Science.gov

Sample records for archetypal heisenberg pyrochlore

  1. 3 d -electron Heisenberg pyrochlore Mn2Sb2O7

    NASA Astrophysics Data System (ADS)

    Peets, Darren C.; Sim, Hasung; Avdeev, Maxim; Park, Je-Geun

    2016-11-01

    In frustrated magnetic systems, geometric constraints or the competition among interactions introduce extre-mely high degeneracy and prevent the system from readily selecting a low-temperature ground state. The most frustrated known spin arrangement is on the pyrochlore lattice, but nearly all magnetic pyrochlores have unquenched orbital angular momenta, constraining the spin directions through spin-orbit coupling. Pyrochlore Mn2Sb2O7 is an extremely rare Heisenberg pyrochlore system with directionally unconstrained spins and low chemical disorder. We show that it undergoes a spin-glass transition at 5.5 K, which is suppressed by disorder arising from Mn vacancies, indicating this ground state to be a direct consequence of the spins' interactions. The striking similarities to 3 d transition-metal pyrochlores with unquenched angular momenta suggests that the low spin-orbit coupling in the 3 d block makes Heisenberg pyrochlores far more accessible than previously imagined.

  2. Chiral Kosterlitz-Thouless transition in the frustrated Heisenberg antiferromagnet on a pyrochlore slab.

    PubMed

    Kawamura, Hikaru; Arimori, Takuya

    2002-02-18

    Ordering of the geometrically frustrated two-dimensional Heisenberg antiferromagnet on a pyrochlore slab is studied by Monte Carlo simulations. In contrast to the kagomé Heisenberg antiferromagnet, the model exhibits locally noncoplanar spin structures at low temperatures, bearing nontrivial chiral degrees of freedom. Under certain conditions, the model exhibits a novel Kosterlitz-Thouless-type transition at a finite temperature associated with these chiral degrees of freedom.

  3. Low-temperature Spin-Ice State of Quantum Heisenberg Magnets on Pyrochlore Lattice

    NASA Astrophysics Data System (ADS)

    Huang, Yuan; Chen, Kun; Deng, Youjin; Prokof'ev, Nikolay; Svistunov, Boris

    We establish that the isotropic spin-1/2 Heisenberg antiferromagnet on pyrochlore lattice enters a spin-ice state at low, but finite, temperature. Our conclusions are based on results of the bold diagrammatic Monte Carlo simulations that demonstrate good convergence of the skeleton series down to temperature T = J/6. The ``smoking gun'' identification of the spin-ice state is done through a remarkably accurate microscopic correspondence for static spin-spin correlation function between the quantum Heisenberg and classical Heisenberg/Ising models at all accessible temperatures. In particular, at T/J = 1/6, the momentum dependence shows a characteristic bow-tie pattern with pinch points. By numerical analytical continuation method, we also obtain the dynamic structure factor at real frequencies, showing a diffusive spinon dynamics at pinch points and spin wave continuum along the nodal lines.?

  4. Spin-Ice State of the Quantum Heisenberg Antiferromagnet on the Pyrochlore Lattice

    NASA Astrophysics Data System (ADS)

    Huang, Yuan; Chen, Kun; Deng, Youjin; Prokof'ev, Nikolay; Svistunov, Boris

    2016-04-01

    We study the low-temperature physics of the SU(2)-symmetric spin-1 /2 Heisenberg antiferromagnet on a pyrochlore lattice and find "fingerprint" evidence for the thermal spin-ice state in this frustrated quantum magnet. Our conclusions are based on the results of bold diagrammatic Monte Carlo simulations, with good convergence of the skeleton series down to the temperature T /J =1 /6 . The identification of the spin-ice state is done through a remarkably accurate microscopic correspondence for the static structure factor between the quantum Heisenberg, classical Heisenberg, and Ising models at all accessible temperatures, and the characteristic bowtie pattern with pinch points observed at T /J =1 /6 . The dynamic structure factor at real frequencies (obtained by the analytic continuation of numerical data) is consistent with diffusive spinon dynamics at the pinch points.

  5. Spin-Ice State of the Quantum Heisenberg Antiferromagnet on the Pyrochlore Lattice.

    PubMed

    Huang, Yuan; Chen, Kun; Deng, Youjin; Prokof'ev, Nikolay; Svistunov, Boris

    2016-04-29

    We study the low-temperature physics of the SU(2)-symmetric spin-1/2 Heisenberg antiferromagnet on a pyrochlore lattice and find "fingerprint" evidence for the thermal spin-ice state in this frustrated quantum magnet. Our conclusions are based on the results of bold diagrammatic Monte Carlo simulations, with good convergence of the skeleton series down to the temperature T/J=1/6. The identification of the spin-ice state is done through a remarkably accurate microscopic correspondence for the static structure factor between the quantum Heisenberg, classical Heisenberg, and Ising models at all accessible temperatures, and the characteristic bowtie pattern with pinch points observed at T/J=1/6. The dynamic structure factor at real frequencies (obtained by the analytic continuation of numerical data) is consistent with diffusive spinon dynamics at the pinch points.

  6. Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice.

    PubMed

    Aoyama, Kazushi; Kawamura, Hikaru

    2016-06-24

    Effects of local lattice distortions on the spin ordering are investigated for the antiferromagnetic classical Heisenberg model on the pyrochlore lattice. It is found by Monte Carlo simulations that the spin-lattice coupling (SLC) originating from site phonons induces a first-order transition into two different types of collinear magnetic ordered states. The state realized at the stronger SLC is cubic symmetric characterized by the magnetic (1/2,1/2,1/2) Bragg peaks, while that at the weaker SLC is tetragonal symmetric characterized by the (1,1,0) ones, each accompanied by the commensurate local lattice distortions. Experimental implications to chromium spinels are discussed.

  7. Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazushi; Kawamura, Hikaru

    2016-06-01

    Effects of local lattice distortions on the spin ordering are investigated for the antiferromagnetic classical Heisenberg model on the pyrochlore lattice. It is found by Monte Carlo simulations that the spin-lattice coupling (SLC) originating from site phonons induces a first-order transition into two different types of collinear magnetic ordered states. The state realized at the stronger SLC is cubic symmetric characterized by the magnetic (1/2 ,1/2 ,1/2 ) Bragg peaks, while that at the weaker SLC is tetragonal symmetric characterized by the (1,1,0) ones, each accompanied by the commensurate local lattice distortions. Experimental implications to chromium spinels are discussed.

  8. Relief of frustration in the Heisenberg pyrochlore antiferromagnet Gd2Pt2O7

    NASA Astrophysics Data System (ADS)

    Hallas, A. M.; Sharma, A. Z.; Cai, Y.; Munsie, T. J.; Wilson, M. N.; Tachibana, M.; Wiebe, C. R.; Luke, G. M.

    2016-10-01

    The gadolinium pyrochlores Gd2B2O7 are among the best realizations of antiferromagnetically coupled Heisenberg spins on a pyrochlore lattice. We present a magnetic characterization of Gd2Pt2O7 , a unique member of this family. Magnetic susceptibility, heat capacity, and muon spin relaxation measurements show that Gd2Pt2O7 undergoes an antiferromagnetic ordering transition at TN=1.6 K. This transition is strongly first order, as indicated by the sharpness of the heat capacity anomaly, thermal hysteresis in the magnetic susceptibility, and a nondivergent relaxation rate in μ SR . The form of the heat capacity below TN suggests that the ground state is an anisotropic collinear antiferromagnet with an excitation spectrum that is gapped by 0.245(1) meV. The ordering temperature in Gd2Pt2O7,TN=1.6 K, is a substantial 160% increase from other gadolinium pyrochlores, which are all known to order at 1 K or lower. We attribute this enhancement in TN to the B -site cation, platinum. Despite being nonmagnetic, platinum has a filled 5 d t2 g orbital and an empty 5 d eg orbital that can facilitate superexchange. Thus, the magnetic frustration in Gd2Pt2O7 is partially "relieved," thereby promoting magnetic order.

  9. Collective dynamics in the Heisenberg pyrochlore antiferromagnet Gd2Sn2O7

    NASA Astrophysics Data System (ADS)

    Stewart, J. R.; Gardner, J. S.; Qiu, Y.; Ehlers, G.

    2008-10-01

    Gd2Sn2O7 is believed to be a good approximation to a Heisenberg antiferromagnet on a pyrochlore lattice with exchange and dipole-dipole interactions. The system is known to enter a long-range ordered ground state (the “Palmer Chalker” state) below Tc=1K with kord=(000) . However, persistent electronic spin fluctuations have been observed as T→0 . Using inelastic neutron scattering, we have studied the buildup of short-range spin-spin correlations as the temperature is lowered, and the eventual formation of a gapped long-range ordered state that is able to sustain spin waves below Tc . As a magnetic field is applied, new magnetic phases develop and the gap widens. These measurements show that Gd2Sn2O7 completely relieves itself of frustration, but the self-selected ground state is very delicate.

  10. Collective Dynamics in the Heisenberg Pyrochlore Antiferromagnet Gd2Sn2O7

    SciTech Connect

    Ehlers, Georg

    2008-01-01

    Gd{sub 2}Sn{sub 2}O{sub 7} is believed to be a good approximation to a Heisenberg antiferromagnet on a pyrochlore lattice with exchange and dipole-dipole interactions. The system is known to enter a long-range ordered ground state (the 'Palmer Chalker' state) below T{sub c} = 1 K with k{sub ord} = (000). However, persistent electronic spin fluctuations have been observed as T {yields} 0. Using inelastic neutron scattering, we have studied the buildup of short-range spin-spin correlations as the temperature is lowered, and the eventual formation of a gapped long-range ordered state that is able to sustain spin waves below T{sub c}. As a magnetic field is applied, new magnetic phases develop and the gap widens. These measurements show that Gd{sub 2}Sn{sub 2}O{sub 7} completely relieves itself of frustration, but the self-selected ground state is very delicate.

  11. Spin-glass transition in bond-disordered Heisenberg antiferromagnets coupled with local lattice distortions on a pyrochlore lattice.

    PubMed

    Shinaoka, Hiroshi; Tomita, Yusuke; Motome, Yukitoshi

    2011-07-22

    Motivated by puzzling characteristics of spin-glass transitions widely observed in pyrochlore-based frustrated materials, we investigate the effects of coupling to local lattice distortions in a bond-disordered antiferromagnet on the pyrochlore lattice by extensive Monte Carlo simulations. We show that the spin-glass transition temperature T(f) is largely enhanced by the spin-lattice coupling and, furthermore, becomes almost independent of Δ in a wide range of the disorder strength Δ. The critical property of the spin-glass transition is indistinguishable from that of the canonical Heisenberg spin glass in the entire range of Δ. These peculiar behaviors are ascribed to a modification of the degenerate manifold from a continuous to semidiscrete one by spin-lattice coupling.

  12. Color ice states, weathervane modes, and order by disorder in the bilinear-biquadratic pyrochlore Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Wan, Yuan; Gingras, Michel J. P.

    2016-11-01

    We study the pyrochlore Heisenberg antiferromagnet with additional positive biquadratic interaction in the semiclassical limit. The classical ground-state manifold of the model contains an extensively large family of noncoplanar spin states known as "color ice states." Starting from a color ice state, a subset of spins may rotate collectively at no energy cost. Such excitation may be viewed in this three-dimensional system as a "membranelike" analog of the well-known weathervane modes in the classical kagome Heisenberg antiferromagnet. We investigate the weathervane modes in detail and elucidate their physical properties. Furthermore, we study the order by disorder phenomenon in this model, focusing on the role of harmonic fluctuations. Our computationally limited phase space search suggests that quantum fluctuations select three different states as the magnitude of the biquadratic interaction increases relative to the bilinear interaction, implying a sequence of phase transitions solely driven by fluctuations.

  13. Effect of magnetoelastic coupling on spin-glass behavior in Heisenberg pyrochlore antiferromagnets with bond disorder

    NASA Astrophysics Data System (ADS)

    Shinaoka, Hiroshi; Tomita, Yusuke; Motome, Yukitoshi

    2014-10-01

    Motivated by puzzling aspects of spin-glass behavior reported in frustrated magnetic materials, we theoretically investigate effects of magnetoelastic coupling in geometrically frustrated classical spin models. In particular, we consider bond-disordered Heisenberg antiferromagnets on a pyrochlore lattice coupled to local lattice distortions. By integrating out the lattice degree of freedom, we derive an effective spin-only model, the bilinear-biquadratic model with bond disorder. The effective model is analyzed by classical Monte Carlo simulations using an extended loop algorithm. First, we discuss the phase diagrams in detail by showing the comprehensive Monte Carlo data for thermodynamic and magnetic properties. We show that the spin-glass transition temperature Tf is largely enhanced by the spin-lattice coupling b in the weakly disordered regime. By considering the limit of strong spin-lattice coupling, this enhancement is ascribed to the suppression of thermal fluctuations in semidiscrete degenerate manifold formed in the presence of the spin-lattice coupling. We also find that, by increasing the strength of disorder Δ, the system shows a concomitant transition of the nematic order and spin glass at a temperature determined by b, being almost independent of Δ. This is due to the fact that the spin-glass transition is triggered by the spin collinearity developed by the nematic order. Although further-neighbor exchange interactions originating in the cooperative lattice distortions result in spin-lattice order in the weakly disordered regime, the concomitant transition remains robust with Tf almost independent of Δ. We find that the magnetic susceptibility shows hysteresis between the field-cooled and zero-field-cooled data below Tf, and that the nonlinear susceptibility shows a negative divergence at the transition. These features are common to conventional spin-glass systems. Meanwhile, we find that the specific heat exhibits a broad peak at Tf, and that the

  14. Long-range magnetic order in the Heisenberg pyrochlore antiferromagnets G d2G e2O7 and G d2P t2O7 synthesized under high pressure

    NASA Astrophysics Data System (ADS)

    Li, X.; Cai, Y. Q.; Cui, Q.; Lin, C. J.; Dun, Z. L.; Matsubayashi, K.; Uwatoko, Y.; Sato, Y.; Kawae, T.; Lv, S. J.; Jin, C. Q.; Zhou, J.-S.; Goodenough, J. B.; Zhou, H. D.; Cheng, J.-G.

    2016-12-01

    G d2S n2O7 and G d2T i2O7 have been regarded as good experimental realizations of the classical Heisenberg pyrochlore antiferromagnet with dipolar interaction. The former was found to adopt the Palmer-Chalker state via a single, first-order transition at TN≈1 K , while the latter enters a distinct, partially ordered state through two successive transitions at TN 1≈1 K and TN 2= 0.75 K . To shed more light on their distinct magnetic ground states, we have synthesized two more gadolinium-based pyrochlore oxides, G d2G e2O7 and G d2P t2O7 , under high-pressure conditions and performed detailed characterizations via x-ray powder diffraction, dc and ac magnetic susceptibility, and specific heat measurements down to 100 mK. We found that both compounds enter a long-range antiferromagnetically ordered state through a single, first-order transition at TN= 1.4 K for G d2G e2O7 and TN= 1.56 K for G d2P t2O7 , with the specific heat anomaly similar to that of G d2S n2O7 rather than G d2T i2O7 . Interestingly, the low-temperature magnetic specific heat values of both G d2G e2O7 and G d2P t2O7 were found to follow nicely the T3 dependence as expected for a three-dimensional antiferromagnet with gapless spin-wave excitations. We have rationalized the enhancement of TN in terms of the reduced Gd-Gd distances for the chemically pressurized G d2G e2O7 and the addition of extra superexchange pathways through the empty Pt -eg orbitals for G d2P t2O7 . Our current study has expanded the family of gadolinium-based pyrochlores and permits us to achieve a better understanding of their distinct magnetic properties in a more comprehensive perspective.

  15. Archetypal Criticism.

    ERIC Educational Resources Information Center

    Chesebro, James W.; And Others

    1990-01-01

    Argues that archetypal criticism is a useful way of examining universal, historical, and cross-cultural symbols in classrooms. Identifies essential features of an archetype; outlines operational and critical procedures; illustrates archetypal criticism as applied to the cross as a symbol; and provides a synoptic placement for archetypal criticism…

  16. Large-scale calculation of ferromagnetic spin systems on the pyrochlore lattice

    NASA Astrophysics Data System (ADS)

    Soldatov, Konstantin; Nefedev, Konstantin; Komura, Yukihiro; Okabe, Yutaka

    2017-02-01

    We perform the high-performance computation of the ferromagnetic Ising model on the pyrochlore lattice. We determine the critical temperature accurately based on the finite-size scaling of the Binder ratio. Comparing with the data on the simple cubic lattice, we argue the universal finite-size scaling. We also calculate the classical XY model and the classical Heisenberg model on the pyrochlore lattice.

  17. [Dreaming archetypes].

    PubMed

    De Angelis, Elio

    2009-01-01

    The Jungian notion of archetype is compared with the one developed by Ernst Curtius, also derived from Jung. Both notions are seen against the background of modernity--that both authors identify with Nazism--thus highlighting the ambiguity and potentiality embedded in Jung's original thought, generally neglected in later developments.

  18. Frustrated ferroelectricity in niobate pyrochlores

    NASA Astrophysics Data System (ADS)

    McQueen, T. M.; West, D. V.; Muegge, B.; Huang, Q.; Noble, K.; Zandbergen, H. W.; Cava, R. J.

    2008-06-01

    The crystal structures of the A2B2O7-x niobium based pyrochlores Y2(Nb0.86Y0.14)2O6.91, CaYNb2O7, and Y2NbTiO7 are reported, determined by means of powder neutron diffraction. These compounds represent the first observation of B-site displacements in the pyrochlore structure: the B-site ions are found to be displaced from the ideal pyrochlore positions, creating electric dipoles. The orientations of these dipoles are fully analogous to orientations of the magnetic moments in Ising spin based magnetically frustrated pyrochlores. Diffuse scattering in electron diffraction patterns shows that the displacements are only short range ordered, indicative of geometric frustration of the collective dielectric state of the materials. Comparison to the crystal structure of the Nb5+ (d0) pyrochlore La2ScNbO7 supports the prediction that charge singlets, driven by the tendency of Nb to form metal-metal bonds, are present in these pyrochlores. The observed lack of long range order to these singlets suggests that Nb4+ based pyrochlores represent the dielectric analogy to the geometric frustration of magnetic moments observed in rare earth pyrochlores.

  19. Titanium pyrochlore magnets: how much can be learned from magnetization measurements?

    PubMed

    Petrenko, O A; Lees, M R; Balakrishnan, G

    2011-04-27

    We report magnetization data for several titanium pyrochlore systems measured down to 0.5 K. The measurements, performed on single crystal samples in fields of up to 7 kOe, have captured the essential elements of the previously reported phase transitions in these compounds and have also revealed additional important features overlooked previously either because of the insufficiently low temperatures used, or due to limitations imposed by polycrystalline samples. For the spin-ice pyrochlores Dy(2)Ti(2)O(7) and Ho(2)Ti(2)O(7), an unusually slow relaxation of the magnetization has been observed in lower fields, while the magnetization process in higher fields is essentially hysteresis-free and does not depend on sample history. For the XY pyrochlore Er(2)Ti(2)O(7), the magnetic susceptibility shows nearly diverging behaviour on approach to a critical field, H(C) = 13.5 kOe, above which the magnetization does not saturate but continues to grow at a significant rate. For the Heisenberg pyrochlore Gd(2)Ti(2)O(7), the magnetic susceptibility shows a pronounced change of slope at both transition temperatures, T(N1) = 1.02 K and T(N2) = 0.74 K, contrary to the earlier reports.

  20. Hydrothermal synthesis of pyrochlores and their characterization

    NASA Astrophysics Data System (ADS)

    Redkin, Alexander F.; Ionov, Andrey M.; Kotova, Nataliya P.

    2013-10-01

    Pyrochlores, microlites, and U-betafites of pyrochlore group minerals were obtained from mixing experiments of the corresponding oxides and fluorides by hydrothermal synthesis at T = 800 °C and P = 200 MPa in the solution of 1.0 M NaF. The presence of U4+ in pyrochlore does not affect the cell parameter, which for the phases of pyrochlore-microlite series is 10.42 ± 0.01 Å. In a system with an excess of UO2, pyrochlores and microlites, containing uranium up to 0.2-0.3 atoms per formula unit (apfu), are formed. In the uranium-free system of betafites composition, perovskites and Ti-bearing pyrochlores are formed. U-pyrochlores of betafite series, containing 2Ti = Nb + Ta in moles, have cubic cell parameters of 10.26 ± 0.02 Å and U4+ isomorphic capacity of 0.4-0.5 apfu. In the pyrochlore structure, U4+ may substitute for Ca2+ and Na+ cations in the eightfold site. In pyrochlores of pyrochlore-microlite series, Ca2+ is replaced by U4+, while in pyrochlores of betafite series, U4+ replaces Na+. Phases with pyrochlore structure, containing U5+ and U6+ in the sixfold site, usually occupied by Nb5+, Ta5+, and Ti4+, are formed under oxidizing conditions (Cu-Cu2O buffer). They are characterized by low content of Nb5+, Ta5+ (<0.1 apfu), and anomalous behavior of the crystal lattice (compression, instead of expansion). Under natural conditions, the formation of pyrochlores containing a significant amount of U5+ and U6+ is unlikely.

  1. "The Odyssey" as Archetype

    ERIC Educational Resources Information Center

    Lowery, Alice M.

    1970-01-01

    Suggests the relevance of The Odyssey" to the lives of 20th century adolescents in exemplifying two fundamental archetypal themes: initiation and man's search for his own identity and for meaning in life." (Author/RD)

  2. Lead-ruthenium pyrochlores as oxygen electrocatalysts

    NASA Technical Reports Server (NTRS)

    Anderson, E. B.; Taylor, E. J.; Moniz, G. A.

    1990-01-01

    An investigation of lead-ruthenium pyrochlores of the structure Pb2(Ru/2-x/Pb/x/) O7-y for use as oxygen electrocatalysts in alkaline media is discussed. Lead-ruthenium pyrochlore mixed metal oxides were prepared and characterized by X-ray diffraction, BET surface area, dry powder conductivity, and chemical stability. Gas diffusion electrodes were developed specifically for the lead-ruthenium pyrochlore materials. Also investigated were the effects of varying electrode fabrication parameters on the oxygen reduction performance of the lead-ruthenium pyrochlore electrocatalyst. Long-term stability performance was also evaluated. The oxygen reduction performance of the pyrochlore electrocatalyst is considerably higher than that of the state-of-the-art gold-platinum alloy electrocatalyst currently used by NASA. Furthermore, the pyrochlore electrocatalysts are attractive candidates for high-performance pressurized alkaline fuel cells.

  3. Archetypes for Organisational Safety

    NASA Technical Reports Server (NTRS)

    Marais, Karen; Leveson, Nancy G.

    2003-01-01

    We propose a framework using system dynamics to model the dynamic behavior of organizations in accident analysis. Most current accident analysis techniques are event-based and do not adequately capture the dynamic complexity and non-linear interactions that characterize accidents in complex systems. In this paper we propose a set of system safety archetypes that model common safety culture flaws in organizations, i.e., the dynamic behaviour of organizations that often leads to accidents. As accident analysis and investigation tools, the archetypes can be used to develop dynamic models that describe the systemic and organizational factors contributing to the accident. The archetypes help clarify why safety-related decisions do not always result in the desired behavior, and how independent decisions in different parts of the organization can combine to impact safety.

  4. Approaching archetypes: reconsidering innateness.

    PubMed

    Goodwyn, Erik

    2010-09-01

    The question of innateness has hounded Jungian psychology since Jung originally postulated the archetype as an a priori structure within the psyche. During his life and after his death he was continually accused of Lamarckianism and criticized for his theory that the archetypes existed as prior structures. More recently, with the advent of genetic research and the human genome project, the idea that psychological structures can be innate has come under even harsher criticism even within Jungian thought. There appears to be a growing consensus that Jung's idea of innate psychological structures was misguided, and that perhaps the archetype-as-such should be abandoned for more developmental and 'emergent' theories of the psyche. The purpose of this essay is to question this conclusion, and introduce some literature on psychological innateness that appears relevant to this discussion.

  5. Archetypes as action patterns.

    PubMed

    Hogenson, George B

    2009-06-01

    The discovery of mirror neurons by researchers at the University of Parma promises to radically alter our understanding of fundamental cognitive and affective states. This paper explores the relationship of mirror neurons to Jung's theory of archetypes and proposes that archetypes may be viewed as elementary action patterns. The paper begins with a review of a proposed interpretation of the fainting spells of S. Freud in his relationship with Jung as an example of an action pattern that also defines an archetypal image. The challenge that mirror neurons present to traditional views in analytical psychology and psychoanalysis, however, is that they operate without recourse to a cognitive processing element. This is a position that is gaining increasing acceptance in other fields as well. The paper therefore reviews the most recent claims made by the Boston Process of Change Study Group as well as conclusions drawn from dynamic systems views of development and theoretical robotics to underline the conclusion that unconscious agency is not a requirement for coherent action. It concludes with the suggestion that this entire body of research may lead to the conclusion that the dynamic unconscious is an unnecessary hypothesis in psychoanalysis and analytical psychology.

  6. Pyrochlore catalysts for hydrocarbon fuel reforming

    DOEpatents

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-08-14

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.

  7. Heisenberg's First Paper

    ERIC Educational Resources Information Center

    Cassidy, David C.

    1978-01-01

    Describes some of the discussion, correspondances and assumptions of Heisenberg. Includes clarifying and defending his explanation of the anomalous Zeeman Effect to the Quantum Physicists of his time. (GA)

  8. Archetypal Puppets Spark Good Writing.

    ERIC Educational Resources Information Center

    Davis, Jeffrey K.

    1990-01-01

    One teacher devotes a portion of the college freshman composition course to an archetypal approach to literature, presenting students with basic story elements (archetypal patterns and characters) in myth and literature to which they can relate their own lives. Students create puppets and puppet plays in highly imaginative and entertaining ways.…

  9. Recent neutron scattering results from Gd-based pyrochlore oxides

    NASA Astrophysics Data System (ADS)

    Gardner, Jason

    2009-03-01

    In my presentation I will present recent results that have determined the spin-spin correlations in the geometrically frustrated magnets Gd2Sn2O7 and Gd2Ti2O7. This will include polarised neutron diffraction, inelastic neutron scattering and neutron spin echo data. One sample of particular interest is Gd2Sn2O7 which is believed to be a good approximation to a Heisenberg antiferromagnet on a pyrochlore lattice with exchange and dipole-dipole interactions. Theoretically such a system is expected to enter long range ordered ground state known as the ``Palmer Chalker'' state [1]. We show conclusively, through neutron scattering data, that the system indeed enters an ordered state with the Palmer-Chalker spin configuration below Tc = 1 K [2-3]. Within this state we have also observed long range collective spin dynamics, spin waves. This work has been performed in collaboration with many research groups including G. Ehlers (SNS), R. Stewart (ISIS). [0pt] [1] S. E. Palmer and J. T. Chalker, Phys. Rev. B 62, 488 (2000). [0pt] [2] J. R. Stewart, G. Ehlers, A. S. Wills, S. T. Bramwell, and J. S. Gardner, J. Phys.: Condens. Matter 16, L321 (2004). [0pt] [3] J R Stewart, J S Gardner, Y. Qiu and G Ehlers, Phys. Rev. B. 78, 132410 (2008)

  10. Expert witness and Jungian archetypes.

    PubMed

    Lallave, Juan Antonio; Gutheil, Thomas Gordon

    2012-01-01

    Jung's theories of archetype, shadow, and the personal and collective unconscious provide a postmodern framework in which to consider the role of the expert witness in judicial proceedings. Archetypal themes, motifs, and influences help to illuminate the shadow of the judicial system and projections and behaviors among the cast of the court in pursuing justice. This article speaks to archetypal influences and dialectical tensions encountered by the expert witness in this judicial drama. The archetype of Justice is born from the human need for order and relational fairness in a world of chaos. The persona of justice is the promise of truth in the drama. The shadow of justice is untruth, the need to win by any means. The dynamics of the trickster archetype serve and promote injustice. These influences are examined by means of a case example. This approach will deepen understanding of court proceedings and the role of the expert witness in the heroic quest for justice.

  11. Heisenberg's observability principle

    NASA Astrophysics Data System (ADS)

    Wolff, Johanna

    2014-02-01

    Werner Heisenberg's 1925 paper 'Quantum-theoretical re-interpretation of kinematic and mechanical relations' marks the beginning of quantum mechanics. Heisenberg famously claims that the paper is based on the idea that the new quantum mechanics should be 'founded exclusively upon relationships between quantities which in principle are observable'. My paper is an attempt to understand this observability principle, and to see whether its employment is philosophically defensible. Against interpretations of 'observability' along empiricist or positivist lines I argue that such readings are philosophically unsatisfying. Moreover, a careful comparison of Heisenberg's reinterpretation of classical kinematics with Einstein's argument against absolute simultaneity reveals that the positivist reading does not fit with Heisenberg's strategy in the paper. Instead the appeal to observability should be understood as a specific criticism of the causal inefficacy of orbital electron motion in Bohr's atomic model. I conclude that the tacit philosophical principle behind Heisenberg's argument is not a positivistic connection between observability and meaning, but the idea that a theory should not contain causally idle wheels.

  12. Quality requirements for EHR archetypes.

    PubMed

    Kalra, Dipak; Tapuria, Archana; Austin, Tony; De Moor, Georges

    2012-01-01

    The realisation of semantic interoperability, in which any EHR data may be communicated between heterogeneous systems and fully understood by computers as well as people on receipt, is a challenging goal. Despite the use of standardised generic models for the EHR and standard terminology systems, too much optionality and variability exists in how particular clinical entries may be represented. Clinical archetypes provide a means of defining how generic models should be shaped and bound to terminology for specific kinds of clinical data. However, these will only contribute to semantic interoperability if libraries of archetypes can be built up consistently. This requires the establishment of design principles, editorial and governance policies, and further research to develop ways for archetype authors to structure clinical data and to use terminology consistently. Drawing on several years of work within communities of practice developing archetypes and implementing systems from them, this paper presents quality requirements for the development of archetypes. Clinical engagement on a wide scale is also needed to help grow libraries of good quality archetypes that can be certified. Vendor and eHealth programme engagement is needed to validate such archetypes and achieve safe, meaningful exchange of EHR data between systems.

  13. African Passages: Journaling through Archetypes.

    ERIC Educational Resources Information Center

    Spencer, Patricia

    1990-01-01

    Explores how students (through an awareness of literary archetypes and journal writing) can use African stories to cross cultures, time, and continents, making connections between their worlds and the worlds of others. (MG)

  14. Archetypal Analysis for Nominal Observations.

    PubMed

    Seth, Sohan; Eugster, Manuel J A

    2016-05-01

    Archetypal analysis is a popular exploratory tool that explains a set of observations as compositions of few 'pure' patterns. The standard formulation of archetypal analysis addresses this problem for real valued observations by finding the approximate convex hull. Recently, a probabilistic formulation has been suggested which extends this framework to other observation types such as binary and count. In this article we further extend this framework to address the general case of nominal observations which includes, for example, multiple-option questionnaires. We view archetypal analysis in a generative framework: this allows explicit control over choosing a suitable number of archetypes by assigning appropriate prior information, and finding efficient update rules using variational Bayes'. We demonstrate the efficacy of this approach extensively on simulated data, and three real world examples: Austrian guest survey dataset, German credit dataset, and SUN attribute image dataset.

  15. [Depression. A symbolic archetypal psychopathology].

    PubMed

    Onofri, Alicia

    2012-01-01

    Jung understood that our psyche had an archetypal structure and that its best representant was mythology. This is a different theoretical framework, with an underlying anthropology that allows us to think pathology under other epistemologic concepts. Pathology can be thought as with positive and negative aspects to consider. This approach lets us consider different types of depression based on an archetypal mythologem, which allows us to think different forms of treatment.

  16. Weyl magnons in breathing pyrochlore antiferromagnets

    PubMed Central

    Li, Fei-Ye; Li, Yao-Dong; Kim, Yong Baek; Balents, Leon; Yu, Yue; Chen, Gang

    2016-01-01

    Frustrated quantum magnets not only provide exotic ground states and unusual magnetic structures, but also support unconventional excitations in many cases. Using a physically relevant spin model for a breathing pyrochlore lattice, we discuss the presence of topological linear band crossings of magnons in antiferromagnets. These are the analogues of Weyl fermions in electronic systems, which we dub Weyl magnons. The bulk Weyl magnon implies the presence of chiral magnon surface states forming arcs at finite energy. We argue that such antiferromagnets present a unique example, in which Weyl points can be manipulated in situ in the laboratory by applied fields. We discuss their appearance specifically in the breathing pyrochlore lattice, and give some general discussion of conditions to find Weyl magnons, and how they may be probed experimentally. Our work may inspire a re-examination of the magnetic excitations in many magnetically ordered systems. PMID:27650053

  17. Mechanical properties of rare earth stannate pyrochlores

    NASA Astrophysics Data System (ADS)

    Feng, J.; Xiao, B.; Qu, Z. X.; Zhou, R.; Pan, W.

    2011-11-01

    The RE2Sn2O7 series compounds (RE = La, Nb, Sm, Gd, Er, Yb) with a pyrochlore structure are prepared by co-precipitation method. The bulk, shear, Young's moduli, B/G, and Poisson's ratios are calculated using density functional theory and also measured by ultrasonic resonance method. The theoretical values of lattice constants and mechanical moduli are smaller than experimental results. The electronic structures of RE2Sn2O7 are analogous to RE2Zr2O7. La2Sn2O7 exhibits stronger ionic bonds than others. The covalent interactions are slightly enhanced in the heavy rare earth stannate pyrochlores. The Vickers harnesses of RE2Sn2O7 are measured experimentally, which are smaller than theoretical predictions.

  18. Tunable Magnon Weyl Points in Ferromagnetic Pyrochlores.

    PubMed

    Mook, Alexander; Henk, Jürgen; Mertig, Ingrid

    2016-10-07

    The dispersion relations of magnons in ferromagnetic pyrochlores with Dzyaloshinskii-Moriya interaction are shown to possess Weyl points, i. e., pairs of topologically nontrivial crossings of two magnon branches with opposite topological charge. As a consequence of their topological nature, their projections onto a surface are connected by magnon arcs, thereby resembling closely Fermi arcs of electronic Weyl semimetals. On top of this, the positions of the Weyl points in reciprocal space can be tuned widely by an external magnetic field: rotated within the surface plane, the Weyl points and magnon arcs are rotated as well; tilting the magnetic field out of plane shifts the Weyl points toward the center Γ[over ¯] of the surface Brillouin zone. The theory is valid for the class of ferromagnetic pyrochlores, i. e., three-dimensional extensions of topological magnon insulators on kagome lattices. In this Letter, we focus on the (111) surface, identify candidates of established ferromagnetic pyrochlores which apply to the considered spin model, and suggest experiments for the detection of the topological features.

  19. Mn4+ emission in pyrochlore oxides

    DOE PAGES

    Du, Mao-Hua

    2015-01-01

    For the existing Mn4+ activated red phosphors have relatively low emission energies (or long emission wavelengths) and are therefore inefficient for general lighting. Density functional calculations are performed to study Mn4+ emission in rare-earth hafnate, zirconate, and stannate pyrochlore oxides (RE2Hf2O7, RE2Zr2O7, and RE2Sn2O7). We show how the different sizes of the RE3+ cation in these pyrochlores affect the local structure of the distorted MnO6 octahedron, the Mn–O hybridization, and the Mn4+ emission energy. The Mn4+ emission energies of many pyrochlores are found to be higher than those currently known for Mn4+ doped oxides and should be closer to thatmore » of Y2O3:Eu3+ (the current commercial red phosphor for fluorescent lighting). The O–Mn–O bond angle distortion in a MnO6 octahedron is shown to play an important role in weakening Mn–O hybridization and consequently increasing the Mn4+ emission energy. Our result shows that searching for materials that allow significant O–Mn–O bond angle distortion in a MnO6 octahedron is an effective approach to find new Mn4+ activated red phosphors with potential to replace the relatively expensive Y2O3:Eu3+ phosphor.« less

  20. Tunable Magnon Weyl Points in Ferromagnetic Pyrochlores

    NASA Astrophysics Data System (ADS)

    Mook, Alexander; Henk, Jürgen; Mertig, Ingrid

    2016-10-01

    The dispersion relations of magnons in ferromagnetic pyrochlores with Dzyaloshinskii-Moriya interaction are shown to possess Weyl points, i. e., pairs of topologically nontrivial crossings of two magnon branches with opposite topological charge. As a consequence of their topological nature, their projections onto a surface are connected by magnon arcs, thereby resembling closely Fermi arcs of electronic Weyl semimetals. On top of this, the positions of the Weyl points in reciprocal space can be tuned widely by an external magnetic field: rotated within the surface plane, the Weyl points and magnon arcs are rotated as well; tilting the magnetic field out of plane shifts the Weyl points toward the center Γ ¯ of the surface Brillouin zone. The theory is valid for the class of ferromagnetic pyrochlores, i. e., three-dimensional extensions of topological magnon insulators on kagome lattices. In this Letter, we focus on the (111) surface, identify candidates of established ferromagnetic pyrochlores which apply to the considered spin model, and suggest experiments for the detection of the topological features.

  1. Archetypes of Outstanding Female Superintendents.

    ERIC Educational Resources Information Center

    Funk, Carole; Pankake, Anita; Schroth, Gwen

    This report documents a study of women superintendents. Specifically, the study identified professional and personal characteristics and styles of leadership to develop archetypes of six outstanding female superintendents in Texas. The intent of the research was also to reveal similarities between and among these superintendents that could provide…

  2. Towards Archetypes-Based Software Development

    NASA Astrophysics Data System (ADS)

    Piho, Gunnar; Roost, Mart; Perkins, David; Tepandi, Jaak

    We present a framework for the archetypes based engineering of domains, requirements and software (Archetypes-Based Software Development, ABD). An archetype is defined as a primordial object that occurs consistently and universally in business domains and in business software systems. An archetype pattern is a collaboration of archetypes. Archetypes and archetype patterns are used to capture conceptual information into domain specific models that are utilized by ABD. The focus of ABD is on software factories - family-based development artefacts (domain specific languages, patterns, frameworks, tools, micro processes, and others) that can be used to build the family members. We demonstrate the usage of ABD for developing laboratory information management system (LIMS) software for the Clinical and Biomedical Proteomics Group, at the Leeds Institute of Molecular Medicine, University of Leeds.

  3. Heisenberg and the Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Camilleri, Kristian

    2009-02-01

    Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.

  4. Heisenberg and the Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Camilleri, Kristian

    2011-09-01

    Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.

  5. Using archetypes for defining CDA templates.

    PubMed

    Moner, David; Moreno, Alberto; Maldonado, José A; Robles, Montserrat; Parra, Carlos

    2012-01-01

    While HL7 CDA is a widely adopted standard for the documentation of clinical information, the archetype approach proposed by CEN/ISO 13606 and openEHR is gaining recognition as a means of describing domain models and medical knowledge. This paper describes our efforts in combining both standards. Using archetypes as an alternative for defining CDA templates permit new possibilities all based on the formal nature of archetypes and their ability to merge into the same artifact medical knowledge and technical requirements for semantic interoperability of electronic health records. We describe the process followed for the normalization of existing legacy data in a hospital environment, from the importation of the HL7 CDA model into an archetype editor, the definition of CDA archetypes and the application of those archetypes to obtain normalized CDA data instances.

  6. National governance of archetypes in Norway.

    PubMed

    Ljosland Bakke, Silje

    2015-01-01

    Norwegian National ICT has implemented a national governance scheme for archetypes. The scheme uses openEHR, and is possibly the first of its kind worldwide. It introduces several new processes and methods for crowd sourcing clinician input. It has spent much of its first year establishing practical processes and recruiting clinicians, and only a few archetypes has been reviewed and approved. Some non-reusable archetypes have emerged while the governance scheme has established itself, which demonstrates the need for a centralised governance. As the mass of clinician involvement reached a critical point at the end of 2014, the rate of archetype review and approval increased.

  7. Anisotropic Exchange within Decoupled Tetrahedra in the Quantum Breathing Pyrochlore Ba3Yb2Zn5O11

    NASA Astrophysics Data System (ADS)

    Rau, J. G.; Wu, L. S.; May, A. F.; Poudel, L.; Winn, B.; Garlea, V. O.; Huq, A.; Whitfield, P.; Taylor, A. E.; Lumsden, M. D.; Gingras, M. J. P.; Christianson, A. D.

    2016-06-01

    The low energy spin excitation spectrum of the breathing pyrochlore Ba3Yb2Zn5O11 has been investigated with inelastic neutron scattering. Several nearly resolution limited modes with no observable dispersion are observed at 250 mK while, at elevated temperatures, transitions between excited levels become visible. To gain deeper insight, a theoretical model of isolated Yb3 + tetrahedra parametrized by four anisotropic exchange constants is constructed. The model reproduces the inelastic neutron scattering data, specific heat, and magnetic susceptibility with high fidelity. The fitted exchange parameters reveal a Heisenberg antiferromagnet with a very large Dzyaloshinskii-Moriya interaction. Using this model, we predict the appearance of an unusual octupolar paramagnet at low temperatures and speculate on the development of intertetrahedron correlations.

  8. Anisotropic Exchange within Decoupled Tetrahedra in the Quantum Breathing Pyrochlore Ba_{3}Yb_{2}Zn_{5}O_{11}.

    PubMed

    Rau, J G; Wu, L S; May, A F; Poudel, L; Winn, B; Garlea, V O; Huq, A; Whitfield, P; Taylor, A E; Lumsden, M D; Gingras, M J P; Christianson, A D

    2016-06-24

    The low energy spin excitation spectrum of the breathing pyrochlore Ba_{3}Yb_{2}Zn_{5}O_{11} has been investigated with inelastic neutron scattering. Several nearly resolution limited modes with no observable dispersion are observed at 250 mK while, at elevated temperatures, transitions between excited levels become visible. To gain deeper insight, a theoretical model of isolated Yb^{3+} tetrahedra parametrized by four anisotropic exchange constants is constructed. The model reproduces the inelastic neutron scattering data, specific heat, and magnetic susceptibility with high fidelity. The fitted exchange parameters reveal a Heisenberg antiferromagnet with a very large Dzyaloshinskii-Moriya interaction. Using this model, we predict the appearance of an unusual octupolar paramagnet at low temperatures and speculate on the development of intertetrahedron correlations.

  9. Anisotropic Exchange within Decoupled Tetrahedra in the Quantum Breathing Pyrochlore Ba3Yb2Zn5O11

    DOE PAGES

    Rau, J. G.; Wu, L. S.; May, A. F.; ...

    2016-06-24

    Tmore » he low energy spin excitation spectrum of the breathing pyrochlore Ba3Yb2Zn5O11 has been investigated with inelastic neutron scattering. Several nearly resolution limited modes with no observable dispersion are observed at 250 mK while, at elevated temperatures, transitions between excited levels become visible. o gain deeper insight, a theoretical model of isolated Yb3+ tetrahedra parametrized by four anisotropic exchange constants is constructed. he model reproduces the inelastic neutron scattering data, specific heat, and magnetic susceptibility with high fidelity. he fitted exchange parameters reveal a Heisenberg antiferromagnet with a very large Dzyaloshinskii-Moriya interaction. Ultimately, using this model, we predict the appearance of an unusual octupolar paramagnet at low temperatures and speculate on the development of inter-tetrahedron correlations.« less

  10. Engineering entropy: novel phases on the pyrochlore lattice

    NASA Astrophysics Data System (ADS)

    Benton, Owen; Yan, Han; Jaubert, Ludovic; Shannon, Nic

    2014-03-01

    Frustrated pyrochlores such as Yb2Ti2O7 push our understanding of magnetism to its limits. Here we explore a highly general model for spins on the pyrochlore lattice. We establish a complete phase diagram for the model and are able to identify several previously unstudied limits where classical order breaks down entirely. Here we focus on two limits of special interest: a classical spin liquid and a ``hidden order'' spin nematic. These ideas are explored in the context of experiments on the pyrochlore stannates and titanates.

  11. The many faces of order-by-disorder in rare-earth pyrochlore magnets

    NASA Astrophysics Data System (ADS)

    Gingras, Michel J. P.

    Order-by-disorder (ObD) is a concept of central importance in the field of frustrated magnetism. Saddled with large accidental degeneracies, a subset of states, those that support the largest quantum and/or thermal fluctuations, may be selected to form true long-range order. More formally, one often begins describing a system in terms of some order parameter m with the low-energy description framed in terms of an effective action Γ (m) . In each ObD scenario, one starts from an artificial limit where there is an accidental degeneracy; that is the effective action at this point, Γ0 (m) , has an accidental symmetry. One may then view ObD phenomena as cases where the corrections to Γ0 (m) arise through some form of fluctuation corrections, may they be thermal, quantum or virtual, towards an enlarged higher energy Hilbert space. In the rare-earth pyrochlore oxides, of formula R2M2O7, the trivalent magnetic rare-earth ions R3+ (e.g R = Gd, Er, Yb; M = Ti, Sn is non-magnetic) reside on a three-dimensional pyrochlore lattice of corner-sharing tetrahedra. This architecture is prone to a high degree of magnetic frustration, with the R2M2 O7 pyrochlore materials having been found over the past twenty years to display a gamut of exotic phenomena. In this talk, I will discuss three such phenomena: (i) the intermediate partially-ordered multiple- k state between 0 . 7 K and 1K in the Gd2Ti2O7 Heisenberg antiferromagnet, (ii) the ordered ψ2 state selection in the XY Er2Ti2O7 antiferromagnet and (iii) the puzzling high sample sensitivity of the Yb2Ti2O7 ``quantum spin ice'' candidate. I will argue that in all three cases, some form of fluctuation corrections to their simplest Γ0 (m) description play a significant role in the state selection and experimentally observed behaviors.

