresponding to magnetic resonance at the SRR wire.[Figure not available: see fulltext.

  18. Two-band and pauli-limiting effects on the upper critical field of 112-type iron pnictide superconductors

    PubMed Central

    Xing, Xiangzhuo; Zhou, Wei; Wang, Jinhua; Zhu, Zengwei; Zhang, Yufeng; Zhou, Nan; Qian, Bin; Xu, Xiaofeng; Shi, Zhixiang

    2017-01-01

    The temperature dependence of upper critical field μ0Hc2 of Ca0.83La0.17FeAs2 and Ca0.8La0.2Fe0.98Co0.02As2 single crystals are investigated by measuring the resistivity for the inter-plane (H//c) and in-plane (H//ab) directions in magnetic fields up to 60 T. It is found that μ0Hc2(T) of both crystals for H//c presents a sublinear temperature dependence with decreasing temperature, whereas the curve of μ0Hc2(T) for H//ab has a convex curvature and gradually tends to saturate at low temperatures. μ0Hc2(T) in both crystals deviates from the conventional Werthamer-Helfand-Hohenberg (WHH) theoretical model without considering spin paramagnetic effect for H//c and H//ab directions. Detailed analyses show that the behavior of μ0Hc2(T) in 112-type Iron-based superconductors (IBSs) is similar to that of most IBSs. Two-band model is required to fully reproduce the behavior of μ0Hc2(T) for H//c, while the effect of spin paramagnetic effect is responsible for the behavior of μ0Hc2(T) for H//ab. PMID:28383529

  19. Sulphur tales from the early Archean world

    NASA Astrophysics Data System (ADS)

    Montinaro, A.; Strauss, H.

    2016-07-01

    Sedimentary and magmatic rocks and their distinct sulphur isotopic signatures indicate the sources and processes of sulphur cycling, in particular through the analysis of all four stable sulphur isotopes (32S, 33S, 34S and 36S). Research over the past 15 years has substantially advanced our understanding of sulphur cycling on the early Earth, most notably through the discovery of mass-independently fractionated sulphur isotopic signatures. A strong atmospheric influence on the early Archean global sulphur cycle is apparent, much in contrast to the modern world. Diverse microbially driven sulphur cycling is clearly discernible, but its importance for Earth surface environments remains to be quantified.

  20. Biomarker evidence for Archean oxygen fluxes (Invited)

    NASA Astrophysics Data System (ADS)

    Hallmann, C.; Waldbauer, J.; Sherman, L. S.; Summons, R. E.

    2010-12-01

    Knowledge of deep-time organismic diversity may be gained from the study of preserved sedimentary lipids with taxonomic specificity, i.e. biomarker hydrocarbons (e.g. Brocks and Summons, 2003; Waldbauer et al., 2009). As a consequence of long residence times and high thermal maturities however, biomarker concentrations are extremely low in most ancient (Precambrian) sediment samples, making them exceptionally prone to contamination during drilling, sampling and laboratory workup (e.g. Brocks et al., 2008). Outcrop samples most always carry a modern overprint and deep-time biogeochemistry thus relies on drilling operations to retrieve ‘clean’ sediment cores. One such effort was initiated by NASA’s Astrobiology Institute (NAI): the Archean biosphere drilling project (ABDP). We here report on the lipids retrieved from sediment samples in drill hole ABDP-9. Strong heterogeneities of extractable organic matter - both on a spatial scale and in free- vs. mineral-occluded bitumen - provide us with an opportunity to distinguish indigenous lipids from contaminants introduced during drilling. Stratigraphic trends in biomarker data for mineral-occluded bitumens are complementary to previously reported data (e.g. S- and N-isotopes, molybdenum enrichments) from ABDP-9 sediments (Anbar et al., 2007; Kaufman et al., 2007; Garvin et al., 2009) and suggest periodic fluxes of oxygen before the great oxidation event. Anbar et al. A whiff of oxygen before the great oxidation event. Science 317 (2007), 1903-1906. Brocks & Summons. Sedimentary hydrocarbons, biomarkers for early life. In: Schlesinger (Ed.) Treatise on Geochemistry, Vol. 8 (2003), 63-115. Brocks et al. Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants. Geochimica et Cosmochimica Acta 72 (2008), 871-888. Garvin et al. Isotopic evidence for a aerobic nitrogen cycle in the latest Archean. Science 323 (2009), 1045-1048. Kaufman et al. Late Archean

  1. Stratigraphic and tectonic settings of Proterozoic glaciogenic rocks and banded iron-formations: relevance to the snowball Earth debate

    NASA Astrophysics Data System (ADS)

    Young, Grant M.

    2002-11-01

    Among Palaeoproterozoic glacial deposits on four continents, the best preserved and documented are in the Huronian on the north shore of Lake Huron, Ontario, where three glaciogenic formations have been recognized. The youngest is the Gowganda Formation. The glacial deposits of the Gowganda Formation were deposited on a newly formed passive margin. To the west, on the south side of Lake Superior, the oldest Palaeoproterozoic succession (Chocolay Group) begins with glaciogenic diamictites that have been correlated with the Gowganda Formation. The >2.2 Ga passive margin succession (Chocolay Group=upper Huronian) is overlain, with profound unconformity, by a >1.88 Ga succession that includes the superior-type banded iron-formations (BIFs). The iron-formations are therefore not genetically associated with Palaeoproterozoic glaciation but were deposited ˜300 Ma later in a basin that formed as a result of closure of the "Huronian" ocean. In Western Australia, Palaeoproterozoic glaciogenic deposits of the Meteorite Bore Member appear to have formed part of a similar basin fill. The glaciogenic rocks are, however, separated from underlying BIF by a thick siliciclastic succession. In both North America and Western Australia, BIF-deposition took place in compressional (possibly foreland basin) settings but the iron-formations are of greatly different age, suggesting that the most significant control on their formation was not oxygenation of the Earth's atmosphere but rather, emplacement of Fe-rich waters (uplifted as a result of ocean floor destruction?) in a siliciclastic-starved environment where oxidation (biogenic?) could take place. Some of the Australian BIFs appear to predate the appearance of red beds in North American Palaeoproterozoic successions and are therefore unlikely to be related to oxygenation of the atmosphere. Neoproterozoic glaciogenic deposits are widespread on the world's continents. Some are associated with iron-formations. Two theories have emerged

  2. Analysis of lipid biomarkers in rocks of Archean crystalline basement

    NASA Astrophysics Data System (ADS)

    Shekhovtsova, Nina V.; Osipov, George A.; Verkhovtseva, Nadejda V.; Pevzner, Lev A.

    2003-01-01

    The Earst-European platform Archean crystalline basement rocks opened by Vorotilov Deep Well (VDW) were studied within depths 2575 - 2805 m. VDW was drilled through Puchezh-Katunki impact structure and opened some rocks characterized by high magnetic saturation. Micro-dispersed structure of magnetite indicated on a possibility of its biogenic origin. Really some pure cultures of magnet-ordered compound producing bacilli were isolated. Thus, the identification of fatty acids and other lipid components of microbial cells inside rocks was made to establish the iron reduction role in common biochemical activity in deep subsurface. 34 microbial lipid markers were detected by gas chromatography -- mass-spectrometry and 22 species were identidied by private database. Bacteria of g. Bacillus reached 6.8% in subsurface communities. However, representatives of gg. Clostridium (37.1 - 33.2%) and Rhodococcus (27.6 - 33.7%) were absolute dominants within studied depth interval. Geochemical conditions in situ as well as physiological features of these micro-organisms allow to constitute a following trophic chain: subsurface fluid hyudrocarbons --> it oxidizing rhodococci --> free aminoacids and biomass proteins (products of rhodococci metabolism) --> it fermenting clostridia. This syntrophic association may be a new basement for subsurface ecosystem and can support the magnet-ordered compounds production.

  3. Archean collisional tectonics in SW Montana

    SciTech Connect

    Mogk, D.; Rickmond, D.; Salt, K.; Clark, M.; Mueller, P.; Lafrenze, D.; Wooden, J.; Henry, D.

    1985-01-01

    The Archean continental crust of SW Montana evolved through alternating cycles of stable platform sedimentation followed by crustal thickening through collisional tectonics. The ancient sialic crust in the Beartooth Mountains served as the nucleus for accretion of younger terranes to the west. The oldest orogenic cycle recognized in the Beartooth Mountains involves a 3.4 Ga old supracrustal sequence which was metamorphosed in the granulite facies (T=700-800/sup 0/C, P=6Kb, 35/sup 0/C/Km); deep burial is interpreted as the result of collisional tectonic thickening. The second orogenic cycle is subduction related and has produced 2.8 Ga old andesites, 2.75 Ga old calc-alkaline intrusives, upper amphibolite grade metamorphism, transcurrent faulting (in the North Snowy Block and Yankee Jim canyon at 2.8 Ga) and nappe emplacement. In the central Beartooths post-orogenic granites intrude pelitic schists (T=600/sup 0/C, P=8Kb, 25/sup 0/C/Km). West of the Beartooths the basement consists of 2.75-2.70 Ga old, tectonically telescoped coarse clastics (Gallatin, Madison Ranges) and stable platform sequences (Gravelly, Tobacco Root, Ruby Ranges). Nappe formation and granulite-migmatite (700-750/sup 0/C) associations are common, suggesting deep burial through tectonic thickening. A later-kinematic mesozonal (8Kb) qtz diorite-granodiorite batholithic complex is present in the northern Madison Range. Quartzofeldspathic paragneisses in the westernmost Archean basement are derived from either a continental or island arc source.

  4. Biomarkers Indigenous to Late Archean Rocks

    NASA Astrophysics Data System (ADS)

    Eigenbrode, J. L.; Freeman, K. H.; Summons, R. E.; Love, G. D.; Snape, C. E.

    2003-12-01

    Two new lines of evidence support the authenticity of molecular fossils in late Archean rocks of the Hamersley Province, Western Australia. Specifically, they support 1) a syngenetic relationship between the kerogen and extractable biomarkers, and 2) a indigenous relationship between extractable compounds and the host rocks. Carbon skeletons released from kerogen via high-pressure hydropyrolysis match those found in associated extracted bitumen. Biomarker ratios indicate less mature steranes and terpanes (i.e. hopanes and tricyclic terpanes) are embedded in the kerogen matrix as compared to the highly mature steranes and terpanes in the extracts, which is similar to findings in other hydropyrolysis experiments. Lithology-associated variations in biomarker distributions are noteworthy and suggest environmental settings are associated with differing biotic ecosystems. The evidence reported here confirms the 2.7 Ga antiquity of diverse biosynthetic pathways. Molecular data, together with isotopic data, indicate aerobic and anaerobic respiration pathways were fundamental to the complex microbial biogeochemistry of the late Archean. The biomarkers in these rocks support an early radiation of the three domains of life and radiation within the bacteria, such that clades of cyanobacteria, green sulfur bacteria, and proteobacteria had been established.

  5. Origin of Archean granitoids and continental evolution

    NASA Astrophysics Data System (ADS)

    Rapp, R. P.

    The origin of a stable, permanent crust is inextricably linked to granitoid genesis. The oldest terranes on Earth contain abundant granitoids, presumably representing the low density material that buoyed the crust and prevented its recycling into the mantle. The question of the origin of these rocks is thus fundamental to understanding Earth history: What was their source material, and what processes caused it to melt? Analogies with modern felsic magma genesis are tempting but not necessarily applicable, first because there are obvious reasons to doubt that present conditions characterized the early Archean (modern geotherms, well-established subduction zones, massive stable continental crust, and others), and also because early granitoids differed in detail from most of their modern counterparts.In this article, R.P. Rapp, who has done extensive experiments on the moderate-to-high-pressure melting behavior of mafic rocks, presents a decidedly non-uniformitarian view of the origin of the tonalite-trondhjemite-granodiorite suite that characterizes the early Archean crust.—Calvin Miller, “Friends of Granite” editor, Vanderbilt University

  6. Building Archean cratons from Hadean mafic crust.

    PubMed

    O'Neil, Jonathan; Carlson, Richard W

    2017-03-17

    Geologic processing of Earth's surface has removed most of the evidence concerning the nature of Earth's first crust. One region of ancient crust is the Hudson Bay terrane of northeastern Canada, which is mainly composed of Neoarchean felsic crust and forms the nucleus of the Northeastern Superior Province. New data show these ~2.7-billion-year-old rocks to be the youngest to yield variability in neodymium-142 ((142)Nd), the decay product of short-lived samarium-146 ((146)Sm). Combined (146-147)Sm-(142-143)Nd data reveal that this large block of Archean crust formed by reworking of much older (>4.2 billion-year-old) mafic crust over a 1.5-billion-year interval of early Earth history. Thus, unlike on modern Earth, mafic crust apparently could survive for more than 1 billion years to form an important source rock for Archean crustal genesis. Copyright © 2017, American Association for the Advancement of Science.

  7. Banded iron-formations of late Proterozoic age in the central eastern desert, Egypt: geology and tectonic setting.

    USGS Publications Warehouse

    Sims, P.K.; James, H.L.

    1984-01-01

    Iron-formation occurs as stratigraphic units within a layered andesite-basalt sequence. The sequence is metamorphosed to greenschist facies, intruded by syntectonic granodiorite and post-tectonic granite, and complexly deformed and grossly fragmented; the rocks are allochthonous along thrust faults. The iron deposits are chemical precipitates, accumulated during lulls in volcanism, apparently in an intraoceanic island-arc environment. The deposits are of the Algoma type of iron-formation.-G.J.N.

  8. Middle Archean continent formation by crustal delamination

    NASA Astrophysics Data System (ADS)

    Zegers, Tanja E.; van Keken, Peter E.

    2001-12-01

    The processes that created the first large cratonic areas such as the Pilbara and the Kaapvaal remain poorly understood. Models based on the uniformitarian extrapolation of present-day arc volcanic processes to a hotter early Earth have not adequately explained the observations in these terranes. Here we propose an alternative mechanism for the formation of the earliest continental crust. The formation of continental crust may be achieved by delamination of the lower eclogitic part of an oceanic plateau like protocrust. Such delamination results in uplift, extension, and the production of tonalite, trondhjemite, and granodiorite (TTG) suites as recorded in Middle Archean cratons. The available geologic and geophysical observations in combination with model calculations permit this scenario as an alternative to subduction-based hypotheses.

  9. Photoferrotrophs thrive in an Archean Ocean analogue

    PubMed Central

    Crowe, Sean A.; Jones, CarriAyne; Katsev, Sergei; Magen, Cédric; O'Neill, Andrew H.; Sturm, Arne; Canfield, Donald E.; Haffner, G. Douglas; Mucci, Alfonso; Sundby, Bjørn; Fowle, David A.

    2008-01-01

    Considerable discussion surrounds the potential role of anoxygenic phototrophic Fe(II)-oxidizing bacteria in both the genesis of Banded Iron Formations (BIFs) and early marine productivity. However, anoxygenic phototrophs have yet to be identified in modern environments with comparable chemistry and physical structure to the ancient Fe(II)-rich (ferruginous) oceans from which BIFs deposited. Lake Matano, Indonesia, the eighth deepest lake in the world, is such an environment. Here, sulfate is scarce (<20 μmol·liter−1), and it is completely removed by sulfate reduction within the deep, Fe(II)-rich chemocline. The sulfide produced is efficiently scavenged by the formation and precipitation of FeS, thereby maintaining very low sulfide concentrations within the chemocline and the deep ferruginous bottom waters. Low productivity in the surface water allows sunlight to penetrate to the >100-m-deep chemocline. Within this sulfide-poor, Fe(II)-rich, illuminated chemocline, we find a populous assemblage of anoxygenic phototrophic green sulfur bacteria (GSB). These GSB represent a large component of the Lake Matano phototrophic community, and bacteriochlorophyll e, a pigment produced by low-light-adapted GSB, is nearly as abundant as chlorophyll a in the lake's euphotic surface waters. The dearth of sulfide in the chemocline requires that the GSB are sustained by phototrophic oxidation of Fe(II), which is in abundant supply. By analogy, we propose that similar microbial communities, including populations of sulfate reducers and photoferrotrophic GSB, likely populated the chemoclines of ancient ferruginous oceans, driving the genesis of BIFs and fueling early marine productivity. PMID:18838679

  10. Development of an X-ray Telescope with a Large Effective Area for the Iron K Line Band

    NASA Astrophysics Data System (ADS)

    Matsumoto, Hironori; Tachibana, Sasagu; Yoshikawa, Shun; Tamura, Keisuke; Mori, Hideyuki; Mitsuishi, Ikuyuki; Tawara, Yuzuru; Kunieda, Hideyo; Yamashita, Kojun

    2015-08-01

    X-ray micro-calorimeters such as the Soft X-ray Spectrometer (SXS) on board ASTRO-H will enable precise spectroscopy of iron K lines even for spatially extended objects. To exploit the full power of the high-energy resolution, X-ray telescopes with a large effective area around 6 keV are essentially important. Conventional Wolter-I X-ray telescopes aimed at X-rays below 10 keV have used the principle of total reflection to collect the X-rays. Enlarging the diameter of this type of telescopes is not effective to obtain the large effective area, since the incident angle of X-rays for the outer part of the telescope exceeds the critical angle, and the X-ray reflectivity of the outer part is significantly low. For example, the critical angle of Ir for an X-ray of 6 keV is 0.748 deg. Thus if we assume a focal length of 6 m for a Wolter-I optics using mirrors covered with Ir as a reflector, the mirrors the radial position of which are larger than 34 cm cannot reflect X-rays above 6 keV effectively. If multi-layer mirrors are applied to the outer part of the telescope, however, the X-ray reflectivity can be enhanced significantly by the principle of Bragg reflection. Our objective is to develop a Wolter-I X-ray telescope with an aperture of 110 cm and a focal length of 6 m, and make all mirrors in the telescope can reflect X-rays around 6 keV effectively by utilizing the multi-layer mirrors. The size of the telescope is determined by a boundary condition that can be launched by the epsilon rocket of ISAS/JAXA. The multi-layer is designed to enhance the reflectivity at 6.4 keV, 6.7 keV, or 6.9 keV. Our simulation suggests that the effective area averaged in the 5.7-7.7 keV band could be 2000 cm2, whichis comparable to the effective area of Athena launched in 2028 by ESA. Furthermore, we showed that the Ir/C multi-layers produced by our DC magnetron sputtering machine has a surface roughness of less than 4 angstrom. This value is smaller than the average surface roughness

  11. On the photosynthetic potential in the very Early Archean oceans.

    PubMed

    Avila, Daile; Cardenas, Rolando; Martin, Osmel

    2013-02-01

    In this work we apply a mathematical model of photosynthesis to quantify the potential for photosynthetic life in the very Early Archean oceans. We assume the presence of oceanic blockers of ultraviolet radiation, specifically ferrous ions. For this scenario, our results suggest a potential for photosynthetic life greater than or similar to that in later eras/eons, such as the Late Archean and the current Phanerozoic eon.

  12. Early Archean spherule beds of possible impact origin from Barberton, South Africa: A detailed mineralogical and geochemical study

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Reimold, Wolf Uwe; Boer, Rudolf H.

    1992-01-01

    The Barberton Greenstone belt is a 3.5- to 3.2-Ga-old formation situated in the Swaziland Supergroup near Barberton, northeast Transvaal, South Africa. The belt includes a lower, predominantly volcanic sequence, and an upper sedimentary sequence (e.g., the Fig Tree Group). Within this upper sedimentary sequence, Lowe and Byerly identified a series of different beds of spherules with diameters of around 0.5-2 mm. Lowe and Byerly and Lowe et al. have interpreted these spherules to be condensates of rock vapor produced by large meteorite impacts in the early Archean. We have collected a series of samples from drill cores from the Mt. Morgan and Princeton sections near Barberton, as well as samples taken from underground exposures in the Sheba and Agnes mines. These samples seem much better preserved than the surface samples described by Lowe and Byerly and Lowe et al. Over a scale of just under 30 cm, several well-defined spherule beds are visible, interspaced with shales and/or layers of banded iron formation. Some spherules have clearly been deposited on top of a sedimentary unit because the shale layer shows indentions from the overlying spherules. Although fresher than the surface samples (e.g., spherule bed S-2), there is abundant evidence for extensive alteration, presumably by hydrothermal processes. In some sections of the cores sulfide mineralization is common. For our mineralogical and petrographical studies we have prepared detailed thin sections of all core and underground samples (as well as some surface samples from the S-2 layer for comparison). For geochemical work, layers with thicknesses in the order of 1-5 mm were separated from selected core and underground samples. The chemical analyses are being performed using neutron activation analysis in order to obtain data for about 35 trace elements in each sample. Major elements are being determined by XRF and plasma spectrometry. To clarify the history of the sulfide mineralization, sulfur isotopic

  13. Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxides

    PubMed Central

    Kim, J. Dongun; Yee, Nathan; Nanda, Vikas; Falkowski, Paul G.

    2013-01-01

    Photochemical reactions of minerals are underappreciated processes that can make or break chemical bonds. We report the photooxidation of siderite (FeCO3) by UV radiation to produce hydrogen gas and iron oxides via a two-photon reaction. The calculated quantum yield for the reaction suggests photooxidation of siderite would have been a significant source of molecular hydrogen for the first half of Earth’s history. Further, experimental results indicate this abiotic, photochemical process may have led to the formation of iron oxides under anoxic conditions. The reaction would have continued through the Archean to at least the early phases of the Great Oxidation Event, and provided a mechanism for oxidizing the atmosphere through the loss of hydrogen to space, while simultaneously providing a key reductant for microbial metabolism. We propose that the photochemistry of Earth-abundant minerals with wide band gaps would have potentially played a critical role in shaping the biogeochemical evolution of early Earth. PMID:23733945

  14. An archean suture zone in the Tobacco Root Mountains? (1984) Evolution of Archean Continental Crust, SW Montana (1985)

    NASA Technical Reports Server (NTRS)

    Mogk, D. W.; Kain, L.

    1985-01-01

    The Lake Plateau area of the Beartooth Mountains, Montana were mapped and geochemically sampled. The allochthonous nature of the Stillwater Complex was interpreted as a Cordilleran-style continental margin. The metamorphic and tectonic history of the Beartooth Mountains was addressed. The Archean geology of the Spanish Peaks area, northern Madison Range was addressed. A voluminous granulite terrain of supracrustal origin was identified, as well as a heretofore unknown Archean batholithic complex. Mapping, petrologic, and geochemical investigations of the Blacktail Mountains, on the western margin of the Wyoming Province, are completed. Mapping at a scale of 1:24000 in the Archean rocks of the Gravelly Range is near completion. This sequence is dominantly of stable-platform origin. Samples were collected for geothermometric/barometric analysis and for U-Pb zircon age dating. The analyses provide the basis for additional geochemical and geochronologic studies. A model for the tectonic and geochemical evolution of the Archean basement of SW Montana is presented.

  15. SQUID–SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle

    PubMed Central

    Fischer, Woodward W.; Fike, David A.; Johnson, Jena E.; Raub, Timothy D.; Guan, Yunbin; Kirschvink, Joseph L.; Eiler, John M.

    2014-01-01

    Many aspects of Earth’s early sulfur cycle, from the origin of mass-anomalous fractionations to the degree of biological participation, remain poorly understood—in part due to complications from postdepositional diagenetic and metamorphic processes. Using a combination of scanning high-resolution magnetic superconducting quantum interference device (SQUID) microscopy and secondary ion mass spectrometry (SIMS) of sulfur isotopes (32S, 33S, and 34S), we examined drill core samples from slope and basinal environments adjacent to a major Late Archean (∼2.6–2.5 Ga) marine carbonate platform from South Africa. Coupled with petrography, these techniques can untangle the complex history of mineralization in samples containing diverse sulfur-bearing phases. We focused on pyrite nodules, precipitated in shallow sediments. These textures record systematic spatial differences in both mass-dependent and mass-anomalous sulfur-isotopic composition over length scales of even a few hundred microns. Petrography and magnetic imaging demonstrate that mass-anomalous fractionations were acquired before burial and compaction, but also show evidence of postdepositional alteration 500 million y after deposition. Using magnetic imaging to screen for primary phases, we observed large spatial gradients in Δ33S (>4‰) in nodules, pointing to substantial environmental heterogeneity and dynamic mixing of sulfur pools on geologically rapid timescales. In other nodules, large systematic radial δ34S gradients (>20‰) were observed, from low values near their centers increasing to high values near their rims. These fractionations support hypotheses that microbial sulfate reduction was an important metabolism in organic-rich Archean environments—even in an Archean ocean basin dominated by iron chemistry. PMID:24706767

  16. SQUID-SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle.

    PubMed

    Fischer, Woodward W; Fike, David A; Johnson, Jena E; Raub, Timothy D; Guan, Yunbin; Kirschvink, Joseph L; Eiler, John M

    2014-04-15

    Many aspects of Earth's early sulfur cycle, from the origin of mass-anomalous fractionations to the degree of biological participation, remain poorly understood--in part due to complications from postdepositional diagenetic and metamorphic processes. Using a combination of scanning high-resolution magnetic superconducting quantum interference device (SQUID) microscopy and secondary ion mass spectrometry (SIMS) of sulfur isotopes ((32)S, (33)S, and (34)S), we examined drill core samples from slope and basinal environments adjacent to a major Late Archean (∼2.6-2.5 Ga) marine carbonate platform from South Africa. Coupled with petrography, these techniques can untangle the complex history of mineralization in samples containing diverse sulfur-bearing phases. We focused on pyrite nodules, precipitated in shallow sediments. These textures record systematic spatial differences in both mass-dependent and mass-anomalous sulfur-isotopic composition over length scales of even a few hundred microns. Petrography and magnetic imaging demonstrate that mass-anomalous fractionations were acquired before burial and compaction, but also show evidence of postdepositional alteration 500 million y after deposition. Using magnetic imaging to screen for primary phases, we observed large spatial gradients in Δ(33)S (>4‰) in nodules, pointing to substantial environmental heterogeneity and dynamic mixing of sulfur pools on geologically rapid timescales. In other nodules, large systematic radial δ(34)S gradients (>20‰) were observed, from low values near their centers increasing to high values near their rims. These fractionations support hypotheses that microbial sulfate reduction was an important metabolism in organic-rich Archean environments--even in an Archean ocean basin dominated by iron chemistry.

  17. SQUID-SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle

    NASA Astrophysics Data System (ADS)

    Fischer, Woodward W.; Fike, David A.; Johnson, Jena E.; Raub, Timothy D.; Guan, Yunbin; Kirschvink, Joseph L.; Eiler, John M.

    2014-04-01

    Many aspects of Earth's early sulfur cycle, from the origin of mass-anomalous fractionations to the degree of biological participation, remain poorly understood-in part due to complications from postdepositional diagenetic and metamorphic processes. Using a combination of scanning high-resolution magnetic superconducting quantum interference device (SQUID) microscopy and secondary ion mass spectrometry (SIMS) of sulfur isotopes (32S, 33S, and 34S), we examined drill core samples from slope and basinal environments adjacent to a major Late Archean (∼2.6-2.5 Ga) marine carbonate platform from South Africa. Coupled with petrography, these techniques can untangle the complex history of mineralization in samples containing diverse sulfur-bearing phases. We focused on pyrite nodules, precipitated in shallow sediments. These textures record systematic spatial differences in both mass-dependent and mass-anomalous sulfur-isotopic composition over length scales of even a few hundred microns. Petrography and magnetic imaging demonstrate that mass-anomalous fractionations were acquired before burial and compaction, but also show evidence of postdepositional alteration 500 million y after deposition. Using magnetic imaging to screen for primary phases, we observed large spatial gradients in Δ33S (>4‰) in nodules, pointing to substantial environmental heterogeneity and dynamic mixing of sulfur pools on geologically rapid timescales. In other nodules, large systematic radial δ34S gradients (>20‰) were observed, from low values near their centers increasing to high values near their rims. These fractionations support hypotheses that microbial sulfate reduction was an important metabolism in organic-rich Archean environments-even in an Archean ocean basin dominated by iron chemistry.

  18. Study on the genesis of Yishui banded iron formation (BIF) in the North China Craton: geochemical characteristics and tectonic environment

    NASA Astrophysics Data System (ADS)

    Moon, I.; Lee, I.; Yang, X.

    2015-12-01

    The Yishui BIFs are located in the Taishan Group, Shandong province of Eastern Block of North China Craton. The iron ore samples were collected from the mine pits. Major elements were analyzed by X-ray Fluoresence Spectromemter (XRF). Trace elements and REY (REE + Y) were analyzed by Inductively Coupled Plasma Mass Spectrometer (ICP-MS). Petrological, mineralogical and geochemical analyses of iron ores and their wall rock (amphibolite) were conducted to trace the genesis of Yishui BIF. Iron ores of Yishui BIF are mainly composed of SiO2 and Fe2O3T (SiO2+ Fe2O3T= 85.8 to 98.8 wt%) and consistent with major mineral components which are quartz and iron oxide such as magnetite and hematite. Low contents of TiO2 (0.01 to 0.09 wt%) , Al2O3 (0.42 to 1.18 wt%) and HFSE indicate no or little effect of detrital contamination. Iron ores have positive La, Eu, Gd, Er and Y anomalies with enriched HREE in PAAS normalized REY graph. The REY patterns of iron ores were used as a fingerprint to trace the source of iron and silica. Distinctive positive Eu anomalies (Eu/Eu*= 2.44-4.19), Y anomalies (Y/Y*=0.97 - 4.19), slightly negative Ce anomalies (Ce/Ce*= 0.87-0.97) and enriched HREE ((La/Yb)SN= 0.17-0.32) indicate that mixture of seawater and high-temperature hydrothermal fluid (>250 ◦C). Depositional environment in North China Craton implies that Yishui BIFs were formed at Neoarchean and associated arc-related tectonic setting. All these data suggest that Yishui BIFs belong to typical Algoma-type BIF.

  19. The Archean-Paleoproterozoic evolution of the Quadrilátero Ferrífero (Brasil): Current models and open questions

    NASA Astrophysics Data System (ADS)

    Farina, F.; Albert, C.; Martínez Dopico, C.; Aguilar Gil, C.; Moreira, H.; Hippertt, J. P.; Cutts, K.; Alkmim, F. F.; Lana, C.

    2016-07-01

    The Quadrilátero Ferrífero is a metallogenic district (Au, Fe, Mn) located at the southernmost end of the São Francisco craton in eastern Brazil. In this region, a supracrustal assemblage composed of Archean greenstone and overlying Neoarchean-Paleoproterozoic sedimentary rocks occur in elongated keels bordering domal bodies of Archean gneisses and granites. The tectonomagmatic evolution of the Quadrilàtero Ferrífero began in the Paleoarchean with the formation of continental crust between 3500 and 3200 Ma. Although this crust is today poorly preserved, its existence is attested to by the occurrence of detrital zircon crystals with Paleoarchean age in the supracrustal rocks. Most of the crystalline basement, which is composed of banded gneisses intruded by leucogranitic dikes and weakly foliated granites, formed during three major magmatic events: Rio das Velhas I (2920-2850 Ma), Rio das Velhas II (2800-2760 Ma) and Mamona (2760-2680 Ma). The Rio das Velhas II and Mamona events represent a subduction-collision cycle, probably marking the appearance of a modern-style plate tectonic regime in the Quadrilátero Ferrífero. Granitic rocks emplaced during the Rio das Velhas I and II events formed by mixing between a magma generated by partial melting of metamafic rocks with an end member derived by recycling gneissic rocks of older continental crust. After deformation and regional metamorphism at ca. 2770 Ma, a change in the composition of the granitic magmas occurred and large volumes of high-K granitoids were generated. The ca. 6000 m-thick Minas Supergroup tracks the opening and closure of a basin during the Neoarchean-Paleoproterozoic, between 2600 and 2000 Ma. The basal sequence involves continental to marine sediments deposited in a passive margin basin and contain as a marker bed the Lake Superior-type Cauê Banded Iron Formation. The overlying sediments of the Sabará Group mark the inversion of the basin during the Rhyacian Minas accretionary orogeny. This

  20. Boron in chert and Precambrian siliceous iron formations

    NASA Astrophysics Data System (ADS)

    Truscott, Marilyn G.; Shaw, Denis M.

    1984-11-01

    In order to assess the importance of siliceous sediments as a sink for oceanic B and to determine the effect of diagenesis on the mobilization of B, samples were analysed from chert nodules, bedded cherts, and siliceous banded iron formations from a variety of sedimentary environments and geologic ages. Boron analyses on bulk samples were made by prompt gamma neutron activation analysis. The distribution of B in rocks was mapped using α-track methods. Nodular Phanerozoic cherts typically contain 50-150 ppm B, and bedded cherts somewhat less. The B is initially concentrated in tests of silica-secreting organisms, but some is lost in early diagenesis as silica progressively recrystallises to quartz. Banded iron formation silica of Archean and Proterozoic age usually contains < 2 ppm B. This conforms with the view that such silica is not of biogenic origin but, since many iron formations are undoubtedly of marine origin, raises the question whether Precambrian oceans were impoverished in B. Analyses of Precambrian marine argillaceous sediments, averaging 70 ppm B, do not resolve this question.

  1. Idetification of the chemical sedimentary protolish of the early Paleoproterozoic banded iron formation from Wuyang area, in the southern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Lan, C.; Zhao, T.

    2016-12-01

    The Paleoproterozoic banded iron formation (BIF) from Wuyang area in the southern margin of the North China Craton (NCC) were metamorphosed under granulite facies, and are characterized with an assemblage of clinopyroxene, magnetite and orthopyroxene. Two types of iron ores can be identified on the basis of macro- and micro-textures: banded quartz-clinopyroxene (±othopyroxene) -magnetite ores and massive clinopyroxene-magnetite ores. Two-pyroxene geothermometry indicates that the primary counterparts of these ores have undergone metamorphism with a peak temperature of about 762±9°. Both the banded and massive ores have also similarly BIF-like REE+Y features, and thus are proposed to have all formed from chemical sediments. Similarly, clinopyroxenes from both types have BIF-like rare earth element compositions and are rich in Fe (16-23 wt.% FeOtotoal), further suggesting that they are primary Fe-Mg-Ca-rich chemical sediments during metamorphism. Slight enrichments of TiO2, Al2O3, Zr, Hf, Ta and Th of the Wuyang IF suggest relatively low detritus input. The massive ore have magnetite containing V, Cr and Ti much higher than those of the banded ores, suggesting that they may have undergone stronger secondary alteration possibly related to the intrusion of nearby pyroxenite plutons. Different ores have seawater-like REE+Y patterns with LREE depletions and positive anomalies of La, Eu, and Y, showing that granulite facies metamorphism did not essentially modify the primary compositions of the Wuyang IF deposited from paleo-seawater. Our results suggest less than 0.1% contribution from high-temperature hydrothermal fluids.

  2. Tectonic implications of Archean anorthosite occurrences

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.; Morrison, D. A.; Maczuga, D. E.

    1988-01-01

    The occurrences of megacrystic anorthosite and basalt in a variety of geologic settings were reviewed and it was found that these rock types occur in a variety of tectonic settings. Anorthosites and megacrystic basalts are petrogenetically related and are found in oceanic volcanic crust, cratons, and shelf environments. Although megacrystic basalts are most common in Archean terranes, similar occurrences are observed in rocks of early Proterozoic age, and even in young terranes such as the Galapagos hotspot. Based on inferences from experimental petrology, all of the occurrences are apparently associated with similar parental melts that are relatively Fe-rich tholeiites. The megacrystic rocks exhibit a two- (or more)-stage development of plagioclase, with the megacrysts having relatively uniform composition produced under nearly isothermal and isochemical conditions over substantial periods of time. The anorthosites appear to have intruded various crustal levels from very deep to very shallow. The petrogenetic indicators, however, suggest that conditions of formation of the Precambrian examples were different from Phanerozoic occurrences.

  3. Plume-induced cratonization in Archean Earth

    NASA Astrophysics Data System (ADS)

    Gerya, T.; Sizova, E.; Bogdanova, S. V.; Tackley, P.

    2016-12-01

    Cratons are the oldest stabilized parts of Earth's continents that have multi-stage history and are characterized by thick heterogeneous (on the scale of tens to hundreds km) mantle roots with variable degree of depletion and metasomatic reworking. Several distinct proto-cratonic units of hundreds km size differing in crustal and mantle structure could be often found within large cratons. Geodynamic mechanisms of cratons formation remain debatable and combine both plate-tectonics-related and plume-related processes. Based on recent numerical experiments, we propose a new concept of Archean cratonization intrinsically related to the operation of plume-lid tectonics by which proto-continental and proto-oceanic lithospheric domains spontaneously formed before the onset of global plate tectonics. In contrast to present day, hot felsic proto-continental domains had thinner, more deformable and less depleted mantle lithosphere compared to their cold mafic proto-oceanic counterparts formed by ultraslow spreading atop hot mantle upwellings. Numerical models show feasibility of short-lived deep subduction of the depleted proto-oceanic lithosphere to core-mantle boundary driven by eclogitization of the thick mafic crust. Subsequent heating and buoyancy-driven separation of the eclogite and harzburgite triggered formation of strongly depleted harzburgite plumes. Rising and accretion of these chemically buoyant refractory plumes to the bottom of proto-continental domains created relatively small (hundreds km) proto-cratons. After onset of global plate tectonics, assembling of smaller proto-cratonic terrains formed actual large cratons.

  4. Nanophase Iron Oxides as an Ultraviolet Sunscreen for Ancient Photosynthetic Microbes: A Possible Link Between Early Organisms, Banded-Iron Formations, and the Oxygenation of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Rothschild, Lynn J.; Rothschild, Lynn J.; Rogoff, Dana A.

    2006-01-01

    We propose that nanophase iron oxide-bearing materials provided important niches for ancient photosynthetic microbes on the early Earth that ultimately led to the oxygenation of the Earth s atmosphere and the formation of iron oxide deposits. Atmospheric oxygen and ozone attenuate UV radiation on the Earth today providing substantial protection for photosynthetic organisms. With ultraviolet radiation fluxes likely to have been even higher on the early Earth than today, accessing solar radiation was particularly risky for early organisms. Yet, we know that photosynthesis arose then and played a critical role in subsequent evolution. Of primary importance was protection at approx.250-290 nm, where peak nucleic acid (approx.260 nm) and protein (approx.280 nm) absorptions occur. Nanophase ferric oxide/oxyhydroxide minerals absorb, and thus block, the lethal UV radiation, while transmitting light through much of the visible and near-infrared regions of interest to photosynthesis (400 to 1100 nm). Further, they were available in early environments, and are synthesized by many organisms. Based on ferric oxide/oxyhydroxide spectral properties, likely geologic processes, and the results of experiments with the photosynthetic organisms, Euglena sp. and Chlumydomonus reinhardtii, we propose a scenario where photosynthesis, and ultimately the oxygenation of the atmosphere, depended on the protection of early microbes by nanophase ferric oxides/oxyhydroxides. The results of this study are also applicable to other potentially habitable iron-bearing planetary bodies because of the evolutionary pressure to utilize solar radiation when available as an energy source.

  5. Nanophase Iron Oxides as an Ultraviolet Sunscreen for Ancient Photosynthetic Microbes: A Possible Link Between Early Organisms, Banded-Iron Formations, and the Oxygenation of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Rothschild, Lynn J.; Rothschild, Lynn J.; Rogoff, Dana A.

    2006-01-01

    We propose that nanophase iron oxide-bearing materials provided important niches for ancient photosynthetic microbes on the early Earth that ultimately led to the oxygenation of the Earth s atmosphere and the formation of iron oxide deposits. Atmospheric oxygen and ozone attenuate UV radiation on the Earth today providing substantial protection for photosynthetic organisms. With ultraviolet radiation fluxes likely to have been even higher on the early Earth than today, accessing solar radiation was particularly risky for early organisms. Yet, we know that photosynthesis arose then and played a critical role in subsequent evolution. Of primary importance was protection at approx.250-290 nm, where peak nucleic acid (approx.260 nm) and protein (approx.280 nm) absorptions occur. Nanophase ferric oxide/oxyhydroxide minerals absorb, and thus block, the lethal UV radiation, while transmitting light through much of the visible and near-infrared regions of interest to photosynthesis (400 to 1100 nm). Further, they were available in early environments, and are synthesized by many organisms. Based on ferric oxide/oxyhydroxide spectral properties, likely geologic processes, and the results of experiments with the photosynthetic organisms, Euglena sp. and Chlumydomonus reinhardtii, we propose a scenario where photosynthesis, and ultimately the oxygenation of the atmosphere, depended on the protection of early microbes by nanophase ferric oxides/oxyhydroxides. The results of this study are also applicable to other potentially habitable iron-bearing planetary bodies because of the evolutionary pressure to utilize solar radiation when available as an energy source.

  6. Brazil's premier gold province. Part II: geology and genesis of gold deposits in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero

    NASA Astrophysics Data System (ADS)

    Lobato, Lydia; Ribeiro-Rodrigues, Luiz; Vieira, Frederico

    2001-07-01

    Orogenic, gold deposits are hosted by rocks of the Archean Rio das Velhas greenstone belt in the Quadrilátero Ferrífero region, Minas Gerais state, Brazil, one of the major gold provinces in the world. The gold deposits occur at the base of the mafic-ultramafic succession, with the most important orebodies controlled by E-W-striking, strike-slip faults. The main mineralization styles are (1) structurally controlled, sulfide replacement zones in banded iron formation (BIF); (2) disseminated sulfide minerals and gold in hydrothermally altered rocks along shear zones; and (3) auriferous quartz-carbonate-sulfide veins and veinlets in mafic, ultramafic, and felsic volcanic rocks, and also in clastic sedimentary rocks. The most common host rocks for ore are metamorphosed oxide- and carbonate-facies banded ironiron-rich metachert) formations (e.g., the Cuiabá, São Bento and Raposos deposits) and the lapa seca unit, which is a local term for intensely carbonatized rock (e.g., the giant Morro Velho mine with >450 t of contained gold). Metabasalts host most of the remaining gold deposits. Mineralogical characteristics and fluid inclusion studies suggest variations in the H2O/CO2 ratio of a low-salinity, near-neutral, reducing, sulfur-bearing, ore fluid. The presence of abundant CH4-rich inclusions is related to reduction of the original H2O-CO2 fluid via interaction with carbonaceous matter in the wallrocks. Oxygen fugacity was close to that of graphite saturation, with variations likely to have been influenced by reaction with the carbonaceous matter. Carbon-rich phyllites and schists, which commonly bound ore-bearing horizons, seem to have played both a physical and chemical role in localizing hydrothermal mineral deposition. Microtextural studies indicate that gold deposition was mainly related to desulfidation reactions, and was paragenetically coeval with precipitation of arsenic-rich iron sulfide minerals. Carbon isotope data are compatible with dissolution of

  7. Archean Subduction or Not? The Archean Volcanic Record Re-assessed.

    NASA Astrophysics Data System (ADS)

    Pearce, Julian; Peate, David; Smithies, Hugh

    2013-04-01

    Methods of identification of volcanic arc lavas may utilize: (1) the selective enrichment of the mantle wedge by 'subduction-mobile' elements; (2) the distinctive preconditioning of mantle along its flow path to the arc front; (3) the distinctive combination of fluid-flux and decompression melting; and (4) the effects of fluids on crystallization of the resulting magma. It should then be a simple matter uniquely to recognise volcanic arc lavas in the Geological Record and so document past subduction zones. Essentially, this is generally true in the oceans, but generally not on the continents. Even in recent, fresh lavas and with a full battery of element and isotope tools at our disposal, there can be debate over whether an arc-like geochemical signature results from active subduction, an older, inherited subduction component in the lithosphere, or crustal contamination. In the Archean, metamorphism, deformation, a different thermal regime and potential non-uniformitarian tectonic scenarios make the fingerprinting of arc lavas particularly problematic. Not least, the complicating factor of crustal contamination is likely to be much greater given the higher magma and crustal temperatures and higher magma fluxes prevailing. Here, we apply new, high-resolution immobile element fingerprinting methods, based primarily on Th-Nb fractionation, to Archean lavas. In the Pilbara, for example, where there is a volcanic record extending for over >500 m.y., we note that lavas with high Th/Nb (negative Nb anomalies) are common throughout the lava sequence. Many older formations also follow a basalt-andesite-dacite-rhyolite (BADR) sequence resembling present-day arcs. However, back-extrapolation of their compositions to their primitive magmas demonstrates that these were almost certainly crustally-contaminated plume-derived lavas. By contrast, this is not the case in the uppermst part of the sequence where even the most primitive magmas have significant Nb anomalies. The

  8. Evidence for reactive reduced phosphorus species in the early Archean ocean.

    PubMed

    Pasek, Matthew A; Harnmeijer, Jelte P; Buick, Roger; Gull, Maheen; Atlas, Zachary

    2013-06-18

    It has been hypothesized that before the emergence of modern DNA-RNA-protein life, biology evolved from an "RNA world." However, synthesizing RNA and other organophosphates under plausible early Earth conditions has proved difficult, with the incorporation of phosphorus (P) causing a particular problem because phosphate, where most environmental P resides, is relatively insoluble and unreactive. Recently, it has been proposed that during the Hadean-Archean heavy bombardment by extraterrestrial impactors, meteorites would have provided reactive P in the form of the iron-nickel phosphide mineral schreibersite. This reacts in water, releasing soluble and reactive reduced P species, such as phosphite, that could then be readily incorporated into prebiotic molecules. Here, we report the occurrence of phosphite in early Archean marine carbonates at levels indicating that this was an abundant dissolved species in the ocean before 3.5 Ga. Additionally, we show that schreibersite readily reacts with an aqueous solution of glycerol to generate phosphite and the membrane biomolecule glycerol-phosphate under mild thermal conditions, with this synthesis using a mineral source of P. Phosphite derived from schreibersite was, hence, a plausible reagent in the prebiotic synthesis of phosphorylated biomolecules and was also present on the early Earth in quantities large enough to have affected the redox state of P in the ocean. Phosphorylated biomolecules like RNA may, thus, have first formed from the reaction of reduced P species with the prebiotic organic milieu on the early Earth.

  9. Some examples of deep structure of the Archean from geophysics

    NASA Technical Reports Server (NTRS)

    Smithson, S. B.; Johnson, R. A.; Pierson, W. R.

    1986-01-01

    The development of Archean crust remains as one of the significant problems in earth science, and a major unknown concerning Archean terrains is the nature of the deep crust. The character of crust beneath granulite terrains is especially fascinating because granulites are generally interpreted to represent a deep crustal section. Magnetic data from this area can be best modeled with a magnetized wedge of older Archean rocks (granulitic gneisses) underlying the younger Archean greenstone terrain. The dip of the boundary based on magnetic modeling is the same as the dip of the postulated thrust-fault reflection. Thus several lines of evidence indicate that the younger Archean greenstone belt terrain is thrust above the ancient Minnesota Valley gneiss terrain, presumably as the greenstone belt was accreted to the gneiss terrain, so that the dipping reflection represents a suture zone. Seismic data from underneath the granulite-facies Minnesota gneiss terrain shows abundant reflections between 3 and 6 s, or about 9 to 20 km. These are arcuate or dipping multicyclic events indicative of layering.

  10. Interaction of Komatiitic Liquids With Archean Arcs

    NASA Astrophysics Data System (ADS)

    Kerrich, R.

    2006-12-01

    New, and compilations of, high precision data for 3.0 to 2.7 Ga komatiites of the Superior province show positive normalized anomalies of Nb relative to Th-La, and Nb/Th>8. These features are present in Al- undepleted (AUK) and Al-depleted komatiites(ADK) screened for minimal alteration and absence of crustal contamination. AUK possess positive Zr(Hf)/Sm anomalies, whereas ADK counterparts have negative anomalies. For AUK, positive (Nb,Zr)/REE anomalies are interpreted as oceanic lithosphere processed through a dehydration-dominated subduction zone and recycled into the mantle source of plumes. For ADK, HFSE/REE anomalies may reflect recycled oceanic lithosphere processed through a melt(TTG)-dominated subduction zone, melting of a plume with residual majorite garnet at >400 km, or some combination. Both AUK and ADK are associated with anhydrous intraplate plume-related magmas, based on field associations and Ti/V. A new compositional type of Neoarchean intraoceanic low-K (Ce) tholeiitic arc basalt has been identified. These are characterized by a spectrum of negative to positive (Nb,Ta,Zr,Hf)/REE anomalies, but systematic negative Ti/REE anomalies, where Nb antivaries with Zr/Nb, and Ni>300ppm. This type differs from low-K arc tholeiites of Archean and Phanerozoic age variably associated with andesites, dacites, rhyolites, and characterized by systematic negative anomalies of (Nb,Ta,P,Ti)/REE, with Ni<250ppm. The new type tholeiites are consistent with a model of earlier komatiitic liquids that stalled in, and fertilized, upper mantle. As an arc migrated through composite upper mantle, hydrous melting generated a basalt compositional spectrum from subdued AUK-like to classic arc-like HFSE/REE anomalies. Alternatively, contemporaneous AUK liquids leaked through a slab into the sub-arc mantle wedge, hybridizing with wedge peridotite melts.

  11. Paleomagnetic measurements of Archean and Hadean zircons

    NASA Astrophysics Data System (ADS)

    Cottrell, R. D.; Tarduno, J. A.; Bono, R. K.

    2014-12-01

    The long-term history of the geodynamo can provide important constraints on core and mantle evolution. The oldest paleointensity records on extant rocks suggest a relatively strong magnetic field at 3.45 Ga (Tarduno et al., 2010). Examining an even older magnetic field, however, must rely on igneous components (e.g. zircons hosting magnetic inclusions) now found in younger sedimentary rocks. Here we focus on methods developed to address the challenges posed by the paleointensity measurement of crystals having weak natural remanent magnetizations (NRMs). We use a small bore (6.3 mm) 2G SQUID magnetometer that currently has the highest 3-component moment resolution for measurements, and CO2 laser heating for demagnetization. Use of this 3-component system allows for the direct measurement of full vector natural remanent magnetizations and avoids the non-uniqueness inherent in scanning magnetometer approaches. To reduce sample blank size, we use 0.5 mm fused quartz sample holders. We find that some Archean to Hadean zircons of the Jack Hills (Yilgarn Craton, Western Australia) have NRMs of ca. 1-3 x 10-9 emu, within the resolution of the ultra-high moment resolution SQUID magnetometer. Thermal demagnetization data indicate most the magnetization unblocks between 550 and 580 °C, consistent with a magnetite carrier. Magnetic force microscopy suggests the presence of sub-micron single domain-like magnetic inclusions in the zircon. Thellier-Coe paleointensity data suggest the presence of a magnetic field at 3.55 Ga. We will discuss measurements and criteria to evaluate the presence/absence of an even older Paleoarchean and Hadean magnetic field, and opportunities provided by further increases in moment resolution provided by a new spin exchange relaxation-free magnetometer.

  12. Role of biomineralization as an ultraviolet shield: Implications for Archean life

    NASA Astrophysics Data System (ADS)

    Phoenix, V. R.; Konhauser, K. O.; Adams, D. G.; Bottrell, S. H.

    2001-09-01

    Cyanobacteria, isolated from the Krisuvik hot spring, Iceland, were mineralized in an iron-silica solution and irradiated with high levels of ultraviolet light. Analysis of the rates of photosynthesis, chlorophyll-a content, and phycocyanin autofluorescence revealed that these mineralized bacteria have a marked resistance to UV compared to nonmineralized bacteria. Naturally occurring sinters composed of iron-silica biominerals collected from the Lysúholl hot spring, and made into wafers of 150 250 μm thickness, also provided cyanobacteria with an effective UV screen. Analysis of the UV-absorbing capacity of these wafers showed that they absorbed an order of magnitude more UV than photosynthetically active light (required for photosynthesis). From these results, it is evident that both natural and experimental biomineralization provide bacteria with an effective UV screen through the passive precipitation of iron-enriched silica crusts. The UV-shielding capacity of iron- bearing silicate biominerals may have been important for early life forms. We propose that the biomineralization of Archean bacteria similarly provided protection from the high-intensity UV present at that time, and hence allowed colonization and bacterial diversification of shallow-water environments.

  13. Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia

    NASA Technical Reports Server (NTRS)

    Baur, M. E.; Hayes, J. M.; Studley, S. A.; Walter, M. R.

    1985-01-01

    Several diamond drill cores from formations within the Hamersley Group of Western Australia have been studied for evidence of short-range variations in the isotopic compositions of the carbonates. For a set of 32 adjacent microbands analyzed in a specimen from the Marra Mamba Iron Formation, carbon isotope compositions of individual microbands ranged from -2.8 to -19.8 per mil compared to PDB and oxygen isotope compositions ranged from 10.2 to 20.8 per mil compared to SMOW. A pattern of alternating abundances was present, with the average isotopic contrasts between adjacent microbands being 3.0 per mil for carbon and 3.1 per mil for oxygen. Similar results were obtained for a suite of 34 microbands (in four groups) from the Bruno's Band unit of the Mount Sylvia Formation. Difficulties were experienced in preparing samples of single microbands from the Dales Gorge Member of the Brockman Iron Formation, but overall isotopic compositions were in good agreement with values reported by previous authors. Chemical analyses showed that isotopically light carbon and oxygen were correlated with increased concentrations of iron. The preservation of these millimeter-scale variations in isotopic abundances is interpreted as inconsistent with a metamorphic origin for the isotopically light carbon in the BIF carbonates. A biological origin is favored for the correlated variations in 13C and Fe, and it is suggested that the 13C-depleted carbonates may derive either from fermentative metabolism or from anaerobic respiration. A model is presented in which these processes occur near the sediment-water interface and are coupled with an initial oxidative precipitation of the iron.

  14. Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia.

    PubMed

    Baur, M E; Hayes, J M; Studley, S A; Walter, M R

    1985-01-01

    Several diamond drill cores from formations within the Hamersley Group of Western Australia have been studied for evidence of short-range variations in the isotopic compositions of the carbonates. For a set of 32 adjacent microbands analyzed in a specimen from the Marra Mamba Iron Formation, carbon isotope compositions of individual microbands ranged from -2.8 to -19.8 per mil compared to PDB and oxygen isotope compositions ranged from 10.2 to 20.8 per mil compared to SMOW. A pattern of alternating abundances was present, with the average isotopic contrasts between adjacent microbands being 3.0 per mil for carbon and 3.1 per mil for oxygen. Similar results were obtained for a suite of 34 microbands (in four groups) from the Bruno's Band unit of the Mount Sylvia Formation. Difficulties were experienced in preparing samples of single microbands from the Dales Gorge Member of the Brockman Iron Formation, but overall isotopic compositions were in good agreement with values reported by previous authors. Chemical analyses showed that isotopically light carbon and oxygen were correlated with increased concentrations of iron. The preservation of these millimeter-scale variations in isotopic abundances is interpreted as inconsistent with a metamorphic origin for the isotopically light carbon in the BIF carbonates. A biological origin is favored for the correlated variations in 13C and Fe, and it is suggested that the 13C-depleted carbonates may derive either from fermentative metabolism or from anaerobic respiration. A model is presented in which these processes occur near the sediment-water interface and are coupled with an initial oxidative precipitation of the iron.

  15. Geochemistry of Archean Mafic Amphibolites from the Amsaga Area, West African Craton, Mauritania: Occurrence of Archean oceanic plateau

    NASA Astrophysics Data System (ADS)

    El Atrassi, Fatima; Debaille, Vinciane; Mattielli, Nadine; Berger, Julien

    2015-04-01

    While Archean terrains are mainly composed of a TTG (Tonalite-trondhjemite-granodiorite) suite, more mafic lithologies such as amphibolites are also a typical component of those ancient terrains. Although mafic rocks represent only ~10% of the Archean cratons, they may provide key evidence of the role and nature of basaltic magmatism in the formation of the Archean crust as well as the evolution of the Archean mantle. This study focuses on the Archean crust from the West African craton in Mauritania (Amsaga area). The Amsaga Archean crust mainly consists of TTG and thrust-imbricated slices of mafic volcanic rocks, which have been affected by polymetamorphic events from the amphibolite to granulite facies. We report the results of a combined petrologic, Sm-Nd isotopic, major element and rare earth element (REE) study of the Archean amphibolites in the West African craton. This study was conducted in order to characterize these rocks, to constrain the time of their formation and to evaluate their tectonic setting and their possible mantle source. Our petrological observations show that these amphibolites have fine to medium granoblastic and nematoblastic textures. They are dominated by amphibolite-facies mineral assemblages (mainly amphibole and plagioclase), but garnet and clinopyroxene occur in a few samples. These amphibolites have tholeiitic basalt composition. On a primitive mantle-normalized diagram, they display fairly flat patterns without negative anomalies for either Eu or Nb-Ta. We have shown using Sm-Nd whole rock isotopic data that these amphibolites formed at 3.3 ±0.075 Ga. They have positive ɛNdi values (+5.2 ± 1.6). These samples show isotopically juvenile features, which rule out the possibility of significant contamination of the protolith magmas by ancient continental crust. Based on these geochemical data we propose that the tholeiitic basalts were formed in an oceanic plateau tectonic setting from a mantle plume source and that they have a

  16. Geology and tectonics of the Archean Superior Province, Canadian Shield

    NASA Technical Reports Server (NTRS)

    Card, K. D.

    1986-01-01

    Superior Province consists mainly of Late Archean rocks with Middle Archean gneisses in the south, and possibly in the north. The Late Archean supracrustal sequences are of island arc and interarc affinity and are cut by abundant plutonic rocks, including early arc-related intrusions, late synorogenic intrusions, and post-orogenic plutons that are possibly the product of crustal melting caused by thermal blanketing of newly-thickened continental crust combined with high mantle heat flux. The contemporaneity of magmatic and deformational events along the lengths of the belts is consistent with a subduction-dominated tectonic regime for assembly of the Kenoran Orogen. Successive addition of volcanic arcs accompanied and followed by voluminous plutonism resulted in crustal thickening and stabilization of the Superior craton prior to uplift of Kapuskasing granulites, emplacement of the Matachewan diabase dykes, and Early Proterozoic marginal rifting.

  17. Partition coefficients for calcic plagioclase - Implications for Archean anorthosites

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.; Morrison, D. A.

    1990-01-01

    In most Archean cratons, cumulates of equant plagioclase megacrysts form anorthositic complexes, including those at Bad Vermilion Lake (Ontario). In this paper, partition coefficients (Ds) of REEs between natural high-Ca plagioclase megacrysts and their basaltic matrices were determined, using a multiple aliquot techique, and megacrystic plagioclases occurring in anorthosites were analyzed for the same components which, in conjunction with their Ds, were applied to calculations of melts in equilibrium with anorthosites. The REE's Ds were found to agree well with experimentally determined values and to predict equilibrium melts for Archean anorthosites that agree well with coeval basaltic flows and dikes. The Ds also appear to be valid for both the tholeiitic and alkali basalts over a wide range of mg numbers and REE concentrations. It is suggested that the moderately Fe-rich tholeiites that are hosts to plagioclase megacrysts in greenstone belts form the parental melts for megacrysts which make up the Bad Vermilion Lake Archean anorthositic complex.

  18. Nitrogen isotopic composition and density of the Archean atmosphere.

    PubMed

    Marty, Bernard; Zimmermann, Laurent; Pujol, Magali; Burgess, Ray; Philippot, Pascal

    2013-10-04

    Understanding the atmosphere's composition during the Archean eon is fundamental to unraveling ancient environmental conditions. We show from the analysis of nitrogen and argon isotopes in fluid inclusions trapped in 3.0- to 3.5-billion-year-old hydrothermal quartz that the partial pressure of N2 of the Archean atmosphere was lower than 1.1 bar, possibly as low as 0.5 bar, and had a nitrogen isotopic composition comparable to the present-day one. These results imply that dinitrogen did not play a significant role in the thermal budget of the ancient Earth and that the Archean partial pressure of CO2 was probably lower than 0.7 bar.

  19. The role of orbital order in the stabilization of the (π, 0) ordered magnetic state in a minimal two-band model for iron pnictides

    SciTech Connect

    Ghosh, Sayandip Singh, Avinash

    2014-03-14

    Spin wave excitations and stability of the (π, 0) ordered magnetic state are investigated in a minimal two-band itinerant-electron model for iron pnictides. Presence of hopping anisotropy generates a strong ferro-orbital order in the d{sub xz} and d{sub yz} Fe orbitals in the (π, 0) state. The orbital order sign is as observed in experiments. The induced ferro-orbital order strongly enhances the spin wave energy scale and stabilizes the magnetic state by optimizing the strength of the emergent antiferromagnetically and ferromagnetically spin couplings through optimal band fillings in the two orbitals. The calculated spin-wave dispersion is in quantitative agreement with neutron scattering measurements. Finite inter-orbital Hund's coupling is shown to further enhance the spin wave energies state by coupling the two magnetic sub-systems. A more realistic two-band model with less hopping anisotropy is also considered, which yields not only the circular hole pockets but also correct ferro-orbital order and emergent F spin coupling.

  20. The early Earth -- A perspective on the Archean

    SciTech Connect

    Hamilton, W.B. )

    1993-04-01

    Dominant models of Archean tectonics and magmatism involve plate-tectonic mechanisms. Common tenets of geochemistry (e.g., model ages) and petrology visualize a cold-accreted Earth in which primitive mantle gradually fractionated to produce crust during and since Archean time. These popular assumptions appear to be incompatible with cosmologic and planetologic evidence and with Archean geology. All current quantitative and semiquantitative theories agree that the Earth was largely or entirely melted (likely superheated) by giant impacts, including the Mars-size impact which splashed out the Moon, and by separation of the core. The Earth at [approximately]4.5 Ga was a violently convecting anhydrous molten ball. Both this history and solar-system position indicate the bulk Earth to be more refractory than chondrite. The outer part of whatever sold shell developed was repeatedly recycled by impacts before 3.9 Ga. Water and CO[sub 2] were added by impactors after the Moon-forming event; the mantle is not a source of primordial volatiles, but rather is a sink that has depleted the hydrosphere. Voluminous liquidus ultramafic lava (komatiite) indicates that much Archean upper mantle was above its solidus. Only komatiitic and basaltic magma entered Archean crust from the mantle. Variably hydrous contamination, secondary melting, and fractionation in the crust produced intermediate and felsic melts. Magmatism was concurrent over vast tracts. Within at least the small sample of Archean crust that has not been recycled into the mantle, heat loss was primarily by voluminous, dispersed magmatism, not, as in the modern Earth, primarily through spreading windows through the crust. Only in Proterozoic time did plate-tectonic mechanisms become prevalent.

  1. Weathering in the late Archean and perturbations by oxygenic photosynthesis (Invited)

    NASA Astrophysics Data System (ADS)

    Sverjensky, D. A.; Lee, N.; Hazen, R. M.

    2009-12-01

    Low values for logfO2 in the near-surface late Archean environment have long been suggested based on upper limits deduced from the preservation of detrital siderite, pyrite and uraninite, paleosols, atmospheric models, and models of sulfur isotope data. Reducing conditions could presumably be maintained by an adequate supply of reductants such as H2 and CO supplied from volcanic sources, although these must have reacted with exposed rocks via aqueous solutions during weathering processes. In addition, once oxygenic photosynthesis arose, there would probably be a period of time during which weathering and atmospheric reductants would compete with the O2 released by photosynthesis. What has not been sufficiently explored quantitatively are the implications of such processes for the evolution of the aqueous solution chemistry and weathering products. In the present study, irreversible chemical mass transfer models were used to investigate the chemical reaction of rainwater from an Archean atmosphere with volcanic gases and continental crust to gain insight into the types of minerals that may result, and the evolution of the water chemistry and oxidation state of the near-surface environment. The minerals enstatite, ferrosilite, diopside, anorthite and albite were permitted to react irreversibly with a model rainwater with a starting composition similar to that of the present-day, but with logfO2 = -70 and logfCO2 = -1.5. Simultaneously, the rainwater was reacted with a model mixture of volcanic gases including H2, H2S, SO2, CO2 and CO. The reactions produced a Na-Mg-Ca-HCO3 water and minerals such as pyrite, kaolinite, chalcedony, siderite and calcite. Dissolved ferrous iron reached a maximum of about 3 ppm indicating that ferrous iron could be transported in Archean riverine systems to the oceans. The oxidation state of the system stayed roughly constant (about ±2 units of logfO2) in or near the pyrite and siderite stability fields consistent with the preservation

  2. Fragments of the Archean Mantle in Ultramafic Dykes From Wawa, Ontario

    NASA Astrophysics Data System (ADS)

    Morissette, C. L.; Francis, D.

    2004-05-01

    The Wawa area of the Superior Province possesses numerous ultramafic dykes of Archean age that contain ultramafic nodules potentially representing samples of Archean mantle. Three different types of dykes can be distinguished, each of which hosts its own suite of xenoliths. The Sandor and BandOre dykes, located north of Wawa, exhibit overall compositional similarities with Phanerozoic shoshonite / minette suites. They are characterised by high Al2O3 and K2O contents, and are rich in biotite and chlorite. These two dykes contain rounded nodules, ranging in size from about 5 to 60 cm, composed mostly of actinolite and tremolite, which are interpreted to have been pyroxenites. They are ultrabasic to basic in composition, ranging in SiO2 from 43 to 55 wt%, have orthopyroxene / clinopyroxene ratios of approximately 1:1, and MgOs ranging from 80 to 88. Some xenoliths, however, have significantly high Al content (>11 wt%), and could very well represent recrystallized fragments of the host minette, or other gabbroic protolith. The second type of Archean dykes, located east of Wawa near Dalton, is more similar in composition to Group-II kimberlites. They are characterised by low Al2O3, but high SiO2 contents, and are composed of chlorite, serpentine and feldspar as the dominant mineral phases. This matrix hosts olivine pyroxenite xenoliths with orthopyroxene / clinopyroxene proportions of 2:1. The presence of a poikilitic texture and the vestiges of zoning in pseudomorphs after clinopyroxene indicates they were cumulates. Another nearby dyke is also similar in composition to type II kimberlites, but richer in SiO2. This dyke has feldspar, amphibole and serpentine as its dominant minerals and hosts ultramafic xenoliths that have almost completely been altered to serpentine, though some fresh olivine relicts remain. These xenoliths have the normative mineralogy of highly depleted harzburgite (<1.5 wt.% Al2O3) with MgOs between 88 and 93. A small variation in Ni compared to

  3. Archean crustal evolution of the northern North China Craton

    NASA Technical Reports Server (NTRS)

    Qian, Xianglin; Chen, Yaping; Liu, Jinzhong

    1988-01-01

    The Archean granultie facies rocks of the North China (Sino-Korean) Craton mostly occur inside the northern boundary forming a unique and spectacular granulite belt trending roughly E-W from eastern Hebei, North China in the east to Mt. Daqinchan, western Inner Mongolia in the west, ranging about 1,000 km long. Over the years in the middle portion of this Archean high-grade metamorphic belt a stratigraphic unconformity between the khondalite rock assemblage and the medium in composition granulite assemblage in Datong-Xinghe area is determined. The geological structural properties of the North China Craton are discussed.

  4. Archean crustal evolution of the northern North China Craton

    NASA Technical Reports Server (NTRS)

    Qian, Xianglin; Chen, Yaping; Liu, Jinzhong

    1988-01-01

    The Archean granultie facies rocks of the North China (Sino-Korean) Craton mostly occur inside the northern boundary forming a unique and spectacular granulite belt trending roughly E-W from eastern Hebei, North China in the east to Mt. Daqinchan, western Inner Mongolia in the west, ranging about 1,000 km long. Over the years in the middle portion of this Archean high-grade metamorphic belt a stratigraphic unconformity between the khondalite rock assemblage and the medium in composition granulite assemblage in Datong-Xinghe area is determined. The geological structural properties of the North China Craton are discussed.

  5. Mineral artefacts mimicking microfossils in Archean rocks

    NASA Astrophysics Data System (ADS)

    Lepot, K.; Philippot, P.; Benzerara, K.

    2009-04-01

    Because prokaryotes populating the early Earth were structurally and morphologically very simple, it is difficult to obtain taxonomic information from microfossils, and even more problematic, to distinguish true fossils from abiotic objects. For example, many self-assembly processes associated with the precipitation of nanoscale minerals in the presence of organic compounds generate cell-like structures. Based on high resolution microscopy observations on natural samples, we describe three types of features common to Archean rocks and suggest that they represent microfossil-like artefacts. Using Scanning Electron Microscopy we have observed carbon-free silica inclusions in carbonate sediments that are very similar in size and shape (rods and spheres) to microorganisms. The common distribution of organic carbon at grain boundaries in those rocks indicate that such cell-like minerals, when coated by secondarily-migrated carbonaceous mater, could easily be mistaken for microfossils. The organisation and the micro- to nano-structure of bacteriomorphs might be even more confusing. We have observed chains of spheres that match in size and arrangement with some coccoid bacteria such as streptococci. Transmission Electron Microscopy (TEM) observation of Focused Ion Beam (FIB) sections cut through these spheres shows that they are composed of TiO2nanocrystallites partly rimmed or linked by nanoscale chlorite films. This assemblage creates smooth cell-like structures at the micron-scale. However, the absence of organic carbon in those structures as well as the observation of many similar TiO2 chains of spheres dispersed in volcanic glass shards argue against a biologic origin. Ambient inclusions trails also generate filamentous structures that can be mistaken for microfossils. (Knoll and Barghoorn, 1974) suggested that such pseudofossils could have formed by the displacement of a crystal (e.g. pyrite) in its mineral matrix owing to pressure solution processes linked to gas

  6. The chemical conditions of the late Archean Hamersley basin inferred from whole rock and pyrite geochemistry with Δ33S and δ34S isotope analyses

    NASA Astrophysics Data System (ADS)

    Gregory, Daniel D.; Large, Ross R.; Halpin, Jacqueline A.; Steadman, Jeffery A.; Hickman, Arthur H.; Ireland, Trevor R.; Holden, Peter

    2015-01-01

    The well-preserved late Archean sedimentary rocks of the Fortescue and Hamersley Basins in Western Australia offer fascinating insights into early earth ocean chemistry prior to the Great Oxidation Event (GOE). In this study, we use a combination of whole rock geochemistry, LA-ICPMS trace element analysis of sedimentary pyrite and pyrrhotite and SHRIMP-SI sulfur isotope analyses to elucidate the chemical changes in these sedimentary rocks. These proxies are used to examine chemical conditions of the ocean during the late Archean. Two to three periods of oxygen enrichment prior to the deposition of banded iron formations (BIF) can be identified. One minor stage of general increase in whole rock enrichment factors and trace element content of pyrite is observed up stratigraphy in the Jeerinah Formation, Fortescue Basin and a more substantial stage is present in the Paraburdoo and Bee Gorge Members of the Wittenoom Formation, Hamersley Basin. Some of the trace element enrichments indicate organic matter burial flux (Ni, Cr, Zn, Co and Cu) which suggests an increase in biological productivity. If the increased biological activity reflects an increase in cyanobacteria activity then an associated increase in oxygen is likely to have occurred during the deposition of the Bee Gorge Member. An increase in atmospheric oxygen would result in continental weathering of sulfide and other minerals, increasing the trace element content of the water column via erosion and avoiding excessive depletion of trace elements due to drawdown in seawater. Since some of these trace elements may also be limiting nutrients (such as Mo and Se) for the cyanobacteria, the degree of biological productivity may have further increased due to the increasing amount of trace elements introduced by oxygenation in a positive feedback loop. These periods of increased productivity and oxygen rise stopped prior to the onset of BIF deposition in the Hamersley Basin. This may be due to the ocean reaching an

  7. Tight-binding model study of the effect of lattice distortion on superconducting gap in iron-based superconductors: One band approach

    NASA Astrophysics Data System (ADS)

    Jena, Sushree Sangita; Agarwalla, S. K.; Rout, G. C.

    2017-05-01

    We propose a tight-binding one-band model for the iron-based superconductors. The Hamiltonian incorporates Jahn-tellar (JT) distortion in the degenerate dXZ and dYZ orbitals and superconductivity in both the orbitals with s± pairing symmetry. The electron Green's functions are calculated by using Zubarev's Green's function technique from which the temperature dependent gap equations for superconductivity and JT distortion are calculated from the corresponding electron Green's functions. The gap equations are computed numerically and self-consistently taking 100×100 grid points for the electron momentum. Interplay of orbital ordering and superconductivity is investigated by varying different model parameters of the system.

  8. Geochemistry of Archean metasedimentary rocks of the Aravalli craton, NW India: Implications for provenance, paleoweathering and supercontinent reconstruction

    NASA Astrophysics Data System (ADS)

    Ahmad, Iftikhar; Mondal, M. E. A.; Satyanarayanan, M.

    2016-08-01

    Basement complex of the Aravalli craton (NW India) known as the Banded Gneissic Complex (BGC) is classified into two domains viz. Archean BGC-I and Proterozoic BGC-II. We present first comprehensive geochemical study of the Archean metasedimentary rocks occurring within the BGC-I. These rocks occur associated with intrusive amphibolites in a linear belt within the basement gneisses. The association is only concentrated on the western margin of the BGC-I. The samples are highly mature (MSm) to very immature (MSi), along with highly variable geochemistry. Their major (SiO2/Al2O3, Na2O/K2O and Al2O3/TiO2) and trace (Th/Sc, Cr/Th, Th/Co, La/Sc, Zr/Sc) element ratios, and rare earth element (REE) patterns are consistent with derivation of detritus from the basement gneisses and its mafic enclaves, with major contribution from the former. Variable mixing between the two end members and closed system recycling (cannibalism) resulted in the compositional heterogeneity. Chemical index of alteration (CIA) of the samples indicate low to moderate weathering of the source terrain in a sub-tropical environment. In A-CN-K ternary diagram, some samples deceptively appear to have undergone post-depositional K-metasomatism. Nevertheless, their petrography and geochemistry (low K2O and Rb) preclude the post-depositional alteration. We propose non-preferential leaching of elements during cannibalism as the cause of the deceptive K-metasomatism as well as enigmatic low CIA values of some highly mature samples. The Archean metasedimentary rocks were deposited on stable basement gneisses, making the BGC-I a plausible participant in the Archean Ur supercontinent.

  9. Tailoring the spin waves band structure of 1D magnonic crystals consisting of L-shaped iron/permalloy nanowires

    NASA Astrophysics Data System (ADS)

    Gubbiotti, G.; Silvani, R.; Tacchi, S.; Madami, M.; Carlotti, G.; Yang, Z.; Adeyeye, A. O.; Kostylev, M.

    2017-03-01

    We have investigated both experimentally and numerically the magnonic band structure of arrays of closely spaced Fe/permalloy nanowires (NWs) with an L-shape cross-section using the Brillouin light scattering technique and GPU-based micromagnetic simulations. NWs consist of a 340 nm wide and 10 nm thick permalloy layer covered by a 170 nm wide Fe overlayer. The thickness of the latter was varied in the range from 0 to 10 nm in order to analyze its influence on the magnonic band structure. We found that both the frequency and the spatial profile of the most intense and dispersive mode, can be efficiently tuned by the presence of the thin Fe NW overlayer. In particular, by increasing the Fe thickness, one observes a substantial frequency increase, while the spatial profile of the mode narrows and moves to the permalloy NW portion not covered by Fe. In addition, the presence of the Fe overlayer causes a significant increase of the number of detected modes and a change of their intensity in the Brillouin spectra as a function of the Bloch wave number. These results show that it is possible to engineer the band structure of magnonic crystals consisting of bi-layered, L-shaped, NWs by a careful control of the overlayer thickness.

  10. A revised, hazy methane greenhouse for the Archean Earth.

    PubMed

    Haqq-Misra, Jacob D; Domagal-Goldman, Shawn D; Kasting, Patrick J; Kasting, James F

    2008-12-01

    Geological and biological evidence suggests that Earth was warm during most of its early history, despite the fainter young Sun. Upper bounds on the atmospheric CO2 concentration in the Late Archean/Paleoproterozoic (2.8-2.2 Ga) from paleosol data suggest that additional greenhouse gases must have been present. Methanogenic bacteria, which were arguably extant at that time, may have contributed to a high concentration of atmospheric CH4, and previous calculations had indicated that a CH4-CO2-H2O greenhouse could have produced warm Late Archean surface temperatures while still satisfying the paleosol constraints on pCO2. Here, we revisit this conclusion. Correction of an error in the CH4 absorption coefficients, combined with the predicted early onset of climatically cooling organic haze, suggest that the amount of greenhouse warming by CH4 was more limited and that pCO2 must therefore have been 0.03 bar, at or above the upper bound of the value obtained from paleosols. Enough warming from CH4 remained in the Archean, however, to explain why Earth's climate cooled and became glacial when atmospheric O2 levels rose in the Paleoproterozoic. Our new model also shows that greenhouse warming by higher hydrocarbon gases, especially ethane (C2H6), may have helped to keep the Late Archean Earth warm.

  11. Petrogenesis of calcic plagioclase megacrysts in Archean rocks

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.; Morrison, D. A.

    1986-01-01

    Anorthositic complexes with large equidimensional plagioclase grains of highly calcic composition occur in nearly all Archean cratons. Similar plagioclase occur as megacrysts in many Archean sills, dikes, and volcanic flows. In the Canadian Shield these units occur throughout the Archean portions of the entire shield and are particularly common as dikes over an area of a few 100,000 sq km in Ontario and Manitoba during a period of at least 100 m.y. in many different rock types and metamorphic grades. The plagioclase generally occurs in three modes: as inclusions in mafic intrusions at various stages of fractionation, as crystal segregations in anorthosite complexes, or as megacrysts in fractionated sills, dikes, and flows. Most occurrences suggest that the plagioclase was formed elsewhere before being transported to its present location. The evidence seems to be quite clear that occurrences of these types of calcic plagioclase require: (1) ponding of a relatively undifferentiated Archean tholeiitic melt at some depth; (2) isothermal crystallization of large, equidimensional homogeneous plagioclase crystals; (3) separation of the plagioclase crystals from any other crystalline phases; (4) further fractionation of melt; (5)transport of various combinations of individual plagioclase crystals and clusters of crystals by variously fractionated melts; and (6) emplacement as various types of igneous intrusions or flows.

  12. Archean metamorphic sequence and surfaces, Kangerdlugssuaq Fjord, East Greenland

    NASA Technical Reports Server (NTRS)

    Kays, M. A.

    1986-01-01

    The characteristics of Archean metamorphic surfaces and fabrics of a mapped sequence of rocks older than about 3000 Ma provide information basic to an understanding of the structural evolution and metamorphic history in Kangerdlugssuaq Fjord, east Greenland. This information and the additional results of petrologic and geochemical studies have culminated in an extended chronology of Archean plutonic, metamorphic, and tectonic events. The basis for the chronology is considered, especially the nature of the metamorphic fabrics and surfaces in the Archean sequence. The surfaces, which are planar mineral parageneses, may prove to be mappable outside Kangerdlugssuaq Fjord, and if so, will be helpful in extending the events that they represent to other Archean sequences in east Greenland. The surfaces will become especially important reference planes if the absolute ages of their metamorphic assemblages can be determined in at least one location where strain was low subsequent to their recrystallization. Once an isochron is obtained, the dynamothermal age of the regionally identifiable metamorphic surface is determined everywhere it can be mapped.

  13. Archean komatiite volcanism controlled by the evolution of early continents.

    PubMed

    Mole, David R; Fiorentini, Marco L; Thebaud, Nicolas; Cassidy, Kevin F; McCuaig, T Campbell; Kirkland, Christopher L; Romano, Sandra S; Doublier, Michael P; Belousova, Elena A; Barnes, Stephen J; Miller, John

    2014-07-15

    The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.

  14. Dating Carbonaceous Matter in Archean Cherts by Electron Paramagnetic Resonance

    PubMed Central

    Bourbin, M.; Derenne, S.; Binet, L.; Le Du, Y.; Westall, F.; Kremer, B.; Gautret, P.

    2013-01-01

    Abstract Ancient geological materials are likely to be contaminated through geological times. Thus, establishing the syngeneity of the organic matter embedded in a mineral matrix is a crucial step in the study of very ancient rocks. This is particularly the case for Archean siliceous sedimentary rocks (cherts), which record the earliest traces of life. We used electron paramagnetic resonance (EPR) for assessing the syngeneity of organic matter in cherts that have a metamorphic grade no higher than greenschist. A correlation between the age of Precambrian samples and the shape of their EPR signal was established and statistically tested. As thermal treatments impact organic matter maturity, the effect of temperature on this syngeneity proxy was studied; cyanobacteria were submitted to cumulative short thermal treatment at high temperatures followed by an analysis of their EPR parameters. The resulting carbonaceous matter showed an evolution similar to that of a thermally treated young chert. Furthermore, the possible effect of metamorphism, which is a longer thermal event at lower temperatures, was ruled out for cherts older than 2 Gyr, based on the study of Silurian cherts of the same age and same precursors but various metamorphic grades. We determined that even the most metamorphosed sample did not exhibit the lineshape of an Archean sample. In the hope of detecting organic contamination in Archean cherts, a “contamination-like” mixture was prepared and studied by EPR. It resulted that the lineshape analysis alone does not allow contamination detection and that it must be performed along with cumulative thermal treatments. Such treatments were applied to three Archean chert samples, making dating of their carbonaceous matter possible. We concluded that EPR is a powerful tool to study primitive organic matter and could be used in further exobiology studies on low-metamorphic grade samples (from Mars for example). Key Words: Kerogen—Sedimentary rocks—Contamination—Spectroscopy—Archean

  15. Investigating variations in background response in measurements of downhole natural gamma in a banded iron formation in the Pilbara, Western Australia

    NASA Astrophysics Data System (ADS)

    Murphy, Richard J.; Silversides, Katherine L.

    2017-02-01

    Measurements of downhole natural gamma radiation (NGR) provide important information about the location of shale or clay bands within stratigraphical sequences (e.g. in Banded Iron Formations; BIF). An ability to link NGR with other kinds of measurements that are acquired at greater spatial and stratigraphic resolution, such as those acquired by hyperspectral sensing, would open up possibilities for improving the resolution of boundary models. To do this, measurements made by NGR and hyperspectral sensing must be highly correlated and any inconsistencies between these data must be understood. Observations made from the literature and from NGR measurements made in a BIF formation of the Hamersley Group, Pilbara, Western Australia, suggest that NGR measurements in some sections of ore or BIF are elevated compared with other sections; laboratory assays of drill chips do not however suggest the presence of shale or clay. These apparent inconsistencies were investigated using hyperspectral measurements and chemical assays of rock cores in the laboratory and NGR measurements made in the field. We show that the patterns of elevated NGR were a consistent feature of the stratigraphy for this region. Comparison of NGR and Al2O3 made by laboratory assay and from hyperspectral sensing show that elevated NGR measurements were caused by Uranium which was not associated with the presence of shale. Neither Thorium nor Potassium contributed to the elevated gamma signal in the ore. Thorium was strongly correlated with Al2O3 and was found to provide the best indicator of the presence of shale in the stratigraphy.

  16. Venus and the Earth's Archean: Geological mapping and process comparisons

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Hurwitz, D. M.; Ivanov, M. A.; Basilevsky, A. T.; Senthil Kumar, P.

    2008-09-01

    Introduction. The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities [1-3] and we are using a problem-oriented approach to Venus mapping, guided by insight from the Archean record of the Earth, to gain new perspectives on the evolution of Venus and Earth's Archean. The Earth's preserved and well-documented Archean record [4] provides important insight into high heat-flux tectonic and magmatic environments and structures [5] and the surface of Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. Here we address the nature of the Earth's Archean, the similarities to and differences from Venus, and the specific Venus and Earth-Archean problems on which progress might be made through comparison. The Earth's Archean and its Relation to Venus. The Archean period of Earth's history extends from accretion/initial crust formation (sometimes called the Hadean) to 2.5 Ga and is thought of by most workers as being a transitional period between the earliest Earth and later periods largely dominated by plate tectonics (Proterozoic and Phanerozoic) [2, 4]. Thus the Archean is viewed as recording a critical period in Earth's history in which a transition took place from the types of primary and early secondary crusts seen on the Moon, Mars and Mercury [6] (and largely missing in the record of the Earth), to the style of crustal accretion and plate tectonics characterizing later Earth history. The Archean is also characterized by enhanced crustal and mantle temperatures leading to differences in deformation style and volcanism (e.g., komatiites) [2]. The preserved Archean crust is exposed in ~36 different cratons [4], forming the cores of most continental regions, and is composed of gneisses, plutons and

  17. Morphological and chemical evidence of stromatolitic deposits in the 2.75 Ga Carajás banded iron formation, Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro da Luz, Beatriz; Crowley, James K.

    2012-11-01

    We describe evidence of biogenicity in the morphology and carbon content of well-preserved, Neoarchean samples of banded iron formation (BIF) from Carajás, Brazil. Silica-rich BIF layers contain translucent ellipsoidal or trapezoidal structures (˜5-10 μm diameter) composed of silica, hematite, and kerogen, which are arranged in larger ring-like forms (rosettes). Stable carbon isotope analysis yields a δ13C value of -24.5‰ indicating that the contained carbon is likely biogenic. Raman and SEM analyses, as well as wavelength-dispersive X-ray elemental maps, show kerogen inside the rosette forms. Within the iron-rich BIF layers, tubular structures (0.5-5 μm) were observed between hematite granules and blades. Kerogen and kaolinite are present in these structures. Both the rosettes and the tubular structures resemble morphologies that are characteristic of some bacterial species. We hypothesize that the Carajás BIFs originated as biomats formed by one or more species that over time produced large stromatolitic structures. The rosettes and the tubular structures, associated with chert-rich and iron-rich BIF layers, respectively, may represent two different species, or perhaps, two phases of a bacterium life cycle. For example, some modern myxobacteria exhibit similar morphologies in their resting and vegetative stages. Fe(III) precipitation may have occurred by contact of Fe(II) with bacterial slime, leading to oxidation by chemical reactions with exposed polysaccharide hydroxyl and carboxyl groups. The Fe(III) would then have been available for use as a source of energy in a dissimilatory iron reduction type of metabolism. Organic carbon input presumably came from primary producers (not necessarily aerobic) within the local water column, perhaps in shallow-water communities. Alternatively, the carbon may have originated by Fischer-Tropsch synthesis at ocean hydrothermal vents. The observed lateral continuity of BIF layers may perhaps be explained by chemical

  18. Morphological and chemical evidence of stromatolitic deposits in the 2.75 Ga Carajás banded iron formation, Brazil

    USGS Publications Warehouse

    Ribeiro da Luz, Beatriz; Crowley, James K.

    2012-01-01

    We describe evidence of biogenicity in the morphology and carbon content of well-preserved, Neoarchean samples of banded iron formation (BIF) from Carajás, Brazil. Silica-rich BIF layers contain translucent ellipsoidal or trapezoidal structures (∼5–10 μm diameter) composed of silica, hematite, and kerogen, which are arranged in larger ring-like forms (rosettes). Stable carbon isotope analysis yields a δ13C value of −24.5‰ indicating that the contained carbon is likely biogenic. Raman and SEM analyses, as well as wavelength-dispersive X-ray elemental maps, show kerogen inside the rosette forms. Within the iron-rich BIF layers, tubular structures (0.5–5 μm) were observed between hematite granules and blades. Kerogen and kaolinite are present in these structures. Both the rosettes and the tubular structures resemble morphologies that are characteristic of some bacterial species.We hypothesize that the Carajás BIFs originated as biomats formed by one or more species that over time produced large stromatolitic structures. The rosettes and the tubular structures, associated with chert-rich and iron-rich BIF layers, respectively, may represent two different species, or perhaps, two phases of a bacterium life cycle. For example, some modern myxobacteria exhibit similar morphologies in their resting and vegetative stages.Fe(III) precipitation may have occurred by contact of Fe(II) with bacterial slime, leading to oxidation by chemical reactions with exposed polysaccharide hydroxyl and carboxyl groups. The Fe(III) would then have been available for use as a source of energy in a dissimilatory iron reduction type of metabolism. Organic carbon input presumably came from primary producers (not necessarily aerobic) within the local water column, perhaps in shallow-water communities. Alternatively, the carbon may have originated by Fischer–Tropsch synthesis at ocean hydrothermal vents. The observed lateral continuity of BIF layers may perhaps be explained by

  19. Mineralogy of approximately 1-10 Micrometer Iron Spheres Within 3.4 Ga Rocks (Towers Formation, Warrawoona Group, Northwestern Australia)

    NASA Technical Reports Server (NTRS)

    Morris, P. A.; Wentworth, Susan J.; Thomas-Keprta, Kathie L.; Allen, Carlton C.; Schwandt, Craig S.; McKay, David S.; Westall, Frances; Bell, Mary Sue; Gibson, Everett K.

    2000-01-01

    Iron-bearing spherules in Archean Warrawoona rocks are composed of hematite and goethite. They are clearly syngenetic with the rock but their origin, whether biological or abiogenic, is not yet known.

  20. Mineralogy of approximately 1-10 Micrometer Iron Spheres Within 3.4 Ga Rocks (Towers Formation, Warrawoona Group, Northwestern Australia)

    NASA Technical Reports Server (NTRS)

    Morris, P. A.; Wentworth, Susan J.; Thomas-Keprta, Kathie L.; Allen, Carlton C.; Schwandt, Craig S.; McKay, David S.; Westall, Frances; Bell, Mary Sue; Gibson, Everett K.

    2000-01-01

    Iron-bearing spherules in Archean Warrawoona rocks are composed of hematite and goethite. They are clearly syngenetic with the rock but their origin, whether biological or abiogenic, is not yet known.

  1. Iron in Precambrian rocks: implications for the global oxygen budget of the ancient Earth.

    PubMed

    Kump, L R; Holland, H D

    1992-08-01

    Banded iron formations (BIF) are prominent in sediments older than 2 Ga. However, little is known about the absolute abundance of BIF in Archean and Early Proterozoic sediments, and the source of the Fe is still somewhat uncertain. Also unknown is the role that Fe may have played in the maintenance of low oxygen pressures in the Archean and Early Proterozoic atmosphere. An analysis of the chemical composition of Precambrian rocks provides some insight into the role of Fe in Precambrian geochemical cycles. The Fe content of igneous rocks is well correlated with their Ti content. Plots of Fe vs. Ti in Precambrian sandstones and graywackes fall very close to the igneous rock trend. Plots of Fe vs. Ti in Precambrian shales also follow this trend but show a definite scatter toward an excess of Fe. Phanerozoic shales and sandstones lie essentially on the igneous rock trend and show surprisingly little scatter. Mn/Ti relations show a stronger indication of Precambrian Mn loss, perhaps due to weathering under a less oxidizing early atmosphere. These data show that Fe was neither substantially added to nor significantly redistributed in Archean and early Proterozoic sediments. Enough hydrothermal Fe was added to these sediments to increase the average Fe content of shales by at most a factor of 2. This enrichment would probably not have greatly affected the near-surface redox cycle or atmospheric oxygen levels. Continued redistribution of Fe and mixing with weathered igneous rocks during the recycling of Precambrian sediments account for the excellent correlation of Fe with Ti in Phanerozoic shales and for the similarity between their Fe/Ti ratio and that of igneous rocks.

  2. Extreme Hf and light Fe isotopes in Archean komatiites - a remnant of very early mantle depletion?

    NASA Astrophysics Data System (ADS)

    Nebel, O.; Sossi, P.; Campbell, I. H.; Van Kranendonk, M. J.

    2014-12-01

    Hafnium isotope signatures in some Archean komatiites (ca. 3.5-3.0 billion years old) require a mantle source with a time-integrated Lu/Hf that exceeds average modern depleted mantle. Investigation of the timing and locus of parent-daughter fractionation in their mantle sources potentially constrains differentiation processes in the early Earth and their subsequent distribution and storage. In addition, they may help to constrain the Hf isotope evolution of the greater depleted mantle. In order to shed light on these processes, we discuss radiogenic Hf isotopes in conjunction with stable Fe isotope systematics in Archean komatiites from the Pilbara craton in Western Australia. Our findings indicate that, after careful evaluation of the effects of alteration, pristine samples are characterised by initial 176Hf/177Hf, which lie above the age-corrected depleted mantle, as a consequence of ancient melt extraction. Iron isotope systematics for these samples further point to a mantle source that is isotopically lighter than average modern depleted mantle, which is also consistent with melt-depletion. Taken together, these observations require a component of an old, super-depleted reservoir in the komatiite mantle source(s) that survived in the mantle for possibly hundreds of millions of years. The Lu/Hf of this refractory mantle appears to be complementary to, and therefore contemporaneous with, the first terrestrial crust, as preserved in Hadean (i.e., > 4 Ga) detrital zircon cores, which may indicate a causal relationship between them. We will discuss implications for very early mantle dynamics and the formation of very early mantle reservoirs.