  12. Multiple Field Induced Transitions in the Dipolar Pyrochlore Gd2 Ti2 O_7

    NASA Astrophysics Data System (ADS)

    Shastry, B. Sriram

    2003-03-01

    Pyrochlore frustrated magnetic systems have received considerable attention after the experiment by Ramirez and coworkers on the ``Spin Ice'' compound DTO or Dy2 Ti2 O_7, a magnetic realization of entropic Ice originally studied by Pauling, Bernal and Fowler. DTO consists of effective spin half moments residing on the Pyrochlore lattice, but by changing the rare earth, one has realizations of the XY and also Heisenberg models. GTO, or Gd2 Ti2 O7 is a Heisenberg system, where the interactions are predominantly dipolar with a weak isotropic superexchange. This enables one to study almost for the first time, the rich and novel behavior of spins living on undistorted cubic systems with dipolar interactions, in contrast to the well understood spin flop transition in uniaxial magnets. The thermodynamics in the presence of a magnetic field of (powder) GTO shows a remarkably rich phase diagram[1], with several phase transitions occurring at a given temperature as the field is varied. In an effort to understand this, we have studied a 4- sublattice mean field theory[1] wherein the spins interact via a dipolar interaction plus superexchange. This mean field theory is intriguingly non trivial and reproduces the observed transitions with only one free parameter (J). The magnetic field partially lifts the degeneracy of the six zero field states in a specific ways depending on the direction of the field, signaling the transitions. The nature of some of the transitions is best described in terms of a nematic type order parameter T^α, β=1/4 sum_i=1^4 m^αi m^βi where mi is the sublattice magnetization vector. This talk describes the above experiment and theory, its recent extensions, and also some more recent experiments on GTO. [1] "Multiple Phase Transitions in a Geometrically-Frustrated Dipolar Spin System Gd_2Ti_2O_7, (A P Ramirez, B S Shastry , A Hayashi, J J Krajewski, D A Huse, and R J Cava), Phys. Rev. Letts. 89, 067202 (2002).

  13. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    DOEpatents

    Berry, David A [Morgantown, WV; Shekhawat, Dushyant [Morgantown, WV; Haynes, Daniel [Morgantown, WV; Smith, Mark [Morgantown, WV; Spivey, James J [Baton Rouge, LA

    2012-03-13

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  14. Cohomology of Heisenberg Lie superalgebras

    NASA Astrophysics Data System (ADS)

    Bai, Wei; Liu, Wende

    2017-02-01

    Suppose the ground field to be algebraically closed and of characteristic different from 2 and 3. All Heisenberg Lie superalgebras consist of two super-versions of the Heisenberg Lie algebras, 𝔥2m,n and 𝔟𝔞n with m a non-negative integer and n a positive integer. The space of a "classical" Heisenberg Lie superalgebra 𝔥2m,n is the direct sum of a superspace with a non-degenerate anti-supersymmetric even bilinear form and a one-dimensional space of values of this form constituting the even center. The other super-analog of the Heisenberg Lie algebra, 𝔟𝔞n, is constructed by means of a non-degenerate anti-supersymmetric odd bilinear form with values in the one-dimensional odd center. In this paper, we study the cohomology of 𝔥2m,n and 𝔟𝔞n with coefficients in the trivial module by using the Hochschild-Serre spectral sequences relative to a suitable ideal. In the characteristic zero case, for any Heisenberg Lie superalgebra, we determine completely the Betti numbers and associative superalgebra structures for their cohomology. In the characteristic p > 3 case, we determine the associative superalgebra structure for the divided power cohomology of 𝔟𝔞n and we also make an attempt to determine the divided power cohomology of 𝔥2m,n by computing it in a low-dimensional case.

  15. Sub-Heisenberg phase uncertainties

    NASA Astrophysics Data System (ADS)

    Pezzé, Luca

    2013-12-01

    Phase shift estimation with uncertainty below the Heisenberg limit, ΔϕHL∝1/N¯T, where N¯T is the total average number of particles employed, is a mirage of linear quantum interferometry. Recently, Rivas and Luis, [New J. Phys.NJOPFM1367-263010.1088/1367-2630/14/9/093052 14, 093052 (2012)] proposed a scheme to achieve a phase uncertainty Δϕ∝1/N¯Tk, with k an arbitrary exponent. This sparked an intense debate in the literature which, ultimately, does not exclude the possibility to overcome ΔϕHL at specific phase values. Our numerical analysis of the Rivas and Luis proposal shows that sub-Heisenberg uncertainties are obtained only when the estimator is strongly biased. No violation of the Heisenberg limit is found after bias correction or when using a bias-free Bayesian analysis.

  16. Berry phase in Heisenberg representation

    NASA Technical Reports Server (NTRS)

    Andreev, V. A.; Klimov, Andrei B.; Lerner, Peter B.

    1994-01-01

    We define the Berry phase for the Heisenberg operators. This definition is motivated by the calculation of the phase shifts by different techniques. These techniques are: the solution of the Heisenberg equations of motion, the solution of the Schrodinger equation in coherent-state representation, and the direct computation of the evolution operator. Our definition of the Berry phase in the Heisenberg representation is consistent with the underlying supersymmetry of the model in the following sense. The structural blocks of the Hamiltonians of supersymmetrical quantum mechanics ('superpairs') are connected by transformations which conserve the similarity in structure of the energy levels of superpairs. These transformations include transformation of phase of the creation-annihilation operators, which are generated by adiabatic cyclic evolution of the parameters of the system.

  17. A Semantic Web-based System for Managing Clinical Archetypes.

    PubMed

    Fernandez-Breis, Jesualdo Tomas; Menarguez-Tortosa, Marcos; Martinez-Costa, Catalina; Fernandez-Breis, Eneko; Herrero-Sempere, Jose; Moner, David; Sanchez, Jesus; Valencia-Garcia, Rafael; Robles, Montserrat

    2008-01-01

    Archetypes facilitate the sharing of clinical knowledge and therefore are a basic tool for achieving interoperability between healthcare information systems. In this paper, a Semantic Web System for Managing Archetypes is presented. This system allows for the semantic annotation of archetypes, as well for performing semantic searches. The current system is capable of working with both ISO13606 and OpenEHR archetypes.

  18. Archetypes of famine and response.

    PubMed

    Howe, Paul

    2010-01-01

    Famines have long been characterised by rapidly shifting dynamics: sudden price spirals, sharp increases in mortality, the media frenzy that often accompanies such spikes, the swift scaling up of aid flows, and a subsequent decline in interest. In arguing that these aspects of famine have been largely ignored in recent years due to attention to the famine process', this paper attempts to make these dynamics more explicit by applying systems thinking. It uses standard archetypes of systems thinking to explain six situations--watch, price spiral, aid magnet, media frenzy, overshoot, and peaks--that are present in many famine contexts. It illustrates their application with examples from crises in Ethiopia, Malawi, Niger, and Sudan. The paper contends that the systems approach offers a tool for analysing the larger patterns in famines and for pinpointing the most appropriate responses to them, based on an awareness of the dynamics of the crises.

  19. An archetype hydrogen atmosphere problem

    NASA Technical Reports Server (NTRS)

    Athay, R. G.; Mihalas, D.; Shine, R. A.

    1975-01-01

    Populations for the first three bound states and the continuum of hydrogen are determined for an isothermal hydrostatic atmosphere at 20,000 K. The atmosphere is treated as optically thin in the Balmer and Paschen continua and illuminated by continuum radiation at these wavelengths with prescribed radiation temperatures. The atmosphere is optically thick in the 2-1, 3-1, 3-2 and c-1 transitions. Three stages of approximation are treated: (1) radiative detailed balance in the 2-1, 3-1 and 3-2 transitions, (2) radiative detailed balance in the 3-1 and 3-2 transitions, and (3) all transitions out of detailed balance. The solution of this problem is nontrivial and presents sufficient difficulty to have caused the failure of at least one rather standard technique. The problem is thus a good archetype against which new methods or new implementations of old methods may be tested.

  20. Heisenberg and the critical mass

    NASA Astrophysics Data System (ADS)

    Bernstein, Jeremy

    2002-09-01

    An elementary treatment of the critical mass used in nuclear weapons is presented and applied to an analysis of the wartime activities of the German nuclear program. In particular, the work of Werner Heisenberg based on both wartime and postwar documents is discussed.

  1. An archetype-based testing framework.

    PubMed

    Chen, Rong; Garde, Sebastian; Beale, Thomas; Nyström, Mikael; Karlsson, Daniel; Klein, Gunnar O; Ahlfeldt, Hans

    2008-01-01

    With the introduction of EHR two-level modelling and archetype methodologies pioneered by openEHR and standardized by CEN/ISO, we are one step closer to semantic interoperability and future-proof adaptive healthcare information systems. Along with the opportunities, there are also challenges. Archetypes provide the full semantics of EHR data explicitly to surrounding systems in a platform-independent way, yet it is up to the receiving system to interpret the semantics and process the data accordingly. In this paper we propose a design of an archetype-based platform-independent testing framework for validating implementations of the openEHR archetype formalism as a means of improving quality and interoperability of EHRs.

  2. Quantum spin ice on the breathing pyrochlore lattice

    NASA Astrophysics Data System (ADS)

    Savary, Lucile; Wang, Xiaoqun; Kee, Hae-Young; Kim, Yong Baek; Yu, Yue; Chen, Gang

    2016-08-01

    The Coulombic quantum spin liquid in quantum spin ice is an exotic quantum phase of matter that emerges on the pyrochlore lattice and is currently actively searched for. Motivated by recent experiments on the Yb-based breathing pyrochlore material Ba3Yb2Zn5O11 , we theoretically study the phase diagram and magnetic properties of the relevant spin model. The latter takes the form of a quantum spin ice Hamiltonian on a breathing pyrochlore lattice, and we analyze the stability of the quantum spin liquid phase in the absence of the inversion symmetry which the lattice breaks explicitly at lattice sites. Using a gauge mean-field approach, we show that the quantum spin liquid occupies a finite region in parameter space. Moreover, there exists a direct quantum phase transition between the quantum spin liquid phase and featureless paramagnets, even though none of theses phases break any symmetry. At nonzero temperature, we show that breathing pyrochlores provide a much broader finite-temperature spin liquid regime than their regular counterparts. We discuss the implications of the results for current experiments and make predictions for future experiments on breathing pyrochlores.

  3. Bismuth iron titanate pyrochlores: Thermostability, structure and properties

    SciTech Connect

    Piir, I.V.; Koroleva, M.S.; Ryabkov, Yu.I.; Korolev, D.A.; Chezhina, N.V.; Semenov, V.G.; Panchuk, V.V.

    2013-08-15

    Iron containing bismuth titanates with pyrochlore structure Bi{sub 1.6}Fe{sub x}Ti{sub 2}O{sub 7−δ}, where 0.08≤x≤0.4, were obtained by ceramic procedure. The results of bough pycnometric density of the pyrochlores and of X-ray powder diffraction structure refinement points to the preference for iron atoms to occupy the Bi{sup 3+}-sites. Electric and magnetic properties were studied for single phase pyrochlores based on bismuth titanates. The magnetic ordering was studied by the methods of Mössbauer spectroscopy and magnetic susceptibility. - Graphical abstract: The ideal crystal structure of pyrochlore A{sub 2}B{sub 2}O{sub 6}O' (A—Bi{sup 3+}, Fe{sup 3+}; B—Ti{sup 4+}, Fe{sup 3+}). Highlights: • Bismuth titanate pyrochlores stable over a wide temperature range were obtained. • The distribution of Fe{sup 3+} over various sites was determined. • The obtained systems were characterized by magnetic susceptibility, Mössbauer spectroscopy and conductivity.

  4. Frustration under pressure: Exotic magnetism in new pyrochlore oxides

    SciTech Connect

    Wiebe, C. R.; Hallas, A. M.

    2015-04-01

    Pyrochlore structures, of chemical formula A{sub 2}B{sub 2}O{sub 7} (A and B are typically trivalent and tetravalent ions, respectively), have been the focus of much activity in the condensed matter community due to the ease of substitution of rare earth and transition metal ions upon the two interpenetrating corner-shared tetrahedral lattices. Over the last few decades, superconductivity, spin liquid states, spin ice states, glassy states in the absence of chemical disorder, and metal-insulator transitions have all been discovered in these materials. Geometric frustration plays a role in the relevant physics of all of these phenomena. In the search for new pyrochlore materials, it is the R{sub A}/R{sub B} cation radius ratio which determines the stability of the lattice over the defect fluorite structure in the lower limit. Under ambient pressure, the pyrochlores are stable for 1.36 ≤ R{sub A}/R{sub B} ≤ 1.71. However, using high pressure synthesis techniques (1-10 GPa of pressure), metastable pyrochlores exist up to R{sub A}/R{sub B} = 2.30. Many of these compounds are stable on a timescale of years after synthesis, and provide a means to greatly enhance exchange, and thus test theories of quantum magnetism and search for new phenomena. Within this article, we review new pyrochlore compounds synthesized via high pressure techniques and show how the ground states are extremely sensitive to chemical pressure.

  5. First-principles prediction of disordering tendencies in pyrochlore oxides

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Stanek, C. R.; Sickafus, K. E.; Uberuaga, B. P.

    2009-03-01

    Using first-principles calculations, we systematically predict the order-disorder energetics of series of zirconate (A2Zr2O7) , hafnate (A2Hf2O7) , titanate (A2Ti2O7) , and stannate (A2Sn2O7) pyrochlores. The disordered defect-fluorite structure is modeled using an 88-atom two-sublattice special quasirandom structure (SQS) that closely reproduces the most relevant near-neighbor intrasublattice and intersublattice pair-correlation functions of the random mixture. The order-disorder transition temperatures of these pyrochlores estimated from our SQS calculations show overall good agreement with existing experiments. We confirm previous studies suggesting that the bonding in pyrochlores is not purely ionic and thus electronic effects also play a role in determining their disordering tendencies. Our results have important consequences for numerous applications, including nuclear waste forms and fast ion conductors.

  6. Incorporation of uranium in pyrochlore oxides and pressure-induced phase transitions

    SciTech Connect

    Zhang, F.X.; Lang, M.; Tracy, C.; Ewing, R.C.; Gregg, D.J.; Lumpkin, G.R.

    2014-11-15

    Uranium-doped gadolinium zirconates with pyrochlore structure were studied at ambient and high-pressure conditions up to 40 GPa. The bonding environment of uranium in the structure was determined by x-ray photoelectron and Raman spectroscopies and x-ray diffraction. The uranium valence for samples prepared in air is mainly U{sup 6+}, but U{sup 4+} is present in pyrochlores fabricated in an argon atmosphere. Rietveld refinement of the XRD pattern suggests that uranium ions in pyrochlores are on the 16d site in 6-fold coordination with oxygen. At pressures greater than 22 GPa, the pyrochlore structure transformed to a cotunnite-type phase. The cotunnite high-pressure phase transformed to a defect fluorite structure on the release of pressure. - Graphical abstract: In U-bearing pyrochlore, U ions mainly occupy the 16d site and replace the smaller Zr{sup 4+}, part of the oxygen will occupy the 8b site, which is empty to most pyrochlores. At pressure of 22 GPa, the pyrochlore lattice is not stable and transforms to a cotunnite-type structure. The high-pressure structure is not stable and transform to a fluorite or back to the pyrochlore structure when pressure is released. - Highlights: • We found that U ions mainly occupy the smaller cation site in U-bearing pyrochlore. • Pyrochlore structure is not stable at pressure of more than 20 GPa. • The quenched sample has a pyrochlore or a disordered fluorite structure.

  7. [The evolution of the concept of archetypes in Jungian psychology].

    PubMed

    Pérez Urdaniz, A; Romero, E F

    1995-01-01

    The concept of archetype is basic in the Junguian conception of the human mind. Without archetypes the Junguian theory of the collective unconscions is absurd. Jung himself recognized that the concept of archetype had originated the worst misunderstandings of his theories. Within Junguian schools there is an archetypal school which has originated archetypal conceptions quite apart from the initial junguian ideas. In this paper the evolution of the concept of archetype is studied, and its implications for the practice of Junguian psychotherapy are considered.

  8. Brow archetype preferred by Korean women.

    PubMed

    Kim, Seong Kee; Cha, Seung Hyun; Hwang, Kun; Hwang, Se Won; Kim, Young Suk

    2014-07-01

    The aim of this study is to see which brow archetype is preferred by Korean women. The archetypes were chosen from a literature search, which contain detailed, replicable methods and have diagrams (Westmore, Lamas, Anastasia, Schreiber, and Hwang). A survey was conducted on 300 subjects (group A, 100 female medical students; group B, 100 women who had visited a plastic surgery clinic for periorbital rejuvenation; and group C, 100 women who visited the brow bar). They were asked whether they think there might be a method that yields an ideal brow archetype. In the cases where they said yes, they were asked to choose 1 of the illustrated 5 brow archetypes that they think is ideal. Among the 300 respondents, 232 (77.3%) thought there might be a method to yield an ideal brow archetype, whereas 68 (22.7%) answered they did not. The preference for the brow archetypes was different among the 5 archetypes (P = 0.0001, χ2). Anastasia was the most preferred (44.8%, brow starts on a perpendicular line drawn from the middle of the nostril, arches on a line drawn from the center of the nose through the center of the pupil, and ends on a line drawn from the edge of the corresponding nasal ala through the outer edge of the eye). Anastasia was followed by Lamas (22.0%). In group A, Anastasia (55.7%) was the most preferred, followed by Lamas (26.2%) and Westmore (13.1%). In group B, Anastasia (34.8%) was the most preferred, followed by Lamas (30.3%) and Westmore and Schreiber (both 13.5%). In group C, Anastasia (47.6%) was the most preferred, followed by Hwang (25.5%) and Westmore (11.0%). There was a significant difference (P < 0.001) among the 3 groups. There was a significant correlation between the preference of brow archetype and occupation (P = 0.0033). However, no significant differences were noted for the preference of brow archetype between the age groups of younger than 30 years and older than 30 years (P = 0.1374), level of education (P = 0.3403), marital status (P = 0

  9. Numerical Archetypal Parameterization for Mesoscale Convective Systems

    NASA Astrophysics Data System (ADS)

    Yano, J. I.

    2015-12-01

    Vertical shear tends to organize atmospheric moist convection into multiscale coherent structures. Especially, the counter-gradient vertical transport of horizontal momentum by organized convection can enhance the wind shear and transport kinetic energy upscale. However, this process is not represented by traditional parameterizations. The present paper sets the archetypal dynamical models, originally formulated by the second author, into a parameterization context by utilizing a nonhydrostatic anelastic model with segmentally-constant approximation (NAM-SCA). Using a two-dimensional framework as a starting point, NAM-SCA spontaneously generates propagating tropical squall-lines in a sheared environment. A high numerical efficiency is achieved through a novel compression methodology. The numerically-generated archetypes produce vertical profiles of convective momentum transport that are consistent with the analytic archetype.

  10. Conjugacy classes in discrete Heisenberg groups

    SciTech Connect

    Budylin, R Ya

    2014-08-01

    We study an extension of a discrete Heisenberg group coming from the theory of loop groups and find invariants of conjugacy classes in this group. In some cases, including the case of the integer Heisenberg group, we make these invariants more explicit. Bibliography: 4 titles.

  11. Integrability of Nonholonomic Heisenberg Type Systems

    NASA Astrophysics Data System (ADS)

    Grigoryev, Yury A.; Sozonov, Alexey P.; Tsiganov, Andrey V.

    2016-11-01

    We show that some modern geometric methods of Hamiltonian dynamics can be directly applied to the nonholonomic Heisenberg type systems. As an example we present characteristic Killing tensors, compatible Poisson brackets, Lax matrices and classical r-matrices for the conformally Hamiltonian vector fields obtained in a process of reduction of Hamiltonian vector fields by a nonholonomic constraint associated with the Heisenberg system.

  12. Theory of disordered Heisenberg ferromagnets

    NASA Technical Reports Server (NTRS)

    Stubbs, R. M.

    1973-01-01

    A Green's function technique is used to calculate the magnetic properties of Heisenberg ferromagnets in which the exchange interactions deviate randomly in strength from the mean interaction. Systems of sc, bcc, and fcc topologies and of general spin values are treated. Disorder produces marked effects in the density of spin wave states, in the form of enhancement of the low-energy density and extension of the energy band to higher values. The spontaneous magnetization and the Curie temperature decrease with increasing disorder. The effects of disorder are shown to be more pronounced in the ferromagnetic than in the paramagnetic phase.

  13. Associating clinical archetypes through UMLS Metathesaurus term clusters.

    PubMed

    Lezcano, Leonardo; Sánchez-Alonso, Salvador; Sicilia, Miguel-Angel

    2012-06-01

    Clinical archetypes are modular definitions of clinical data, expressed using standard or open constraint-based data models as the CEN EN13606 and openEHR. There is an increasing archetype specification activity that raises the need for techniques to associate archetypes to support better management and user navigation in archetype repositories. This paper reports on a computational technique to generate tentative archetype associations by mapping them through term clusters obtained from the UMLS Metathesaurus. The terms are used to build a bipartite graph model and graph connectivity measures can be used for deriving associations.

  14. The Teacher as an Archetype of Spirit

    ERIC Educational Resources Information Center

    Mayes, Clifford

    2002-01-01

    Many images of the teacher in the current literature on teaching and teacher reflectivity can be seen as aspects of the Jungian image of the teacher as an archetype of spirit. These images--the teacher as philosopher, prophet, Zen master, and priest--correspond to what I call dialogical, civic, ontological and incarnational spirituality,…

  15. Interpreting Native American Literature: An Archetypal Approach.

    ERIC Educational Resources Information Center

    Sevillano, Mando

    1986-01-01

    Compares two approaches to discussing Indian literature and religion. Demonstrates Jungian archetypal approach as transcultural method of analyzing Indian literature. Relates and analyzes Hopi traditional story. Emphasizes accessibility of Native American literature to the non-Indian while supporting multicultural plurality of interpretations.…

  16. Outdoor Adventure Programs Fulfilling Heroic Archetypal Patterns.

    ERIC Educational Resources Information Center

    Lee, Johnny

    The experiences found in adventure programs often parallel the archetypes depicted in mythological quests. Drawing on the work of Joseph Campbell, the stages and trials of adventure participants are compared to similar rites of passage and epic adventures experienced by heroes and heroines in epic literature and mythology. The basic pattern of…

  17. Did Heisenberg Spit at Max Born?

    NASA Astrophysics Data System (ADS)

    Lustig, Harry

    2005-04-01

    In his 1985 book ``The Griffin,'' Arnold Kramish quotes an unnamed ``associate'' of Max Born that when Heisenberg ''was . . . a professor in Göttingen and when the Borns went to visit him, they were met with anti-Jewish sneers and obscenities, and in the end Heisenberg spat on the floor at Max Born's feet!". Kramish, in his own words, states that Heisenberg spat at Born and that the incident took place in 1933. Paul Lawrence Rose places the incident in 1953 and, on the basis of a fuller account from Kramish than the one published, identifies the associate as Born's secretary at Edinburgh University. One may be critical of Heisenberg's character and his behavior under the Nazis, and still be highly skeptical of the Kramish-Rose allegation. The life-long friendship between Born and Heisenberg and the respect which they displayed for each other before, during, and after the Nazi regime, has hardly been challenged by anyone. No known biography of Heisenberg mentions the alleged episode, and none of his obituaries alludes to it. There is no reference to it in Born's autobiography. None of the historians of science, German and American, whom I have consulted credit it. Although it is difficult to prove a negative, it is highly unlikely that Heisenberg spit at Born or on the floor on which they stood.

  18. 100 Years Werner Heisenberg: Works and Impact

    NASA Astrophysics Data System (ADS)

    Papenfuß, Dietrich; Lüst, Dieter; Schleich, Wolfgang P.

    2003-09-01

    Over 40 renowned scientists from all around the world discuss the work and influence of Werner Heisenberg. The papers result from the symposium held by the Alexander von Humboldt-Stiftung on the occasion of the 100th anniversary of Heisenberg's birth, one of the most important physicists of the 20th century and cofounder of modern-day quantum mechanics. Taking atomic and laser physics as their starting point, the scientists illustrate the impact of Heisenberg's theories on astroparticle physics, high-energy physics and string theory right up to processing quantum information.

  19. Dipolar order by disorder in the classical Heisenberg antiferromagnet on the kagome lattice.

    PubMed

    Chern, Gia-Wei; Moessner, R

    2013-02-15

    Ever since the experiments which founded the field of highly frustrated magnetism, the kagome Heisenberg antiferromagnet has been the archetypical setting for the study of fluctuation induced exotic ordering. To this day the nature of its classical low-temperature state has remained a mystery: the nonlinear nature of the fluctuations around the exponentially numerous harmonically degenerate ground states has not permitted a controlled theory, while its complex energy landscape has precluded numerical simulations at low temperature, T. Here we present an efficient Monte Carlo algorithm which removes the latter obstacle. Our simulations detect a low-temperature regime in which correlations asymptote to a remarkably small value as T→0. Feeding these results into an effective model and analyzing the results in the framework of an appropriate field theory implies the presence of long-range dipolar spin order with a tripled unit cell.

  20. Werner Heisenberg (1901-1976)

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    Werner Heisenberg was one of the greatest physicists of all times. When he started out as a young research worker, the world of physics was in a very confused and frustrating state, which Abraham Pais has described1 as: It was the spring of hope, it was the winter of despair using Charles Dickens' words in A Tale of Two Cities. People were playing a guessing game: There were from time to time great triumphs in proposing, through sheer intuition, make-shift schemes that amazingly explained some regularities in spectral physics, leading to joy. But invariably such successes would be followed by further work which reveal the inconsistency or inadequacy of the new scheme, leading to despair...

  1. First-principles prediction of disordering tendencies in pyrochlore oxides

    SciTech Connect

    Jiang Chao; Stanek, C. R.; Sickafus, K. E.; Uberuaga, B. P.

    2009-03-01

    Using first-principles calculations, we systematically predict the order-disorder energetics of series of zirconate (A{sub 2}Zr{sub 2}O{sub 7}), hafnate (A{sub 2}Hf{sub 2}O{sub 7}), titanate (A{sub 2}Ti{sub 2}O{sub 7}), and stannate (A{sub 2}Sn{sub 2}O{sub 7}) pyrochlores. The disordered defect-fluorite structure is modeled using an 88-atom two-sublattice special quasirandom structure (SQS) that closely reproduces the most relevant near-neighbor intrasublattice and intersublattice pair-correlation functions of the random mixture. The order-disorder transition temperatures of these pyrochlores estimated from our SQS calculations show overall good agreement with existing experiments. We confirm previous studies suggesting that the bonding in pyrochlores is not purely ionic and thus electronic effects also play a role in determining their disordering tendencies. Our results have important consequences for numerous applications, including nuclear waste forms and fast ion conductors.

  2. The role of surfaces, chemical interfaces, and disorder on plutonium incorporation in pyrochlores.

    PubMed

    Perriot, Romain; Dholabhai, Pratik P; Uberuaga, Blas P

    2016-08-17

    Pyrochlores, a class of complex oxides with formula A2B2O7, are one of the candidates for nuclear waste encapsulation, due to the natural occurrence of actinide-bearing pyrochlore minerals and laboratory observations of high radiation tolerance. In this work, we use atomistic simulations to determine the role of surfaces, chemical interfaces, and cation disorder on the plutonium immobilization properties of pyrochlores as a function of pyrochlore chemistry. We find that both Pu(3+) and Pu(4+) segregate to the surface for the four low-index pyrochlore surfaces considered, and that the segregation energy varies with the chemistry of the compound. We also find that pyrochlore/pyrochlore bicrystals A2B2O7/A2'B2'O7 can be used to immobilize Pu(3+) and Pu(4+) either in the same or separate phases of the compound, depending on the chemistry of the material. Finally, we find that Pu(4+) segregates to the disordered phase of an order/disorder bicrystal, driven by the occurrence of local oxygen-rich environments. However, Pu(3+) is weakly sensitive to the oxygen environment, and therefore only slightly favors the disordered phase. This behavior suggests that, at some concentration, Pu incorporation can destabilize the pyrochlore structure. Together, these results provide new insight into the ability of pyrochlore compounds to encapsulate Pu and suggest new considerations in the development of waste forms based on pyrochlores. In particular, the phase structure of a multi-phase pyrochlore composite can be used to independently getter decay products based on their valence and size.

  3. The role of surfaces, chemical interfaces, and disorder on plutonium incorporation in pyrochlores

    SciTech Connect

    Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.

    2016-07-27

    Pyrochlores, a class of complex oxides with formula A2B2O7, are one of the candidates for nuclear waste encapsulation, due to the natural occurrence of actinide-bearing pyrochlore minerals and laboratory observations of high radiation tolerance. In this work, we use atomistic simulations to determine the role of surfaces, chemical interfaces, and cation disorder on the plutonium immobilization properties of pyrochlores as a function of pyrochlore chemistry. We find that both Pu3+ and Pu4+ segregate to the surface for the four low-index pyrochlore surfaces considered, and that the segregation energy varies with the chemistry of the compound. We also find that pyrochlore/pyrochlore bicrystals A2B2O7/A2'B2'O7 can be used to immobilize Pu3+ and Pu4+ either in the same or separate phases of the compound, depending on the chemistry of the material. Finally, we find that Pu4+ segregates to the disordered phase of an order/disorder bicrystal, driven by the occurrence of local oxygen-rich environments. However, Pu3+ is weakly sensitive to the oxygen environment, and therefore only slightly favors the disordered phase. This behavior suggests that, at some concentration, Pu incorporation can destabilize the pyrochlore structure. Together, these results provide new insight into the ability of pyrochlore compounds to encapsulate Pu and suggest new considerations in the development of waste forms based on pyrochlores. Particularly, the phase structure of a multi-phase pyrochlore composite can be used to independently getter decay products based on their valence and size.

  4. Adiabatic limits on Riemannian Heisenberg manifolds

    SciTech Connect

    Yakovlev, A A

    2008-02-28

    An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold. Bibliography: 21 titles.

  5. Scaling beyond CMOS: Turing-Heisenberg Rapprochement

    NASA Astrophysics Data System (ADS)

    Zhirnov, Victor V.; Cavin, Ralph K., III

    2010-09-01

    The primary objective of this study is to explore the connection of the device physics in the Boltzmann-Heisenberg limits and the parameters of the digital circuits implemented from these devices. We offer an abstraction of a Minimal Turing Machine built from the limiting devices and circuits, thus Turing-Heisenberg Rapprochement. The analysis suggests a possible limit to computational performance similar to the Carnot efficiency limit for heat engines.

  6. Arranging ISO 13606 archetypes into a knowledge base.

    PubMed

    Kopanitsa, Georgy

    2014-01-01

    To enable the efficient reuse of standard based medical data we propose to develop a higher level information model that will complement the archetype model of ISO 13606. This model will make use of the relationships that are specified in UML to connect medical archetypes into a knowledge base within a repository. UML connectors were analyzed for their ability to be applied in the implementation of a higher level model that will establish relationships between archetypes. An information model was developed using XML Schema notation. The model allows linking different archetypes of one repository into a knowledge base. Presently it supports several relationships and will be advanced in future.

  7. The role of surfaces, chemical interfaces, and disorder on plutonium incorporation in pyrochlores

    DOE PAGES

    Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.

    2016-07-27

    Pyrochlores, a class of complex oxides with formula A2B2O7, are one of the candidates for nuclear waste encapsulation, due to the natural occurrence of actinide-bearing pyrochlore minerals and laboratory observations of high radiation tolerance. In this work, we use atomistic simulations to determine the role of surfaces, chemical interfaces, and cation disorder on the plutonium immobilization properties of pyrochlores as a function of pyrochlore chemistry. We find that both Pu3+ and Pu4+ segregate to the surface for the four low-index pyrochlore surfaces considered, and that the segregation energy varies with the chemistry of the compound. We also find that pyrochlore/pyrochloremore » bicrystals A2B2O7/A2'B2'O7 can be used to immobilize Pu3+ and Pu4+ either in the same or separate phases of the compound, depending on the chemistry of the material. Finally, we find that Pu4+ segregates to the disordered phase of an order/disorder bicrystal, driven by the occurrence of local oxygen-rich environments. However, Pu3+ is weakly sensitive to the oxygen environment, and therefore only slightly favors the disordered phase. This behavior suggests that, at some concentration, Pu incorporation can destabilize the pyrochlore structure. Together, these results provide new insight into the ability of pyrochlore compounds to encapsulate Pu and suggest new considerations in the development of waste forms based on pyrochlores. Particularly, the phase structure of a multi-phase pyrochlore composite can be used to independently getter decay products based on their valence and size.« less

  8. OWL-based reasoning methods for validating archetypes.

    PubMed

    Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás

    2013-04-01

    Some modern Electronic Healthcare Record (EHR) architectures and standards are based on the dual model-based architecture, which defines two conceptual levels: reference model and archetype model. Such architectures represent EHR domain knowledge by means of archetypes, which are considered by many researchers to play a fundamental role for the achievement of semantic interoperability in healthcare. Consequently, formal methods for validating archetypes are necessary. In recent years, there has been an increasing interest in exploring how semantic web technologies in general, and ontologies in particular, can facilitate the representation and management of archetypes, including binding to terminologies, but no solution based on such technologies has been provided to date to validate archetypes. Our approach represents archetypes by means of OWL ontologies. This permits to combine the two levels of the dual model-based architecture in one modeling framework which can also integrate terminologies available in OWL format. The validation method consists of reasoning on those ontologies to find modeling errors in archetypes: incorrect restrictions over the reference model, non-conformant archetype specializations and inconsistent terminological bindings. The archetypes available in the repositories supported by the openEHR Foundation and the NHS Connecting for Health Program, which are the two largest publicly available ones, have been analyzed with our validation method. For such purpose, we have implemented a software tool called Archeck. Our results show that around 1/5 of archetype specializations contain modeling errors, the most common mistakes being related to coded terms and terminological bindings. The analysis of each repository reveals that different patterns of errors are found in both repositories. This result reinforces the need for making serious efforts in improving archetype design processes.

  9. Mn4+ emission in pyrochlore oxides

    SciTech Connect

    Du, Mao-Hua

    2015-01-01

    For the existing Mn4+ activated red phosphors have relatively low emission energies (or long emission wavelengths) and are therefore inefficient for general lighting. Density functional calculations are performed to study Mn4+ emission in rare-earth hafnate, zirconate, and stannate pyrochlore oxides (RE2Hf2O7, RE2Zr2O7, and RE2Sn2O7). We show how the different sizes of the RE3+ cation in these pyrochlores affect the local structure of the distorted MnO6 octahedron, the Mn–O hybridization, and the Mn4+ emission energy. The Mn4+ emission energies of many pyrochlores are found to be higher than those currently known for Mn4+ doped oxides and should be closer to that of Y2O3:Eu3+ (the current commercial red phosphor for fluorescent lighting). The O–Mn–O bond angle distortion in a MnO6 octahedron is shown to play an important role in weakening Mn–O hybridization and consequently increasing the Mn4+ emission energy. Our result shows that searching for materials that allow significant O–Mn–O bond angle distortion in a MnO6 octahedron is an effective approach to find new Mn4+ activated red phosphors with potential to replace the relatively expensive Y2O3:Eu3+ phosphor.

  10. Aspects of universally valid Heisenberg uncertainty relation

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo; Umetsu, Koichiro

    2013-01-01

    A numerical illustration of a universally valid Heisenberg uncertainty relation, which was proposed recently, is presented by using the experimental data on spin-measurements by J. Erhart et al. [Nat. Phys. 8, 185 (2012)]. This uncertainty relation is closely related to a modified form of the Arthurs-Kelly uncertainty relation, which is also tested by the spin-measurements. The universally valid Heisenberg uncertainty relation always holds, but both the modified Arthurs-Kelly uncertainty relation and the Heisenberg error-disturbance relation proposed by Ozawa, which was analyzed in the original experiment, fail in the present context of spin-measurements, and the cause of their failure is identified with the assumptions of unbiased measurement and disturbance. It is also shown that all the universally valid uncertainty relations are derived from Robertson's relation and thus the essence of the uncertainty relation is exhausted by Robertson's relation, as is widely accepted.

  11. Two Archetypes of Motor Control Research.

    PubMed

    Latash, Mark L

    2010-07-01

    This reply to the Commentaries is focused on two archetypes of motor control research, one based on physics and physiology and the other based on control theory and ideas of neural computations. The former approach, represented by the equilibrium-point hypothesis, strives to discover the physical laws and salient physiological variables that make purposeful coordinated movements possible. The latter approach, represented by the ideas of internal models and optimal control, tries to apply methods of control developed for man-made inanimate systems to the human body. Specific issues related to control with subthreshold membrane depolarization, motor redundancy, and the idea of synergies are briefly discussed.

  12. The Homophilic Domain - An Immunological Archetype.

    PubMed

    Kohler, Heinz; Bayry, Jagadeesh; Kaveri, Srinivas V

    2016-01-01

    The homophilic potential emerges as an important biological principle to boost the potency of immunoglobulins. Since homophilic antibodies in human and mouse sera exist prior environmental exposure, they are part of the natural antibody repertoire. Nevertheless, hemophilic properties are also identified in induced antibody repertoire. The use of homophilicity of antibodies in the adaptive immunity signifies an archetypic antibody structure. The unique feature of homophilicity in the antibody repertoire also highlights an important mechanism to boost the antibody potency to protect against infection and atherosclerosis as well to treat cancer patients.

  13. [Facial graft, archetype of microsurgical innovation?].

    PubMed

    Devauchelle, B; Testelin, S; Dakpe, S; Lengelé, B; Dubernard, J-M

    2010-10-01

    Is innovation breaking of the way of thinking, breaker of taboos, concretisation of chimeras or simple benefit of an ineluctable evolution? The surgical act should be considered as innovation itself? From the first facial allotransplantation, innovation is declined in various ways, which could constitute the different answers regarding the planning and management to prepare such surgery, the realisation of the transplantation and also the multiple developments in terms of science and medicine. It is exactly in that meaning that could be really mentioned the term archetypal.

  14. The Contextualization of Archetypes: Clinical Template Governance.

    PubMed

    Pedersen, Rune; Ulriksen, Gro-Hilde; Ellingsen, Gunnar

    2015-01-01

    This paper is a status report from a large-scale openEHR-based EPR project from the North Norway Regional Health Authority. It concerns the standardization of a regional ICT portfolio and the ongoing development of a new process oriented EPR systems encouraged by the unfolding of a national repository for openEHR archetypes. Subject of interest; the contextualization of clinical templates is governed over multiple national boundaries which is complex due to the dependency of clinical resources. From the outset of this, we are interested in how local, regional, and national organizers maneuver to standardize while applying OpenEHR technology.

  15. Wounded Leader: An Archetypal Embodiment of Compassionate Transcendent Leadership

    ERIC Educational Resources Information Center

    Mears, Kathryn

    2009-01-01

    The purpose of this study was to seek to further the formation of the emerging transcendent leadership model by exploring the archetypal image identified as wounded leader. The wounded leader archetype is introduced as a leadership style of influence that fits well within the framework of the transcendent leadership model. This study…

  16. Exploring Ethical Dilemmas Using the "Drifting Goals" Archetype

    ERIC Educational Resources Information Center

    Bardoel, E. Anne; Haslett, Tim

    2006-01-01

    This article demonstrates how the system archetype "drifting goals" can be used in the classroom to explore ethical dilemmas. System archetypes provide a framework that shifts the focus from seeing ethical dilemmas as stemming solely from the acts of individuals to exploring the systemic structures that are responsible for generic patterns of…

  17. New Type of Quantum Criticality in the Pyrochlore Iridates

    NASA Astrophysics Data System (ADS)

    Savary, Lucile; Moon, Eun-Gook; Balents, Leon

    2014-10-01

    Magnetic fluctuations and electrons couple in intriguing ways in the vicinity of zero-temperature phase transitions—quantum critical points—in conducting materials. Quantum criticality is implicated in non-Fermi liquid behavior of diverse materials and in the formation of unconventional superconductors. Here, we uncover an entirely new type of quantum critical point describing the onset of antiferromagnetism in a nodal semimetal engendered by the combination of strong spin-orbit coupling and electron correlations, and which is predicted to occur in the iridium oxide pyrochlores. We formulate and solve a field theory for this quantum critical point by renormalization group techniques and show that electrons and antiferromagnetic fluctuations are strongly coupled and that both these excitations are modified in an essential way. This quantum critical point has many novel features, including strong emergent spatial anisotropy, a vital role for Coulomb interactions, and highly unconventional critical exponents. Our theory motivates and informs experiments on pyrochlore iridates and constitutes a singular realistic example of a nontrivial quantum critical point with gapless fermions in three dimensions.

  18. Pulsed laser deposition and characterizations of pyrochlore iridate thin films

    NASA Astrophysics Data System (ADS)

    Starr, Matthew; Aviles-Acosta, Jaime; Xie, Yuantao; Zhu, Wenka; Li, Zhen; Chen, Aiping; Li, Nan; Tao, Chenggang; Jia, Quanxi; Heremans, J. J.; Zhang, S. X.

    Pyrochlore iridates have attracted growing interest in recent years because of their potential to realize novel topological phases. While most of the previous studies have focused on polycrystalline and single crystalline bulk samples, epitaxial thin films offer a unique platform for controllable tuning of material parameters such as oxygen stoichiometry and elastic strain to achieve new electronic states. In this talk, we will present the growth and characterizations of epitaxial thin films of pyrochlore Y2Ir2O7 and Bi2Ir2O7 that are predicted to host topologically non-trivial states. The iridate thin films were grown by pulsed laser deposition at different conditions, and a narrow window for epitaxial growth was determined. Characterizations of crystalline structures were performed using X-ray diffraction and transmission electron microscopy to establish a growth parameter-structure phase diagram. The compositions of thin films were determined by energy dispersive X-ray spectroscopy, and the surface morphologies were characterized using atomic force microscopy and scanning tunneling microscopy. Magneto-transport studies indicate a strong dependence of transport properties on the oxygen stoichiometry and the film thickness.

  19. Reduplication phenomena: body, mind and archetype.

    PubMed

    Garner, J

    2000-09-01

    The many biological and few psychodynamic explanations of reduplicative syndromes tend to have paralleled the dualism of the phenomenon with organic theories concentrating on form and dynamic theories emphasising content. This paper extends the contribution of psychoanalytic thinking to an elucidation of the form of the delusion. Literature on clinical and aetiological aspects of reduplicative phenomena is reviewed alongside a brief examination of psychoanalytic models not overtly related to these phenomena. The human experience of doubles as universal archetype is considered. There is an obvious aetiological role for brain lesions in delusional misidentifications, but psychological symptoms in an individual can rarely be reduced to an organic disorder. The splitting and doubling which occurs in the phenomena have resonances in cultural mythology and in theories from different schools of psychodynamic thought. For the individual patient and doctor, it is a diverting but potentially empty debate to endeavour to draw strict divisions between what is physical and what is psychological although both need to be investigated. Nevertheless, in patients in whom there is clear evidence of an organic contribution to aetiology a psychodynamic understanding may serve to illuminate the patient's experience. Organic brain disease or serious functional illness predispose to regression to earlier modes of archetypical and primitive thinking with concretization of the metaphorical and mythological world. Psychoanalytic models have a contribution in describing the form as well as the content of reduplicative phenomena.

  20. Identification of Nanoparticle Prototypes and Archetypes.

    PubMed

    Fernandez, Michael; Barnard, Amanda S

    2015-12-22

    High-throughput (HT) computational characterization of nanomaterials is poised to accelerate novel material breakthroughs. The number of possible nanomaterials is increasing exponentially along with their complexity, and so statistical and information technology will play a fundamental role in rationalizing nanomaterials HT data. We demonstrate that multivariate statistical analysis of heterogeneous ensembles can identify the truly significant nanoparticles and their most relevant properties. Virtual samples of diamond nanoparticles and graphene nanoflakes are characterized using clustering and archetypal analysis, where we find that saturated particles are defined by their geometry, while nonsaturated nanoparticles are defined by their carbon chemistry. At the complex hull of the nanostructure spaces, a combination of complex archetypes can efficiency describe a large number of members of the ensembles, whereas the regular shapes that are typically assumed to be representative can only describe a small set of the most regular morphologies. This approach provides a route toward the characterization of computationally intractable virtual nanomaterial spaces, which can aid nanomaterials discovery in the foreseen big data scenario.

  1. Heisenberg: Paralleling Scientific and Historical Methods

    NASA Astrophysics Data System (ADS)

    Cofield, Calla

    2007-04-01

    Werner Heisenberg is an important historical subject within the physics community partly because his actions as a human being are discussed nearly as often as his work as a physicist. But does the scientific community establish it's historical ideas with the same methods and standards as it's scientific conclusions? I interviewed Heisenberg's son, Jochen Heisenberg, a professor of physics at UNH. Despite a great amount of literature on Werner Heisenberg, only one historian has interviewed Jochen about his father and few have interviewed Werner's wife. Nature is mysterious and unpredictable, but it doesn't lie or distort like humans, and we believe it can give ``honest'' results. But are we keeping the same standards with history that we do with science? Are we holding historians to these standards and if not, is it up to scientists to not only be keepers of scientific understanding, but historical understanding as well? Shouldn't we record history by using the scientific method, by weighing the best sources of data differently than the less reliable, and are we right to be as stubborn about changing our views on history as we are about changing our views on nature?

  2. Naturalistic Misunderstanding of the Heisenberg Uncertainty Principle.

    ERIC Educational Resources Information Center

    McKerrow, K. Kelly; McKerrow, Joan E.

    1991-01-01

    The Heisenberg Uncertainty Principle, which concerns the effect of observation upon what is observed, is proper to the field of quantum physics, but has been mistakenly adopted and wrongly applied in the realm of naturalistic observation. Discusses the misuse of the principle in the current literature on naturalistic research. (DM)

  3. Opposite correlations between cation disordering and amorphization resistance in spinels versus pyrochlores

    PubMed Central

    Uberuaga, Blas Pedro; Tang, Ming; Jiang, Chao; Valdez, James A.; Smith, Roger; Wang, Yongqiang; Sickafus, Kurt E.

    2015-01-01

    Understanding and predicting radiation damage evolution in complex materials is crucial for developing next-generation nuclear energy sources. Here, using a combination of ion beam irradiation, transmission electron microscopy and X-ray diffraction, we show that, contrary to the behaviour observed in pyrochlores, the amorphization resistance of spinel compounds correlates directly with the energy to disorder the structure. Using a combination of atomistic simulation techniques, we ascribe this behaviour to structural defects on the cation sublattice that are present in spinel but not in pyrochlore. Specifically, because of these structural defects, there are kinetic pathways for the relaxation of disorder in spinel that are absent in pyrochlore. This leads to a direct correlation between amorphization resistance and disordering energetics in spinel, the opposite of that observed in pyrochlores. These results provide new insight into the origins of amorphization resistance in complex oxides beyond fluorite derivatives. PMID:26510750

  4. Opposite correlations between cation disordering and amorphization resistance in spinels versus pyrochlores

    SciTech Connect

    Uberuaga, Blas Pedro; Tang, Ming; Jiang, Chao; Valdez, James A.; Smith, Roger; Wang, Yongqiang; Sickafus, Kurt E.

    2015-10-29

    Understanding and predicting radiation damage evolution in complex materials is crucial for developing next-generation nuclear energy sources. Here, using a combination of ion beam irradiation, transmission electron microscopy and X-ray diffraction, we show that, contrary to the behaviour observed in pyrochlores, the amorphization resistance of spinel compounds correlates directly with the energy to disorder the structure. Using a combination of atomistic simulation techniques, we ascribe this behaviour to structural defects on the cation sublattice that are present in spinel but not in pyrochlore. Specifically, because of these structural defects, there are kinetic pathways for the relaxation of disorder in spinel that are absent in pyrochlore. This leads to a direct correlation between amorphization resistance and disordering energetics in spinel, the opposite of that observed in pyrochlores. Furthermore, these results provide new insight into the origins of amorphization resistance in complex oxides beyond fluorite derivatives.

  5. Opposite correlations between cation disordering and amorphization resistance in spinels versus pyrochlores

    DOE PAGES

    Uberuaga, Blas Pedro; Tang, Ming; Jiang, Chao; ...

    2015-10-29

    Understanding and predicting radiation damage evolution in complex materials is crucial for developing next-generation nuclear energy sources. Here, using a combination of ion beam irradiation, transmission electron microscopy and X-ray diffraction, we show that, contrary to the behaviour observed in pyrochlores, the amorphization resistance of spinel compounds correlates directly with the energy to disorder the structure. Using a combination of atomistic simulation techniques, we ascribe this behaviour to structural defects on the cation sublattice that are present in spinel but not in pyrochlore. Specifically, because of these structural defects, there are kinetic pathways for the relaxation of disorder in spinelmore » that are absent in pyrochlore. This leads to a direct correlation between amorphization resistance and disordering energetics in spinel, the opposite of that observed in pyrochlores. Furthermore, these results provide new insight into the origins of amorphization resistance in complex oxides beyond fluorite derivatives.« less

  6. Atomic disorder in Gd{sub 2}Zr{sub 2}O{sub 7} pyrochlore

    SciTech Connect

    Zhang, F. X.; Lang, M.; Ewing, R. C.

    2015-05-11

    Gd{sub 2}Zr{sub 2}O{sub 7} pyrochlore with different degrees of cation disorder were synthesized by isothermal annealing at various temperatures (1100–1550 °C), and the related changes in the structure were investigated by ambient and high pressure x-ray diffraction (XRD) measurements. Unit cell parameters increase almost linearly with increasing treatment temperature. The degree of cation order in pyrochlore also increases with the increase of temperature, but saturates at ∼60%. The compressibility of the pyrochlore structures decreases when the degree of cation order increases. High pressure XRD measurements also indicate that the phase stability of Gd{sub 2}Zr{sub 2}O{sub 7} is not very sensitive to the degree of atomic disorder in the pyrochlore structure.

  7. Structural and bonding properties of stannate pyrochlores: a density functional theory investigation

    SciTech Connect

    Chen, Z, J; Xiao, H. Y.; Zu, Xiaotao; Wang, Lumin; Gao, Fei; Lian, Jie; Ewing, Rodney C.

    2008-05-15

    First-principle calculations have been completed on a series of Ln2Sn2O7 (Ln= Sm, Gd, Tb, Ho, Er, Lu, Y, La, Pr and Nd) pyrochlores to study the effect of structural geometry and bond-type on the stability of the pyrochlore structure-type. Overlap population analysis showed that the bonds in stannate pyrochlores are much more covalent than the bonds, and a nonlinear relationship is observed between the or bond lengths and the Ln cation radii. The bonds are the most ionic among the metal-oxygen bonds. These results are consistent with experimental results. We note other factors, in addition to bond-type, that affect the stability of the pyrochlore structure.

  8. Efficient propagation of archetype BK and JC polyomaviruses.

    PubMed

    Broekema, Nicole M; Imperiale, Michael J

    2012-01-20

    BKPyV and JCPyV are closely related, ubiquitous human pathogens that cause disease in immunocompromised patients. The DNA sequence of the regulatory regions distinguishes two forms of these viruses, designated archetype and rearranged. Although cell culture systems exist for rearranged BKPyV and JCPyV, currently there is no robust cell culture system to study the archetype viruses. Large T antigen (TAg) is a virally encoded protein required to initiate viral DNA synthesis. Because archetype virus produces undetectable levels of TAg, we hypothesized that TAg overexpression would stimulate archetype virus replication. Efficient propagation of the archetype forms of BKPyV and JCPyV was observed in 293TT cells, human embryonic kidney cells overexpressing SV40 TAg. Importantly, the archetypal structure of the regulatory region was maintained during viral growth. Significant replication was not observed for Merkel cell, KI, or WU polyomaviruses. 293TT cells provide a means of propagating archetype BKPyV and JCPyV for detailed study.

  9. Clinical coverage of an archetype repository over SNOMED-CT.

    PubMed

    Yu, Sheng; Berry, Damon; Bisbal, Jesus

    2012-06-01

    Clinical archetypes provide a means for health professionals to design what should be communicated as part of an Electronic Health Record (EHR). An ever-growing number of archetype definitions follow this health information modelling approach, and this international archetype resource will eventually cover a large number of clinical concepts. On the other hand, clinical terminology systems that can be referenced by archetypes also have a wide coverage over many types of health-care information. No existing work measures the clinical content coverage of archetypes using terminology systems as a metric. Archetype authors require guidance to identify under-covered clinical areas that may need to be the focus of further modelling effort according to this paradigm. This paper develops a first map of SNOMED-CT concepts covered by archetypes in a repository by creating a so-called terminological Shadow. This is achieved by mapping appropriate SNOMED-CT concepts from all nodes that contain archetype terms, finding the top two category levels of the mapped concepts in the SNOMED-CT hierarchy, and calculating the coverage of each category. A quantitative study of the results compares the coverage of different categories to identify relatively under-covered as well as well-covered areas. The results show that the coverage of the well-known National Health Service (NHS) Connecting for Health (CfH) archetype repository on all categories of SNOMED-CT is not equally balanced. Categories worth investigating emerged at different points on the coverage spectrum, including well-covered categories such as Attributes, Qualifier value, under-covered categories such as Microorganism, Kingdom animalia, and categories that are not covered at all such as Cardiovascular drug (product).

  10. Layer-by-layer epitaxial thin films of the pyrochlore Tb2Ti2O7

    NASA Astrophysics Data System (ADS)

    Bovo, Laura; Rouleau, Christopher M.; Prabhakaran, Dharmalingam; Bramwell, Steven T.

    2017-02-01

    Layer-by-layer epitaxial growth of the pyrochlore magnet Tb2Ti2O7 on the isostructural substrate Y2Ti2O7 results in high-quality single crystal films of up to 60 nm thickness. Substrate-induced strain is shown to act as a strong and controlled perturbation to the exotic magnetism of Tb2Ti2O7, opening up the general prospect of strain-engineering the diverse magnetic and electrical properties of pyrochlore oxides.

  11. Layer-by-layer epitaxial thin films of the pyrochlore Tb2Ti2O7.

    PubMed

    Bovo, Laura; Rouleau, Christopher M; Prabhakaran, Dharmalingam; Bramwell, Steven T

    2017-02-03

    Layer-by-layer epitaxial growth of the pyrochlore magnet Tb2Ti2O7 on the isostructural substrate Y2Ti2O7 results in high-quality single crystal films of up to 60 nm thickness. Substrate-induced strain is shown to act as a strong and controlled perturbation to the exotic magnetism of Tb2Ti2O7, opening up the general prospect of strain-engineering the diverse magnetic and electrical properties of pyrochlore oxides.

  12. Magnetic susceptibility study of the heavy rare-earth stannate pyrochlores

    NASA Astrophysics Data System (ADS)

    Bondah-Jagalu, V.; Bramwell, S. T.

    2001-11-01

    The series of magnetic rare earth pyrochlore stannates R2Sn2O7 (R = rare earth, except Ce and Pm) have been investigated by powder susceptibility measurements down to T =1.8 K. The results are compared to results for the analogous titanate series, which are well-known frustrated magnets. Unlike the titanates, the whole series can be formed in the cubic pyrochlore structure. Possible experimental advantages of studying the stannates are discussed.

  13. Are archetypes transmitted more by culture than biology? Questions arising from conceptualizations of the archetype.

    PubMed

    Roesler, Christian

    2012-04-01

    The archetype is one of the most important, if not the central concept of analytical psychology. Nevertheless from the beginning the concept was controversial. This paper attempts to review the debate around the term archetype and tries to point out some of the main problems the concept has in the light of contemporary knowledge especially in genetics and neurosciences. It becomes clear that for its use in the practice of Jungian psychotherapy the element of universality in the concept of archetypes is crucial. However, it must be concluded that there is still no firm scientific foundation for the claim that complex symbolic patterns (as for example the myth of the hero) can be transmitted in a way that every human individual has access to them. The paper attempts to show possible ways in which this transmission may be more successfully conceptualized. I would like to have Jung have the last word here. We find a hint in Jung's work where he opens up to ideas much like the ones I have developed here, and this is where Jung says: culture is part of man's nature.

  14. Evolution of cooperation with similarity to an archetype.

    PubMed

    Houy, Nicolas

    2013-09-07

    We use the framework of Colman with a Prisoner's Dilemma game and an evolutionary agent-based algorithm in order to study the evolution of cooperation and discrimination. We assume that players can discriminate on the basis of the phenotypic distance to an archetype, linked itself with a given behaviour in the game. However, we do not impose that the archetype corresponds to a conditionally cooperative behaviour. We show that cooperation can become the norm and discrimination can evolve spontaneously with no other assumption. For some archetypes, cooperation can even evolve faster and with more intensity than in the similarity-based case studied in Colman et al., 2012.

  15. Natural occurrence and stability of pyrochlore in carbonatites, related hydrothermal systems, and weathering environments

    SciTech Connect

    Lumpkin, G.R.; Mariano, A.N.

    1996-08-01

    Stoichiometric and non-stoichiometric (defect) pyrochlores crystallize during the magmatic and late magmatic-hydrothermal phases of carbonatite emplacement (T > 450--550 C, P < 2 kb). Defect pyrochlores can also form at low temperatures in laterite horizons during weathering. After crystallization, pyrochlore is subject to alteration by hydrothermal fluids (T {approximately} 550--200 C) and ground water. Alteration occurs primarily by ion exchange of low valence A-site cations together with O, F, and OH ions. The high valence cations Th and U are generally immobile; however, the authors have documented one example of hydrothermal alteration involving loss of U together with cation exchange at the B-site in samples from Mountain Pass, California. During laterite accumulation, the cation exchange rate of pyrochlore greatly exceeds the rate of matrix dissolution. The exceptional durability of pyrochlore in natural environments is related to the stability of the B-site framework cations. In carbonatites, defect pyrochlores may contain significant amounts of Si (up to 7.6 wt% SiO{sub 2}) which is negatively correlated with Nb.

  16. Thermodynamic stability of actinide pyrochlore minerals in deep geologic repository environments

    SciTech Connect

    WANG,YIFENG; XU,HUIFANG

    2000-03-14

    Crystalline phases of pyrochlore (e.g., CaPuTi{sub 2}O{sub 7}, CaUTi{sub 2}O{sub 7}) have been proposed as a durable ceramic waste form for disposal of high level radioactive wastes including surplus weapons-usable plutonium. In this paper, the authors use a linear free energy relationship to predict the Gibbs free energies of formation of pyrochlore phases (CaMTi{sub 2}O{sub 7}). The Pu-pyrochlore phase is predicted to be stable with respect to PuO{sub 2}, CaTiO{sub 3}, and TiO{sub 2} at room temperatures. Pu-pyrochlore is expected to be stable in a geologic repository where silica and carbonate components are absent or limited. The authors suggest that a repository in a salt formation be an ideal environment for disposal of high level, pyrochlore-based ceramic wastes. In such environment, adding CaO as a backfill will make pyrochlore minerals thermodynamically stable and therefore effectively prevent actinide release from these mineral phases.

  17. Archetypal oscillator for smooth and discontinuous dynamics.

    PubMed

    Cao, Qingjie; Wiercigroch, Marian; Pavlovskaia, Ekaterina E; Grebogi, Celso; Thompson, J Michael T

    2006-10-01

    We propose an archetypal system to investigate transitions from smooth to discontinuous dynamics. In the smooth regime, the system bears significant similarities to the Duffing oscillator, exhibiting the standard dynamics governed by the hyperbolic structure associated with the stationary state of the double well. At the discontinuous limit, however, there is a substantial departure in the dynamics from the standard one. In particular, the velocity flow suffers a jump in crossing from one well to another, caused by the loss of local hyperbolicity due to the collapse of the stable and unstable manifolds of the stationary state. In the presence of damping and external excitation, the system has coexisting attractors and also a chaotic saddle which becomes a chaotic attractor when a smoothness parameter drops to zero. This attractor can bifurcate to a high-period periodic attractor or a chaotic sea with islands of quasiperiodic attractors depending on the strength of damping.

  18. Tyrannical omnipotence in the archetypal father.

    PubMed

    Colman, W

    2000-10-01

    This paper sets the archetypal relationship between the tyrannical, devouring father and his sons in the context of a disjunction in the parental couple (syzygy) whereby the role of the maternal feminine is eclipsed and excluded. This is shown to originate in an omnipotent defence against infantile dependence on the mother. Successful liberation from the father's tyranny requires the restoration of mutuality between the internal couple. Although the main focus is on the internal world (and a detailed clinical illustration is given, showing the working out of this process in the analytical relationship), reference is also made to political tyranny, attitudes to the control of Nature by technological means and patriarchal forms of masculinity. The Chronos myth is amplified through the use of two modern variants in the films The Terminator and Star Wars.

  19. Clinical data interoperability based on archetype transformation.

    PubMed

    Costa, Catalina Martínez; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás

    2011-10-01

    The semantic interoperability between health information systems is a major challenge to improve the quality of clinical practice and patient safety. In recent years many projects have faced this problem and provided solutions based on specific standards and technologies in order to satisfy the needs of a particular scenario. Most of such solutions cannot be easily adapted to new scenarios, thus more global solutions are needed. In this work, we have focused on the semantic interoperability of electronic healthcare records standards based on the dual model architecture and we have developed a solution that has been applied to ISO 13606 and openEHR. The technological infrastructure combines reference models, archetypes and ontologies, with the support of Model-driven Engineering techniques. For this purpose, the interoperability infrastructure developed in previous work by our group has been reused and extended to cover the requirements of data transformation.

  20. Metal-Insulator Transition and Topological Properties of Pyrochlore Iridates

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbin; Haule, Kristjan; Vanderbilt, David

    2017-01-01

    Combining density functional theory (DFT) and embedded dynamical mean-field theory (DMFT) methods, we study the metal-insulator transition in R2Ir2 O7 (R =Y , Eu, Sm, Nd, Pr, and Bi) and the topological nature of the insulating compounds. Accurate free energies evaluated using the charge self-consistent DFT +DMFT method reveal that the metal-insulator transition occurs for an A -cation radius between that of Nd and Pr, in agreement with experiments. The all-in-all-out magnetic phase, which is stable in the Nd compound but not the Pr one, gives rise to a small Ir4 + magnetic moment of ≈0.4 μB and opens a sizable correlated gap. We demonstrate that within this state-of-the-art theoretical method, the insulating bulk pyrochlore iridates are topologically trivial.

  1. Anisotropy-Tuned Magnetic Order in Pyrochlore Iridates.

    PubMed

    Lefrançois, E; Simonet, V; Ballou, R; Lhotel, E; Hadj-Azzem, A; Kodjikian, S; Lejay, P; Manuel, P; Khalyavin, D; Chapon, L C

    2015-06-19

    The magnetic behavior of polycrystalline samples of Er(2)Ir(2)O(7) and Tb(2)Ir(2)O(7) pyrochlores is studied by magnetization measurements and neutron diffraction. Both compounds undergo a magnetic transition at 140 and 130 K, respectively, associated with an ordering of the Ir sublattice, signaled by thermomagnetic hysteresis. In Tb(2)Ir(2)O(7), we show that the Ir molecular field leads the Tb magnetic moments to order below 40 K in the all-in-all-out magnetic arrangement. No sign of magnetic long-range order on the Er sublattice is evidenced in Er(2)Ir(2)O(7) down to 0.6 K where a spin freezing is detected. These contrasting behaviors result from the competition between the Ir molecular field and the different single-ion anisotropy of the rare-earth elements on which it is acting. Additionally, this strongly supports the all-in-all-out iridium magnetic order.

  2. Anisotropy-Tuned Magnetic Order in Pyrochlore Iridates

    NASA Astrophysics Data System (ADS)

    Lefrançois, E.; Simonet, V.; Ballou, R.; Lhotel, E.; Hadj-Azzem, A.; Kodjikian, S.; Lejay, P.; Manuel, P.; Khalyavin, D.; Chapon, L. C.

    2015-06-01

    The magnetic behavior of polycrystalline samples of Er2Ir2O7 and Tb2Ir2O7 pyrochlores is studied by magnetization measurements and neutron diffraction. Both compounds undergo a magnetic transition at 140 and 130 K, respectively, associated with an ordering of the Ir sublattice, signaled by thermomagnetic hysteresis. In Tb2Ir2O7 , we show that the Ir molecular field leads the Tb magnetic moments to order below 40 K in the all-in-all-out magnetic arrangement. No sign of magnetic long-range order on the Er sublattice is evidenced in Er2Ir2O7 down to 0.6 K where a spin freezing is detected. These contrasting behaviors result from the competition between the Ir molecular field and the different single-ion anisotropy of the rare-earth elements on which it is acting. Additionally, this strongly supports the all-in-all-out iridium magnetic order.

  3. Can openEHR archetypes be used in a national context? The Danish archetype proof-of-concept project.

    PubMed

    Bernstein, Knut; Tvede, Ida; Petersen, Jan; Bredegaard, Kirsten

    2009-01-01

    Semantic interoperability and secondary use of data are important informatics challenges in modern healthcare. Connected Digital Health Denmark is investigating if the openEHR reference model, archetypes and templates could be used for representing and exchanging clinical content specification and could become a candidate for a national logical infrastructure for semantic interoperability. The Danish archetype proof-of-concept project has tried out some elements of the openEHR methodology in cooperation with regions and vendors. The project has pointed out benefits and challenges using archetypes, and has identified barriers that need to be addressed in the next steps.

  4. Displacive disorder in three high-k bismuth oxide pyrochlores

    SciTech Connect

    Melot, B.; Rodriguez, E.; Proffen, Th.; Hayward, M.A.; Seshadri, R. . E-mail: seshadri@mrl.ucsb.edu

    2006-05-25

    We use time-of-flight neutron powder diffraction to examine static displacive disorder in three different pyrochlore A{sub 2}B{sub 2}O{sub 6}O' compounds with Bi on the A site. The compounds (Bi{sub 1.5}Zn{sub 0.5})(Nb{sub 1.5}Zn{sub 0.5})O{sub 6}O' (BZN) (Bi{sub 1.5}Zn{sub 0.5})(Ta{sub 1.5}Zn{sub 0.5})O{sub 6}O' (BZT), and (Bi{sub 1.5}Zn{sub 0.5})(Sb{sub 1.5}Zn{sub 0.5})O{sub 6}O' (BZS), are of interest - particularly BZN - for their high dielectric constants in the absence of any phase transition from the cubic high temperature phase. The local structures of the three compounds is characterized by displacive disorder from the ideal pyrochlore positions for both the A and O' sites, with the precise nature of the disorder being quite similar. However the extent of displacive disorder is different, despite the B-O networks being nearly identical in the three compounds. The reported dielectric constants of the three compounds are related to the extent of local displacement, and BZN, with the largest extent of local atomic displacement of A and O', is also reported to have the largest dielectric constant at 1 MHz. The dielectric constants are also related to the magnitudes of the thermal parameters of the different ions. The strongest correlation is found to involve the thermal parameter on the B site (Nb, Ta, or Sb)

  5. Standardized Representation of Clinical Study Data Dictionaries with CIMI Archetypes

    PubMed Central

    Sharma, Deepak K.; Solbrig, Harold R.; Prud’hommeaux, Eric; Pathak, Jyotishman; Jiang, Guoqian

    2016-01-01

    Researchers commonly use a tabular format to describe and represent clinical study data. The lack of standardization of data dictionary’s metadata elements presents challenges for their harmonization for similar studies and impedes interoperability outside the local context. We propose that representing data dictionaries in the form of standardized archetypes can help to overcome this problem. The Archetype Modeling Language (AML) as developed by the Clinical Information Modeling Initiative (CIMI) can serve as a common format for the representation of data dictionary models. We mapped three different data dictionaries (identified from dbGAP, PheKB and TCGA) onto AML archetypes by aligning dictionary variable definitions with the AML archetype elements. The near complete alignment of data dictionaries helped map them into valid AML models that captured all data dictionary model metadata. The outcome of the work would help subject matter experts harmonize data models for quality, semantic interoperability and better downstream data integration. PMID:28269909

  6. Archetypal dynamics, emergent situations, and the reality game.

    PubMed

    Sulis, William

    2010-07-01

    The classical approach to the modeling of reality is founded upon its objectification. Although successful dealing with inanimate matter, objectification has proven to be much less successful elsewhere, sometimes to the point of paradox. This paper discusses an approach to the modeling of reality based upon the concept of process as formulated within the framework of archetypal dynamics. Reality is conceptualized as an intermingling of information-transducing systems, together with the semantic frames that effectively describe and ascribe meaning to each system, along with particular formal representations of same which constitute the archetypes. Archetypal dynamics is the study of the relationships between systems, frames and their representations and the flow of information among these different entities. In this paper a specific formal representation of archetypal dynamics using tapestries is given, and a dynamics is founded upon this representation in the form of a combinatorial game called a reality game. Some simple examples are presented.

  7. [Archetypal aspects of aging: from Eros to Thanatos].

    PubMed

    Pérez Urdániz, A; Bueno Carrera, G; Santos García, J M; Molina Ramos, R; Rubio Larrosa, V

    1999-01-01

    From a Junguian point of view, the different archetypal roles of the aging process, along the life cycle, are studied: eros, puer, logos, hero, persona, mascara, anima, animus, king, warrior, magician, lover, mother, virgin, afrodite, witch, self, senex, shadow, tanatos.

  8. Nursing Minimum Data Set Based on EHR Archetypes Approach.

    PubMed

    Spigolon, Dandara N; Moro, Cláudia M C

    2012-01-01

    The establishment of a Nursing Minimum Data Set (NMDS) can facilitate the use of health information systems. The adoption of these sets and represent them based on archetypes are a way of developing and support health systems. The objective of this paper is to describe the definition of a minimum data set for nursing in endometriosis represent with archetypes. The study was divided into two steps: Defining the Nursing Minimum Data Set to endometriosis, and Development archetypes related to the NMDS. The nursing data set to endometriosis was represented in the form of archetype, using the whole perception of the evaluation item, organs and senses. This form of representation is an important tool for semantic interoperability and knowledge representation for health information systems.

  9. Standardized Representation of Clinical Study Data Dictionaries with CIMI Archetypes.

    PubMed

    Sharma, Deepak K; Solbrig, Harold R; Prud'hommeaux, Eric; Pathak, Jyotishman; Jiang, Guoqian

    2016-01-01

    Researchers commonly use a tabular format to describe and represent clinical study data. The lack of standardization of data dictionary's metadata elements presents challenges for their harmonization for similar studies and impedes interoperability outside the local context. We propose that representing data dictionaries in the form of standardized archetypes can help to overcome this problem. The Archetype Modeling Language (AML) as developed by the Clinical Information Modeling Initiative (CIMI) can serve as a common format for the representation of data dictionary models. We mapped three different data dictionaries (identified from dbGAP, PheKB and TCGA) onto AML archetypes by aligning dictionary variable definitions with the AML archetype elements. The near complete alignment of data dictionaries helped map them into valid AML models that captured all data dictionary model metadata. The outcome of the work would help subject matter experts harmonize data models for quality, semantic interoperability and better downstream data integration.

  10. Goethe's Archetype and the romantic concept of the self.

    PubMed

    Pratt, V; Brook, I

    1996-09-01

    This paper attempts to illuminate Goethe's concept of an archetype by setting it alongside the concept of the self that was being articulated at the same time, also by writers of the Romantic movement. The Romantic concept of the self expresses a new concept of the self as a 'core' plus an expression of the core: and it is the same 'core plus expression' idea that is embodied in the Goethean archetype. Goethe's archetype is not simply a 'plan'. It is a kind of agent at the heart of a thing, striving for self expression, and to this end driving the thing's development. Both Romantic self and archetype reflect the wider attempt to reinstate the concept of action in our understanding of things and happenings in general. The root idea of there being at the heart of a living thing an agent pursuing a goal remains in the modern concept of the organism.

  11. [Essential data set's archetypes for nursing care of endometriosis patients].

    PubMed

    Spigolon, Dandara Novakowski; Moro, Claudia Maria Cabral

    2012-12-01

    This study aimed to develop an Essential Data Set for Nursing Care of Patients with Endometriosis (CDEEPE), represented by archetypes. An exploratory applied research with specialists' participation that was carried out at Heath Informatics Laboratory of PUCPR, between February and November of 2010. It was divided in two stages: CDEEPE construction and evaluation including Nursing Process phases and Basic Human Needs, and archetypes development based on this data set. CDEEPE was evaluated by doctors and nurses with 95.9% of consensus and containing 51 data items. The archetype "Perception of Organs and Senses" was created to represents this data set. This study allowed identifying important information for nursing practices contributing to computerization and application of nursing process during care. The CDEEPE was the basis for archetype creation, that will make possible structured, organized, efficient, interoperable, and semantics records.

  12. The response of the pyrochlore structure-type to ion-beam irradiation

    NASA Astrophysics Data System (ADS)

    Lian, Jie

    Pyrochlore with the general formula of A3+2B4+2O7 (Fd3m; Z = 8) has been proposed as the candidate waste form for the immobilization of actinides, particularly plutonium from dismantled nuclear weapons. Because actinides decay by alpha-decay events, radiation effects on the waste form are a concern. The effects of radiation on different pyrochlore compositions, A2B2O7 (A = La ˜ Lu, and Y; B = Ti, Sn, and Zr), have been investigated by 50 KeV He+, 600 KeV Ar+, 1.0 MeV Kr+, and 1.5 MeV Xe+ ion irradiations. Titanate pyrochlores are generally sensitive to ion beam damage and can be amorphized at a low damage level (˜0.2 dpa). The critical amorphization temperature, Tc, increases from ˜480 to ˜1120 K with increasing A-site cation size. A dramatically increasing radiation "resistance" to ion beam induced-amorphization has been observed with increasing Zr-content in the Gd2Ti2-xZrxO7 system. The pure end-member, Gd2Zr2O7, cannot be amorphized, even at doses as high as ˜100 dpa. Although zirconate pyrochlores are generally considered to be radiation "resistant", ion beam-induced amorphization occurs for La2Zr2O7 at a dose of ˜5.5 dpa at room temperature. Stannate pyrochlores A2Sn 2O7 (A = La, Nd, Gd) are readily amorphized by ion beam damage at a relatively low dose (˜1 dpa) at room temperature; while no evidence of amorphization has been observed in A2Sn2O7 (A = Er, Y, Lu) irradiated with 1 MeV Kr+ ions at a dose of ˜6 dpa at 25 K. The factors that influence the response of different pyrochlore compositions to ion irradiation-induced amorphization are discussed in terms of cation radius ratio, defect formation energies, and the tendency of the pyrochlore structure-type to undergo an order-disorder transition to the defect-fluorite structure. The "resistance" of the pyrochlore structure to ion beam-induced amorphization is not only affected by the relative sizes of the A- and B-site cations, but also the cation electronic configurations. Pyrochlore compositions

  13. Watson-Crick pairing, the Heisenberg group and Milnor invariants.

    PubMed

    Gadgil, Siddhartha

    2009-07-01

    We study the secondary structure of RNA determined by Watson-Crick pairing without pseudo-knots using Milnor invariants of links. We focus on the first non-trivial invariant, which we call the Heisenberg invariant. The Heisenberg invariant, which is an integer, can be interpreted in terms of the Heisenberg group as well as in terms of lattice paths. We show that the Heisenberg invariant gives a lower bound on the number of unpaired bases in an RNA secondary structure. We also show that the Heisenberg invariant can predict allosteric structures for RNA. Namely, if the Heisenberg invariant is large, then there are widely separated local maxima (i.e., allosteric structures) for the number of Watson-Crick pairs found.

  14. New space vehicle archetypes for human planetary missions

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1991-01-01

    Contemporary, archetypal, crew-carrying spacecraft concepts developed for NASA are presented for: a lunar transportation system, two kinds of Mars landers, and five kinds of Mars transfer vehicles. These cover the range of propulsion technologies and mission modes of interest for the Space Exploration Initiative, and include both aerobraking and artificial gravity as appropriate. They comprise both upgrades of extant archetypes and completely new ones. Computer solid models, configurations and mass statements are presented for each.

  15. Excitation spectra of generalized antiferromagnetic Heisenberg spin chains (abstract)

    NASA Astrophysics Data System (ADS)

    Parkinson, J. B.; Bonner, J. C.

    1988-04-01

    We compare the excitation spectra in the presence of a magnetic field of a number of integrable (exactly solvable) and nonintegrable quantum spin chains of various spin value s. The archetypal Bethe-ansatz integrable model is the s= 1/2 Heisenberg antiferromagnet (HB AFM). The excitation spectra are characterized by a soft mode which tracks across the Brillouin zone as the field increases to its saturation value. A class of Bethe-ansatz integrable models with SU(2) symmetry and the general spin s display excitation spectra qualitatively similar to the spin- 1/2 model above, for all s. A second class of Bethe-ansatz integrable models has SU(n) symmetry, where n=2s+1. Like the SU(2) integrable chains, these models have gapless excitation spectra, but the basic Brillouin zone changes from k=±2π/(2s+1)a. Studies show that periodicity of the SU(3) member of the class changes (increases) as the field increases to saturation. For both classes of integrable models, there is a single type of excitation pattern which is generically similar for all s. In the case of the other models, on the other hand, numerical studies show that the excitations divide into at least two distinct classes. In the case of the s=1 HB AFM, at high fields (corresponding to SzT=N,N-1, . . .,N/2) the excitations map approximately onto the complete set of excitations for s= 1/2 , whereas at low fields (SzT=N/2,N/2-1,. . .,0) the excitations have notable classical character. In the case of the s=1 model with pure biquadratic exchange, one set of excitations, corresponding to SzT even (SzT=N,N-2,. . .,2,0), again shows an approximate mapping to the complete excitation set for s= 1/2 . The second class of excitations, corresponding to SzT odd, are very different. They are symmetric about k=±π/2a for all SzT, i.e., correspond to a basic Brillouin zone of ±π/2a.

  16. Fractionalized Z_{2} Classical Heisenberg Spin Liquids.

    PubMed

    Rehn, J; Sen, Arnab; Moessner, R

    2017-01-27

    Quantum spin systems are by now known to exhibit a large number of different classes of spin liquid phases. By contrast, for classical Heisenberg models, only one kind of fractionalized spin liquid phase, the so-called Coulomb or U(1) spin liquid, has until recently been identified: This exhibits algebraic spin correlations and impurity moments, "orphan spins," whose size is a fraction of that of the underlying microscopic degrees of freedom. Here, we present two Heisenberg models exhibiting fractionalization in combination with exponentially decaying correlations. These can be thought of as a classical continuous spin version of a Z_{2} spin liquid. Our work suggests a systematic search and classification of classical spin liquids as a worthwhile endeavor.

  17. International developments in openEHR archetypes and templates.

    PubMed

    Leslie, Heather

    2008-01-01

    Electronic Health Records (EHRs) are a complex knowledge domain. The ability to design EHRs to cope with the changing nature of health knowledge, and to be shareable, has been elusive. A recent pilot study1 tested the applicability of the CEN 13606 as an electronic health record standard. Using openEHR archetypes and tools2, 650 clinical content specifi cations (archetypes) were created (e.g. for blood pressure) and re-used across all clinical specialties and contexts. Groups of archetypes were aggregated in templates to support clinical information gathering or viewing (e.g. 80 separate archetypes make up the routine antenatal visit record). Over 60 templates were created for use in the emergency department, antenatal care and delivery of an infant, and paediatric hearing loss assessment. The primary goal is to define a logical clinical record architecture for the NHS but potentially, with archetypes as the keystone, shareable EHRs will also be attainable. Archetype and template development work is ongoing, with associated evaluation occurring in parallel.

  18. Lie symmetry analysis of the Heisenberg equation

    NASA Astrophysics Data System (ADS)

    Zhao, Zhonglong; Han, Bo

    2017-04-01

    The Lie symmetry analysis is performed on the Heisenberg equation from the statistical physics. Its Lie point symmetries and optimal system of one-dimensional subalgebras are determined. The similarity reductions and invariant solutions are obtained. Using the multipliers, some conservation laws are obtained. We prove that this equation is nonlinearly self-adjoint. The conservation laws associated with symmetries of this equation are constructed by means of Ibragimov's method.

  19. Fourier analysis on the Heisenberg group

    PubMed Central

    Geller, Daryl

    1977-01-01

    We obtain a usable characterization of the (group) Fourier transform of 𝒮(Hn) (Schwartz space on the Heisenberg group). The characterization involves writing elements of [Formula: see text] as asymptotic series in Planck's constant. In the process, we derive a new “discrete” version of spherical harmonics, and elucidate the theory of group contractions. We give an application to Hardy space theory. PMID:16578749

  20. Heisenberg necklace model in a magnetic field

    SciTech Connect

    Tsvelik, A. M.; Zaliznyak, I. A.

    2016-08-26

    Here, we study the low-energy sector of the Heisenberg necklace model. Using the field-theory methods, we estimate how the coupling of the electronic spins with the paramagnetic Kondo spins affects the overall spin dynamics and evaluate its dependence on a magnetic field. We are motivated by the experimental realizations of the spin-1/2 Heisenberg chains in SrCuO2 and Sr2CuO3 cuprates, which remain one-dimensional Luttinger liquids down to temperatures much lower than the in-chain exchange coupling J. We also consider the perturbation of the energy spectrum caused by the interaction γ with nuclear spins (I=3/2) present on the same sites. We find that the resulting necklace model has a characteristic energy scale, Λ~J1/3(γI)2/3, at which the coupling between (nuclear) spins of the necklace and the spins of the Heisenberg chain becomes strong. Furthermore, this energy scale is insensitive to a magnetic field B. For μBB>Λ we find two gapless bosonic modes that have different velocities, whose ratio at strong fields approaches a universal number, 2√+1.

  1. Heisenberg necklace model in a magnetic field

    DOE PAGES

    Tsvelik, A. M.; Zaliznyak, I. A.

    2016-08-26

    Here, we study the low-energy sector of the Heisenberg necklace model. Using the field-theory methods, we estimate how the coupling of the electronic spins with the paramagnetic Kondo spins affects the overall spin dynamics and evaluate its dependence on a magnetic field. We are motivated by the experimental realizations of the spin-1/2 Heisenberg chains in SrCuO2 and Sr2CuO3 cuprates, which remain one-dimensional Luttinger liquids down to temperatures much lower than the in-chain exchange coupling J. We also consider the perturbation of the energy spectrum caused by the interaction γ with nuclear spins (I=3/2) present on the same sites. We findmore » that the resulting necklace model has a characteristic energy scale, Λ~J1/3(γI)2/3, at which the coupling between (nuclear) spins of the necklace and the spins of the Heisenberg chain becomes strong. Furthermore, this energy scale is insensitive to a magnetic field B. For μBB>Λ we find two gapless bosonic modes that have different velocities, whose ratio at strong fields approaches a universal number, 2√+1.« less

  2. Heisenberg necklace model in a magnetic field

    NASA Astrophysics Data System (ADS)

    Tsvelik, A. M.; Zaliznyak, I. A.

    2016-08-01

    We study the low-energy sector of the Heisenberg necklace model. Using the field-theory methods, we estimate how the coupling of the electronic spins with the paramagnetic Kondo spins affects the overall spin dynamics and evaluate its dependence on a magnetic field. We are motivated by the experimental realizations of the spin-1/2 Heisenberg chains in SrCuO2 and Sr2CuO3 cuprates, which remain one-dimensional Luttinger liquids down to temperatures much lower than the in-chain exchange coupling J . We consider the perturbation of the energy spectrum caused by the interaction γ with nuclear spins (I =3 /2 ) present on the same sites. We find that the resulting necklace model has a characteristic energy scale, Λ ˜J1 /3(γI ) 2 /3 , at which the coupling between (nuclear) spins of the necklace and the spins of the Heisenberg chain becomes strong. This energy scale is insensitive to a magnetic field B . For μBB >Λ we find two gapless bosonic modes that have different velocities, whose ratio at strong fields approaches a universal number, √{2 }+1 .

  3. Synthesis, characterization, and catalytic activity of Rh-based lanthanum zirconate pyrochlores for higher alcohol synthesis

    SciTech Connect

    Abdelsayed, Victor; Shekhawat, Dushyant; Poston, James A.; Spivey, James J.

    2013-05-01

    Two lanthanum zirconate pyrochlores (La{sub 2}Zr{sub 2}O{sub 7}; LZ) were prepared by Pechini method and tested for higher alcohols selectivity. In one, Rh was substituted into the pyrochlore lattice (LRZ, 1.7 wt%) while for the second, Rh was supported on an unsubstituted La{sub 2}Zr{sub 2}O{sub 7} (R/LZ, 1.8 wt%). X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR) results show that the surface reducibility depends on whether the Rh is in (or supported on) the LZ pyrochlore. Rhodium in the LRZ is more reducible than rhodium supported on the R/LZ pyrochlore, likely due to the presence of a perovskite phase (LaRhO{sub 3}; identified by XRD), in which rhodium is more reducible. The formation of the perovskite accompanies that of the pyrochlore. CO hydrogenation results show higher ethanol selectivity for R/LZ than LRZ, possibly due to the strong interaction between Rh and LZ on the R/LZ, forming atomically close Rh{sup +}/Rh{sup 0} sites, which have been suggested to favor ethanol production.

  4. Science 101: What, Exactly, Is the Heisenberg Uncertainty Principle?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2016-01-01

    Bill Robertson is the author of the NSTA Press book series, "Stop Faking It! Finally Understanding Science So You Can Teach It." In this month's issue, Robertson describes and explains the Heisenberg Uncertainty Principle. The Heisenberg Uncertainty Principle was discussed on "The Big Bang Theory," the lead character in…

  5. Primordial image and the archetypal design of art.

    PubMed

    Johnson, N B

    1991-07-01

    This paper extends Jung's work on the relationship of art to (postulated) archetypes of the collective unconscious. Archetypes of the collective unconscious, according to Jung, are revealed to ego consciousness only by way of images--images of a specific form. Jung suggests that archetypes, primordial images, combine two aspects in a single form and are therefore paradoxical. The wise old man and youth and hermaphrodites illustrate Jung's definition of a primordial image. My study of Jung's illustrations concludes that he is referring to what I term double-figures as the design form of primordial imagery. I elaborate upon the design form of double-figures, and illustrate my conception of archetypal imagery through comparative analysis of nine cases of double-figure imagery from selected prehistoric and contemporary societies. Double-figures, as archetypal primordial imagery of the collective unconscious, are spontaneously generated, autonomous, and known to a wide variety of societies. I distinguish between form and content in the study of primordial imagery, and conclude with a summary of the importance of Jung to the cross-cultural study of art.

  6. Bismuth pyrochlore thin films for dielectric energy storage

    SciTech Connect

    Michael, Elizabeth K. Trolier-McKinstry, Susan

    2015-08-07

    Thin films of cubic pyrochlore bismuth zinc niobate, bismuth zinc tantalate, and bismuth zinc niobate tantalate were fabricated using chemical solution deposition. This family of materials exhibited moderate relative permittivities between 55 ± 2 and 145 ± 5 for bismuth zinc tantalate and bismuth zinc niobate, respectively, and low loss tangents on the order of 0.0008 ± 0.0001. Increases in the concentration of the tantalum end member increased the dielectric breakdown strength. For example, at 10 kHz, the room temperature breakdown strength of bismuth zinc niobate was 5.1 MV/cm, while that of bismuth zinc tantalate was 6.1 MV/cm. This combination of a high breakdown strength and a moderate permittivity led to a high discharged energy storage density for all film compositions. For example, at a measurement frequency of 10 kHz, bismuth zinc niobate exhibited a maximum recoverable energy storage density of 60.8 ± 2.0 J/cm{sup 3}, while bismuth zinc tantalate exhibited a recoverable energy storage density of 60.7 ± 2.0 J/cm{sup 3}. Intermediate compositions of bismuth zinc niobate tantalate offered higher energy storage densities; at 10 mol. % tantalum, the maximum recoverable energy storage density was ∼66.9 ± 2.4 J/cm{sup 3}.

  7. Probing disorder in isometric pyrochlore and related complex oxides

    NASA Astrophysics Data System (ADS)

    Shamblin, Jacob; Feygenson, Mikhail; Neuefeind, Joerg; Tracy, Cameron L.; Zhang, Fuxiang; Finkeldei, Sarah; Bosbach, Dirk; Zhou, Haidong; Ewing, Rodney C.; Lang, Maik

    2016-05-01

    There has been an increased focus on understanding the energetics of structures with unconventional ordering (for example, correlated disorder that is heterogeneous across different length scales). In particular, compounds with the isometric pyrochlore structure, A2B2O7, can adopt a disordered, isometric fluorite-type structure, (A, B)4O7, under extreme conditions. Despite the importance of the disordering process there exists only a limited understanding of the role of local ordering on the energy landscape. We have used neutron total scattering to show that disordered fluorite (induced intrinsically by composition/stoichiometry or at far-from-equilibrium conditions produced by high-energy radiation) consists of a local orthorhombic structural unit that is repeated by a pseudo-translational symmetry, such that orthorhombic and isometric arrays coexist at different length scales. We also show that inversion in isometric spinel occurs by a similar process. This insight provides a new basis for understanding order-to-disorder transformations important for applications such as plutonium immobilization, fast ion conduction, and thermal barrier coatings.

  8. Probing disorder in isometric pyrochlore and related complex oxides.

    PubMed

    Shamblin, Jacob; Feygenson, Mikhail; Neuefeind, Joerg; Tracy, Cameron L; Zhang, Fuxiang; Finkeldei, Sarah; Bosbach, Dirk; Zhou, Haidong; Ewing, Rodney C; Lang, Maik

    2016-05-01

    There has been an increased focus on understanding the energetics of structures with unconventional ordering (for example, correlated disorder that is heterogeneous across different length scales). In particular, compounds with the isometric pyrochlore structure, A2B2O7, can adopt a disordered, isometric fluorite-type structure, (A, B)4O7, under extreme conditions. Despite the importance of the disordering process there exists only a limited understanding of the role of local ordering on the energy landscape. We have used neutron total scattering to show that disordered fluorite (induced intrinsically by composition/stoichiometry or at far-from-equilibrium conditions produced by high-energy radiation) consists of a local orthorhombic structural unit that is repeated by a pseudo-translational symmetry, such that orthorhombic and isometric arrays coexist at different length scales. We also show that inversion in isometric spinel occurs by a similar process. This insight provides a new basis for understanding order-to-disorder transformations important for applications such as plutonium immobilization, fast ion conduction, and thermal barrier coatings.

  9. Insights into the Radiation Response of Pyrochlores from Calculations of Threshold Displacement Events

    SciTech Connect

    Devanathan, Ram; Weber, William J.

    2005-10-15

    We have used molecular dynamics simulations to examine the displacement threshold energy (Ed) surface for cations and anions in Gd2Ti2O7 and Gd2Zr2O7 pyrochlores. In both pyrochlores, the Ed surface is highly anisotropic and it requires less energy to displace anions than cations. Both anion and cation Ed values are higher in the titanate compared to the zirconate. Titanium displacement energies are in excess of 170 eV for all directions examined, because cation exchange is less energetically favorable in Gd2Ti2O7 compared to Gd2Zr2O7. These high energy Ti displacements result in the formation of defect clusters that may prevent efficient defect recovery. This provides an explanation for the difference in susceptibility to amorphization between titanate and zirconate pyrochlores.