  3. Release of bound aromatic hydrocarbons from late Archean and Mesoproterozoic kerogens via hydropyrolysis

    NASA Astrophysics Data System (ADS)

    Brocks, Jochen J.; Love, Gordon D.; Snape, Colin E.; Logan, Graham A.; Summons, Roger E.; Buick, Roger

    2003-04-01

    Hydrogen-lean kerogens (atomic H/C<0.4) isolated from the 2.5-billion-year-old (Ga) Mt. McRae Shale, Hamersley Group, at Tom Price, Western Australia, were studied via hydropyrolysis, a continuous-flow technique that degrades organic matter in a stream of high-pressure hydrogen assisted by a dispersed Mo catalyst. The hydropyrolysates yielded predominantly phenanthrene and pyrene, and higher polyaromatic hydrocarbons and alkylated homologues were generated in low relative concentrations. Saturated hydrocarbons were not detected. The molecular and carbon isotopic compositions of the hydropyrolysates are very similar to aromatic hydrocarbons obtained by solvent extraction of the host rocks. Because molecular structures covalently attached to kerogen are unaffected by contamination, this indicates that both the bound and extractable aromatic fractions are syngenetic with the host rocks. Therefore, the results of the hydropyrolysis experiments provide compelling evidence for preserved bitumen of Archean age. The very high proportion of nonalkylated polyaromatic hydrocarbons in the hydropyrolysates is consistent with hydrothermal dehydrogenation of the kerogen, and a marked concentration difference of pyrene in rock extracts and hydropyrolysates might be explained by hydrothermal redistribution of the bitumen. The kerogen and bitumen composition is therefore consistent with models suggesting a hydrothermal origin for the giant iron ore deposits at Mt. Tom Price. Comparison of the Archean samples with hydropyrolysates from immature Mesoproterozoic kerogens from the Roper Group, McArthur Basin, Northern Territory, and with pyrolysis experiments on Proterozoic kerogens in the literature suggests that Precambrian kerogens are frequently highly aromatic and lipid-poor regardless of their degree of thermal preservation.

  4. The Orosirian-Statherian banded iron formation-bearing sequences of the southern border of the Espinhaço Range, Southeast Brazil

    NASA Astrophysics Data System (ADS)

    Rolim, Vassily Khoury; Rosière, Carlos A.; Santos, João Orestes Schneider; McNaughton, Neal J.

    2016-01-01

    The Serra da Serpentina and the Serra de São José groups are two distinct banded iron formation-bearing metasedimentary sequences along the eastern border of the southern Espinhaço Range that were deposited on the boundary between the Orosirian and Statherian periods. The Serra da Serpentina Group (SSG) has an Orosirian maximum depositional age (youngest detrital zircon grain age = 1990 ± 16 Ma) and consists of fine clastic metasediments at the base and chemical sediments, including banded iron formations (BIFs), on the top, corresponding to the Meloso and Serra do Sapo formations, respectively, and correlating with the pre-Espinhaço Costa Sena Group. The SSG represents sedimentary deposition on an epicontinental-epeiric, slow downwarping sag basin with little tectonic activity. The younger Serra de São José Group (SJG) is separated from the older SSG by an erosional unconformity and was deposited in a tectonically active continental rift-basin in the early stages of the opening of the Espinhaço Trough. The Serra do São José sediments stretch along the north-south axis of the rift and comprise a complete cycle of transgressive sedimentary deposits, which were subdivided, from base to top, into the Lapão, Itapanhoacanga, Jacém and Canjica formations. The Itapanhoacanga Formation has a maximum depositional age of 1666 ± 32 Ma (Statherian), which coincides with the maximum depositional age (i.e., 1683 ± 11 Ma) of the São João da Chapada Formation, one of the Espinhaço Supergroup's basal units. The Serra de São José Rift and the Espinhaço Rift likely represent the same system, with basal units that are facies variations of the same sequence. The supracrustal rocks have undergone two stages of deformation during the west-verging Brasiliano orogeny that affected the eastern margin of the São Francisco Craton and generated a regional-scale, foreland N-S trending fold-thrust belt, which partially involved the crystalline basement. Thrust faults have

  5. Magneto-structural transformations via a solid-state nudged elastic band method: Application to iron under pressure

    DOE PAGES

    Zarkevich, N. A.; Johnson, D. D.

    2015-08-14

    We extend the solid-state nudged elastic band method to handle a non-conserved order parameter, in particular, magnetization, that couples to volume and leads to many observed effects in magnetic systems. We apply this formalism to the well-studied magneto-volume collapse during the pressure-induced transformation in iron—from ferromagnetic body-centered cubic (bcc) austenite to hexagonal close-packed (hcp) martensite. We also find a bcc-hcp equilibrium coexistence pressure of 8.4 GPa, with the transition-state enthalpy of 156 meV/Fe at this pressure. A discontinuity in magnetization and coherent stress occurs at the transition state, which has a form of a cusp on the potential-energy surface (yetmore » all the atomic and cell degrees of freedom are continuous); the calculated pressure jump of 25 GPa is related to the observed 25 GPa spread in measured coexistence pressures arising from martensitic and coherency stresses in samples. Furthermore, our results agree with experiments, but necessarily differ from those arising from drag and restricted parametrization methods having improperly constrained or uncontrolled degrees of freedom.« less

  6. Magneto-structural transformations via a solid-state nudged elastic band method: Application to iron under pressure

    SciTech Connect

    Zarkevich, N. A. E-mail: ddj@ameslab.gov; Johnson, D. D. E-mail: ddj@ameslab.gov

    2015-08-14

    We extend the solid-state nudged elastic band method to handle a non-conserved order parameter, in particular, magnetization, that couples to volume and leads to many observed effects in magnetic systems. We apply this formalism to the well-studied magneto-volume collapse during the pressure-induced transformation in iron—from ferromagnetic body-centered cubic (bcc) austenite to hexagonal close-packed (hcp) martensite. We find a bcc-hcp equilibrium coexistence pressure of 8.4 GPa, with the transition-state enthalpy of 156 meV/Fe at this pressure. A discontinuity in magnetization and coherent stress occurs at the transition state, which has a form of a cusp on the potential-energy surface (yet all the atomic and cell degrees of freedom are continuous); the calculated pressure jump of 25 GPa is related to the observed 25 GPa spread in measured coexistence pressures arising from martensitic and coherency stresses in samples. Our results agree with experiments, but necessarily differ from those arising from drag and restricted parametrization methods having improperly constrained or uncontrolled degrees of freedom.

  7. Magneto-structural transformations via a solid-state nudged elastic band method: Application to iron under pressure

    SciTech Connect

    Zarkevich, N. A.; Johnson, D. D.

    2015-08-14

    We extend the solid-state nudged elastic band method to handle a non-conserved order parameter, in particular, magnetization, that couples to volume and leads to many observed effects in magnetic systems. We apply this formalism to the well-studied magneto-volume collapse during the pressure-induced transformation in iron—from ferromagnetic body-centered cubic (bcc) austenite to hexagonal close-packed (hcp) martensite. We also find a bcc-hcp equilibrium coexistence pressure of 8.4 GPa, with the transition-state enthalpy of 156 meV/Fe at this pressure. A discontinuity in magnetization and coherent stress occurs at the transition state, which has a form of a cusp on the potential-energy surface (yet all the atomic and cell degrees of freedom are continuous); the calculated pressure jump of 25 GPa is related to the observed 25 GPa spread in measured coexistence pressures arising from martensitic and coherency stresses in samples. Furthermore, our results agree with experiments, but necessarily differ from those arising from drag and restricted parametrization methods having improperly constrained or uncontrolled degrees of freedom.

  8. Nitrogen and argon signatures in 3.8 to 2.8 Ga metasediments: clues on the chemical state of the archean ocean and the deep biosphere

    NASA Astrophysics Data System (ADS)

    Pinti, Daniele L.; Hashizume, Ko; Matsuda, Jun-ichi

    2001-07-01

    N and Ar elemental and isotopic analyses were conducted on Archean metasediments of Isukasia, West Greenland and Pilbara Craton, Western Australia, in order to investigate the N isotopic evolution during the first half of Earth's history. The selected samples are deep-sea sediments and hydrothermal deposits having ages from 3.8 to 2.8 Ga and affected by different degrees of metamorphism. The release patterns of N and Ar obtained by high-resolution stepped combustion show the occurrence of at least two trapped components. The first is released at 600°C and it is likely contained in fluid inclusions. N is released together with primordial 36Ar and shows a δ 15N value of -1.3 ± 1.0‰, close to that of modern atmospheric N 2 (δ 15N = 0‰). This component is well preserved in hydrothermal-vent silica deposits of North Pole, Pilbara Craton, and nitrogen may represent ammonium salt dissolved in deep-sea hydrothermal fluids. The second N component, released at temperatures higher than 1000°C, is accompanied by radiogenic 40Ar∗, and shows a δ 15N value of -7.4 ± 1.0‰ in a kerogen-rich chert from North Pole, Pilbara Craton. This N is likely biogenic and negative 15N values may reflect a metabolic isotopic fractionation induced by chemosynthetic bacteria using inorganic NH 4+ contained in hydrothermal fluids. This 15N-depleted biogenic component may occur in Isukasia Banded Iron Formation (δ 15N ˜ -1.7‰), but further data are needed to confirm such a hypothesis. In all other samples, metamorphic-induced Rayleigh distillation has altered the pristine N isotopic signature.

  9. Development of Archean crust in the Wind River Mountains, Wyoming

    NASA Technical Reports Server (NTRS)

    Frost, C. D.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.

    1986-01-01

    The Wind River Mountains are a NW-SE trending range composed almost entirely of high-grade Archean gneiss and granites which were thrust to the west over Phanerozoic sediments during the Laramide orogeny. Late Archean granites make up over 50% of the exposed crust and dominates the southern half of the range, while older orthogneisses and magnatites form most of the northen half of the range. Locally these gneisses contain enclaves of supracrustal rocks, which appear to be the oldest preserved rocks in the range. Detailed work in the Medina Mountain area of the central Wind River Mountains and reconnaissance work throughout much of the northern part of the range has allowed definition of the sequence of events which marked crustal development in this area. The sequence of events are described.

  10. Origin of microbial biomineralization and magnetotaxis during the Archean

    PubMed Central

    Paterson, Greig A.; Wang, Yinzhao; Kopylova, Evguenia; Li, Ying; Knight, Rob; Bazylinski, Dennis A.; Zhu, Rixiang; Kirschvink, Joseph L.; Pan, Yongxin

    2017-01-01

    Microbes that synthesize minerals, a process known as microbial biomineralization, contributed substantially to the evolution of current planetary environments through numerous important geochemical processes. Despite its geological significance, the origin and evolution of microbial biomineralization remain poorly understood. Through combined metagenomic and phylogenetic analyses of deep-branching magnetotactic bacteria from the Nitrospirae phylum, and using a Bayesian molecular clock-dating method, we show here that the gene cluster responsible for biomineralization of magnetosomes, and the arrangement of magnetosome chain(s) within cells, both originated before or near the Archean divergence between the Nitrospirae and Proteobacteria. This phylogenetic divergence occurred well before the Great Oxygenation Event. Magnetotaxis likely evolved due to environmental pressures conferring an evolutionary advantage to navigation via the geomagnetic field. Earth’s dynamo must therefore have been sufficiently strong to sustain microbial magnetotaxis in the Archean, suggesting that magnetotaxis coevolved with the geodynamo over geological time. PMID:28193877

  11. Origin of microbial biomineralization and magnetotaxis during the Archean.

    PubMed

    Lin, Wei; Paterson, Greig A; Zhu, Qiyun; Wang, Yinzhao; Kopylova, Evguenia; Li, Ying; Knight, Rob; Bazylinski, Dennis A; Zhu, Rixiang; Kirschvink, Joseph L; Pan, Yongxin

    2017-02-28

    Microbes that synthesize minerals, a process known as microbial biomineralization, contributed substantially to the evolution of current planetary environments through numerous important geochemical processes. Despite its geological significance, the origin and evolution of microbial biomineralization remain poorly understood. Through combined metagenomic and phylogenetic analyses of deep-branching magnetotactic bacteria from the Nitrospirae phylum, and using a Bayesian molecular clock-dating method, we show here that the gene cluster responsible for biomineralization of magnetosomes, and the arrangement of magnetosome chain(s) within cells, both originated before or near the Archean divergence between the Nitrospirae and Proteobacteria This phylogenetic divergence occurred well before the Great Oxygenation Event. Magnetotaxis likely evolved due to environmental pressures conferring an evolutionary advantage to navigation via the geomagnetic field. Earth's dynamo must therefore have been sufficiently strong to sustain microbial magnetotaxis in the Archean, suggesting that magnetotaxis coevolved with the geodynamo over geological time.

  12. Archean microfossils: a reappraisal of early life on Earth.

    PubMed

    Altermann, Wladyslaw; Kazmierczak, Józef

    2003-11-01

    The oldest fossils found thus far on Earth are c. 3.49- and 3.46-billion-year-old filamentous and coccoidal microbial remains in rocks of the Pilbara craton, Western Australia, and c. 3.4-billion-year-old rocks from the Barberton region, South Africa. Their biogenicity was recently questioned and they were reinterpreted as contaminants, mineral artefacts or inorganic carbon aggregates. Morphological, geochemical and isotopic data imply, however, that life was relatively widespread and advanced in the Archean, between 3.5 and 2.5 billion years ago, with metabolic pathways analogous to those of recent prokaryotic organisms, including cyanobacteria, and probably even eukaryotes at the terminal Archean.

  13. Origin of microbial biomineralization and magnetotaxis during the Archean

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Paterson, Greig A.; Zhu, Qiyun; Wang, Yinzhao; Kopylova, Evguenia; Li, Ying; Knight, Rob; Bazylinski, Dennis A.; Zhu, Rixiang; Kirschvink, Joseph L.; Pan, Yongxin

    2017-02-01

    Microbes that synthesize minerals, a process known as microbial biomineralization, contributed substantially to the evolution of current planetary environments through numerous important geochemical processes. Despite its geological significance, the origin and evolution of microbial biomineralization remain poorly understood. Through combined metagenomic and phylogenetic analyses of deep-branching magnetotactic bacteria from the Nitrospirae phylum, and using a Bayesian molecular clock-dating method, we show here that the gene cluster responsible for biomineralization of magnetosomes, and the arrangement of magnetosome chain(s) within cells, both originated before or near the Archean divergence between the Nitrospirae and Proteobacteria. This phylogenetic divergence occurred well before the Great Oxygenation Event. Magnetotaxis likely evolved due to environmental pressures conferring an evolutionary advantage to navigation via the geomagnetic field. Earth’s dynamo must therefore have been sufficiently strong to sustain microbial magnetotaxis in the Archean, suggesting that magnetotaxis coevolved with the geodynamo over geological time.

  14. The production of Barberton komatiites in an Archean Subduction Zone

    NASA Astrophysics Data System (ADS)

    Parman, S. W.; Grove, T. L.; Dann, J. C.

    Based upon their geochemical similarity, we propose that the 3.5 Ga Barberton basaltic komatiites (BK) are the Archean equivalents of modern boninites, and were produced by the same melting processes (i.e. hydrous melting in a subduction zone). The Barberton komatiites also share some geochemical characteristics with boninites, including petrologic evidence for high magmatic H2O contents. Experimental data indicates that the Archean sub-arc mantle need only be 1500-1600°C to produce hydrous komatiitic melts. This is considerably cooler than estimates of mantle temperatures assuming an anhydrous, plume origin for komatiites (up to 1900°C). The depleted mantle residue that generates the Barberton komatiites and BK will be cooled and metasomatised as it resides beneath the fore-arc, and may represent part of the material that formed the Kaapvaal cratonic keel.

  15. Hospitable archean climates simulated by a general circulation model.

    PubMed

    Wolf, E T; Toon, O B

    2013-07-01

    Evidence from ancient sediments indicates that liquid water and primitive life were present during the Archean despite the faint young Sun. To date, studies of Archean climate typically utilize simplified one-dimensional models that ignore clouds and ice. Here, we use an atmospheric general circulation model coupled to a mixed-layer ocean model to simulate the climate circa 2.8 billion years ago when the Sun was 20% dimmer than it is today. Surface properties are assumed to be equal to those of the present day, while ocean heat transport varies as a function of sea ice extent. Present climate is duplicated with 0.06 bar of CO2 or alternatively with 0.02 bar of CO2 and 0.001 bar of CH4. Hot Archean climates, as implied by some isotopic reconstructions of ancient marine cherts, are unattainable even in our warmest simulation having 0.2 bar of CO2 and 0.001 bar of CH4. However, cooler climates with significant polar ice, but still dominated by open ocean, can be maintained with modest greenhouse gas amounts, posing no contradiction with CO2 constraints deduced from paleosols or with practical limitations on CH4 due to the formation of optically thick organic hazes. Our results indicate that a weak version of the faint young Sun paradox, requiring only that some portion of the planet's surface maintain liquid water, may be resolved with moderate greenhouse gas inventories. Thus, hospitable late Archean climates are easily obtained in our climate model.

  16. Dating carbonaceous matter in archean cherts by electron paramagnetic resonance.

    PubMed

    Bourbin, M; Gourier, D; Derenne, S; Binet, L; Le Du, Y; Westall, F; Kremer, B; Gautret, P

    2013-02-01

    Ancient geological materials are likely to be contaminated through geological times. Thus, establishing the syngeneity of the organic matter embedded in a mineral matrix is a crucial step in the study of very ancient rocks. This is particularly the case for Archean siliceous sedimentary rocks (cherts), which record the earliest traces of life. We used electron paramagnetic resonance (EPR) for assessing the syngeneity of organic matter in cherts that have a metamorphic grade no higher than greenschist. A correlation between the age of Precambrian samples and the shape of their EPR signal was established and statistically tested. As thermal treatments impact organic matter maturity, the effect of temperature on this syngeneity proxy was studied; cyanobacteria were submitted to cumulative short thermal treatment at high temperatures followed by an analysis of their EPR parameters. The resulting carbonaceous matter showed an evolution similar to that of a thermally treated young chert. Furthermore, the possible effect of metamorphism, which is a longer thermal event at lower temperatures, was ruled out for cherts older than 2 Gyr, based on the study of Silurian cherts of the same age and same precursors but various metamorphic grades. We determined that even the most metamorphosed sample did not exhibit the lineshape of an Archean sample. In the hope of detecting organic contamination in Archean cherts, a "contamination-like" mixture was prepared and studied by EPR. It resulted that the lineshape analysis alone does not allow contamination detection and that it must be performed along with cumulative thermal treatments. Such treatments were applied to three Archean chert samples, making dating of their carbonaceous matter possible. We concluded that EPR is a powerful tool to study primitive organic matter and could be used in further exobiology studies on low-metamorphic grade samples (from Mars for example).

  17. Workshop on a Cross Section of Archean Crust

    NASA Technical Reports Server (NTRS)

    Ashwal, L. D. (Editor); Card, K. D. (Editor)

    1983-01-01

    Various topics relevant to crustal genesis, especially the relationship between Archean low - and high-grade terrains, were discussed. The central Superior Province of the Canadian Shield was studied. Here a 120 km-wide transition from subgreenschist facies rocks of the Michipicoten greenstone belt to granulite facies rocks of the Kapuskasing structural zone represents an oblique cross section through some 20 km of crust, uplifted along a northwest-dipping thrust fault.

  18. Bridging Two Worlds: From the Archean to the Proterozoic

    NASA Technical Reports Server (NTRS)

    Schopf, J. William

    2000-01-01

    As now known, the Archean and Proterozoic appear to have been different worlds: the geology (tectonic style, basinal distribution, dominant rock types), atmospheric composition (O2, CO21, CH4), and surface environment (day-length, solar luminosity, ambient temperature) all appear to have changed over time. And virtually all paleobiologic indicators can be interpreted as suggesting there were significant biotic differences as well: (1) Stromatolites older than 2.5 Ga are rare relative to those of the Proterozoic; their biotic components are largely unknown; and the biogenicity of those older than approx. 3.2 Ga has been questioned. (2) Bona fide microfossils older than approx. 2.4 Ga are rare, poorly preserved, and of uncertain biological relations. Gaps of hundreds of millions of years in the known record make it impossible to show that Archean microorganisms are definitely part of the 2.4 Ga-to-present evolutionary continuum. and (3) In rocks older than approx. 2.2 Ga, the sulfur isotopic record is subject to controversy; phylogenetically distinctive bio-markers are unknown; and nearly a score of geologic units contain organic carbon anomalously light isotopically (relative to that of the Proterozoic and Phanerozoic) that may reflect the presence of Archaeans ("Archaebacteria of earlier classifications) but may not (since cellularly preserved Archean-age Archaeans have never been identified).

  19. Archean komatiite volcanism controlled by the evolution of early continents

    PubMed Central

    Mole, David R.; Fiorentini, Marco L.; Thebaud, Nicolas; Cassidy, Kevin F.; McCuaig, T. Campbell; Kirkland, Christopher L.; Romano, Sandra S.; Doublier, Michael P.; Belousova, Elena A.; Barnes, Stephen J.; Miller, John

    2014-01-01

    The generation and evolution of Earth’s continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50–30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean–Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits. PMID:24958873

  20. Chemical constraints on the evolution of Archean continental crust

    NASA Technical Reports Server (NTRS)

    Weaver, B. L.; Tarney, J.

    1985-01-01

    One of the challenges of Archean geochronology is to find isotopic systems that preserve an indication of a rock's primary age in spite of the effects of later metamorphism. Zircon dating has been used widely with considerable success but not without difficulty, especially in polymetamorphic terrains. Zircons in such cases commonly are found to have lost radiogenic Pb, and despite fractionizing the zircons or abrading them to remove disturbed portions; it often is not possible to define a pattern of Pb loss from which the original age can confidently be inferred. The refinement of techniques to enable extremely small samples, or even single crystals, to be analyzed has contributed greatly to solving the problem but even those techniques cannot resolve the micron scale isotopic heterogeneities within single zircons in which much of their history is recorded. That can only be done by ion microprobe. Progress reports on studies of four Archean rocks, each of which illustrates the power and potential of ion microprobe analysis in solving problems of Archean geochronology are discussed.

  1. Nitrogen isotope evidence for alkaline lakes on late Archean continents

    NASA Astrophysics Data System (ADS)

    Stüeken, E. E.; Buick, R.; Schauer, A. J.

    2015-02-01

    Nitrogen isotope ratios in ancient sedimentary rocks are generally interpreted as a proxy for metabolic nitrogen pathways and the redox state of the water column. Fractionation processes occurring under anoxic, alkaline conditions during the dissociation of NH4+ to H+ and volatile NH3 are frequently overlooked, although this mechanism imparts large isotopic fractionations. Here we propose that NH3 volatilization is largely responsible for δ15N values of up to + 50 ‰ at high C/N ratios in the late Archean Tumbiana Formation. This sequence of sedimentary rocks represents a system of lakes that formed on subaerial flood basalts and were partly filled by basaltic volcanic ash. Aqueous alteration of volcanic glass followed by evaporative concentration of ions should have led to the development of high alkalinity with a pH of 9 or higher, as in modern analogues. In this sedimentologically unusual setting, nitrogen isotope ratios thus provide indirect evidence for the oldest alkaline lake system in the rock record. These very heavy lacustrine δ15N values contrast markedly with those of Archean marine sedimentary rocks, making a Precambrian "soda ocean" unlikely. Today, alkaline lakes are among the most productive ecosystems on Earth. Some nutrients, in particular molybdenum, are more soluble at high pH, and certain prebiotic reactions would likely have been favored under alkaline conditions in similar settings earlier in Earth's history. Hence alkaline lakes in the Archean could have been significant for the origin and early evolution of life.

  2. How widely is the Andean type of continental margin represented in the Archean

    NASA Technical Reports Server (NTRS)

    Burke, Kevin

    1988-01-01

    Application of the principle of uniformitarianism to the Archean was discussed in a search for evidence of Archean-type continental margins in Archean rocks. The author cautioned that Archean rocks represent only 2 percent of the current exposure of the continents, half of which is in the North American Superior Province. Care must be taken in interpreting the global tectonic significance of relatively small exposures of Archean rocks, such as South India. Andean margins were characterized by their elongate shape, magmatic associations, and isotopic signatures. Although the compositional evidence alone will always be ambiguous, it was suggested that supporting structural evidence may aid in the identification of Archean Andean margins. Andean margin remains have been recognized in the Superior Province of Canada by these criteria, and the author suggested that the Closepet granite of South India may represent another example.

  3. Micro- to nano-scale characterization of martite from a banded iron formation in India and a lateritic soil in Brazil

    NASA Astrophysics Data System (ADS)

    Orberger, Beate; Wagner, Christiane; Tudryn, Alina; Wirth, Richard; Morgan, Rachael; Fabris, José D.; Greneche, Jean Marc; Rosière, Carlos

    2014-10-01

    The pseudomorphic transformation of magnetite into hematite (martitization) is widespread in geological environments, but the process and mechanism of this transformation is still not fully understood. Micro- and nano-scale techniques—scanning electron microscopy, focused ion bean transmission electron microscopy, and Raman spectroscopy—were used in combination with X-ray diffraction, Curie balance and magnetic hysteresis analyses, as well as Mössbauer spectroscopy on martite samples from a banded iron formation (2.9 Ga, Dharwar Craton, India), and from lateritic soils, which have developed on siliciclastic and volcanic rocks previously affected by metamorphic fluids (Minas Gerais, Brazil). Octahedral crystals from both samples are composed of hematite with minor patches of magnetite, but show different structures. The Indian crystals show trellis of subhedral magnetite hosting maghemite in sharp contact with interstitial hematite crystals, which suggests exsolution along parting planes. Grain boundary migrations within the hematite point to dynamic crystallization during deformation. Dislocations and fluid inclusions in hematite reflect its precipitation related to a hydrothermal event. In the Brazilian martite, dislocations are observed and maghemite occurs as Insel structures and nano-twin sets. The latter, typical for the hematite, are a transformation product from maghemite into hematite. For both samples, a deformation-induced hydrothermally driven transformation from magnetite via maghemite to hematite is proposed. The transformation from magnetite into maghemite comprises intermediate non-stoichiometric magnetite steps related to a redox process. This study shows that martite found in supergene environment may result from earlier hypogene processes.

  4. Hazy Archean Earth as an Analog for Hazy Earthlike Exoplanets

    NASA Astrophysics Data System (ADS)

    Arney, Giada; Meadows, Victoria; Domagal-Goldman, Shawn; Claire, Mark; Schwieterman, Edward

    2015-01-01

    Hazy exoplanets may be common (Bean et al. 2010, Sing et al. 2011, Kreidberg et al 2014), and in our solar system, Venus and Titan have photochemically-produced hazes. There is evidence that Earth itself had a hydrocarbon haze in the Archean (Zerkle et al. 2012, Domagal-Goldman et al. 2008) with important climatic effects (Pavlov et al. 2001, Trainer et al. 2006, Haqq-Misra et al. 2008, Wolf and Toon 2012). We use a 1D coupled photochemical-climate model and a line-by-line radiative transfer model to investigate the climactic and spectral impacts of a fractal hydrocarbon haze on Archean Earth. The haze absorbs significantly at shorter wavelengths and can strongly suppress the Rayleigh scattering tail, a broadband effect that would be remotely detectable at low spectral resolution at wavelengths less than 0.5 μm. Hazes may have a more significant impact on transit transmission spectra. Using the transit transmission radiative transfer model developed by Misra et al. (2014) to generate hazy Archean spectra, we find that even a thin hydrocarbon haze masks the lower atmosphere from the visible into the near infrared where the haze optical depth exceeds unity. The transit transmission spectra we generate for hazy Archean Earth are steeply sloped like the Titan solar occultation spectrum observed by Robinson et al. (2014). Thick hazes can also cool the planet significantly: for example, the thick fractal haze generated around Archean Earth with 0.3% CH4, 1% CO2 and 1 ppm C2H6 cools the planet from roughly 290 K without the haze to below freezing with the haze. Finally, we investigate the impact of host star spectral type on haze formation, comparing the hazes generated around a solar-type star to those generated at an Earth analog planet around the M dwarf AD Leo. Our results indicate hazes around M dwarfs for the same initial atmospheric composition may be thinner due to decreased UV photolysis of methane and other hydrocarbons needed for haze formation. Earthlike

  5. Constraining Archean Earth's Atmosphere with the Geological Record

    NASA Astrophysics Data System (ADS)

    Horan, A. M.; Domagal-Goldman, S. D.; Claire, M.

    2014-12-01

    A warm, water-bearing Archean Earth, when the Sun was young and faint, remains a paradox to the scientific world. Abundant geological data suggests that Archean Earth had standing water at the surface, despite the fainter Sun. An explanation of this paradox is vital to the understanding of Earth's history and coevolution with life. If the surface of the planet was not being kept warm by the Sun, which was 25% less luminous than now, it must have been kept warm a different way—by an atmospheric composition high in greenhouse gases. Constraints on these gases come from the geological record, which have provided proxies for the redox state of the atmosphere (limiting H2 and O2), the total atmospheric pressure, and the partial pressure of certain gases such as carbon dioxide (CO2) and methane (CH4). Previous attempts at solutions to the paradox are consistent with some, but not all, of the geological proxies. The constraints are used as inputs for a 1-D photochemical code, which calculates atmospheric composition and predicts the abundances of atmospheric gases that affect climate, particularly methane (CH4) and gaseous hydrogen (H2). A coupled 1-D radiative-convective climate code is then used to calculate the corresponding surface temperature. Critically, the improved photochemical code maintains strict redox boundary conditions, and is being further updated to ensure that the redox fluxes from volcanoes and mid-ocean ridge vents are consistent with both each other and the redox state of the mantle. These code improvements will lead to changes in both the inputs to the atmosphere from volcanoes and the sink for oxidants at mid-ocean ridges, in turn affecting the abundance of redox-sensitive greenhouse gases such as CH4 and H2. The main purpose of this project is to extend simulations of the Archean surface environment down into the mantle, and to search for a solution to the faint young sun paradox that is consistent with the geological proxies. Beyond having

  6. Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014)

    DOE PAGES

    Kochanov, R. V.; Gordon, I. E.; Rothman, L. S.; ...

    2015-08-25

    In the recent article by Byrne and Goldblatt, "Radiative forcing for 28 potential Archean greenhouse gases", Clim. Past. 10, 1779–1801 (2014), the authors employ the HITRAN2012 spectroscopic database to evaluate the radiative forcing of 28 Archean gases. As part of the evaluation of the status of the spectroscopy of these gases in the selected spectral region (50–1800 cm-1), the cross sections generated from the HITRAN line-by-line parameters were compared with those of the PNNL database of experimental cross sections recorded at moderate resolution. The authors claimed that for NO2, HNO3, H2CO, H2O2, HCOOH, C2H4, CH3OH and CH3Br there exist largemore » or sometimes severe disagreements between the databases. In this work we show that for only three of these eight gases a modest discrepancy does exist between the two databases and we explain the origin of the differences. For the other five gases, the disagreements are not nearly at the scale suggested by the authors, while we explain some of the differences that do exist. In summary, the agreement between the HITRAN and PNNL databases is very good, although not perfect. Typically differences do not exceed 10 %, provided that HITRAN data exist for the bands/wavelengths of interest. It appears that a molecule-dependent combination of errors has affected the conclusions of the authors. In at least one case it appears that they did not take the correct file from PNNL (N2O4 (dimer)+ NO2 was used in place of the monomer). Finally, cross sections of HO2 from HITRAN (which do not have a PNNL counterpart) were not calculated correctly in BG, while in the case of HF misleading discussion was presented there based on the confusion by foreign or noise features in the experimental PNNL spectra.« less

  7. In situ carbon isotope analysis of Archean organic matter with SIMS

    NASA Astrophysics Data System (ADS)

    Williford, K. H.; Ushikubo, T.; Lepot, K.; Hallmann, C.; Spicuzza, M. J.; Eigenbrode, J. L.; Summons, R. E.; Valley, J. W.

    2011-12-01

    rates as low as 10% relative to anthracite. Samples from the ABDP-9 (n=3; Mount McRae Shale, ~2.5 Ga), RHDH2a (n=2; Carrawine Dolomite and Jeerinah Fm, ~2.6 Ga), WRL1 (n=3; Wittenoom Fm, Marra Mamba Iron Formation, and Jeerinah Fm, ~2.6 Ga), and SV1 (n=1; Tumbiana Fm, ~2.7 Ga) drill cores, each previously analyzed for bulk organic carbon isotope composition, yielded 100 new, in situ data from Neoarchean sedimentary OM. In these samples, δ13C varies between -53.1 and -28.3% and offsets between in situ and bulk compositions range from -8.3 to 18.8%. In some cases, isotopic composition and mode of occurrence (e.g. morphology and mineral associations) are statistically correlated, enabling the identification of distinct reservoirs of OM. Our results support previous evidence for aerobiosis and depth gradients of oxidation in Neoarchean environments driven by photosynthesis and methane metabolism. The relevance of these findings to questions of bio- and syngenicity as well as the alteration history of this OM and similar, previously reported Archean OM will be discussed.

  8. Iron oxide copper-gold deposits in the Islamic Republic of Mauritania (phase V, deliverable 79): Chapter M in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Fernette, Gregory

    2015-01-01

    Mauritania hosts one significant copper-gold deposit, Guelb Moghrein and several occurrences, which have been categorized as iron oxide copper-gold (IOCG) deposits but which are atypical in some important respects. Nonetheless, Guelb Moghrein is an economically significant mineral deposit and an attractive exploration target. The deposit is of Archean age and is hosted by a distinctive metacarbonate rock which is part of a greenstone-banded iron formation (BIF) package within a thrust stack in the northern part of the Mauritanide Belt. The surrounding area hosts a number of similar copper-gold occurrences. Based on the characteristics of the Guelb Moghrein deposit and its geologic environment, five tracts which are considered permissive for IOCG type mineralization similar to Guelb Moghrein have been delineated.

  9. Thyroid hormone-dependent formation of a subcortical band heterotopia (SBH) in the neonatal brain is not exacerbated under conditions of low dietary iron (FeD).

    PubMed

    Spring, S R; Bastian, T W; Wang, Y; Kosian, P; Anderson, G W; Gilbert, M E

    2016-01-01

    Thyroid hormones (TH) are critical for brain development and insufficiencies can lead to structural abnormalities in specific brain regions. Administration of the goitrogen propylthiouracil (PTU) reduces TH production by inhibiting thyroperoxidase (TPO), an enzyme that oxidizes iodide for the synthesis of TH. TPO activity is iron (Fe)-dependent and dietary iron deficiency (FeD) also reduces circulating levels of TH. We have previously shown that modest degrees of TH insufficiency induced in pregnant rat dams alters the expression of TH-responsive genes in the cortex and hippocampus of the neonate, and results in the formation of a subcortical band heterotopia (SBH) in the corpus callosum (Royland et al., 2008, Bastian et al., 2014, Gilbert et al., 2014). The present experiment investigated if FeD alone was sufficient to induce a SBH or if FeD would augment SBH formation at lower doses of PTU. One set of pregnant rats was administered 0, 1, 3, or 10ppm of PTU via drinking water starting on gestational day (GD) 6. FeD was induced in a 2nd set of dams beginning on GD2. A third set of dams received the FeD diet from GD2 paired with either 1ppm or 3ppm PTU beginning on GD6. All treatments continued until the time of sacrifice. On PN18, one female pup from each litter was sacrificed and the brain examined for SBH. We observed lower maternal, PN2 and PN18 pup serum T4 in response to PTU. FeD reduced serum T4 in pups on PN16, but did not affect serum T4 in dams or PN2 pups. Neither did FeD in combination with PTU alter T4 levels in dams on PN18 or pups on PN2 compared to PTU treatment alone. By PN16, however more severe T4 reductions were observed in pups when FeD was combined with PTU. SBH increased with increasing dosage of PTU, but counter to our hypothesis, no SBH was detected in the offspring of FeD dams. As such, T4 levels in dams and newborn pups rather than older neonates appear to be a better predictor SBH associated with TH insufficiency. These data indirectly

  10. Triple sulfur isotope composition of Late Archean seawater sulfate

    NASA Astrophysics Data System (ADS)

    Paris, G.; Fischer, W. W.; Sessions, A. L.; Adkins, J. F.

    2013-12-01

    Multiple sulfur isotope ratios in Archean sedimentary rocks have provided powerful insights into the behavior of the ancient sulfur cycle, the redox state of fluid Earth, and the timing of the rise of atmospheric oxygen [1]. Most processes fractionate sulfur isotopes in proportion to their mass differences, but the Archean sulfur isotope record is marked by pronounced mass-independent fractionation (MIF, Δ33S≠0). The origin of these signatures has been traditionally interpreted as the result of photolysis of SO2 from short wavelength UV light, with positive Δ33S values recorded in pyrite and negative Δ33S values in sulfate-bearing phases [2]. This long-held hypothesis rests on observations of negative Δ33S from enigmatic barite occurrences from mixed volcanic sedimentary strata in Mesoarchean greenstone terrains. Despite forming the framework for understanding Archean sulfur cycle processes [3], it is largely untested [3]. It is largely untested. Consequently, the biggest challenge to our current understanding of the early sulfur cycle is a poor understanding of the isotopic composition of seawater sulfate. Sulfate evaporite minerals are absent from Archean strata and the sulfur isotope record is written entirely by measurements of pyrite. Carbonate associated sulfate (CAS) provides an important archive for assaying the isotopic composition of ancient seawater sulfate It has been exploited in many studies of Phanerozoic and Proterozoic sulfate but have been only marginally used thus far for Archean samples because of the extremely low concentration of CAS in limestones and dolomites from this era. We have developed a novel MC-ICP-MS approach to solve this problem [4]. This new method lowers the detection limit by up to three orders of magnitude for δ34S and Δ33S measurements, enabling to work on a few nmols of sulfate which represent only tens of mg of sample powders micromilled from specific carbonate textures. Two stratigraphic sections from the 2

  11. Diamondiferous eclogites from Siberia: Remnants of Archean oceanic crust

    NASA Astrophysics Data System (ADS)

    Jacob, D.; Jagoutz, E.; Lowry, D.; Mattey, D.; Kudrjavtseva, G.

    1994-12-01

    We have investigated eight diamond-bearing bimineralic eclogite xenoliths from the Udachnaya Mine, Yakutia, Siberia, in terms of major elements, 87Sr /86Sr- , 143Nd /144Nd and oxygen isotopic ratios. The β18O-values, measured with the new laser-fluorination technique, are different from mantle values and range between 5.19 and 7.38%. with an average error of 0.08%.. Strontium and neodymium initial isotopic ratios for cpx are between 0.70226 and 0.70699 and 0.51170 and 0.51257, respectively. Chemically and petrographically, the Siberian eclogites are very similar to the South African eclogite suite from Roberts Victor or Bellsbank, the most important similarities being the late Archean age (2.76 Ga) and the δ18O values that deviate from mantle values. However, differences exist in detail, as no samples with δ18O values lower than mantle values have yet been reported from Siberia and the cesium concentrations of the Siberian eclogites are generally lower than those of the Roberts Victor eclogite suite. The data obtained from the studied sample suite are best explained by a model proposing an origin from Archean oceanic crust that was intensely altered prior to subduction to mantle depths. Using oxygen isotopic values, the effects of seawater alteration can be shown and the composition of the unaltered protolith qualitatively estimated. We propose that mantle eclogites from kimberlites were generated by a globally operating subduction process during the late Archean and that differences between samples from different cratons are small compared to their similarities.

  12. Accretionary origin for the late Archean Ashuanipi Complex of Canada

    NASA Technical Reports Server (NTRS)

    Percival, J. A.

    1988-01-01

    The Ashuanipi complex is one of the largest massif granulite terrains of the Canadian Shield. It makes up the eastern end of the 2000 km long, lower-grade, east-west belts of the Archean Superior Province, permitting lithological, age and tectonic correlation. Numerous lithological, geochemical and metamorphic similarities to south Indian granulites suggest common processes and invite comparison of tectonic evolution. The Ashuanipi granulite terrain of the Cannadian Superior Province was studied in detail, and an origin through self-melting of a 55 km thick accretionary wedge seems possible.

  13. Geological Mapping of Fortuna Tessera (V-2): Venus and Earth's Archean Process Comparisons

    NASA Technical Reports Server (NTRS)

    Head, James W.; Hurwitz,D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil

    2008-01-01

    The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by insight from the Archean record of the Earth, to gain new insight into the evolution of Venus and Earth's Archean. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and the surface of Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. Elsewhere we have addressed the nature of the Earth's Archean, the similarities to and differences from Venus, and the specific Venus and Earth-Archean problems on which progress might be made through comparison. Here we present the major goals of the Venus-Archean comparison and show how preliminary mapping of the geology of the V-2 Fortuna Tessera quadrangle is providing insight on these problems. We have identified five key themes and questions common to both the Archean and Venus, the assessment of which could provide important new insights into the history and processes of both planets.

  14. Exploring Iron Silicate Precursors of Ancient Iron Formations through Rock Record, Laboratory and Field Analogue Investigations

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Rasmussen, B.; Muhling, J.; Benzerara, K.; Jezequel, D.; Cosmidis, J.; Templeton, A. S.

    2016-12-01

    In direct contrast to today's oceans, iron-rich chemical precipitates dominate the deep marine sedimentary record > 2.3 billion years ago. The deposition of these minerals resulted in massive iron formations and indicate that the ocean was previously ferruginous and largely anoxic. To precipitate and concentrate iron in the sediments, many hypotheses have centered on the oxidation of soluble Fe(II) to solid Fe(III)-oxyhydroxides; these ideas have stimulated extensive research using iron-oxidizing bacteria to produce Fe(III)-oxides and trace metal sorption experiments on Fe(III)-oxides, leading to inferences of trace metal availability and implications for enzymatic and microbial evolution as well as pO2 levels and seawater chemistry. However, recent discoveries of disseminated iron-silicate nanoparticles in early-silicifying chert indicate that iron-silicates may have instead been the primary precipitates from these Archean ferruginous oceans (Rasmussen et al, 2015). Considering the significant paradigm shift this discovery implies for interpretations of Archean elemental cycling, redox state and potential microbial metabolisms, we investigated these iron-silicate inclusions and their implications for ancient seawater chemistry in a multi-faceted approach using spectroscopic- and diffraction-based techniques. The crystal structure, Fe oxidation state and Fe coordination environment of iron-silicate nanoparticles have been interrogated using microscale X-ray absorption spectroscopy, TEM and nanoscale scanning transmission X-ray microscopy. To further explore the chemical and potential biological controls on iron-silicate formation, we have also performed laboratory experiments to mimic Archean seawater and precipitate iron-bearing silicate minerals under abiotic conditions and in the presence of iron-oxidizing bacteria. In a complementary study, sediments from a natural Archean analogue system were sampled to determine if iron-silicate minerals form in Mexican

  15. Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA

    USGS Publications Warehouse

    Slack, J.F.; Grenne, Tor; Bekker, A.; Rouxel, O.J.; Lindberg, P.A.

    2007-01-01

    A current model for the evolution of Proterozoic deep seawater composition involves a change from anoxic sulfide-free to sulfidic conditions 1.8??Ga. In an earlier model the deep ocean became oxic at that time. Both models are based on the secular distribution of banded iron formation (BIF) in shallow marine sequences. We here present a new model based on rare earth elements, especially redox-sensitive Ce, in hydrothermal silica-iron oxide sediments from deeper-water, open-marine settings related to volcanogenic massive sulfide (VMS) deposits. In contrast to Archean, Paleozoic, and modern hydrothermal iron oxide sediments, 1.74 to 1.71??Ga hematitic chert (jasper) and iron formation in central Arizona, USA, show moderate positive to small negative Ce anomalies, suggesting that the redox state of the deep ocean then was at a transitional, suboxic state with low concentrations of dissolved O2 but no H2S. The presence of jasper and/or iron formation related to VMS deposits in other volcanosedimentary sequences ca. 1.79-1.69??Ga, 1.40??Ga, and 1.24??Ga also reflects oxygenated and not sulfidic deep ocean waters during these time periods. Suboxic conditions in the deep ocean are consistent with the lack of shallow-marine BIF ??? 1.8 to 0.8??Ga, and likely limited nutrient concentrations in seawater and, consequently, may have constrained biological evolution. ?? 2006 Elsevier B.V. All rights reserved.

  16. Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA

    NASA Astrophysics Data System (ADS)

    Slack, J. F.; Grenne, T.; Bekker, A.; Rouxel, O. J.; Lindberg, P. A.

    2007-03-01

    A current model for the evolution of Proterozoic deep seawater composition involves a change from anoxic sulfide-free to sulfidic conditions 1.8 Ga. In an earlier model the deep ocean became oxic at that time. Both models are based on the secular distribution of banded iron formation (BIF) in shallow marine sequences. We here present a new model based on rare earth elements, especially redox-sensitive Ce, in hydrothermal silica-iron oxide sediments from deeper-water, open-marine settings related to volcanogenic massive sulfide (VMS) deposits. In contrast to Archean, Paleozoic, and modern hydrothermal iron oxide sediments, 1.74 to 1.71 Ga hematitic chert (jasper) and iron formation in central Arizona, USA, show moderate positive to small negative Ce anomalies, suggesting that the redox state of the deep ocean then was at a transitional, suboxic state with low concentrations of dissolved O 2 but no H 2S. The presence of jasper and/or iron formation related to VMS deposits in other volcanosedimentary sequences ca. 1.79-1.69 Ga, 1.40 Ga, and 1.24 Ga also reflects oxygenated and not sulfidic deep ocean waters during these time periods. Suboxic conditions in the deep ocean are consistent with the lack of shallow-marine BIF ˜ 1.8 to 0.8 Ga, and likely limited nutrient concentrations in seawater and, consequently, may have constrained biological evolution.

  17. Relationship between high- and low-grade Archean terranes: Implications for early Earth paleogeography

    NASA Technical Reports Server (NTRS)

    Eriksson, K. A.

    1986-01-01

    The Western Gneiss Terrain (WGT) of the Yilgarn Block, Western Australia was studied. The WGT forms an arcuate belt of Archean gneisses that flank the western margin of the Yilgarn Block. In general the WGT is composed of high-grade orthogneisses and paragneisses which contain supracrustal belts composed largely of siliciclastic metasediments and subordinate iron formation. The platformal nature of the metasedimentary belts and lack of obvious metavolcanic lithologies contrasts with the composition of typical Yilgarn greenstones to the east. Radiometric data from WGT rocks indicates that these rocks are significantly older than Yilgarn rocks to the east (less than 3.3 Ga) and this has led to the suggestion that the WGT represents sialic basement to Yilgarn granite-greenstone belts. The Mount Narryer region exposes the northernmost occurrence of high-grade metasediments within the WGT and consists of quartz-rich clastic metasediments at upper amphibolite to granulite grade. Most occurrences of supracrustal rocks in this region comprise isolated lenses within the gneissic basement. However, at Mount Narryer a unique sequence of metaclastics with preserved bedding provide an unusual window into the parentage of similar supracrustal bodies in this region.

  18. THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH

    SciTech Connect

    Cohen, O.; Drake, J. J.; Kota, J.

    2012-11-20

    We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to the shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.