  10. Epitaxial growth of iridate pyrochlore Nd2Ir2O7 films

    DOE PAGES

    Gallagher, J. C.; Esser, B. D.; Morrow, R.; ...

    2016-02-29

    Epitaxial films of the pyrochlore Nd2Ir2O7 have been grown on (111)-oriented yttria-stabilized zirconia (YSZ) substrates by off-axis sputtering followed by post-growth annealing. X-ray diffraction (XRD) results demonstrate phase-pure epitaxial growth of the pyrochlore films on YSZ. Scanning transmission electron microscopy (STEM) investigation of an Nd2Ir2O7 film with a short post-annealing provides insight into the mechanism for crystallization of Nd2Ir2O7 during the post-annealing process. STEM images reveal clear pyrochlore ordering of Nd and Ir in the films. As a result, the epitaxial relationship between the YSZ and Nd2Ir2O7 is observed clearly while some interfacial regions show a thin region with polycrystallinemore » Ir nanocrystals.« less

  11. Electronic excitation induced amorphization in titanate pyrochlores: an ab initio molecular dynamics study

    DOE PAGES

    Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; ...

    2015-02-09

    In this study, the response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser,more » electron and ion irradiations.« less

  12. Epitaxial growth of iridate pyrochlore Nd2Ir2O7 films

    PubMed Central

    Gallagher, J. C.; Esser, B. D.; Morrow, R.; Dunsiger, S. R.; Williams, R. E. A.; Woodward, P. M.; McComb, D. W.; Yang, F. Y.

    2016-01-01

    Epitaxial films of the pyrochlore Nd2Ir2O7 have been grown on (111)-oriented yttria-stabilized zirconia (YSZ) substrates by off-axis sputtering followed by post-growth annealing. X-ray diffraction (XRD) results demonstrate phase-pure epitaxial growth of the pyrochlore films on YSZ. Scanning transmission electron microscopy (STEM) investigation of an Nd2Ir2O7 film with a short post-annealing provides insight into the mechanism for crystallization of Nd2Ir2O7 during the post-annealing process. STEM images reveal clear pyrochlore ordering of Nd and Ir in the films. The epitaxial relationship between the YSZ and Nd2Ir2O7 is observed clearly while some interfacial regions show a thin region with polycrystalline Ir nanocrystals. PMID:26923862

  13. Archetypal-Imaging and Mirror-Gazing

    PubMed Central

    Caputo, Giovanni B.

    2013-01-01

    Mirrors have been studied by cognitive psychology in order to understand self-recognition, self-identity, and self-consciousness. Moreover, the relevance of mirrors in spirituality, magic and arts may also suggest that mirrors can be symbols of unconscious contents. Carl G. Jung investigated mirrors in relation to the unconscious, particularly in Psychology and Alchemy. However, the relationship between the conscious behavior in front of a mirror and the unconscious meaning of mirrors has not been clarified. Recently, empirical research found that gazing at one’s own face in the mirror for a few minutes, at a low illumination level, produces the perception of bodily dysmorphic illusions of strange-faces. Healthy observers usually describe huge distortions of their own faces, monstrous beings, prototypical faces, faces of relatives and deceased, and faces of animals. In the psychiatric population, some schizophrenics show a dramatic increase of strange-face illusions. They can also describe the perception of multiple-others that fill the mirror surface surrounding their strange-face. Schizophrenics are usually convinced that strange-face illusions are truly real and identify themselves with strange-face illusions, diversely from healthy individuals who never identify with them. On the contrary, most patients with major depression do not perceive strange-face illusions, or they perceive very faint changes of their immobile faces in the mirror, like death statues. Strange-face illusions may be the psychodynamic projection of the subject’s unconscious archetypal contents into the mirror image. Therefore, strange-face illusions might provide both an ecological setting and an experimental technique for “imaging of the unconscious”. Future researches have been proposed. PMID:25379264

  14. Archetypal-imaging and mirror-gazing.

    PubMed

    Caputo, Giovanni B

    2014-03-01

    Mirrors have been studied by cognitive psychology in order to understand self-recognition, self-identity, and self-consciousness. Moreover, the relevance of mirrors in spirituality, magic and arts may also suggest that mirrors can be symbols of unconscious contents. Carl G. Jung investigated mirrors in relation to the unconscious, particularly in Psychology and Alchemy. However, the relationship between the conscious behavior in front of a mirror and the unconscious meaning of mirrors has not been clarified. Recently, empirical research found that gazing at one's own face in the mirror for a few minutes, at a low illumination level, produces the perception of bodily dysmorphic illusions of strange-faces. Healthy observers usually describe huge distortions of their own faces, monstrous beings, prototypical faces, faces of relatives and deceased, and faces of animals. In the psychiatric population, some schizophrenics show a dramatic increase of strange-face illusions. They can also describe the perception of multiple-others that fill the mirror surface surrounding their strange-face. Schizophrenics are usually convinced that strange-face illusions are truly real and identify themselves with strange-face illusions, diversely from healthy individuals who never identify with them. On the contrary, most patients with major depression do not perceive strange-face illusions, or they perceive very faint changes of their immobile faces in the mirror, like death statues. Strange-face illusions may be the psychodynamic projection of the subject's unconscious archetypal contents into the mirror image. Therefore, strange-face illusions might provide both an ecological setting and an experimental technique for "imaging of the unconscious". Future researches have been proposed.

  15. Archetypes for actinide-specific chelating agents

    SciTech Connect

    Smith, W.L.

    1980-01-01

    The complexes of uranium and thorium with monomeric hydroxamic acids can serve as archetypes for an optimized macrochelate designed for tetravalent actinides. The eight-coordinate complexes, Th(i-PrN(O)C(O)R)/sub 4/, where R = tert-butyl or R = neopentyl, have been synthesized and their structures have been determined by x-ray diffraction. The bulky alkyl substituents impart remarkable volatility and hydrocarbon solubility to these complexes, and the steric interactions of these substituents largely determine the structures. When R = tert-butyl, the substituents occupy the corners of a tetrahedron and force the complex into a distorted cubic geometry with crystallographic S/sub 4/ symmetry. Insertion of a methylene group between the carbonyl carbon and the tert-butyl group relaxes the steric requirements, and the coordination polyhedron of the neopentyl derivative is close to the mmmm isomer of the trigonal-faced dodecahedron. Uranium tetrachloride was quantitatively oxidized via an oxygen transfer reaction with two equivalents of N-phenylbenzohydroxamic acid anion (PBHA) in tetrahydrofuran (THF) to form UO/sub 2/ Cl(PBHA)(THF)/sub 2/ and benzanilide. The structure of the uranyl complex has been determined from x-ray diffraction data; the linear uranyl ion is surrounded by a planar pentagonal array composed of two hydroxamate oxygen atoms, a chloride ion and two THF oxygens, such that the chloride ion is opposite the hydroxamate group. That the THF and phenyl rings are twisted from this equatorial plane limits the molecular geometry to that of the C/sub 1/ point group. Some aspects of the chemistry of hydroxamic acids and of their incorporation into molecules that may serve as precursors of tetravalent actinide specific sequestering agents have also been investigated.

  16. The XXZ Heisenberg model on random surfaces

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Sedrakyan, A.

    2013-09-01

    We consider integrable models, or in general any model defined by an R-matrix, on random surfaces, which are discretized using random Manhattan lattices. The set of random Manhattan lattices is defined as the set dual to the lattice random surfaces embedded on a regular d-dimensional lattice. They can also be associated with the random graphs of multiparticle scattering nodes. As an example we formulate a random matrix model where the partition function reproduces the annealed average of the XXZ Heisenberg model over all random Manhattan lattices. A technique is presented which reduces the random matrix integration in partition function to an integration over their eigenvalues.

  17. Discrete flavour symmetries from the Heisenberg group

    NASA Astrophysics Data System (ADS)

    Floratos, E. G.; Leontaris, G. K.

    2016-04-01

    Non-abelian discrete symmetries are of particular importance in model building. They are mainly invoked to explain the various fermion mass hierarchies and forbid dangerous superpotential terms. In string models they are usually associated to the geometry of the compactification manifold and more particularly to the magnetised branes in toroidal compactifications. Motivated by these facts, in this note we propose a unified framework to construct representations of finite discrete family groups based on the automorphisms of the discrete and finite Heisenberg group. We focus in particular, on the PSL2 (p) groups which contain the phenomenologically interesting cases.

  18. Tsallis Entropy Composition and the Heisenberg Group

    NASA Astrophysics Data System (ADS)

    Kalogeropoulos, Nikos

    2013-03-01

    We present an embedding of the Tsallis entropy into the three-dimensional Heisenberg group, in order to understand the meaning of generalized independence as encoded in the Tsallis entropy composition property. We infer that the Tsallis entropy composition induces fractal properties on the underlying Euclidean space. Using a theorem of Milnor/Wolf/Tits/Gromov, we justify why the underlying configuration/phase space of systems described by the Tsallis entropy has polynomial growth for both discrete and Riemannian cases. We provide a geometric framework that elucidates Abe's formula for the Tsallis entropy, in terms the Pansu derivative of a map between sub-Riemannian spaces.

  19. Generalized Weyl-Heisenberg (GWH) groups

    NASA Astrophysics Data System (ADS)

    Ghaani Farashahi, Arash

    2014-09-01

    Let be a locally compact group, be a locally compact Abelian (LCA) group, be a continuous homomorphism, and let be the semi-direct product of and with respect to the continuous homomorphism . In this article, we introduce the Generalized Weyl-Heisenberg (GWH) group associate with the semi-direct product group . We will study basic properties of from harmonic analysis aspects. Finally, we will illustrate applications of these methods in the case of some well-known semi-direct product groups.

  20. An analysis of the openehr archetype semantics based on a typed lambda theory.

    PubMed

    Tatsukawa, Akimichi; Shinohara, Emiko Y; Kawazoe, Yoshimasa; Imai, Takeshi; Ohe, Kazuhiko

    2013-01-01

    The openEHR has adopted the dual model architecture consisting of Reference Model and Archetype. The specification, however, lacks formal definitions of archetype semantics, so that its behaviors have remained ambiguous. The objective of this poster is to analyze semantics of the openEHR archetypes: its variance and mutability. We use a typed lambda calculus as an analyzing tool. As a result, we have reached the conclusion that archetypes should be 1) covariant and 2) immutable schema.

  1. Creating ISO/EN 13606 archetypes based on clinical information needs.

    PubMed

    Rinner, Christoph; Kohler, Michael; Hübner-Bloder, Gudrun; Saboor, Samrend; Ammenwerth, Elske; Duftschmid, Georg

    2011-01-01

    Archetypes model individual EHR contents and build the basis of the dual-model approach used in the ISO/EN 13606 EHR architecture. We present an approach to create archetypes using an iterative development process. It includes automated generation of electronic case report forms from archetypes. We evaluated our approach by developing 128 archetypes which represent 446 clinical information items from the diabetes domain.

  2. Framework for clinical data standardization based on archetypes.

    PubMed

    Maldonado, Jose A; Moner, David; Tomás, Diego; Angulo, Carlos; Robles, Montserrat; Fernández, Jesualdo T

    2007-01-01

    Standardization of data is a prerequisite to achieve semantic interoperability in any domain. This is even more important in the healthcare sector where the need for exchanging health related data among professional and institutions is not an exception but the rule. Currently, there are several international organizations working on the definition of electronic health record architectures, some of them based on a dual-model approach. We present both an archetype modeling framework and LinkEHR-ED, an archetype editor and mapping tool for transforming existing electronic healthcare data which do not conform to a particular electronic healthcare record architecture into compliant electronic health records extracts. In particular, archetypes in LinkEHR-ED are formal representations of clinical concepts built on a particular reference model but enriched with mapping information to data sources which define how to extract and transform existing data in order to generate standardized XML documents.

  3. Archetype Development Process of Electronic Health Record of Minas Gerais.

    PubMed

    Abreu Maia, Thais; Fernandes De Muylder, Cristiana; Mendonça Queiroga, Rodrigo

    2015-01-01

    The Electronic Health Record (EHR) supports health systems and aims to reduce fragmentation, which will enable continuity of patient care. The paper's main objective is to define the steps, roles and artifacts for an archetype development process (ADP) for the EHR at the Brazilian National Health System (SUS) in the State of Minas Gerais (MG). This study was conducted using qualitative analysis based upon an applied case. It had an exploratory purpose metodologically defined in four stages: literature review; descriptive comparison; proposition of an archetype development process and proof of concept. The proof of concept showed that the proposed ADP ensures the archetype quality and supports the semantic interoperability in SUS to improve clinical safety and the continuity of patient care.

  4. Crystal chemistry of pyrochlore from the Mesozoic Panda Hill carbonatite deposit, western Tanzania

    NASA Astrophysics Data System (ADS)

    Boniface, Nelson

    2017-02-01

    The Mesozoic Panda Hill carbonatite deposit in western Tanzania hosts pyrochlore, an ore and source of niobium. This study was conducted to establish the contents of radioactive elements (uranium and thorium) in pyrochlore along with the concentration of niobium in the ore. The pyrochlore is mainly hosted in sövite and is structurally controlled by NW-SE (SW dipping) or NE-SW (NW dipping) magmatic flow bands with dip angles of between 60° and 90°. Higher concentrations of pyrochlore are associated with magnetite, apatite and/or phlogopite rich flow bands. Electron microprobe analyses on single crystals of pyrochlore yield very low UO2 concentrations that range between 0 and 0.09 wt% (equivalent to 0 atoms per formula unit: a.p.f.u.) and ThO2 between 0.55 and 1.05 wt% (equivalent to 0.1 a.p.f.u.). The analyses reveal high concentrations of Nb2O5 (ranging between 57.13 and 65.50 wt%, equivalent to a.p.f.u. ranging between 1.33 and 1.43) and therefore the Panda Hill Nb-oxide is classified as pyrochlore sensu stricto. These data point to a non radioactive pyrochlore and a deposit rich in Nb at Panda Hill. The Panda Hill pyrochlore has low concentrations of REEs as displayed by La2O3 that range between 0.10 and 0.49 wt% (equivalent to a.p.f.u. ranging between 0 and 0.01) and Ce2O3 ranging between 0.86 and 1.80 wt% (equivalent to a.p.f.u. ranging between 0.02 and 0.03), Pr2O3 concentrations range between 0 and 0.23 wt% (equivalent to 0 a.p.f.u.), and Y2O3 is 0 wt% (equivalent to 0 a.p.f.u.). The abundance of the REEs in pyroclore at the Panda Hill Carbonatite deposit is of no economic significance.

  5. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores.

    PubMed

    Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R

    2010-07-14

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.

  6. HL7 template model and EN/ISO 13606 archetype object model - a comparison.

    PubMed

    Bointner, Karl; Duftschmid, Georg

    2009-01-01

    HL7 Templates and EN/ISO 13606 Archetypes are essential components for a semantically interoperable exchange of electronic health record (EHR) data. In this article the underlying models from which Templates and Archetypes are instantiated, namely the HL7 Template Model and the EN/ISO 13606 Archetype Object Model will be compared to identify discrepancies and analogies.

  7. Interoperable Archetypes With a Three Folded Terminology Governance.

    PubMed

    Pederson, Rune; Ellingsen, Gunnar

    2015-01-01

    The use of openEHR archetypes increases the interoperability of clinical terminology, and in doing so improves upon the availability of clinical terminology for both primary and secondary purposes. Where clinical terminology is employed in the EPR system, research reports conflicting a results for the use of structuring and standardization as measurements of success. In order to elucidate this concept, this paper focuses on the effort to establish a national repository for openEHR based archetypes in Norway where clinical terminology could be included with benefit for interoperability three folded.

  8. Validating EHR documents: automatic schematron generation using archetypes.

    PubMed

    Pfeiffer, Klaus; Duftschmid, Georg; Rinner, Christoph

    2014-01-01

    The goal of this study was to examine whether Schematron schemas can be generated from archetypes. The openEHR Java reference API was used to transform an archetype into an object model, which was then extended with context elements. The model was processed and the constraints were transformed into corresponding Schematron assertions. A prototype of the generator for the reference model HL7 v3 CDA R2 was developed and successfully tested. Preconditions for its reusability with other reference models were set. Our results indicate that an automated generation of Schematron schemas is possible with some limitations.

  9. Heisenberg and the Framework of Science Policy

    NASA Astrophysics Data System (ADS)

    Carson, Cathryn

    2003-09-01

    In the decades after 1945, new structures were created for science policy in the Federal Republic. To the establishment of the post war framework Heisenberg contributed as much as any other figure. This was true even though, on the whole, he took no great pleasure in the venture, nor was he always particularly adept at it. His conceptions revolved around certain key notions: autonomy and centralization, elite advisory bodies and relationships of trust, modernization and international standards. These show up at many levels of his activity, from the Max Planck Society to national and international advisory committees to the Humboldt Foundation itself. His opinions were shaped by encounters in the Federal Republic, but they also grew out of his experience of the Third Reich. At a moment like the present, when the post war settlement is under review, it is interesting to reflect on the inherited system: on the extent to which it reflects the situation of the post war decades and the intuitions of those who, like Heisenberg, created it.

  10. Archetype, adaptation and the mammalian heart.

    PubMed

    Meijler, F L; Meijler, T D

    2011-03-01

    Forty years ago, we started our quest for 'The Holy Grail' of understanding ventricular rate control and rhythm in atrial fibrillation (AF). We therefore studied the morphology and function of a wide range of mammalian hearts. From mouse to whale, we found that all hearts show similar structural and functional characteristics. This suggests that the mammalian heart remained well conserved during evolution and in this aspect it differs from other organs and parts of the mammalian body. The archetype of the mammalian heart was apparently so successful that adaptation by natural selection (evolution) caused by varying habitat demands, as occurred in other organs and many other aspects of mammalian anatomy, bypassed the heart. The structure and function of the heart of placental mammals have thus been strikingly conserved throughout evolution. The changes in the mammalian heart that did take place were mostly adjustments (scaling), to compensate for variations in body size and shape. A remarkable scaling effect is, for instance, the difference in atrioventricular (AV) conduction time, which is vital for optimal cardiac function in all mammals, small and large. Scaling of AV conduction takes place in the AV node (AVN), but its substrate is unknown. This sheds new light on the vital role of the AVN in health and disease. The AVN is master and servant of the heart at the same time and is of salient importance for our understanding of supraventricular arrhythmias in humans, especially AF. In Information Technology a software infra-structure called 'enterprise service bus' (ESB) may provide understanding of the mammalian heart's conservation during evolution. The ESB is quite unspecific (and thus general) when compared with the specialised components it has to support. For instance, one of the functions of an ESB is the routing of messages between system nodes. This routing is independent and unaware of the content of the messages. The function of the heart is likewise

  11. Probing disorder in isometric pyrochlore and related complex oxides

    DOE PAGES

    Shamblin, Jacob; Feygenson, Mikhail; Neuefeind, Joerg C; ...

    2016-02-29

    There has been an increased focus on understanding the energetics of structures that can accommodate unconventional ordering (e.g., disordered periodic arrays that appear at different length-scales). For example, the isometric pyrochlore structure, A2B2O7, forms a disordered, defect fluorite-structure, (A,B)4O7, or an aperiodic array, when exposed to extreme conditions]. The ability to accommodate disorder in its structure accounts for the tendency of some compositions to resist becoming aperiodic in high radiation fields or at high temperatures. Thus, these materials find application as host materials for immobilizing actinides, such as plutonium, fast ion conductors in solid oxide fuel cells, and thermal barriermore » coatings for gas turbine jet engines. Despite the importance of the disordering process, there has been only a limited understanding of the role of local ordering on the energetic landscape, mainly due to the use of techniques (i.e., X-ray/electron diffraction) that can only characterize the average structure over a large number unit cells and are insensitive to disorder on the oxygen sublattice. We have used neutron pair distribution functions (PDFs) to show that the disordered fluorite structure consists of a locally-ordered, orthorhombic structural unit that is repeated by a pseudo-translational symmetry, such that the ordered, orthorhombic and disordered, isometric arrays coexist at different length-scales. This disordering mechanism is a more general phenomenon in complex oxides, as PDF analysis has revealed that inversion in the isometric spinel structure, AB2O4 B(AB)O4, occurs by a similar process across the highly randomized B-site. This insight into order-disorder transformations induced intrinsically (chemical composition) or extrinsically (far from equilibrium conditions by high radiation fields) provides a new basis for understanding how modulated structures and correlated disorder at different length-scales affects the physical and

  12. Facilitating the openEHR approach - organizational structures for defining high-quality archetypes.

    PubMed

    Kohl, Christian Dominik; Garde, Sebastian; Knaup, Petra

    2008-01-01

    Using openEHR archetypes to establish an electronic patient record promises rapid development and system interoperability by using or adopting existing archetypes. However, internationally accepted, high quality archetypes which enable a comprehensive semantic interoperability require adequate development and maintenance processes. Therefore, structures have to be created involving different health professions. In the following we present a model which facilitates and governs distributed but cooperative development and adoption of archetypes by different professionals including peer reviews. Our model consists of a hierarchical structure of professional committees and descriptions of the archetype development process considering these different committees.

  13. Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation.

    PubMed

    Lian, J; Helean, K B; Kennedy, B J; Wang, L M; Navrotsky, A; Ewing, R C

    2006-02-09

    The lanthanide stannates, Ln2Sn2O7, Ln=La-Lu and Y, have the isometric pyrochlore structure, A2B2O7, and their structural properties have been refined by Rietveld analysis of powder neutron and synchrotron X-ray diffraction data. In this study, the enthalpies of formation of selected stannate pyrochlores, Ln=La, Nd, Sm, Eu, Dy, and Yb, were measured by high-temperature oxide melt solution calorimetry. Their radiation response was determined by 1 MeV Kr2+ ion irradiation combined with in situ TEM observation over the temperature range of 25 to 1000 K. The enthalpy of formation from binary oxides of stannate pyrochlores became more endothermic (from -145 to -40 kJ/mol) as the size of the lanthanide in the A-site decreases. A more exothermic trend of the enthalpy of formation was observed in stannate pyrochlores with larger lanthanide ions, particularly La, possibly as a result of increased covalency in the Sn-O bond. In contrast to lanthanide titanate pyrochlores, Ln2Ti2O7, that are generally susceptible to radiation-induced amorphization and zirconate pyrochlores, Ln2Zr2O7, that are generally resistant to radiation-induced amorphization, the lanthanide stannate pyrochlores show a much greater variation in their response to ion irradiation. La, Nd, and Gd stannates experience the radiation-induced transformation to the aperiodic state, and the critical amorphization temperatures are approximately 960, 700, and 350 K, respectively. Y and Er stannate pyrochlores cannot be amorphized by ion beam irradiation, even at 25 K, and instead disorder to a defect fluorite structure. Comparison of the calorimetric and ion irradiation data for titanate, zirconate, and stannate pyrochlores reveals a strong correlation among subtle changes in crystal structure with changing composition, the energetics of the disordering process, and the temperature above which the material can no longer be amorphized. In summary, as the structure approaches the ideal, ordered pyrochlore structure

  14. Molecular dynamics simulation of the structural, elastic, and thermal properties of pyrochlores

    SciTech Connect

    Dong, Liyuan; Li, Yuhong; Devanathan, Ram; Gao, Fei

    2016-01-01

    We present a comprehensive simulation study of the effect of composition on the structural, elastic and thermal properties of 25 different compounds from the pyrochlore family. We joined a repulsive potential to an existing interatomic potential to enable molecular dynamics simulations of conditions away from equilibrium. We systematically varied the chemistry of the pyrochlore by substituting different cations in the A and B sites of the A2B2O7 formula unit. The A cations varied from Lu3+ to La3+, and the B cations from Ti4+ to Ce4+. The lattice parameter increased steadily with increasing the radius of A or B cations, but the bulk modulus showed a decreasing trend with increasing cation radius. However, the specific heat capacity and thermal expansion coefficient remained almost unchanged with increasing the radii of A and B cations. It is of interest to note that Ce on the B site significantly reduces the specific heat capacity and thermal expansion coefficient, which could have implications for annealing of radiation damage in cerate pyrochlores. The present results are consistent with the experimental measurements, which validates these potentials for simulation of dynamical processes, such as radiation damage, in pyrochlores.

  15. Insights into dynamic processes of cations in pyrochlores and other complex oxides

    SciTech Connect

    Uberuaga, Blas Pedro; Perriot, Romain

    2015-08-26

    Complex oxides are critical components of many key technologies, from solid oxide fuel cells and superionics to inert matrix fuels and nuclear waste forms. In many cases, understanding mass transport is important for predicting performance and, thus, extensive effort has been devoted to understanding mass transport in these materials. However, most work has focused on the behavior of oxygen while cation transport has received relatively little attention, even though cation diffusion is responsible for many phenomena, including sintering, radiation damage evolution, and deformation processes. Here, we use accelerated molecular dynamics simulations to examine the kinetics of cation defects in one class of complex oxides, A₂B₂O₇ pyrochlore. In some pyrochlore chemistries, B cation defects are kinetically unstable, transforming to A cation defects and antisites at rates faster than they can diffuse. When this occurs, transport of B cations occurs through defect processes on the A sublattice. Further, these A cation defects, either interstitials or vacancies, can interact with antisite disorder, reordering the material locally, though this process is much more efficient for interstitials than vacancies. Whether this behavior occurs in a given pyrochlore depends on the A and B chemistry. Pyrochlores with a smaller ratio of cation radii exhibit this complex behavior, while those with larger ratios exhibit direct migration of B interstitials. Similar behavior has been reported in other complex oxides such as spinels and perovskites, suggesting that this coupling of transport between the A and B cation sublattices, while not universal, occurs in many complex oxide.

  16. Curium-doped stannate pyrochlore: Durability under radiation and leaching in water

    NASA Astrophysics Data System (ADS)

    Yudintsev, S. V.; Tomilin, S. V.; Livshits, T. S.; Lizin, A. A.; Goryatchev, I. A.

    2016-07-01

    The radiation resistance of the phase (Gd,Cm)2Sn2O7 with a pyrochlore-type structure containing 3.0 wt % 244Cm was studied. It was established that amorphization occurs at a dose of 1019 α-decay/g (1.52 displacements per atom), which is 2-5 times higher than that needed for amorphization of titanate and titanate-zirconate pyrochlore phases with a similar structure. The heating of the amorphous ceramics restores the structure of the pyrochlore. The restoration process begins in the temperature interval of 600-700°C. This allows us to estimate the critical amorphization temperature as 650°C. On the 14th day, the rate of Cm leaching from the initial sample in water at 90°C is 10-1; Gd, 10-2; and Sn, 10-3 g/(m2 day). After amorphization the leaching rate increases by an order of magnitude (Cm) and two orders of magnitude (Gd), but it does not change for Sn. Compared to the zirconate and titanate-zirconate phases, stannate pyrochlore is markedly less resistant in water and cannot be regarded as a matrix for the immobilization of REE-actinide fraction wastes.

  17. The image schema and innate archetypes: theoretical and clinical implications.

    PubMed

    Merchant, John

    2016-02-01

    Based in contemporary neuroscience, Jean Knox's 2004 JAP paper 'From archetypes to reflective function' honed her position on image schemas, thereby introducing a model for archetypes which sees them as 'reliably repeated early developmental achievements' and not as genetically inherited, innate psychic structures. The image schema model is used to illustrate how the analyst worked with a patient who began life as an unwanted pregnancy, was adopted at birth and as an adult experienced profound synchronicities, paranormal/telepathic phenomena and visions. The classical approach to such phenomena would see the intense affectivity arising out of a ruptured symbiotic mother-infant relationship constellating certain archetypes which set up the patient's visions. This view is contrasted with Knox's model which sees the archetype an sich as a developmentally produced image schema underpinning the emergence of later imagery. The patient's visions can then be understood to arise from his psychoid body memory related to his traumatic conception and birth. The contemporary neuroscience which supports this view is outlined and a subsequent image schema explanation is presented. Clinically, the case material suggests that a pre-birth perspective needs to be explored in all analytic work. Other implications of Knox's image schema model are summarized.

  18. A Curriculum Framework Based on Archetypal Phenomena and Technologies.

    ERIC Educational Resources Information Center

    Zubrowski, Bernie

    2002-01-01

    Presents an alternative paradigm of curriculum development based on the theory of situated cognition. This approach starts with context rather than concept, gives greater weight to students' interpretative frameworks, and provides for a more holistic development. Presents a grade 1-8 framework that uses archetypal phenomena and technologies as the…

  19. Images of the Heart: Archetypal Imagery in Therapeutic Artwork.

    ERIC Educational Resources Information Center

    Kidd, Judith; Wix, Linney

    1996-01-01

    Explores the "heart" image in art, myth, literature, and religion. Examines an archetypal art therapy approach to the use of the heart in the artmaking processes of two child clients seen in individual and group art therapy. Uses the historical exploration of the heart as a background against which to view personal use of the heart image…

  20. Sustainable clinical knowledge management: an archetype development life cycle.

    PubMed

    Madsen, Maria; Leslie, Heather; Hovenga, Evelyn J S; Heard, Sam

    2010-01-01

    This chapter gives an educational overview of: 1. The significance of having a formal ontology of health care data 2. How openEHR has used an ontological approach to designing an electronic health record 3. The phases of archetype development and key steps in the process 4. The openEHR architecture and integrated development environment.

  1. Archetypal Narratives in Career Counselling: A Chaos Theory Application

    ERIC Educational Resources Information Center

    Pryor, Robert G. L.; Bright, Jim E. H.

    2008-01-01

    This paper seeks to extend previous work on narrative career counselling by considering the role of plot within clients' narratives. Seven archetypal narratives derived from the work of Booker (2004) are introduced that represent systems of meaning to provide insight into how individuals interpret their experience. These plots can be understood…

  2. Relating the archetypes of logarithmic conformal field theory

    NASA Astrophysics Data System (ADS)

    Creutzig, Thomas; Ridout, David

    2013-07-01

    Logarithmic conformal field theory is a rich and vibrant area of modern mathematical physics with well-known applications to both condensed matter theory and string theory. Our limited understanding of these theories is based upon detailed studies of various examples that one may regard as archetypal. These include the c=-2 triplet model, the Wess-Zumino-Witten model on SL(2;R) at level k=-1/2 >, and its supergroup analogue on GL(1|1). Here, the latter model is studied algebraically through representation theory, fusion and modular invariance, facilitating a subsequent investigation of its cosets and extended algebras. The results show that the archetypes of logarithmic conformal field theory are in fact all very closely related, as are many other examples including, in particular, the SL(2|1) models at levels 1 and -1/2 >. The conclusion is then that the archetypal examples of logarithmic conformal field theory are practically all the same, so we should not expect that their features are in any way generic. Further archetypal examples must be sought.

  3. SU (N ) Heisenberg model with multicolumn representations

    NASA Astrophysics Data System (ADS)

    Okubo, Tsuyoshi; Harada, Kenji; Lou, Jie; Kawashima, Naoki

    2015-10-01

    The SU (N ) symmetric antiferromagnetic Heisenberg model with multicolumn representations on the two-dimensional square lattice is investigated by quantum Monte Carlo simulations. For the representation of a Young diagram with two columns, we confirm that a valence-bond solid (VBS) order appears as soon as the Néel order disappears at N =10 , indicating no intermediate phase. In the case of the representation with three columns, there is no evidence for either the Néel or the VBS ordering for N ≥15 . This is actually consistent with the large-N theory, which predicts that the VBS state immediately follows the Néel state, because the expected spontaneous order is too weak to be detected.

  4. Probing local structure of pyrochlore lead zinc niobate with synchrotron x-ray absorption spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Kanchiang, Kanokwan; Pramchu, Sittichain; Yimnirun, Rattikorn; Pakawanit, Phakkhananan; Ananta, Supon; Laosiritaworn, Yongyut

    2013-08-01

    Local structure of lead zinc niobate (PZN) ceramic, synthesized via B-site oxide precursor route in atmospheric pressure, was investigated using synchrotron x-ray absorption spectroscopy (XAS) technique. The x-ray absorption near-edge structure (XANES) simulation was first carried out. The XANES simulation results indicate that the PZN ceramic is in pyrochlore phase having Zn2+ substituted on Nb5+ site. Afterwards, the extended x-ray absorption fine structure (EXAFS) analysis was performed to extract the bond length information between Zn2+ and its neighboring atoms. From the EXAFS fitting, the bond length between Zn2+ and Pb2+ in the pyrochlore phase was found to be longer than the previously reported bond length in the perovskite phase. Further, with the radial distribution information of Zn2+'s neighboring atoms, the formation energies along the precursor-to-pyrochlore and precursor-to-perovskite reaction paths were calculated using the density functional theory (DFT). The calculated results show that the formation energy of the perovskite phase is noticeably higher than that of the pyrochlore phase, which is influenced by the presence of energetic Pb2+ lone pair, as the perovskite phase has shorter Zn2+ to Pb2+ bonding. This therefore suggests the steric hindrance of Pb2+ lone pair and the mutual interactions between Pb2+ lone pair and Zn2+ are main causes of the instability of lead zinc niobate in the perovskite structure and confirm the efficacy of XAS and DFT analysis in revealing local structural details of complex pyrochlore materials.

  5. Systems Archetypes for Military Dynamic Decision Making (Archetypes de systemes pour une prise de decision dynamique dans le domaine militaire)

    DTIC Science & Technology

    2006-03-01

    degree, especially at the strategic and operational levels. One possible method of improving the DDM skills of CF personnel is the application of ’ systems ... thinking ’, in particular, the possibility that a limited number of recurring patterns (archetypes) can be used to explain all military situations and

  6. Heisenberg's Uncertainty Principle and Interpretive Research in Science Education.

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael

    1993-01-01

    Heisenberg's uncertainty principle and the derivative notions of interdeterminacy, uncertainty, precision, and observer-observed interaction are discussed and their applications to social science research examined. Implications are drawn for research in science education. (PR)

  7. Whittaker modules for the twisted Heisenberg-Virasoro algebra

    SciTech Connect

    Liu Dong; Wu Yuezhu; Zhu Linsheng

    2010-02-15

    We define Whittaker modules for the twisted Heisenberg-Virasoro algebra and obtain several results from the classical setting, including a classification of simple Whittaker modules by central characters.

  8. Quasi-Linear Algebras and Integrability (the Heisenberg Picture)

    NASA Astrophysics Data System (ADS)

    Vinet, Luc; Zhedanov, Alexei

    2008-02-01

    We study Poisson and operator algebras with the ''quasi-linear property'' from the Heisenberg picture point of view. This means that there exists a set of one-parameter groups yielding an explicit expression of dynamical variables (operators) as functions of ''time'' t. We show that many algebras with nonlinear commutation relations such as the Askey-Wilson, q-Dolan-Grady and others satisfy this property. This provides one more (explicit Heisenberg evolution) interpretation of the corresponding integrable systems.

  9. Calculation of the expected zero-field muon relaxation rate in the geometrically frustrated rare earth pyrochlore Gd(2)Sn(2)O(7) antiferromagnet.

    PubMed

    McClarty, P A; Cosman, J N; Del Maestro, A G; Gingras, M J P

    2011-04-27

    The magnetic insulator Gd(2)Sn(2)O(7) is one of many geometrically frustrated magnetic materials known to exhibit a nonzero muon spin polarization relaxation rate, λ(T), down to the lowest temperature (T) studied. Such behaviour is typically interpreted as signalling the presence of persistent spin dynamics (PSD) of the host material. In the case of Gd(2)Sn(2)O(7), such PSD comes as a surprise since magnetic specific heat measurements suggest conventional gapped magnons, which would naively lead to an exponentially vanishing λ(T) as T → 0. In contrast to most materials that display PSD, the ordered phase of Gd(2)Sn(2)O(7) is well characterized and both the nature and the magnitude of the interactions have been inferred from the magnetic structure and the temperature dependence of the magnetic specific heat. Based on this understanding, the temperature dependence of the muon spin polarization relaxation through the scattering of spin waves (magnons) is calculated. The result explicitly shows that, despite the unusual extensive number of weakly dispersive (gapped) excitations characterizing Gd(2)Sn(2)O(7), a remnant of the zero modes of the parent frustrated pyrochlore Heisenberg antiferromagnet, the temperature dependence of the calculated λ(T) differs dramatically from the experimental one. Indeed, the calculation conforms to the naive expectation of an exponential collapse of λ(T) at temperatures below ∼ 0.7 K. This result, for the first time, illustrates crisply and quantitatively the paradox that presents itself with the pervasive occurrence of PSD in highly frustrated magnetic systems as evinced by muon spin relaxation measurements.

  10. Transmission electron microscopic study of pyrochlore to defect-fluorite transition in rare-earth pyrohafnates

    SciTech Connect

    Karthik, Chinnathambi; Anderson, Thomas J.; Gout, Delphine; Ubic, Rick

    2012-10-15

    A structural transition in rare earth pyrohafnates, Ln{sub 2}Hf{sub 2}O{sub 7} (Ln=Y, La, Pr, Nd, Tb, Dy, Yb and Lu), has been identified. Neutron diffraction showed that the structure transforms from well-ordered pyrochloric to fully fluoritic through the lanthanide series from La to Lu with a corresponding increase in the position parameter x of the 48f (Fd3{sup Macron }m) oxygen site from 0.330 to 0.375. As evidenced by the selected area electron diffraction, La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} exhibited a well-ordered pyrocholoric structure with the presence of intense superlattice spots, which became weak and diffuse (in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}) before disappearing completely as the series progressed towards the Lu end. High resolution electron microscopic studies showed the breakdown of the pyrochlore ordering in the form of antiphase domains resulting in diffused smoke-like superlattice spots in the case of Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. - Graphical abstract: Transmission electron microscopic studies showed the ordered pyrochlore to defect fluorite transition in rare-earth pyrohafnates to occur via the formation of anti-phase domains to start with. Highlights: Black-Right-Pointing-Pointer Pyrochlore to fluorite structural transition in rare earth pyrohafnates. Black-Right-Pointing-Pointer La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} showed well ordered pyrochlore structure. Black-Right-Pointing-Pointer Short range ordering in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. Black-Right-Pointing-Pointer Break down of pyrochlore ordering due to antiphase boundaries. Black-Right-Pointing-Pointer Rest of the series showed fluoritic structure.

  11. Using archetypes to design services for high users of healthcare.

    PubMed

    Vaillancourt, Samuel; Shahin, Ilan; Aggarwal, Payal; Pomedli, Steve; Hayden, Leigh; Pus, Laura; Bhattacharyya, Onil

    2014-01-01

    A subset of people with complex health and social needs account for the majority of healthcare costs in Ontario. There is broad agreement that better solutions for these patients could lead to better health outcomes and lower costs, but we have few tools to design services around their diverse needs. Predictive modelling may help determine numbers of high users, but design methods such as user archetypes may offer important ways of understanding how to meet their needs. We studied a range of patient profiles and interviews with frequent emergency department users to develop four archetypes of patients with complex needs to orient the service design process. These can be refined and adapted for use within initiatives like Health Links to help provide more appropriate cost-effective care.

  12. Are archetypes transmitted or emergent? A response to Christian Roesler.

    PubMed

    Martin-Vallas, François

    2013-04-01

    In this paper the author argues that Jung's concept of archetype should not be reduced to an univocal definition. Jung himself proposed many definitions of this concept, some of them being partially or totally contradictory to others. A univocal and logical way of thinking can lead us to refute and reject part of those definitions, but a complex way of thinking, as proposed by Edgar Morin or Roy Bhaskar for example, can allow us to consider that those apparent contradictions in Jung's definitions of archetype reflect the complexity of the psychic reality. The main argument of the author is that Jung was missing the epistemological concept of emergence (which appeared in science at the time of his death) and that he tried to express it with the epistemological concepts of his time.

  13. Biogeochemical and Hydrological Heterogeneity and Emergent Archetypical Catchment Response Patterns

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.; Gall, H. E.; Rao, P. S.

    2014-12-01

    What can stream hydrologic and biogeochemical signals tell us about interactions among spatially heterogeneous hydrological and biogeochemical processes at the catchment-scale? We seek to understand how the spatial structure of solute sources coupled with both stationary and nonstationary hydroclimatic drivers affect observed archetypes of concentration-discharge (C-Q) patterns. These response patterns are the spatially integrated expressions of the spatiotemporal structure of solutes exported from managed catchments, and can provide insight into likely ecological consequences of receiving water bodies (e.g., wetlands, rivers, lakes, and coastal waters). We investigated the following broad questions: (1) How does the spatial correlation between the structure of flow-generating areas and biogeochemical source areas across a catchment evolve under stochastic hydro-climatic forcing? (2) What are the feasible hydrologic and biogeochemical responses that lead to the emergence of archetypical C-Q patterns? and; (3) What implications do these coupled dynamics have for catchment monitoring and implementation of management practices? We categorize the observed temporal signals into three archetypical C-Q patterns: dilution; accretion, and constant concentration. We applied a parsimonious stochastic model of heterogeneous catchments, which act as hydrologic and biogeochemical filters, to examine the relationship between spatial heterogeneity and temporal history of solute export signals. The core concept of the modeling framework is considering the type and degree of spatial correlation between solute source zones and flow generating zones, and activation of different portions of the catchments during rainfall events. Our overarching hypothesis is that each archetype C-Q pattern can be generated by explicitly linking landscape-scale hydrologic responses and spatial distributions of solute source properties within a catchment. We compared observed multidecadal data to

  14. Success in Acquisition: Using Archetypes to Beat the Odds

    DTIC Science & Technology

    2010-09-01

    for their comments and reviews of early versions and for their support of this work: Joe Elm, John Foreman, Brian Gallagher, Michael Goodman...Danielle Brian , executive director of the Project on Government Oversight, a watchdog group, remarked: “I think there are many large buildings filled with...classic game theory game and a systems archetype [ Hardin 1968]. The “Tragedy of the Commons” is essentially a multiple player version of the classic

  15. Growth and Underinvestment System Archetype as a Guide to Holistic Water Quality Management

    NASA Astrophysics Data System (ADS)

    Mirchi, A.; Watkins, D. W.

    2013-12-01

    Many water quality problems (e.g., lake eutrophication) are similar in nature but continuously appear in different geographical locations. System archetypes may be used as a tool for conceptual modeling of such problems, illustrating underlying system structures that generate undesirable long-term patterns of system behavior. These archetypes can also facilitate identification of policy levers for addressing the problem, with testing of policies done using more detailed quantitative models. Here, Growth and Underinvestment (G&U) is discussed as an important system archetype governing many water quality problems. Building on the well-known Limits to Growth archetype, the G&U archetype emphasizes the need for adequate, continuous investment in those parts of the system that, if overlooked, threaten to limit the system's growth. Case studies of Great Lakes watersheds and South Florida demonstrate how the G&U archetype can guide water quality policy.

  16. Identifying behaviour patterns of construction safety using system archetypes.

    PubMed

    Guo, Brian H W; Yiu, Tak Wing; González, Vicente A

    2015-07-01

    Construction safety management involves complex issues (e.g., different trades, multi-organizational project structure, constantly changing work environment, and transient workforce). Systems thinking is widely considered as an effective approach to understanding and managing the complexity. This paper aims to better understand dynamic complexity of construction safety management by exploring archetypes of construction safety. To achieve this, this paper adopted the ground theory method (GTM) and 22 interviews were conducted with participants in various positions (government safety inspector, client, health and safety manager, safety consultant, safety auditor, and safety researcher). Eight archetypes were emerged from the collected data: (1) safety regulations, (2) incentive programs, (3) procurement and safety, (4) safety management in small businesses (5) production and safety, (6) workers' conflicting goals, (7) blame on workers, and (8) reactive and proactive learning. These archetypes capture the interactions between a wide range of factors within various hierarchical levels and subsystems. As a free-standing tool, they advance the understanding of dynamic complexity of construction safety management and provide systemic insights into dealing with the complexity. They also can facilitate system dynamics modelling of construction safety process.

  17. Open timelike curves violate Heisenberg's uncertainty principle.

    PubMed

    Pienaar, J L; Ralph, T C; Myers, C R

    2013-02-08

    Toy models for quantum evolution in the presence of closed timelike curves have gained attention in the recent literature due to the strange effects they predict. The circuits that give rise to these effects appear quite abstract and contrived, as they require nontrivial interactions between the future and past that lead to infinitely recursive equations. We consider the special case in which there is no interaction inside the closed timelike curve, referred to as an open timelike curve (OTC), for which the only local effect is to increase the time elapsed by a clock carried by the system. Remarkably, circuits with access to OTCs are shown to violate Heisenberg's uncertainty principle, allowing perfect state discrimination and perfect cloning of coherent states. The model is extended to wave packets and smoothly recovers standard quantum mechanics in an appropriate physical limit. The analogy with general relativistic time dilation suggests that OTCs provide a novel alternative to existing proposals for the behavior of quantum systems under gravity.

  18. Nonlinear phonon interferometry at the Heisenberg limit

    NASA Astrophysics Data System (ADS)

    Cheung, Hil F. H.; Patil, Yogesh Sharad; Chang, Laura; Chakram, Srivatsan; Vengalattore, Mukund

    2016-05-01

    Interferometers operating at or close to quantum limits of precision have found wide application in tabletop searches for physics beyond the standard model, the study of fundamental forces and symmetries of nature and foundational tests of quantum mechanics. The limits imposed by quantum fluctuations and measurement backaction on conventional interferometers (δϕ 1 /√{ N}) have spurred the development of schemes to circumvent these limits through quantum interference, multiparticle interactions and entanglement. Here, we realize a prominent example of such schemes, the so-called SU(1,1) interferometer, in a fundamentally new platform in which the interfering arms are distinct flexural modes of a millimeter-scale mechanical resonator. We realize up to 15.4(3) dB of noise squeezing and demonstrate the Heisenberg scaling of interferometric sensitivity (δϕ 1 / N), corresponding to a 6-fold improvement in measurement precision over a conventional interferometer. We describe how our work extends the optomechanical toolbox and how it presents new avenues for studies of optomechanical sensing and studies of nonequilibrium dynamics of multimode optomechanical systems. This work was supported by the DARPA QuASAR program through a grant from the ARO, the ARO MURI on non-equilibrium manybody dynamics and an NSF INSPIRE award.

  19. Linear dependencies in Weyl-Heisenberg orbits

    NASA Astrophysics Data System (ADS)

    Dang, Hoan Bui; Blanchfield, Kate; Bengtsson, Ingemar; Appleby, D. M.

    2013-11-01

    Five years ago, Lane Hughston showed that some of the symmetric informationally complete positive operator valued measures (SICs) in dimension 3 coincide with the Hesse configuration (a structure well known to algebraic geometers, which arises from the torsion points of a certain elliptic curve). This connection with elliptic curves is signalled by the presence of linear dependencies among the SIC vectors. Here we look for analogous connections between SICs and algebraic geometry by performing computer searches for linear dependencies in higher dimensional SICs. We prove that linear dependencies will always emerge in Weyl-Heisenberg orbits when the fiducial vector lies in a certain subspace of an order 3 unitary matrix. This includes SICs when the dimension is divisible by 3 or equal to 8 mod 9. We examine the linear dependencies in dimension 6 in detail and show that smaller dimensional SICs are contained within this structure, potentially impacting the SIC existence problem. We extend our results to look for linear dependencies in orbits when the fiducial vector lies in an eigenspace of other elements of the Clifford group that are not order 3. Finally, we align our work with recent studies on representations of the Clifford group.

  20. Comparison of Phases Formation Process in Initial and Mechanically Activated Ceramic Batches with Pyrochlore Formulations

    SciTech Connect

    Stefanovsky, S. V.; Chizhevskaya, S. V.; Yudintsev, S. V.

    2002-02-25

    Formation of two pyrochlore ceramics with formulations CaZr0.25U0.75Ti2O7 and CaUTi2O7 within the temperature range 1000-1500 C from batches prepared by grinding of oxide powders in a mortar and an activator with hydrostatic yokes AGO-2U as well as soaking of a Ca, Zr, and Ti oxide mixture with uranylnitrate solution was studied. The pyrochlore ceramics are produced through intermediate calcium uranate formation. Phase formation reactions in the batch pre-treated in the AGO-2U unit were completed within the temperature range 1000-1100 C that is lower than in the batches prepared by two other methods.

  1. Candidate Quantum Spin Liquid in the Ce3 + Pyrochlore Stannate Ce2 Sn2 O7

    NASA Astrophysics Data System (ADS)

    Sibille, Romain; Lhotel, Elsa; Pomjakushin, Vladimir; Baines, Chris; Fennell, Tom; Kenzelmann, Michel

    2015-08-01

    We report the low-temperature magnetic properties of Ce2 Sn2 O7 , a rare-earth pyrochlore. Our susceptibility and magnetization measurements show that due to the thermal isolation of a Kramers doublet ground state, Ce2 Sn2 O7 has Ising-like magnetic moments of ˜1.18 μB . The magnetic moments are confined to the local trigonal axes, as in a spin ice, but the exchange interactions are antiferromagnetic. Below 1 K, the system enters a regime with antiferromagnetic correlations. In contrast to predictions for classical ⟨111 ⟩-Ising spins on the pyrochlore lattice, there is no sign of long-range ordering down to 0.02 K. Our results suggest that Ce2 Sn2 O7 features an antiferromagnetic liquid ground state with strong quantum fluctuations.

  2. Exotic topological states near a quantum metal-insulator transition in pyrochlore iridates

    NASA Astrophysics Data System (ADS)

    Tian, Zhaoming

    Pyrochlore iridates have attracted great interest as prime candidates that may host topologically nontrivial states, spin ice ordering and quantum spin liquid states, in particular through the interplay between different degrees of freedom, such as local moments and mobile electrons. Based on our extensive study using our high quality single crystals, we will discuss such examples, i.e. chiral spin liquid in a quadratic band touching state, Weyl semimetallic state and chiral domain wall transport nearby a quantum insulator-semimetal transition in pyrochlore iridates. This work is based on the collaboration with Nakatsuji Satoru, Kohama Yoshimitsu, Tomita Takahiro, Kindo Koichi, Jun J. Ishikawa, Balents Leon, Ishizuka Hiroaki, Timothy H. Hsieh. ZM. Tian was supported by JSPS Postdoctoral Fellowship (No.P1402).

  3. Microscopic Origin of Heisenberg and Non-Heisenberg Exchange Interactions in Ferromagnetic bcc Fe.

    PubMed

    Kvashnin, Y O; Cardias, R; Szilva, A; Di Marco, I; Katsnelson, M I; Lichtenstein, A I; Nordström, L; Klautau, A B; Eriksson, O

    2016-05-27

    By means of first principles calculations, we investigate the nature of exchange coupling in ferromagnetic bcc Fe on a microscopic level. Analyzing the basic electronic structure reveals a drastic difference between the 3d orbitals of E_{g} and T_{2g} symmetries. The latter ones define the shape of the Fermi surface, while the former ones form weakly interacting impurity levels. We demonstrate that, as a result of this, in Fe the T_{2g} orbitals participate in exchange interactions, which are only weakly dependent on the configuration of the spin moments and thus can be classified as Heisenberg-like. These couplings are shown to be driven by Fermi surface nesting. In contrast, for the E_{g} states, the Heisenberg picture breaks down since the corresponding contribution to the exchange interactions is shown to strongly depend on the reference state they are extracted from. Our analysis of the nearest-neighbor coupling indicates that the interactions among E_{g} states are mainly proportional to the corresponding hopping integral and thus can be attributed to be of double-exchange origin. By making a comparison to other magnetic transition metals, we put the results of bcc Fe into context and argue that iron has a unique behavior when it comes to magnetic exchange interactions.

  4. Insights into dynamic processes of cations in pyrochlores and other complex oxides

    DOE PAGES

    Uberuaga, Blas Pedro; Perriot, Romain

    2015-08-26

    Complex oxides are critical components of many key technologies, from solid oxide fuel cells and superionics to inert matrix fuels and nuclear waste forms. In many cases, understanding mass transport is important for predicting performance and, thus, extensive effort has been devoted to understanding mass transport in these materials. However, most work has focused on the behavior of oxygen while cation transport has received relatively little attention, even though cation diffusion is responsible for many phenomena, including sintering, radiation damage evolution, and deformation processes. Here, we use accelerated molecular dynamics simulations to examine the kinetics of cation defects in onemore » class of complex oxides, A₂B₂O₇ pyrochlore. In some pyrochlore chemistries, B cation defects are kinetically unstable, transforming to A cation defects and antisites at rates faster than they can diffuse. When this occurs, transport of B cations occurs through defect processes on the A sublattice. Further, these A cation defects, either interstitials or vacancies, can interact with antisite disorder, reordering the material locally, though this process is much more efficient for interstitials than vacancies. Whether this behavior occurs in a given pyrochlore depends on the A and B chemistry. Pyrochlores with a smaller ratio of cation radii exhibit this complex behavior, while those with larger ratios exhibit direct migration of B interstitials. Similar behavior has been reported in other complex oxides such as spinels and perovskites, suggesting that this coupling of transport between the A and B cation sublattices, while not universal, occurs in many complex oxide.« less

  5. Crystal chemistry on a lattice: The case of BZN and BZN-related pyrochlores

    SciTech Connect

    Liu Yun; Withers, Ray L. . E-mail: withers@rsc.anu.edu.au; Welberry, T.R.; Wang Hong; Du Huiling

    2006-07-15

    This paper uses a diagnostic, highly structured diffuse intensity distribution to investigate the local crystal chemistry of (Bi{sub 1.5}Zn{sub 0.5-} {sub {delta}} )(Zn{sub 0.5}Nb{sub 1.5})O{sub 7-} {sub {delta}} (BZN) as well as Sn{sup 4+} and Ti{sup 4+}, B site substituted, BZN-related pyrochlore phases. The structured diffuse distribution of the B site substituted material is found to be remarkably similar to that observed for BZN itself. In the special case of (Bi{sub 1.5}Zn{sub 0.5})(Ti{sub 1.5}Nb{sub 0.5})O{sub 7} (BZNT), the continuous G{+-}<10l>* type diffuse streaking characteristic of BZN-related pyrochlores has virtually condensed out to give just G{+-}<001>* 'satellite reflections' and a P-centred, close to a superstructure phase of average pyrochlore unit cell dimensions. Bond valence sum considerations are used to investigate the local crystal chemistry of this BZNT phase and to derive a plausible model for this superstructure phase. Monte Carlo modelling is used to confirm the plausibility of the model proposed. The underlying crystal chemistry of BZN and BZN-related pyrochlores is shown to result from strong local Bi/Zn ordering rules and associated large amplitude structural relaxation. - Graphical abstract: A typical <00l> zone axis EDP of of (Bi{sub 1.5}Zn{sub 0.5})(Ti{sub 1.5}Nb{sub 0.5})O{sub 7} (BZNT)

  6. Arranging ISO 13606 archetypes into a knowledge base using UML connectors.

    PubMed

    Kopanitsa, Georgy

    2014-01-01

    To enable the efficient reuse of standard based medical data we propose to develop a higher-level information model that will complement the archetype model of ISO 13606. This model will make use of the relationships that are specified in UML to connect medical archetypes into a knowledge base within a repository. UML connectors were analysed for their ability to be applied in the implementation of a higher-level model that will establish relationships between archetypes. An information model was developed using XML Schema notation. The model allows linking different archetypes of one repository into a knowledge base. Presently it supports several relationships and will be advanced in future.

  7. A narratological methodology for identifying archetypal story patterns in autobiographical narratives.

    PubMed

    Roesler, Christian

    2006-09-01

    Based on Jung's definition of archetype the concept 'archetypal story pattern' is developed as well as a research method drawing on narrative analysis and biographical research to identify these archetypal story patterns in life stories. Jung pointed out that personal myths, archetypal patterns found, e.g., in mythology, can govern the life course of individuals unconsciously. In the Theory of Narrative Identity comparable concepts have been mentioned but were never fully developed. In my research I try to combine Jung's concept of the archetype with the elaborated methodology of narrative analysis. Archetypes can manifest as narratives and the identity construction of a person via narrating the life story can be influenced or even totally structured by archetypal stories which give a specific form as well as a specific meaning to the person's identity. The method of extracting an underlying archetypal pattern from an autobiographical narrative is demonstrated. The results of the research on 20 autobiographical interviews and the inherent archetypal patterns are summarized. The major aim of this paper is to describe in detail the application of a well established method of the social sciences on a key concept of Jungian psychology to show that these concepts can be integrated into recent research frameworks of academic sciences. On the other hand it shows that Jungian concepts can be investigated through established and well defined research methods in empirical research settings.

  8. Recurrent motifs as resonant attractor states in the narrative field: a testable model of archetype.

    PubMed

    Goodwyn, Erik

    2013-06-01

    At the most basic level, archetypes represented Jung's attempt to explain the phenomenon of recurrent myths and folktale motifs (Jung 1956, 1959, para. 99). But the archetype remains controversial as an explanation of recurrent motifs, as the existence of recurrent motifs does not prove that archetypes exist. Thus, the challenge for contemporary archetype theory is not merely to demonstrate that recurrent motifs exist, since that is not disputed, but to demonstrate that archetypes exist and cause recurrent motifs. The present paper proposes a new model which is unlike others in that it postulates how the archetype creates resonant motifs. This model necessarily clarifies and adapts some of Jung's seminal ideas on archetype in order to provide a working framework grounded in contemporary practice and methodologies. For the first time, a model of archetype is proposed that can be validated on empirical, rather than theoretical grounds. This is achieved by linking the archetype to the hard data of recurrent motifs rather than academic trends in other fields.

  9. Quasiparticle interference from different impurities on the surface of pyrochlore iridates: Signatures of the Weyl phase

    NASA Astrophysics Data System (ADS)

    Lambert, F.; Schnyder, A. P.; Moessner, R.; Eremin, I.

    2016-10-01

    Weyl semimetals are gapless three-dimensional topological materials where two bands touch at an even number of points in the bulk Brillouin zone. These semimetals exhibit topologically protected surface Fermi arcs, which pairwise connect the projected bulk band touchings in the surface Brillouin zone. Here, we analyze the quasiparticle interference patterns of the Weyl phase when time-reversal symmetry is explicitly broken. We use a multiband d -electron Hubbard Hamiltonian on a pyrochlore lattice, relevant for the pyrochlore iridate R2Ir2O7 (where R is a rare earth). Using exact diagonalization, we compute the surface spectrum and quasiparticle interference (QPI) patterns for various surface terminations and impurities. We show that the spin and orbital texture of the surface states can be inferred from the absence of certain backscattering processes and from the symmetries of the QPI features for nonmagnetic and magnetic impurities. Furthermore, we show that the QPI patterns of the Weyl phase in pyrochlore iridates may exhibit additional interesting features that go beyond those found previously in TaAs.

  10. Computational and Experimental Studies of the Radiation Response of Gd2Ti2O7 Pyrochlore

    SciTech Connect

    Devanathan, Ram; Weber, William J.

    2005-12-16

    The structure and property changes in Gd2Ti2O7 (polycrystalline pyrochlore) were examined following irradiation with 1 MeV Kr+, 0.6 MeV Bi+ and 4 MeV Au2+ ions over the temperature range 30-950 K. Gd2Ti2O7 readily amorphizes with a low temperature (30 K) critical dose for amorphization of {approx} 0.15 displacements per atom (dpa). The critical temperature above which amorphization does not occur is about 1190 K. Nano-indentation studies reveal that the structural changes were accompanied by decreases of 15% in the Young's modulus. 1 MeV Kr+ irradiation of amorphous Gd2Ti2O7 at 1065 K resulted in ion-beam-assisted recrystallization. These experimental studies were complemented with molecular dynamics simulations of low energy recoils in Gd2Ti2O7 and Gd2Zr2O7 using a Buckingham type potential. The displacement threshold energy surface in both pyrochlores is highly anisotropic. Displacement energies are higher for all sublattices in the titanate pyrochlore compared to the zirconate. Ti sublattice displacements require energies in excess of 100 eV, and result in multiple displacements and defect clusters. The formation of these clusters might impede dynamic defect recovery and facilitate amorphization.

  11. Emergence of magnetic order in ultra-thin pyrochlore iridate films

    NASA Astrophysics Data System (ADS)

    Cheema, Suraj; Serrao, Claudy; Mundy, Julia; Patankar, Shreyas; Birgeneau, Robert; Orenstein, Joseph; Salahuddin, Sayeef; Ramesh, Ramamoorthy

    We report on thickness-dependent magnetotransport in (111) - oriented Pb2Ir2O7-x (Pb227) epitaxial thin films. For thicknesses greater than 4 nm, the magnetoresistance (MR) of metallic Pb227 is positive, linear and non-saturated up to 14 T. Meanwhile at 4 nm, the conduction turns nonmetallic and the MR becomes negative and asymmetric upon field-cooling; such traits are reminiscent of all-in-all-out (AIAO) magnetic order in the insulating pyrochlore iridates. Hysteretic low-field MR dips and trained-untrained resistivity bifurcations suggest the presence of magnetic conducting domain walls within the chiral AIAO spin structure. Beyond just AIAO order, angular-dependent MR indicates a magnetic phase space hosting 2-in-2-out (2I2O) spin ice order. Such anomalous magnetotransport calls for re-evaluation of the pyrochlore iridate phase diagram, as epitaxially strained Pb227 exhibits traits reminiscent of both the insulating magnetic and metallic spin-liquid members. Furthermore, these results open avenues for realizing topological phase predictions in (111) - oriented pyrochlore slabs of kagome-triangular iridate heterostructures. This work is supported by the Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231.

  12. Thermal recrystallization of alpha-recoil damaged minerals of the pyrochlore structure type

    SciTech Connect

    Lumpkin, G.R.; Ewing, R.C.; Foltyn, E.M.

    1985-10-01

    Thermal recrystallization effects (heat of recrystallization and identification of phases formed), have been determined for naturally occurring members of the pyrochlore group which have received alpha doses of up to 4 X 10{sup 16} alphas/mg. The heats of recrystallization, E{sub t}, range from 125 to 210 J/g. Release of energy decreases as a function of crystallinity (estimated on the basis of the intensity of x-ray diffraction maxima), with the fully-metamict samples approaching 210 J/g. Lower measured values (40-125 J/g) are the result of alteration of the pyrochlores. Other metamict, complex oxides with stoichiometries of ABO{sub 4} and AB{sub 2}O{sub 6} have lower heats of recrystallization (40-85 J/g), and are easily distinguished from pyrochlore group minerals. Activation energies of recrystallization, E{sub a}, range between values of 0.29 to 0.97 eV, less than those measured for Pu-doped, synthetic zirconolites.

  13. Coulomb Liquid Phases of Bosonic Cluster Mott Insulators on a Pyrochlore Lattice.

    PubMed

    Lv, Jian-Ping; Chen, Gang; Deng, Youjin; Meng, Zi Yang

    2015-07-17

    Employing large-scale quantum Monte Carlo simulations, we reveal the full phase diagram of the extended Hubbard model of hard-core bosons on the pyrochlore lattice with partial fillings. When the intersite repulsion is dominant, the system is in a cluster Mott insulator phase with an integer number of bosons localized inside the tetrahedral units of the pyrochlore lattice. We show that the full phase diagram contains three cluster Mott insulator phases with 1/4, 1/2, and 3/4 boson fillings, respectively. We further demonstrate that all three cluster Mott insulators are Coulomb liquid phases and its low-energy property is described by the emergent compact U(1) quantum electrodynamics. In addition to measuring the specific heat and entropy of the cluster Mott insulators, we investigate the correlation function of the emergent electric field and verify it is consistent with the compact U(1) quantum electrodynamics description. Our result sheds light on the magnetic properties of various pyrochlore systems, as well as the charge physics of the cluster magnets.

  14. Anomalous lattice parameter increase in alkali earth aluminium substituted tungsten defect pyrochlores

    SciTech Connect

    Thorogood, Gordon J. Kennedy, Brendan J.; Peterson, Vanessa K.; Elcombe, Margaret M.; Kearley, Gordon J.; Hanna, John V.; Luca, Vittorio

    2009-03-15

    The structures of the defect pyrochlores AAl{sub 0.33}W{sub 1.67}O{sub 6} where A=K, Rb or Cs have been investigated using X-ray and neutron powder diffraction methods as well as the ab initio modelling program VASP. The three cubic pyrochlores exhibit a non-linear increase in lattice parameter with respect to ionic radius of the A cation as a consequence of displacive disorder of the A-type cations. Solid state {sup 27}Al MAS NMR studies of this pyrochlore system reveal shifts in the {delta}{approx}21-22 ppm range that are indicative of pseudo-5 coordinate Al environments and emanate from distorted Al octahedral with one abnormally long Al-O bond. Solid state {sup 39}K, {sup 85}Rb, {sup 87}Rb and {sup 133}Cs MAS and static NMR studies reflect the local cation disorder demonstrated in the structural studies. - Graphical abstract: Diagram showing general disorder of K cations in KAl{sub 0.33}W{sub 1.67}O{sub 6}.

  15. Unit-cell intergrowth of pyrochlore and hexagonal tungsten bronze structures in secondary tungsten minerals

    SciTech Connect

    Grey, Ian E. . E-mail: ian.grey@csiro.au; Birch, William D.; Bougerol, Catherine

    2006-12-15

    Structural relations between secondary tungsten minerals with general composition A{sub x}[(W,Fe)(O,OH){sub 3}]{sub .y}H{sub 2}O are described. Phyllotungstite (A=predominantly Ca) is hexagonal, a=7.31(3)A, c=19.55(1)A, space group P6{sub 3}/mmc. Pittongite, a new secondary tungsten mineral from a wolframite deposit near Pittong in Victoria, southeastern Australia (A=predominantly Na) is hexagonal, a=7.286(1)A, c=50.49(1)A, space group P-6m2. The structures of both minerals can be described as unit-cell scale intergrowths of (111){sub py} pyrochlore slabs with pairs of hexagonal tungsten bronze (HTB) layers. In phyllotungstite, the (111){sub py} blocks have the same thickness, 6A, whereas pittongite contains pyrochlore blocks of two different thicknesses, 6 and 12A. The structures can alternatively be described in terms of chemical twinning of the pyrochlore structure on (111){sub py} oxygen planes. At the chemical twin planes, pairs of HTB layers are corner connected as in hexagonal WO{sub 3}.

  16. Effects of Doping on Thermal Conductivity of Pyrochlore Oxides for Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam

    2006-01-01

    Pyrochlore oxides of general composition, A2B2O7, where A is a 3(+) cation (La to Lu) and B is a 4(+) cation (Zr, Hf, Ti, etc.) have high melting point, relatively high coefficient of thermal expansion, and low thermal conductivity which make them suitable for applications as high-temperature thermal barrier coatings. The effect of doping at the A site on the thermal conductivity of a pyrochlore oxide La2Zr2O7, has been investigated. Oxide powders of various compositions La2Zr2O7, La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 were synthesized by the citric acid sol-gel method. These powders were hot pressed into discs and used for thermal conductivity measurements using a steady-state laser heat flux test technique. The rare earth oxide doped pyrochlores La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 had lower thermal conductivity than the un-doped La2Zr2O7. The Gd2O3 and Yb2O3 co-doped composition showed the lowest thermal conductivity.

  17. Pyrochlores from the Lueshe carbonatite complex (Democratic Republic of Congo): a geochemical record of different alteration stages

    NASA Astrophysics Data System (ADS)

    Nasraoui, M.; Bilal, E.

    2000-04-01

    Magmatic pyrochlores from the Lueshe syenite-carbonatite complex from the northeastern part of Democratic Republic of Congo (ex-Zaı̈re) are characterized by Ta/Nb ratios in an increasing order from pyroxenite, calcite-carbonatite (sövite), silicate xenoliths (nodules) to syenite. Substitutions involving Nb, Ta, Ti and REE have been precisely described. Hydrothermal alteration of Lueshe pyrochlore involves the substitution of Na ++F -=VA+VY and Ca+O=VA+VY (VA=A-site vacancy and VY=Y-site vacancy). In calcite carbonatite, hydrothermal alteration of pyrochlore took place during and after the precipitation of ancylite-(Ce), strontianite, celestite, baryte and fayalite according to a fluid composition of relatively low pH, aNa +, aCa 2+ and aHF, and high aSr 2+ and aLREE 3+. The supergene alteration is characterized by complete leaching of Na, Ca and F and partial incorporation of K, Ba, Sr and Ce resulting in the formation of kali-, bario-, strontio- and ceriopyrochlore respectively. The Na-poor pyrochlore may be an intermediate variety corresponding to an alteration stage between the hydrothermal and weathered pyrochlores. The IR spectroscopic study has indicated that the weathered pyrochlore is a hydrated variety containing two bands of OH vibration modes at 3413 and 1630 cm -1. During hydrothermal and supergene alterations, the cations at B-site remain relatively constant. The variable chemical compositions of the pyrochlores from the Lueshe complex represent geochemical memories of the different alteration conditions including the variation in the oxidation-reduction environment.

  18. Tm-doped TiO2 and Tm2Ti2O7 pyrochlore nanoparticles: enhancing the photocatalytic activity of rutile with a pyrochlore phase

    PubMed Central

    De los Santos, Desiré M; Aguilar, Teresa; Sánchez-Coronilla, Antonio; Fernández-Lorenzo, Concha; Alcántara, Rodrigo; Piñero, Jose Carlos; Blanco, Ginesa; Martín-Calleja, Joaquín

    2015-01-01

    Summary Tm-doped TiO2 nanoparticles were synthesized using a water-controlled hydrolysis reaction. Analysis was performed in order to determine the influence of the dopant concentration and annealing temperature on the phase, crystallinity, and electronic and optical properties of the resulting material. Various characterization techniques were utilized such as X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and UV–vis spectroscopy. For the samples annealed at 773 and 973 K, anatase phase TiO2 was obtained, predominantly internally doped with Tm3+. ICP–AES showed that a doping concentration of up to 5.8 atom % was obtained without reducing the crystallinity of the samples. The presence of Tm3+ was confirmed by X-ray photoelectron spectroscopy and UV–vis spectroscopy: the incorporation of Tm3+ was confirmed by the generation of new absorption bands that could be assigned to Tm3+ transitions. Furthermore, when the samples were annealed at 1173 K, a pyrochlore phase (Tm2Ti2O7) mixed with TiO2 was obtained with a predominant rutile phase. The photodegradation of methylene blue showed that this pyrochlore phase enhanced the photocatalytic activity of the rutile phase. PMID:25821701

  19. Role of vein-phases in nanoscale sequestration of U, Nb, Ti, and Pb during the alteration of pyrochlore

    NASA Astrophysics Data System (ADS)

    Deditius, Artur P.; Smith, Frances N. (Skomurski); Utsunomiya, Satoshi; Ewing, Rodney C.

    2015-02-01

    Grains of pyrochlore and secondary phases from tailings of Silver Crater Mine in Bancroft, Ontario (Canada) have been studied to understand the alteration processes, redox conditions, and retention of pyrochlore-derived species (U, Ti, Nb, Pb, Ta, REE) in near-field environments. Alteration processes are documented by the formation of two types of co-existing secondary veins associated with primary apatite and calcite: (i) amorphous Fe-rich veins, 46-75 wt.% of FeO, and ∼500 ppm of UO2, and (ii) crystalline calcite-rich veins, found in fractures and penetrating the pyrochlore. Based on electron microprobe analysis (EMPA), the chemical composition of the pyrochlore is: (Ca0.84U0.35Fe0.20Na0.09Pb0.04Ln0.04Mn0.03Sr0.01Th0.01Mg0.01)1.62 (Nb1.00Ti0.87Ta0.10Si0.02)2.0O6.5F0.14. Elemental mapping revealed that migration of liberated U, Pb, Nb, Ta, Ti, and REE, is confined to the secondary veins of Fe-rich and calcite-rich compositions. Transmission electron microscopy (TEM), high-angle annular dark-field scanning TEM (HAADF-STEM), energy dispersive spectroscopy (EDS), and electron energy loss spectroscopy (EELS) results showed that pyrochlore contains nanoparticulate inclusions of uraninite, galena, and magnetite, while secondary veins host betafite, magnetite, Pb0, cerusite, and 10 Å mica nanoparticles (NPs). Randomly oriented uraninite NPs, 15 nm in size, concentrate around pores, 50-100 nm in size, in the pyrochlore. In the Fe-rich veins, HAADF-STEM images revealed that U, Pb, Nb, and Ti were sequestered in the form of spherical betafite NPs, <800 nm in size, with composition: (Ca1.1Fe0.35Pb0.28U0.09)1.83(Ti1.56Nb0.44)2.0O6.1. The association of betafite NPs, magnetite, and Pb0 NPs in Fe-rich and calcite-rich veins indicates reducing conditions during alteration of pyrochlore and immobilization of pyrochlore derived elements. This observation combined with identification of nanoscale galena and magnetite in pyrochlore, and the association of Pb0 and Fe3O4 in veins

  20. Quantum signatures of breathers in a finite Heisenberg spin chain.

    PubMed

    Djoufack, Z I; Kenfack-Jiotsa, A; Nguenang, J P; Domngang, S

    2010-05-26

    A map of a quantum Heisenberg spin chain into an extended Bose-Hubbard-like Hamiltonian is set up. Within this framework, the spectrum of the corresponding Bose-Hubbard chain, on a periodic one-dimensional lattice containing two, four, and six bosons shows interesting detailed band structures. These fine structures are studied using numerical diagonalization, and nondegenerate and degenerate perturbation theory. We also focus our attention on the effect of the anisotropy and Heisenberg exchange energy on the detailed band structures. The signature of the quantum breather is also set up by the square of the amplitudes of the corresponding eigenvectors in real space.

  1. Emergent Archetype Hydrological-Biogeochemical Response Patterns in Heterogeneous Catchments

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.; Gall, H. E.; Rao, P.

    2013-12-01

    What can spatiotemporally integrated patterns observed in stream hydrologic and biogeochemical signals generated in response to transient hydro-climatic and anthropogenic forcing tell us about the interactions between spatially heterogeneous soil-mediated hydrological and biogeochemical processes? We seek to understand how the spatial structure of solute sources coupled with hydrologic responses affect observed concentration-discharge (C-Q) patterns. These patterns are expressions of the spatiotemporal structure of solute loads exported from managed catchments, and their likely ecological consequences manifested in receiving water bodies (e.g., wetlands, rivers, lakes, and coastal waters). We investigated the following broad questions: (1) How does the correlation between flow-generating areas and biogeochemical source areas across a catchment evolve under stochastic hydro-climatic forcing? (2) What are the feasible hydrologic and biogeochemical responses that lead to the emergence of the observed archetype C-Q patterns? and; (3) What implications do these coupled dynamics have for catchment monitoring and implementation of management practices? We categorize the observed temporal signals into three archetypical C-Q patterns: dilution; accretion, and constant concentration. We introduce a parsimonious stochastic model of heterogeneous catchments, which act as hydrologic and biogeochemical filters, to examine the relationship between spatial heterogeneity and temporal history of solute export signals. The core concept of the modeling framework is considering the types and degree of spatial correlation between solute source zones and flow generating zones, and activation of different portions of the catchments during rainfall events. Our overarching hypothesis is that each of the archetype C-Q patterns can be generated by explicitly linking landscape-scale hydrologic responses and spatial distributions of solute source properties within a catchment. The model

  2. Archetype based search in an IHE XDS environment.

    PubMed

    Rinner, Christoph; Kohler, Michael; Hübner-Bloder, Gudrun; Saboor, Samrend; Ammenwerth, Elske; Duftschmid, Georg

    2012-01-01

    To prevent information overload of physicians when accessing EHRs we introduce a method to extend the IHE XDS profile metadata-based search towards a content-based search. Detailed queries are created based on predefined information needs mapped to ISO/EN 13606 Archetypes. They are aggregated to a metadata-based query to retrieve all relevant documents, which are then analyzed for the desired contents. The results are presented in a tabular form. The content-based search in IHE-XDS could be implemented efficiently and was found helpful by the evaluating physicians.

  3. Eco-Heroes and Eco-Villains: An Archetypal Analysis of Environmental Film, 1950-2010

    ERIC Educational Resources Information Center

    Roberts, Candice D.; Stein, Susan

    2015-01-01

    Archetypes are characters recognizable by media consumers that operate at a subconscious level and often elicit strong emotional responses. Popular Hollywood films addressing issues of the environment offer hero and villain figures that demonstrate strong archetypal characteristics. Surrounding the intricate characters, many of these films also…

  4. "In the Labyrinth of the Image": An Archetypal Approach to Drama in Education.

    ERIC Educational Resources Information Center

    Haine, Gano

    1985-01-01

    This article delineates an archetypal approach to drama in education. Participation in drama draws on both conscious and unconscious imaginative capabilities and involves teacher and student in the bedrock of human reaction. Drama could provide us with valuable information concerning archetypes as they unfold in the lives of our children. (MT)

  5. Punishment and Forgiveness: A Phenomenological Analysis of Archetypal Leadership Patterns and the Implications for Educational Practice

    ERIC Educational Resources Information Center

    Abramson, Neil Remington; Senyshyn, Yaroslav

    2009-01-01

    Archetypal psychology suggests the possibility of a punishment archetype representing the unconscious preferences of human beings as a species about what constitutes appropriate ways for leaders (students, teachers and educational leaders) to correct followers who do harm to others. Mythological analysis compared God's process of punishment, in…

  6. Reclaiming the Maiden: Use of Archetypes in a 6-Week Women's Empowerment Group

    ERIC Educational Resources Information Center

    Singh, Anneliese; Hofsess, Christy D.

    2011-01-01

    The purpose of this article is to describe a 6-week, semi-structured group counseling experience for university women students (undergraduate and graduate) from diverse backgrounds exploring archetypes and using group empowerment skills. Theoretical perspectives on women's empowerment groups and the use of archetypes in counseling are discussed as…

  7. Principle of organization: a dynamic-systems view of the archetype-as-such.

    PubMed

    McDowell, M J

    2001-10-01

    The personality is a dynamic system. Like all other dynamic systems, it must be self-organized. In this paper I focus upon the archetype-as-such, that is, upon the essential core around which both an archetypical image and a complex are organized. I argue that an archetype-as-such is a pre-existing principle of organization. Within the personality that principle manifests itself as a psychological vortex (a complex) into which we are drawn. The vortex is impersonal. We mediate it through myths and rituals or through consciousness. In this paper I show that Jung's intuition about the archetype-as-such is supported by recent science. I evaluate other concepts of the archetype. My concept is different from that proposed recently by Saunders and Skar. My concept allows each archetype-as-such to be defined precisely in mathematical terms. It suggests a new interpretation of mythology. It also addresses our spiritual experience of an archetype. Because the archetypes-as-such are fundamental to the personality, the better we understand them the better we understand our patients. The paper is grounded with clinical examples.

  8. Birth/Death/Rebirth: Pairing Young Adult and Classic Novels To Teach Situational Archetypes.

    ERIC Educational Resources Information Center

    Sanderson, Christine

    2001-01-01

    Notes that the use of Young Adult literature to introduce the complex literary concept of the archetype is ideally suited to teachers of gifted students in high school classrooms. Discusses how once students understand the concept of archetypes in literature, they can begin to make deeper connections among all of the literary works that they read.…

  9. A reappraisal of classical archetype theory and its implications for theory and practice.

    PubMed

    Merchant, John

    2009-06-01

    This paper begins with an overview of contemporary approaches to archetype theory and notes the radical nature of certain deductions. Some argue that there is no 'archetype-as-such' as a pre-existing entity at the core of a complex driving its formation whilst the findings of current neuroscience are calling into question one very thing on which the classical theory is built--innatism. Knox's argument for image schemas raises the question as to the extent to which archetypes can be conceived in any preformationist sense. The question is then posed--to what extent can Jung's classical theory of archetypes be read in light of these current models? The case examples Jung uses to evidence the existence of archetypes, his explications of synchronicity and his own Philemon experience are then reappraised. The conclusion is drawn that it is difficult to evidence the existence of autonomous archetypes unrelated to personal affective experience. Not only would this be expected by emergent/developmental models of archetype but it can explain many of Jung's disjunctive statements about archetype constellation; the difficulties in separating personal and collective psychic content and Jung's apparent Lamarckianism. The implications of these models for theory, clinical practice and analyst training are then offered for discussion.

  10. Male Archetypes as Resources for Homosexual Identity Development in Gay Men.

    ERIC Educational Resources Information Center

    McFarland, William P.; McMahon, Timothy R.

    1999-01-01

    The male archetypes of king, lover, magician, and warrior provide important and timeless insights into mature masculine qualities. Homosexual identity development models describe tasks that confront gay men as they move through the identity development process. Proposes that by understanding the metaphor of male archetypes, gay men will discover…

  11. Qualitative Research as a Hero's Journey: Six Archetypes to Draw on

    ERIC Educational Resources Information Center

    Villate, Vanessa M.

    2012-01-01

    Is the research process similar to a hero's journey? Just as a hero draws on different archetypes during the journey, a researcher moves through phases and must draw upon different strengths. In this article, the six archetypes that Pearson (1998) links to the hero's journey are described. Then, each phase of a qualitative research study is…

  12. Archetype-based electronic health records: a literature review and evaluation of their applicability to health data interoperability and access.

    PubMed

    Wollersheim, Dennis; Sari, Anny; Rahayu, Wenny

    2009-01-01

    Health Information Managers (HIMs) are responsible for overseeing health information. The change management necessary during the transition to electronic health records (EHR) is substantial, and ongoing. Archetype-based EHRs are a core health information system component which solve many of the problems that arise during this period of change. Archetypes are models of clinical content, and they have many beneficial properties. They are interoperable, both between settings and through time. They are more amenable to change than conventional paradigms, and their design is congruent with clinical practice. This paper is an overview of the current archetype literature relevant to Health Information Managers. The literature was sourced in the English language sections of ScienceDirect, IEEE Explore, Pubmed, Google Scholar, ACM Digital library and other databases on the usage of archetypes for electronic health record storage, looking at the current areas of archetype research, appropriate usage, and future research. We also used reference lists from the cited papers, papers referenced by the openEHR website, and the recommendations from experts in the area. Criteria for inclusion were (a) if studies covered archetype research and (b) were either studies of archetype use, archetype system design, or archetype effectiveness. The 47 papers included show a wide and increasing worldwide archetype usage, in a variety of medical domains. Most of the papers noted that archetypes are an appropriate solution for future-proof and interoperable medical data storage. We conclude that archetypes are a suitable solution for the complex problem of electronic health record storage and interoperability.

  13. A Process for the Representation of openEHR ADL Archetypes in OWL Ontologies.

    PubMed

    Porn, Alex Mateus; Peres, Leticia Mara; Didonet Del Fabro, Marcos

    2015-01-01

    ADL is a formal language to express archetypes, independent of standards or domain. However, its specification is not precise enough in relation to the specialization and semantic of archetypes, presenting difficulties in implementation and a few available tools. Archetypes may be implemented using other languages such as XML or OWL, increasing integration with Semantic Web tools. Exchanging and transforming data can be better implemented with semantics oriented models, for example using OWL which is a language to define and instantiate Web ontologies defined by W3C. OWL permits defining significant, detailed, precise and consistent distinctions among classes, properties and relations by the user, ensuring the consistency of knowledge than using ADL techniques. This paper presents a process of an openEHR ADL archetypes representation in OWL ontologies. This process consists of ADL archetypes conversion in OWL ontologies and validation of OWL resultant ontologies using the mutation test.

  14. X-ray diffraction study of the Y2Ti2O7 pyrochlore disordering sequence under irradiation

    NASA Astrophysics Data System (ADS)

    Soulié, Aurélien; Menut, Denis; Crocombette, Jean-Paul; Chartier, Alain; Sellami, Neila; Sattonnay, Gaël; Monnet, Isabelle; Béchade, Jean-Luc

    2016-11-01

    The disordering sequence of Y2Ti2O7 pyrochlore, a nano-oxide phase that strengthens ODS steels under irradiation is studied in the experimental and modeling framework. XRD analysis has been performed considering both swift heavy ion and low energy/low mass ion irradiations. The simulation within molecular dynamics of Frenkel pair accumulation proves able to reproduce the variation of the amorphization fluence with temperature. XRD patterns calculated from the simulations reproduce well the patterns observed experimentally in the literature. Both experiments and calculations point to a first transition from pyrochlore to fluorite before an eventual amorphization. For swift heavy ion irradiations with 93 MeV Xe ions, tracks of direct impact amorphization are visible by HRTEM. Advanced refinement shows that one third of the pyrochlore impacted by an ion transforms into fluorite, while two third are directly amorphized.

  15. Electronic excitation induced amorphization in titanate pyrochlores: an ab initio molecular dynamics study

    SciTech Connect

    Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.; Li, Sean

    2015-02-09

    In this study, the response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser, electron and ion irradiations.

  16. Crystal field interaction in the pyrochlore magnet Ho{sub 2}Ti{sub 2}O{sub 7}.

    SciTech Connect

    Rosenkranz, S.; Ramirez, A. P.; Hayashi, A.; Cava, R. J.; Siddharthan, R.; Shastry, B. S.

    1999-09-30

    Neutron time-of-flight spectroscopy has been employed to study the crystal field interaction in the pyrochlore titanate Ho{sub 2}Ti{sub 2}O{sub 7}. The crystal field parameters and corresponding energy level scheme have been determined from a profile fit to the observed neutron spectra. The groundstate is a well separated E{sub g} doublet with a strong Ising like anisotropy, which can give rise to titration in the pyrochlore lattice. Using the crystal field parameters determined for the Ho compound as an estimate of the crystal field interaction in other pyrochlore magnets, we also find the Ising type behavior for Dy. In contrast, the almost planar like anisotropy found for Er and Yb prevents frustration, because of the continuous range of possible spin orientations in this case.

  17. Conserved Quantities in the Generalized Heisenberg Magnet (ghm) Model

    NASA Astrophysics Data System (ADS)

    Mushahid, N.; Hassan, M.; Saleem, U.

    2013-03-01

    We study the conserved quantities of the generalized Heisenberg magnet (GHM) model. We derive the nonlocal conserved quantities of the model using the iterative procedure of Brezin et al. [Phys. Lett. B82, 442 (1979).] We show that the nonlocal conserved quantities Poisson commute with local conserved quantities of the model.

  18. Heisenberg uncertainty principles for an oscillatory integral operator

    NASA Astrophysics Data System (ADS)

    Castro, L. P.; Guerra, R. C.; Tuan, N. M.

    2017-01-01

    The main aim of this work is to obtain Heisenberg uncertainty principles for a specific oscillatory integral operator which representatively exhibits different parameters on their sine and cosine phase components. Additionally, invertibility theorems, Parseval type identities and Plancherel type theorems are also obtained.

  19. Innovative Robot Archetypes for In-Space Construction and Maintenance

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik; Ambrose, Robert O.; Kennedy, Brett; Diftler, Myron; Mehling Joshua; Brigwater, Lyndon; Radford, Nicolaus; Goza, S. Michael; Culbert, Christopher

    2005-01-01

    The space environment presents unique challenges and opportunities in the assembly, inspection and maintenance of orbital and transit spaceflight systems. While conventional Extra-Vehicular Activity (EVA) technology, out of necessity, addresses each of the challenges, relatively few of the opportunities have been exploited due to crew safety and reliability considerations. Extra-Vehicular Robotics (EVR) is one of the least-explored design spaces but offers many exciting innovations transcending the crane-like Space Shuttle and International Space Station Remote Manipulator System (RMS) robots used for berthing, coarse positioning and stabilization. Microgravity environments can support new robotic archetypes with locomotion and manipulation capabilities analogous to undersea creatures. Such diversification could enable the next generation of space science platforms and vehicles that are too large and fragile to launch and deploy as self-contained payloads. Sinuous manipulators for minimally invasive inspection and repair in confined spaces, soft-stepping climbers with expansive leg reach envelopes and free-flying nanosatellite cameras can access EVA worksites generally not accessible to humans in spacesuits. These and other novel robotic archetypes are presented along with functionality concepts

  20. The Archetype-enabled EHR system ZK-ARCHE - integrating the ISO/EN 13606 standard and IHE XDS profile.

    PubMed

    Kohler, Michael; Rinner, Christoph; Hübner-Bloder, Gudrun; Saboor, Samrend; Ammenwerth, Elske; Duftschmid, Georg

    2011-01-01

    The EHR system ZK-ARCHE automatically generates forms from ISO/EN 13606 archetypes. For this purpose the archetypes are augmented with components of the reference model to achieve so-called "comprehensive archetypes". Data collected via the forms are stored in a list which associates each value with the path of the corresponding comprehensive archetype node coded as W3C XPath. From this list archetype-conformant EHR extracts can be created. The system is embedded with the IHE XDS profile to allow direct data exchange in an environment of distributed data storage.

  1. Magnon nodal-line semimetals and drumhead surface states in anisotropic pyrochlore ferromagnets

    NASA Astrophysics Data System (ADS)

    Mook, Alexander; Henk, Jürgen; Mertig, Ingrid

    2017-01-01

    We introduce a type of topological magnon matter: the magnonic pendant to electronic nodal-line semimetals. Magnon spectra of anisotropic pyrochlore ferromagnets feature twofold degeneracies of magnon bands along a closed loop in reciprocal space. These magnon nodal lines are topologically protected by the coexistence of inversion and time-reversal symmetry; they require the absence of spin-orbit interaction (no Dzyaloshinskii-Moriya interaction). We calculate the topological invariants of the nodal lines and show that details of the associated magnon drumhead surface states depend strongly on the termination of the surface. Magnon nodal-line semimetals complete the family of topological magnons in three-dimensional ferromagnetic materials.

  2. Thermal conductivity of pyrochlore R2Ti2O7 (R=rare earth)

    NASA Astrophysics Data System (ADS)

    Tachibana, Makoto

    2013-11-01

    Thermal conductivity measurements have been performed from 2 to 330 K on single crystals of pyrochlore R2Ti2O7 (R=Gd, Tb, Dy, Ho, Er, Lu, and Y). The spin-liquid system Tb2Ti2O7 shows heavily suppressed thermal conductivity below 100 K, which can be attributed to the presence of unusually strong coupling between the phonons and crystal electric field excitations in this compound. For the other R2Ti2O7 compounds, the magnetic moment of the R ion does not appear to play important roles in thermal conductivity for the present temperature region.