  19. Mineralogy and composition of Archean Crust, Greenland: A pilot study

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Curtiss, Brian

    1989-01-01

    The Portable Instant Display and Analysis Spectrometer (PIDAS) was taken to southwestern Greenland to investigate in situ the potential application of AVIRIS to estimate the mineralogy and composition of rocks exposed in Archean terranes. The goal was to determine the feasibility of using a high spectral resolution scanner to find and study pristine rocks, those that have not been altered by subsequent deformation and metamorphism. The application of AVIRIS data to the problems in Greenland is logical. However, before a costly deployment of the U-2 aircraft to Greenland is proposed, this study was undertaken to acquire the spectral data necessary to verify that mineralogical mapping in the environmental conditions found there is possible. Although field conditions were far from favorable, all of the major objectives of the study were addressed. One of the major concerns was that lichens would obscure the rock surfaces. It was found that the spectral signature of the lichens was distinct from the underlying rocks. Thus, a spectrum of a rock outcrop, with its partial cover of lichens, can be un-mixed into rock and lichen components. The data acquired during the course of this study supports the conclusion that areas of pristine Archean crust can be differentiated from that which has experienced low grade alteration associated with Proterizoic faulting.

  20. Manganese carbonates as possible biogenic relics in Archean settings

    NASA Astrophysics Data System (ADS)

    Rincón-Tomás, Blanca; Khonsari, Bahar; Mühlen, Dominik; Wickbold, Christian; Schäfer, Nadine; Hause-Reitner, Dorothea; Hoppert, Michael; Reitner, Joachim

    2016-07-01

    Carbonate minerals such as dolomite, kutnahorite or rhodochrosite are frequently, but not exclusively generated by microbial processes. In recent anoxic sediments, Mn(II)carbonate minerals (e.g. rhodochrosite, kutnahorite) derive mainly from the reduction of Mn(IV) compounds by anaerobic respiration. The formation of huge manganese-rich (carbonate) deposits requires effective manganese redox cycling in an oxygenated atmosphere. However, putative anaerobic pathways such as microbial nitrate-dependent manganese oxidation, anoxygenic photosynthesis and oxidation in ultraviolet light may facilitate manganese cycling even in an early Archean environment, without the availability of oxygen. In addition, manganese carbonates precipitate by microbially induced processes without change of the oxidation state, e.g. by pH shift. Hence, there are several ways how these minerals could have been formed biogenically and deposited in Precambrian sediments. We will summarize microbially induced manganese carbonate deposition in the presence and absence of atmospheric oxygen and we will make some considerations about the biogenic deposition of manganese carbonates in early Archean settings.

  1. Stored mafic/ultramafic crust and early Archean mantle depletion

    NASA Technical Reports Server (NTRS)

    Chase, Clement G.; Patchett, P. J.

    1990-01-01

    Both early and late Archean rocks from greenstone belts and felsic gneiss complexes exhibit positive epsilon(Nd) values of +1 to +5 by 3.5 Ga, demonstrating that a depleted mantle reservoir existed very early. The amount of preserved pre-3.0 Ga continental crust cannot explain such high epsilon values in the depleted residue unless the volume of residual mantle was very small: a layer less than 70 km thick by 3.0 Ga. Repeated and exclusive sampling of such a thin layer, especially in forming the felsic gneiss complexes, is implausible. Extraction of enough continental crust to deplete the early mantle and its destructive recycling before 3.0 Ga ago requires another implausibility, that the sites of crustal generation of recycling were substantially distinct. In contrast, formation of mafic or ultramafic crust analogous to present-day oceanic crust was continuous from very early times. Recycled subducted oceanic lithosphere is a likely contributor to present-day hotspot magmas, and forms a reservoir at least comparable in volume to continental crust. Subduction of an early mafic/ultramafic oceanic crust and temporary storage rather than immediate mixing back into undifferentiated mantle may be responsible for the depletion and high epsilon(Nd) values of the Archean upper mantle.

  2. Early Archean tonalite gneiss in the upper peninsula of Michigan

    NASA Technical Reports Server (NTRS)

    Peterman, Z. E.; Zartman, R. E.; Sims, P. K.

    1986-01-01

    Geochronological results on tonalite gneiss of northern Michigan that is 3.56 Ga or slightly older is presented. Tonalitic augen gneiss and structurally overlying biotite gneiss and schist are exposed in a dome near Watersmeet. They are part of an extensive gneiss terrane of southern Minnesota, Wisconsin and Michigan that includes rocks of early to late Archean ages and lies south of the Wawa volcanic subprovince. Two samples of the augen gneiss and one of the biotite gneiss show zircon grains of similar shape, zoning, color, and development of crystal faces. These zircons give Pb/U isotopic ratios that plot on a chord of 3,560 + or - 40 m.y. upper intersect and of 1,250 + or m.y. lower intersect. The 3,560 m.y. number is believed to be a minimum age because analysis of one of the least discordant zircon fractions by ion microprobe that gave a nearly concordant age of 3,650 m.y. The 1,250 m.y. lower intersect is without geological significance: it is interpreted to be a result of multiple lead loss at 2.7, 1.8, and 0.5 Ga by U/Pb in zircon. Archean rocks 10 to 25 km northwest of the Watersmeet dome give a 2.75 Ga age on zircons. Quartz monzonite here is dated at 2.65 Ga.

  3. Early Archean tonalite gneiss in the upper peninsula of Michigan

    NASA Astrophysics Data System (ADS)

    Peterman, Z. E.; Zartman, R. E.; Sims, P. K.

    Geochronological results on tonalite gneiss of northern Michigan that is 3.56 Ga or slightly older is presented. Tonalitic augen gneiss and structurally overlying biotite gneiss and schist are exposed in a dome near Watersmeet. They are part of an extensive gneiss terrane of southern Minnesota, Wisconsin and Michigan that includes rocks of early to late Archean ages and lies south of the Wawa volcanic subprovince. Two samples of the augen gneiss and one of the biotite gneiss show zircon grains of similar shape, zoning, color, and development of crystal faces. These zircons give Pb/U isotopic ratios that plot on a chord of 3,560 + or - 40 m.y. upper intersect and of 1,250 + or m.y. lower intersect. The 3,560 m.y. number is believed to be a minimum age because analysis of one of the least discordant zircon fractions by ion microprobe that gave a nearly concordant age of 3,650 m.y. The 1,250 m.y. lower intersect is without geological significance: it is interpreted to be a result of multiple lead loss at 2.7, 1.8, and 0.5 Ga by U/Pb in zircon. Archean rocks 10 to 25 km northwest of the Watersmeet dome give a 2.75 Ga age on zircons. Quartz monzonite here is dated at 2.65 Ga.

  4. Post-orogenic thermal evolution of newborn Archean continents

    NASA Astrophysics Data System (ADS)

    Jaupart, C.; Mareschal, J.-C.

    2015-12-01

    The post-orogenic thermal evolution of newborn cratons in the Archean is marked by high-temperature metamorphism and plutonic activity that lag accretion by several tens of million years. The source of the heat that is required remains controversial. Here, we show that such late activity is consistent with the thermal evolution of new continental crust that adjusts to heat released by radioactive decay. Quantitative results depend on the total amount of radioactive elements in the newborn crust. Using heat flow and heat production data from the Archean Superior Province of the Canadian Shield, we show that temperatures ≈800-900 °C were reached in the lower crust a few tens of million years after the final accretion event. The timing of post-orogenic metamorphism is sensitive to the thermal structure acquired at the end of accretion. For the Superior Province, the relatively short time-lag between the end of accretion and metamorphism suggests that the lithosphere was thin or had been heated up by sustained magma percolation.

  5. Biogenic nitrogen and carbon in Fe-Mn-oxyhydroxides from an Archean chert, Marble Bar, Western Australia

    NASA Astrophysics Data System (ADS)

    Pinti, Daniele L.; Hashizume, Ko; Orberger, Beate; Gallien, Jean-Paul; Cloquet, Christophe; Massault, Marc

    2007-02-01

    To quantify and localize nitrogen (N) and carbon (C) in Archean rocks from the Marble Bar formation, Western Australia, and to gain insights on their origin and potential biogenicity, we conducted nuclear reaction analyses (NRA) and carbon and nitrogen isotope ratio measurements on various samples from the 3460-Myr-old Fe-rich Marble Bar chert. The Marble Bar chert formed during the alteration of basaltic volcanoclastic rocks with Fe- and Si-rich hydrothermal fluids, and the subsequent precipitation of magnetite, carbonates, massive silica, and, locally, sulfides. At a later stage, the magnetite, sulfides, and carbonates were replaced by Fe-Mn-oxyhydroxides. Nuclear reaction analyses indicate that most of the N and C resides within these Fe-Mn-oxyhydroxides, but a minor fraction is found in K-feldspars and Ba-mica dispersed in the silica matrix. The N and C isotopic composition of Fe-oxides suggests the presence of a unique biogenic source with δ 15NAIR values from +6.0 +/- 0.5‰ to 7.3 +/- 1.1‰ and a δ 13CPDB value of -19.9 +/- 0.1‰. The C and N isotope ratios are similar to those observed in Proterozoic and Phanerozoic organic matter. Diffusion-controlled fractionation of N and C released during high combustion temperatures indicates that these two elements are firmly embedded within the iron oxides, with activation energies of 18.7 +/- 3.7 kJ/mol for N and 13.0 +/- 3.8 kJ/mol for C. We propose that N and C were chemisorbed on iron and were subsequently embedded in the crystals during iron oxidation and crystal growth. The Fe-isotopic composition of the Marble Bar chert (δ 56Fe = -0.38 +/- 0.02‰) is similar to that measured in iron oxides formed by direct precipitation of iron from hydrothermal plumes in contact with oxygenated waters. To explain the N and C isotopic composition of Marble Bar chert, we propose either (1) a later addition of N and C at the end of Archean when oxygen started to rise or (2) an earlier development of localized oxygenated

  6. Archean Pb Isotope Evolution: Implications for the Early Earth.

    NASA Astrophysics Data System (ADS)

    Vervoort, J. D.; Thorpe, R.; Albarede, F.; Blichert-Toft, J.

    2008-12-01

    The U-Pb isotope system provides us with a powerful tool for understanding the chemical evolution of the Earth. Pb isotopes in Archean rocks, however, have not been widely utilized because U mobility makes initial Pb isotope ratios from old silicate rocks difficult, if not impossible, to determine. Galenas in syngenetic volcanogenic massive sulfide (VMS) deposits, however, provide snapshots of initial Pb ratios because their Pb isotopic composition is time invariant at their formation (U/Pb=0). The Pb isotopic record from galenas from rocks of all age have been utilized for over 70 years to answer a wide range of scientific problems beginning with Al Nier's pioneering work analyzing Pb isotopes in the 1930's but are no longer widely used by the isotopic community because they have been produced by older TIMS techniques. We have begun a re-examination of Archean Pb by an extensive analysis of over 100 galena samples from Archean VMS deposits throughout the Superior and Slave Provinces in Canada as well as from other VMS deposits in Finland, South Africa and Western Australia. The goal of this work is to provide modern, high precision measurements and update an old, but venerable, Pb isotopic data set. We feel these data provide important constraints on not only the Pb isotopic evolution of the Earth, but planetary differentiation and recycling processes operating in the first 2 b.y. of Earth's history. Our analytical techniques include dissolving the Pb sulfide minerals, purifying them with ion chromatography, and analyzing them using MC-ICPMS at both Washington State University (Neptune) and Ecole Normale Superieure in Lyon, France (Nu). All Pb solutions are doped with Tl in order to correct for mass fractionation. In this abstract we report preliminary galena Pb isotope data from 6 VMS deposits in the Abitibi greenstone belt: Chibougamu, Matagami, Noranda, Normetal, Timmins, and Val d"Or. These deposits are all approximately 2.7 Ga in age but in detail vary from 2

  7. Coupled Fe and S isotope variations in pyrite nodules from Archean shale

    NASA Astrophysics Data System (ADS)

    Marin-Carbonne, Johanna; Rollion-Bard, Claire; Bekker, Andrey; Rouxel, Olivier; Agangi, Andrea; Cavalazzi, Barbara; Wohlgemuth-Ueberwasser, Cora C.; Hofmann, Axel; McKeegan, Kevin D.

    2014-04-01

    Iron and sulfur isotope compositions recorded in ancient rocks and minerals such as pyrite (FeS2) have been widely used as a proxy for early microbial metabolisms and redox evolution of the oceans. However, most previous studies focused on only one of these isotopic systems. Herein, we illustrate the importance of in-situ and coupled study of Fe and S isotopes on two pyrite nodules in a c. 2.7 Ga shale from the Bubi Greenstone Belt (Zimbabwe). Fe and S isotope compositions were measured both by bulk-sample mass spectrometry techniques and by ion microprobe in-situ methods (Secondary Ion Mass Spectrometry, SIMS). Spatially-resolved analysis across the nodules shows a large range of variations at micrometer-scale for both Fe and S isotope compositions, with δ56Fe and δ34S values from -2.1 to +0.7‰ and from -0.5 to +8.2‰, respectively, and Δ33S values from -1.6 to +2.9‰. The Fe and S isotope variations in these nodules cannot be explained by tandem operation of Dissimilatory Iron Reduction (DIR) and Bacterial Sulfate Reduction (BSR) as was previously proposed, but rather they reflect the contributions of different Fe and S sources during a complex diagenetic history. Pyrite formed from two different mineral precursors: (1) mackinawite precipitated in the water column, and (2) greigite formed in the sediment during early diagenesis. The in-situ analytical approach reveals a complex history of the pyrite nodule growth and allows us to better constrain environmental conditions during the Archean.

  8. Spatially Resolved, In Situ Carbon Isotope Analysis of Archean Organic Matter

    NASA Technical Reports Server (NTRS)

    Williford, Kenneth H.; Ushikubo, Takayuki; Lepot, Kevin; Hallmann, Christian; Spicuzza, Michael J.; Eigenbrode, Jennifer L.; Summons, Roger E.; Valley, John W.

    2011-01-01

    Archean OM suggest that instrumental bias is consistent for 12C count rates as low as 10% relative to anthracite. Samples from the ABDP-9 (n=3; Mount McRae Shale, approximately 2.5 Ga), RHDH2a (n=2; Carrawine Dolomite and Jeerinah Fm, approximately 2.6 Ga), WRL1 (n=3; Wittenoom Fm, Marra Mamba Iron Formation, and Jeerinah Fm, approximately 2.6 Ga), and SV1 (n=1; Tumbiana Fm, approximately 2.7 Ga) drill cores, each previously analyzed for bulk organic carbon isotope composition, yielded 100 new, in situ data from Neoarchean sedimentary OM. In these samples, delta C-13 varies between -53.1 and -28.3 % and offsets between in situ and bulk compositions range from -8.3 to 18.8%. In some cases, isotopic composition and mode of occurrence (e.g. morphology and mineral associations) are statistically correlated, enabling the identification of distinct reservoirs of OM. Our results support previous evidence for gradients of oxidation with depth in Neoarchean environments driven by photosynthesis and methane metabolism. The relevance of these findings to questions of bio- and syngenicity as well as the alteration history of previously reported Archean OM will be discussed.

  9. The Raman-Derived Carbonization Continuum: A Tool to Select the Best Preserved Molecular Structures in Archean Kerogens

    NASA Astrophysics Data System (ADS)

    Delarue, Frédéric; Rouzaud, Jean-Noël; Derenne, Sylvie; Bourbin, Mathilde; Westall, Frances; Kremer, Barbara; Sugitani, Kenichiro; Deldicque, Damien; Robert, François

    2016-06-01

    The search for indisputable traces of life in Archean cherts is of prime importance. However, their great age and metamorphic history pose constraints on the study of molecular biomarkers. We propose a quantitative criterion to document the thermal maturity of organic matter in rocks in general, and Archean rocks in particular. This is definitively required to select the best candidates for seeking non-altered sample remnants of life. Analysis of chemical (Raman spectroscopy, 13C NMR, elemental analysis) and structural (HRTEM) features of Archean and non-Archean carbonaceous matter (CM) that was submitted to metamorphic grades lower than, or equal to, that of greenschist facies showed that these features had all undergone carbonization but not graphitization. Raman-derived quantitative parameters from the present study and from literature spectra, namely, R1 ratio and FWHM-D1, were used to draw a carbonization continuum diagram showing two carbonization stages. While non-Archean samples can be seen to dominate the first stage, the second stage mostly consists of the Archean samples. In this diagram, some Archean samples fall at the boundary with non-Archean samples, which thus demonstrates a low degree of carbonization when compared to most Archean CM. As a result, these samples constitute candidates that may contain preserved molecular signatures of Archean CM. Therefore, with regard to the search for the oldest molecular traces of life on Earth, we propose the use of this carbonization continuum diagram to select the Archean CM samples.

  10. Observation of the anisotropic Dirac cone in the band dispersion of 112-structured iron-based superconductor Ca{sub 0.9}La{sub 0.1}FeAs{sub 2}

    SciTech Connect

    Liu, Z. T.; Li, M. Y.; Fan, C. C.; Yang, H. F.; Liu, J. S.; Wang, Z.; Xing, X. Z.; Zhou, W.; Sun, Y.; Shi, Z. X.; Yao, Q.; Li, W.; Shen, D. W.

    2016-07-25

    CaFeAs{sub 2} is a parent compound of recently discovered 112-type iron-based superconductors. It is predicted to be a staggered intercalation compound that naturally integrates both quantum spin Hall insulating and superconducting layers and an ideal system for the realization of Majorana modes. We performed a systematical angle-resolved photoemission spectroscopy and first-principles calculation study of the slightly electron-doped CaFeAs{sub 2}. We found that the zigzag As chain of 112-type iron-based superconductors play a considerable role in the low-energy electronic structure, resulting in the characteristic Dirac-cone like band dispersion as the prediction. Our experimental results further confirm that these Dirac cones only exist around the X but not Y points in the Brillouin zone, breaking the S{sub 4} symmetry at iron sites. Our findings present the compelling support to the theoretical prediction that the 112-type iron-based superconductors might host the topological nontrivial edge states. The slightly electron doped CaFeAs{sub 2} would provide us a unique opportunity to realize and explore Majorana fermion physics.

  11. Late Archean Euxinia as a Window into Early Biogeochemical Cycles

    NASA Astrophysics Data System (ADS)

    Scott, C.; Bekker, A.; Reinhard, C.; Lyons, T. W.

    2009-12-01

    A number of transition metals present in seawater in trace amounts (10-10 to 10-7 moles/L) are nevertheless bioessential micronutrients, utilized in a wide range of cellular activities. Because their abundances in seawater are largely a reflection of redox-controlled sources and sinks, Precambrian biogeochemists increasingly focus on the interrelated nature of major redox transitions, the chemical composition of the oceans, and the evolution of life on Earth. Of particular interest are temporal trends in seawater inventories of elements utilized in the nitrogen cycle, both nitrogen fixation (Fe, V, Mo) and denitrification (Cu). Recent work on the link between trace metal abundance and the biologically mediated nitrogen cycle has focused on the Proterozoic Eon, when oxidative weathering was well established and sulfidic conditions were common in the deep ocean. However, we know little about trace metal availability during the Archean Eon, when oxygenic photosynthesis first appeared on Earth and began to alter the chemical composition of the oceans and atmosphere. The development of euxinic conditions, or anoxic and sulfidic bottom waters, provides important information regarding the cycling of major elements such as C, S and Fe. However, euxinic black shales can also provide a record of trace metal abundance. Mo is highly enriched in these shales and displays a conspicuous covariation with the concentration of total organic carbon (TOC). Furthermore, it has been demonstrated that the ratio Mo/TOC is proportional to the concentration of Mo in seawater. Cu and V are also enriched in euxinic black shales, and both correlate with TOC. By analogy with Mo, it is likely that the ratios Cu/TOC and V/TOC also contain information on the concentration of these transition metals in seawater. Here we present C-S-Fe systematics as well as trace metal concentrations from black shales of the Roy Hill Member of the late Archean Jeerinah Formation. Fe speciation indicates that the

  12. Early Archean Osmium in Chromitites from the Beartooth Range, Montana

    NASA Astrophysics Data System (ADS)

    Minarik, W. G.; Henry, D.

    2004-05-01

    Metamorphosed chromitites from the Hellroaring Plateau (Beartooth Mountains, Montana, USA) were analyzed for osmium isotopes and Re and Os contents. The chromitites are exposed at the surface in pit mines above Quad Creek. Euhedral spinels (Mg# 43-44, Cr# 74-76) are set in a matrix of phlogopite and talc. Chromites are free of ferrichromite rims and have only minor exsolution lamellae. Samples were dissolved in carius tubes using aqua regia and analyzed using MC-NTIMS (Os) and MC-ICPMS (Re). Zircons from the Hellroaring Plateau give average Lu-Hf ages of 3.5 Ga (Stevenson and Patchett, 1990). Quartzites (3.1-2.7 Ga depositional age) from this area contain detrital zircons with U-Pb ages up to 4.0 Ga. The main zircon population dates a major crust-forming event at 3.2-3.4 Ga (Mueller et al. 1998). The Main Beartooth Massif area has seen several generations of amphibolite- to granulite-facies metamorphism before the area was uplift during the Laramide orogeny. Sample QC81-19 contains 43 ppb Os with a 187Os/188Os of 0.1048 (±0.0001, 2σ ). Low Re/Os makes correction for 187Os production since the Archean minimal. Assuming an igneous age of 3.2 Ga, the sample formed with an initial 187Os/188Os of 0.1046, close to the chondritic Re/Os evolution line. A sample aggressively acid leached with still contained considerable osmium of nearly the same 187Os/188Os as the unleached sample. This suggests that the Os is not hosted by grain boundary sulfides, and that fluid influx and recrystallization was not accompanied by either Re or Os mobility. The present-day 187Os/188Os of this sample (0.1048) is one of the least radiogenic bulk sample Os ratios reported to date, slightly more radiogenic than the ratios reported (0.1026) for the 3.8 Ga peridotites of SW Greenland (Bennett et al., 2002). Both suggest the upper mantle source had a chondritic Re/Os in the early Archean. Mantle xenoliths from the Highwood mountains on the northern margin of the Wyoming Craton give minimum model

  13. First Archean Zircons Found in Oceanic Crustal Rocks of Mauritius

    NASA Astrophysics Data System (ADS)

    Ashwal, L. D.; Wiedenbeck, M.; Torsvik, T. H.

    2016-12-01

    A fragment of continental crust has been postulated to underlie the young plume-related lavas of the Indian Ocean island of Mauritius, on both the basis of inversion of gravity anomaly data (crustal thickness) and the recovery of Proterozoic zircons (660-1971 Ma) from basaltic beach sands (Torsvik et al., Nature Geosci. 6, 227, 2013). We recovered 13 zircon grains from a trachyte associated with the Older Series basalts (9.0-4.7 Ma) of Mauritius, the second youngest member of a hot-spot track extending from the active plume site of Réunion. Extreme care was taken to avoid contamination during sample processing. Ten of the 13 grains are featureless, with no internal structures, and SIMS analyses (Cameca 1280-HR instrument) yield 49 spots with Miocene U-Pb systematics and a mean age of 5.7 ± 0.2 Ma (1 sd), constraining the magmatic crystallization age of the trachyte. Three grains with partially resorbed magmatic zoning, partial metamictization and mineral inclusions (quartz, K-feldspar, monazite) show uniquely mid- to late-Archean systematics: 20 spot analyses give concordant to near-concordant ages of 3030 ± 5 Ma to 2766 ± 13 Ma. This suggests that during ascent, the trachytic magmas incorporated silicic continental crustal material that preserves a record of several hundred m.y. of Archean evolution. This is consistent with Sr-Nd isotope systematics of the Mauritian trachytes, which can be modelled as having been contaminated with 0.4-3.5% of ancient granitoid crustal components. Our new age results, combined with the Proterozoic ages of zircons recovered from Mauritian beach sands, are best correlated with continental crust of east-central Madagascar, presently 700 km west of Mauritius, where Archean gneisses and Neoproterozoic intrusive rocks are juxtaposed such that a 2000 km2 area could correspond to a fragment of continent presently underlying Mauritius. This, and other continental fragments formed during Gondwana break-up, may be scattered across the

  14. Iron and oxygen isotope fractionation during iron UV photo-oxidation: Implications for early Earth and Mars

    NASA Astrophysics Data System (ADS)

    Nie, Nicole X.; Dauphas, Nicolas; Greenwood, Richard C.

    2017-01-01

    Banded iron formations (BIFs) contain appreciable amounts of ferric iron (Fe3+). The mechanism by which ferrous iron (Fe2+) was oxidized into Fe3+ in an atmosphere that was globally anoxic is highly debated. Of the three scenarios that have been proposed to explain BIF formation, photo-oxidation by UV photons is the only one that does not involve life (the other two are oxidation by O2 produced by photosynthesis, and anoxygenic photosynthesis whereby Fe2+ is directly used as electron donor in place of water). We experimentally investigated iron and oxygen isotope fractionation imparted by iron photo-oxidation at a pH of 7.3. The iron isotope fractionation between precipitated Fe3+-bearing lepidocrocite and dissolved Fe2+ follows a Rayleigh distillation with an instantaneous 56Fe/54Fe fractionation factor of + 1.2 ‰. Such enrichment in the heavy isotopes of iron is consistent with the values measured in BIFs. We also investigated the nature of the mass-fractionation law that governs iron isotope fractionation in the photo-oxidation experiments (i.e., the slope of the δ56Fe-δ57Fe relationship). The experimental run products follow a mass-dependent law corresponding to the high-T equilibrium limit. The fact that a ∼3.8 Gyr old BIF sample (IF-G) from Isua (Greenland) falls on the same fractionation line confirms that iron photo-oxidation in the surface layers of the oceans was a viable pathway to BIF formation in the Archean, when the atmosphere was largely transparent to UV photons. Our experiments allow us to estimate the quantum yield of the photo-oxidation process (∼0.07 iron atom oxidized per photon absorbed). This yield is used to model iron oxidation on early Mars. As the photo-oxidation proceeds, the aqueous medium becomes more acidic, which slows down the reaction by changing the speciation of iron to species that are less efficient at absorbing UV-photons. Iron photo-oxidation in centimeter to meter-deep water ponds would take months to years to

  15. Methane Greenhouses and Anti-Greenhouses During the Archean Era

    NASA Astrophysics Data System (ADS)

    Kasting, J. F.; Pavlov, A. A.

    2002-12-01

    Climate and life are coupled today through the biogeochemical carbon cycle, but they may have been even more tightly coupled in the distant past when atmospheric O2 levels were lower. The finding of mass-independently fractionated S isotopes in Archean rocks confirms that pO2 was very low, probably <10-13 times the present level, prior to 2.3 Ga (1). The Sun was also some 20 percent less luminous at this time (2). High CO2 levels were initially proposed to solve this `faint young Sun problem' (3); however, these levels are in conflict in data from paleosols (4). CH4 is an alternative greenhouse gas which could have kept the Archean climate warm if present at concentrations of 0.01-0.1 percent by volume (5). The primary source of methane is biological. CH4 is produced by methanogenic bacteria that today live in anaerobic environments such as the intestines of ruminants and the water-logged soils underlying rice paddies. During the Archean, however, methanogens should have been widespread, and the methane they produced would have had a long photochemical lifetimes, around 10,000 years (6). Most methanogens are thermophiles or hyperthermophiles, and those which are more thermophilic have shorter doubling times than those that prefer cooler temperatures. This suggests that a positive feedback loop may have existed, whereby methanogens warmed the climate by releasing CH4, which in turn promoted the proliferation of faster-growing methanogens. This positive feedback would have been halted, however, once the ratio of CH4 to CO2 in the atmosphere exceeded unity. At this point, polymerization of CH4 by solar UV radiation would have caused the formation of an organic haze layer similar to that observed today on Titan. Such a haze layer would have cooled the climate by creating an `anti-greenhouse effect.' This creates an overall negative feedback loop that may have been responsible for maintaining a stable Archean climate. The rise of O2 at 2.3 Ga disrupted this equilibrium

  16. Early Archean Spherule Beds-Confirmation of Impact Origin

    NASA Technical Reports Server (NTRS)

    Shukolyukov, A.; Kyte, F. T.; Lugmair, G. W.; Lowe, D. R.; Byerly, G. R.

    2000-01-01

    The oldest record of major impact events on Earth may be a number of early Archean (3.5 to 3.2 Ga) spherule beds that have been identified in the Barberton Greenstone Belt, South Africa. Several field, petrographic, and geochemical criteria distinguish these beds from typical volcanic and clastic sediments. These criteria include the wide geographic distribution of two beds in a variety of depositional environments, the presence of relict quench textures, absence of juvenile volcaniclastic debris within the beds, and extreme enrichment of Ir and other platinum group elements (PGE) as compared to surrounding sediments. Some researchers, however, argued for a terrestrial origin for spherule bed formation, possibly related to volcanism and gold mineralization.

  17. Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014)

    SciTech Connect

    Kochanov, R. V.; Gordon, I. E.; Rothman, L. S.; Sharpe, S. W.; Johnson, T. J.; Sams, R. L.

    2015-08-25

    In the recent article by Byrne and Goldblatt, "Radiative forcing for 28 potential Archean greenhouse gases", Clim. Past. 10, 1779–1801 (2014), the authors employ the HITRAN2012 spectroscopic database to evaluate the radiative forcing of 28 Archean gases. As part of the evaluation of the status of the spectroscopy of these gases in the selected spectral region (50–1800 cm-1), the cross sections generated from the HITRAN line-by-line parameters were compared with those of the PNNL database of experimental cross sections recorded at moderate resolution. The authors claimed that for NO2, HNO3, H2CO, H2O2, HCOOH, C2H4, CH3OH and CH3Br there exist large or sometimes severe disagreements between the databases. In this work we show that for only three of these eight gases a modest discrepancy does exist between the two databases and we explain the origin of the differences. For the other five gases, the disagreements are not nearly at the scale suggested by the authors, while we explain some of the differences that do exist. In summary, the agreement between the HITRAN and PNNL databases is very good, although not perfect. Typically differences do not exceed 10 %, provided that HITRAN data exist for the bands/wavelengths of interest. It appears that a molecule-dependent combination of errors has affected the conclusions of the authors. In at least one case it appears that they did not take the correct file from PNNL (N2O4 (dimer)+ NO2 was used in place of the monomer). Finally, cross sections of HO2 from HITRAN (which do not have a PNNL counterpart) were not calculated correctly in BG, while in the case of HF misleading discussion was presented there based on the confusion by foreign or noise features in the experimental PNNL spectra.

  18. Late Archean mafic volcanism in the Rainy Lake area, Minnesota

    SciTech Connect

    Day, W.C.

    1985-01-01

    The Late Archean greenstone-granite terrane of the Rainy Lake area of Minnesota contains a bimodal suite of mafic and felsic volcanic and coeval intrusive rocks. New geochemical data show that the mafic rocks occur in three distinct suites: (1) low-Ti olivine- and quartz-tholeiite, (2) high-Ti quartz-tholeiite and basaltic andesite, and (3) calc-alkaline lamprophyric monzodiorite and quartz diorite. The low-Ti tholeiites have only slightly evolved Mg-numbers from 53-63, Ni=125-300 ppm, and MORB-like REE. In contrast, the high-Ti tholeiites are more evolved, with Mg*=26-48, Ni=43-135 ppm, and higher total REE. Compared to the tholeiitic suites, the monzodiorite suite has more primitive Mg-numbers, with Mg*=70-78, Ni<410 ppm, and anomalously high LREE. The two tholeiitic suites cannot be genetically related by simple fractionation from a single parent magma; however, lower degrees of partial melting (<8 percent) of a mantle source (spinel periodotite) with REE=2-4 times chondrites could have produced the high-Ti tholeiites, and higher degrees of melting (20-30 percent) of a similar source could have generated the low-Ti tholeiites. In contrast, the monzodiorite suite must have been generated from either a LREE-rich or (and) a garnet-bearing source (garnet periodotite). The authors conclude that shallow melting (<40-50 km) within the Archean mantle in the Rainy Lake area produced the tholeiitic rocks, and that deep melting (>40-50 km) generated the lamprophyric monzodiorites.

  19. Archean evolution of the Leo Rise and its Eburnean reworking

    NASA Astrophysics Data System (ADS)

    Thiéblemont, Denis; Goujou, Jean Christian; Egal, Emmanuel; Cocherie, Alain; Delor, Claude; Lafon, Jean Michel; Fanning, C. Mark

    2004-06-01

    Recent geological mapping in southeastern Guinea, supported by zircon dating, has called into question traditional understanding concerning the evolution of the Leo Rise. Gneiss dated at about 3540 Ma appears to constitute the earliest evidence for continental accretion within the Leo Rise. The existence of a Leonian depositional cycle at about 3000 Ma is confirmed, marked by volcanic and sedimentary rocks that can be correlated with the Loko Group in Sierra Leone. The span of ages (3244-3050 Ma) suggests that the Leonian cycle comprises different episodes whose respective chronology is as yet uncertain. Clearly distinct from the Leonian cycle, the Liberian cycle (˜2900-2800 Ma) is represented in Guinea by granite and migmatite (˜2910-2800 Ma), reflecting remobilization of the ancient Archean basement and deformation of the Leonian rocks; no deposition is associated with this cycle. After the Liberian, the Nimba and Simandou successions, containing Liberian detrital zircons, are assigned to the Birimian (˜2200-2000 Ma). Finally, Eburnean tectonism caused intense deformation of the Archean craton, accompanied by high-grade metamorphism and the intrusion of granite and syenite with ages between 2080 and 2020 Ma. The evolution of the Kénéma-Man domain, attributed to the cumulated effect of the Leonian and Liberian cycles, is thus in part Eburnean. We can suppose, therefore, that the NNE-SSW-trending structures attributed to the Liberian in Sierra Leone are, in fact, Eburnean. The Kambui Supergroup, also affected by this tectonism, should thus be assigned to the Birimian rather than the Liberian, which would explain its similarities with the Nimba and Simandou successions.

  20. Viability of Archean Subduction Initiation from Gravitational Spreading

    NASA Astrophysics Data System (ADS)

    Adams, A.; Thielmann, M.; Golabek, G.

    2016-12-01

    The development of plate tectonics and Earth's early tectonic environment are currently not well understood. Modern plate tectonics are characterized by the sinking of dense lithosphere at subduction zones; however this process may not have been feasible if Earth's interior was hotter in the Archean, resulting in thicker and more buoyant oceanic lithosphere than observed at present (van Hunen and van den Berg, 2008). Previous studies have proposed gravitational spreading of early continents at passive margins as a mechanism to trigger early episodes of plate subduction (Rey et al., 2014). This study utilizes 2D thermo-mechanical numerical experiments using the finite element code MVEP2 (Kaus, 2010; Thielmann et al., 2014) to investigate the viability of this mechanism for subduction initiation with Archean mantle conditions. The model is comprised of a 55-km-thick continent above 170 km of strongly depleted lithospheric mantle and surrounded by a 15-km-thick oceanic lid. A range of possible densities and viscosities were investigated for the different layers, and results show that lithospheric stresses may vary between 250-750 MPa. Because lithospheric stresses are crucial to subduction initiation, the model includes elasticity in order to better accommodate this large stress range. This model also includes free-surface boundary conditions to allow the development of isostatic topography, which is a factor not considered previously. Preliminary results indicate that the magnitude and location of lithospheric stresses varies for cases with and without isostatic uplift being taken into account. Subduction initiation was previously shown to occur due to large intra-lithospheric gravitational stresses from a spreading continent, but these intra-lithospheric stresses may be insufficient in cases with lithospheric elasticity and continental uplift. Critical factors are expected to be the magnitude of continental buoyancy and the degree of decompression melting from the

  1. Linking the Fe-, Mo-, and Cr isotope records with the multiple S isotope record of Archean sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Ohmoto, H.; Watanabe, Y.

    2011-12-01

    Researchers have interpreted the isotopic data of redox sensitive elements (e.g., Fe, Mo and Cr) in Archean- and Proterozoic-aged sedimentary rocks within a framework of an atmospheric O2 evolution model that relied on an interpretation of the multiple sulfur isotopic record of sedimentary rocks. The current paradigm is that the anomalous isotopic fractionations of sulfur (AIF-S, or MIF-S) in sedimentary rocks were created by the UV photolysis of volcanic SO2 in an O2-poor (i.e., pO2 < 1 ppm) atmosphere, and that the rise of atmospheric pO2 to > 1 ppm occurred at ~2.45 Ga. However, this paradigm has recently encountered the following serious problems: (1) UV photolysis of SO2 by a broad-band UV lamp, which simulates the UV spectra of the sun light, produced the δ34S-Δ33S values for the S0 and SO4 that are significantly different from >90% of data on natural samples. (2) Many Archean-age sedimentary rocks do not exhibit AIF-S signatures. (3) Strong AIF-S signatures are typically found in organic C- and pyrite rich Archean-age black shales that were altered by submarine hydrothermal fluids during the early diagenetic stage of the rocks. (4) H2S, rather than SO2, was probably the dominant S-bearing volcanic gas on an anoxic Earth. Yet, UV photolysis of H2S does not generate AIF-S. (5) Some post-2.0 Ga natural samples were found to possess strong AIF-S signatures, such as sulfates in air pollutants that were produced by coal burning in an oxygen-rich atmosphere. Lasaga et al. (2008) demonstrated theoretically that chemisorption reactions between some solid surfaces and S-bearing aqueous (or gaseous) species, such as between organic matter and aqueous sulfate, may generate AIF-S. Watanabe et al. (2009; in prep.) demonstrated experimentally that reactions between simple amino acid crystals and sulfate under hydrothermal conditions produced AIF-S signatures that matched with more than 90% of data on natural samples. These studies, as well as the observed correlations

  2. Dating Archean zircon by ion microprobe: New light on an old problem

    NASA Technical Reports Server (NTRS)

    Williams, I. S.; Kinny, P. D.; Black, L. P.; Compston, W.; Froude, D. O.; Ireland, T. R.

    1985-01-01

    Ion microprobe analysis of zircons from three sites (Watersmeet Dome in northern Michigan, Mount Sones in eastern Antarctica, and Mount Narryer in western Australia) is discussed. Implications of the results to Archean geochronology and early Earth crust composition are addressed.

  3. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Chen, Kang; Rudnick, Roberta L.

    2016-01-01

    The Archean Eon witnessed the production of early continental crust, the emergence of life, and fundamental changes to the atmosphere. The nature of the first continental crust, which was the interface between the surface and deep Earth, has been obscured by the weathering, erosion, and tectonism that followed its formation. We used Ni/Co and Cr/Zn ratios in Archean terrigenous sedimentary rocks and Archean igneous/metaigneous rocks to track the bulk MgO composition of the Archean upper continental crust. This crust evolved from a highly mafic bulk composition before 3.0 billion years ago to a felsic bulk composition by 2.5 billion years ago. This compositional change was attended by a fivefold increase in the mass of the upper continental crust due to addition of granitic rocks, suggesting the onset of global plate tectonics at ~3.0 billion years ago.

  4. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics.

    PubMed

    Tang, Ming; Chen, Kang; Rudnick, Roberta L

    2016-01-22

    The Archean Eon witnessed the production of early continental crust, the emergence of life, and fundamental changes to the atmosphere. The nature of the first continental crust, which was the interface between the surface and deep Earth, has been obscured by the weathering, erosion, and tectonism that followed its formation. We used Ni/Co and Cr/Zn ratios in Archean terrigenous sedimentary rocks and Archean igneous/metaigneous rocks to track the bulk MgO composition of the Archean upper continental crust. This crust evolved from a highly mafic bulk composition before 3.0 billion years ago to a felsic bulk composition by 2.5 billion years ago. This compositional change was attended by a fivefold increase in the mass of the upper continental crust due to addition of granitic rocks, suggesting the onset of global plate tectonics at ~3.0 billion years ago. Copyright © 2016, American Association for the Advancement of Science.

  5. PGE Chemistry and Systematics of Some Archean Spherule Layers in the Barberton Mountain Land

    NASA Astrophysics Data System (ADS)

    Mohr-Westheide, T.; Reimold, W. U.; Greshake, A.; Hoehnel, D.; Fritz, J.; Schmitt, R. T.; Salge, T.; Hofmann, A.; Oezdemir, S.; Schulz, T.; Koeberl, C.

    2015-07-01

    Comprehensive study of petrographic, mineralogical, and geochemical characteristics from a set of new samples of Archean spherule layers in the ICDP drill core BARB5 and drill core CT3 from the Barberton Greenstone Belt (BGB), South Africa.

  6. Rare earth element patterns in Archean high-grade metasediments and their tectonic significance

    NASA Technical Reports Server (NTRS)

    Taylor, Stuart Ross; Rudnick, Roberta L.; Mclennan, Scott M.; Eriksson, Kenneth A.

    1986-01-01

    REE data on metasedimentary rocks from two different types of high-grade Archean terrains are presented and analyzed. The value of REEs as indicators of crustal evolution is explained; the three geologic settings (in North America, Southern Africa, and Australia) from which the samples were obtained are described; and the data are presented in extensive tables and graphs and discussed in terms of metamorphic effects, the role of accessory phases, provenance, and tectonic implications (recycling, the previous extent of high-grade terrains, and a model of Archean crustal growth). The diversity of REE patterns in shallow-shelf metasediments is attributed to local provenance, while the Eu-depleted post-Archean patterns are associated with K-rich plutons from small, stable early Archean terrains.

  7. Nature of the Coast Batholith, Southeastern Alaska: Are there Archean analogs

    NASA Technical Reports Server (NTRS)

    Barker, Fred; Arth, J. G.

    1988-01-01

    The comparison of Phanerozoic Andean margins and their possible Archean analogs was made. Geochemical and isotopic data was presented for the episodic intrusion of the elongate, continental margin Coast batholith of southeastern Alaska and British Columbia. The batholith was characterized as having been formed in direct response to subduction in accreted terranes of oceanic or slope origin. It was concluded that there were good analogs of the Coast batholith in Archean plutonic suites.

  8. Geological framework of the Archean and Paleoproterozoic Tanami Region, Northern Territory

    NASA Astrophysics Data System (ADS)

    Crispe, A. J.; Vandenberg, L. C.; Scrimgeour, I. R.

    2007-01-01

    The Tanami Region, a poorly exposed, mostly Paleoproterozoic province within the North Australian Craton, hosts a number of significant gold deposits in diverse settings. Rare exposures of 2,520-2,500 Ma amphibolite facies Archean gneiss and metasedimentary rocks form basement to the thick overlying metasedimentary succession of the 1,880-1,830 Ma Tanami Group. The basal unit of the Tanami Group is the Dead Bullock Formation, a fining-upward deep-water succession dominated by siltstone, carbonaceous siltstone, iron-rich siltstone and mafic sills. Carbonaceous- and iron-rich lithologies in the upper Dead Bullock Formation represent important hosts for gold mineralization. The conformably overlying Killi Killi Formation represents turbiditic sedimentary rocks that are correlated with the widespread Lander Rock beds of the Arunta Region. Sedimentation of the Tanami Group was terminated by regional deformation and greenschist to amphibolite facies metamorphism during the Tanami Event (D1/M1), at around 1,830 Ma. The Tanami Group is unconformably overlain by rhyolite, siliciclastic sedimentary rocks, and felsic ignimbrite of the Ware Group that were deposited at about 1,825-1,810 Ma. Subsequent ESE-WNW to SE-NW directed shortening (D2), followed by NE-SW to E-W directed shortening (D3), has resulted in open NE F2- and NW F3-trending folds in both the Tanami and Ware Groups. Voluminous granitoids, dominated by I-type, biotite granodiorite, and monzogranite were intruded in the interval 1,825-1,790 Ma and have been subdivided using geochemical criteria into the Birthday, Frederick, and Grimwade Suites. Basalt and immature sedimentary rocks of the Mount Charles Formation are restricted in extent to the Tanami mine corridor, and are interpreted to reflect a continental rift succession that was deposited around 1,800 Ma, with an early Archean sedimentary provenance. Steep S to SE dipping F4-fold structures of Tanami and Ware Group metasedimentary rocks, many spatially

  9. Continental emergence in the Late Archean reconciles early and late continental growth models

    NASA Astrophysics Data System (ADS)

    Flament, Nicolas; Coltice, Nicolas; Rey, Patrice

    2014-05-01

    The analysis of ancient sediments (Rare Earth Element composition of black shales, isotopic strontium composition of marine carbonates, isotopic oxygen composition of zircons) suggests that continental growth culminated around the Archean-Proterozoic transition. In stark contrast, the geochemical analysis of ancient basalts suggests that depletion of the mantle occurred in the Hadean and Eoarchean. This paradox may be solved if continents were extracted from the mantle early in Earth's history, but remained mostly below sea level throughout the Archean. We present a model to estimate the area of emerged land and associated isotopic strontium composition of the mantle and oceans as a function of the coupled evolution of mantle temperature, continental growth and distribution of surface elevations (hypsometry). For constant continental hypsometry and four distinct continental growth models, we show that sea level was between 500 and 2000 m higher in the Archean than at present, resulting in < 12% of emerged land, compared to ~ 28% at present. If in addition the hot Archean lithosphere could not sustain high relief, as little as 2-3% of Earth's surface would have been emerged in the Archean. Using a geochemical box model for the strontium isotopic composition of the mantle and oceans, we show that a reduced area of emerged continental crust can explain why the geochemical fingerprint of continents extracted early in Earth's history was not recorded at the surface of the Earth until the late Archean.

  10. Broad-band X-ray emission and the reality of the broad iron line from the neutron star-white dwarf X-ray binary 4U 1820-30

    NASA Astrophysics Data System (ADS)

    Mondal, Aditya S.; Dewangan, G. C.; Pahari, M.; Misra, R.; Kembhavi, A. K.; Raychaudhuri, B.

    2016-09-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disc. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here, we investigate the reality of the broad iron line detected earlier from the neutron-star low-mass X-ray binary 4U 1820-30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broad-band spectral study of the atoll source using Suzaku and simultaneous NuSTAR and Swift observations. We have used different continuum models involving accretion disc emission, thermal blackbody and thermal Comptonization of either disc or blackbody photons. The Suzaku data show positive and negative residuals in the region of Fe K band. These features are well described by two absorption edges at 7.67 ± 0.14 keV and 6.93 ± 0.07 keV or partial covering photoionized absorption or by blurred reflection. Though, the simultaneous Swift and NuSTAR data do not clearly reveal the emission or absorption features, the data are consistent with the presence of either absorption or emission features. Thus, the absorption based models provide an alternative to the broad iron line or reflection model. The absorption features may arise in winds from the inner accretion disc. The broad-band spectra appear to disfavour continuum models in which the blackbody emission from the neutron-star surface provides the seed photons for thermal Comptonization. Our results suggest emission from a thin accretion disc (kTdisc ˜ 1 keV), Comptonization of disc photons in a boundary layer most likely covering a large fraction of the neutron-star surface and innermost parts of the accretion disc, and blackbody emission (kTbb ˜ 2 keV) from the polar regions.

  11. An Archean Primary Pyroclastic Flow Erupted and Deposited Underwater, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Scott, C. R.; Richard, D.; Fowler, A. D.