  3. Probing the electronic structures of ternary perovskite and pyrochlore oxides containing Sn(4+) or Sb(5+).

    PubMed

    Mizoguchi, Hiroshi; Eng, Hank W; Woodward, Patrick M

    2004-03-08

    Experimental and computational studies were performed to understand the electronic structure of ternary perovskites (ASnO(3), A = Ca, Sr, Ba, Cd), pyrochlores (RE(2)Sn(2)O(7), RE = Y, La, Lu; Cd(2)Sb(2)O(7)), and defect pyrochlore oxides (Ag(2)Sb(2)O(6)) containing the main group ions Sn(4+) and Sb(5+). In all compounds, the lowest energy states in the conduction band arise primarily from the antibonding Sn/Sb 5s-O 2p interaction. In the alkaline-earth stannate perovskites (BaSnO(3), SrSnO(3), and CaSnO(3)) the conduction bandwidth decreases strongly in response to the octahedral tilting distortion triggered by the decreasing size of the alkaline-earth cation. This in turn leads to a corresponding increase in the band gap from 3.1 eV in BaSnO(3) to 4.4 eV in CaSnO(3). The band gap of CdSnO(3) is relatively small (3.0 eV) considering the large octahedral tilting distortion. The origin of this apparent anomaly is the mixing between the empty Cd 5s orbitals and the antibonding Sn 5s-O 2p states. This mixing leads to a widening of the conduction band and a corresponding decrease in the band gap. The participation of the normally inert A-site cation in the electronic structure near the Fermi level can be considered an inductive effect, as it utilizes substitution on the A-site to directly modify the electronic structure of the SnO(3)(2)(-) framework. While the pyrochlore structure is more complicated, the energy level and width of the lowest energy conduction band can be analyzed in a manner similar to that utilized on the perovskite structure. The Sn-O-Sn and Sb-O-Sb bonds are highly distorted from linear geometry in pyrochlore, leading to a relatively narrow conduction band and a wide band gap. In Cd(2)Sb(2)O(7) and Ag(2)Sb(2)O(6) the Cd(2+) and Ag(+) ions exhibit a strong inductive effect that widens the conduction band and lowers the band gap significantly, very similar to the effect observed in the perovskite form of CdSnO(3).

  4. Facilitating secondary use of medical data by using openEHR archetypes.

    PubMed

    Kohl, Christian D; Garde, Sebastian; Knaup, Petra

    2010-01-01

    Clinical trials are of high importance for medical progress. But even though more and more clinical data is available in electronic patient records (EPRs) and more and more electronic data capture (EDC) systems are used in trials, there is still a gap which makes EPR / EDC interoperability difficult and hampers secondary use of medical routine data. The openEHR architecture for Electronic Health Records is based on a two level modeling approach which makes use of 'archetypes'. We want to analyze whether archetypes can help to bridge this gap by building an integrated EPR / EDC system based on openEHR archetypes. We used the 'openEHR Reference Framework and Application' (Opereffa) and existing archetypes for medical data. Furthermore, we developed dedicated archetypes to document study meta data. We developed a first prototype implementation of an archetype based integrated EPR / EDC system. Next steps will be the evaluation of an extended prototype in a real clinical trial scenario. Opereffa was a good starting point for our work. OpenEHR archetypes proved useful for secondary use of health data.

  5. The developmental/emergent model of archetype, its implications and its application to shamanism.

    PubMed

    Merchant, John

    2006-02-01

    This paper addresses the ongoing debate in the JAP to do with archetype theory and supports an emergent/developmental model which sees archetypal imagery as an emergent phenomenon arising out of neural bio-structures laid down in early infant life as a result of developmental experience. This model is supported by the current findings of those developmental biologists who adhere to Developmental Systems Theory. The themes of Developmental Systems Theory are examined and corroborative parallels are drawn with the model. A number of implications follows: the model has substantial explanatory power and leads to a new perspective on innatism; it implies an archetype-environment nexus; it collapses the nature-nurture debate in relation to archetype theory; it collapses the 'sacred heritage' approach to archetypes and it removes the conceptual division between the collective and personal unconscious. This developmental/emergent perspective is then applied to the shaman archetype, using ethnographic records of the Sakha (Yakut) Siberian tribe. The material supports the hypothesis that the shamanic complex is laid down in early infancy by a combination of events which cause emotional ruptures in the mother-infant dyad. Siberian shamanism is then understood to arise out of developmental experience and not from the constellation of an autochthonous archetype.

  6. Conserved archetypal configuration of the transcriptional control region during the course of BK polyomavirus evolution.

    PubMed

    Yogo, Yoshiaki; Zhong, Shan; Xu, Yawei; Zhu, Mengyun; Chao, Yuegen; Sugimoto, Chie; Ikegaya, Hiroshi; Shibuya, Ayako; Kitamura, Tadaichi

    2008-08-01

    BK polyomavirus (BKV) is widespread among humans, asymptomatically infecting children and then persisting in renal tissue. The transcriptional control region (TCR) of the BKV genome is variable among clinical isolates. Thus, archetypal TCRs with a common basic configuration generally occur in BKV isolates from the urine of immunocompromised patients, but rearranged TCRs that possibly arise from the archetypal configuration have also been detected in clinical specimens. To examine the hypothesis that archetypal strains represent wild-type strains circulating in the human population (the archetype hypothesis), we analysed 145 complete viral genomes amplified directly from the urine of non-immunocompromised individuals worldwide. These genomes included 82, three, two and 58 sequences classified as belonging to subtypes I, II, III and IV, respectively. Rearranged TCRs with long duplications or deletions were detected from two subtype I and two subtype IV genomes, but not from the other 141 genomes (thus, the TCRs of these genomes were judged to be archetypal). The variations in the archetypal TCRs were nucleotide substitutions and single-nucleotide deletions, most of which were unique to particular subtypes or subgroups. We confirmed that the four complete BKV genomes with rearranged TCRs did not form a unique lineage on a phylogenetic tree. Collectively, the findings demonstrate that the archetypal TCR configuration has been conserved during the evolution of BKV, providing support for the archetype hypothesis. Additionally, we suggest that 'archetype' should be used as a conceptual term that denotes a prototypical structure that can generate various rearranged TCRs during viral growth in vivo and in vitro.

  7. The archetype-genome exemplar in molecular dynamics and continuum mechanics

    NASA Astrophysics Data System (ADS)

    Greene, M. Steven; Li, Ying; Chen, Wei; Liu, Wing Kam

    2014-04-01

    We argue that mechanics and physics of solids rely on a fundamental exemplar: the apparent properties of a system depend on the building blocks that comprise it. Building blocks are referred to as archetypes and apparent system properties as the system genome. Three entities are of importance: the archetype properties, the conformation of archetypes, and the properties of interactions activated by that conformation. The combination of these entities into the system genome is called assembly. To show the utility of the archetype-genome exemplar, this work presents the mathematical ingredients and computational implementation of theories in solid mechanics that are (1) molecular and (2) continuum manifestations of the assembly process. Both coarse-grained molecular dynamics (CGMD) and the archetype-blending continuum (ABC) theories are formulated then applied to polymer nanocomposites (PNCs) to demonstrate the impact the components of the assembly triplet have on a material genome. CGMD simulations demonstrate the sensitivity of nanocomposite viscosities and diffusion coefficients to polymer chain types (archetype), polymer-nanoparticle interaction potentials (interaction), and the structural configuration (conformation) of dispersed nanoparticles. ABC simulations show the contributions of bulk polymer (archetype) properties, occluded region of bound rubber (interaction) properties, and microstructural binary images (conformation) to predictions of linear damping properties, the Payne effect, and localization/size effects in the same class of PNC material. The paper is light on mathematics. Instead, the focus is on the usefulness of the archetype-genome exemplar to predict system behavior inaccessible to classical theories by transitioning mechanics away from heuristic laws to mechanism-based ones. There are two core contributions of this research: (1) presentation of a fundamental axiom—the archetype-genome exemplar—to guide theory development in computational

  8. Towards ISO 13606 and openEHR archetype-based semantic interoperability.

    PubMed

    Martínez-Costa, Catalina; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás

    2009-01-01

    Semantic interoperability of clinical standards is a major challenge in eHealth across Europe. It would allow healthcare professionals to manage the complete electronic healthcare record of the patient regardless of which institution generated each clinical session. Clinical archetypes are fundamental for the consecution of semantic interoperability, but they are built for particular electronic healthcare record standards. Therefore, methods for transforming archetypes between standards are needed. In this work, a method for transforming archetypes between ISO 13606 and openEHR, based on Model-Driven Engineering and Semantic Web technologies, is presented.

  9. Archetypal tryptophan-rich antimicrobial peptides: properties and applications.

    PubMed

    Shagaghi, Nadin; Palombo, Enzo A; Clayton, Andrew H A; Bhave, Mrinal

    2016-02-01

    Drug-resistant microorganisms ('superbugs') present a serious challenge to the success of antimicrobial treatments. Subsequently, there is a crucial need for novel bio-control agents. Many antimicrobial peptides (AMPs) show a broad-spectrum activity against bacteria, fungi or viruses and are strong candidates to complement or substitute current antimicrobial agents. Some AMPs are also effective against protozoa or cancer cells. The tryptophan (Trp)-rich peptides (TRPs) are a subset of AMPs that display potent antimicrobial activity, credited to the unique biochemical properties of tryptophan that allow it to insert into biological membranes. Further, many Trp-rich AMPs cross bacterial membranes without compromising their integrity and act intracellularly, suggesting interactions with nucleic acids and enzymes. In this work, we overview some archetypal TRPs derived from natural sources, i.e., indolicidin, tritrpticin and lactoferricin, summarising their biochemical properties, structures, antimicrobial activities, mechanistic studies and potential applications.

  10. [The importance of the mother archetype in our day's Hungary].

    PubMed

    Süle, Ferenc

    2015-01-01

    The worsening demographic situation in our mother country as in Europe too call for the investigation of family life and the feminine role. We began the analysis of the developing problem with the investigation of the spirit of the age in which it appears. We examine the importance of the family life and the woman's role in the foundation of the future. We point out that in the archaic pattern of family life, the mother archetype functions as energy generator from the point of the family and the society. The children make it possible and necessary for the parents to live over again the whole process of human development. Through empathy they make possible the spontaneous corrective examination of the parents own deep psychological relational patterns. These make it certain that family life works psychologically as the source of energy, and workshop.

  11. Structure, composition and microwave dielectric properties of bismuth zinc niobate pyrochlore thin films

    NASA Astrophysics Data System (ADS)

    Wang, Zhao; Ren, Wei; Zhan, Xuelei; Shi, Peng; Wu, Xiaoqing

    2014-11-01

    (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7 (BZN) pyrochlore thin films were deposited onto both Pt/TiO2/SiO2/Si and polycrystalline alumina substrates using pulsed laser deposition technique and then post-annealed using rapid thermal processing. The deposition temperature varies from 300 °C to 600 °C, and all the BZN films showed cubic pyrochlore structure after annealing at 650 °C for 30 min in air. The influence of the substrate associated with crystal structure is significant in the as-deposited films and disappears after post-annealing. The dielectric properties as a function of frequency up to the microwave frequency in both films were measured by LCR meter and split-post dielectric resonator technique. It is found that the BZN film deposited at 400 °C and post-annealed at 650 °C shows excellent dielectric properties with low loss in the microwave frequency range. This result indicates that the BZN thin film is a potential microwave material.

  12. Ab initio molecular dynamics simulations of ion-solid interactions in zirconate pyrochlores

    DOE PAGES

    Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; ...

    2015-01-31

    In this paper, an ab initio molecular dynamics method is employed to study low energy recoil events in zirconate pyrochlores (A2Zr2O7, A = La, Nd and Sm). It shows that both cations and anions in Nd2Zr2O7 and Sm2Zr2O7 are generally more likely to be displaced than those in La2Zr2O7. The damage end states mainly consist of Frenkel pair defects, and the Frenkel pair formation energies in Nd2Zr2O7 and Sm2Zr2O7 are lower than those in La2Zr2O7. These results suggest that the order–disorder structural transition more easily occurs in Nd2Zr2O7 and Sm2Zr2O7 resulting in a defect-fluorite structure, which agrees well with experimentalmore » observations. Our calculations indicate that oxygen migration from 48f and 8b to 8a sites is dominant under low energy irradiation. A number of new defects, including four types of cation Frenkel pairs and six types of anion Frenkel pairs, are revealed by ab initio molecular dynamics simulations. The present findings may help to advance the fundamental understanding of the irradiation response behavior of zirconate pyrochlores.« less

  13. Mott-Hubbard transition and spin-liquid state on the pyrochlore lattice

    NASA Astrophysics Data System (ADS)

    Swain, Nyayabanta; Tiwari, Rajarshi; Majumdar, Pinaki

    2016-10-01

    The pyrochlore lattice involves corner-sharing tetrahedra and the resulting geometric frustration is believed to suppress any antiferromagnetic order for Mott insulators on this structure. There are nevertheless short-range correlations which could be vital near the Mott-Hubbard insulator-metal transition. We use a static auxiliary-field-based Monte Carlo to study this problem in real space on reasonably large lattices. The method reduces to unrestricted Hartree-Fock at zero temperature but captures the key magnetic fluctuations at finite temperature. Our results reveal that increasing interaction drives the nonmagnetic (semi) metal to a "spin disordered" metal with small local moments, at some critical coupling, and then, through a small pseudogap window, to a large moment, gapped, Mott insulating phase at a larger coupling. The spin disordered metal has a finite residual resistivity which grows with interaction strength, diverging at the upper coupling. We present the resistivity, optical conductivity, and density of states across the metal-insulator transition and for varying temperature. These results set the stage for the more complex cases of Mott transition in the pyrochlore iridates and molybdates.

  14. Direct Hydrothermal Precipitation of Pyrochlore-Type Tungsten Trioxide Hemihydrate from Alkaline Sodium Tungstate Solution

    NASA Astrophysics Data System (ADS)

    Li, Xiaobin; Li, Jianpu; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui

    2012-04-01

    Pyrochlore-type tungsten trioxide hemihydrate (WO3·0.5H2O) powder with the average particle size of 0.5 μm was prepared successfully from the weak alkaline sodium tungstate solution by using organic substances of sucrose or cisbutenedioic acid as the acidification agent. The influences of solution pH and acidification agents on the precipitation process were investigated. The results showed that organic acidification agents such as sucrose and cisbutenedioic acid could improve the precipitation of pyrochlore WO3·0.5H2O greatly from sodium tungstate solution compared with the traditional acidification agent of hydrochloric acid. In addition, the pH value of the hydrothermal system played a critical role in the precipitation process of WO3·0.5H2O, and WO3·0.5H2O precipitation mainly occured in the pH range of 7.0 to 8.5. The precipitation rate of tungsten species in the sodium tungstate solution could reach up to 98 pct under the optimized hydrothermal conditions. This article proposed also the hydrothermal precipitation mechanism of WO3·0.5H2O from the weak alkaline sodium tungstate solution. The novel method reported in this study has a great potential to improve the efficiency of advanced tungsten trioxide-based functional material preparation, as well as for the pollution-reducing and energy-saving tungsten extractive metallurgy.

  15. Electronic transport in the ferromagnetic pyrochlore L u2V2O7 : Role of magnetization

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohang; Zhou, Haidong; Yu, Liuqi; Gardner, H. Jeffery; von Molnár, Stephan; Wiebe, Christopher; Xiong, Peng

    2015-05-01

    This paper reports on a study of the resistivity and Hall effect of the ferromagnetic pyrochlore L u2V2O7 . The temperature dependence of the resistivity of single crystalline L u2V2O7 exhibits overall activation behavior with a metalliclike exception at intermediate temperatures near the Curie temperature (TC). This temperature dependence bears a surprising resemblance to that of doped semiconductors. The ferromagnetic oxide shows a negative magnetoresistance (MR) which scales quadratically with the reduced magnetization at temperatures above TC; however, the scaling factor is significantly smaller than the value expected for a ferromagnetic system in the pure spin scattering regime, which suggests that other scattering processes may be at work. Concomitant with the negative MR, a distinct switch in the Hall resistivity slope is observed at temperatures near TC. Our analysis suggests that the nonlinear Hall effect is associated with a change in the effective carrier density at a constant critical magnetization induced by an external magnetic field. We argue that within a picture that incorporates high temperature activation transport with a magnetization-driven charge percolation transition, the observed complex electronic transport in the ferromagnetic pyrochlore can be quantitatively described.

  16. Quantum phase transitions and anomalous Hall effect in a pyrochlore Kondo lattice

    NASA Astrophysics Data System (ADS)

    Grefe, Sarah; Ding, Wenxin; Si, Qimiao

    The metallic variant of the pyrochlore iridates Pr2Ir2O7 has shown characteristics of a possible chiral spin liquid state [PRL 96 087204 (2006), PRL 98, 057203 (2007), Nature 463, 210 (2010)] and quantum criticality [Nat. Mater. 13, 356 (2014)]. An important question surrounding the significant anomalous Hall response observed in Pr2Ir2O7 is the nature of the f-electron local moments, including their Kondo coupling with the conduction d-electrons. The heavy effective mass and related thermodynamic characteristics indicate the involvement of the Kondo effect in this system's electronic properties. In this work, we study the effects of Kondo coupling on candidate time-reversal-symmetry-breaking spin liquid states on the pyrochlore lattice. Representing the f-moments as slave fermions Kondo-coupled to conduction electrons, we study the competition between Kondo-singlet formation and chiral spin correlations and determine the zero-temperature phase diagram. We derive an effective chiral interaction between the local moments and the conduction electrons and calculate the anomalous Hall response across the quantum phase transition from the Kondo destroyed phase to the Kondo screened phase. We discuss our results' implications for Pr2Ir2O7 and related frustrated Kondo-lattice systems.

  17. Pressure-induced phase transitions of β-type pyrochlore CsTaWO6

    DOE PAGES

    Zhang, F. X.; Tracy, C. L.; Shamblin, J.; ...

    2016-09-30

    The β-type pyrochlore CsTaWO6 was studied by synchrotron X-ray diffraction (XRD) and Raman scattering methods up to pressures of 43 GPa using a diamond anvil cell (DAC). With increasing pressure, the cubic pyrochlore in space group of Fd-3¯m with combining macron]m transforms to an orthorhombic structure (space group: Pnma) at 5.9 GPa and then to a monoclinic structure (space group: P21/c) at ~18 GPa. The structural evolution in CsTaWO6 is a continuous process and experimental results suggest that the initial cubic phase has a tetragonal distortion at ambient conditions. Both XRD and Raman measurements indicate that the pressure-induced phase transitionsmore » in CsTaWO6 are reversible. Lastly, these results may provide a structural explanation of previous experimental resistivity measurement results for the isostructural superconductor K(Cs)Os2O6 at high pressure conditions.« less

  18. Symmetry enriched U(1) topological orders for dipole-octupole doublets on a pyrochlore lattice

    NASA Astrophysics Data System (ADS)

    Li, Yao-Dong; Chen, Gang

    2017-01-01

    Symmetry plays a fundamental role in our understanding of both conventional symmetry breaking phases and the more exotic quantum and topological phases of matter. We explore the experimental signatures of symmetry enriched U(1) quantum spin liquids (QSLs) on the pyrochlore lattice. We point out that the Ce local moment of the newly discovered pyrochlore QSL candidate Ce2Sn2O7 , is a dipole-octupole doublet. The generic model for these unusual doublets supports two distinct symmetry enriched U(1) QSL ground states in the corresponding quantum spin ice regimes. These two U(1) QSLs are dubbed dipolar U(1) QSL and octupolar U(1) QSL. While the dipolar U(1) QSL has been discussed in many contexts, the octupolar U(1) QSL is rather unique. Based on the symmetry properties of the dipole-octupole doublets, we predict the peculiar physical properties of the octupolar U(1) QSL, elucidating the unique spectroscopic properties in the external magnetic fields. We further predict the Anderson-Higgs transition from the octupolar U(1) QSL driven by the external magnetic fields. We identify the experimental relevance with the candidate material Ce2Sn2O7 and other dipole-octupole doublet systems.

  19. Direct Measurement of Surface Dissolution Rates in Potential Nuclear Waste Forms: The Example of Pyrochlore.

    PubMed

    Fischer, Cornelius; Finkeldei, Sarah; Brandt, Felix; Bosbach, Dirk; Luttge, Andreas

    2015-08-19

    The long-term stability of ceramic materials that are considered as potential nuclear waste forms is governed by heterogeneous surface reactivity. Thus, instead of a mean rate, the identification of one or more dominant contributors to the overall dissolution rate is the key to predict the stability of waste forms quantitatively. Direct surface measurements by vertical scanning interferometry (VSI) and their analysis via material flux maps and resulting dissolution rate spectra provide data about dominant rate contributors and their variability over time. Using pyrochlore (Nd2Zr2O7) pellet dissolution under acidic conditions as an example, we demonstrate the identification and quantification of dissolution rate contributors, based on VSI data and rate spectrum analysis. Heterogeneous surface alteration of pyrochlore varies by a factor of about 5 and additional material loss by chemo-mechanical grain pull-out within the uppermost grain layer. We identified four different rate contributors that are responsible for the observed dissolution rate range of single grains. Our new concept offers the opportunity to increase our mechanistic understanding and to predict quantitatively the alteration of ceramic waste forms.

  20. Distinguishing LSP archetypes via gluino pair production at LHC13

    NASA Astrophysics Data System (ADS)

    Altunkaynak, Baris; Baer, Howard; Barger, Vernon; Huang, Peisi

    2015-08-01

    The search for supersymmetry at run 1 of the LHC has resulted in gluino mass limits mg ˜≳1.3 TeV for the case where mq ˜≫mg ˜ and in models with gaugino mass unification. The increased energy and, ultimately, luminosity of LHC13 will explore the range mg ˜˜1.3 - 2 TeV . We examine how the discovery of SUSY via gluino pair production would unfold via a comparative analysis of three LSP archetype scenarios: (1) mSUGRA/CMSSM model with a binolike LSP, (2) charged SUSY breaking (CSB) with a winolike LSP, and (3) SUSY with radiatively driven naturalness (RNS) and a Higgsino-like LSP. In all three cases we expect heavy-to-very-heavy squarks as suggested by a decoupling solution to the SUSY flavor and C P problems and by the gravitino problem. For all cases, initial SUSY discovery would likely occur in the multi-b -jet+E T channel. The CSB scenario would be revealed by the presence of highly ionizing, terminating tracks from quasistable charginos. As further data accrue, the RNS scenario with 100-200 GeV Higgsino-like LSPs would be revealed by the buildup of a mass edge/bump in the opposite sign/same flavor dilepton invariant mass which is bounded by the neutralino mass difference. The mSUGRA/CMSSM archetype would contain neither of these features but would be revealed by a buildup of the usual multilepton cascade decay signatures.

  1. Archetypal TRMM Radar Profiles Identified Through Cluster Analysis

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.

    2003-01-01

    It is widely held that identifiable 'convective regimes' exist in nature, although precise definitions of these are elusive. Examples include land / Ocean distinctions, break / monsoon beahvior, seasonal differences in the Amazon (SON vs DJF), etc. These regimes are often described by differences in the realized local convective spectra, and measured by various metrics of convective intensity, depth, areal coverage and rainfall amount. Objective regime identification may be valuable in several ways: regimes may serve as natural 'branch points' in satellite retrieval algorithms or data assimilation efforts; one example might be objective identification of regions that 'should' share a similar 2-R relationship. Similarly, objectively defined regimes may provide guidance on optimal siting of ground validation efforts. Objectively defined regimes could also serve as natural (rather than arbitrary geographic) domain 'controls' in studies of convective response to environmental forcing. Quantification of convective vertical structure has traditionally involved parametric study of prescribed quantities thought to be important to convective dynamics: maximum radar reflectivity, cloud top height, 30-35 dBZ echo top height, rain rate, etc. Individually, these parameters are somewhat deficient as their interpretation is often nonunique (the same metric value may signify different physics in different storm realizations). Individual metrics also fail to capture the coherence and interrelationships between vertical levels available in full 3-D radar datasets. An alternative approach is discovery of natural partitions of vertical structure in a globally representative dataset, or 'archetypal' reflectivity profiles. In this study, this is accomplished through cluster analysis of a very large sample (0[107) of TRMM-PR reflectivity columns. Once achieved, the rainconditional and unconditional 'mix' of archetypal profile types in a given location and/or season provides a description

  2. Spin dynamics simulations for a nanoscale Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Hou, Zhuofei; Landau, D. P.; Brown, G.; Stocks, G. M.

    2010-03-01

    Thermoinduced magnetization(TiM) is a novel response which was predicted to occur in nanoscale antiferromagnetic materials. Extensive Monte Carlo simulations footnotetextG. Brown, A. Janotti, M. Eisenbach, and G. M. Stocks, Phys.Rev.B 72, 140405(2005) have shown that TiM is an intrinsic property of the antiferromagnetic classical Heisenberg model below the Neel temperature. To obtain a fundamental understanding of TiM, spin dynamics(SD) simulations are performed to study the spin wave behavior, which seems to be the cause of TiM. A classical Heisenberg model with an antiferromagnetic nearest-neighbor exchange interaction and uniaxial single-site anisotropy is studied. Simple-cubic lattices with free boundary conditions are used. We employed the fast spin dynamics algorithms with fourth-order Suzuki-Trotter decompositions of the exponential operator. Additional small excitation peaks due to surface effects are found in transverse S(q,w).

  3. Investigation of non-Hermitian Hamiltonians in the Heisenberg picture

    NASA Astrophysics Data System (ADS)

    Miao, Yan-Gang; Xu, Zhen-Ming

    2016-05-01

    The Heisenberg picture for non-Hermitian but η-pseudo-Hermitian Hamiltonian systems is suggested. If a non-Hermitian but η-pseudo-Hermitian Hamiltonian leads to real second order equations of motion, though their first order Heisenberg equations of motion are complex, we can construct a Hermitian counterpart that gives the same second order equations of motion. In terms of a similarity transformation we verify the iso-spectral property of the Hermitian and non-Hermitian Hamiltonians and obtain the related eigenfunctions. This feature can be used to determine real eigenvalues for such non-Hermitian Hamiltonian systems. As an application, two new non-Hermitian Hamiltonians are constructed and investigated, where one is non-Hermitian and non-PT-symmetric and the other is non-Hermitian but PT-symmetric. Moreover, the complementarity and compatibility between our treatment and the PT symmetry are discussed.

  4. Heisenberg picture approach to the stability of quantum Markov systems

    SciTech Connect

    Pan, Yu E-mail: zibo.miao@anu.edu.au; Miao, Zibo E-mail: zibo.miao@anu.edu.au; Amini, Hadis; Gough, John; Ugrinovskii, Valery; James, Matthew R.

    2014-06-15

    Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.

  5. Quaternionic Heisenberg groups as naturally reductive homogeneous spaces

    NASA Astrophysics Data System (ADS)

    Agricola, Ilka; Ferreira, Ana Cristina; Storm, Reinier

    2015-05-01

    In this paper, we describe the geometry of the quaternionic Heisenberg groups from a Riemannian viewpoint. We show, in all dimensions, that they carry an almost 3-contact metric structure which allows us to define the metric connection that equips these groups with the structure of a naturally reductive homogeneous space. It turns out that this connection, which we shall call the canonical connection because of its analogy to the 3-Sasaki case, preserves the horizontal and vertical distributions and even the quaternionic contact (qc) structure of the quaternionic Heisenberg groups. We focus on the 7-dimensional case and prove that the canonical connection can also be obtained by means of a cocalibrated G2 structure. We then study the spinorial properties of this group and present the noteworthy fact that it is the only known example of a manifold which carries generalized Killing spinors with three different eigenvalues.

  6. Heisenberg-limited Sagnac interferometer with multiparticle states

    NASA Astrophysics Data System (ADS)

    Luo, Chengyi; Huang, Jiahao; Zhang, Xiangdong; Lee, Chaohong

    2017-02-01

    The Sagnac interferometry has widely been used to measure rotation frequency. Beyond the conventional single-particle scheme, we propose a multiparticle scheme via Bose condensed atoms. In our scheme, an ensemble of entangled two-state Bose atoms are moved in a ring via a state-dependent rotating potential, and then the atoms are recombined for interference via Ramsey pulses. The phase accumulation time is determined by the state-dependent rotating potential. The ultimate rotation sensitivity can be improved to the Heisenberg limit if the initial internal degrees of freedom are entangled. By implementing parity measurement, the ultimate measurement precision can be saturated, and the achieved measurement precisions approach the Heisenberg limit. Our results provide a promising way to exploit many-body quantum entanglement in precision rotation sensing.

  7. Path integral quantization corresponding to the deformed Heisenberg algebra

    SciTech Connect

    Pramanik, Souvik; Moussa, Mohamed; Faizal, Mir; Ali, Ahmed Farag

    2015-11-15

    In this paper, the deformation of the Heisenberg algebra, consistent with both the generalized uncertainty principle and doubly special relativity, has been analyzed. It has been observed that, though this algebra can give rise to fractional derivative terms in the corresponding quantum mechanical Hamiltonian, a formal meaning can be given to them by using the theory of harmonic extensions of function. Depending on this argument, the expression of the propagator of the path integral corresponding to the deformed Heisenberg algebra, has been obtained. In particular, the consistent expression of the one dimensional free particle propagator has been evaluated explicitly. With this propagator in hand, it has been shown that, even in free particle case, normal generalized uncertainty principle and doubly special relativity show very much different result.

  8. Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.

    PubMed

    Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R

    2016-05-13

    The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations.

  9. Type-I integrable quantum impurities in the Heisenberg model

    NASA Astrophysics Data System (ADS)

    Doikou, Anastasia

    2013-12-01

    Type-I quantum impurities are investigated in the context of the integrable Heisenberg model. This type of defects is associated to the (q)-harmonic oscillator algebra. The transmission matrices associated to this particular type of defects are computed via the Bethe ansatz methodology for the XXX model, as well as for the critical and non-critical XXZ spin chain. In the attractive regime of the critical XXZ spin chain the transmission amplitudes for the breathers are also identified.

  10. Rogue waves and breathers in Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Aritra K.; Vyas, Vivek M.; Panigrahi, Prasanta K.

    2015-07-01

    Following the connection of the non-linear Schrödinger equation with the continuum Heisenberg spin chain, we find the rogue soliton equivalent in the spin system. The breathers are also mapped to the corresponding space or time localized oscillatory modes, through the moving curve analogy. The spatio-temporal evolution of the curvature and torsion of the curve, underlying these dynamical systems, are explicated to illustrate the localization property of the rogue waves.

  11. Decay of transverse correlations in quantum Heisenberg models

    SciTech Connect

    Björnberg, Jakob E. E-mail: daniel@ueltschi.org; Ueltschi, Daniel E-mail: daniel@ueltschi.org

    2015-04-15

    We study a class of quantum spin systems that include the S=1/2 Heisenberg and XY-models and prove that two-point correlations exhibit exponential decay in the presence of a transverse magnetic field. The field is not necessarily constant, it may be random, and it points in the same direction. Our proof is entirely probabilistic and it relies on a random loop representations of the correlation functions, on stochastic domination and on first-passage percolation.

  12. Quasideterminant solutions of the generalized Heisenberg magnet model

    NASA Astrophysics Data System (ADS)

    Saleem, U.; Hassan, M.

    2010-01-01

    In this paper we present the Darboux transformation for the generalized Heisenberg magnet (GHM) model based on the general linear Lie group GL(n) and construct multi-soliton solutions in terms of quasideterminants. Further we relate the quasideterminant multi-soliton solutions obtained by means of Darboux transformation with those obtained by the dressing method. We also discuss the model based on the Lie group SU(n) and obtain explicit soliton solutions of the model based on SU(2).

  13. Scaling behavior of the Heisenberg model in three dimensions.

    PubMed

    Gordillo-Guerrero, A; Kenna, R; Ruiz-Lorenzo, J J

    2013-12-01

    We report on extensive numerical simulations of the three-dimensional Heisenberg model and its analysis through finite-size scaling of Lee-Yang zeros. Besides the critical regime, we also investigate scaling in the ferromagnetic phase. We show that, in this case of broken symmetry, the corrections to scaling contain information on the Goldstone modes. We present a comprehensive Lee-Yang analysis, including the density of zeros, and confirm recent numerical estimates for critical exponents.

  14. Finite Heisenberg-Weyl Groups and Golay Complementary Sequences

    DTIC Science & Technology

    2006-01-01

    insight into the nature of these sequences , as well as a mechanism for designing sequences with desirable correlation properties. Libraries of... nature of these codes, and a new technique for their analysis, as well as a mechanism for designing sequences with desirable correla- tion properties...dimensional discrete Heisenberg-Weyl group over the field Z2. Our methodology provides a different insight into the nature of these sequences , as well as a

  15. Non-Heisenberg states of the harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Dechoum, K.; França, H. M.

    1995-11-01

    The effects of the vacuum electromagnetic fluctuations and the radiation reaction fields on the time development of a simple microscopic system are identified using a new mathematical method. This is done by studying a charged mechanical oscillator (frequency Ω 0) within the realm of stochastic electrodynamics, where the vacuum plays the role of an energy reservoir. According to our approach, which may be regarded as a simple mathematical exercise, we show how the oscillator Liouville equation is transformed into a Schrödinger-like stochastic equation with a free parameter h' with dimensions of action. The role of the physical Planck's constant h is introduced only through the zero-point vacuum electromagnetic fields. The perturbative and the exact solutions of the stochastic Schrödinger-like equation are presented for h'>0. The exact solutions for which h'Heisenberg states. These nonperturbative solutions appear in the form of Gaussian, non-Heisenberg states for which the initial classical uncertainty relation takes the form <(δx 2) ><(δp) 2 >=(h'/2) 2, which includes the limit of zero indeterminacy (h → 0). We show how the radiation reaction and the vacuum fields govern the evolution of these non-Heisenberg states in phase space, guaranteeing their decay to the stationary state with average energy hΩ 0 /2 and <(δx) 2 ><(δp) 2 >=h 2 /4 at zero temperature. Environmental and thermal effects-are briefly discussed and the connection with similar works within the realm of quantum electrodynamics is also presented. We suggest some other applications of the classical non-Heisenberg states introduced in this paper and we also indicate experiments which might give concrete evidence of these states.

  16. [Carl Friedrich von Weizsäcker and Werner Heisenberg].

    PubMed

    Cassidy, David C

    2014-01-01

    The 50-year relationship between Weizsäcker and Heisenberg spanned the highpoints of discovery and dictatorship during the 1930s, extended into the war-time uranium project, the post-war controversy over that project, debates over West German nuclear policy, and the philosophical implications of modern physics. This paper explores the interaction between these two leading figures during that difficult and significant half-century.

  17. Modern or Anti-modern Science? Weimar Culture, Natural Science and the Heidegger-Heisenberg Exchange

    NASA Astrophysics Data System (ADS)

    Carson, Cathryn

    The following sections are included: * Weimar Culture and Scientific Rationality * Heidegger Read Historically * Science and Crisis * Quantum Mechanics and the Heidegger-Heisenberg Exchange * Conclusion * Acknowledgments

  18. Generalized coherent states for polynomial Weyl-Heisenberg algebras

    NASA Astrophysics Data System (ADS)

    Kibler, Maurice R.; Daoud, Mohammed

    2012-08-01

    It is the aim of this paper to show how to construct á la Perelomov and á la Barut-Girardello coherent states for a polynomial Weyl-Heisenberg algebra. This algebra depends on r parameters. For some special values of the parameter corresponding to r = 1, the algebra covers the cases of the su(1,1) algebra, the su(2) algebra and the ordinary Weyl-Heisenberg or oscillator algebra. For r arbitrary, the generalized Weyl-Heisenberg algebra admits finite or infinite-dimensional representations depending on the values of the parameters. Coherent states of the Perelomov type are derived in finite and infinite dimensions through a Fock-Bargmann approach based on the use of complex variables. The same approach is applied for deriving coherent states of the Barut-Girardello type in infinite dimension. In contrast, the construction of á la Barut-Girardello coherent states in finite dimension can be achieved solely at the price to replace complex variables by generalized Grassmann variables. Finally, some preliminary developments are given for the study of Bargmann functions associated with some of the coherent states obtained in this work.

  19. Symbol/Meaning paired-associate recall: an "archetypal memory" advantage?

    PubMed

    Sotirova-Kohli, Milena; Opwis, Klaus; Roesler, Christian; Smith, Steven M; Rosen, David H; Vaid, Jyotsna; Djonov, Valentin

    2013-12-01

    The theory of the archetypes and the hypothesis of the collective unconscious are two of the central characteristics of analytical psychology. These provoke, however, varying reactions among academic psychologists. Empirical studies which test these hypotheses are rare. Rosen, Smith, Huston and Gonzales proposed a cognitive psychological experimental paradigm to investigate the nature of archetypes and the collective unconscious as archetypal (evolutionary) memory. In this article we report the results of a cross-cultural replication of Rosen et al. conducted in the German-speaking part of Switzerland. In short, this experiment corroborated previous findings by Rosen et al., based on English speakers, and demonstrated a recall advantage for archetypal symbol meaning pairs vs. other symbol/meaning pairings. The fact that the same pattern of results was observed across two different cultures and languages makes it less likely that they are attributable to a specific cultural or linguistic context.

  20. Semantic Interoperable Electronic Patient Records: The Unfolding of Consensus based Archetypes.

    PubMed

    Pedersen, Rune; Wynn, Rolf; Ellingsen, Gunnar

    2015-01-01

    This paper is a status report from a large-scale openEHR-based EPR project from the North Norway Regional Health Authority encouraged by the unfolding of a national repository for openEHR archetypes. Clinicians need to engage in, and be responsible for the production of archetypes. The consensus processes have so far been challenged by a low number of active clinicians, a lack of critical specialties to reach consensus, and a cumbersome review process (3 or 4 review rounds) for each archetype. The goal is to have several clinicians from each specialty as a backup if one is hampered to participate. Archetypes and their importance for structured data and sharing of information has to become more visible for the clinicians through more sharpened information practice.

  1. Case Study: Applying OpenEHR Archetypes to a Clinical Data Repository in a Chinese Hospital.

    PubMed

    Min, Lingtong; Wang, Li; Lu, Xudong; Duan, Huilong

    2015-01-01

    openEHR is a flexible and scalable modeling methodology for clinical information and has been widely adopted in Europe and Australia. Due to the reasons of differences in clinical process and management, there are few research projects involving openEHR in China. To investigate the feasibility of openEHR methodology for clinical information modelling in China, this paper carries out a case study to apply openEHR archetypes to Clinical Data Repository (CDR) in a Chinese hospital. The results show that a set of 26 archetypes are found to cover all the concepts used in the CDR. Of all these, 9 (34.6%) are reused without change, 10 are modified and/or extended, and 7 are newly defined. The reasons for modification, extension and newly definition have been discussed, including granularity of archetype, metadata-level versus data-level modelling, and the representation of relationships between archetypes.

  2. A model-driven approach for representing clinical archetypes for Semantic Web environments.

    PubMed

    Martínez-Costa, Catalina; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás; Maldonado, José Alberto

    2009-02-01

    The life-long clinical information of any person supported by electronic means configures his Electronic Health Record (EHR). This information is usually distributed among several independent and heterogeneous systems that may be syntactically or semantically incompatible. There are currently different standards for representing and exchanging EHR information among different systems. In advanced EHR approaches, clinical information is represented by means of archetypes. Most of these approaches use the Archetype Definition Language (ADL) to specify archetypes. However, ADL has some drawbacks when attempting to perform semantic activities in Semantic Web environments. In this work, Semantic Web technologies are used to specify clinical archetypes for advanced EHR architectures. The advantages of using the Ontology Web Language (OWL) instead of ADL are described and discussed in this work. Moreover, a solution combining Semantic Web and Model-driven Engineering technologies is proposed to transform ADL into OWL for the CEN EN13606 EHR architecture.

  3. Archetypes as interface between patient data and a decision support system.

    PubMed

    Niès, Julie; Steichen, Olivier; Jaulent, Marie-Christine

    2007-10-11

    We propose an experiment to validate the hypothesis that archetypes enable better access and reliable use of patient data by a decision support system, mainly because they are designed to consistently link patient data with terminological systems and metadata.

  4. Ubiquitous information for ubiquitous computing: expressing clinical data sets with openEHR archetypes.

    PubMed

    Garde, Sebastian; Hovenga, Evelyn; Buck, Jasmin; Knaup, Petra

    2006-01-01

    Ubiquitous computing requires ubiquitous access to information and knowledge. With the release of openEHR Version 1.0 there is a common model available to solve some of the problems related to accessing information and knowledge by improving semantic interoperability between clinical systems. Considerable work has been undertaken by various bodies to standardise Clinical Data Sets. Notwithstanding their value, several problems remain unsolved with Clinical Data Sets without the use of a common model underpinning them. This paper outlines these problems like incompatible basic data types and overlapping and incompatible definitions of clinical content. A solution to this based on openEHR archetypes is motivated and an approach to transform existing Clinical Data Sets into archetypes is presented. To avoid significant overlaps and unnecessary effort during archetype development, archetype development needs to be coordinated nationwide and beyond and also across the various health professions in a formalized process.

  5. Symbol/Meaning Paired-Associate Recall: An “Archetypal Memory” Advantage?

    PubMed Central

    Sotirova-Kohli, Milena; Opwis, Klaus; Roesler, Christian; Smith, Steven M.; Rosen, David H.; Vaid, Jyotsna; Djonov, Valentin

    2013-01-01

    The theory of the archetypes and the hypothesis of the collective unconscious are two of the central characteristics of analytical psychology. These provoke, however, varying reactions among academic psychologists. Empirical studies which test these hypotheses are rare. Rosen, Smith, Huston and Gonzales proposed a cognitive psychological experimental paradigm to investigate the nature of archetypes and the collective unconscious as archetypal (evolutionary) memory. In this article we report the results of a cross-cultural replication of Rosen et al. conducted in the German-speaking part of Switzerland. In short, this experiment corroborated previous findings by Rosen et al., based on English speakers, and demonstrated a recall advantage for archetypal symbol meaning pairs vs. other symbol/meaning pairings. The fact that the same pattern of results was observed across two different cultures and languages makes it less likely that they are attributable to a specific cultural or linguistic context. PMID:25379255

  6. Validation of the openEHR archetype library by using OWL reasoning.

    PubMed

    Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás

    2011-01-01

    Electronic Health Record architectures based on the dual model architecture use archetypes for representing clinical knowledge. Therefore, ensuring their correctness and consistency is a fundamental research goal. In this work, we explore how an approach based on OWL technologies can be used for such purpose. This method has been applied to the openEHR archetype repository, which is the largest available one nowadays. The results of this validation are also reported in this study.

  7. Spin-1/2 Ising-Heisenberg model with the pair XYZ Heisenberg interaction and quartic Ising interactions as the exactly soluble zero-field eight-vertex model.

    PubMed

    Strecka, Jozef; Canová, Lucia; Minami, Kazuhiko

    2009-05-01

    The spin-1/2 Ising-Heisenberg model with the pair XYZ Heisenberg interaction and quartic Ising interactions is exactly solved by establishing a precise mapping relationship with the corresponding zero-field (symmetric) eight-vertex model. It is shown that the Ising-Heisenberg model with the ferromagnetic Heisenberg interaction exhibits a striking critical behavior, which manifests itself through re-entrant phase transitions as well as continuously varying critical exponents. The changes in critical exponents are in accordance with the weak universality hypothesis in spite of a peculiar singular behavior that emerges at a quantum critical point of the infinite order, which occurs at the isotropic limit of the Heisenberg interaction. On the other hand, the Ising-Heisenberg model with the antiferromagnetic Heisenberg interaction surprisingly exhibits less significant changes in both critical temperatures and critical exponents upon varying the strength of the exchange anisotropy in the Heisenberg interaction.

  8. [Analysis of the cellular tropism of JC virus with archetypal regulatory region].

    PubMed

    Hasegawa, Y

    1997-07-01

    JC virus (JCV) with an archetypal regulatory region (archetype) has been cloned from urines of a healthy individual. It has been suggested that the regulatory region of prototype JC virus (PML type) isolated from brain of PML patient was derived from that of the archetype by deletion and duplication. Biological characteristics of archetypal JCV, however, have not been fully studied. In the present study we examined the infectivity of archetypal JCV (CY), PML-type JCV (Mad-1) and Chimera JCV (Mad-1/CR-CY), in which the regulatory region is composed of CY and the other region Mad-1. DNAs from the three JCV types were transfected into COS-7 (monkey kidney cells transformed with SV40 T) and IMR-32 (human neuroblastoma cell). COS-7 was permissive for all three types, but IMR-32 was only infected with Mad-1. Infected DNAs were confirmed by Southern blotting, and the constancy of the regulatory regions before and after transmission was verified by DNA sequencing. The results showed that the viral regulatory region was related to viral cell tropism and that PML type regulatory region would be necessary for IMR-32 to propagate. The fact that COS-7 was susceptible for all three types may be explained by the function of SV40 T protein. In addition, we first succeeded in the propagation of CY in COS-7, which would provide a useful system to analyze the mechanism of persistent infection of archetypal JCV.

  9. Archetype-based knowledge management for semantic interoperability of electronic health records.

    PubMed

    Garde, Sebastian; Chen, Rong; Leslie, Heather; Beale, Thomas; McNicoll, Ian; Heard, Sam

    2009-01-01

    Formal modeling of clinical content that can be made available internationally is one of the most promising pathways to semantic interoperability of health information. Drawing on the extensive experience from openEHR archetype research and implementation work, we present the latest research and development in this area to improve semantic interoperability of Electronic Health Records (EHRs) using openEHR (ISO 13606) archetypes. Archetypes as the formal definition of clinical content need to be of high technical and clinical quality. We will start with a brief introduction of the openEHR architecture followed by presentations on specific topics related to the management of a wide range of clinical knowledge artefacts. We will describe a web-based review process for archetypes that enables international involvement and ensures that released archetypes are technically and clinically correct. Tools for validation of archetypes will be presented, along with templates and compliance templates. All this in combination enables the openEHR computing platform to be the foundation for safely sharing the information clinicians need, using this information within computerized clinical guidelines, for decision support as well as migrating legacy data.

  10. Archetype JC virus efficiently propagates in kidney-derived cells stably expressing HIV-1 Tat.

    PubMed

    Nukuzuma, Souichi; Kameoka, Masanori; Sugiura, Shigeki; Nakamichi, Kazuo; Nukuzuma, Chiyoko; Miyoshi, Isao; Takegami, Tsutomu

    2009-11-01

    Pathogenic JCV with rearranged regulatory regions (PML-type) causes PML, a demyelinating disease, in the brains of immunocompromised patients. On the other hand, archetype JCV persistently infecting the kidney is thought to be converted to PML-type virus during JCV replication in the infected host under immunosuppressed conditions. In addition, Tat protein, encoded by HIV-1, markedly enhances the expression of a reporter gene under control of the JCV late promoter. In order to examine the influence of Tat on JCV propagation, we used kidney-derived COS-7 cells, which only permit archetype JCV, and established COS-tat cells, which express HIV-1 Tat stably. We found that the extent of archetype JCV propagation in COS-tat cells is significantly greater than in COS-7 cells. On the other hand, COS-7 cells express SV40 T antigen, which is a strong stimulator of archetype JCV replication. The expression of SV40 T antigen was enhanced by HIV-1 Tat slightly according to real-time RT-PCR, this was not closely related to JCV replication in COS-tat cells. The efficiency of JCV propagation depended on the extent of expression of functional Tat. To our knowledge, this is the first report of increased production of archetype JCV in a culture system using cell lines stably expressing HIV-1 Tat. We propose here that COS-tat cells are a useful tool for studying the role of Tat in archetype JCV replication in the development of PML.

  11. The effect of electron-ion coupling on radiation damage simulations of a pyrochlore waste form.

    SciTech Connect

    Ismail, Ahmed E.; Foiles, Stephen Martin; Greathouse, Jeffery A.; Crozier, Paul Stewart

    2009-11-01

    We have performed molecular dynamics simulations of cascade damage in the gadolinium pyrochlore Gd{sub 2}Zr{sub 2}O{sub 7}, comparing results obtained from traditional methodologies that ignore the effect of electron-ion interactions with a 'two-temperature model' in which the electronic subsystem is modeled using a diffusion equation to determine the electronic temperature. We find that the electron-ion interaction friction coefficient {gamma}{sub p} is a significant parameter in determining the behavior of the system following the formation of the primary knock-on atom (here, a U{sup 3+} ion). The mean final U{sup 3+} displacement and the number of defect atoms formed is shown to decrease uniformly with increasing {gamma}{sub p}; however, other properties, such as the final equilibrium temperature and the oxygen-oxygen radial distribution function show a more complicated dependence on {gamma}{sub p}.

  12. A spin-liquid with pinch-line singularities on the pyrochlore lattice

    NASA Astrophysics Data System (ADS)

    Benton, Owen; Jaubert, L. D. C.; Yan, Han; Shannon, Nic

    2016-05-01

    The mathematics of gauge theories lies behind many of the most profound advances in physics in the past 200 years, from Maxwell's theory of electromagnetism to Einstein's theory of general relativity. More recently it has become clear that gauge theories also emerge in condensed matter, a prime example being the spin-ice materials which host an emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed by the presence of pinch-point singularities in neutron-scattering measurements. Here we report the discovery of a spin-liquid where the low-temperature physics is naturally described by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like analogues of the pinch points observed in spin-ice. Remarkably, these features may already have been observed in the pyrochlore material Tb2Ti2O7.

  13. Phonon Dynamics and Multipolar Isomorphic Transition in β-Pyrochlore KOs2O6

    NASA Astrophysics Data System (ADS)

    Hattori, Kazumasa

    2011-02-01

    We investigate with a microscopic model anharmonic K-cation oscillation observed by neutron experiments in β-pyrochlore superconductor KOs2O6, which also shows a mysterious first-order structural transition at Tp = 7.5 K. We have identified a set of microscopic model parameters that successfully reproduce the observed tem perature dependence and the superconducting transition temperature. Considering changes in the parameters at Tp, we can explain puzzling experimental results about electron--phonon coupling and neutron data. Our analysis demonstrates that the first-order transition is multipolar transition driven by the octupolar component of K-cation oscillations. The octupole moment does not change the symmetry and is characteristic to noncentrosymmetric K-cation potential.

  14. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    DOE PAGES

    Fergus, Jeffrey W.

    2014-04-12

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatingsmore » are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.« less

  15. Antiferromagnetic order in the pyrochlores R2Ge2O7 (R = Er, Yb)

    NASA Astrophysics Data System (ADS)

    Dun, Zhiling; Li, Xiang; Freitas, Rafael; Arrighi, Everton; Cruz, Clarina; Lee, Minseong; Choi, Eun Sang; Cao, Huibo; Silverstein, Harlyn; Wiebe, Chris; Chen, Jinguang; Zhou, Haidong

    Elastic neutron scattering, ac susceptibility, and specific heat experiments on the pyrochlores Er2Ge2O7 and Yb2Ge2O7 show that both systems are antiferromagnetically ordered in the Γ5 manifold. The ground state is a ψ3 phase for the Er sample and a ψ2 or ψ3 phase for the Yb sample, which suggests ``Order by Disorder''(ObD) physics. Furthermore, we unify the various magnetic ground states of all known R2X2O7 (R = Er, Yb, X = Sn, Ti, Ge) compounds through the enlarged XY type exchange interaction J+/- under chemical pressure. The mechanism for this evolution is discussed in terms of the phase diagram proposed in the theoretical study [Wong et al., Phys. Rev. B 88, 144402, (2013)].

  16. Antiferromagnetic order in the pyrochlores R2Ge2O7 (R =Er ,Yb )

    NASA Astrophysics Data System (ADS)

    Dun, Z. L.; Li, X.; Freitas, R. S.; Arrighi, E.; Dela Cruz, C. R.; Lee, M.; Choi, E. S.; Cao, H. B.; Silverstein, H. J.; Wiebe, C. R.; Cheng, J. G.; Zhou, H. D.

    2015-10-01

    Elastic neutron scattering, ac susceptibility, and specific heat experiments on the pyrochlores Er2Ge2O7 and Yb2Ge2O7 show that both systems are antiferromagnetically ordered in the Γ5 manifold. The ground state is a ψ3 phase for the Er sample and a ψ2 or ψ3 phase for the Yb sample, which suggests "Order by Disorder" physics. Furthermore, we unify the various magnetic ground states of all known R2X2O7 (R =Er , Yb; X =Sn , Ti, Ge) compounds through the enlarged X Y -type exchange interaction J± under chemical pressure. The mechanism for this evolution is discussed in terms of the phase diagram proposed in the theoretical study by Wong et al. [Phys. Rev. B 88, 144402 (2013), 10.1103/PhysRevB.88.144402].

  17. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    SciTech Connect

    Fergus, Jeffrey W.

    2014-04-12

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatings are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.

  18. Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores

    NASA Technical Reports Server (NTRS)

    Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.

  19. Crystal-field levels of terbium in pyrochlore compounds R2Ti2O7

    NASA Astrophysics Data System (ADS)

    Klimin, S. A.

    2015-06-01

    Temperature-dependent infrared spectroscopic study of Tb3+ f-f transitions has been performed for pyrochlore compounds Tb2Ti2O7, (Y0.99Tb0.01)2Ti2O7, and (Gd0.9Tb0.1)2Ti2O7. The peculiarities of terbium absorption were explained taking into account the presence of inversion symmetry at the rare-earth site. The energies of crystal-field levels for the ground Tb3+ multiplet were obtained. Spectral anomaly in Tb2Ti2O7 observed in the temperature range T<20 K was assigned to a strong ion-ion interaction between rare-earth ions, which leads to collective CF excitations in the terbium subsystem.

  20. Single crystal growth, structure and magnetic properties of Pr2Hf2O7 pyrochlore

    NASA Astrophysics Data System (ADS)

    Ciomaga Hatnean, Monica; Sibille, Romain; Lees, Martin R.; Kenzelmann, Michel; Ban, Voraksmy; Pomjakushin, Vladimir; Balakrishnan, Geetha

    2017-02-01

    Large single crystals of pyrochlore \\text{P}{{\\text{r}}2}\\text{H}{{\\text{f}}2}{{\\text{O}}7} were successfully grown by the floating zone technique using an optical furnace equipped with high power xenon arc lamps. Structural investigations were carried out via powder synchrotron x-ray and neutron diffraction to establish the crystallographic structure of the materials produced. The magnetic properties of the single crystals were determined for magnetic fields applied along different crystallographic axes. The results revealed that \\text{P}{{\\text{r}}2}\\text{H}{{\\text{f}}2}{{\\text{O}}7} is an interesting material for further investigation as a frustrated magnet. The high quality of the crystals produced makes them ideal for detailed investigation, especially using neutron scattering techniques.

  1. Hydrothermal Synthesis of Lanthanide Stannates Pyrochlore Nanocrystals for Catalytic Combustion of Soot Particulates

    PubMed Central

    2015-01-01

    Nanocrystalline La2Sn2O7 and La2Sn1.8Co0.2O7 with a phase-pure pyrochlore structure were synthesized by a hydrothermal method, and their catalytic activity was investigated for soot combustion. The as-synthesized catalysts presented relatively larger surface area, and pore volume, which was benefit to the gas molecule diffusion in the reaction. A uniform spherical structure with particle size of 200–500 nm was found in SEM. The samples via hydrothermal route are more active for catalytic soot combustion, ascribing to the spherical morphology, high surface area and improved oxygen mobility. After Co, the reducibility was improved and surface oxygen vacancy was produced, resulting in the enhanced activity and selectivity to CO2 formation. PMID:26090513

  2. First-principles calculation of defect formation energies and electronic properties in stannate pyrochlores

    NASA Astrophysics Data System (ADS)

    Chen, Z. J.; Xiao, H. Y.; Zu, X. T.; Gao, F.

    2008-11-01

    The electronic structures and defect formation energies for a series of stannate pyrochlores Ln2Sn2O7 (Ln=La, Pr, Nd, Sm, Gd, Tb, Ho, Er, Lu, and Y) have been investigated using the first-principles total energy calculations. The calculated results show that Ln-site cation ionic radius, x-O48f, lattice constant and the covalency of the ⟨Sn-O48f⟩ bond have a significant affect on the defect formation energies. The cation-antisite defect has the lowest formation energy, as compared with that of other defects, indicating that cation disorder causes local oxygen disordering. The present studies suggest that Lu2Sn2O7 is the most resistant to ion beam-induced amorphization. The electronic structure calculations reveal that Ln2Sn2O7 compounds have direct band gaps of 2.64-2.95 eV at the Γ point in the Brillouin zone.

  3. Kagome-like Lattice Distortion in the Pyrochlore Material Hg2Ru2O7

    NASA Astrophysics Data System (ADS)

    van Duijn, Joost; Ruiz-Bustos, Rocío; Daoud-Aladine, Aziz

    2013-03-01

    Hg2Ru2O7 is one of the few pyrochlore materials known containing Ru5+. It undergoes a first order metal to Mott insulator transition (MIT) at T= 107 K, below which the susceptibility is significantly reduced and appears to be nearly T independent. While initially it has been suggested that below 107 K the Ru S=3/2 moments are quenched into an antiferromagnetic spin singlet ground-state, similar as to what is observed in Tl2Ru2O7, recent muon and polarized neutron diffraction experiments reveal the onset of long-range magnetic ordering below the MIT. In order to shed light on the magnetic interactions that give rise to the observed long-range ordering we have performed high resolution powder neutron diffraction experiments to determine the low temperature structure of Hg2Ru2O7. Below the MIT the symmetry is lowered from cubic to monoclinic and the Ru-Ru bonds, which are equal in the pyrochlore phase, become split into short, medium and long bonds. As a result the exchange interactions between the Ru atoms become more two dimensional. The short and medium bonds form layers, which are separated by the long bonds, that run parallel to the monoclinic ab plane. The low temperature structure can best be described as a stacking of Kagome-like layers. The work presented in this paper was supported by the Ramón y Cajal program through Grant no. RYC-2005-001064 and the Consejería de Educación y Ciencia of the Junta de Comunidades de Castilla-La Mancha through Grant no. PII1I09-0083-2105.

  4. Structural and crystal chemical properties of rare-earth titanate pyrochlores

    SciTech Connect

    Farmer, James Matthew; Boatner, Lynn A; Chakoumakos, Bryan C; Du, Mao-Hua; Lance, Michael J; Rawn, Claudia J.; Bryan, Jeff C.

    2014-01-01

    Rare-earth titanates, RE2Ti2O7 (where RE = a rare-earth) with the pyrochlore structure continue to be investigated for use as potential stable host materials for nuclear and actinide-rich wastes. Accordingly, the present work is directed towards the elucidation of the fundamental structural, physical, and thermochemical properties of this class of compounds. Single-crystals of the rare earth pyrochlores were synthesized using a high-temperature flux technique and were subsequently characterized using single-crystal X-ray diffraction. The cubic lattice parameters display an approximately linear correlation with the RE-site cation radius. Theoretical calculations of the lattice constants and bond lengths of the subject materials were carried out using density functional theory, and the results are compared to the experimental values. The Sm and Eu titanates exhibit a covalency increase between the REO8 and TiO6 polyhedra resulting in a deviation from the increasing linear lattice parameter through the transition series. Gd2Ti2O7 with the 4f7 half-filled f-orbital Gd3+ sub-shell exhibits the lowest 48f oxygen positional parameter. The coefficient of thermal expansion for the rare-earth titanate series is approximately linear, and it has a range of 10.1 11.2 x 10-6 C-1. Raman spectroscopy indicated that the ~530 cm-1 peak associated with the Ti-O stretching mode follows a general trend of decreasing frequency with increasing RE reduced mass.

  5. The Tropical Convective Spectrum. 1; Archetypal Vertical Structures

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.; Petersen, Walter A.; Cecil, Daniel J.

    2004-01-01

    A taxonomy of tropical convective vertical structures is constructed through cluster analysis of three years of Tropical Rainfall Measuring Mission [TRMM] Precipitation Radar [PR] vertical profiles, their surface rainfall and associated radar-based classifiers (convective/stratiform and bright band existence). archetypal profile types are identified. These include nine convective types, divided into warm, "just cold", midlevel, deep and deep/wet-growth categories, seven stratiform types, divided into warm, "just cold", midlevel and deep categories, three "mixed" types (deep profiles with low reflectivity aloft), and six fragment types (non-precipitating anvils and sheared deep convective profiles). The taxonomy allows for description of any storm or local Convective spectrum by the nine primary convective and stratiform types, a significant reduction over full three-dimensional radar data which nonetheless retains vertical structure information. The analysis provides a quasi-independent corroboration of the TRMM 2A23 convective/stratiform classification. The global frequency of occurrence and contribution to rainfall for the profile types is presented, demonstrating primary rainfall contribution by midlevel glaciated convection and similar depth decaying/stratiform stages. Close correspondence is found between deep convective profile frequency and annualized lightning production. Passive microwave and lightning properties associated with the profiles are reported, and cases presented illustrating known nonuniqueness problems with 85 and 37 GHz brightness temperature pairs (the same pairs corresponding to both convective and stratiform profiles), and how supplementary lightning information might be used to mitigate these problems.

  6. Beyond emotion archetypes: databases for emotion modelling using neural networks.

    PubMed

    Cowie, Roddy; Douglas-Cowie, Ellen; Cox, Cate

    2005-05-01

    There has been rapid development in conceptions of the kind of database that is needed for emotion research. Familiar archetypes are still influential, but the state of the art has moved beyond them. There is concern to capture emotion as it occurs in action and interaction ('pervasive emotion') as well as in short episodes dominated by emotion, and therefore in a range of contexts, which shape the way it is expressed. Context links to modality-different contexts favour different modalities. The strategy of using acted data is not suited to those aims, and has been supplemented by work on both fully natural emotion and emotion induced by various technique that allow more controlled records. Applications for that kind of work go far beyond the 'trouble shooting' that has been the focus for application: 'really natural language processing' is a key goal. The descriptions included in such a database ideally cover quality, emotional content, emotion-related signals and signs, and context. Several schemes are emerging as candidates for describing pervasive emotion. The major contemporary databases are listed, emphasising those which are naturalistic or induced, multimodal, and influential.

  7. The Health Archetype Language (HAL-42): interface considerations.

    PubMed

    Elkin, Peter L; Froehling, David; Wahner-Roedler, Dietlind; Trusko, Brett; Welsh, Gail; Rosenbloom, S Trent; Speroff, Theodore; Brown, Steven H

    2010-04-01

    In this manuscript we report an evaluation of the reliability of clinical research rules creation by multiple clinicians using the Health Archetype Language (HAL-42) and user interface. HAL-42 is a language which allows real time epidemiological inquiry using automatically derived clinical encodings with any health Ontology. This evaluation used SNOMED CT as the underlying Ontology. The inquiries were performed on a population of 17,731 patients whose 50,000 clinical records have all been fully encoded in SNOMED CT. Four subject matter experts (SMEs) were asked independently to encode and run 10 rules/studies. The inter-rater agreement was 74.8% (p=0.6526) with a Kappa statistic of 0.49217 (p=0.5722). The ten rules were divided into three easy rules, four moderate and three complex rules. There was no significant difference in the SME's agreement when representing easy and complex rules (p=0.6243). We conclude that although the usability of the HAL-42 language is usable enough to achieve reasonable inter-rater reliability, some training will be necessary to reach high levels of reliability for ad hoc queries. We also conclude that SMEs are just as competent to perform complex queries as easy queries of ontologically indexed clinical data.

  8. Cyprinid Herpesvirus 3: An Archetype of Fish Alloherpesviruses.

    PubMed

    Boutier, Maxime; Ronsmans, Maygane; Rakus, Krzysztof; Jazowiecka-Rakus, Joanna; Vancsok, Catherine; Morvan, Léa; Peñaranda, Ma Michelle D; Stone, David M; Way, Keith; van Beurden, Steven J; Davison, Andrew J; Vanderplasschen, Alain

    2015-01-01

    The order Herpesvirales encompasses viruses that share structural, genetic, and biological properties. However, members of this order infect hosts ranging from molluscs to humans. It is currently divided into three phylogenetically related families. The Alloherpesviridae family contains viruses infecting fish and amphibians. There are 12 alloherpesviruses described to date, 10 of which infect fish. Over the last decade, cyprinid herpesvirus 3 (CyHV-3) infecting common and koi carp has emerged as the archetype of fish alloherpesviruses. Since its first description in the late 1990s, this virus has induced important economic losses in common and koi carp worldwide. It has also had negative environmental implications by affecting wild carp populations. These negative impacts and the importance of the host species have stimulated studies aimed at developing diagnostic and prophylactic tools. Unexpectedly, the data generated by these applied studies have stimulated interest in CyHV-3 as a model for fundamental research. This review intends to provide a complete overview of the knowledge currently available on CyHV-3.

  9. Quantification of quantum discord in a antiferromagnetic Heisenberg compound

    SciTech Connect

    Singh, H. Chakraborty, T. Mitra, C.

    2014-04-24

    An experimental quantification of concurrence and quantum discord from heat capacity (C{sub p}) measurement performed over a solid state system has been reported. In this work, thermodynamic measurements were performed on copper nitrate (CN, Cu(NO{sub 3}){sub 2}⋅2.5H{sub 2}O) single crystals which is an alternating antiferromagnet Heisenberg spin 1/2 system. CN being a weak dimerized antiferromagnet is an ideal system to investigate correlations between spins. The theoretical expressions were used to obtain concurrence and quantum discord curves as a function of temperature from heat capacity data of a real macroscopic system, CN.

  10. Q-operators for the open Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Frassek, Rouven; Szécsényi, István M.

    2015-12-01

    We construct Q-operators for the open spin-1/2 XXX Heisenberg spin chain with diagonal boundary matrices. The Q-operators are defined as traces over an infinite-dimensional auxiliary space involving novel types of reflection operators derived from the boundary Yang-Baxter equation. We argue that the Q-operators defined in this way are polynomials in the spectral parameter and show that they commute with transfer matrix. Finally, we prove that the Q-operators satisfy Baxter's TQ-equation and derive the explicit form of their eigenvalues in terms of the Bethe roots.

  11. Excitations in a four-leg antiferromagnetic Heisenberg spin tube

    SciTech Connect

    Garlea, Vasile O; Zheludev, Andrey I; Regnault, L.-P.; Chung, J.-H.; Qiu, Y.; Boehm, Martin; Habicht, Klaus; Meissner, Michael

    2008-01-01

    Inelastic neutron scattering is used to investigate magnetic excitations in the quasi-one-dimensional quantum spin-liquid system Cu$_2$Cl$_{4}\\cdot$ D$_8$C$_4$SO$_2$. Contrary to previously conjectured models that relied on bond-alternating nearest neighbor interactions in the spin chains, the dominant interactions are actually next-nearest-neighbor in-chain antiferromagnetic couplings. The appropriate Heisenberg Hamiltonian is equivalent to that of a $S=1/2$ 4-leg spin-tube with almost perfect one dimensionality and no bond alternation. A partial geometric frustration of rung interactions induces a small incommensurability of short-range spin correlations.

  12. Excitations in a Four-Leg Antiferromagnetic Heisenberg Spin Tube,

    SciTech Connect

    Garlea, Vasile O; Zheludev, Andrey I; Regnault, L.-P.; Chung, J.-H.; Qiu, Y.; Boehm, Martin; Habicht, Klaus; Meissner, Michael; Fernandez-Baca, Jaime A

    2008-01-01

    Inelastic neutron scattering is used to investigate magnetic excitations in the quasi-one-dimensional quantum spin-liquid system Cu2Cl4 D8C4SO2. Contrary to previously conjectured models that relied on bond-alternating nearest-neighbor interactions in the spin chains, the dominant interactions are actually next-nearest-neighbor in-chain antiferromagnetic couplings. The appropriate Heisenberg Hamiltonian is equivalent to that of a S 1=2 4-leg spin-tube with almost perfect one dimensionality and no bond alternation. A partial geometric frustration of rung interactions induces a small incommensurability of short-range spin correlations.

  13. Excitations in a four-leg antiferromagnetic Heisenberg spin tube.

    PubMed

    Garlea, V O; Zheludev, A; Regnault, L-P; Chung, J-H; Qiu, Y; Boehm, M; Habicht, K; Meissner, M

    2008-01-25

    Inelastic neutron scattering is used to investigate magnetic excitations in the quasi-one-dimensional quantum spin-liquid system Cu(2)Cl(4).D(8)C(4)SO(2). Contrary to previously conjectured models that relied on bond-alternating nearest-neighbor interactions in the spin chains, the dominant interactions are actually next-nearest-neighbor in-chain antiferromagnetic couplings. The appropriate Heisenberg Hamiltonian is equivalent to that of a S=1/2 4-leg spin-tube with almost perfect one dimensionality and no bond alternation. A partial geometric frustration of rung interactions induces a small incommensurability of short-range spin correlations.

  14. A Symmetrized Basis for Transitions in the Heisenberg Model

    NASA Astrophysics Data System (ADS)

    Haydock, Roger; Nex, C. M. M.

    2013-03-01

    The spin-S Heisenberg model has 2S+1 states on each site, for which there are (2S+1)2 possible transitions between these states. For N sites there are (2S+1)N states and (2S+1)2N transitions between states. This rapid increase in the number of transitions with sites appears to limit calculations to just a few sites. However for transitions induced by spin-spin interactions, we construct a symmetrized basis which only grows as 2N-3, making possible computations for much larger systems. Supported by the Richmond F. Snyder Fund.

  15. Multicritical point in a diluted bilayer Heisenberg quantum antiferromagnet.

    PubMed

    Sandvik, Anders W

    2002-10-21

    The S=1/2 Heisenberg bilayer antiferromagnet with randomly removed interlayer dimers is studied using quantum Monte Carlo simulations. A zero-temperature multicritical point (p(*),g(*)) at the classical percolation density p=p(*) and interlayer coupling g(*) approximately equal 0.16 is demonstrated. The quantum critical exponents of the percolating cluster are determined using finite-size scaling. It is argued that the associated finite-temperature quantum critical regime extends to zero interlayer coupling and could be relevant for antiferromagnetic cuprates doped with nonmagnetic impurities.

  16. Knight shifts around vacancies in the 2D Heisenberg model.

    PubMed

    Anfuso, Fabrizio; Eggert, Sebastian

    2006-01-13

    The local response to a uniform field around vacancies in the two-dimensional spin-1/2 Heisenberg antiferromagnet is determined by numerical quantum Monte Carlo simulations as a function of temperature. It is possible to separate the Knight shifts into uniform and staggered contributions on the lattice which are analyzed and understood in detail. The contributions show interesting long- and short-range behavior that may be of relevance in NMR and susceptibility measurements. For more than one impurity, remarkable nonlinear enhancement and cancellation effects take place. We predict that the Curie impurity susceptibility will be observable for a random impurity concentration even in the thermodynamic limit.

  17. Fluctuation-dissipation ratio of the Heisenberg spin glass.

    PubMed

    Kawamura, Hikaru

    2003-06-13

    The fluctuation-dissipation (FD) relation of the three-dimensional Heisenberg spin glass with weak random anisotropy is studied by off-equilibrium Monte Carlo simulation. The numerically determined FD ratio exhibits a "one-step-like" behavior, the effective temperature of the spin-glass state being about twice the spin-glass transition temperature, T(eff) approximately 2T(g), irrespective of the bath temperature. The results are discussed in conjunction with the recent experiment by Hérisson and Ocio, and with the chirality scenario of the spin-glass transition.

  18. Valence bond and von Neumann entanglement entropy in Heisenberg ladders.

    PubMed

    Kallin, Ann B; González, Iván; Hastings, Matthew B; Melko, Roger G

    2009-09-11

    We present a direct comparison of the recently proposed valence bond entanglement entropy and the von Neumann entanglement entropy on spin-1/2 Heisenberg systems using quantum Monte Carlo and density-matrix renormalization group simulations. For one-dimensional chains we show that the valence bond entropy can be either less or greater than the von Neumann entropy; hence, it cannot provide a bound on the latter. On ladder geometries, simulations with up to seven legs are sufficient to indicate that the von Neumann entropy in two dimensions obeys an area law, even though the valence bond entanglement entropy has a multiplicative logarithmic correction.

  19. Multipath Metropolis simulation: An application to the classical Heisenberg model

    NASA Astrophysics Data System (ADS)

    Rakić, Predrag S.; Radošević, Slobodan M.; Mali, Petar M.; Stričević, Lazar M.; Petrić, Tara D.

    2016-01-01

    This study explores the Multipath Metropolis simulation of the classical Heisenberg model. Unlike the standard single-path algorithm, the Metropolis algorithm applied to multiple random-walk paths becomes an embarrassingly parallel algorithm in which many processor cores can be easily utilized. This is important since processor cores are progressively becoming less expensive and thus more accessible. The most obvious advantage of the multipath approach is in employing independent random-walk paths to produce an uncorrelated simulation output with a normal distribution allowing for straightforward and rigorous statistical analysis.

  20. Ground states of the SU(N) Heisenberg model.

    PubMed

    Kawashima, Naoki; Tanabe, Yuta

    2007-02-02

    The SU(N) Heisenberg model with various single-row representations is investigated by quantum Monte Carlo simulations. While the zero-temperature phase boundary agrees qualitatively with the theoretical predictions based on the 1/N expansion, some unexpected features are also observed. For N> or =5 with the fundamental representation, for example, it is suggested that the ground states possess exact or approximate U(1) degeneracy. In addition, for the representation of Young tableau with more than one column, the ground state shows no valence-bond-solid order even at N greater than the threshold value.

  1. Bound States in Dimerized and Frustrated Heisenberg Chains

    NASA Astrophysics Data System (ADS)

    Bouzerar, G.; Sil, S.

    Using the Bond-Operator Technique (BOT), we have studied the low energy excitation spectrum of a frustrated dimerized antiferromagnetic Heisenberg chain. In particular, we have compared our analytical results with previous Exact Diagonalization (ED) data. Qualitatively, the BOT results are in good agreement with the ED data. And even a very good quantitative agreement is obtained in some parameter region. It is clearly shown that there is only one elementary excitation branch (lowest triplet branch) and that the two other well defined excitations which appear below the continuum, one singlet and one triplet, are bound states of two elementary triplets.

  2. Robust paramagnetism in Bi2- xMxRu2O7 (M=Mn,Fe,Co,Ni,Cu) pyrochlore

    NASA Astrophysics Data System (ADS)

    Haas, M. K.; Cava, R. J.; Avdeev, M.; Jorgensen, J. D.

    2002-09-01

    We report magnetic susceptibility, resistivity, and Seebeck coefficients for Bi2-xMxRu2O7 pyrochlore. The solid solution exists up to x=0.5 for M=Cu,Ni,Co and up to x=0.1 for M=Fe,Mn. The doped materials do not exhibit ferromagnetism or any localized ruthenium moment behavior. Instead we find the Ru-O and Bi-O sublattices to be essentially independent, with any magnetism resulting from the unpaired first-row transition metal dopant spins. Cobalt substitution for bismuth results in localized Co2+ and low-temperature spin-glass transitions in several cases. Nickel moments on the pyrochlore lattice display properties intermediate to localized and itinerant. Finally, copper doping results in an enhancement of the Pauli metallic density of states.

  3. Nonequilibrium low temperature phase in pyrochlore iridate Y2Ir2O7: Possibility of glass-like dynamics

    NASA Astrophysics Data System (ADS)

    Kumar, Harish; Pramanik, A. K.

    2016-07-01

    Geometrical frustration and spin-orbit coupling effect together play vital role to influence properties in pyrochlore based iridium oxides. Here we have investigated detailed structural, magnetic, thermodynamic and transport properties of pyrochlore iridate Y2Ir2O7. Magnetization data show onset of magnetic irreversibility around temperature Tirr ∼ 160 K, however, no sign of long-range type ferromagnetic ordering is observed below Tirr. Specific heat data show no visible anomaly across Tirr, and the analysis of data indicate sizable density of states across Fermi level. Temperature dependent x-ray diffraction measurements show no change in structural symmetry down to low temperature. The material, on the other hand, shows significant relaxation and aging behavior similar to glassy dynamics. The electronic charge transport in this highly insulating system is found to follow power law dependence with temperature. The material shows negative magnetoresistance which is explained with quantum interference effect.

  4. La2Hf2O7 crystal and local structure changes on the fluorite - pyrochlore phase transition

    NASA Astrophysics Data System (ADS)

    Popov, V. V.; Menushenkov, A. P.; Yastrebtsev, A. A.; Zubavichus, Ya V.

    2016-09-01

    The process of La2Hf2O7 (rLa3+/rHf4+ = 1.63) nanocrystals formation and evolution upon calcinations up to 1400 °C has been investigated by means of synchrotron radiation X-ray diffraction (XRD) and Raman spectroscopy. It has been shown that isothermal calcination at 800 °C/3h of the X-ray amorphous precursor firstly leads to the formation of oxide nanocrystalline powders with a defect fluorite structure. In the temperature range 900 - 1000 °C we observed the nucleation and growth of pyrochlore nanodomains inside a well crystalline fluorite matrix. The pyrochlore-type superstructural ordering of cations and anions appears at calcinations temperature higher than 1000 °C.

  5. The local and long-range structural order of the spin-glass pyrochlore, Tb2Mo2O7

    SciTech Connect

    Ehlers, Georg; Jiang, Yu; Booth, Corwin H; Greedan, John E; Gardner, Jason; Huq, Ashfia

    2011-01-01

    To understand the origin of the spin-glass state in molybdate pyrochlores, the structure of Tb2Mo2O7 is investigated using two techniques: the long-range lattice structure was measured using neutron powder diffraction (NPD), and the local structure information was obtained from extended x-ray absorption fine structure (EXAFS) measurements. While the long-range structure appears well ordered, apart from some enhanced mean-squared site displacements, the local structure measurements indicate nearest-neighbor disorder exists, similar to that found in the related spinglass pyrochlore, Y2Mo2O7. Although the freezing temperature in Tb2Mo2O7, 25 K, is slightly higher than in Y2Mo2O7, 22 K, the degree of local bond disorder is actually less in Tb2Mo2O7. This apparaent contradiction is considered in light of the interactions involved in the freezing process.

  6. Magnetic hyperfine interactions at the 51V nucleus in the pyrochlore Lu2V2O7

    NASA Astrophysics Data System (ADS)

    Agzamova, P. A.; Petrov, V. P.; Chernyshev, V. A.; Nikiforov, A. E.

    2015-01-01

    This is an ab initio calculation of the parameters of the magnetic hyperfine interactions at the 51V nucleus, in the Lu2V2O7 pyrochlore, in addition to a comparative analysis of the calculated values versus known experimental data. It is shown that the unrestricted Hartree-Fock method is more suitable when it comes to describing the magnetic properties at ion nuclei, in comparison to the density functional theory with hybrid functionals B3LYP and PBE0.

  7. Saturation of impurity-rich phases in a cerium-substituted pyrochlore-rich titanate ceramic: part 1 experimental results

    SciTech Connect

    Ryerson, F J; Ebbinghaus, B; Kirkorian, O; VanKonynenburg, R

    2000-05-25

    The saturation of impurity-rich accessory phases in a Ce-analog baseline ceramic formulation for the immobilization of excess plutonium has been tested by synthesizing an impurity-rich baseline compositions at 1300 C, 1350 C, and 1400 C in air. Impurity oxides are added at the 10 wt% level. The resulting phases assemblages are typically rich in pyrochlore, Hf-zirconolite (hafnolite), brannerite and rutile, but in many instances also contain an accessory mineral enriched in the impurity oxide. The concentration of that oxide in coexisting pyrochlore sets the saturation limit for solid solution of the component in question. In most cases, the accessory phase does not contain significant amounts of Ce, Gd or U. Exceptions are the stabilization of a Ca-lanthanide phosphate and a phosphate glass when P{sub 2}O{sub 5} is added to the formulation. P{sub 2}O{sub 5} addition is also very effective in reducing the modal amount of pyrochlore in the form relative to brannerite. Addition of the sodium-aluminosilicate, NaAlSiO{sub 4}, also results in the formation of a grain boundary melt at run conditions, but the fate of this phase on cooling is not well determined. At temperatures above 1300 C, addition of 10 wt% Fe{sub 2}O{sub 3} also leads to melting. Substitution of cations of different valences can also be associated with model-dependent changes in the oxidation state of uranium via charge transfer reactions. A set of simple components is suggested for the description of pyrochlores in both impurity-free and impurity-rich formulations.

  8. Integrating reasoning and clinical archetypes using OWL ontologies and SWRL rules.

    PubMed

    Lezcano, Leonardo; Sicilia, Miguel-Angel; Rodríguez-Solano, Carlos

    2011-04-01

    Semantic interoperability is essential to facilitate the computerized support for alerts, workflow management and evidence-based healthcare across heterogeneous electronic health record (EHR) systems. Clinical archetypes, which are formal definitions of specific clinical concepts defined as specializations of a generic reference (information) model, provide a mechanism to express data structures in a shared and interoperable way. However, currently available archetype languages do not provide direct support for mapping to formal ontologies and then exploiting reasoning on clinical knowledge, which are key ingredients of full semantic interoperability, as stated in the SemanticHEALTH report [1]. This paper reports on an approach to translate definitions expressed in the openEHR Archetype Definition Language (ADL) to a formal representation expressed using the Ontology Web Language (OWL). The formal representations are then integrated with rules expressed with Semantic Web Rule Language (SWRL) expressions, providing an approach to apply the SWRL rules to concrete instances of clinical data. Sharing the knowledge expressed in the form of rules is consistent with the philosophy of open sharing, encouraged by archetypes. Our approach also allows the reuse of formal knowledge, expressed through ontologies, and extends reuse to propositions of declarative knowledge, such as those encoded in clinical guidelines. This paper describes the ADL-to-OWL translation approach, describes the techniques to map archetypes to formal ontologies, and demonstrates how rules can be applied to the resulting representation. We provide examples taken from a patient safety alerting system to illustrate our approach.

  9. Epitaxial crystals of Bi₂Pt₂O₇ pyrochlore through the transformation of δ–Bi₂O₃ fluorite

    SciTech Connect

    Gutiérrez–Llorente, Araceli; Joress, Howie; Woll, Arthur; Holtz, Megan E.; Ward, Matthew J.; Sullivan, Matthew C.; Muller, David A.; Brock, Joel D.

    2015-03-01

    Bi₂Pt₂O₇ pyrochlore is thought to be one of the most promising oxide catalysts for application in fuel cell technology. Unfortunately, direct film growth of Bi₂Pt₂O₇ has not yet been achieved, owing to the difficulty of oxidizing platinum metal in the precursor material to Pt⁴⁺. In this work, in order to induce oxidation of the platinum, we annealed pulsed laser deposited films consisting of epitaxial δ–Bi₂O₃ and co-deposited, comparatively disordered platinum. We present synchrotron x-ray diffraction results that show the nonuniform annealed films contain the first epitaxial crystals of Bi₂Pt₂O₇. We also visualized the pyrochlore structure by scanning transmission electron microscopy, and observed ordered cation vacancies in the epitaxial crystals formed in a bismuth-rich film but not in those formed in a platinum-rich film. The similarity between the δ–Bi₂O₃ and Bi₂Pt₂O₇ structures appears to facilitate the pyrochlore formation. These results provide the only route to date for the formation of epitaxial Bi₂Pt₂O₇.

  10. Spin-orbit-driven magnetic structure and excitation in the 5d pyrochlore Cd2Os2O7

    DOE PAGES

    Calder, Stuart A; Vale, James G.; Bogdanov, Nikolay; ...

    2016-06-07

    Here, much consideration has been given to the role of spin-orbit coupling (SOC) in 5d oxides, particularly on the formation of novel electronic states and manifested metal-insulator transitions (MITs). SOC plays a dominant role in 5d5 iridates (Ir4+), undergoing MITs both concurrent (pyrochlores) and separated (perovskites) from the onset of magnetic order. However, the role of SOC for other 5d configurations is less clear. For example, 5d3 (Os5+) systems are expected to have an orbital singlet with reduced effective SOC. The pyrochlore Cd2Os2O7 nonetheless exhibits a MIT entwined with magnetic order phenomenologically similar to pyrochlore iridates. Here, we resolve themore » magnetic structure in Cd2Os2O7 with neutron diffraction and then via resonant inelastic X-ray scattering determine the salient electronic and magnetic energy scales controlling the MIT. In particular, SOC plays a subtle role in creating the electronic ground state but drives the magnetic order and emergence of a multiple spin-flip magnetic excitation.« less

  11. APPLICATION OF MECHANICAL ACTIVATION TO PRODUCTION OF PYROCHLORE CERAMIC CONTAINING SIMULATED RARE-EARTH ACTINIDE FRACTION OF HLW

    SciTech Connect

    Stefanovsky, S.V.; Kirjanova, O.I.; Chizhevskaya, S.V.; Yudintsev, S.V.; Nikonov, B.S.

    2003-02-27

    Samples of zirconate pyrochlore ceramic (REE)2(Zr,U)2O7 (REE = La-Gd) containing simulated REE-An fraction of HLW were synthesized by two routes: (1) conventional cold compaction of oxide mixtures in pellets under pressure of 200 MPa and sintering of the pellets at 1550 C for 24 hours; and (2) using preliminary mechanical activation of oxide powders in a linear inductive rotator (LIV-0.5E) and a planetary mill - activator with hydrostatic yokes (AGO-2U) for 5 or 10 min. All the samples sintered at 1550 C were monolithic and dense with high mechanical integrity. As follows from X-ray diffraction (XRD) data, the ceramic sample produced without mechanical activation is composed of pyrochlore as major phase but contains also minor unreacted oxides. The samples prepared from pre-activated mixtures are composed of the pyrochlore structure phase only. Scanning electron microscopy (SEM) data also show higher structural and compositional homogeneity of the samples prepared from mechanically activated batches. The samples produced from oxide mixtures mechanically activated in the LIV for 10 min were slightly contaminated with iron resulting in formation of minor perovskite structure phase not detected by XRD but seen on SEM-images of the samples. Comparison of the samples prepared from non-activated and activated batches showed higher density, lower open porosity, water uptake, and elemental leaching for the samples fabricated from mechanically activated oxide mixtures.

  12. Epitaxial crystals of Bi₂Pt₂O₇ pyrochlore through the transformation of δ–Bi₂O₃ fluorite

    DOE PAGES

    Gutiérrez–Llorente, Araceli; Joress, Howie; Woll, Arthur; ...

    2015-03-01

    Bi₂Pt₂O₇ pyrochlore is thought to be one of the most promising oxide catalysts for application in fuel cell technology. Unfortunately, direct film growth of Bi₂Pt₂O₇ has not yet been achieved, owing to the difficulty of oxidizing platinum metal in the precursor material to Pt⁴⁺. In this work, in order to induce oxidation of the platinum, we annealed pulsed laser deposited films consisting of epitaxial δ–Bi₂O₃ and co-deposited, comparatively disordered platinum. We present synchrotron x-ray diffraction results that show the nonuniform annealed films contain the first epitaxial crystals of Bi₂Pt₂O₇. We also visualized the pyrochlore structure by scanning transmission electron microscopy,more » and observed ordered cation vacancies in the epitaxial crystals formed in a bismuth-rich film but not in those formed in a platinum-rich film. The similarity between the δ–Bi₂O₃ and Bi₂Pt₂O₇ structures appears to facilitate the pyrochlore formation. These results provide the only route to date for the formation of epitaxial Bi₂Pt₂O₇.« less

  13. The Complex Magnetism in the Breathing Pyrochlore LiIn(Cr1-xRhx)4O8

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Yi; Tan, Cheng; Huang, Kevin; Shu, Lei

    2016-12-01

    We have performed a detailed investigation of the new `breathing' pyrochlore compound LiInCr$_4$O$_8$ through Rh substitution with measurements of magnetic susceptibility, specific heat, and x-ray powder diffraction. The antiferromagnetic phase of LiInCr$_4$O$_8$ is found to be slowly suppressed with increasing Rh, up to the critical concentration of $x$ = 0.1 where the antiferromagnetic phase is still observed with the peak in specific heat $T_p$ = 12.5 K, slightly lower than $T_p$ = 14.3 K for the $x$ = 0 compound. From the measurements of magnetization we also uncover evidence that substitution increases the amount of frustration. Comparisons are made with the LiGa$_y$In$_{1-y}$Cr$_4$O$_8$ system as well as other frustrated pyrochlore-related materials and find comparable amounts of frustration. The results of this work shows that engineered breathing pyrochlores presents an important method to further understand the complex magnetism in frustrated systems.

  14. Spin-orbit-driven magnetic structure and excitation in the 5d pyrochlore Cd2Os2O7

    PubMed Central

    Calder, S.; Vale, J. G.; Bogdanov, N. A.; Liu, X.; Donnerer, C.; Upton, M. H.; Casa, D.; Said, A. H.; Lumsden, M. D.; Zhao, Z.; Yan, J. -Q.; Mandrus, D.; Nishimoto, S.; van den Brink, J.; Hill, J. P.; McMorrow, D. F.; Christianson, A. D.

    2016-01-01

    Much consideration has been given to the role of spin-orbit coupling (SOC) in 5d oxides, particularly on the formation of novel electronic states and manifested metal-insulator transitions (MITs). SOC plays a dominant role in 5d5 iridates (Ir4+), undergoing MITs both concurrent (pyrochlores) and separated (perovskites) from the onset of magnetic order. However, the role of SOC for other 5d configurations is less clear. For example, 5d3 (Os5+) systems are expected to have an orbital singlet with reduced effective SOC. The pyrochlore Cd2Os2O7 nonetheless exhibits a MIT entwined with magnetic order phenomenologically similar to pyrochlore iridates. Here, we resolve the magnetic structure in Cd2Os2O7 with neutron diffraction and then via resonant inelastic X-ray scattering determine the salient electronic and magnetic energy scales controlling the MIT. In particular, SOC plays a subtle role in creating the electronic ground state but drives the magnetic order and emergence of a multiple spin-flip magnetic excitation. PMID:27273216

  15. Linearized pseudo-Einstein equations on the Heisenberg group

    NASA Astrophysics Data System (ADS)

    Barletta, Elisabetta; Dragomir, Sorin; Jacobowitz, Howard

    2017-02-01

    We study the pseudo-Einstein equation R11bar = 0 on the Heisenberg group H1 = C × R. We consider first order perturbations θɛ =θ0 + ɛ θ and linearize the pseudo-Einstein equation about θ0 (the canonical Tanaka-Webster flat contact form on H1 thought of as a strictly pseudoconvex CR manifold). If θ =e2uθ0 the linearized pseudo-Einstein equation is Δb u - 4 | Lu|2 = 0 where Δb is the sublaplacian of (H1 ,θ0) and L bar is the Lewy operator. We solve the linearized pseudo-Einstein equation on a bounded domain Ω ⊂H1 by applying subelliptic theory i.e. existence and regularity results for weak subelliptic harmonic maps. We determine a solution u to the linearized pseudo-Einstein equation, possessing Heisenberg spherical symmetry, and such that u(x) → - ∞ as | x | → + ∞.

  16. Chiral spin liquid in a frustrated anisotropic kagome Heisenberg model.

    PubMed

    He, Yin-Chen; Sheng, D N; Chen, Yan

    2014-04-04

    Kalmeyer-Laughlin (KL) chiral spin liquid (CSL) is a type of quantum spin liquid without time-reversal symmetry, and it is considered as the parent state of an exotic type of superconductor--anyon superconductor. Such an exotic state has been sought for more than twenty years; however, it remains unclear whether it can exist in a realistic system where time-reversal symmetry is breaking (T breaking) spontaneously. By using the density matrix renormalization group, we show that KL CSL exists in a frustrated anisotropic kagome Heisenberg model, which has spontaneous T breaking. We find that our model has two topological degenerate ground states, which exhibit nonvanishing scalar chirality order and are protected by finite excitation gap. Furthermore, we identify this state as KL CSL by the characteristic edge conformal field theory from the entanglement spectrum and the quasiparticles braiding statistics extracted from the modular matrix. We also study how this CSL phase evolves as the system approaches the nearest-neighbor kagome Heisenberg model.