    2001-12-01

    The volcano-sedimentary rocks of the Hurd Property, located in northeastern Ontario, are within the Kinojévis Group of the Abitibi Greenstone Belt. These Archean rocks are of tholeiitic affinity ranging from intermediate to mafic in composition. Despite a low greenschist grade overprint primary volcanic textures are well preserved. The study area consists of three lithofacies, which from oldest to youngest are: (1) an intermediate lava; (2) volcaniclastic deposit; and (3) mafic lava. The underlying intermediate lava is a dark grey and massive lithofacies that becomes flow banded and lobate within a few meters of the sharp, but undulatory contact with the overlying volcaniclastic lithofacies. The 10-15 m-thick volcaniclastic deposit is subdivided into lower and upper divisions based on flow characteristics and a sharp internal contact. The lower division is characterized by conspicuous m-wide columnar joints within the central part of the deposit, along with a possible gas segregation pipe. Observed fragments range from tuff to breccia in size, comprising glass shards, flow banded clasts, pumice, and fragments containing perlitic cracks and spherulites, all of which are non-sorted. The discontinuously exposed, subordinate upper division forms a graded unit composed of conspicuously large (up to 1m x 10cm in section) imbricated fragments that are massive to flow banded. The contact between the upper volcaniclastic lithofacies and the mafic lithofacies is sharp, but irregular, typically marked by pseudo-pillow like shapes within the mafic unit. Only the lower 25 m of this massive, amphibole-rich mafic lithofacies is exposed in the study area. Lobate features, along with imbrication within the upper volcaniclastic lithofacies suggest a subaqueous environment of deposition consistent with observed pillows and interflow chert locally. Nonetheless, the succeeding volcaniclastic deposit appears to have been emplaced under high temperatures based on columnar joints

  12. Paleomagnetism of Hadean and Archean Detrital Zircons from the Jack Hills, Western Australia

    NASA Astrophysics Data System (ADS)

    Weiss, B. P.; Lima, E. A.; Alexander, E.; Bell, E. A.; Boehnke, P.; Wielicki, M. M.; Harrison, M.; Fu, R. R.; Kehayias, P.; Glenn, D. R.; Walsworth, R. L.; Araujo, J. F. D.; Einsle, J. F.; Harrison, R.; Trail, D.; Watson, E. B.

    2016-12-01

    Determining the history of Earth's dynamo prior to the oldest known well-preserved rock record is one of the ultimate challenges in the field of paleomagnetism. The dynamo's early history has major implications for the evolution of the core, the initiation of plate tectonics, the physics of magnetic field generation, and the habitability of the early Earth. The only known minerals that might retain paleomagnetic records from well before 3.5 billion years ago (Ga) are detrital zircon crystals found in sedimentary rocks in Western Australia. Ranging up to 4.38 Ga in age, they are the oldest known terrestrial minerals. Tarduno et al. (2015) argued that detrital zircons contain records of an active dynamo dating back to 4.2 Ga. However, it has not been demonstrated that the zircons have escaped remagnetization during the intervening time since their formation (Weiss et al. 2016). Therefore, the age of magnetization in the Jack Hills zircons and the existence of a dynamo prior to 3.5 Ga have yet to be established. To address this issue, we have been studying the magnetism and thermal and aqueous alteration histories of single Archean and Hadean Jack Hills zircon crystals. Peak unblocking temperatures combined with electron backscatter diffraction indicate that the zircons contain inclusions of magnetite and hematite. Electron microscopy, X-ray tomography, and quantum diamond magnetometry indicate that much of the iron oxides in the zircons are associated with cracks and are therefore likely secondary. However, our newly developed Li-in-zircon geospeedometry technique shows for the first time that a small fraction of Hadean zircons retain sharp gradients in Li concentration (see figure), indicating they likely have never heated above the magnetite Curie temperature since their formation at >4 Ga. We describe thermal demagnetization and Thellier-Thellier paleointensity studies of these zircons and implications for the existence of a Hadean dynamo.

  13. Geostable molecules and the Late Archean 'Whiff of Oxygen'

    NASA Astrophysics Data System (ADS)

    Summons, R. E.; Illing, C. J.; Oduro, H. D.; French, K. L.; Ono, S.; Hallmann, C.; Strauss, H.

    2012-12-01

    exhibits a 'MIF' signal that is significantly amplified compared to co-occurring pyrite sulfur. Limited isotopic exchange between the organic and inorganic sulfur pools suggests Archean origin of these organic sulfur compounds. We also report new results from the 2012 Agouron Pilbara drilling project. Anbar A.D. et al. A whiff of oxygen before the great oxidation event. Science 317, 1903-1906. (2007). Bosak T. et al., Morphological record of oxygenic photosynthesis in conical stromatolites. Proc. Natl. Acad. Sci. USA 106:10939-10943 (2009). Kopp, R.E. et al.,The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 102: 11131-11136 (2005). Waldbauer J.R. et al., Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Research 169, 28-47 (2008). Waldbauer J.R. et al., 2011. Microaerobic steroid biosynthesis and the molecular fossil record of Archean life. Proceedings of the National Academy of Sciences (USA) 108, 13409-13414

  14. Dating brittle deformation in the Archean Yilgarn Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Thebaud, N.; Zwingmann, H.

    2012-12-01

    Major deformation throughout the Archean Yilgarn Craton has mostly been interpreted to be Neoarchean (Blewett and Czarnota, 2007). The timing of the deformation events of the brittle/ductile deformation generally relies on dating of cross-cutting intrusions or unconformities. Proterozoic overprinting and reactivation of Archean structures in the north-western part of the Yilgarn Craton has previously been dated from direct dating of the structures and fabrics from the Narryer Terrane(Spaggiari et al., 2008). However, the brittle deformation that postdates Neoarchean brittle-ductile structures in the Yilgarn Craton have received little attention to date. In the centre of the Yilgarn Craton, the Eastern Goldfields present a well developed network of E-W trending of normal brittle faults and fractures. Typically these structures are interpreted to have developed in result of a late Neoarchean tectonic relaxation following the main Yilgarn wide E-W contraction (Blewett and Czarnota, 2007). Poorly preserved and weathered faulted rocks in the subsurface environment preclude direct dating of fault gouge. However, exposure from the underground Agnew mine, in the Agnew Wiluna greenstone belt, recently provided access to fresh fault gouge material suitable for analysis. The clay gouge was characterized by SEM, TEM and XRD methods prior to age dating indicating an authigenic origin (Zwingmann et al., 2010). K-Ar illite age data of a whole rock sample split yielded an age of 1148 ± 23 Ma, which is within error close to the <2 micron clay fraction yielding an age of 1094 ± 22 Ma (Mesoproterozoic-Stenian). Our result is the first documentation of the age of the brittle deformation that affects the Yilgarn Craton. This age is within error of the Gilles event which is an extension event that affected the whole Australian continent and is responsible for the emplacement of the Warakurna Large Igneous Province and related dolerite dykes in the Yilgarn Craton (Evins et al., 2010

  15. Comparative chronology of Archean HT/UHT crustal metamorphism

    NASA Astrophysics Data System (ADS)

    Caddick, Mark; Dragovic, Besim; Guevara, Victor

    2017-04-01

    Attainment of high crustal heat fluxes and consequent partial melting is critical to the stabilization of continental roots. Understanding the processes and timescales behind partial melting of continental crust in the Archean is thus paramount for understanding Archean tectonic modes and how stable cratons formed. High-temperature (HT) to ultrahigh-temperature (UHT) metamorphic rocks can record evidence for dynamic processes that result in advective heat fluxes and a substantial deviation from normal crustal geothermal gradients. Examination of the pressure-temperature conditions and timescales of HT/UHT metamorphism is thus essential to understanding the tectonic processes behind extreme crust heat fluxes and the formation of stable cratonic crust. Here, utilizing both traditional and nontraditional petrologic and geochronologic techniques, we compare the pressure-temperature-time paths of two Neoarchean terranes: the eastern Beartooth Mountains of the Wyoming Craton and the Pikwitonei Granulite Domain of the Superior Province. The Beartooth Mountains of Montana, USA, expose Archean rocks of the Wyoming Craton that are dominated by an ˜2.8 Ga calc-alkaline granitoid batholith known as the Long Lake Magmatic Complex (LLMC). The LLMC contains widespread, up to km-scale metasedimentary roof pendants, with ID-TIMS Sm-Nd garnet geochronology and laser ablation split stream (LASS) monazite geochronology suggesting that metamorphism occurred almost 100 Ma after entrainment by the LLMC [1]. Phase equilibria modeling and Zr-in-rutile thermometry constrain peak pressures and temperatures of ˜6-7 kbar and ˜780-800˚ C. Major element diffusion modeling of garnet suggest that granulite-facies temperatures were only maintained for a short duration, < 2 Ma. In contrast, the Pikwitonei Granulite Domain consists of >150,000 km2 of high-grade metamorphic rocks situated in the NW Superior Province. Phase equilibria modeling and trace element thermometry constrain peak

  16. Geochemical evolution of magmatism in Archean granite-greenstone terrains

    NASA Astrophysics Data System (ADS)

    Samsonov, A. V.; Larionova, Yu. O.

    2006-05-01

    Evolution of Archean magmatism is one of the key problems concerning the early formation stages of the Earth crust and biosphere, because that evolution exactly controlled variable concentrations of chemical elements in the World Ocean, which are important for metabolism. Geochemical evolution of magmatism between 3.5 and 2.7 Ga is considered based on database characterizing volcanic and intrusive rock complexes of granite-greenstone terrains (GGT) studied most comprehensively in the Karelian (2.9-2.7 Ga) and Kaapvaal (3.5-2.9 Ga) cratons and in the Pilbara block (3.5-2.9 Ga). Trends of magmatic geochemical evolution in the mentioned GGTs were similar in general. At the early stage of their development, tholeiitic magmas were considerably enriched in chalcophile and siderophile elements Fe2O3, MgO, Cr, Ni, Co, V, Cu, and Zn. At the next stage, calc-alkaline volcanics of greenstone belts and syntectonic TTG granitoids were enriched in lithophile elements Rb, Cs, Ba, Th, U, Pb, Nb, La, Sr, Be and others. Elevated concentrations of both the “crustal” and “mantle-derived” elements represented a distinctive feature of predominantly intrusive rocks of granitoid composition, which were characteristic of the terminal stage of continental crust formation in the GGTs, because older silicic rocks and lithospheric mantle were jointly involved into processes of magma generation. On the other hand, the GGTs different in age reveal specific trends in geochemical evolution of rock associations close in composition and geological position. First, the geochemical cycle of GGT evolution was of a longer duration in the Paleoarchean than in the Meso-and Neoarchean. Second, the Paleoarche an tholeiitic associations had higher concentrations of LREE and HFSE (Zr, Ti, Th, Nb, Ta, Hf) than their Meso-and Neoarchean counterparts. Third, the Y and Yb concentrations in Paleoarchean calc-alkaline rock associations are systematically higher than in Neoarchean rocks of the same type

  17. Heterogeneously hydrated mantle beneath the late Archean Yilgarn Craton

    NASA Astrophysics Data System (ADS)

    Ivanic, T. J.; Nebel, O.; Jourdan, F.; Faure, K.; Kirkland, C. L.; Belousova, E. A.

    2015-12-01

    Archean mafic-ultramafic melts, crystallized as layered intrusions in the upper crust and extruded as komatiitic flows, are primary probes of upper mantle chemistry. However, the message from their primary chemical composition can be compromised by different modes of contamination. Contaminants are typically cryptic in terms of their geochemical and isotopic signals but may be related to metasomatised mantle sources, ambient crustal assimilation or subduction-related inputs. In this work we present critical evidence for both dry and wet Archean mantle sources for two juxtaposed layered intrusions in the Australian Yilgarn Craton. The ca. 2813 Ma Windimurra and ca. 2800 Ma Narndee Igneous Complexes in Western Australia are two adjacent layered intrusions and would be expected to derive via similar mantle sections. A key difference in their chemistry is the presence of crystal-bound water in the Narndee Igneous Complex, represented primarily by abundant hornblende. Such a primary hydrous phase is notably absent in the Windimurra Igneous Complex. New 40Ar/39Ar plateau ages for fresh Narndee hornblende (weighted mean: 2805 ± 14 Ma, MSWD = 1.8, probability = 0.18) agrees with the published U-Pb age of 2800 ± 6 Ma for the complex and is consistent with a magmatic origin for this phase. Zircon Hf and whole-rock Hf and Nd isotopes for the Narndee Igneous Complex indicate only minor crustal contamination, in agreement with H and O isotope values in amphibole and O isotope values in rare zircon crystals, plagioclase and pyroxene within both complexes. These findings illustrate a fast temporal transition, in proximal bodies, from anhydrous to hydrous mantle sources with very minor crustal contamination. These large layered mafic-ultramafic intrusions are igneous bodies with a primitive chemical bulk composition that requires large degrees of mantle melting. This has been attributed by many workers to mantle plume activity, yet not without dispute, as subduction-related flux

  18. Building early Archean cratons from recycled Hadean crust

    NASA Astrophysics Data System (ADS)

    O'Neil, J.; Carlson, R. W.; Boyet, M.

    2013-12-01

    The formation of Earth's early crust and the geological processes leading to creation and preservation of stable Archean cratons are still poorly understood. Archean terrains are dominated by felsic Tonalite-Trondhjemite-Granodiorite (TTG) rocks. These felsic rocks however, cannot be directly produced from melting of the mantle but must instead be derived from the melting of an older mafic precursor. Despite growing evidence for a basaltic >4.3 Ga primordial crust on Earth, there are only a few occurrences of zircons older than 4.0 Ga; in the Jack Hills conglomerates and in the Acasta gneisses. Only after ~3.8 Ga does the zircon record become more prominent. The zircon age distribution in itself suggests a long quiescence period of over half a billion years before the mafic primitive crust was extensively recycled to produce a significant amount of felsic magma. The Nuvvuagittuq greenstone belt (NGB) provides a glimpse at the nature of the mafic primitive crust. The mafic rocks from the Nuvvuagittuq greenstone belt (NGB), called the Ujaraaluk unit, have 146Sm-142Nd systematics consistent with them being formed in the Hadean, between 4.3 and 4.4 Ga. The NGB also comprises multiple generations of TTG ranging from 3.75 Ga to 3.35 Ga. Despite the fact that the mafic and felsic lithologies of the NGB show strong evidence of disturbance in the 147Sm-143Nd and 176Lu-177Hf long-lived isotopic systems, the NGB TTGs yield 142Nd and 182W anomalies that can be only generated in the Hadean. Moreover, zircons from the 3.35 to 3.65 TTGs have strongly subchondritic initial ɛHf values and display an ɛHf vs. age array consistent with their derivation from a Hadean mafic precursor. The NGB TTGs appear to have been formed primarily from melting of a source compositionally similar to the 4.4 Ga Ujaraaluk unit. The crustal history recorded in the NGB seems to be similar to the early crustal evolution recorded in the Jack Hills Hadean zircons where reworking of a >4.3 Ga enriched

  19. Archean regional transpression and paleomagnetism in northwestern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Borradaile, G. J.; Werner, T.; Dehls, J. F.; Spark, R. N.

    1993-04-01

    The Archean metamorphic rocks of the Superior province of the Canadian Shield occur in lithologically defined belts or subprovinces. The tectonically more stable interiors of belts possess consistent primary components of magnetic remanence. In the case of the Quetico belt, these stable directions are tightly grouped about 005°/55° with some minor dispersion and most were acquired during the cooling that followed syntectonic recrystallisation. This study examines the directions of primary remanence components for rocks along the margins of the Quetico belt, within 4 km of the strongly deformed vertical, ENE-trending boundaries. The boundaries are known to have experienced dextral transpression involving penetrative single-phase deformation which out-lasted metamorphism. Within a few kilometres of the belt boundaries, the primary remanence components are re-distributed along a vertical ENE-trending, great-circle girdle which is nearly parallel to the plane of transpressive shear and regional schistosity. It is suggested that the effects of transpression have mechanically deflected the components of primary remanence toward this plane.

  20. Archean foreland basin tectonics in the Witwatersrand, South Africa

    NASA Technical Reports Server (NTRS)

    Burke, K.; Kidd, W. S. F.; Kusky, T. M.

    1986-01-01

    The Witwatersrand Basin of South Africa is the best-known of Archean sedimentary basins and contains some of the largest gold reserves in the world. Sediments in the basin include a lower flysch-type sequence and an upper molassic facies, both of which contain abundant silicic volcanic detritus. The strata are thicker and more proximal on the northwestern side of the basin which is, at least locally, bound by thrust faults. These features indicate that the Witwatersrand strata may have been deposited in a foreland basin and a regional geologic synthesis suggests that this basin developed initially on the cratonward side of an Andean-type arc. Remarkably similar Phanerozoic basins may be found in the southern Andes above zones of shallow subduction. It is suggested that the continental collision between the Kaapvaal and Zimbabwe Cratons at about 2.7 Ga caused further subsidence and deposition in the Witwatersrand Basin. Regional uplift during this later phase of development placed the basin on the cratonward edge of a collision-related plateau, now represented by the Limpopo Province. Similarities are seen between this phase of Witwatersrand Basin evolution and that of active basins north of the Tibetan Plateau. The geologic evidence does not agree with earlier suggestions that the Witwatersrand strata were deposited in a rift or half-graben.

  1. Dating of Archean basement in northeastern Wyoming and southern Montana.

    USGS Publications Warehouse

    Peterman, Z.E.

    1981-01-01

    Rb-Sr whole-rock and U-Pb zircon ages of granite and gneiss cores from three deep drill holes extend known occurrences of Archean rocks in the subsurface of NE Wyoming and S Montanta. Rb-Sr and K- Ar mineral ages are discordant and reflect early or middle Proterozoic disturbance. Highly altered rocks occur in a thin zone immediately below the sub-Cambrian unconformity. Samples from a few metres deeper in the basement are much fresher but show the effects of this alteration in filled fractures and thin adjacent alteration haloes. Whole-rock Rb-Sr systems have retaioned a fair degree of integrity in spite of increased susceptibility to modification because of the disturbed mineral systems. Interaction of the rocks with water a few metres below the sub-Cambrian unconformity probably occurred for only a relatively short time. Fractures filled rapidly with secondary minerals such as chlorite, anhydrite, and carbonate to maintain a relatively impermeable crystalline basement in which the silicates and their contained isotopic systems were preserved.- Author

  2. Lithopsheric anisotropy in the Archean Slave craton, Canada

    NASA Astrophysics Data System (ADS)

    Snyder, D. B.; Bostock, M.; Lockhart, G. D.

    2003-12-01

    Shear wave anisotropy and discontinuity studies of teleseismic earthquakes recorded at single seismic stations help to define vertical mantle stratigraphic columns. Beneath the Archean outcrops of the central Slave craton seismic discontinuities at 38, 115, 140, and 190 km appear to bound two distinct anisotropic layers. The discontinuity at 38 km is the Moho; discontinuities at 110-120 and 140-150 km depths observed at multiple nearby stations indicate that a layer of low velocity or distinct anisotropy exists between these depths. The coherent pulses at about 13 seconds on the radial component indicates a strong decrease in velocity at 110 km depth north and west of the Ekati diamond mine, but not to the south. The response on the transverse component indicates a rotation of anisotropic fabric at 117 km depth, a reversal at 140 km, and another rotation at 190 km. A flip in polarity at a back azimuth of about 280° occurs in the 117 km discontinuity and apparently marks an axis of symmetry of anisotropy, here probably the dip direction of steep layering or planar fabric. SKS anisotropy studies at this station indicate that the upper of two anisotopic layers has a fast-axis direction of 010° . Geochemical studies of xenolith samples from nearby kimberlites suggest that the boundaries at 115 and 140 bound a layer of ultra-depleted harzburgite, almost pure olivine, that formed as oceanic crust.

  3. A Coupled General Circulation Model of the Archean Earth

    NASA Astrophysics Data System (ADS)

    Wolf, E. T.; Toon, O. B.

    2011-12-01

    We present results from a new coupled general circulation model suitable for deep paleoclimate studies. Particular interest is given to the faint young Sun paradox. The model is based on the Community Earth System Model maintained by the National Center for Atmospheric Research [1]. Prognostic atmosphere, ocean, land, ice, and hydrological cycle models are coupled. A new correlated-k radiative transfer model has been implemented allowing accurate flux calculations for anoxic atmospheres containing high concentrations of CO2 and CH4 [2, 3]. This model represents a significant improvement upon one-dimensional radiative-convective climate models used previously to study ancient climate [4]. Cloud and ice albedo feedbacks will be accurately quantified and new constraints on Archean surface temperatures will be revealed. References [1] Collins W.D. et al. "Description of the NCAR Community Atmosphere Model (CAM 3.0)." NCAR Technical Note, 2004. [2] Toon O.B., McKay, C.P., Ackerman, T.P. "Rapid Calculation of Radiative Heating Rates and Photodissociation Rates in Inhomogeneous Multiple Scattering Atmospheres." J. Geo. Res., 94(D13), 16287 - 16301, 1989. [3] Mlawer, E.J., et al. "Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave." J. Geo. Res., 102(D14), 16663 - 16682, 1997. [4] Kasting J.F., Pollack, J.B., Crisp, D. "Effects of High CO2 Levels on Surface Temperature and Atmospheric Oxidation State of the Early Earth." J. Atm. Chem., 1, 403-428, 1984.

  4. Archean foreland basin tectonics from the Witwatersrand, South Africa

    SciTech Connect

    Burke, K.; Kidd, W.S.F.; Kusky, T.M.

    1985-01-01

    The Witwatersrand Basin of South Africa is the best-known of Archean sedimentary basins and contains some of the largest gold reserves in the world. Sediments in the basin include a lower flysch-type sequence and an upper molassic facies, both of which contain abundant silicic volcanic detritus. The strata are thicker and more proximal on the northwestern side of the basin which is, at least locally, bound by thrust faults. These and other features indicate that the Witwatersrand strata were deposited in a foreland basin. A regional geologic synthesis suggests that his basin developed initially on the cratonward side of an Andean-type arc. Remarkably similar Phanerozoic basins may be found in the southern Andes above zones of shallow subduction. We suggest that the continental collision between the Kaapvaal and Zimbabwe Cratons at about 2.7 Ga caused further subsidence and deposition in the Witwatersrand Basin. Regional uplift during this later phase of development placed the basin on the cratonward edge of a collision-related plateau, now represented by the Limpopo Province. Striking similarities are seen between this phase of Witwatersrand Basin evolution and active basins located north of the Tibetan Plateau. The geologic evidence is not so compatible with earlier suggestions that the Witwatersrand strata were deposited in a rift or half-graben.

  5. Archean foreland basin tectonics in the Witwatersrand, South Africa

    NASA Technical Reports Server (NTRS)

    Burke, K.; Kidd, W. S. F.; Kusky, T. M.

    1986-01-01

    The Witwatersrand Basin of South Africa is the best-known of Archean sedimentary basins and contains some of the largest gold reserves in the world. Sediments in the basin include a lower flysch-type sequence and an upper molassic facies, both of which contain abundant silicic volcanic detritus. The strata are thicker and more proximal on the northwestern side of the basin which is, at least locally, bound by thrust faults. These features indicate that the Witwatersrand strata may have been deposited in a foreland basin and a regional geologic synthesis suggests that this basin developed initially on the cratonward side of an Andean-type arc. Remarkably similar Phanerozoic basins may be found in the southern Andes above zones of shallow subduction. It is suggested that the continental collision between the Kaapvaal and Zimbabwe Cratons at about 2.7 Ga caused further subsidence and deposition in the Witwatersrand Basin. Regional uplift during this later phase of development placed the basin on the cratonward edge of a collision-related plateau, now represented by the Limpopo Province. Similarities are seen between this Phase of Witywatersrand Basin evolution and that of active basins north of the Tibetan Plateau. The geologic evidence does not agree with earlier suggestions that the Witwatersrand strata were deposited in a rift or half-graben.

  6. Archean foreland basin tectonics in the Witwatersrand, South Africa

    SciTech Connect

    Burke, K.; Kidd, W.S.F.; Kusky, T.M.

    1986-06-01

    The Witwatersrand Basin of South Africa is the best-known of Archean sedimentary basins and contains some of the largest gold reserves in the world. Sediments in the basin include a lower flysch-type sequence and an upper molassic facies, both of which contain abundant silicic volcanic detritus. The strata are thicker and more proximal on the northwestern side of the basin which is, at least locally, bound by thrust faults. These features indicate that the Witwatersrand strata may have been deposited in a foreland basin and a regional geologic synthesis suggests that this basin developed initially on the cratonward side of an Andean-type arc. Remarkably similar Phanerozoic basins may be found in the southern Andes above zones of shallow subduction. It is suggested that the continental collision between the Kaapvaal and Zimbabwe Cratons at about 2.7 Ga caused further subsidence and deposition in the Witwatersrand Basin. Regional uplift during this later phase of development placed the basin on the cratonward edge of a collision-related plateau, now represented by the Limpopo Province. Similarities are seen between this Phase of Witywatersrand Basin evolution and that of active basins north of the Tibetan Plateau. The geologic evidence does not agree with earlier suggestions that the Witwatersrand strata were deposited in a rift or half-graben. 64 references.

  7. The Archean crust in the Wawa-Chapleau-Timmins region. A field guidebook prepared for the 1983 Archean Geochemistry-Early Crustal Genesis Field Conference

    NASA Technical Reports Server (NTRS)

    Percival, J. A.; Card, K. D.; Sage, R. P.; Jensen, L. S.; Luhta, L. E.

    1983-01-01

    This guidebook describes the characteristics and interrelationships of Archean greenstone-granite and high-grade gneiss terrains of the Superior Province. A 300-km long west to east transect between Wawa and Timmins, Ontario will be used to illustrate regional-scale relationships. The major geological features of the Superior Province are described.

  8. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere.

    PubMed

    Pavlov, A A; Kasting, J F

    2002-01-01

    Mass-independent fractionation (MIF) of sulfur isotopes has been reported in sediments of Archean and Early Proterozoic Age (> 2.3 Ga) but not in younger rocks. The only fractionation mechanism that is consistent with the data on all four sulfur isotopes involves atmospheric photochemical reactions such as SO2 photolysis. We have used a one-dimensional photochemical model to investigate how the isotopic fractionation produced during SO2 photolysis would have been transferred to other gaseous and particulate sulfur-bearing species in both low-O2 and high-O2 atmospheres. We show that in atmospheres with O2 concentrations < 10(-5) times the present atmospheric level (PAL), sulfur would have been removed from the atmosphere in a variety of different oxidation states, each of which would have had its own distinct isotopic signature. By contrast, in atmospheres with O2 concentrations > or = 10(-5) PAL, all sulfur-bearing species would have passed through the oceanic sulfate reservoir before being incorporated into sediments, so any signature of MIF would have been lost. We conclude that the atmospheric O2 concentration must have been < 10(-5) PAL prior to 2.3 Ga.

  9. Thyroid Hormone-Dependent Formation of a Subcortical Band Heterotopia (SBH) in the Neonatal Brain is not Exacerbated Under Conditions of Low Dietary Iron

    EPA Science Inventory

    Thyroid hormones (TH) are critical for brain development. Modest TH insufficiency in pregnant rats induced by propylthiouracil (PTU) results in formation of a structural abnormality, a subcortical band heterotopia (SBH), in brains of offspring. PTU reduces TH by inhibiting the s...

  10. Thyroid Hormone-Dependent Formation of a Subcortical Band Heterotopia (SBH) in the Neonatal Brain is not Exacerbated Under Conditions of Low Dietary Iron

    EPA Science Inventory

    Thyroid hormones (TH) are critical for brain development. Modest TH insufficiency in pregnant rats induced by propylthiouracil (PTU) results in formation of a structural abnormality, a subcortical band heterotopia (SBH), in brains of offspring. PTU reduces TH by inhibiting the s...

  11. Generation of felsic crust in the Archean: a geodynamic modeling perspective

    NASA Astrophysics Data System (ADS)

    Sizova, Elena; Gerya, Taras; Stüwe, Kurt; Brown, Michael

    2015-04-01

    The relevance of contemporary tectonics to the formation of the Archean terrains is a matter of vigorous debate. Higher mantle temperatures and higher radiogenic heat production in the past would have impacted on the thickness and composition of the oceanic and continental crust. As a consequence of secular cooling, there is generally no modern analog to assist in understanding the tectonic style that may have operated in the Archean. For this reason, well-constrained numerical modeling, based on the fragmentary evidence preserved in the geological record, is the most appropriate tool to evaluate hypotheses of Archean crust formation. The main lithology of Archean terrains is the sodic tonalite-trondhjemite-granodiorite (TTG) suite. Melting of hydrated basalt at garnet-amphibolite to eclogite facies conditions is considered to be the dominant process for the generation of the Archean TTG crust. Taking into account geochemical signatures of possible mantle contributions to some TTGs, models proposed for the formation of Archean crust include subduction, melting at the bottom of thickened continental crust and fractional crystallization of mantle-derived melts under water-saturated conditions. We evaluated these hypotheses using a 2D coupled petrological-thermomechanical numerical model with initial conditions appropriate to the Eoarchean-Mesoarchean. As a result, we identified three tectonic settings in which intermediate to felsic melts are generated by melting of hydrated primitive basaltic crust: 1) delamination and dripping of the lower primitive basaltic crust into the mantle; 2) local thickening of the primitive basaltic crust; and, 3) small-scale crustal overturns. In addition, we consider remelting of the fractionated products derived from underplated dry basalts as an alternative mechanism for the formation of some Archean granitoids. In the context of a stagnant lid tectonic regime which is intermittently terminated by short-lived subduction, we identified

  12. Archean orthogneiss lithologies of Northern Yellowstone National Park and their geochemical contribution to the younger rhyolites

    NASA Astrophysics Data System (ADS)

    Tarbert, K.; Larson, P. B.

    2010-12-01

    The Archean rocks within the northern section of Yellowstone National Park have yet to be thoroughly analyzed so that their role in the genesis of the young rhyolite magmas that erupted from calderas in the Park can be evaluated. Major and trace element concentrations and stable and radiogenic isotope ratios have been measured for three separate orthogneiss units that are representative of the Park's dominant Archean units. Preliminary major element analyses indicate that partial melting of more primitive Archean lithologies may have produced the more evolved Archean igneous units. This is illustrated by a large gap in the silica compositions (between 54 and 64 wt. percent) of exposed plutonic rocks. REE data indicate enrichment of the HREE to variable degrees and both positive and negative Eu anomalies. Aside from one unit that displays a negative Eu anomaly, these lithologies are not readily distinguishable by REE compositions alone. The young Lava Creek and Canyon Flow Tuff rhyolites have similar HREE patterns and slightly enriched LREE when compared to the orthogneiss samples. Partial melting or assimilation of the Archean granites can produce the observed increase in the young rhyolites LREE. Primary feldspar O isotope ratios range from 6.8 to 8.9 per mil, which are significantly higher than the low O ratios found in some of the young rhyolites. Epsilon Nd values for the Archean rocks are very low and range from -35.8 to -41.5. The young rhyolites have low epsilon Nd values but not as low as the range of the Archean rocks. We can now begin to assess the role that these units have as components in the younger rhyolitic magmas. Preliminary models show that partial melting or assimilation of the Archean rocks can reasonably contribute a significant part to the young rhyolites. In addition to identifying a major contributor to the Yellowstone rhyolites, these data provide insight to the main facies that constitute the basement rocks buried beneath the younger

  13. Magnetotelluric survey to locate the Archean/Proterozoic suture zone north of Wells, Nevada

    USGS Publications Warehouse

    Williams, Jackie M.; Rodriguez, Brian D.

    2006-01-01

    It is important to know whether major mining districts in the Northern Nevada Gold Province are underlain by rocks of the Archean Wyoming craton, which are known to contain orogenic gold deposits, or by accreted rocks of the Paleoproterozoic Mojave province. It is also important to know the location and orientation of the Archean/Proterozoic suture zone between these provinces as well as major basement structures within these terranes because they may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. The Archean was the main gold-mineralization period, and Archean lode-gold deposits were formed at mid-crustal depths along major shear zones. The nature of the crystalline basement below the Northern Nevada Gold Province and the location of major faults within it are relevant to Rodinian reconstructions, crustal development, and ore deposit models (e.g., Hofstra and Cline, 2000; Grauch and others, 2003). According to Whitmeyer and Karlstrom (2004), the Archean cratons of the northwestern United States and Canada had stabilized as continental lithosphere by 2.5 Ga, and were rifted and assembled into a large continental mass by 1.8 Ga, to which the 1.73-1.68 Ga Mohave province was accreted by 1.65 Ga. The Archean/Proterozoic suture zone has a west-southwest strike where it is exposed (Reed, 1993) at the eastern Utah and southwestern Wyoming border (Cheyenne Belt) where it is characterized by an up to 7-km-thick mylonite zone (Smithson and Boyd, 1998). In the Great Basin, the strike of the Archean/Proterozoic suture zone is poorly constrained because it is largely concealed below a Neoproterozoic-Paleozoic miogeocline and basin fill. East-west and southwest-northeast strikes for the Archean/Proterozoic suture zone have been inferred based on Sr, Nd, and Pb isotopic compositions of granitoid intrusions (Tosdal and others, 2000). To better constrain the location and strike of the Archean/Proterozoic suture zone below cover

  14. The Raman-Derived Carbonization Continuum: A Tool to Select the Best Preserved Molecular Structures in Archean Kerogens

    PubMed Central

    Rouzaud, Jean-Noël; Derenne, Sylvie; Bourbin, Mathilde; Westall, Frances; Kremer, Barbara; Sugitani, Kenichiro; Deldicque, Damien; Robert, François

    2016-01-01

    Abstract The search for indisputable traces of life in Archean cherts is of prime importance. However, their great age and metamorphic history pose constraints on the study of molecular biomarkers. We propose a quantitative criterion to document the thermal maturity of organic matter in rocks in general, and Archean rocks in particular. This is definitively required to select the best candidates for seeking non-altered sample remnants of life. Analysis of chemical (Raman spectroscopy, 13C NMR, elemental analysis) and structural (HRTEM) features of Archean and non-Archean carbonaceous matter (CM) that was submitted to metamorphic grades lower than, or equal to, that of greenschist facies showed that these features had all undergone carbonization but not graphitization. Raman-derived quantitative parameters from the present study and from literature spectra, namely, R1 ratio and FWHM-D1, were used to draw a carbonization continuum diagram showing two carbonization stages. While non-Archean samples can be seen to dominate the first stage, the second stage mostly consists of the Archean samples. In this diagram, some Archean samples fall at the boundary with non-Archean samples, which thus demonstrates a low degree of carbonization when compared to most Archean CM. As a result, these samples constitute candidates that may contain preserved molecular signatures of Archean CM. Therefore, with regard to the search for the oldest molecular traces of life on Earth, we propose the use of this carbonization continuum diagram to select the Archean CM samples. Key Words: Archean—Early life—Kerogen—Raman spectroscopy—Carbonization. Astrobiology 16, 407–417. PMID:27186810

  15. The Rise of Continents and the Transition Archean to Proterozoic

    NASA Astrophysics Data System (ADS)

    Rey, P. F.; Flament, N.; Coltice, N.

    2011-12-01

    Terrestrial planets evolve in part via partial melting and gravitational differentiation, and in part via fluid/rock interactions at the surface. Mass and energy transfers across their various envelopes depend on the mode of convective motion, which may involve stagnant or mobile lid systems, for which plate tectonics is a possible mode; one promoting the coupling between exogenic and endogenic envelopes. In the other hand, fluid/rock interaction at the surface depends on the planet hypsometry and availability of weathering agents such as liquid water. It also depends on fluid/rock interaction at mid-oceanic ridge and therefore on the mode of convection. Hence, from 4.54 to 2.5 Ga the interplay between deep and surface processes under the forcing of secular cooling was such that the Earth differentiation was non-linear with sudden crises that punctuated periods of relative quietness. The Earth secular cooling impacted on deep and surface processes through the modulation of the Earth's hypsometry. This modulation occurred via cooling and strengthening of the lithosphere (Rey and Coltice, Geology, 2008), and via the deepening of oceanic basin, which lowered the mean sea level forcing the continents to emerge (Flament et al., EPSL, 2008). Stronger lithospheres are able to sustain higher orogenic belts and orogenic plateaux, the erosion of which lead to stronger fluxes towards the ocean. Secular strengthening and emergence conspired to enhance weathering and erosion of the continents and therefore to enhance the geochemical coupling between the endogenic and exogenic Earth's envelopes (Rey and Coltice, Geology, 2008). The shift to the aerobic world, at the Archean to Proterozic transition, took place at a time when exogenic envelopes recorded major shifts in composition (eg. Taylor and McLennan, Rev. of Geophys., 1995; Veizer and Compston, Geochem. Cosmochem Acta, 1976; Valley et al., Contrib. to Mineral. Petrol., 2005) that are consistent with the progressive exposure

  16. Archean recycled oceanic crust sampled in Azores lavas

    NASA Astrophysics Data System (ADS)

    Beguelin, P.; Bizimis, M.; Beier, C.; Turner, S.

    2016-12-01

    Azores lava compositions extend below the mantle array in ɛNd-ɛHf space and define the steepest slope of all plume provinces [1], but this pattern is largely controlled by low ɛHf lavas from Eastern São Miguel island (SM). Here we present new Hf isotope data on well-characterized on-land and submarine Azores lavas from several islands, the Terceira Rift and João do Castro seamount (JdC), in order to further constrain this trend. While Azores lavas fall along the mantle array with relatively steep slopes (e.g. São Jorge slope = 2.1), both SM and JdC fall below the mantle array as two distinct steep arrays with slopes of 2.0 and 2.6 respectively, extending to ɛHf = 0 at ɛNd = 2 (SM) and 4 (JdC). This is a unique feature in OIBs. The new Hf-Nd data overlaps the HIMU-type Mangaia and St Helena compositions. However, SM and JdC have distinctly less radiogenic and more variable Pb isotopes (e.g. 206Pb/204Pb = 18.8 to 20.2) than HIMU. Hf-Nd isotope decoupling below the mantle array is therefore not an exclusive HIMU signature. The coupled Hf-Nd-Pb-Sr isotope compositions of the enriched SM and JdC end-members can be modeled by recycled 2.5-3.0 Ga N-MORB, with some E-MORB affinity for SM. Unlike HIMU however, no Pb-loss during subduction is required for recycled MORB to explain their Pb isotopes. The relatively high κ (232Th/238U 4.3) required by the Azores data is also consistent with a high Th/U Archean mantle [2]. Aged, metasomatised mantle lithosphere based on a global peridotite and pyroxenite compilation is too variable and only fortuitously could explain the Azores compositions. Both enriched JdC and SM endmembers can therefore be explained by a recycled Archean oceanic crust that is locally heterogeneous, as presently observed in some MOR segments where N-and E-MORB exist closely [3, 4]. The lack of mixing between SM and JdC end-members some 100 km apart further implies that this recycled crust has retained its distinct signature through mantle convection

  17. Mantle differentiation and chemical cycling in the Archean (Invited)

    NASA Astrophysics Data System (ADS)

    Lee, C.

    2010-12-01

    Differentiation of Earth’s silicate mantle is largely controlled by solid-state convection. Today, upwelling mantle leads to decompression melting. Melts, being of low density, rise to form the continental and oceanic crusts. Because many trace elements, such as heat-producing U, Th and K, as well as the noble gases, preferentially partition into melts, melt extraction concentrates these elements into the crust or atmosphere. However, one by-product of whole-mantle convection is that melting during the Earth’s first billion years was likely deep and hot. Such high pressure melts may have been dense, allowing them to stall, crystallize and later founder back into the lower mantle. These sunken lithologies would have ‘primordial’ chemical signatures despite a non-primordial origin. As the Earth cools, the proportion of upwards melt segregation relative to downwards melt segregation increases, removing volatiles and other incompatible elements to the surface. Recycling of these elements back into the Earth’s interior occurs by subduction, but because of chemical weathering, hydrothermal alteration and photosynthetic reactions occurring in the Earth’s exosphere, these recycled materials may re-enter the mantle already chemically transformed. In particular, photosynthetic production of oxygen and, especially, the progressive oxygenation of the Earth’s atmosphere require removal of reduced carbon from the Earth’s surface. If such removal occurred by subduction, the mantle would have become progressively reduced. During the Archean and early Proterozoic, much of this material may have contributed to making cratonic mantle, and if so, cratonic mantle may have been assembled by reduced building blocks, perhaps explaining the origin of diamonds with organic carbon isotopic signatures. The origin of peridotitic diamonds in cratonic mantle could then be explained if the underlying convecting mantle was in fact more oxidizing such that carbonatitic liquids

  18. The Building of the Archean Superior Craton: Thermal Perspective

    NASA Astrophysics Data System (ADS)

    Jaupart, C. P.; Mareschal, J. C.

    2014-12-01

    The building of a craton involves the extraction of continental crust from the Earth's mantle and the lateral accretion of juvenile volcanic terranes. Ascertaining which conditions allow a newborn continental assemblage to survive requires information on its mechanical strength, which depends on the amount and vertical distribution of radioactive elements in the crust. There is thus a connection between crust formation mechanisms and a successful amalgamation process. To address outstanding questions concerning Archean cratons, the Superior province in Canada is the perfect region because it contains a well preserved geological record of accretion that provides compelling evidence for plate tectonic processes at 2.7 Ga. At almost the same time, the rate of continental growth decreased significantly, which may result from either slower crust formation or enhanced destruction through erosion and subduction. These issues are linked to the strength of the newborn continent. The extensive heat flow data set now available in the Superior Province reveals a clear demarcation between a chemically depleted and differentiated craton core and weakly differentiated enriched juvenile accreted terranes. The Superior craton was thus made of a strong core surrounded by weak terranes. This dichotomy implies that the accretion process could not involve complex imbrication of the accreted belts into the craton core. Subsequently, the craton may have been protected from convective disruption or delamination by its weak margins. Differences between the craton core and accreted terranes may be due to different crustal extraction processes, such as melting in a mantle plume or magmatism in a subduction zone. If subduction started at about 3 Ga, as advocated by several authors, the assembly and survival of large cratons may well be a consequence of this key shift in mantle activity. Alternatively, the chemical depletion of the craton core may be due to a prolonged history of internal

  19. Viability of Archean Subduction Initiation from Gravitational Spreading

    NASA Astrophysics Data System (ADS)

    Adams, Andrea; Thielmann, Marcel; Golabek, Gregor

    2017-04-01

    The development of plate tectonics and Earth's early tectonic environment are currently not well understood. Modern plate tectonics is characterized by the sinking of dense lithosphere at subduction zones; however this process may not have been feasible if Earth's interior was hotter in the Archean, resulting in thicker and more buoyant oceanic lithosphere than observed at present (van Hunen and van den Berg, 2008). Previous studies have proposed gravitational spreading of early continents at passive margins as a mechanism to trigger early episodes of plate subduction (Rey et al., 2014). The numerical models used in this study employed a viscoplastic rheology and a free-slip upper boundary condition. In our study, we investigate the impact of a free surface upper boundary condition and elasticity on the viability of subduction initiation due to gravitational spreading using the finite element code MVEP2 (Kaus, 2010; Thielmann et al., 2014). Subduction initiation by gravitational spreading was found to occur only for models with free-slip boundary conditions and lithospheric yield stresses less than 200 MPa. Because lithospheric stresses are a critical factor for subduction initiation, we investigated the effects of continental buoyancy and the resistance of the oceanic lithosphere to lateral forces from a spreading continent on the initial stress field. Results show that different density-viscosity combinations produce maximum lithospheric stresses which may vary over 1000 MPa and average stresses which range between 100-200 MPa in both the continent and the oceanic lithosphere. The use of a free-surface boundary condition allows the development of isostatic topography, which was not considered previously. Results indicate that the magnitude and location of lithospheric stresses vary for cases with and without isostatic uplift, and that subduction initiation is less likely to occur in cases with lithospheric elasticity and continental uplift due to intra

  20. Effect of manganese and iron at a neutral and acidic pH on the hematology of the banded Tilapia (Tilapia sparrmanii)

    SciTech Connect

    Wepener, V.; Van Vuren, J.H.J.; Du Preez, H.H.

    1992-10-01

    The pollution of natural water bodies is a common phenomenon in developing countries. Increases in population densities lead to increased mining and industrial activities in the area. With the establishment of gold and coal mines in South Africa, several industrial zones were created to support the mining industry. Many of these industries consist of heavy metal processing factories. Over the years pollution from the mines has led to acidification of the streams and lakes in the Transvaal. It was also found that high concentrations of heavy metals occurred in the water, sediments, plants and fish tissue in the affected water systems. Of all the heavy metals, iron and manganese were found in the highest concentrations. In order to determine the subtle, non-lethal effects induced by sublethal concentrations of heavy metals on the physiology of fish, it is necessary to monitor certain clinical parameters. The use of hematological methods as indicators of sublethal stress can supply valuable information concerning the physiological reactions of fish in a changing environment. The reason for this is the close association between the circulatory system of the fish and the external environment. The objective of the present paper was to evaluate the effects of manganese and iron at a neutral and acidic pH on the hematology of Tilapia sparrmanii. 19 refs., 2 figs.

  1. An Arc Origin for Archean High MgO "Eclogite" Xenoliths?

    NASA Astrophysics Data System (ADS)

    Horodyskyj, U. N.; Lee, C. A.

    2005-12-01

    The origin and evolution of Archean continental crust is an important topic in the Earth sciences. By understanding how Archean crust forms, we are better able to track how chemical differentiation and geodynamic processes have evolved on the Earth over billion-year timescales. Suggested mechanisms responsible for Archean crust formation include melting of subducted slabs, melting of orogenically thickened basaltic crust, and generation of large oceanic plateaus (proto-continents). In all these scenarios, high temperatures are required. Since it is reasonable to assume that the mantle in the Archean was probably hotter, these mechanisms may have been dominant at that time. The likely colder temperatures in the Phanerozoic, however, would prevent these mechanisms from operating extensively today. Instead, most continental crust formation in the Phanerozoic tends to be associated with arc magmas formed not by slab melting but by hydrous melting of the peridotitic mantle wedge. The question we wish to address is the extent to which Phanerozoic-like arc processes might also have operated in the mid- to late-Archean. Answering this question may help us better understand Earth's secular thermal evolution. Towards these ends, we have been focusing on understanding the origins of high MgO "eclogite" xenoliths found in Archean cratons. While the origin of low MgO "eclogites" is understood to be partially melted subducted oceanic crust, the origin of the high MgO "eclogites" is still debated. Here we show that high MgO Archean "eclogite" xenoliths have major element systematics remarkably similar to high MgO garnet pyroxenite ("eclogite") xenoliths originating from the lithospheric root underlying the Phanerozoic Sierra Nevada batholith in California, the remnant of a Mesozoic continental arc. Both groups have similarly high MgO contents, high Mg/(Mg+Fe) ratios, and relatively high SiO2 contents. Such compositions are not represented by typical frozen melts. In the case of

  2. How iron controls iron.

    PubMed

    Kühn, Lukas C

    2009-12-01

    Cells regulate iron homeostasis by posttranscriptional regulation of proteins responsible for iron uptake and storage. This requires RNA-binding activity of iron-regulatory proteins, IRP1 and IRP2. Two studies recently published in Science by Vashisht et al. (2009) and Salahudeen et al. (2009) reveal how cells adjust IRP2 activity.

  3. Mineralogical and geochemical characteristics of the Noamundi-Koira basin iron ore deposits (India)

    NASA Astrophysics Data System (ADS)

    Mirza, Azimuddin; Alvi, Shabbar Habib; Ilbeyli, Nurdane

    2015-04-01

    India is one of the richest sources of iron ore deposits in the world; and one of them is located in the Noamundi-Koira basin, Singhbhum-Orissa craton. The geological comparative studies of banded iron formation (BIF) and associated iron ores of Noamundi-Koira iron ore deposits, belonging to the iron ore group in eastern India, focus on the study of mineralogy and major elemental compositions along with the geological evaluation of different iron ores. The basement of the Singhbhum-Orissa craton is metasedimentary rocks which can be traced in a broadly elliptical pattern of granitoids, surrounded by metasediments and metavolcanics of Greenstone Belt association. The Singhbhum granitoid is intrusive into these old rocks and to younger, mid Archaean metasediments, including iron formations, schists and metaquartzites and siliciclastics of the Precambrian Iron Ore Group (Saha et al., 1994; Sharma, 1994). The iron ore of Noamundi-Koira can be divided into seven categories (Van Schalkwyk and Beukes 1986). They are massive, hard laminated, soft laminated, martite-goethite, powdery blue dust and lateritic ore. Although it is more or less accepted that the parent rock of iron ore is banded hematite jasper (BHJ), the presence of disseminated martite in BHJ suggests that the magnetite of protore was converted to martite. In the study area, possible genesis of high-grade hematite ore could have occurred in two steps. In the first stage, shallow, meteoric fluids affect primary, unaltered BIF by simultaneously oxidizing magnetite to martite and replacing quartz with hydrous iron oxides. In the second stage of supergene processes, deep burial upgrades the hydrous iron oxides to microplaty hematite. Removal of silica from BIF and successive precipitation of iron resulted in the formation of martite- goethite ore. Soft laminated ores were formed where precipitation of iron was partial or absent. The leached out space remains with time and the interstitial space is generally filled

  4. Hf Isotope Systematics of Archean Anorthosites: Manfred Complex, Yilgarn Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Souders, K.; Sylvester, P.

    2016-12-01

    Archean anorthosite complexes represent a minor, yet distinct rock type found within many Archean terranes. These mantle-derived melts are commonly found in layers withassociated leucogabbro, gabbro, and ultramafic units of similar origin. Most Archean anorthosites are intensely deformed and metamorphosed yet preserved igneous minerals have been identified within several complexes. It has become obvious that Archean anorthosites contain zircon crystals, which can be used to establish robust crystallization ages for anorthosite complexes. These minerals are also ideal targets for in situ Lu-Hf isotopic analysis to further characterize the source of Archean anorthosites and provide insight into the formation and evolution of the continental crust during the Archean. The ca. 3.7 Ga Manfred Complex is exposed northeast of Mount Narryer within the Narryer Gneiss Terrane, Yilgarn Craton, Western Australia. The layered anorthosite gabbro-ultramafic intrusion outcrops in pods and lenses, engulfed by granitic gneisses [1, 2, 3]. We have sampled anorthosites, leucogabbros and gabbros from the Manfred Complex and determined their age by LA-ICPMS U-Pb zircon geochronology. Zircons separated from these rocks give ages of 3.63 Ga to 3.73 Ga. LA-MC-ICPMS Lu-Hf isotope analyses were performed by focusing the laser spot directly on top of the U-Pb analysis location for each zircon grain. Initial Hf isotope compositions of zircon grains from the Manfred complex range from ca. ɛHf +2 to -3. This range suggests contributions from both depleted mantle and more ancient crustal sources to the parent magma of the Manfred Complex. [1] Kinny et al. (1988) Prec. Res. 38, 325-341. [2] Myers (1988) Prec. Res. 38, 309-323. [3] Williams & Myers (1987) WA Geol. Surv. Rpt. 22, 32 pp.

  5. Apparent polar wander paths and the close of late Archean crustal transpression, northern Ontario

    NASA Astrophysics Data System (ADS)

    Borradaile, G. J.; Lemmetty, T. J.; Werner, T.

    2003-08-01

    Lamprophyre dikes of the southern Superior Province of the Canadian Shield crosscut Archean structures, including a late Archean unconformity and its overlying younger Archean Timiskaming sedimentary and volcanic rocks. The dikes also cut the single schistosity that formed in these rocks. Nevertheless, the lamprophyre dikes show a weak internal tectonic fabric that is approximately parallel to the schistosity in the bedrock and oblique to dike walls. The consistent orientation of this internal tectonic fabric has been recognized in every lamprophyre dike using anisotropy of magnetic susceptibility (AMS). Thus the lamprophyre dikes provide a useful chronological marker, trapping the last pulse of Archean tectonism. Unfortunately, our previous attempts to compare the lamprophyre paleopoles with those of the age-calibrated apparent polar wander path (APWP) failed because it was not possible to isolate separate young and old components of magnetization. That failure occurred due to the overlap of blocking temperatures or coercivities for the different characteristic vector components [, 1994a]. Using new cores from the same specimens, here we distinguish successfully between consistently oriented vector components by using low-temperature demagnetization (LTD) before thermal demagnetization. Although the paleopoles appear well defined, comparisons with published APWPs for the Superior Province from late Archean [, 1979; , 1983; , 1994] to early Proterozoic [, 2000] are difficult. Moreover, the earlier parts of the paths are progressively less precise and complete. Nevertheless, A component remanences for the dikes give a paleopole near the path at ˜2650 Ma. For a Timiskaming volcanic breccia with a U-Pb age of 2696 Ma the A component paleopole may lie between 2600 and 2650 Ma. B component remanences yield paleopoles in the NW Pacific region, incompatible with any proposed Archean path but perhaps representing some much younger Proterozoic remagnetization event (e

  6. The nature of Archean terrane boundaries: an example from the northern Wyoming Province

    USGS Publications Warehouse

    Mogk, D.W.; Mueller, P.A.; Wooden, J.L.

    1992-01-01

    The Archean northern Wyoming Province can be subdivided into two geologically distinct terranes, the Beartooth-Bighorn magmatic terrane (BBMT) and the Montana metasedimentary terrane (MMT). The BBMT is characterized by voluminous Late Archean (2.90-2.74 Ga) magmatic rocks (primarily tonalite, trondhjemite, and granite); metasedimentary rocks are preserved only as small, rare enclaves in this magmatic terrane. The magmatic rocks typically have geochemical and isotopic signatures that suggest petrogenesis in a continental magmatic arc environment. The MMT, as exposed in the northern Gallatin and Madison Ranges, is dominated by Middle Archean trondhjemitic gneisses (3.2-3.0 Ga); metasedimentary rocks, however, are significantly more abundant than in the BBMT. Each terrane has experienced a separate and distinct geologic history since at least 3.6 Ga ago based on differences in metamorphic and structural styles, composition of magmatic and metasupracrustal rocks, and isotopic ages; consequently, these may be described as discrete terranes in the Cordilleran sense. Nonetheless, highly radiogenic and distinctive Pb-Pb isotopic signatures in rocks of all ages in both terranes indicate that the two terranes share a significant aspect of their history. This suggests that these two Early to Middle Archean crustal blocks, that initially evolved as part of a larger crustal province, experienced different geologic histories from at least 3.6 Ga until their juxtaposition in the Late Archean (between 2.75 to 2.55 Ga ago). Consequently, the boundary between the BBMT and MMT appears to separate terranes that are not likely to be exotic in the sense of their Phanerozoic counterparts. Other Archean provinces do appear to contain crustal blocks with different isotopic signatures (e.g. West Greenland, India, South Africa). The use of the term exotic, therefore, must be cautious in situations where geographic indicators such as paleontologic and/or paleomagnetic data are not available

  7. Sulfur mass-independent fractionation during photolysis and photoexcitation of SO2 and CS2 and implications to the source reactions for Archean sulfur isotope anomaly

    NASA Astrophysics Data System (ADS)

    Ono, S.; Whitehill, A. R.; Oduro, H. D.

    2012-12-01

    Signatures of sulfur mass-independent fractionations (S-MIF) in Archean sedimentary rocks provide critical constraints on the atmospheric oxygen level of an early atmosphere and documents fundamental difference in early sulfur biogeochemical cycle from that of today. Archcean sulfide and sulfate minerals often yield correlated relationships among δ34S, Δ33S and Δ36S values. Our goal is to use this S-MIF pattern to pinpoint the S-MIF source reaction(s), and to constrain early atmospheric conditions beyond the oxygen level. Such an effort may lead to a new hypothesis about the cause of the Great Oxidation Event at 2.4 Billion years ago. We will present new results of laboratory photochemical experiments that are designed to calibrate the pattern of S-MIF during the photochemistry of SO2 and CS2 as a function of UV spectrum regions, partial pressure of SO2 and CS2 (0.1 mbar and above) and total N2 pressure (0.25 to 1.0 bar). Both SO2 and CS2 exhibit high energy absorption band (190 to 220 nm) that leads to direct photolysis (SO2 → SO + O or CS2 → CS + S), and low energy band (>240 nm for SO2 and 280 nm for CS2) that excites molecules to low lying electronic states under dissociation thresholds. Broadband UV light sources (Xenon or Deuterium arc lamps) are used in combination with a series of bandpass (200±35 nm), longpass (250 or 280 nm) filters to isolate specific electronic transitions. Excited state SO2 is trapped by acetylene and excited state CS2 polymerizes in the reactor, and are collected for sulfur isotope ratio analysis. Although SO2 photolysis under 190 to 220 nm is thought to be the main Archean S-MIF source reaction, its S-MIF is characterized by high δ34S values (up to 140 ‰) and relatively low Δ36S/Δ33S values (-3.3 to -5.9) compared to Archean data (-0.9 to -1.5). Strong pSO2 dependence suggests S-MIF is primarily due to isotopologue self-shielding at least under our experimental conditions. In contrast, SO2 photoexciation under >250 nm

  8. Variations in the magnitude of non mass dependent sulfur fractionation in the Archean atmosphere

    NASA Astrophysics Data System (ADS)

    Claire, M.; Kasting, J. F.

    2010-12-01

    Recent experimental data have enabled quantitatively meaningful computations of the non-mass dependent fractionation of sulfur’s isotopes (Δ33S) that exemplify the Archean rock record. The Δ33S signal originates as a result of fine structure in the absorption cross-section of SO2 isotopologues [1], which only undergo significant photolysis in reducing atmospheres [2]. The Δ33S signal produced by SO2 photolysis varies significantly between 190 and 220 nm, and thus is strongly dependent on any other atmospheric gases which absorb photons in this range [3], as well as the height at which photolysis occurs. A model that is capable of resolving the altitude-dependent radiative transfer through a realistic self-consistent reducing atmosphere is therefore essential when making direct comparisons between atmospheric Δ33S production and the rock record. In this work, we investigate how the magnitude of Δ33S might vary as function of atmospheric composition, which in turn allows the rock record to constrain the Archean atmosphere. Other recent work on this topic using simplied atmospheric models has implicated large concentrations of SO2 [5], OCS [3], and CO2 [6] as being responsible for the variations in Archean Δ33S. We present results from an altitude-dependent photochemical model of Archean photochemistry [4] of necessary complexity to resolve the complicated redox structure of the Archean atmosphere. We show that while increased concentrations of these gases all affect Δ33S in an unconstrained model, the atmospheric conditions required for OCS or SO2 shielding are unlikely to occur in an Archean atmosphere constrained by reasonable expectations of volcanic and biogenic fluxes. Within the context of plausible Archean atmospheres, we investigate how shielding due to changing amounts of CO2, biogenic sulfur gases, and fractal organic haze [7] affect the magnitude of Δ33S produced by the Archean atmosphere, and show why simplified atmospheric modeling may lead to

  9. Sink or Swim? the Role of Intracrustal Differentiation in the Generation of Compositional Diversity and Crustal Delamination in the Archean

    NASA Astrophysics Data System (ADS)

    VanTongeren, J. A.; Herzberg, C. T.; Kaus, B.; Johnson, T. E.; Brown, M.

    2014-12-01

    Significant debate exists regarding the processes of crustal formation and stabilization in the Archean, with some researchers advocating for continuous subduction-like processes throughout earth history, and others advocating crustal recycling by lithospheric delamination or 'drip tectonics'. Much of the debate hinges on whether Archean mantle potential temperatures (Tp) were significantly hotter than the present day. The rock record of non-arc Archean primary magma compositions (Herzberg et al., 2010) has been used to infer higher ambient Tp (Tp = 1500-1650C) during the Archean, causing high melt fractions during decompression melting, and leading to extreme primary (oceanic) crustal thicknesses of 30-40 km (Herzberg and Rudnick, 2012). Such crustal thicknesses might inhibit subduction, in which case an alternative mechanism of crustal recycling would be required. In their recent paper, Johnson et al. (2014) showed that at Tp > 1500C, the lower portions of a thick homogenous Archean primary crust generated would be density unstable with respect to the ambient mantle. Additionally, they showed that given realistic rheological constraints, large-scale lower crustal delamination is a very efficient crustal recycling mechanism at Tp >1600C. The Archean crust, however, is likely to be internally differentiated. Here we present pMELTS and Perple_X modeling results on the intracrustal differentiation of Archean primary crust, resulting in the formation of TTG-like granitoids in the upper crust and a lower crust dominated by clinopyroxenite. Using the composition and density profiles generated by intracrustal differentiation, our geodynamic modeling extends the Tp over which efficient crustal delamination will occur to lower values, consistent with those likely throughout the Archean. Efficient crustal differentiation and delamination of dense mafic residues throughout the Archean may explain the apparent paucity of mafic lithologies relative to TTGs that characterize

  10. An Archean Terrestrial Fractionation Line for Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Rumble, D.; Blake, R. E.; Bao, H.; Bowring, S.; Komiya, T.; Rosing, M.; Ueno, Y.

    2008-12-01

    The Terrestrial Fractionation Line (TFL) for oxygen isotopes is defined by 17O/16O and 18O/16O analyses of meteoric waters, seawater, sedimentary, metamorphic, and igneous rocks and constituent minerals. Interlaboratory measurements of the slope of the TFL on a plot of d18O vs. d17O revealed eclogitic garnets with a slope of 0.526 and hydrothermal quartz of 0.524 from rocks younger than 0.8 Ga (Giga years before present). New measurements show Archean metamorphic rocks and minerals from Barberton, (3.2 Ga, S. Africa), Isua (3.8 Ga, Greenland), and Acasta (4.0 Ga, Canada) have a slope of 0.524 +/- 0.002 (95% confidence, MSWD = 0.66). Analysis of Ag3PO4 prepared from apatite mineral separates from Isua meta-sediments gives a slope of 0.509 +/- 0.022 (95% confidence, MSWD = 0.59). Taken at face value, steeper slopes on a d17O vs. d18O diagram indicate an approach towards isotope exchange equilibrium. Lower slopes are expected when isotope fractionation is kinetically controlled. The lower slope of 0.509 for Isua apatite suggests that the formation of orthophosphate was kinetically controlled. Kinetic fractionations are known to occur during catalysis of reactions by enzymes secreted by microbes. Enzymatic catalysis confers an advantage on organisms because energy-producing reactions may be induced to occur at lower temperature conditions more accessible to the organism. May it be definitively concluded that enzymatic catalysis was responsible for the measured 0.509 slope? No, abiotic kinetic fractionation cannot be disproven with existing data. The preparation of Ag3PO4 from apatite may have introduced kinetic fractionation as an analytical artifact. Conclusions fully supported by the data suggest: (1) Mixing accompanying the violent birth of the Earth- Moon system had already succeeded in establishing Earth's current oxygen isotope composition by 4.0 Ga; and (2) No trace of an episode of late heavy meteorite bombardment remains in the oxygen isotope compositions of

  11. Iron Chelation

    MedlinePlus

    ... iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you have ... may want to perform: How quickly does iron overload happen? This is different for each person. It ...

  12. Geological sulfur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox

    PubMed Central

    Ueno, Yuichiro; Johnson, Matthew S.; Danielache, Sebastian O.; Eskebjerg, Carsten; Pandey, Antra; Yoshida, Naohiro

    2009-01-01

    Distributions of sulfur isotopes in geological samples would provide a record of atmospheric composition if the mechanism producing the isotope effects could be described quantitatively. We determined the UV absorption spectra of 32SO2, 33SO2, and 34SO2 and use them to interpret the geological record. The calculated isotopic fractionation factors for SO2 photolysis give mass independent distributions that are highly sensitive to the atmospheric concentrations of O2, O3, CO2, H2O, CS2, NH3, N2O, H2S, OCS, and SO2 itself. Various UV-shielding scenarios are considered and we conclude that the negative Δ33S observed in the Archean sulfate deposits can only be explained by OCS shielding. Of relevant Archean gases, OCS has the unique ability to prevent SO2 photolysis by sunlight at λ >202 nm. Scenarios run using a photochemical box model show that ppm levels of OCS will accumulate in a CO-rich, reducing Archean atmosphere. The radiative forcing, due to this level of OCS, is able to resolve the faint young sun paradox. Further, the decline of atmospheric OCS may have caused the late Archean glaciation. PMID:19706450

  13. Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere

    PubMed Central

    Ventura, Gregory T.; Kenig, Fabien; Reddy, Christopher M.; Schieber, Juergen; Frysinger, Glenn S.; Nelson, Robert K.; Dinel, Etienne; Gaines, Richard B.; Schaeffer, Philippe

    2007-01-01

    Highly cracked and isomerized archaeal lipids and bacterial lipids, structurally changed by thermal stress, are present in solvent extracts of 2,707- to 2,685-million-year-old (Ma) metasedimentary rocks from Timmins, ON, Canada. These lipids appear in conventional gas chromatograms as unresolved complex mixtures and include cyclic and acyclic biphytanes, C36–C39 derivatives of the biphytanes, and C31–C35 extended hopanes. Biphytane and extended hopanes are also found in high-pressure catalytic hydrogenation products released from solvent-extracted sediments, indicating that archaea and bacteria were present in Late Archean sedimentary environments. Postdepositional, hydrothermal gold mineralization and graphite precipitation occurred before metamorphism (≈2,665 Ma). Late Archean metamorphism significantly reduced the kerogen's adsorptive capacity and severely restricted sediment porosity, limiting the potential for post-Archean additions of organic matter to the samples. Argillites exposed to hydrothermal gold mineralization have disproportionately high concentrations of extractable archaeal and bacterial lipids relative to what is releasable from their respective high-pressure catalytic hydrogenation product and what is observed for argillites deposited away from these hydrothermal settings. The addition of these lipids to the sediments likely results from a Late Archean subsurface hydrothermal biosphere of archaea and bacteria. PMID:17726114

  14. Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere.

    PubMed

    Ventura, Gregory T; Kenig, Fabien; Reddy, Christopher M; Schieber, Juergen; Frysinger, Glenn S; Nelson, Robert K; Dinel, Etienne; Gaines, Richard B; Schaeffer, Philippe

    2007-09-04

    Highly cracked and isomerized archaeal lipids and bacterial lipids, structurally changed by thermal stress, are present in solvent extracts of 2,707- to 2,685-million-year-old (Ma) metasedimentary rocks from Timmins, ON, Canada. These lipids appear in conventional gas chromatograms as unresolved complex mixtures and include cyclic and acyclic biphytanes, C36-C39 derivatives of the biphytanes, and C31-C35 extended hopanes. Biphytane and extended hopanes are also found in high-pressure catalytic hydrogenation products released from solvent-extracted sediments, indicating that archaea and bacteria were present in Late Archean sedimentary environments. Postdepositional, hydrothermal gold mineralization and graphite precipitation occurred before metamorphism (approximately 2,665 Ma). Late Archean metamorphism significantly reduced the kerogen's adsorptive capacity and severely restricted sediment porosity, limiting the potential for post-Archean additions of organic matter to the samples. Argillites exposed to hydrothermal gold mineralization have disproportionately high concentrations of extractable archaeal and bacterial lipids relative to what is releasable from their respective high-pressure catalytic hydrogenation product and what is observed for argillites deposited away from these hydrothermal settings. The addition of these lipids to the sediments likely results from a Late Archean subsurface hydrothermal biosphere of archaea and bacteria.

  15. Deformation coupling between the Archean Pukaskwa intrusive complex and the Hemlo shear zone, Superior Province, Canada

    NASA Astrophysics Data System (ADS)

    Liodas, Nathaniel T.; Gébelin, Aude; Ferré, Eric C.; Misgna, Girmay M.

    2013-11-01

    Archean greenstone belts typically form narrow sheared basins separating bulbous tonalo-trondjhemo-granodioritic (TTG) intrusive complexes. The role played by gravity in the development of such dome-and-keel structures constitutes a key question in Archean tectonics. The Pukaskwa intrusive complex (PIC)-Hemlo greenstone belt system stands as a remarkable example of the dome-and-keel architecture that commonly occurs in Archean terrains. Abundant strain markers in the greenstone belt and in the Hemlo shear zone (HSZ) attest of late sinistral strike-slip kinematics (D2) whereas, in general, the quartzofeldspathic coarse-grained rocks of the Pukaskwa intrusive complex bear little macroscopically visible kinematic indicators, most likely due to pervasive recrystallization. The PIC consists dominantly of a heterogeneous assemblage of TTG plutonic rocks and gneisses, which overall are less dense than the greenstone rocks. The study of anisotropy of magnetic susceptibility (AMS), based on 120 stations and 1947 specimens from the PIC, reveals east-west trending prolate and plano-linear fabrics across the northern margin of the complex, i.e., along the HSZ. Since geotherms were higher in the Archean than in the present, the effective viscosity of the TTG units would have been sufficiently low to allow their diapiric ascent through denser greenstone rocks. Here we propose an alternative model where thrust tectonics is responsible for the early structuration of the PIC. Later transpressive tectonics causes strain localization along internal strike-slip shear zones and along lithological boundaries.

  16. Deciphering formation processes of banded iron formations from the Transvaal and the Hamersley successions by combined Si and Fe isotope analysis using UV femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Steinhoefel, Grit; von Blanckenburg, Friedhelm; Horn, Ingo; Konhauser, Kurt O.; Beukes, Nicolas J.; Gutzmer, Jens

    2010-05-01

    To investigate the genesis of BIFs, we have determined the Fe and Si isotope composition of coexisting mineral phases in samples from the ˜2.5 billion year old Kuruman Iron Formation (Transvaal Supergroup, South Africa) and Dales Gorges Member of the Brockman Iron Formation (Hamersley Group, Australia) by UV femtosecond laser ablation coupled to a MC-ICP-MS. Chert yields a total range of δ 30Si between -1.3‰ and -0.8‰, but the Si isotope compositions are uniform in each core section examined. This uniformity suggests that Si precipitated from well-mixed seawater far removed from its sources such as hydrothermal vents or continental drainage. The Fe isotope composition of Fe-bearing mineral phases is much more heterogeneous compared to Si with δ 56Fe values of -2.2‰ to 0‰. This heterogeneity is likely due to variable degrees of partial Fe(II) oxidation in surface waters, precipitation of different mineral phases and post-depositional Fe redistribution. Magnetite exhibits negative δ 56Fe values, which can be attributed to a variety of diagenetic pathways: the light Fe isotope composition was inherited from the Fe(III) precursor, heavy Fe(II) was lost by abiotic reduction of the Fe(III) precursor or light Fe(II) was gained from external fluids. Micrometer-scale heterogeneities of δ 56Fe in Fe oxides are attributed to variable degrees of Fe(II) oxidation or to isotope exchange upon Fe(II) adsorption within the water column and to Fe redistribution during diagenesis. Diagenetic Fe(III) reduction caused by oxidation of organic matter and Fe redistribution is supported by the C isotope composition of a carbonate-rich sample containing primary siderite. These carbonates yield δ 13C values of ˜-10‰, which hints at a mixed carbon source in the seawater of both organic and inorganic carbon. The ancient seawater composition is estimated to have a minimum range in δ 56Fe of -0.8‰ to 0‰, assuming that hematite and siderite have preserved their primary Fe

  17. Constraining the location of the Archean--Proterozoic suture in the Great Basin based on magnetotelluric soundings

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sampson, Jay A.

    2012-01-01

    It is important to understand whether major mining districts in north-central Nevada are underlain by Archean crust, known to contain major orogenic gold deposits, or, alternatively, by accreted crust of the Paleoproterozoic Mojave province. Determining the location and orientation of the Archean-Proterozoic suture zone between the Archean crust and Mojave province is also critical because it may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. In the Great Basin, the attitude of the suture zone is unknown because it is concealed below cover. A regional magnetotelluric sounding profile along the Utah-Nevada State line reveals a deeply penetrating, broad electrical conductor that may be the Archean-Proterozoic suture zone in the northwest corner of Utah. This major crustal conductor's strike direction is northwest, where it broadens to about 80 km wide below about 3-km depth. These results suggest that the southwestern limit of intact Archean crust in this part of the Great Basin is farther north than previously reported. These results also suggest that the major gold belts in north-central Nevada are located over the Paleoproterozoic Mojave province, and the Archean terrain lies northeast in the northwest corner of Utah. Rifted Archean crust segments south and west of the suture suggest that future mineral exploration northeast of current mineral trends may yield additional gold deposits.

  18. The Archean geology of the Godthabsfjord Region, southern west Greenland (includes excursion guide)

    NASA Technical Reports Server (NTRS)

    Mcgregor, V. R.; Nutman, A. P.; Friend, C. R. L.

    1986-01-01

    The part of the West Greenland Archean gneiss complex centered around Godthabsfjord and extending from Isukasia in the north to south Faeringehavn is studied. Extensive outcrops of 3800 to 3400 Ma rocks can provide some direct evidence of conditions and processes that operated on the Earth in the early Archean. However, the ways in which primary characteristics have been modified by later deformation, metamorphism, and chemical changes are first taken into account. The rocks exposed are the products of two major phases of accretion of continental crust, at 3800 to 3700 Ma and 3100 to 29 Ma. The main features of these two accretion phases are similar, but careful study of the least modified rocks may reveal differences related to changes in the Earth in the intervening period. The combination of excellent exposure over an extensive area, relatively detailed geological mapping of much of the region, and a considerable volume of isotopic and other geochemical data gives special insights into processes that operated at moderately deep levels of the crust in the Archean. Of particular interest is the effect of late Archean granulite facies metamorphism on early Archean rocks, especially the extent to which isotope systems were disturbed. Similar processes may well have partly or wholly destroyed evidence of more ancient components of other high grade terrains. This account does not attempt to be an exhaustive review of all work carried out on the geology of the region. Rather, it attempts to summarize aspects of the geology and some interest in the context of early crustal genesis.

  19. Exploring Archean seawater sulfate via triple S isotopes in carbonate associated sulfate.

    NASA Astrophysics Data System (ADS)

    Paris, G.; Fischer, W. W.; Sessions, A. L.; Adkins, J. F.

    2015-12-01

    Multiple sulfur isotope ratios in Archean sedimentary rocks provide powerful insights into the behavior of the ancient sulfur cycle, the redox state of fluid Earth, and the timing of the rise of atmospheric oxygen [1]. The Archean sulfur isotope record is marked by pronounced mass-independent fractionation (Δ33S≠0)—signatures widely interpreted as the result of SO2 photolysis from "short-wavelength" UV light resulting in a reduced phase carrying positive Δ33S values (ultimately recorded in pyrite) and an oxidized phase carrying negative Δ33S values carried by sulfate [2]. Support for this hypothesis rests on early laboratory experiments and observations of negative Δ33S from barite occurrences in mixed volcanic sedimentary strata in Mesoarchean greenstone terrains. Despite forming the framework for understanding Archean sulfur cycle processes, this hypothesis is still largely untested, notably due to the lack of sulfate minerals in Archean strata. Using a new MC-ICP-MS approach combined with petrography and X-ray spectroscopy we have generated a growing S isotope dataset from CAS extracted from Archean carbonates from a range of sedimentary successions, including: the 2.6 to 2.521 Ga Campbellrand-Malmani carbonate platform (Transvaal Supergroup, South Africa), 2.7 Ga Cheshire Formation (Zimbabwe), and 2.9 Ga Steep Rock Formation (Canada). Importantly, we observe positive δ34S and Δ33S values across a range of different lithologies and depositional environments. These results demonstrate that dissolved sulfate in seawater was characterized by positive Δ33S values—a result that receives additional support from recent laboratory and theoretical experiments [e.g. 4, 5]. [1] Farquhar et al., 2000, Science [2] Farquhar et al., 2001, Journal of Geophysical Research: Planets [3] Paris et al., 2014, Science. [4] Whitehill et al., 2013, Proceedings of the National Academy of Sciences. [5] Claire et al., 2014 Geochimica et Cosmochimica Acta

  20. Diversity in the Archean biosphere: new insights from NanoSIMS.

    PubMed

    Oehler, Dorothy Z; Robert, François; Walter, Malcolm R; Sugitani, Kenichiro; Meibom, Anders; Mostefaoui, Smail; Gibson, Everett K

    2010-05-01

    The origin of organic microstructures in the approximately 3 Ga Farrel Quartzite is controversial due to their relatively poor state of preservation, the Archean age of the cherts in which they occur, and the unusual spindle-like morphology of some of the forms. To provide more insight into the significance of these microstructures, nano-scale secondary ion mass spectrometry (NanoSIMS) maps of carbon, nitrogen, sulfur, silicon, and oxygen were obtained for spheroidal and spindle-shaped constituents of the Farrel Quartzite assemblage. Results suggest that the structures are all bona fide approximately 3 Ga microfossils. The spindles demonstrate an architecture that is remarkable for 3 Ga organisms. They are relatively large, robust, and morphologically complex. The NanoSIMS element maps corroborate their complexity by demonstrating an intricate, internal network of organic material that fills many of the spindles and extends continuously from the body of these structures into their spearlike appendages. Results from this study combine with previous morphological and chemical analyses to argue that the microstructures in the Farrel Quartzite comprise a diverse assemblage of Archean microfossils. This conclusion adds to a growing body of geochemical, stromatolitic, and morphological evidence that indicates the Archean biosphere was varied and well established by at least approximately 3 Ga. Together, the data paint a picture of Archean evolution that is one of early development of morphological and chemical complexity. The evidence for Archean evolutionary innovation may augur well for the possibility that primitive life on other planets could adapt to adverse conditions by ready development of diversity in form and biochemistry.

  1. The formation and deposition of primary silica granules - A new model of early Archean silica deposition

    NASA Astrophysics Data System (ADS)

    Stefurak, E. J.; Lowe, D. R.; Zentner, D.; Fischer, W. W.

    2013-12-01

    In the modern silica cycle, biologically-mediated silica precipitation provides the dominant sink for dissolved silica in seawater, with additional smaller sinks in the form of authigenic phyllosilicates and silica cements. Fundamental questions remain about the mechanics of the processes responsible for removing silica from seawater prior to the evolution of silica biomineralization in late Proterozoic time, with important implications for the chemistry of seawater on the early Earth, including alkalinity budgets and the efficiency of the silicate weathering feedback. The degree to which dissolved silica leaves seawater as authigenic phyllosilicates instead of amorphous silica is important because these 'reverse weathering' reactions do not consume CO2. The abundant presence of siliceous sedimentary rocks in Archean sequences, mainly in the form of chert, reinforces the inference that abiotic silica precipitation played a more significant role during Archean time. Previous authors hypothesized that these cherts formed as primary marine precipitates, but were unable to identify a specific mode of sedimentation. Here we present sedimentologic, petrographic, and geochemical evidence that some and perhaps many Archean cherts were deposited exclusively or in large part as primary, sub-spherical, structureless, sand-sized silica grains, here termed silica granules, which precipitated within marine waters. This mode of silica deposition appears to be unique to Archean time and provides evidence that primary abiotic silica precipitation indeed occurred in Archean oceans. Furthermore, the apparent early cementation of some granules indicates that the rate of silica precipitation was rapid under certain environmental conditions, which could provide insight into microfossil preservation via early silicification.

  2. Tracking the Archean-Proterozoic suture zone in the northeastern Great Basin, Nevada and Utah

    USGS Publications Warehouse

    Rodriguez, B.D.; Williams, J.M.

    2008-01-01

    It is important to know whether major mining districts in north-central Nevada are underlain by crust of the Archean Wyoming craton, known to contain major orogenic gold deposits or, alternatively, by accreted crust of the Paleoproterozoic Mojave province. Determining the location and orientation of the Archean-Proterozoic suture zone between these provinces is also important because it may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. The suture zone is exposed in northeastern Utah and south-western Wyoming and exhibits a southwest strike. In the Great Basin, the suture zone strike is poorly constrained because it is largely concealed below a Neoproterozoic-Paleozoic miogeocline and Cenozoic basin fill. Two-dimensional resistivity modeling of three regional north-south magnetotelluric sounding profiles in western Utah, north-central Nevada, and northeastern Nevada, and one east-west profile in northeastern Nevada, reveals a deeply penetrating (>10 km depth), broad (tens of kilometers) conductor (1-20 ohm-meters) that may be the Archean-Proterozoic suture zone, which formed during Early Proterozoic rifting of the continent and subsequent Proterozoic accretion. This major crustal conductor changes strike direction from southwest in Utah to northwest in eastern Nevada, where it broadens to ???100 km width that correlates with early Paleozoic rifting of the continent. Our results suggest that the major gold belts may be over-isolated blocks of Archean crust, so Phanerozoic mineral deposits in this region may be produced, at least in part, from recycled Archean gold. Future mineral exploration to the east may yield large gold tonnages. ?? 2008 Geological Society of America.

  3. Synthesis, structural, optical band gap and biological studies on iron (III), nickel (II), zinc (II) and mercury (II) complexes of benzyl α-monoxime pyridyl thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Bedier, R. A.; Yousef, T. A.; Abu El-Reash, G. M.; El-Gammal, O. A.

    2017-07-01

    New ligand, (E)-2-((E)-2-(hydroxyimino)-1,2-diphenylethylidene)-N-(pyridin-2 yl) hydrazinecarbothioamide (H2DPPT) and its complexes [Fe(DPPT)Cl(H2O)], [Ni(H2DPPT)2Cl2], [Zn(HDPPT)(OAc)] and [Hg(HDPPT)Cl](H2O)4 were isolated and characterized by various of physico-chemical techniques. IR spectra show that H2DPPT coordinates to the metal ions as neutral NN bidentate, mononegative NNS tridentate and binegative NNSN tetradentate, respectively. From the modeling studies, the bond length, bond angle, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligands and their investigated complexes. The thermal studies showed the type of water molecules involved in metal complexes Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Also, the optical band gap (Eg) has been calculated to elucidate the conductivity of the isolated complexes. The optical transition energy (Eg) is direct and equals 3.34 and 3.44 ev for Ni and Fe complexes, respectively. The ligand and their metal complexes were screened for antibacterial activity against the following bacterial species, Bacillus thuringiensis, Staphylococcus aureus, Pseudomonas aeuroginosa and Escherichia coli. The results revealed that the metal complexes have more potent antibacterial compared with the ligand. Also, the degradation effect of the investigated compounds was tested showing that, Ni complex exhibited powerful and complete degradation effect on DNA.

  4. On the nature and origin of highly-refractory Archean lithosphere: Petrological and geophysical constraints from the Tanzanian craton

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; McMahon, S. C.; Day, J. A.; Dawson, J. B.

    2012-12-01

    The nature and timescales of garnet formation are important to understanding how subcontinental lithospheric mantle (SCLM) has evolved since the Archean, and also to mantle dynamics, because the presence of garnet greatly influences the density of the lower lithosphere and hence the long-term stability of thick (150 to 220 km) subcratonic lithosphere. Nevertheless, the widespread occurrence of garnet in the SCLM remains one of the 'holy grails' of mantle petrology. Garnets found in mantle xenoliths from the eastern margin of the Tanzanian Craton (Lashaine) have diverse compositions and provide major constraints on how the underlying deep (120 to 160 km) mantle evolved during the last 3 billion years. Certain harzburgite members of the xenolith suite contain the first reported occurrence of pyrope garnets with rare-earth element patterns similar to hypothetical garnets proposed to have formed in the Earth's SCLM during the Archean, prior to metasomatism [Stachel et al., 2004]. These rare ultradepleted low-Cr garnets occur in low temperature (~1050 oC) xenoliths derived from depths of ~120 km and coexist in chemical and textural equilibrium with highly-refractory olivine (Fo95.4) and orthopyroxene (Mg#=96.4). These phases are all more magnesian than generally encountered in global mantle harzburgites and diamond inclusions. The ultradepleted garnets form interconnecting networks around grains of orthopyroxene which give the rocks a banded appearance: we propose that the increase in pressure associated with cratonization may have caused isochemical exsolution of ultradepleted garnet from orthopyroxene. These unique garnets have not previously been identified in global suites of mantle xenoliths or diamond inclusions. We believe they are rare because their low concentrations of trace elements make them readily susceptible to geochemical overprinting. This highly-refractory low-density peridotite may be common in the 'shallow' SCLM but not normally brought to the

  5. Speculations on the Archean mantle: Missing link between komatiite and depleted garnet peridotite

    NASA Astrophysics Data System (ADS)

    Takahashi, Eiichi

    1990-09-01

    Like in the modern Earth, thermal and tectonic regime of the planet in the Archean (>=2.5 Ga) may have been dominated by those activities on the ocean floor. Because of the continuous operation of plate tectonics, however, the geologic record of the Archean ocean floor has been eliminated a long time ago. Using high-pressure melting experiment data on a mantle peridotite and some key observations on Archean rocks (DGPs and PKs), a model for mid-oceanic ridge in the Archean (AMOR) is constructed. High magnesian peridotitic komatiites (PKs, MgO>=33 wt%) which are limited only on the oldest cratons (>=3.3 Ga) are considered to have been produced by partial melting of mantle peridotite at >=7 GPa and >=1800°C. Less magnesian PKs (MgO>=25 wt%) which are characteristic of the latest Archean (>=2.5 Ga) may have been produced at >=4 GPa and >=1650°C. Potential mantle temperatures (PMTs) of the Earth were estimated from the above two constraints on PKs and that for the genesis of mid-ocean ridge basalts (MORBs) in the modern Earth; PMT=1750°C at 3.5 Ga, 1600°C at 2.5 Ga, and 1280°C at present. If estimated cooling rate of the Earth's mantle (1.3°C/ 107 years) is valid for another 5×108 years or so, PMT will become lower than mantle solidus, and then plate tectonics would cease. Very depleted garnet peridotites (DGPs) found as xenoliths in south African kimberlites show distinct chemical trends compared with spinel and garnet peridotites found in young orogenic terrains and oceanic regions. Re-Os isotopic analyses on bulk xenoliths and Sm-Nd model ages of garnets in diamonds in them indicate that DGPs have undergone extensive partial melting and melt extraction in the early Archean. The bulk chemical trends of DGPs can be explained by extraction of PK magma from primitive mantle peridotite. A 40-60 wt% extraction of PK magma ranging from 25 to 35 wt% MgO would suffice to yield entire spectrum of DGPs. A hypothesis for their origin by global melting (magma ocean) of

  6. Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Zheng, Xin-Yuan; Beard, Brian L.; Reddy, Thiruchelvi R.; Roden, Eric E.; Johnson, Clark M.

    2016-08-01

    Precambrian Si-rich sedimentary rocks, including cherts and banded iron formations (BIFs), record a >7‰ spread in 30Si/28Si ratios (δ30Si values), yet interpretation of this large variability has been hindered by the paucity of data on Si isotope exchange kinetics and equilibrium fractionation factors in systems that are pertinent to Precambrian marine conditions. Using the three-isotope method and an enriched 29Si tracer, a series of experiments were conducted to constrain Si isotope exchange kinetics and fractionation factors between amorphous Fe(III)-Si gel, a likely precursor to Precambrian jaspers and BIFs, and aqueous Si in artificial Archean seawater under anoxic conditions. Experiments were conducted at room temperature, and in the presence and absence of aqueous Fe(II) (Fe(II)aq). Results of this study demonstrate that Si solubility is significantly lower for Fe-Si gel than that of amorphous Si, indicating that seawater Si concentrations in the Precambrian may have been lower than previous estimates. The experiments reached ˜70-90% Si isotope exchange after a period of 53-126 days, and the highest extents of exchange were obtained where Fe(II)aq was present, suggesting that Fe(II)-Fe(III) electron-transfer and atom-exchange reactions catalyze Si isotope exchange through breakage of Fe-Si bonds. All experiments except one showed little change in the instantaneous solid-aqueous Si isotope fractionation factor with time, allowing extraction of equilibrium Si isotope fractionation factors through extrapolation to 100% isotope exchange. The equilibrium 30Si/28Si fractionation between Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -2.30 ± 0.25‰ (2σ) in the absence of Fe(II)aq. In the case where Fe(II)aq was present, which resulted in addition of ˜10% Fe(II) in the final solid, creating a mixed Fe(II)-Fe(III) Si gel, the equilibrium fractionation between Fe(II)-Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -3.23 ± 0.37‰ (2σ). Equilibrium

  7. Chemistry of sands from the modern Indus River and the Archean Witwatersrand basin: Implications for the composition of the Archean atmosphere

    SciTech Connect

    Maynard, J.B.; Ritger, S.D. ); Sutton, S.J. )

    1991-03-01

    Both the Indus River and the Witwatersrand basin contain sand with grains of detrital uraninite. Because this mineral is easily oxidized, its presence in Archean strata as a detrital particle has been used as evidence for a low-oxygen atmosphere before 2.5 Ga. However, its presence in modern sand from the Indus River system has been used to argue that detrital uraninite does not provide information about the oxygen concentration of Earth's early atmosphere. Petrographic and chemical study of sand from these two sources reveals differences that suggest the modern Indus sand cannot be used as an analog for the Archean Witwatersrand occurrences. The Witwatersrand quartzites are depleted in Ca, Mg, and Na, indicating that the original sand from which they formed had been subjected to intense weathering. The chemical index of alteration (CIA), a commonly used indicator of degree of weathering, yields an average value of about 0.80 for Witwatersrand quartzites, comparable to modern tropical streams such as the Orinoco that drain deeply weathered terrains under tropical conditions (CIA=0.75). In contrast, the CIA for Indus sand is 0.45, indicating virtually no chemical weathering. The significance of Archean quartz-pebble conglomerates is not just that they contain unstable detrital phases like uraninite and pyrite, but that these particles are associated with rocks whose compositions suggest intense weathering. These conglomerates must have been subjected to intense weathering under tropical conditions, either in their source area or at the site of deposition, and the preservation of minerals like uraninite such conditions is indeed strong evidence for a low-oxygen atmosphere.

  8. Hydrogeologic and water-quality characteristics of the crystalline-rock aquifers of Archean and Proterozoic age, Minnesota

    USGS Publications Warehouse

    Anderson, H.W.

    1986-01-01

    Five aquifers in crystalline rocks of Archean and Proterozoic age in Minnesota include in descending order the North Shore Volcanic, Sioux Quartzite, Proterozoic metasedimentary, Biwabik Iron formation and undifferentiated Precambrian aquifers. The North Shore Volcanic aquifer generally yields < 15 gal/min to wells from interflow sediments and fractures in the basaltic lava flows along the northern shore of Lake Superior and along the upper St. Croix River. Dissolved solids concentrations range from 91 to 74,300 mg/L, and the water is of several chemical types. The Sioux Quartzite aquifer yields from 1 to 450 gal/min to wells open to joints and fractures and loose sand zones in the predominantly pink orthoquartzite in southwestern Minnesota. Dissolved solids concentrations range from 237 mg/L in water from wells in outcrop areas to 2,300 mg/L from wells where the Sioux Quartzite aquifer underlies Cretaceous rocks or thick Des Moines drift. The water generally is a calcium sulfate type. The Proterozoic metasedimentary aquifer generally yields < 20 gal/min to wells in weathered regolith and fractures in thin-bedded gray to black argillite in north-central Minnesota. Dissolved solids concentrations generally range from 126 to 340 mg/L, and the water is a calcium magnesium bicarbonate type. The Biwabik Iron formation aquifer yields 1,000 gal/min to wells in leached zones in the ferruginous chert and interbedded hematite and magnitite iron ore in north-central Minnesota. Dissolved solids range from 157 to 388 mg/L in water that is a calcium magnesium bicarbonate type. The undifferentiated Precambrian aquifer generally yields < 25 gal/min to wells from fractures and the weathered regolith developed on a variety of crystalline-rock types. Wells have been developed in parts of the aquifer throughout the State except in the southeast where it is too deeply buried. Dissolved solids concentrations average < 400 mg/L in central and northeastern Minnesota, but average about 700

  9. Discovering the Carrier Phase of the Extraterrestrial Component in Archean Spherule Layers, Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Mohr-Westheide, T.; Fritz, J.; Reimold, W. U.; Schmitt, R. T.; Hofmann, A.; Koeberl, C.; Luais, B.; Tagle, R.; Salge, T.; Hoehnel, D.

    2014-09-01

    Comprehensive study of sedimentary, petrographic, mineralogical, and geochemical characteristics from a set of new samples of Archean spherule layers in the ICDP Drill Core BARB5 from the Barite Valley.

  10. Band heterotopia.

    PubMed

    Alam, M S; Naila, N

    2010-01-01

    Band heterotopias are one of the rarest groups of congenital disorder that result in variable degree of structural abnormality of brain parenchyma. Band of heterotopic neurons result from a congenital or acquired deficiency of the neuronal migration. MRI is the examination of choice for demonstrating these abnormalities because of the superb gray vs. white matter differentiation, detail of cortical anatomy and ease of multiplanar imaging. We report a case of band heterotopia that showed a bilateral band of gray matter in deep white matter best demonstrated on T2 Wt. and FLAIR images.

  11. Iron Test

    MedlinePlus

    ... are used together to detect and help diagnose iron deficiency or iron overload. In people with anemia , these ... help determine whether the condition is due to iron deficiency or another cause, such as chronic blood loss ...

  12. Fiskenaesset Anorthosite Complex: Stable isotope evidence for shallow emplacement into Archean ocean crust

    SciTech Connect

    Peck, W.H.; Valley, J.W.

    1996-06-01

    Oxygen and hydrogen isotope ratios indicate that unusual rocks at the upper contact of the Archean Fiskenaesset Anorthosite Complex at Fiskenaesset Harbor (southwest Greenland) are the products of hydrothermal alteration by seawater at the time of anorthosite intrusion. Subsequent granulite-facies metamorphism of these Ca-poor and Al- and Mg-rich rocks produced sapphirine- and kornerupine-bearing assemblages. Because large amounts of surface waters cannot penetrate to depths of 30 km during granulite-facies metamorphism, the isotopic signature of the contact rocks must have been obtained prior to regional metamorphism. The stable isotope and geochemical characteristics of the contact rocks support a model of shallow emplacement into Archean ocean crust for the Fiskenaesset Anorthosite Complex. 45 refs., 3 figs., 2 tabs.

  13. The rock components and structures of Archean greenstone belts: An overview

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.; Byerly, G. R.

    1986-01-01

    Knowledge of the character and evolution of the Earth's early crust is derived from the studies of the rocks and structures in Archean greenstone belts. Ability to resolve the petrologic, sedimentological and structural histories of greenstone belts, however, hinges first on an ability to apply the concepts and procedures of classical stratigraphy. Unfortunately, early Precambrian greenstone terrains present particular problems to stratigraphic analysis. Many current controversies of greenstone belt petrogenesis, sedimentology, tectonics and evolution arise more from an inability to develop a clear stratigraphic picture of the belts than from ambiguities in interpretation. Four particular stratigraphic problems that afflict studies of Archean greenstone belts are considered: determination of facing directions, correlation of lithologic units, identification of primary lithologies and discrimination of stratigraphic versus structural contacts.

  14. A model for late Archean chemical weathering and world average river water

    NASA Astrophysics Data System (ADS)

    Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.

    2017-01-01

    Interpretations of the geologic record of late Archean near-surface environments depend very strongly on an understanding of weathering and resultant riverine transport to the oceans. The late Archean atmosphere is widely recognized to be anoxic (pO2,g =10-5 to 10-13 bars; pH2,g =10-3 to 10-5 bars). Detrital siderite (FeCO3), pyrite (FeS2), and uraninite (UO2) in late Archean sedimentary rocks also suggest anoxic conditions. However, whether the observed detrital minerals could have been thermodynamically stable during weathering and riverine transport under such an atmosphere remains untested. Similarly, interpretations of fluctuations recorded by trace metals and isotopes are hampered by a lack of knowledge of the chemical linkages between the atmosphere, weathering, riverine transport, and the mineralogical record. In this study, we used theoretical reaction path models to simulate the chemistry involved in rainwater and weathering processes under present-day and hypothetical Archean atmospheric boundary conditions. We included new estimates of the thermodynamic properties of Fe(II)-smectites as well as smectite and calcite solid solutions. Simulation of present-day weathering of basalt + calcite by world-average rainwater produced hematite, kaolinite, Na-Mg-saponite, and chalcedony after 10-4 moles of reactant minerals kg-1 H2O were destroyed. Combination of the resultant water chemistry with results for granitic weathering produced a water composition comparable to present-day world average river water (WARW). In contrast, under late Archean atmospheric conditions (pCO2,g =10-1.5 and pH2,g =10-5.0 bars), weathering of olivine basalt + calcite to the same degree of reaction produced kaolinite, chalcedony, and Na-Fe(II)-rich-saponite. Late Archean weathering of tonalite-trondhjemite-granodiorite (TTG) formed Fe(II)-rich beidellite and chalcedony. Combining the waters from olivine basalt and TTG weathering resulted in a model for late Archean WARW with the

  15. Explaining the structure of the Archean mass-independent sulfur isotope record.

    PubMed

    Halevy, Itay; Johnston, David T; Schrag, Daniel P

    2010-07-09

    Sulfur isotopes in ancient sediments provide a record of past environmental conditions. The long-time-scale variability and apparent asymmetry in the magnitude of minor sulfur isotope fractionation in Archean sediments remain unexplained. Using an integrated biogeochemical model of the Archean sulfur cycle, we find that the preservation of mass-independent sulfur is influenced by a variety of extra-atmospheric mechanisms, including biological activity and continental crust formation. Preservation of atmospherically produced mass-independent sulfur implies limited metabolic sulfur cycling before approximately 2500 million years ago; the asymmetry in the record indicates that bacterial sulfate reduction was geochemically unimportant at this time. Our results suggest that the large-scale structure of the record reflects variability in the oxidation state of volcanic sulfur volatiles.

  16. IRON-TOLERANT CYANOBACTERIA: IMPLICATIONS FOR ASTROBIOLOGY

    NASA Technical Reports Server (NTRS)

    Brown, Igor I.; Allen, Carlton C.; Mummey, Daniel L.; Sarkisova, Svetlana A.; McKay, David S.

    2006-01-01

    The review is dedicated to the new group of extremophiles - iron tolerant cyanobacteria. The authors have analyzed earlier published articles about the ecology of iron tolerant cyanobacteria and their diversity. It was concluded that contemporary iron depositing hot springs might be considered as relative analogs of Precambrian environment. The authors have concluded that the diversity of iron-tolerant cyanobacteria is understudied. The authors also analyzed published data about the physiological peculiarities of iron tolerant cyanobacteria. They made the conclusion that iron tolerant cyanobacteria may oxidize reduced iron through the photosystem of cyanobacteria. The involvement of both Reaction Centers 1 and 2 is also discussed. The conclusion that iron tolerant protocyanobacteria could be involved in banded iron formations generation is also proposed. The possible mechanism of the transition from an oxygenic photosynthesis to an oxygenic one is also discussed. In the final part of the review the authors consider the possible implications of iron tolerant cyanobacteria for astrobiology.

  17. Modeling the signature of sulfur mass-independent fractionation produced in the Archean atmosphere

    NASA Astrophysics Data System (ADS)

    Claire, Mark W.; Kasting, James F.; Domagal-Goldman, Shawn D.; Stüeken, Eva E.; Buick, Roger; Meadows, Victoria S.

    2014-09-01

    Minor sulfur isotope anomalies indicate the absence of O2 from the Archean atmosphere. A rich dataset showing large variations in magnitude and sign of Δ33S and Δ36S, preserved in both sulfates and sulfides, suggests that further constraints on Archean atmospheric chemistry are possible. We review previous quantitative constraints on atmospheric Δ33S production, and suggest that a new approach is needed. We added sulfur species containing 33S and 34S to a 1-D photochemical model and describe the numerical methodology needed to ensure accurate prediction of the magnitude and sign of Δ33S produced by and deposited from the Archean atmosphere. This methodology can test multiple MIF-S formation mechanisms subject to a variety of proposed atmospheric compositions, yielding Δ33S predictions that can be compared to the rock record. We systematically test SO2 isotopologue absorption effects in SO2 photolysis (Danielache et al., 2008), one of the primary proposed mechanisms for Δ33S formation. We find that differential absorption through the Danielache et al. (2008) cross sections is capable of altering predicted Δ33S as a function of multiple atmospheric variables, including trace O2 concentration, total sulfur flux, CO2 content, and the presence of hydrocarbons, but find a limited role for OCS and H2S. Under all realistic conditions, the Danielache et al. (2008) cross sections yield Δ33S predictions at odds with the geologic record, implying that additional pathways for sulfur MIF formation exist and/or the cross sections have significant errors. The methodology presented here will allow for quantitative constraints on the Archean atmosphere beyond the absence of O2, as soon as additional experimental measurements of MIF-S producing processes become available.

  18. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth

    PubMed Central

    Domagal-Goldman, Shawn D.; Meadows, Victoria S.; Wolf, Eric T.; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; Hébrard, Eric; Trainer, Melissa G.

    2016-01-01

    Abstract Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8–2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ∼ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7–2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO2. Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets. Key Words: Haze—Archean Earth

  19. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth.

    PubMed

    Arney, Giada; Domagal-Goldman, Shawn D; Meadows, Victoria S; Wolf, Eric T; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; Hébrard, Eric; Trainer, Melissa G

    2016-11-01

    Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8-2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ∼ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7-2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO2. Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets. Key Words: Haze-Archean Earth-Exoplanets-Spectra-Biosignatures-Planetary habitability

  20. Microfossils of the Early Archean Apex chert - New evidence of the antiquity of life

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1993-01-01

    Eleven taxa (including eight heretofore undescribed species) of cellularly preserved filamentous microbes, among the oldest fossils known, have been discovered in a bedded chert unit of the Early Archean Apex Basalt of northwestern Western Australia. This prokaryotic assemblage establishes that trichomic cyanobacteriumlike microorganisms were extant and morphologically diverse at least as early as about 3465 million years ago and suggests that oxygen-producing photoautotrophy may have already evolved by this early stage in biotic history.

  1. The transition from an Archean granite-greenstone terrain into a charnockite terrain in southern India

    NASA Technical Reports Server (NTRS)

    Condie, K. C.; Allen, P.

    1983-01-01

    In southern India, it is possible to study the transition from an Archean granite-greenstone terrain (the Karnataka province) into high grade charnockites. The transition occurs over an outcrop width of 20-35 km and appears to represent burial depths ranging from 15 to 20 km. Field and geochemical studies indicate that the charnockites developed at the expense of tonalites, granites, and greenstones. South of the transition zone, geobarometer studies indicate burial depths of 7-9 kb.

  2. The hottest lavas of the Phanerozoic and the survival of deep Archean reservoirs

    NASA Astrophysics Data System (ADS)

    Gazel, Esteban; Trela, Jarek; More, Lowell; Alex, Sobolev; Bizimis, Michael; Jicha, Brian

    2017-04-01

    The mantle plume hypothesis is widely accepted for the formation of large igneous provinces and many modern day hotspot volcanoes. Petrologic models suggest that plume-derived melts originate at high mantle temperatures (>1500 °C) relative to those generated at ambient mid-ocean ridge conditions ( 1350 °C). Earth's mantle has also cooled during its history due to heat loss and decrease in radioactive heat production, thus the temperatures of modern day basalts are substantially lower than those produced during the Archean (>2.5 Ga), as recorded by komatiites (>1700 °C). We discovered that the 90 Ma Galapagos-related Tortugal Suite accreted in Costa Rica not only record mantle potential temperatures as high as ancient Archean komatiites ( 1800 °C), but we also collected the highest olivine-spinel crystallization temperatures ever reported in the literature (1600 °C). Therefore, to the best of our knowledge, this suite represents the record of the hottest lavas of the Phanerozoic. These type of magmas occurred more frequently during the Archean due to overall higher ambient mantle temperatures, yet our data suggest that anomalously hot, isolated domains still exist in the deep portions of the planet that have survived billions of years of mantle convection and cooling. This finding is in line with the recent results that showed that early-formed 182W/184W mantle heterogeneities, produced during the first 50 million years of planetary accretion, survived to present time and has been sampled by mantle plumes. Our finding supports the existence of primitive Archean reservoirs, although in most plumes cooler ambient mantle entrainment probably dilutes its temperature signature.

  3. The sensitivity of the EMAC model to spectrally resolved irradiances during the Archean.

    NASA Astrophysics Data System (ADS)

    Kunze, Markus; Godolt, Mareike; Hamann-Reinus, Anke; Langematz, Ulrike; Rauer, Heike; Jöckel, Patrick

    The contradiction of a reduced solar luminosity by 15-25% during the Archean and the geo-logic evidence for relative high surface temperatures that allowed the presence of liquid water is known as the faint young sun problem. It is supposed that the cooling induced by a fainter sun was offset by higher levels of greenhouse gases during the Archean. We present a study in which we investigate this problem using the Chemistry Climate model EMAC (ECHAM/MESSy At-mospheric Chemistry) with a constructed, spectrally resolved irradiance dataset valid for the Archean. As proxy for the irradiance of our young sun we use the G0V-dwarf star β com. We test differently scaled spectrally resolved irradiances in an offline version of the FUBrad radiation scheme, to analyse the sensitivity of the input data on the heating rates in the middle atmo-sphere. We then use the EMAC model to analyse the sensitivity of the model dynamics to the spectrally resolved irradiances and other parameters valid for the late Archean Earth, such as the composition of the atmosphere and the land sea mask. Our experimental setup includes a control run, which has a zero land fraction, a slab ocean, the present day atmospheric composition, and the present day solar luminosity. Three sensitivity experiments are performed for: (1) 20% reduced solar irradiance, (2) 15% reduced solar irra-diance, and (3) increased CO2 concentration. We concentrate on the thermal and dynamical state of the atmosphere with emphasis on the middle atmosphere.

  4. Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life

    NASA Astrophysics Data System (ADS)

    Schopf, J. William

    1993-04-01

    Eleven taxa (including eight heretofore undescribed species) of cellularly preserved filamentous microbes, among the oldest fossils known, have been discovered in a bedded chert unit of the Early Archean Apex Basalt of northwestern Western Australia. This prokaryotic assemblage establishes that trichomic cyanobacterium-like microorganisms were extant and morphologically diverse at least as early as ~3465 million years ago and suggests that oxygen-producing photoautotrophy may have already evolved by this early stage in biotic history.

  5. Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume

    PubMed Central

    Delavault, Hélène; Thomassot, Emilie; Devey, Colin W.; Dazas, Baptiste

    2016-01-01

    The isotopic diversity of oceanic island basalts (OIB) is usually attributed to the influence, in their sources, of ancient material recycled into the mantle, although the nature, age, and quantities of this material remain controversial. The unradiogenic Pb isotope signature of the enriched mantle I (EM I) source of basalts from, for example, Pitcairn or Walvis Ridge has been variously attributed to recycled pelagic sediments, lower continental crust, or recycled subcontinental lithosphere. Our study helps resolve this debate by showing that Pitcairn lavas contain sulfides whose sulfur isotopic compositions are affected by mass-independent fractionation (S-MIF down to Δ33S = −0.8), something which is thought to have occurred on Earth only before 2.45 Ga, constraining the youngest possible age of the EM I source component. With this independent age constraint and a Monte Carlo refinement modeling of lead isotopes, we place the likely Pitcairn source age at 2.5 Ga to 2.6 Ga. The Pb, Sr, Nd, and Hf isotopic mixing arrays show that the Archean EM I material was poor in trace elements, resembling Archean sediment. After subduction, this Archean sediment apparently remained stored in the deep Earth for billions of years before returning to the surface as Pitcairn´s characteristic EM I signature. The presence of negative S-MIF in the deep mantle may also help resolve the problem of an apparent deficit of negative Δ33S anomalies so far found in surface reservoirs. PMID:27791057

  6. Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume

    NASA Astrophysics Data System (ADS)

    Delavault, Hélène; Chauvel, Catherine; Thomassot, Emilie; Devey, Colin W.; Dazas, Baptiste

    2016-11-01

    The isotopic diversity of oceanic island basalts (OIB) is usually attributed to the influence, in their sources, of ancient material recycled into the mantle, although the nature, age, and quantities of this material remain controversial. The unradiogenic Pb isotope signature of the enriched mantle I (EM I) source of basalts from, for example, Pitcairn or Walvis Ridge has been variously attributed to recycled pelagic sediments, lower continental crust, or recycled subcontinental lithosphere. Our study helps resolve this debate by showing that Pitcairn lavas contain sulfides whose sulfur isotopic compositions are affected by mass-independent fractionation (S-MIF down to Δ33S = -0.8), something which is thought to have occurred on Earth only before 2.45 Ga, constraining the youngest possible age of the EM I source component. With this independent age constraint and a Monte Carlo refinement modeling of lead isotopes, we place the likely Pitcairn source age at 2.5 Ga to 2.6 Ga. The Pb, Sr, Nd, and Hf isotopic mixing arrays show that the Archean EM I material was poor in trace elements, resembling Archean sediment. After subduction, this Archean sediment apparently remained stored in the deep Earth for billions of years before returning to the surface as Pitcairńs characteristic EM I signature. The presence of negative S-MIF in the deep mantle may also help resolve the problem of an apparent deficit of negative Δ33S anomalies so far found in surface reservoirs.

  7. Earth's early atmosphere as seen from carbon and nitrogen isotopic analysis of Archean sediments

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Carr, L. P.; Gilmour, I.; Pillinger, C. T.

    1986-01-01

    The origin and evolution of the Earth's early atmosphere has long been a topic of great interest but determination of actual compositions over geologic time is a difficult problem. However, recent systematic studies of stromatolite deposits (Precambrian Paleobiology Research Group) has extended our knowledge of Archean ecosystems. It has been shown that many stromatolite deposits have undergone negligible alteration since their time of formation. The discovery of primary fluid inclusions within unaltered 3.5 b.y. old Archiean sediments and the observation that the 3.3 b.y. old Barberton cherts have remained closed to argon loss and have not been subjected to thermal metamorphism suggests that an opportunity exists for the direct measurement of the volatile constituents present at their time of formation. Of primary interest to this study was the possibility that the stromatolites and other Archean sediments might retain a vestige of the atmosphere and thus afford an indication of the variations in carbon dioxide and nitrogen isotopic compositions with time. A suite of essentially unaltered Archean stromatolites and the cherts of different ages and geologic sites have been analyzed for their trapped carbon dioxide and nitrogen compositions by the stepped combustion extraction tech nique utilizing static mass spectrometers for the isotope measurements.

  8. Comparison of Archean and Phanerozoic granulites: Southern India and North American Appalachians

    NASA Technical Reports Server (NTRS)

    Mcsween, Harry Y., Jr.; Kittleson, Roger C.

    1988-01-01

    Archean granulites at the southern end of the Dharwar craton of India and Phanerozoic granulites in the southern Appalachians of North America share an important characteristic: both show continuous transitions from amphibolite facies rocks to higher grade. This property is highly unusual for granulite terranes, which commonly are bounded by major shears or thrusts. These two terranes thus offer an ideal opportunity to compare petrogenetic models for deep crustal rocks formed in different time periods, which conventional wisdom suggests may have had different thermal profiles. The salient features of the Archean amphibolite-to-granulite transition in southern India have been recently summarized. The observed metamorphic progression reflects increasing temperature and pressure. Conditions for the Phanerozoic amphibolite-to-granulite transition in the southern Appalachians were documented. The following sequence of prograde reactions was observed: kyanite = sillimanite, muscovite = sillimanite + K-feldspar, partial melting of pelites, and hornblende = orthopyroxene + clinopyroxene + garnet. The mineral compositions of low-variance assemblages in mafic and intermediate rocks are almost identical for the two granulite facies assemblages. In light of their different fluid regimes and possible mechanisms for heat flow augmentation, it seems surprising that these Archean and Phanerozoic granulite terranes were apparently metamorphosed under such similar conditions of pressure and temperature. Comparison with other terrains containing continuous amphibolite-to-granulite facies transitions will be necessary before this problem can be addressed.

  9. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?

    NASA Technical Reports Server (NTRS)

    Sumner, D. Y.; Grotzinger, J. P.

    1996-01-01

    Archean carbonates commonly contain decimetre- to metre-thick beds consisting entirely of fibrous calcite and neomorphosed fibrous aragonite that precipitated in situ on the sea floor. The fact that such thick accumulations of precipitated carbonate are rare in younger marine carbonates suggests an important change in the modes of calcium carbonate precipitation through time. Kinetics of carbonate precipitation depend on the concentration of inhibitors to precipitation that reduce crystallization rates and crystal nuclei formation, leading to kinetic maintenance of supersaturated solutions. Inhibitors also affect carbonate textures by limiting micrite precipitation and promoting growth of older carbonate crystals on the sea floor. Fe2+, a strong calcite-precipitation inhibitor, is thought to have been present at relatively high concentrations in Archean seawater because oxygen concentrations were low. The rise in oxygen concentration at 2.2-1.9 Ga led to the removal of Fe2+ from seawater and resulted in a shift from Archean facies, which commonly include precipitated beds, to Proterozoic facies, which contain more micritic sediment and only rare precipitated beds.

  10. Controls on the Archean climate system investigated with a global climate model.

    PubMed

    Wolf, E T; Toon, O B

    2014-03-01

    The most obvious means of resolving the faint young Sun paradox is to invoke large quantities of greenhouse gases, namely, CO2 and CH4. However, numerous changes to the Archean climate system have been suggested that may have yielded additional warming, thus easing the required greenhouse gas burden. Here, we use a three-dimensional climate model to examine some of the factors that controlled Archean climate. We examine changes to Earth's rotation rate, surface albedo, cloud properties, and total atmospheric pressure following proposals from the recent literature. While the effects of increased planetary rotation rate on surface temperature are insignificant, plausible changes to the surface albedo, cloud droplet number concentrations, and atmospheric nitrogen inventory may each impart global mean warming of 3-7 K. While none of these changes present a singular solution to the faint young Sun paradox, a combination can have a large impact on climate. Global mean surface temperatures at or above 288 K could easily have been maintained throughout the entirety of the Archean if plausible changes to clouds, surface albedo, and nitrogen content occurred.

  11. Organic compounds in fluid inclusions of Archean quartz-Analogues of prebiotic chemistry on early Earth.

    PubMed

    Schreiber, Ulrich; Mayer, Christian; Schmitz, Oliver J; Rosendahl, Pia; Bronja, Amela; Greule, Markus; Keppler, Frank; Mulder, Ines; Sattler, Tobias; Schöler, Heinz F

    2017-01-01

    The origin of life is still an unsolved mystery in science. Hypothetically, prebiotic chemistry and the formation of protocells may have evolved in the hydrothermal environment of tectonic fault zones in the upper continental crust, an environment where sensitive molecules are protected against degradation induced e.g. by UV radiation. The composition of fluid inclusions in minerals such as quartz crystals which have grown in this environment during the Archean period might provide important information about the first organic molecules formed by hydrothermal synthesis. Here we present evidence for organic compounds which were preserved in fluid inclusions of Archean quartz minerals from Western Australia. We found a variety of organic compounds such as alkanes, halocarbons, alcohols and aldehydes which unambiguously show that simple and even more complex prebiotic organic molecules have been formed by hydrothermal processes. Stable-isotope analysis confirms that the methane found in the inclusions has most likely been formed from abiotic sources by hydrothermal chemistry. Obviously, the liquid phase in the continental Archean crust provided an interesting choice of functional organic molecules. We conclude that organic substances such as these could have made an important contribution to prebiotic chemistry which might eventually have led to the formation of living cells.

  12. Evaluation of early Archean volcaniclastic and volcanic flow rocks as possible sites for carbonaceous fossil microbes.

    PubMed

    Walsh, Maud M

    2004-01-01

    Sedimentary rocks have traditionally been the focus of the search for Archean microfossils; the Earth's oldest fossil bacteria are associated with carbonaceous matter in sedimentary cherts in greenstone belts in the eastern Pilbara block of Western Australia and Barberton greenstone belt of South Africa. Reports of possible fossils in a martian meteorite composed of igneous rock and the discovery of modern bacteria associated with basalts have stimulated a new look at Archean volcanic rocks as possible sites for fossil microbes. This study examines silicified volcaniclastic rocks, near-surface altered volcanic flow rocks, and associated stromatolite- like structures from the Archean Barberton greenstone belt to evaluate their potential for the preservation of carbonaceous fossils. Detrital carbonaceous particles are widely admixed with current-deposited debris. Carbonaceous matter is also present in altered volcanic flow rocks as sparse particles in silica veins that appear to be fed by overlying carbonaceous chert layers. Neither microfossils nor mat-like material was identified in the altered volcanic rocks or adjacent stromatolite-like structures. Ancient volcanic flow and volcaniclastic rocks are not promising sites for carbonaceous fossil preservation.

  13. Mantle redox evolution and the oxidation state of the Archean atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Eggler, D. H.; Raeburn, S. P.

    1993-01-01

    Current models predict that the early atmosphere consisted mostly of CO2, N2, and H2O, along with traces of H2 and CO. Such models are based on the assumption that the redox state of the upper mantle has not changed, so that volcanic gas composition has remained approximately constant with time. We argue here that this assumption is probably incorrect: the upper mantle was originally more reduced than today, although not as reduced as the metal arrest level, and has become progressively more oxidized as a consequence of the release of reduced volcanic gases and the subduction of hydrated, oxidized seafloor. Data on the redox state of sulfide and chromite inclusions in diamonds imply that the process of mantle oxidation was slow, so that reduced conditions could have prevailed for as much as half of the earth's history. To be sure, other oxybarometers of ancient rocks give different results, so the question of when the mantle redox state has changed remains unresolved. Mantle redox evolution is intimately linked to the oxidation state of the primitive atmosphere: A reduced Archean atmosphere would have had a high hydrogen escape rate and should correspond to a changing mantle redox state; an oxidized Archean atmosphere should be associated with a constant mantle redox state. The converses of these statements are also true. Finally, our theory of mantle redox evolution may explain why the Archean atmosphere remained oxygen-deficient until approximately 2.0 billion years ago (Ga) despite a probable early origin for photosynthesis.

  14. Geochemistry of Precambrian carbonates: 3-shelf seas and non-marine environments of the Archean

    SciTech Connect

    Veizer, J. Ruhr Universitaet, Bochum ); Clayton, R.N. ); Hinton, R.W. Grant Institute of Geology, Edinburgh ); von Brunn, V. ); Mason, T.R. ); Buck, S.G. ); Hoefs, J. )

    1990-10-01

    A comprehensive whole-rock study of mineralogical, chemical, and isotopic attributes of Archean carbonates suggests that their lithologies and facies have been controlled by tectonic setting. In the first two papers of this series they have shown that the dominant lithology of sedimentary carbonates in greenstone belt settings is limestone. In this paper the authors suggest that the Archean shelf sequences are mostly dolostone, and the contemporaneous lacustrine playa lakes are characterized by limestone facies. The present study is of the shelf environments of the Archean, represented by the Pongola Supergroup of South Africa and the Hamersley Group of Australia. The lacustrine playa examples have been sampled from the Ventersdorp Supergroup of South Africa and the Fortescue Group of Australia. Geological, trace element, and oxygen isotope considerations of the shelf carbonates suggest that their original mineralogy may have been aragonite and that the Pongola dolostones probably represent a direct dolomitization product of this precursor. In contrast, the stabilization of the Hamersley carbonates may have involved an additional step of transformation of a metastable precursor into limestone prior to dolomitization.

  15. Competing instabilities, orbital ordering, and splitting of band degeneracies from a parquet renormalization group analysis of a four-pocket model for iron-based superconductors: Application to FeSe

    NASA Astrophysics Data System (ADS)

    Xing, Rui-Qi; Classen, Laura; Khodas, Maxim; Chubukov, Andrey V.

    2017-02-01

    We report the results of a parquet renormalization group (RG) study of competing instabilities in the full 2D four-pocket, three-orbital low-energy model for iron-based superconductors. We derive and analyze the RG flow of the couplings, which describes all symmetry-allowed interactions between low-energy fermions. Despite that the number of the couplings is large, we argue that there are only two stable fixed trajectories of the RG flow and one weakly unstable fixed trajectory with a single unstable direction. Each fixed trajectory has a finite basin of attraction in the space of initial system parameters. On the stable trajectories, either interactions involving only dx z and dy z or only dx y orbital components on electron pockets dominate, while on the weakly unstable trajectory interactions involving dx z (dy z) and dx y orbital states on electron pockets remain comparable. The behavior along the two stable fixed trajectories has been analyzed earlier [Chubukov, Khodas, and Fernandes, Phys. Rev. X 6, 041045 (2016), 10.1103/PhysRevX.6.041045]. Here we focus on the system behavior along the weakly unstable trajectory and apply the results to FeSe. We find, based on the analysis of susceptibilities along this trajectory, that the leading instability upon lowering the temperature is towards a three-component d -wave orbital nematic order. Two components are the differences between fermionic densities on dx z and dy z orbitals on hole pockets and on electron pockets, and the third one is the difference between the densities of dx y orbitals on the two electron pockets. We argue that this order is consistent with the splitting of band degeneracies, observed in recent photoemission data on FeSe by Fedorov et al. [Sci. Rep. 6, 36834 (2016), 10.1038/srep36834].

  16. Phase separation in iron chalcogenide superconductor Rb0.8+xFe1.6+ySe2 as seen by Raman light scattering and band structure calculations

    NASA Astrophysics Data System (ADS)

    Pashkevich, Yu.; Gnezdilov, V.; Lemmens, P.; Shevtsova, T.; Gusev, A.; Lamonova, K.; Wulferding, D.; Gnatchenko, S.; Pomjakushina, E.; Conder, K.

    2016-06-01

    We report Raman light scattering in the phase separated superconducting single crystal Rb0.77Fe1.61Se2 with Tc = 32 K over a wide temperature region 3-500 K. The observed phonon lines from the majority vacancy ordered Rb2Fe4Se5 (245) antiferromagnetic phase with TN = 525 K demonstrate modest anomalies in the frequency, intensity and halfwidth at the superconductive phase transition. We identify phonon lines from the minority compressed RbδFe2Se2 (122) conductive phase. The superconducting gap with d x 2 - y 2 symmetry has been detected in our spectra. In the range 0-600 cm-1 we observe a weak but highly polarized B1g-type background which becomes well-structured upon cooling. A possible magnetic or multiorbital origin of this background is discussed. We argue that the phase separation in M0.8+xFe1.6+ySe2 is of pure magnetic origin. It occurs below the Néel temperature when the magnetic moment of iron reaches a critical value. We state that there is a spacer between the majority 245 and minority 122 phases. Using ab initio spin-polarized band structure calculations we demonstrate that the compressed vacancy ordered Rb2Fe4Se5 phase can be conductive and therefore may serve as a protective interface spacer between the purely metallic RbδFe2Se2 phase and the insulating Rb2Fe4Se5 phase providing percolative Josephson-junction like superconductivity all throughout of Rb0.8+xFe1.6+ySe2. Our lattice dynamics calculations show significant differences in the phonon spectra of the conductive and insulating Rb2Fe4Se5 phases.

  17. 2.9-1.9 Ga paleoalterations of Archean granitic basement of the Franceville basin (Gabon)

    NASA Astrophysics Data System (ADS)

    Mouélé, Idalina Moubiya; Dudoignon, Patrick; El Albani, Abderrazak; Meunier, Alain; Boulvais, Philippe; Gauthier-Lafaye, François; Paquette, Jean-Louis; Martin, Hervé; Cuney, Michel

    2014-09-01

    The Archean granitoids in the Kiéné area, Gabon, are overlained by the Paleoproterozoic sediments of the Franceville basin (2.1 Ga). The basin is known for its high-grade uranium deposits among which some have been forming natural nuclear fission reactors. Most of the studies were dedicated to the FA-FB Paleoproterozoic sediments hosting these uranium deposits. Little is known on the Archean basement itself and specifically on the hydrous alteration events it experienced before and after the sediment deposition. The present work is focused on their petrographical, mineralogical and geochemical characterization. Dating the successive alteration events has been attempted on altered monazite crystals. Rocks in different alteration states have been sampled from eight drill cores crosscutting the Archean - Paleoproterozoic unconformity. The Archean granitoids observed in the deepest levels exhibit typical petrographical features of a propylitic alteration while they are intensely illitized up to the unconformity. The propylitic alteration is mainly pervasive but the original texture of the granitoïds is conserved in spite of the formation of new minerals: Mg-chlorite, allanite and epidote forming a typical paragenesis. The illitic alteration is much more invasive near the unconformity. The illitization process leads to the replacement of feldspars and the corrosion of quartz crysals by an illitic matrix while the ferromagnesian minerals are pseudomorphosed by a Fe-chlorite + phengite + hematite assemblage. The final fluid-rock interaction step is marked by fissural deposits of calcite and anhydrite. The δ13C isotopic data show that the fissural carbonates precipitated from diagenetic fluids enriched carbon products deriving from the maturation of organic matter. The U-Pb isotopic analyzes performed on monazite crystals have dated three distinct events: 3.0-2.9 Ga (magmatic), 2.6 Ga (propylitic alteration) and 1.9 Ga (diagenetic illitization). The calculation of

  18. Geology and geochronology of granitoid and metamorphic rocks of late Archean age in northwestern Wisconsin

    USGS Publications Warehouse

    Sims, P.K.; Peterman, Z.E.; Zartman, R.E.; Benedict, F.C.

    1985-01-01

    Granitoid rocks of the Puritan Quartz Monzonite and associated biotite gneiss and amphibolite in northwestern Wisconsin compose the southwestern part of the Puritan batholith of Late Archean age. They differ from rocks in the Michigan segment of the batholith in having been deformed by brittle-ductile deformation and partly recrystallized during shearing accompanying development of the midcontinent rift system of Keweenawan (Middle Proterozoic) age. Granitoid rocks ranging in composition from granite to tonalite are dominant in the Wisconsin part of the batholith. To the north of the Mineral Lake fault zone, they are massive to weakly foliated and dominantly of granite composition, whereas south of the fault zone they are more strongly foliated and mainly of tonalite composition. Massive granite, leucogranite, and granite pegmatite cut the dominant granitoid rocks. Intercalated with the granitoid rocks in small to large conformable bodies are biotite gneiss, amphibolite, and local tonalite gneiss. Metagabbro dikes of probable Early Proterozoic age as much as 15 m thick cut the Archean rocks. Rubidium-strontium whole-rock data indicate a Late Archean age for the granitoids and gneisses, but data points are scattered and do not define a single isochron. Zircon from two samples of tonalitic gneiss for uranium-thorium-Iead dating define a single chord on a concordia diagram, establishing an age of 2,735?16 m.y. The lower intercept age of 1,052?70 m.y. is in close agreement with rubidium-strontium and potassium-argon biotite ages from the gneisses. Two episodes of deformation and metamorphism are recorded in the Archean rocks. Deformation during the Late Archean produced a steep west-northwest-oriented foliation and gently plunging fold axes and was accompanied by low amphibolite-facies metamorphism of the bedded rocks. A younger deformation resulting from largely brittle fracture was accompanied by retrogressive metamorphism; this deformation is most evident adjacent

  19. Brazil's premier gold province. Part I: The tectonic, magmatic, and structural setting of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero

    NASA Astrophysics Data System (ADS)

    Lobato, Lydia; Ribeiro-Rodrigues, Luiz; Zucchetti, Márcia; Noce, Carlos; Baltazar, Orivaldo; da Silva, Luiz; Pinto, Claiton

    2001-07-01

    Rocks of the Rio das Velhas Supergroup comprise one of the most significant Archean greenstone-belt successions in Brazil, in both their appreciable mineral productivity and extensive mineral potential. A large part of this greenstone belt is contained within the Quadrilátero Ferrífero (Iron Quadrangle) region, Minas Gerais state, southeastern Brazil, which occupies the southernmost portion of the São Francisco craton. The Nova Lima Group rocks, at the base of the Rio das Velhas greenstone belt, host important orogenic gold deposits. The group contains lithological associations from bottom to top as follows: (1) mafic-ultramafic volcanic, (2) volcanic-chemical, (3) clastic-chemical, (4) volcaniclastic, and (5) resedimented rocks. Rocks of the resedimented, volcanic-chemical, and mafic-ultramafic volcanic associations mainly host the most important gold deposits. An early compressional deformation occurs in the rocks of the Rio das Velhas greenstone belt and basement gneisses, with tangential thrusting from the north to the south or southwest. Structures generated during a second, compressional deformation, encompass NW-striking thrust faults and SW-vergent, tight to isoclinal folds, inferring a general southwest transport direction. In the central portion of the Quadrilátero Ferrífero, the Paciência lineament, which strikes northwest and dips to the northeast in the south, or strikes northeast and dips to the southeast in the north, is a thrust-related, oblique ramp fault that hosts important gold deposits. The convergence of these two trends in the Nova Lima region is accommodated by roughly E-W-striking transcurrent faults, which are the most favored sites for large gold concentrations. Intracratonic extension in Late Archean to early Paleoproterozoic times and NW-vergent, Trans-Amazonian compressional deformation post-date gold deposition. Late extension during the Paleoproterozoic led to basin formation and the prominent dome-and-keel architecture of the

  20. Strontium and neodymium isotopic variations in early Archean gneisses affected by middle to late Archean high-grade metamorphic processes: West Greenland and Labrador

    NASA Technical Reports Server (NTRS)

    Collerson, K. D.; Mcculloch, M. T.; Bridgwater, D.; Mcgregor, V. R.; Nutman, A. P.

    1986-01-01

    Relicts of continental crust formed more than 3400 Ma ago are preserved fortuitously in most cratons. The cratons provide the most direct information about crust and mantle evolutionary processes during the first billion years of Earth history. In view of their polymetamorphic character, these terrains are commonly affected by subsequent tectonothermal events. Hence, their isotope systematics may be severely disturbed as a result of bulk chemical change or local isotopic homogenization. This leads to equivocal age and source information for different components within these terrains. The Sr and Nd isotopic data are presented for early Archean gneisses from the North Atlantic Craton in west Greenland and northern Labrador which were affected by younger metamorphic events.

  1. EPR study of thermally treated Archean microbial mats analogues and comparison with Archean cherts: towards a possible marker of oxygenic photosynthesis?

    NASA Astrophysics Data System (ADS)

    Bourbin, M.; Derenne, S.; Westall, F.; Gourier, D.; Gautret, P.; Rouzaud, J.-N.; Robert, F.

    2012-04-01

    The datation of photosynthesis apparition remains an open question nowadays: did oxygenic photosynthesis appear just before the Great Oxidation Event (GOE) of the atmosphere, 2.3 to 2.4 Gyr ago, or does it originate much earlier? It is therefore of uttermost interest to find markers of oxygenic photosynthesis, applicable to samples of archean age. In order to handle this problem, Microcoleus Chtonoplastes cyanobacteria and Chloroflexus-like non-oxygenic photosynthetic bacteria, were studied using Electron Paramagnetic Resonance (EPR) spectroscopy, a high sensitivity technique for the study of organic radicals in mature geological samples (coals, cherts, meteorites...). M. chtonoplastes and Chloroflexus-like bacteria were sampled in mats from the hypersaline lake "La Salada de Chiprana" (Spain), an analogue to an Archean environment, and were submitted to accelerated ageing through cumulative thermal treatments. For thermal treatment temperatures higher than 620° C, a drastic increase in the EPR linewidth of the oxygenic photosynthetic bacteria (M. chtonoplastes) occurred, as compared with the anoxygenic photosynthetic one (Chloroflexus-like). The EPR study of a thermally treated mixture of the two bacteria evidences that this linewidth increase is driven by catalytic reaction at high temperatures on an element selectively fixed by M. chtonoplastes. Based on comparative EDS analyses, Mg is a potential candidate for this catalytic activity but its precise role and the nature of the reaction are still to be determined. The EPR study of organic radicals in chert rocks of ages ranging from 0.42 to 3.5 Gyr, from various localities and that underwent various metamorphisms, revealed a dispersion of the signal width for the most mature samples. This comparative approach between modern bacterial samples and Precambrian cherts leads to propose the EPR linewidth of mature organic matter in cherts as a potential marker of oxygenic photosynthesis. If confirmed, this marker

  2. The world turns over: Hadean-Archean crust-mantle evolution

    NASA Astrophysics Data System (ADS)

    Griffin, W. L.; Belousova, E. A.; O'Neill, C.; O'Reilly, Suzanne Y.; Malkovets, V.; Pearson, N. J.; Spetsius, S.; Wilde, S. A.

    2014-02-01

    We integrate an updated worldwide compilation of U/Pb, Hf-isotope and trace-element data on zircon, and Re-Os model ages on sulfides and alloys in mantle-derived rocks and xenocrysts, to examine patterns of crustal evolution and crust-mantle interaction from 4.5 Ga to 2.4 Ga ago. The data suggest that during the period from 4.5 Ga to ca 3.4 Ga, Earth's crust was essentially stagnant and dominantly mafic in composition. Zircon crystallized mainly from intermediate melts, probably generated both by magmatic differentiation and by impact melting. This quiescent state was broken by pulses of juvenile magmatic activity at ca 4.2 Ga, 3.8 Ga and 3.3-3.4 Ga, which may represent mantle overturns or plume episodes. Between these pulses, there is evidence of reworking and resetting of U-Pb ages (by impact?) but no further generation of new juvenile crust. There is no evidence of plate-tectonic activity, as described for the Phanerozoic Earth, before ca 3.4 Ga, and previous modelling studies indicate that the early Earth may have been characterised by an episodic-overturn, or even stagnant-lid, regime. New thermodynamic modelling confirms that an initially hot Earth could have a stagnant lid for ca 300 Ma, and then would experience a series of massive overturns at intervals on the order of 150 Ma until the end of the EoArchean. The subcontinental lithospheric mantle (SCLM) sampled on Earth today did not exist before ca 3.5 Ga. A lull in crustal production around 3.0 Ga coincides with the rapid buildup of a highly depleted, buoyant SCLM, which peaked around 2.7-2.8 Ga; this pattern is consistent with one or more major mantle overturns. The generation of continental crust peaked later in two main pulses at ca 2.75 Ga and 2.5 Ga; the latter episode was larger and had a greater juvenile component. The age/Hf-isotope patterns of the crust generated from 3.0 to 2.4 Ga are similar to those in the internal orogens of the Gondwana supercontinent, and imply the existence of plate

  3. Mobility of nutrients and trace metals during weathering in the late Archean

    NASA Astrophysics Data System (ADS)

    Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.

    2017-08-01

    The evolution of the geosphere and biosphere depends on the availability of bio-essential nutrients and trace metals. Consequently, the chemical and isotopic variability of trace elements in the sedimentary record have been widely used to infer the existence of early life and fluctuations in the near-surface environment on the early Earth, particularly fluctuations in the redox state of the atmosphere. In this study, we applied late Archean weathering models (Hao et al., 2017), developed to estimate the behavior of major elements and the composition of late Archean world average river water, to explore the behavior of nutrient and trace metals and their potential for riverine transport. We focused on P, Mn, Cr, and Cu during the weathering of olivine basalt. In our standard late Archean weathering model (pCO2,g = 10-1.5 bars, pH2,g = 10-5.0 bars), crustal apatite was totally dissolved by the acidic rainwater during weathering. Our model quantitatively links the pCO2,g of the atmosphere to phosphate levels transported by rivers. The development of late Archean river water (pH = 6.4) resulted in riverine phosphate of at least 1.7 μmolar, much higher than at the present-day. At the end of the early Proterozoic snowball Earth event when pCO2,g could be 0.01-0.10 bars, river water may have transported up to 70 μmolar phosphate, depending on the availability of apatite, thereby stimulating high levels of oxygenic photosynthesis in the marine environment. Crustal levels of Mn in olivine dissolved completely during weathering, except at large extents of weathering where Mn was stored as a component of a secondary carbonate mineral. The corresponding Mn content of river water, about 1.2 μmolar, is higher than in modern river water. Whiffs of 10-5 mole O2 gas or HNO3 kg-1 H2O resulted in the formation of pyrolusite (MnO2) and abundant hematite and simultaneous dramatic decreases in the concentration of Mn(II) in the river water. Chromite dissolution resulted in negligible

  4. Mass independently fractionated sulfur isotopes reveal recycling of Archean lithosphere in modern oceanic hotspot lavas

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew; Cabral, Rita; Rose-Koga, Estelle; Koga, Ken; Whitehouse, Martin; Antonelli, Michael; Farquhar, James; Day, James; Hauri, Erik

    2013-04-01

    Oceanic crust and sediments are introduced to the mantle at subduction zones, but the fate of this subducted material within the mantle, as well as the antiquity of this process, is unknown. The mantle is compositionally and isotopically heterogeneous, and it is thought that much of this heterogeneity derives from incorporation of diverse subducted components—both crustal and oceanic lithosphere—over geologic time. Basaltic lavas erupted at some oceanic hotspot volcanoes have long been considered to be melts of ancient subducted lithosphere. However, compelling evidence for the return of subducted materials in mantle plumes is lacking. We report mass independently fractionated (MIF) S-isotope signatures in olivine-hosted sulfides from 20-million-year-old ocean island basalts (OIBs) from Mangaia, Cook Islands (Polynesia). Terrestrial MIF S-isotope signatures were generated exclusively through atmospheric photochemical reactions until ~2.45 billion years ago. Therefore, the discovery of MIF-S in young OIBs indicates that sulfur—likely derived from hydrothermally-altered oceanic crust—was subducted into the mantle before 2.45 Ga and recycled into the mantle source of Mangaia lavas. These new data provide evidence for ancient materials, with MIF 33S depletions, in the mantle source for Mangaia lavas. An Archean age for recycled oceanic crust provides key constraints on the length of time that subducted crustal material can survive in the mantle and on the timescales of mantle convection from subduction to melting and eruption at plume-fed hotspots. The new S-isotope measurements confirm inferences about the cycling of sulfur between the major reservoirs from the Archean to the Phanerozoic, extending from the atmosphere and oceans to the crust and mantle, and ultimately through a return cycle to the surface that, here, is completed in Mangaia lavas. It remains to be seen whether hotspots lavas sampling different compositional mantle endmembers (e.g., EM1, EM2

  5. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth

    NASA Astrophysics Data System (ADS)

    Arney, Giada; Domagal-Goldman, Shawn D.; Meadows, Victoria S.; Wolf, Eric T.; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; Hébrard, Eric; Trainer, Melissa G.

    2016-11-01

    Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8-2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ˜ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7-2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO2. Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets.

  6. Petrochronology in constraining early Archean Earth processes and environments: Barberton greenstone belt, South Africa

    NASA Astrophysics Data System (ADS)

    Grosch, Eugene

    2017-04-01

    Analytical and petrological software developments over the past decade have seen rapid innovation in high-spatial resolution petrological techniques, for example, laser-ablation ICP-MS, secondary ion microprobe (SIMS, nano-SIMS), thermodynamic modelling and electron microprobe microscale mapping techniques (e.g. XMapTools). This presentation will focus on the application of petrochronology to ca. 3.55 to 3.33 billion-year-old metavolcanic and sedimentary rocks of the Onverwacht Group, shedding light on the earliest geologic evolution of the Paleoarchean Barberton greenstone belt (BGB) of South Africa. The field, scientific drilling and petrological research conducted over the past 8 years, aims to illustrate how: (a) LA-ICP-MS and SIMS U-Pb detrital zircon geochronology has helped identify the earliest tectono-sedimentary basin and sediment sources in the BGB, as well as reconstructing geodynamic processes as early as ca. 3.432 billion-years ago; (b) in-situ SIMS multiple sulphur isotope analysis of sulphides across various early Archean rock units help to reconstruct atmospheric, surface and subsurface environments on early Archean Earth and (c) the earliest candidate textural traces for subsurface microbial life can be investigated by in-situ LA-ICP-MS U-Pb dating of titanite, micro-XANES Fe-speciation analysis and metamorphic microscale mapping. Collectively, petrochronology combined with high-resolution field mapping studies, is a powerful multi-disciplinary approach towards deciphering petrogenetic and geodynamic processes preserved in the Paleoarchean Barberton greenstone belt of South Africa, with implications for early Archean Earth evolution.

  7. Seismic structure of a late-Archean microcontinent in the middle of the Western Australian Craton

    NASA Astrophysics Data System (ADS)

    Yuan, Huaiyu; Johnson, Simon; Dentith, Mike; Murdie, Ruth; Gessner, Klaus; Korhonen, Fawna; Bodin, Thomas

    2017-04-01

    The Capricorn Orogen recorded the Paleoproterozoic amalgamation of the Archean Pilbara and Yilgarn cratons to form the Western Australian Craton. Regional surveys involving geological mapping, geochemistry, and geophysics reveal a prolonged tectonic history in craton assembly and subsequent intracratonic reworking, which have significantly re-shaped the orogenic crust. A high-density earthquake seismology deployment targeted the Glenburgh Terrane, an exotic late-Archean to Paleoproterozoic crustal block previously inferred from distinct structural and isotopic characters in the core region of the terrane. Prominent Moho and intracrustal discontinuities are present, replicating the overall trend and depth range found in the previous high-resolution deep crustal reflection image. Significant lateral variations in the seismic signal are found across the terrane boundary, showing a relatively thin crust (<40km) with small Vp/Vs ratios ( 1.70) in the Glenburgh terrane, compared with the thickened (>40km) crust with elevated Vp/Vs ratios (>1.76) in the margin. The small Vp/Vs ratios ( 1.70) are mapped terrane-wide, indicating a felsic bulk crustal composition. Considering the available constraints from isotopic age, magnetotelluric models and absolute shear wave velocities from ambient noise tomography, the Glenburgh Terrane is interpreted as a microcontinent made in the Archean, which however may have been altered during the WAC assembly and cratonization, as well as subsequent intracratonic reworking/magmatic differentiation processes. Our results illustrate that multi-disciplinary datasets bring complementary resolution and therefore may put tighter constraints on the tectonic processes that have affected the crust.

  8. Leucogranites of the Teton Range, Wyoming: A record of Archean collisional orogeny

    NASA Astrophysics Data System (ADS)

    Frost, Carol D.; Swapp, Susan M.; Frost, B. Ronald; Finley-Blasi, Lee; Fitz-Gerald, D. Braden

    2016-07-01

    Leucogranitic rocks formed by crustal melting are a prominent feature of collisional orogens of all ages. This study describes leucogranitic gneisses associated with an Archean collisional orogeny preserved in the Teton Range of northwestern Wyoming, USA. These leucogneisses formed at 2.68 Ga, and initial Nd isotopic compositions suggest they are derived from relatively juvenile sources. Two distinct groups of leucogneisses, both trondhjemitic, are identified on the basis of field relations, petrology, and geochemistry. The Webb Canyon gneiss forms large, sheet-like bodies of hornblende biotite trondhjemite and granodiorite. This gneiss is silica-rich (SiO2 = 70-80%), strongly ferroan, comparatively low in alumina, and is characterized by high Zr and Y, low Sr, and high REE contents that define "seagull"-shaped REE patterns. The Bitch Creek gneiss forms small sills, dikes, and plutons of biotite trondhjemite. Silica, Zr, Y, and REE are lower and alumina and Sr are higher than in the Webb Canyon gneiss. These differences reflect different melting conditions: the Webb Canyon gneiss formed by dehydration melting in which amphibole and quartz breaks down, accounting for the low alumina, high FeO, high silica content and observed trace element characteristics. The Bitch Creek gneiss formed by H2O-excess melting in which plagioclase breaks down leaving an amphibole-rich restite, producing magmas higher in alumina and Sr and lower in FeO and HREE. Both melt mechanisms are expected in collisional environments: dehydration melting accompanies gravitational collapse and tectonic extension of dramatically thickened crust, and water-excess melting may occur when collision places a relatively cool, hydrous lower plate beneath a hotter upper plate. The Archean leucogranitic gneisses of the Teton Range are calcic trondhjemites and granodiorites whereas younger collisional leucogranites typically are true granites. The difference in leucogranite composition reflects the

  9. Iron-tolerant Cyanobacteria as a Tool to Study Terrestrial and Extraterrestrial Iron Deposition

    NASA Technical Reports Server (NTRS)

    Brown, I. I.; Mummey, D.; Cooksey, K. E.; McKay, D. S.

    2005-01-01

    We are investigating biological mechanisms of terrestrial iron deposition as analogs for Martian hematite recently confirmed by. Possible terrestrial analogs include iron oxide hydrothermal deposits, rock varnish, iron-rich laterites, ferricrete soils, moki balls, and banded iron formations (BIFs). With the discovery of recent volcanic activity in the summit craters of five Martian volcanoes, renewed interest in the iron dynamics of terrestrial hydrothermal environments and associated microorganisms is warranted. In this study we describe a new genus and species of CB exhibiting elevated dissolved iron tolerance and the ability to precipitate hematite on the surface of their exopolymeric sheathes.

  10. Vanadium in peridotites, mantle redox and tectonic environments: Archean to present

    NASA Astrophysics Data System (ADS)

    Canil, Dante

    2002-01-01

    New measurements of partition of vanadium (V) between spinel, garnet and a pigeonite-like high pressure ( P) pyroxene and magnesian liquids on the mantle solidus as a function of oxygen fugacity (fO 2) are presented. The spinel-liquid experiments show an effect of Cr/Al in spinel on partitioning, and further suggest that V exists as V 3+, V 4+ and V 5+ in melts at terrestrial fO 2. Vanadium is mildly incompatible in both 'pigeonitic' pyroxene and garnet between 4.5 and 6.5 GPa on the mantle solidus. Analysis of the fO 2-sensitive partitioning for V between mantle minerals and melts are combined with compositional data from peridotite melting experiments to model the covariation of V and Al in peridotite residues produced by non-modal, fractional melting under different fO 2 from 1.0 to 7.0 GPa. The partial melting models at 1.0 to 3.0 GPa fit the covariation of V and Al in abyssal peridotites quite well at fO 2s similar to those of mid-ocean ridge basalt. Many orogenic massifs and spinel lherzolite xenoliths represent mantle that formed at fO 2 higher than that produced at mid-ocean ridges in a range of tectonic environments. A large proportion of spinel-facies Archean cratonic lithosphere formed at fO 2s significantly higher than those of abyssal peridotites possibly linking its formation to a convergent margin (arc) tectonic setting. The case for garnet-facies cratonic mantle is equivocal; it may have formed at significantly higher pressures (7.0 GPa), or within the spinel-facies at lower pressures but at significantly higher fO 2 than is observed for abyssal peridotites. The imbrication of both oceanic garnet-facies mantle with spinel-facies arc mantle may explain the datasets for some Archean cratons. Overall, the data for Archean mantle melts and residues make clear that models cannot look to reduced, mantle-derived volcanic gases containing H 2 and CO to engender early life synthesis, or to promote hydrogen escape and gradual oxygenation of the Archean earth

  11. Multiple sulfur isotope geochemistry of Dharwar Supergroup, Southern India: Late Archean record of changing atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Mishima, Kaoru; Yamazaki, Rie; Satish-Kumar, Madhusoodhan; Ueno, Yuichiro; Hokada, Tomokazu; Toyoshima, Tsuyoshi

    2017-04-01

    Earth's tectonic and climatic systems may have changed fundamentally before the Great Oxidation Event (GOE) at about 2.3 Ga. Sulfur Mass Independent Fractionation (S-MIF) has demonstrated that Earth's atmosphere was virtually oxygen-free before the GOE. During 3.0 to 2.4 Ga, the change in Δ33S and Δ36S signals may reflect the perturbation of atmospheric chemistry, though the mechanisms of the change are uncertain. Here, we reported multiple sulfur isotopic studies of Archean volcano-sedimentary sequences of the Dharwar Supergroup, distributed in the Chitradurga Schist Belt (CSB), Southern India. New field mapping and zircon U-Pb dating allows us to reconstruct detailed lithostratigraphy of the Dharwar Supergroup. The lower unit consists of post-3.0 Ga conglomerate, stromatolitic carbonate, siliciclastics with diamictite, chert/BIF and pillowed basalt in ascending order, all of which are older than the 2676 Ma dacite dyke that had intruded into the lower unit. The upper unit unconformably overlies the pillow basalts at the top of the lower unit, and consists of conglomerate/sandstone with ∼2600 Ma detrital zircons, komatiitic basalt, BIF and siliciclastic sequence with mafic volcanics. Sulfur isotope analysis of extracted sulfides shows MIF signals (Δ33S > + 1 ‰) with clear Δ33S- Δ36S correlations. The lower group of the Dharwar Supergroup shows a Δ36S / Δ33S slope of -1.48, the middle group shows -1.16 and -1.07, and the upper group shows -0.94. Reassessment of all the Archean S-MIF records from sedimentary rocks indicates that the Δ36S / Δ33S slope systematically changed during the Archean period. The observed trend in the Indian section is similar to those of its Pilbara-Kaapvaal equivalents, thus it could reflect a global atmospheric signature. Moreover, the isotopic trend seems to correlate with mid-Archean glaciation. Thus, the Δ36S / Δ33S slope could be a useful tracer for atmospheric chemistry and its link with climate change before the GOE.

  12. Controls on Atmospheric O2: The Anoxic Archean and the Suboxic Proterozoic

    NASA Astrophysics Data System (ADS)

    Kasting, J. F.

    2015-12-01

    Geochemists have now reached consensus that the Archean atmosphere was mostly anoxic, that a Great Oxidation Event (GOE) occurred at around 2.5 Ga, and that the ensuing Proterozoic atmosphere was consistently oxidized [1,2]. Evidence for this broad-scale change in atmospheric composition comes from a variety of sources, most importantly from multiple sulfur isotopes [3,4]. The details of both the Archean and Proterozoic environments remain controversial, however, as does the underlying cause of the GOE. Evidence of 'whiffs' of oxygen during the Archean [5] now extend back as far as 3.0 Ga, based on Cr isotopes [6]. This suggests that O2 was being produced by cyanobacteria well before the GOE and that the timing of this event may have been determined by secular changes in O2 sinks. Catling et al. [7] emphasized escape of hydrogen to space, coupled with progressive oxidation of the continents and a concomitant decrease in the flux of reduced gases from metamorphism. But hydrogen produced by serpentinization of seafloor could also have been a controlling factor [8]. Higher mantle temperatures during the Archean should have resulted in thicker, more mafic seafloor and higher H2 production; decreasing mantle temperatures during the Proterozoic should have led to seafloor more like that of today and a corresponding decrease in H2 production, perhaps by enough to trigger the GOE. Once the atmosphere became generally oxidizing, it apparently remained that way during the rest of Earth's history. But O2 levels in the mid-Proterozoic could have been as low at 10-3 times the Present Atmospheric Level (PAL) [9]. The evidence, once again, is based on Cr isotopes. Possible mechanisms for maintaining such a 'suboxic' Proterozoic atmosphere will be discussed. Refs: 1. H. D. Holland, Geochim. Cosmochim. Acta 66, 3811 (2002). 2. H. D. Holland, Philosophical Transactions of the Royal Society B-Biological Sciences 361, 903 (Jun 29, 2006). 3. J. Farquhar, H. Bao, M. Thiemans, Science

  13. Isotopic Constraints on Processes of Mantle Recycling (Subduction?) in the Hadean and Archean

    NASA Astrophysics Data System (ADS)

    Shirey, S. B.; Basu, A. R.; Kamber, B.; Mueller, P. A.; Whitehouse, M.

    2006-12-01

    The earliest evidence for subduction and its effects on the Hadean and Archean Earth can be found in the isotopic signatures of recycling in Archean igneous and metasedimentary rocks. The separation of an early terrestrial reservoir from the upper mantle shown by ^{142}Nd isotope data (Boyet & Carlson, Science, 2005) obviates the need for massive extraction and recycling of early continental crust (Armstrong, Phil Trans A, 1981) to explain the depleted mantle. Without extensive continents, an intra-oceanic-arc type of recycling process dominated the evolution of the early mantle. When continental crustal recycling did occur, it appears limited to the margins of emergent and juvenile continental nuclei. Intra-oceanic arc recycling has long been supported by geochemical studies of present mantle heterogeneity that show it represents ancient (>3 Ga) recycled components and geodynamic studies of mantle convection that show the mantle can remain poorly mixed at these time scales. Such studies cannot readily distinguish Hadean to Eoarchean foundering from true plate subduction. However, ^{142}Nd excesses (Caro et al, GCA 2006) and Pb isotopic variability in Eoarchean rocks (Kamber et al, CMP 2003), Hf isotopic variability in Hadean zircon (Harrison et al, Science 2005) and a solar component in mantle rare gases (Tolsthikin and Hofmann, PEPI 2005) require long term isolation of a mafic Hadean crust incompatible with a dynamic process of plate destruction accompanied by efficient return. In contrast to this oldest record, minerals and rocks from <3.6 Ga no longer show extreme heterogeneity in Hf and Pb isotopes and the ^{142}Nd excess in highly depleted mantle had apparently disappeared. Subduction can be strongly inferred from surficial isotopic signatures in crustal and mantle rocks and minerals preserved in the Paleo- to Meso-Archean portions of various continents and their lithospheric mantle keels: 3.5 Ga old diamonds from the Slave craton mantle lithosphere that

  14. Climatic impact of spectrally resolved irradiances during the late Archean as modeled with EMAC-FUB

    NASA Astrophysics Data System (ADS)

    Kunze, M.; Langematz, U.; Godolt, M.; Hamann-Reinus, A.; Rauer, H.; Joeckel, P.

    2011-12-01

    During the Archean eon the surface temperatures of the Earth are assumed to have been high enough to support liquid water, despite a lower luminosity of the young Sun. This fact, known as the faint young Sun paradox, can be explained by assuming higher concentrations of greenhouse gases during the early stages of the Earth. But there is still an ongoing debate about the possible range of greenhouse gas concentrations that are consistent with the geologic evidence. We present a study in which we investigate this problem using the Chemistry Climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) in a resolution of T42/L39 with the high-resolution shortwave radiation scheme FUBRad (EMAC-FUB). We are using a constructed, spectrally resolved irradiance dataset valid for the Archean Sun, and analyze the climatic impact of the reduced solar luminosity, an anoxic environment, an increased CO2 concentration, and the different land mass. In total six simulations have been performed, where two simulations only differ by the O2 and O3 content and otherwise have present day conditions. Four simulations use a global ocean, as the distribution and fraction of the continents are highly uncertain during the Archean, and anoxic conditions. Three simulations use a reduced solar luminosity, where two CO2 scenarios are tested (3 ± PAL and 10 ± PAL). As proxy for the early Sun during the late Archean at 2.5 Ga (109 years ago) we take the dwarf star β Com. The spectrally resolved irradiances are compiled from measurements and modeled data, and scaled to a total solar irradiance (TSI) of 82 % the present TSI (i.e. 1121 W m-2). We show that in an anoxic environment with reduced solar luminosity at 2.5 Ga, a global ocean, and present day greenhouse gases, it is still possible to have liquid water in tropical latitudes, even though the global, annual mean surface temperature is below the freezing point of water. When the CO2 concentration is increased, the region of open water widens. The

  15. The western Wabigoon Subprovince, Superior Province, Canada: Archean greenstone succession in rifted basement complex

    NASA Technical Reports Server (NTRS)

    Edwards, G. R.; Davis, D. W.

    1986-01-01

    The Wabigoon Subprovince, interposed between the predominantly metasedimentary-plutonic and gneissic English River and Quetico Subprovinces to the north and south respectively, exposed Archean greenstone and granitoid rocks for a strike length of greater than 700 km. Based on predominating rock types, the western part of the subprovince is divided into two terrains: the northern Wabigoon volcano-sedimentary and pluonic terrain (NWW) and the Wabigoon Diapiric Axis terrain (WDA). Both the NWW and WDA are described according to volcanic sequence, geological faults, chemical composition and evolutionary history.

  16. Oxidative Weathering of Archean Sulfides: Implications for the Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Johnson, A.; Romaniello, S. J.; Reinhard, C.; Garcia-Robledo, E.; Revsbech, N. P.; Canfield, D. E.; Lyons, T. W.; Anbar, A. D.

    2015-12-01

    The first widely accepted evidence for oxidation of Earth's atmosphere and oceans occurs ~2.45 Ga immediately prior to the Great Oxidation Event (GOE). A major line of evidence for this transition includes the abundances and isotopic variations of redox-sensitive transition metals in marine sediments (e.g., Fe, Mo, Re, Cr, and U). It is often assumed that oxidative weathering is required to liberate these redox-sensitive elements from sulfide minerals in the crust, and hence that their presence in early Archean marine sediments signifies that oxidative weathering was stimulated by small and/or transient "whiffs" of O2 in the environment.1 However, studies of crustal sulfide reactivity have not been conducted at O2 concentrations as low as those that would have prevailed when O2 began its rise during the late Archean (estimated at <10-5 present atmospheric O2).2 As a result, it is difficult to quantify O2 concentrations implied by observed trace metal variations. As a first step toward providing more quantitative constraints on late Archean pO2, we conducted laboratory studies of pyrite and molybdenite oxidation kinetics at the nanomolar O2 concentrations that are relevant to late Archean environments. These measurements were made using recently developed, highly sensitive optical O2 sensors to monitor the rates at which the powdered minerals consumed dissolved O2 in a range of pH-buffered solutions.3Our data extend the range of experimental pyrite oxidation rates in the literature by three orders of magnitude from ~10-3 present atmospheric O2 to ~10-6. We find that molybdenite and pyrite oxidation continues to <1 nM O2 (4 x 10-6 present atmospheric O2). This implies that oxidative weathering of sulfides could occur under conditions which preserve MIF S fractionation. Furthermore, our results indicate that the rate law and reaction order of pyrite oxidation kinetics change significantly at nanomolar concentrations of O2 when compared to previous compilations.2 Our

  17. Comparison of oxygen fugacities of S-type granites across the Archean-Proterozoic boundary

    NASA Astrophysics Data System (ADS)

    Bucholz, C. E.; Eiler, J. M.; Stolper, E. M.; Breaks, F. B.

    2016-12-01

    We investigate whether changes in atmospheric O2 levels across the Archean-Proterozoic (AP) boundary were translated into the igneous record via partial melting or assimilation of sedimentary rocks with potentially differing oxidation states. To isolate the effects of sediment melting, we studied 5 S-type granites from the Superior Province (2640-2685 Ma) and 19 from the Paleoproterozoic (PP) Trans-Hudson and Wopmay orogenies (1715-1885 Ma), which were derived from sediments deposited at most 100-400 Ma before subsequent burial and partial melting. Published data from sediment melting experiments indicate that at a fixed temperature, the FeT/Mg ratios of partial melts - and therefore also FeT/Mg in biotites in granites formed from such melts - are sensitive to the abundance of Fe-Ti oxides in the residue. Specifically, FeT/Mg melt and biotite ratios are lower when Fe-Ti oxides are modally important in the residue due to the incorporation of a significant amount of bulk sediment Fe in the oxide phase. In turn, Fe-Ti oxide stability is highly sensitive to the Fe oxidation state inherited from the sedimentary source, being favored at high Fe3+/Fe2+ ratios. Analyzed biotite compositions from the Archean S-type granites have higher FeT/Mg ratios than those from the PP (2.7-3.7 v. 1.6-2.3) and therefore likely reflect more reducing conditions. The simplest explanation of our results is that the Archean S-type granites were derived from more reduced metasedimentary sources relative to the PP S-type granites, being richer in Fe2+-bearing minerals (e.g., pyrite or siderite) and poorer in Fe3+-bearing phases (e.g., magnetite or hematite). The variation in Fe oxidation state of S-type granites across the AP boundary could reflect the effect on sediments of the Great Oxygenation Event that roughly coincides with this boundary. Another possibility is that there is more reduced organic carbon in the sources of the Archean versus PP S-type granites; however, existing data

  18. Reconciling "Whiffs" of O2 with the Archean MIF S Record: Insights from Sulfide Oxidation Experiments

    NASA Astrophysics Data System (ADS)

    Johnson, A.; Reinhard, C. T.; Romaniello, S. J.; Greaney, A. T.; Garcia-Robledo, E.; Revsbech, N. P.; Canfield, D. E.; Lyons, T. W.; Anbar, A. D.

    2016-12-01

    The Archean-Proterozoic transition is marked by the first appreciable accumulation of O2 in Earth's oceans and atmosphere at 2.4 billion years ago (Ga). However, this Great Oxidation Event (GOE) is not the first evidence for O2 in Earth's surface environment. Paleoredox proxies preserved in ancient marine shales (Mo, Cr, Re, U) suggest transient episodes of oxidative weathering before the GOE, perhaps as early as 3.0 Ga. One marine shale in particular, the 2.5 Ga Mount McRae Shale of Western Australia, contains a euxinic interval with Mo enrichments up to 50 ppm. This enrichment is classically interpreted as the result of oxidative weathering of sulfides on the continental surface. However, prior weathering models based on experiments suggested that sulfides require large amounts of O2 [>10-4 present atmospheric level (PAL) pO2] to produce this weathering signature, in conflict with estimates of Archean pO2 from non-mass-dependent (NMD) sulfur isotope anomalies (<10-5 PAL pO2). To reconcile these datasets, we conducted aqueous oxidation experiments of pyrite and molybdenite from 3 - 700 nM O2 (equivalent at equilibrium to 10-5 - 10-3 PAL) to measure oxidation kinetics as a function of the concentration of dissolved O2. We measured rates by injecting oxygenated water at a steady flow rate and monitoring dissolved O2 concentrations with LUMOS sensors. Our data extend the O2 range explored in pyrite oxidation experiments by three orders of magnitude and provide the first rates for molybdenite oxidation at O2 concentrations potentially analogous to those characteristic of the Archean atmosphere. Our results show that pyrite and molybdenite oxidize significantly more rapidly at lower O2 levels than previously thought. As a result, our revised weathering model demonstrates that the Mo enrichments observed in late Archean marine shales are potentially attainable at extremely low atmospheric pO2 values (e.g., <10-5 PAL), reconciling large sedimentary Mo enrichments with co

  19. Pale Orange Dots: Hazy Archean Earth as an Analog for Hazy Earthlike Exoplanets

    NASA Astrophysics Data System (ADS)

    Arney, Giada; Domagal-Goldman, Shawn; Meadows, Victoria S.; Claire, Mark; Schwieterman, Edward

    2014-11-01

    Of the four terrestrial worlds with significant atmospheres in our solar system - Venus, Earth, Mars, and Titan - two of these worlds are presently enshrouded by hazes, and observations suggest that hazy exoplanets are also common (Bean et al. 2010, Sing et al. 2011, Kreidberg et al 2014, Knutson et al. 2014). The early (Archean) Earth may have had a photochemical hydrocarbon haze similar to Titan's (Zerkle et al. 2012), with important climactic effects (Pavlov et al. 2001, Trainer et al. 2006, Haqq-Misra et al. 2008, Domagal-Goldman et al. 2008, Wolf and Toon 2012). Here, we considered Archean Earth as an analog for hazy Earthlike exoplanets and used a modified version of the 1-D photochemical code developed originally by Kasting et al. (1979) to generate model Archean atmospheres with fractal hydrocarbon haze particles. A 1-D line-by-line fully multiple scattering radiative transfer model (Meadows and Crisp 1996) was then used to generate synthetic spectra of early Earth with haze. We have used the resulting synthetic spectra to examine the effect of haze on the detectability of putative biosignatures and the Rayleigh scattering slope, which has been suggested as a means for constraining atmospheric pressure (Benneke and Seager 2012). We also examined haze's impact on the spectral energy distribution reaching the planetary surface. Because the atmospheric pressure and haze particle composition of the Archean Earth are poorly constrained, and because exoplanets will occupy a range of parameter space, we tested the influence of atmospheric pressure and particle density on haze formation, and explored how various particle size distributions affect the spectrum. We find that haze strongly affects the spectral region of the Rayleigh slope, a change detectable at low spectral resolution that impacts the ability to constrain pressure with Rayleigh scattering. The spectral energy distribution at the surface is modulated by haze thickness and the assumed particle size

  20. The Preservation of Meso- Archean Refractory Lithospheric Mantle Underneath the Eastern Margin of the Tanzania Craton

    NASA Astrophysics Data System (ADS)

    Shu, Q.; Liu, J.; Pearson, G. D.; Gibson, S. A.

    2014-12-01

    Numerous studies on the petrology and geochemistry of peridotite xenoliths from the Tanzanian Craton and its rifted margins have investigated the origin, chemical change and thermal state of the cratonic roots from its core area (Nzega and Mwadui), its Northern (Marsabit) and Eastern margin Labait and Lashaine area (e.g. Dawson, 1964; Henjes-Kunst and Altherr, 1991; Lee & Rudnick, 1999; Chesley et al., 1999; Gibson et al., 2013). These studies suggest that the Tanzanian cratonic mantle formed via high degrees of melt extraction in the Archean (oldest Re-depletion age TRD = 3.4 Ga, Burton et al., 2000) and sev­eral episodes of refertilization. In order to gain further temporal and chemical understanding on the effects of tectonic processes on cratonic roots, we carried out a Re-Os isotopic study on peridotites (n = 11) from Lashaine, which will be followed by Lu-Hf, Sm-Nd and Sr isotope investigations of the constituent minerals of the same samples. The preliminary whole-rock Os isotope data from Lashaine peridotites show a large range of 187Os/188Os (0.1061 - 0.1261), with TRD ages from Meso-Archean to very young (3.1 Ga to 0.3 Ga). There is a negative correlation between TRD and bulk alumina contents. One sample with the lowest Al2O3 yields the oldest age of 3.1 Ga. Five samples range from 2.5 to 2.8 Ga, three give ages close to 2 Ga, and one sample with a high Al2O3 has a TRD at 0.3 Ga. The positive Al2O3-187Os/188Os correlation trend passes above the PM composition may reflect ancient metasomatism by high Re/Os melts or recent metasomatism by very radiogenic Os plume-derived melts. These processes could be related to the evolution of the peripheral Proterozoic mobile belts, or Cenozoic rifting on the Eastern margin. Collectively, our new Os isotope data demonstrate that Meso-Archean (at least 3.1 Ga old) mantle portions are still retained underneath the rifted Eastern margin of the Craton. This is in line with previous results indicating that Archean cratonic

  1. Minor Sulfur Isotope Constraints on the composition of Earth's Archean atmosphere

    NASA Astrophysics Data System (ADS)

    Claire, M.

    2016-12-01

    Minor sulfur isotope anomalies in the sedimentary record are direct recorders of ancient chemical reactions that occurred in the atmosphere, and therefore form the most direct proxy for Archean atmospheric composition. The mere presence of mass-independently fractionated sulfur isotopes (MIF-S) in the rock record has resolved nearly a century's worth of debate by constraining atmospheric oxygen to trace levels prior to 2.4 billion years ago, and indirectly indicates the presence of a dominant reducing gas, likely H2 or CH4. The MIF-S database has grown substantially in the past decade, and reveals complex time- and facies-dependent changes in MIF-S magnitudes. The structure within the sedimentary MIF-S record suggests that constraints beyond this simple "on-off" switch for atmospheric O2 are possible once we understand the mechanisms that generate and preserve the signal in the rock record. Recently, I proposed an initial quantitative framework for predictions of atmospheric MIF-S [1], but concluded that new measurements of MIF-S generation mechanisms were needed to provide robust constraints. Since then, identification of MIF-S arising from SO2 photoexcitation [2], and updated absorption cross-sections for SO2 and SO [3-4] provide critical new ground-truth on all 4 isotopes of sulfur. Furthermore, breakthroughs in coupled photochemical-climate modeling have enabled better predictions of UV transparency within hazy atmospheres [5] such as those that might have dominated in the Archean [6-8]. I will present 1-D photochemical modeling results based on these new fundamental constraints, in comparison with MIF-S data from the Archean, to interpret the steady-state composition of the Archean atmosphere and time-dependent perturbations to it. In particular, Δ36S/Δ33S resulting from perturbations to atmospheric species will be discussed as a key tool for constraining the composition of the reducing atmosphere. [1] Claire et al. (2014) GCA; [2] Whitehill et al., PNAS

  2. Recombination reactions as a possible mechanism of mass-independent fractionation of sulfur isotopes in the Archean atmosphere of Earth

    NASA Astrophysics Data System (ADS)

    Babikov, Dmitri

    2017-03-01

    A hierarchy of isotopically substituted recombination reactions is formulated for production of sulfur allotropes in the anoxic atmosphere of Archean Earth. The corresponding system of kinetics equations is solved analytically to obtain concise expressions for isotopic enrichments, with focus on mass-independent isotope effects due to symmetry, ignoring smaller mass-dependent effects. Proper inclusion of atom-exchange processes is shown to be important. This model predicts significant and equal depletions driven by reaction stoichiometry for all rare isotopes: 33S, 34S, and 36S. Interestingly, the ratio of capital ΔΔ values obtained within this model for 33S and 36S is -1.16, very close to the mass-independent fractionation line of the Archean rock record. This model may finally offer a mechanistic explanation for the striking mass-independent fractionation of sulfur isotopes that took place in the Archean atmosphere of Earth.

  3. Recombination reactions as a possible mechanism of mass-independent fractionation of sulfur isotopes in the Archean atmosphere of Earth

    PubMed Central

    Babikov, Dmitri

    2017-01-01

    A hierarchy of isotopically substituted recombination reactions is formulated for production of sulfur allotropes in the anoxic atmosphere of Archean Earth. The corresponding system of kinetics equations is solved analytically to obtain concise expressions for isotopic enrichments, with focus on mass-independent isotope effects due to symmetry, ignoring smaller mass-dependent effects. Proper inclusion of atom-exchange processes is shown to be important. This model predicts significant and equal depletions driven by reaction stoichiometry for all rare isotopes: 33S, 34S, and 36S. Interestingly, the ratio of capital Δ values obtained within this model for 33S and 36S is −1.16, very close to the mass-independent fractionation line of the Archean rock record. This model may finally offer a mechanistic explanation for the striking mass-independent fractionation of sulfur isotopes that took place in the Archean atmosphere of Earth. PMID:28258172

  4. Recombination reactions as a possible mechanism of mass-independent fractionation of sulfur isotopes in the Archean atmosphere of Earth.

    PubMed

    Babikov, Dmitri

    2017-03-21

    A hierarchy of isotopically substituted recombination reactions is formulated for production of sulfur allotropes in the anoxic atmosphere of Archean Earth. The corresponding system of kinetics equations is solved analytically to obtain concise expressions for isotopic enrichments, with focus on mass-independent isotope effects due to symmetry, ignoring smaller mass-dependent effects. Proper inclusion of atom-exchange processes is shown to be important. This model predicts significant and equal depletions driven by reaction stoichiometry for all rare isotopes: (33)S, (34)S, and (36)S. Interestingly, the ratio of capital [Formula: see text] values obtained within this model for (33)S and (36)S is -1.16, very close to the mass-independent fractionation line of the Archean rock record. This model may finally offer a mechanistic explanation for the striking mass-independent fractionation of sulfur isotopes that took place in the Archean atmosphere of Earth.

  5. Did the character of subduction change at the end of the Archean? Constraints from convergent-margin granitoids

    NASA Astrophysics Data System (ADS)

    Condie, Kent C.

    2008-08-01

    Large ion lithophile and high field strength element distributionsin juvenile upper continental crust are controlled chiefly bythe abundance of tonalite-trondhjemite-granodiorite (TTG) inthe Archean shifting to a combination of TTG, calc-alkalinegranitoid, and graywacke control thereafter. Geochemical differencesbetween TTG and high-silica adakites do not require productionof most TTG magmas in descending slabs. Changes in the ratioof TTG to calc-alkaline granitoids after 2.5 Ga indicate thatArchean subduction zones must have differed from younger subductionzones in two very important ways: (1) a deep mafic crust servedas a TTG magma source (either as thickened crust or in descendingslabs), and (2) they did not give rise to significant volumesof calc-alkaline magma. Thickened mafic crust in the Late Archeanmay have resulted from plate jams in subduction zones causedby thicker oceanic crust and oceanic plateaus produced duringLate Archean mantle thermal events.

  6. Niobium-enriched basalts from the Wabigoon subprovince, Canada: evidence for adakitic metasomatism above an Archean subduction zone

    NASA Astrophysics Data System (ADS)

    Wyman, D. A.; Ayer, J. A.; Devaney, J. R.

    2000-06-01

    Late Archean niobium-enriched basalts from the Central Sturgeon Lake assemblage and Neepawa group of the western Wabigoon subprovince have mantle-normalized Nb/La between 0.8 and 1.3 and Zr/Y between 4 and 7. They are compositionally similar to basalts attributed to adakite metasomatism of mantle wedge regions in Cenozoic subduction zones [Sajona et al., J. Petrol. 37 (1996) 693-726]. In detail, their Sc-REE systematics suggest the Archean basalts were generated above the garnet stability field. An association with adakite-like volcanic rocks, an absence of komatiites and the arc-like attributes of their host sequences suggest a subduction-related origin for the basalts. If current models of adakite and Niobium-enriched basalt genesis are valid, then additional examples of these rocks should be relatively common in other Archean greenstone belts.

  7. New Constraints on the Extent of Paleoproterozoic and Archean Basement in the Northwest U.S. Cordillera

    NASA Astrophysics Data System (ADS)

    Brewer, R. A.; Vervoort, J.; Lewis, R. S.; Gaschnig, R. M.; Hart, G.

    2008-12-01

    The Laurentian basement west of the Wyoming craton in southwest Montana and northern Idaho has been interpreted as a collage of Archean and Proterozoic terranes which accreted to the North American craton and incorporated into Laurentia at ~ 1.86 Ga [1]. This basement and the geometry of the Archean and Proterozoic crust are poorly understood due to coverage by metasediments of the Belt-Purcell Supergroup and are further obscured by Mesozoic magmatism (Idaho Batholith, sensu lato). Exposures of the basement are rare but have been documented in a few regions including the Priest River Complex in northern Idaho and the Sevier fold and thrust belt just northwest of the Wyoming craton in the Great Falls tectonic zone (Foster et al. 2006). New ages and isotopic data from orthogneisses in north-central Idaho provide evidence for previously undocumented exposures of both Paleoproterozoic and Archean basement that may place important constraints on the reconstruction of Laurentia and its tectonic setting. The orthogneisses analyzed in this study (all previously mapped as deformed Cretaceous plutons) fall into two distinct age groups of 1.86 Ga and 2.67 Ga. The zircons from both the Archean and Proterozoic rocks have simple systematics. The zircons from three Archean samples have ɛHf(i) values of 2.4 ± 2.1, 3.8 ± 1.8, and 5.2 ± 3.5 (average values based on 6 individual zircon Hf analyses per sample). Zircons from the Paleoproterozoic gneisses have different but internally consistent ɛHf(i) values of -8.0 ± 0.9 and -0.6 ± 1.4. In contrast, both Hf and Nd whole rock data are highly scattered in these samples especially in the Archean samples in which ɛHf(i) varies from -25 to +21 and ɛNd(i) varies from -8 to +11. These extreme values are implausible for initial compositions and indicate open system behavior in both Lu-Hf and Sm-Nd in the whole rocks. The zircons, in contrast, appear to be closed to significant Hf mobility on the scale of the laser analyses. The data

  8. Archean inheritance in zircon from late Paleozoic granites from the Avalon zone of southeastern New England: an African connection

    USGS Publications Warehouse

    Zartman, R.E.; Don, Hermes O.

    1987-01-01

    In southeastern New England the Narragansett Pier Granite locally intrudes Carboniferous metasedimentary rocks of the Narragansett basin, and yields a monazite UPb Permian emplacement age of 273 ?? 2 Ma. Zircon from the Narragansett Pier Granite contains a minor but detectable amount of an older, inherited component, and shows modern loss of lead. Zircon from the late-stage, aplitic Westerly Granite exhibits a more pronounced lead inheritance -permitting the inherited component to be identified as Late Archean. Such old relict zircon has not been previously recognized in Proterozoic to Paleozoic igneous rocks in New England, and may be restricted to late Paleozoic rocks of the Avalon zone. We suggest that the Archean crustal component reflects an African connection, in which old Archean crust was underplated to the Avalon zone microplate in the late Paleozoic during collision of Gondwanaland with Avalonia. ?? 1987.

  9. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks

    USGS Publications Warehouse

    Tangalos, G.E.; Beard, B.L.; Johnson, C.M.; Alpers, C.N.; Shelobolina, E.S.; Xu, H.; Konishi, H.; Roden, E.E.

    2012-01-01

    The inventories and Fe isotope composition of aqueous Fe(II) and solid-phase Fe compounds were quantified in neutral-pH, chemically precipitated sediments downstream of the Iron Mountain acid mine drainage site in northern California, USA. The sediments contain high concentrations of amorphous Fe(III) oxyhydroxides [Fe(III)am] that allow dissimilatory iron reduction (DIR) to predominate over Fe–S interactions in Fe redox transformation, as indicated by the very low abundance of Cr(II)-extractable reduced inorganic sulfur compared with dilute HCl-extractable Fe. δ56Fe values for bulk HCl- and HF-extractable Fe were ≈ 0. These near-zero bulk δ56Fe values, together with the very low abundance of dissolved Fe in the overlying water column, suggest that the pyrite Fe source had near-zero δ56Fe values, and that complete oxidation of Fe(II) took place prior to deposition of the Fe(III) oxide-rich sediment. Sediment core analyses and incubation experiments demonstrated the production of millimolar quantities of isotopically light (δ56Fe ≈ -1.5 to -0.5‰) aqueous Fe(II) coupled to partial reduction of Fe(III)am by DIR. Trends in the Fe isotope composition of solid-associated Fe(II) and residual Fe(III)am are consistent with experiments with synthetic Fe(III) oxides, and collectively suggest an equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)am of approximately -2‰. These Fe(III) oxide-rich sediments provide a model for early diagenetic processes that are likely to have taken place in Archean and Paleoproterozoic marine sediments that served as precursors for banded iron formations. Our results suggest pathways whereby DIR could have led to the formation of large quantities of low-δ56Fe minerals during BIF genesis.

  10. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks.

    PubMed

    Tangalos, G E; Beard, B L; Johnson, C M; Alpers, C N; Shelobolina, E S; Xu, H; Konishi, H; Roden, E E

    2010-06-01

    The inventories and Fe isotope composition of aqueous Fe(II) and solid-phase Fe compounds were quantified in neutral-pH, chemically precipitated sediments downstream of the Iron Mountain acid mine drainage site in northern California, USA. The sediments contain high concentrations of amorphous Fe(III) oxyhydroxides [Fe(III)(am)] that allow dissimilatory iron reduction (DIR) to predominate over Fe-S interactions in Fe redox transformation, as indicated by the very low abundance of Cr(II)-extractable reduced inorganic sulfur compared with dilute HCl-extractable Fe. delta(56)Fe values for bulk HCl- and HF-extractable Fe were approximately 0. These near-zero bulk delta(56)Fe values, together with the very low abundance of dissolved Fe in the overlying water column, suggest that the pyrite Fe source had near-zero delta(56)Fe values, and that complete oxidation of Fe(II) took place prior to deposition of the Fe(III) oxide-rich sediment. Sediment core analyses and incubation experiments demonstrated the production of millimolar quantities of isotopically light (delta(56)Fe approximately -1.5 to -0.5 per thousand) aqueous Fe(II) coupled to partial reduction of Fe(III)(am) by DIR. Trends in the Fe isotope composition of solid-associated Fe(II) and residual Fe(III)(am) are consistent with experiments with synthetic Fe(III) oxides, and collectively suggest an equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)(am) of approximately -2 per thousand. These Fe(III) oxide-rich sediments provide a model for early diagenetic processes that are likely to have taken place in Archean and Paleoproterozoic marine sediments that served as precursors for banded iron formations. Our results suggest pathways whereby DIR could have led to the formation of large quantities of low-delta(56)Fe minerals during BIF genesis.

  11. Band Together!

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    After nearly a decade as band director at St. James High School in St. James, Missouri, Derek Limback knows that the key to building a successful program is putting the program itself above everything else. Limback strives to augment not only his students' musical prowess, but also their leadership skills. Key to his philosophy is instilling a…

  12. Archean Age Fossils from Northwestern Australia (Approximately 3.3 to 3.5 GA, Warrawoona Group, Towers Formation)

    NASA Technical Reports Server (NTRS)

    Smith, Penny A. Morris

    1999-01-01

    Archean aged rocks from the Pilbara Block area of western Australia (Warrawoona Group, Towers Formation, -3.3-3.5 Ga) contain microfossils that are composed of various sizes of spheres and filaments. The first descriptions of these microfossils were published in the late 1970's (Dunlop, 1978; Dunlop, et. al., 1978). The authenticity of the microfossils is well established. The small size of the microfossils prevents isotope dating, at least with the present technology. Microbiologists, however, have established guidelines to determine the authenticity of the Archean aged organic remains (Schopf, Walter, 1992).

  13. Archean Age Fossils from Northwestern Australia (Approximately 3.3 to 3.5 GA, Warrawoona Group, Towers Formation)

    NASA Technical Reports Server (NTRS)

    Smith, Penny A. Morris

    1999-01-01

    Archean aged rocks from the Pilbara Block area of western Australia (Warrawoona Group, Towers Formation, -3.3-3.5 Ga) contain microfossils that are composed of various sizes of spheres and filaments. The first descriptions of these microfossils were published in the late 1970's (Dunlop, 1978; Dunlop, et. al., 1978). The authenticity of the microfossils is well established. The small size of the microfossils prevents isotope dating, at least with the present technology. Microbiologists, however, have established guidelines to determine the authenticity of the Archean aged organic remains (Schopf, Walter, 1992).

  14. Evidence for a complex archean deformational history; southwestern Michipicoten Greenstone Belt, Ontario

    NASA Technical Reports Server (NTRS)

    Mcgill, George E.; Shrady, Catherine H.

    1986-01-01

    The Michipicoten Greenstone Belt extends for about 150 km ENE from the northeastern angle of Lake Superior. In common with many other Archean greenstone belts, it is characterized by generally steep bedding dips and a distribution of major lithologic types suggesting a crudely synclinal structure for the belt as a whole. Detailed mapping and determination of structural sequence demonstrates that the structure is much more complex. The Archean history of the belt includes formation of at least three regionally significant cleavages, kilometer-scale overturning, extensive shearing, and diabase intrusion. Most well defined, mappable 'packages' of sedimentary rocks appear to be bounded by faults. These faults were active relatively early in the structural history of the belt, when extensive overturning also occurred. Steepening of dips, NW-SE shortening, development of steep NE cleavage, and pervasive shearing all postdate the early faulting and the regional overturning, obscuring much of the detail needed to define the geometry of the earlier structures. The results obtained so far suggest, however, that the Michipicoten Greenstone Belt underwent an early stage of thrusting and associated isoclinal folding, probably in a convergent tectonic environment.

  15. Reconstructed ancestral enzymes suggest long-term cooling of Earth's photic zone since the Archean

    NASA Astrophysics Data System (ADS)

    Garcia, Amanda K.; Schopf, J. William; Yokobori, Shin-ichi; Akanuma, Satoshi; Yamagishi, Akihiko

    2017-05-01

    Paleotemperatures inferred from the isotopic compositions (δ18O and δ30Si) of marine cherts suggest that Earth’s oceans cooled from 70 ± 15 °C in the Archean to the present ˜15 °C. This interpretation, however, has been subject to question due to uncertainties regarding oceanic isotopic compositions, diagenetic or metamorphic resetting of the isotopic record, and depositional environments. Analyses of the thermostability of reconstructed ancestral enzymes provide an independent method by which to assess the temperature history inferred from the isotopic evidence. Although previous studies have demonstrated extreme thermostability in reconstructed archaeal and bacterial proteins compatible with a hot early Earth, taxa investigated may have inhabited local thermal environments that differed significantly from average surface conditions. We here present thermostability measurements of reconstructed ancestral enzymatically active nucleoside diphosphate kinases (NDKs) derived from light-requiring prokaryotic and eukaryotic phototrophs having widely separated fossil-based divergence ages. The ancestral environmental temperatures thereby determined for these photic-zone organisms--shown in modern taxa to correlate strongly with NDK thermostability--are inferred to reflect ancient surface-environment paleotemperatures. Our results suggest that Earth's surface temperature decreased over geological time from ˜65-80 °C in the Archean, a finding consistent both with previous isotope-based and protein reconstruction-based interpretations. Interdisciplinary studies such as those reported here integrating genomic, geologic, and paleontologic data hold promise for providing new insight into the coevolution of life and environment over Earth history.

  16. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2016-09-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  17. Earth's earliest biosphere-a proposal to develop a collection of curated archean geologic reference materials

    NASA Technical Reports Server (NTRS)

    Lindsay, John F.; McKay, David S.; Allen, Carlton C.

    2003-01-01

    The discovery of evidence indicative of life in a Martian meteorite has led to an increase in interest in astrobiology. As a result of this discovery, and the ensuing controversy, it has become apparent that our knowledge of the early development of life on Earth is limited. Archean stratigraphic successions containing evidence of Earth's early biosphere are well preserved in the Pilbara Craton of Western Australia. The craton includes part of a protocontinent consisting of granitoid complexes that were emplaced into, and overlain by, a 3.51-2.94 Ga volcanigenic carapace - the Pilbara Supergroup. The craton is overlain by younger supracrustal basins that form a time series recording Earth history from approximately 2.8 Ga to approximately 1.9 Ga. It is proposed that a well-documented suite of these ancient rocks be collected as reference material for Archean and astrobiological research. All samples would be collected in a well-defined geological context in order to build a framework to test models for the early evolution of life on Earth and to develop protocols for the search for life on other planets.

  18. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents.

    PubMed

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2016-09-23

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  19. Evidence for reactive reduced phosphorus species in the early Archean ocean

    PubMed Central

    Pasek, Matthew A.; Harnmeijer, Jelte P.; Buick, Roger; Gull, Maheen; Atlas, Zachary

    2013-01-01

    It has been hypothesized that before the emergence of modern DNA–RNA–protein life, biology evolved from an “RNA world.” However, synthesizing RNA and other organophosphates under plausible early Earth conditions has proved difficult, with the incorporation of phosphorus (P) causing a particular problem because phosphate, where most environmental P resides, is relatively insoluble and unreactive. Recently, it has been proposed that during the Hadean–Archean heavy bombardment by extraterrestrial impactors, meteorites would have provided reactive P in the form of the iron–nickel phosphide mineral schreibersite. This reacts in water, releasing soluble and reactive reduced P species, such as phosphite, that could then be readily incorporated into prebiotic molecules. Here, we report the occurrence of phosphite in early Archean marine carbonates at levels indicating that this was an abundant dissolved species in the ocean before 3.5 Ga. Additionally, we show that schreibersite readily reacts with an aqueous solution of glycerol to generate phosphite and the membrane biomolecule glycerol–phosphate under mild thermal conditions, with this synthesis using a mineral source of P. Phosphite derived from schreibersite was, hence, a plausible reagent in the prebiotic synthesis of phosphorylated biomolecules and was also present on the early Earth in quantities large enough to have affected the redox state of P in the ocean. Phosphorylated biomolecules like RNA may, thus, have first formed from the reaction of reduced P species with the prebiotic organic milieu on the early Earth. PMID:23733935

  20. Reconstructed ancestral enzymes suggest long-term cooling of Earth's photic zone since the Archean.

    PubMed

    Garcia, Amanda K; Schopf, J William; Yokobori, Shin-Ichi; Akanuma, S