  17. Uncertainty in Bohr's response to the Heisenberg microscope

    NASA Astrophysics Data System (ADS)

    Tanona, Scott

    2004-09-01

    In this paper, I analyze Bohr's account of the uncertainty relations in Heisenberg's gamma-ray microscope thought experiment and address the question of whether Bohr thought uncertainty was epistemological or ontological. Bohr's account seems to allow that the electron being investigated has definite properties which we cannot measure, but other parts of his Como lecture seem to indicate that he thought that electrons are wave-packets which do not have well-defined properties. I argue that his account merges the ontological and epistemological aspects of uncertainty. However, Bohr reached this conclusion not from positivism, as perhaps Heisenberg did, but because he was led to that conclusion by his understanding of the physics in terms of nonseparability and the correspondence principle. Bohr argued that the wave theory from which he derived the uncertainty relations was not to be taken literally, but rather symbolically, as an expression of the limited applicability of classical concepts to parts of entangled quantum systems. Complementarity and uncertainty are consequences of the formalism, properly interpreted, and not something brought to the physics from external philosophical views.

  18. Bernhard Riemann, a(rche)typical mathematical-physicist?

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio

    2013-09-01

    The work of Bernhard Riemann is discussed under the perspective of present day mathematics and physics, and with a prospective view towards the future, too. Against the (unfortunately rather widespread) trend---which predominantly dominated national scientific societies in Europe during the last Century---of strictly classifying the work of scientists with the aim to constrain them to separated domains of knowledge, without any possible interaction among those and often even fighting against each other (and which, no doubt, was in part responsible for the decline of European in favor of American science), it will be here argued, using Riemann as a model, archetypical example, that good research transcends any classification. Its uses and applications arguably permeate all domains, subjects and disciplines one can possibly define, to the point that it can be considered to be universally useful. After providing a very concise review of the main publications of Bernhard Riemann on physical problems, some connections between Riemann's papers and contemporary physics will be considered: (i) the uses of Riemann's work on the zeta function for devising applications to the regularization of quantum field theories in curved space-time, in particular, of quantum vacuum fluctuations; (ii) the uses of the Riemann tensor in general relativity and in recent generalizations of this theory, which aim at understanding the presently observed acceleration of the universe expansion (the dark energy issue). Finally, it will be argued that mathematical physics, which was yet not long ago a model paradigm for interdisciplinary activity---and had a very important pioneering role in this sense---is now quickly being surpassed by the extraordinarily fruitful interconnections which seem to pop up from nothing every day and simultaneously involve several disciplines, in the classical sense, including genetics, combinatorics, nanoelectronics, biochemistry, medicine, and even ps

  19. In vitro evolution of an archetypal enteropathogenic Escherichia coli strain.

    PubMed

    Nisa, Shahista; Hazen, Tracy H; Assatourian, Lillian; Nougayrède, Jean-Philippe; Rasko, David A; Donnenberg, Michael S

    2013-10-01

    Enteropathogenic Escherichia coli (EPEC) is a leading cause of infantile diarrhea in developing countries. EPEC strain E2348/69 is used worldwide as a prototype to study EPEC genetics and disease. However, isolates of E2348/69 differ phenotypically, reflecting a history of in vitro selection. To identify the genomic and phenotypic changes in the prototype strain, we sequenced the genome of the nalidixic acid-resistant (Nal(r)) E2348/69 clone. We also sequenced a recent nleF mutant derived by one-step PCR mutagenesis from the Nal(r) strain. The sequencing results revealed no unintended changes between the mutant and the parent strain. However, loss of the pE2348-2 plasmid and 3 nonsynonymous mutations were found in comparison to the published streptomycin-resistant (Str(r)) E2348/69 reference genome. One mutation is a conservative amino acid substitution in ftsK. Another, in gyrA, is a mutation known to result in resistance to nalidixic acid. The third mutation converts a stop codon to a tryptophan, predicted to result in the fusion of hflD, the lysogenization regulator, to purB. The purB gene encodes an adenylosuccinate lyase involved in purine biosynthesis. The Nal(r) clone has a lower growth rate than the Str(r) isolate when cultured in minimal media, a difference which is corrected upon addition of adenine or by genetic complementation with purB. Addition of adenine or genetic complementation also restored the invasion efficiency of the Nal(r) clone. This report reconciles longstanding inconsistencies in phenotypic properties of an archetypal strain and provides both reassurance and cautions regarding intentional and unintentional evolution in vitro.

  20. Trace amine-associated receptor 1-Family archetype or iconoclast?

    PubMed

    Grandy, David K

    2007-12-01

    Interest has recently been rekindled in receptors that are activated by low molecular weight, noncatecholic, biogenic amines that are typically found as trace constituents of various vertebrate and invertebrate tissues and fluids. The timing of this resurgent focus on receptors activated by the "trace amines" (TA) beta-phenylethylamine (PEA), tyramine (TYR), octopamine (OCT), synephrine (SYN), and tryptamine (TRYP) is the direct result of 2 publications that appeared in 2001 describing the cloning of a novel G protein-coupled receptor (GPCR) referred to by their discoverers Borowsky et al. as TA1 and Bunzow et al. as TA receptor 1 (TAR1). When heterologously expressed in Xenopus laevis oocytes and various eukaryotic cell lines, recombinant rodent and human TAR dose-dependently couple to the stimulation of adenosine 3',5'-monophosphate (cAMP) production. Structure-activity profiling based on this functional response has revealed that in addition to the TA, other biologically active compounds containing a 2-carbon aliphatic side chain linking an amino group to at least 1 benzene ring are potent and efficacious TA receptor agonists with amphetamine (AMPH), methamphetamine, 3-iodothyronamine, thyronamine, and dopamine (DA) among the most notable. Almost 100 years after the search for TAR began, numerous TA1/TAR1-related sequences, now called TA-associated receptors (TAAR), have been identified in the genome of every species of vertebrate examined to date. Consequently, even though heterologously expressed TAAR1 fits the pharmacological criteria established for a bona fide TAR, a major challenge for those working in the field is to discern the in vivo pharmacology and physiology of each purported member of this extended family of GPCR. Only then will it be possible to establish whether TAAR1 is the family archetype or an iconoclast.

  1. The Tropical Convective Spectrum. Part 1; Archetypal Vertical Structures

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.; Petersen, Walter A.; Cecil, Daniel J.

    2005-01-01

    A taxonomy of tropical convective and stratiform vertical structures is constructed through cluster analysis of 3 yr of Tropical Rainfall Measuring Mission (TRMM) "warm-season" (surface temperature greater than 10 C) precipitation radar (PR) vertical profiles, their surface rainfall, and associated radar-based classifiers (convective/ stratiform and brightband existence). Twenty-five archetypal profile types are identified, including nine convective types, eight stratiform types, two mixed types, and six anvil/fragment types (nonprecipitating anvils and sheared deep convective profiles). These profile types are then hierarchically clustered into 10 similar families, which can be further combined, providing an objective and physical reduction of the highly multivariate PR data space that retains vertical structure information. The taxonomy allows for description of any storm or local convective spectrum by the profile types or families. The analysis provides a quasi-independent corroboration of the TRMM 2A23 convective/ stratiform classification. The global frequency of occurrence and contribution to rainfall for the profile types are presented, demonstrating primary rainfall contribution by midlevel glaciated convection (27%) and similar depth decaying/stratiform stages (28%-31%). Profiles of these types exhibit similar 37- and 85-GHz passive microwave brightness temperatures but differ greatly in their frequency of occurrence and mean rain rates, underscoring the importance to passive microwave rain retrieval of convective/stratiform discrimination by other means, such as polarization or texture techniques, or incorporation of lightning observations. Close correspondence is found between deep convective profile frequency and annualized lightning production, and pixel-level lightning occurrence likelihood directly tracks the estimated mean ice water path within profile types.

  2. An approach for the semantic interoperability of ISO EN 13606 and OpenEHR archetypes.

    PubMed

    Martínez-Costa, Catalina; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás

    2010-10-01

    The communication between health information systems of hospitals and primary care organizations is currently an important challenge to improve the quality of clinical practice and patient safety. However, clinical information is usually distributed among several independent systems that may be syntactically or semantically incompatible. This fact prevents healthcare professionals from accessing clinical information of patients in an understandable and normalized way. In this work, we address the semantic interoperability of two EHR standards: OpenEHR and ISO EN 13606. Both standards follow the dual model approach which distinguishes information and knowledge, this being represented through archetypes. The solution presented here is capable of transforming OpenEHR archetypes into ISO EN 13606 and vice versa by combining Semantic Web and Model-driven Engineering technologies. The resulting software implementation has been tested using publicly available collections of archetypes for both standards.

  3. Using archetypes to create user panels for usability studies: Streamlining focus groups and user studies.

    PubMed

    Stavrakos, S-K; Ahmed-Kristensen, S; Goldman, T

    2016-09-01

    Designers at the conceptual phase of products such as headphones, stress the importance of comfort, e.g. executing comfort studies and the need for a reliable user panel. This paper proposes a methodology to issue a reliable user panel to represent large populations and validates the proposed framework to predict comfort factors, such as physical fit. Data of 200 heads was analyzed by forming clusters, 9 archetypal people were identified out of a 200 people's ear database. The archetypes were validated by comparing the archetypes' responses on physical fit against those of 20 participants interacting with 6 headsets. This paper suggests a new method of selecting representative user samples for prototype testing compared to costly and time consuming methods which relied on the analysis of human geometry of large populations.

  4. Standardized and flexible health data management with an archetype driven EHR system (EHRflex).

    PubMed

    Brass, Anton; Moner, David; Hildebrand, Claudia; Robles, Montserrat

    2010-01-01

    To build a semantically interoperable Electronic Health Record is one of the most challenging research fields in health informatics. In order to reach this objective, EHR standards that formally describe health data structures have to be used. CEN EN13606 is one of the most promising approaches. It covers the technical needs for semantic interoperability and, at the same time, it incorporates a mechanism (archetype model) that enables clinical domain experts to participate in building an EHR system. In this paper we present EHRflex, a generic system based on archetypes. It empowers the clinician and allows him to manage his own EHR system in a simple and generic way, assuring that the user works with underlying standardized data structures. These can be exchanged with other people and systems when needed. EHRflex introduces EHR standards into the clinical routine delivering a technical platform which works directly on archetype based data.

  5. Relation of the nonlinear Heisenberg algebras in two dimensions with linear ones

    NASA Astrophysics Data System (ADS)

    Chung, Won Sang

    2015-07-01

    In this paper, we discuss the relation of the nonlinear Heisenberg algebras in two dimensions with linear ones following the Nowicki and Tkachuk's approach for one-dimensional case. For one-dimensional harmonic oscillator, we obtain the solution explicitly. For the nonlinear Heisenberg algebras in two dimensions, we introduce two generators to transform this algebra into the linear one. For the linear version of the nonlinear Heisenberg algebras in two dimensions, we obtain the eigenfunction for the position and angular momentum operator and solve the harmonic oscillator problem in two dimensions.

  6. ResearchEHR: use of semantic web technologies and archetypes for the description of EHRs.

    PubMed

    Robles, Montserrat; Fernández-Breis, Jesualdo Tomás; Maldonado, Jose A; Moner, David; Martínez-Costa, Catalina; Bosca, Diego; Menárguez-Tortosa, Marcos

    2010-01-01

    In this paper, we present the ResearchEHR project. It focuses on the usability of Electronic Health Record (EHR) sources and EHR standards for building advanced clinical systems. The aim is to support healthcare professional, institutions and authorities by providing a set of generic methods and tools for the capture, standardization, integration, description and dissemination of health related information. ResearchEHR combines several tools to manage EHR at two different levels. The internal level that deals with the normalization and semantic upgrading of exiting EHR by using archetypes and the external level that uses Semantic Web technologies to specify clinical archetypes for advanced EHR architectures and systems.

  7. Reconceptualizing the Archetypal Trickster in Audre Lorde's Zami: A New Spelling of My Name.

    PubMed

    Saber, Yomna

    2015-01-01

    Carl Jung categorizes the trickster as a psychological archetype and sets certain parameters for it. This article examines Audre Lorde's trickster Afrekete in Zami: A New Spelling of My Name (1982) and poses the question of how typically archetypal a Black, female, lesbian trickster can be. Lorde occupies an idiosyncratic position in the canon in terms of race, gender, and sexual orientation. She bestows new qualities on her trickster coming from the peripheries she dwells in and challenges the Jungian model. Through Afrekete's linguistic dexterity and sexual identity, Lorde transforms the trickster from being seemingly innocuous into a figure of resistance grounded in lesbian erotica.

  8. Mechanics and Physics of Solids, Uncertainy, and the Archetype-Genome Exemplar

    NASA Astrophysics Data System (ADS)

    Greene, M. Steven

    This dissertation argues that the mechanics and physics of solids rely on a fundamental exemplar: the apparent properties of a system depend on the building blocks that comprise it. Building blocks are referred to as archetypes and apparent system properties as the system genome. Three entities are of importance: the archetype properties, the conformation of archetypes, and the properties of interactions activated by that conformation. The combination of these entities into the system genome is called assembly. To show the utility of the archetype-genome exemplar, the dissertation presents the mathematical construction and computational implementation of a new theory for solid mechanics that is a continuum manifestation of the assembly process. The so-called archetype-blending continuum theory aligns the form of globally valid balance laws with physics evolving in a material's composite constitutive response so that, by rethinking conventional micromechanics, the theory accounts naturally for each piece of the genome assembly triplet: archetypes, interactions, and their conformation. With the pieces of the triplet isolated in the theory, materials genome design concepts that separately control microstructure and property may be gleaned from exploration of the constitutive parameter space. A suite of simulations that apply the new theory to polymer nanocomposite materials demonstrate the ability of the theory to predict a robust material genome that includes damping properties, modulus weakening, local strain amplification, and size effects. The dissertation also presents a theoretical assessment of the importance of uncertainty propagation in the archetype-genome exemplar. The findings from a set of computational experiments on instances of a general class of microstructured materials suggest that when overlap occurs between the size of the system geometry and the features of the conformation, material genomes become less certain. Increasing nonuniformity of

  9. Predictions of thermal expansion coefficients of rare-earth zirconate pyrochlores: A quasi-harmonic approximation based on stable phonon modes

    NASA Astrophysics Data System (ADS)

    Lan, Guoqiang; Ouyang, Bin; Xu, Yushuai; Song, Jun; Jiang, Yong

    2016-06-01

    Rare-earth (RE) pyrochlores are considered as promising candidate materials for the thermal barrier coating. In this study, we performed first-principles calculations, augmented by quasi-harmonic phonon calculations, to investigate the thermal expansion behaviors of several RE2Zr2O7 (RE = La, Nd, Sm, Gd) pyrochlores. Our findings show that RE2Zr2O7 pyrochlores exhibit low-lying optical phonon frequencies that correspond to RE-cation rattling vibrational modes. These frequencies become imaginary upon volume expansion, preventing correct determination of the free energy versus volume relation and thereby quantification of thermal expansion using QH phonon calculations. To address this challenge, we proposed a QH approximation approach based on stable phonon modes where the RE-cation rattling modes were systematically eliminated. This approach is shown to provide accurate predictions of the coefficients of thermal expansion (CTEs) of RE2Zr2O7 pyrochlores, in good agreement with experimental measurements and data from first-principles molecular dynamics simulations. In addition, we showed that the QH Debye model considerably overestimates the magnitudes and wrongly predicts the trend for the CTEs of RE2Zr2O7 pyrochlores.

  10. Fabrication and Properties of Technetium-Bearing Pyrochlores and Perovskites as Potential Waste Forms - 13222

    SciTech Connect

    Hartmann, Thomas; Alaniz, Ariana J.; Antonio, Daniel J.

    2013-07-01

    Technetium-99 (t{sub 1/2}= 2.13x10{sup 5} years) is important from a nuclear waste perspective and is one of the most abundant, long-lived radioisotopes in used nuclear fuel (UNF). As such, it is targeted in UNF separation strategies such as UREX+, for isolation and encapsulation in solid waste forms for storage in a nuclear repository. We report here results regarding the incorporation of Tc-99 into ternary oxides of different structure types: pyrochlore (Nd{sub 2}Tc{sub 2}O{sub 7}), perovskite (SrTcO{sub 3}), and layered perovskite (Sr{sub 2}TcO{sub 4}). The goal was to determine synthesis conditions of these potential waste forms to immobilize Tc-99 as tetravalent technetium and to harvest crystallographic, thermophysical and hydrodynamic data. The objective of this research is to provide fundamental crystallographic and thermophysical data on advanced ceramic Tc-99 waste forms such as pyrochlore, perovskite, and layered perovskite in support of our current efforts on the corrosion of technetium-bearing waste forms. The ceramic Tc-99-bearing waste forms exhibit good crystallinity. The lattice parameters and crystal structures of the technetium host phases could be refined with high accuracies of ±3, ±4, and ±7 fm (10{sup -15} m), for Nd{sub 2}Tc{sub 2}O{sub 7}, SrTcO{sub 3}, and Sr{sub 2}TcO{sub 4}, respectively. The associated refinement residuals (R{sub Wp}) for the patterns are 4.1 %, 4.7 % and 6.7 %, and the refinement residuals for the individual phases (R{sub Bragg}) are 2.0 %, 2.4 % and 3.9 %, respectively. Thermophysical properties of the oxides SrTcO{sub 3}, Sr{sub 2}TcO{sub 4}, and Nd{sub 2}Tc{sub 2}O{sub 7} were analyzed using AC magnetic susceptibility measurements to further harvest information on the critical temperature (T{sub c}) for superconductivity. In our experiments the strontium technetates, SrTcO{sub 3} and Sr{sub 2}TcO{sub 4}, show superconductivity at rather high critical temperatures of T{sub c} = 7.8 K and 7 K, respectively. On the

  11. Archetypal Dreams: the Quantum Theater of Robert Wilson

    NASA Astrophysics Data System (ADS)

    Dietrich, Dawn Yvette

    1992-01-01

    My topic is situated within the larger framework of interdisciplinary study currently exploring the impact of new physics on various "soft" disciplines and sciences. Aligning myself with thinkers like Fritjof Capra and N. Katherine Hayles, who argue that quantum mechanics has brought about a new paradigm for the conceptualization of the physical world and our relation to it, I demonstrate that there is a connection, a kind of cultural translation, which relates contemporary physics to some avant-garde theater. Specifically, I center my research on American theater designer, Robert Wilson, who, recognized for his manipulation of the formal elements of stagecraft, owes much to the reconstruction of principles governing space and time. Taken further, I maintain that it is through the paradigm established from relativity theory and quantum mechanics that Wilson experiments with the elementary "forces" of the theater itself. This "restructuring" occurs through the dramatist's conceptions of space and time and the relation of those properties to both performers and spectators. Unlike most conventional theater, but as in many contemporary visual arts, time is manipulated through spatial metaphors and events take place in an amplified space--effecting a kind of dramatic space/time. Through manipulation of scale, the exploration of discontinuous time, and segregated stage zones, Wilson demonstrates that theater time is fluid and that it is not necessary for dramatic action to take place within the unified stage space delineated by the proscenium itself. Unlike conventional theater, where the stage is constructed with one perspective in mind, Wilson's theatrical mise-en-scene--a kind of new "perceptual field"--requires "imaginative watching"; that is, more perceptual discrimination from the audience who must sort and organize the visual material, highlighting the essential while reconfiguring the incidental. And this is where the myth is born, where archetypal dreams stir

  12. Fractional magnetization plateaus of the spin-1/2 Heisenberg orthogonal-dimer chain: Strong-coupling approach developed from the exactly solved Ising-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Verkholyak, Taras; Strečka, Jozef

    2016-10-01

    The spin-1/2 Heisenberg orthogonal-dimer chain is considered within the perturbative strong-coupling approach, which is developed from the exactly solved spin-1/2 Ising-Heisenberg orthogonal-dimer chain with the Heisenberg intradimer and the Ising interdimer couplings. Although the spin-1/2 Ising-Heisenberg orthogonal-dimer chain exhibits just intermediate plateaus at zero, one-quarter, and one-half of the saturation magnetization, the perturbative treatment up to second order stemming from this exactly solvable model additionally corroborates the fractional one-third plateau as well as the gapless Luttinger spin-liquid phase. It is evidenced that the approximate results obtained from the strong-coupling approach are in an excellent agreement with the state-of-the-art numerical data obtained for the spin-1/2 Heisenberg orthogonal-dimer chain within the exact diagonalization and density-matrix renormalization group method. The nature of individual quantum ground states is comprehensively studied within the developed perturbation theory.

  13. Pauli-Heisenberg Oscillations in Electron Quantum Transport.

    PubMed

    Thibault, Karl; Gabelli, Julien; Lupien, Christian; Reulet, Bertrand

    2015-06-12

    We measure the current fluctuations emitted by a normal-metal-insulator-normal-metal tunnel junction with a very wide bandwidth, from 0.3 to 13 GHz, down to very low temperature T=35  mK. This allows us to perform the spectroscopy (i.e., measure the frequency dependence) of thermal noise (no dc bias, variable temperature) and shot noise (low temperature, variable dc voltage bias). Because of the very wide bandwidth of our measurement, we deduce the current-current correlator in the time domain. We observe the thermal decay of this correlator as well as its oscillations with a period h/eV, a direct consequence of the effect of the Pauli and Heisenberg principles in quantum electron transport.

  14. Phase transition in Ising, XY and Heisenberg magnetic films

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Hamedoun, M.; Benyoussef, A.

    2012-01-01

    The phase transition and magnetic properties of a ferromagnet spin-S, a disordered diluted thin and semi-infinite film with a face-centered cubic lattice are investigated using the high-temperature series expansions technique extrapolated with Padé approximants method for Heisenberg, XY and Ising models. The reduced critical temperature of the system τc is studied as function of the thickness of the thin film and the exchange interactions in the bulk, and within the surfaces Jb, Js and J⊥, respectively. It is found that τc increases with the exchange interactions of surface. The magnetic phase diagrams (τc versus the dilution x) and the percolation threshold are obtained. The shifts of the critical temperatures Tc(l) from the bulk value (Tc(∞)/Tc(l) - 1) can be described by a power law l-λ, where λ = 1/υ is the inverse of the correlation length exponent.

  15. Exact Diagonalization of Heisenberg SU(N) models.

    PubMed

    Nataf, Pierre; Mila, Frédéric

    2014-09-19

    Building on advanced results on permutations, we show that it is possible to construct, for each irreducible representation of SU(N), an orthonormal basis labeled by the set of standard Young tableaux in which the matrix of the Heisenberg SU(N) model (the quantum permutation of N-color objects) takes an explicit and extremely simple form. Since the relative dimension of the full Hilbert space to that of the singlet space on n sites increases very fast with N, this formulation allows us to extend exact diagonalizations of finite clusters to much larger values of N than accessible so far. Using this method, we show that, on the square lattice, there is long-range color order for SU(5), spontaneous dimerization for SU(8), and evidence in favor of a quantum liquid for SU(10).

  16. Fractionalized Fermi liquid in a Kondo-Heisenberg model

    DOE PAGES

    Tsvelik, A. M.

    2016-10-10

    The Kondo-Heisenberg model is used as a controllable tool to demonstrate the existence of a peculiar metallic state with unbroken translational symmetry where the Fermi surface volume is not controlled by the total electron density. Here, I use a nonperturbative approach where the strongest interactions are taken into account by means of exact solution, and corrections are controllable. The resulting metallic state represents a fractionalized Fermi liquid where well defined quasiparticles coexist with gapped fractionalized collective excitations, in agreement with the general requirements formulated by T. Senthil et al. [Phys. Rev. Lett. 90, 216403 (2003)]. Furthermore, the system undergoes amore » phase transition to an ordered phase (charge density wave or superconducting), at the transition temperature which is parametrically small in comparison to the quasiparticle Fermi energy.« less

  17. Experimental estimation of discord in an antiferromagnetic Heisenberg compound

    NASA Astrophysics Data System (ADS)

    Singh, H.; Chakraborty, T.; Panigrahi, P. K.; Mitra, C.

    2015-03-01

    Temperature-dependent static magnetic susceptibility and heat capacity data were employed to quantify quantum discord in copper nitrate which is a spin 1/2 antiferromagnetic Heisenberg system. With the help of existing theoretical formulations, quantum discord, mutual information, and purely classical correlation were estimated as a function of temperature using the experimental data. The experimentally quantified correlations estimated from susceptibility and heat capacity data are consistent with each other, and they exhibit a good match with theoretical predictions. Violation of Bell's inequality was also checked using the static magnetic susceptibility as well as heat capacity data. Quantum discord estimated from magnetic susceptibility as well as heat capacity data is found to be present in the thermal states of the system even when the system is in a separable state.

  18. Heisenberg-limited atom clocks based on entangled qubits.

    PubMed

    Kessler, E M; Kómár, P; Bishof, M; Jiang, L; Sørensen, A S; Ye, J; Lukin, M D

    2014-05-16

    We present a quantum-enhanced atomic clock protocol based on groups of sequentially larger Greenberger-Horne-Zeilinger (GHZ) states that achieves the best clock stability allowed by quantum theory up to a logarithmic correction. Importantly the protocol is designed to work under realistic conditions where the drift of the phase of the laser interrogating the atoms is the main source of decoherence. The simultaneous interrogation of the laser phase with a cascade of GHZ states realizes an incoherent version of the phase estimation algorithm that enables Heisenberg-limited operation while extending the coherent interrogation time beyond the laser noise limit. We compare and merge the new protocol with existing state of the art interrogation schemes, and identify the precise conditions under which entanglement provides an advantage for clock stabilization: it allows a significant gain in the stability for short averaging time.

  19. Werner Heisenberg zum 100. Geburtstag: Pionier der Quantenmechanik

    NASA Astrophysics Data System (ADS)

    Jacobi, Manfred

    2001-11-01

    Werner Heisenberg war eine der prägendsten Gestalten der Physik des 20. Jahrhunderts. Zu seinen wichtigsten Verdiensten gehören die Grundlegung der Quantenmechanik, die Formulierung der Unschärferelationen sowie die Beteiligung an der Ausarbeitung der Kopenhagener Deutung der Quantenmechanik. Darüber hinaus lieferte er Arbeiten von fundamentalem Charakter zur Theorie des Atomkerns, zur kosmischen Strahlung und zur Quantenfeldtheorie. Während des Krieges war er an den Arbeiten des Uranvereins beteiligt, der die Möglichkeit einer Entwicklung von Kernwaffen untersuchte, jedoch über Vorarbeiten zur Reaktorphysik nicht hinauskam. Wegen dieser Tätigkeit wurde er bei Kriegsende für einige Monate in England interniert. Nach seiner Rückkehr widmete er sich vor allem dem Aufbau der Physik in Deutschland, die während der NS-Zeit nahezu ihrer gesamten Substanz beraubt worden war.

  20. Quantum spin transistor with a Heisenberg spin chain

    PubMed Central

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-01-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438

  1. Local Spin Relaxation within the Random Heisenberg Chain

    NASA Astrophysics Data System (ADS)

    Herbrych, J.; Kokalj, J.; Prelovšek, P.

    2013-10-01

    Finite-temperature local dynamical spin correlations Snn(ω) are studied numerically within the random spin-1/2 antiferromagnetic Heisenberg chain. The aim is to explain measured NMR spin-lattice relaxation times in BaCu2(Si0.5Ge0.5)2O7, which is the realization of a random spin chain. In agreement with experiments we find that the distribution of relaxation times within the model shows a very large span similar to the stretched-exponential form. The distribution is strongly reduced with increasing T, but stays finite also in the high-T limit. Anomalous dynamical correlations can be associated with the random singlet concept but not directly with static quantities. Our results also reveal the crucial role of the spin anisotropy (interaction), since the behavior is in contrast with the ones for the XX model, where we do not find any significant T dependence of the distribution.

  2. Green's function approach of an anisotropic Heisenberg ferrimagnetic system

    NASA Astrophysics Data System (ADS)

    Mert, Gülistan

    2013-12-01

    We have investigated the influence of the exchange anisotropy parameter on the magnetization, critical and compensation temperatures and susceptibility of the anisotropic Heisenberg ferrimagnetic system with the single-ion anisotropy under an external magnetic field using the double-time temperature-dependent Green's function theory. In order to decouple the higher order Green's functions, Anderson-Callen's decoupling and random phase approximations have been used. This model is useful for understanding the temperature dependence of total magnetization of Lithium-chromium ferrites Li0.5Fe1.25Cr1.25O4 for which negative magnetization is characteristic. We observe that the critical temperature increases when the exchange anisotropy increases. When the system is under an external magnetic field, one obtains the first-order phase transition where the magnetization jumps for all the values of the exchange anisotropy parameters.

  3. The elusive Heisenberg limit in quantum-enhanced metrology

    PubMed Central

    Demkowicz-Dobrzański, Rafał; Kołodyński, Jan; Guţă, Mădălin

    2012-01-01

    Quantum precision enhancement is of fundamental importance for the development of advanced metrological optical experiments, such as gravitational wave detection and frequency calibration with atomic clocks. Precision in these experiments is strongly limited by the 1/√N shot noise factor with N being the number of probes (photons, atoms) employed in the experiment. Quantum theory provides tools to overcome the bound by using entangled probes. In an idealized scenario this gives rise to the Heisenberg scaling of precision 1/N. Here we show that when decoherence is taken into account, the maximal possible quantum enhancement in the asymptotic limit of infinite N amounts generically to a constant factor rather than quadratic improvement. We provide efficient and intuitive tools for deriving the bounds based on the geometry of quantum channels and semi-definite programming. We apply these tools to derive bounds for models of decoherence relevant for metrological applications including: depolarization, dephasing, spontaneous emission and photon loss. PMID:22990859

  4. Spin supersolid in an anisotropic spin-one Heisenberg chain.

    PubMed

    Sengupta, P; Batista, C D

    2007-11-23

    We consider an S=1 Heisenberg chain with strong exchange (Delta=J(z)/J(perpendicular)) and single-ion uniaxial anisotropy (D) in a magnetic field (B) along the symmetry axis. The low-energy spectrum is described by an effective S=1/2 XXZ model that acts on two different low-energy sectors for a finite range of fields. The vacuum of each sector exhibits Ising-like antiferromagnetic ordering coexisting with the finite spin stiffness obtained from the exact solution of the XXZ model. In this way, we demonstrate the existence of a spin supersolid phase. We also compute the full Delta-B quantum phase diagram using a quantum Monte Carlo method.

  5. Distribution of NMR relaxations in a random Heisenberg chain.

    PubMed

    Shiroka, T; Casola, F; Glazkov, V; Zheludev, A; Prša, K; Ott, H-R; Mesot, J

    2011-04-01

    NMR measurements of the (29)Si spin-lattice relaxation time T(1) were used to probe the spin-1/2 random Heisenberg chain compound BaCu(2)(Si(1-x)Ge(x))(2)O(7). Remarkable differences between the pure (x=0) and the fully random (x=0.5) cases are observed, indicating that randomness generates a distribution of local magnetic relaxations. This distribution, which is reflected in a stretched exponential NMR relaxation, exhibits a progressive broadening with decreasing temperature, caused by a growing inequivalence of magnetic sites. Compelling independent evidence for the influence of randomness is also obtained from magnetization data and Monte Carlo calculations. These results suggest the formation of random-singlet states in this class of materials, as previously predicted by theory.

  6. Fractionalized Fermi liquid in a Kondo-Heisenberg model

    SciTech Connect

    Tsvelik, A. M.

    2016-10-10

    The Kondo-Heisenberg model is used as a controllable tool to demonstrate the existence of a peculiar metallic state with unbroken translational symmetry where the Fermi surface volume is not controlled by the total electron density. Here, I use a nonperturbative approach where the strongest interactions are taken into account by means of exact solution, and corrections are controllable. The resulting metallic state represents a fractionalized Fermi liquid where well defined quasiparticles coexist with gapped fractionalized collective excitations, in agreement with the general requirements formulated by T. Senthil et al. [Phys. Rev. Lett. 90, 216403 (2003)]. Furthermore, the system undergoes a phase transition to an ordered phase (charge density wave or superconducting), at the transition temperature which is parametrically small in comparison to the quasiparticle Fermi energy.

  7. Classical Heisenberg spins on a hexagonal lattice with Kitaev couplings.

    PubMed

    Chandra, Samarth; Ramola, Kabir; Dhar, Deepak

    2010-09-01

    We analyze the low temperature properties of a system of classical Heisenberg spins on a hexagonal lattice with Kitaev couplings. For a lattice of 2N sites with periodic boundary conditions, the ground states form an (N+1) dimensional manifold. We show that the ensemble of ground states is equivalent to that of a solid-on-solid model with continuously variable heights and nearest neighbor interactions, at a finite temperature. For temperature T tending to zero, all ground states have equal weight, and there is no order by disorder in this model. We argue that the bond-energy bond-energy correlations at distance R decay as 1/R2 at zero temperature. This is verified by Monte Carlo simulations. We also discuss the relation to the quantum spin- S Kitaev model for large S, and obtain lower and upper bounds on the ground-state energy of the quantum model.

  8. Fitting magnetic field gradient with Heisenberg-scaling accuracy

    PubMed Central

    Zhang, Yong-Liang; Wang, Huan; Jing, Li; Mu, Liang-Zhu; Fan, Heng

    2014-01-01

    The linear function is possibly the simplest and the most used relation appearing in various areas of our world. A linear relation can be generally determined by the least square linear fitting (LSLF) method using several measured quantities depending on variables. This happens for such as detecting the gradient of a magnetic field. Here, we propose a quantum fitting scheme to estimate the magnetic field gradient with N-atom spins preparing in W state. Our scheme combines the quantum multi-parameter estimation and the least square linear fitting method to achieve the quantum Cramér-Rao bound (QCRB). We show that the estimated quantity achieves the Heisenberg-scaling accuracy. Our scheme of quantum metrology combined with data fitting provides a new method in fast high precision measurements. PMID:25487218

  9. Interoperability of clinical decision-support systems and electronic health records using archetypes: a case study in clinical trial eligibility.

    PubMed

    Marcos, Mar; Maldonado, Jose A; Martínez-Salvador, Begoña; Boscá, Diego; Robles, Montserrat

    2013-08-01

    Clinical decision-support systems (CDSSs) comprise systems as diverse as sophisticated platforms to store and manage clinical data, tools to alert clinicians of problematic situations, or decision-making tools to assist clinicians. Irrespective of the kind of decision-support task CDSSs should be smoothly integrated within the clinical information system, interacting with other components, in particular with the electronic health record (EHR). However, despite decades of developments, most CDSSs lack interoperability features. We deal with the interoperability problem of CDSSs and EHRs by exploiting the dual-model methodology. This methodology distinguishes a reference model and archetypes. A reference model is represented by a stable and small object-oriented model that describes the generic properties of health record information. For their part, archetypes are reusable and domain-specific definitions of clinical concepts in the form of structured and constrained combinations of the entities of the reference model. We rely on archetypes to make the CDSS compatible with EHRs from different institutions. Concretely, we use archetypes for modelling the clinical concepts that the CDSS requires, in conjunction with a series of knowledge-intensive mappings relating the archetypes to the data sources (EHR and/or other archetypes) they depend on. We introduce a comprehensive approach, including a set of tools as well as methodological guidelines, to deal with the interoperability of CDSSs and EHRs based on archetypes. Archetypes are used to build a conceptual layer of the kind of a virtual health record (VHR) over the EHR whose contents need to be integrated and used in the CDSS, associating them with structural and terminology-based semantics. Subsequently, the archetypes are mapped to the EHR by means of an expressive mapping language and specific-purpose tools. We also describe a case study where the tools and methodology have been employed in a CDSS to support

  10. Synthesis and radiation tolerance of Lu2-xCexTi2O7 pyrochlores

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Liu, C. G.; Yang, D. Y.; Wen, J.; Liu, H.; Mu, P. C.; Li, Y. H.

    2016-11-01

    As a nonradioactive surrogate for Pu, Ce is selected to study the solubility and radiation tolerance in pyrochlore matrixes. In this paper, we synthesized a series of Lu2-xCexTi2O7 (x = 0-0.7) samples. X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy were used to study the structure of Lu2-xCexTi2O7 (x = 0-0.7) with different Ce3+ content x. The results show that the maximum solubility of Ce3+ in Lu2Ti2O7 is 32 mol%. In order to study the radiation tolerance of these compounds, 400 keV Ne2+ was used to perform the irradiation experiments. The grazing incident X-ray diffraction patterns revealed that the radiation tolerance of the Lu2-xCexTi2O7 decreases with increasing Ce-content. This correlation between radiation tolerance and Ce-content was interpreted in terms of the antisite defect formation energies of Lu2-xCexTi2O7 (x = 0, 0.5, 1) based on the density functional theory.

  11. From spin glass to quantum spin liquid ground states in molybdate pyrochlores.

    PubMed

    Clark, L; Nilsen, G J; Kermarrec, E; Ehlers, G; Knight, K S; Harrison, A; Attfield, J P; Gaulin, B D

    2014-09-12

    We present new magnetic heat capacity and neutron scattering results for two magnetically frustrated molybdate pyrochlores: S=1 oxide Lu_{2}Mo_{2}O_{7} and S=1/2 oxynitride Lu_{2}Mo_{2}O_{5}N_{2}. Lu_{2}Mo_{2}O_{7} undergoes a transition to an unconventional spin glass ground state at T_{f}∼16  K. However, the preparation of the corresponding oxynitride tunes the nature of the ground state from spin glass to quantum spin liquid. The comparison of the static and dynamic spin correlations within the oxide and oxynitride phases presented here reveals the crucial role played by quantum fluctuations in the selection of a ground state. Furthermore, we estimate an upper limit for a gap in the spin excitation spectrum of the quantum spin liquid state of the oxynitride of Δ∼0.05  meV or Δ/|θ|∼0.004, in units of its antiferromagnetic Weiss constant θ∼-121  K.

  12. Electron interactions, spin-orbit coupling, and intersite correlations in pyrochlore iridates

    NASA Astrophysics Data System (ADS)

    Wang, Runzhi; Go, Ara; Millis, Andrew J.

    2017-01-01

    We perform combined density functional and dynamical mean-field calculations to study the pyrochlore iridates Lu2Ir2O7 , Y2Ir2O7 , and Eu2Ir2O7 . Both single-site and cluster dynamical mean-field calculations are performed and spin-orbit coupling is included. Paramagnetic metallic phases, antiferromagnetic metallic phases with tilted Weyl cones, and antiferromagnetic insulating phases are found. The magnetic phases display all-in/all-out magnetic ordering, consistent with previous studies. Unusually for electronically three-dimensional materials, the single-site dynamical mean-field approximation fails to reproduce qualitative material trends, predicting in particular that the paramagnetic phase properties of Y2Ir2O7 and Eu2Ir2O7 are almost identical, although in experiments the Y compound has a much higher resistance than the Eu compound. This qualitative failure is attributed to the importance of intersite magnetic correlations in the physics of these materials.

  13. Quantum spin ices and magnetic states from dipolar-octupolar doublets on the pyrochlore lattice

    NASA Astrophysics Data System (ADS)

    Chen, Gang

    We consider a class of electron systems in which dipolar-octupolar Kramers doublets arise on the pyrochlore lattice. In the localized limit, the Kramers doublets are described by the effective spin 1/2 pseudospins. The most general nearest-neighbor exchange model between these pseudospins is the XYZ model. In additional to dipolar ordered and octupolar ordered magnetic states, we show that this XYZ model exhibits two distinct quantum spin ice (QSI) phases, that we dub dipolar QSI and octupolar QSI. These two QSIs are distinct symmetry enriched U(1) quantum spin liquids, enriched by the lattice symmetry. Moreover, the XYZ model is absent from the notorious sign problem for a quantum Monte Carlo simulation in a large parameter space. We discuss the potential relevance to real material systems such as Dy2Ti2O7, Nd2Zr2O7, Nd2Hf2O7, Nd2Ir2O7, Nd2Sn2O7 and Ce2Sn2O7. chggst@gmail.com, Refs: Y-P Huang, G Chen, M Hermele, Phys. Rev. Lett. 112, 167203 (2014).

  14. Large trigonal-field effect on spin-orbit coupled states in a pyrochlore iridate

    NASA Astrophysics Data System (ADS)

    Uematsu, Daisuke; Sagayama, Hajime; Arima, Taka-hisa; Ishikawa, Jun J.; Nakatsuji, Satoru; Takagi, Hidenori; Yoshida, Masahiro; Mizuki, Jun'ichiro; Ishii, Kenji

    2015-09-01

    The half-filled topmost valence band of Ir4 + in several iridates such as Sr2IrO4 ,IrO2, and CaIrO3 has been proposed to originate mainly from the spin-orbit coupled Jeff=1 /2 states. In pyrochlore iridates R2Ir2O7 (R : rare earth), some exotic electronic states are theoretically proposed by assuming Jeff=1 /2 states. However, the octahedral coordination around Ir is trigonally distorted, which may affect the energy level scheme of Ir 5 d states. Here, we report spectra of resonant elastic and inelastic x-ray scattering in Eu2Ir2O7 at the Ir L edges. A large suppression of the magnetic scattering signal at the Ir LII edge supports the Jeff=1 /2 picture rather than the S =1 /2 one. The inelastic scattering spectrum indicates that the magnitude of the trigonal field on the Ir4 + states is evaluated to be comparable to the spin-orbit interaction. The energy diagram of the 5 d state is proposed based on the simple cluster model.

  15. Structural studies and electrical properties of Cs/Al/Te/O phases with the pyrochlore structure.

    PubMed

    Li, Jun; Siritanon, Theeranun; Stalick, Judith K; Sleight, Arthur W; Subramanian, M A

    2011-06-20

    A series of polycrystalline and single crystal cesium aluminum tellurates with the pyrochlore structure have been prepared and characterized. The variations in cell edge for the Cs/Al/Te/O phases range from 10.06 Å for the Al rich limit to 10.14 Å for the Te rich limit. Rietveld structural analyses based on both X-ray and neutron diffraction data were performed on 5 different compositions. Single crystals of 3 compositions were prepared and studied by X-ray diffraction. The anharmonic component of the thermal motion for Cs was small but became significant on replacing Cs with Rb. A maximum in the electrical conductivity of about 0.1 S/cm is found in the middle of this range close to the ideal composition of CsAl(1/3)Te(5/3)O(6). The conductivity is attributed to filled Te 5s states associated with Te(4+) lying just below the conduction band based on empty Te 5s states associated with Te(6+). The relatively large Te(4+) ion is compressed by the lattice, and as this compression increases the filled 5s states approach the conduction band and thereby increases conductivity.

  16. Ferroelectric studies of excessive Sm{sup 3+} containing perovskite PZT and pyrochlore biphase ceramics

    SciTech Connect

    Babu, T. Anil; Sastry, D. L.; Ramesh, K. V.; Reddy, V. Raghavendra

    2014-04-24

    Polycrystalline samples of Sm{sup 3+} modified Pb{sub 1−x} Sm{sub 2x/3} (Zr{sub 0.6}Ti{sub 0.4}) O{sub 3} (PSZT) ceramics (where x = 0.1, 0.2, 0.3, 0.4) have been prepared by a high energy ball milling technique, followed by calcination at 950°C and sintering at 1150°C. As x is increased more than 0.1 mole%, considerable secondary phase has been formed. This phase has been identified as pyrochlore Sm{sub 2}Ti{sub 2}O{sub 7} from its X-ray diffraction (XRD) peaks. The XRD studies also indicate that the perovskte phases of the present systems undergo a dopant induced phase transformation from rhombohedral to tetragonal strucure. All the samples exhibit diffuse but non-relaxor type ferroelectric phase transition. The results of dielectric and hysteresis studies of these materials are presented.

  17. Hydration thermodynamics of pyrochlore structured oxides from TG and first principles calculations.

    PubMed

    Bjørheim, Tor S; Besikiotis, Vasileios; Haugsrud, Reidar

    2012-11-21

    In this contribution we investigate trends in the defect chemistry and hydration thermodynamics of rare-earth pyrochlore structured oxides, RE(2)X(2)O(7) (RE = La-Lu and X = Ti, Sn, Zr and Ce). First principles density functional theory (DFT) calculations have been performed to elucidate trends in the general defect chemistry and hydration enthalpy for the above-mentioned series. Further, to justify the use of such theoretical methods, the hydration properties of selected compositions were studied by means of thermogravimetric measurements. Both DFT calculations and TG measurements indicate that the hydration enthalpy becomes less exothermic with decreasing radii of RE ions within the RE(2)X(2)O(7) series (X = Ti, Sn, Zr and Ce), while it is less dependent on the X site ion. The observed hydration trends are discussed in connection with trends in the stability of both protons and oxygen vacancies and changes in the electronic density of states and bonding environment through the series. Finally, the findings are discussed with respect to existing correlations for other binary and ternary oxides.

  18. Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets.

    PubMed

    Gingras, M J P; McClarty, P A

    2014-05-01

    The spin ice materials, including Ho2Ti2O7 and Dy2Ti2O7, are rare-earth pyrochlore magnets which, at low temperatures, enter a constrained paramagnetic state with an emergent gauge freedom. Spin ices provide one of very few experimentally realized examples of fractionalization because their elementary excitations can be regarded as magnetic monopoles and, over some temperature range, spin ice materials are best described as liquids of these emergent charges. In the presence of quantum fluctuations, one can obtain, in principle, a quantum spin liquid descended from the classical spin ice state characterized by emergent photon-like excitations. Whereas in classical spin ices the excitations are akin to electrostatic charges with a mutual Coulomb interaction, in the quantum spin liquid these charges interact through a dynamic and emergent electromagnetic field. In this review, we describe the latest developments in the study of such a quantum spin ice, focusing on the spin liquid phenomenology and the kinds of materials where such a phase might be found.

  19. First-principles calculation of defect formation energies and electronic properties in stannate pyrochlores

    SciTech Connect

    Chen, Z, J; Xiao, H. Y.; Zu, Xiaotao T.; Gao, Fei

    2008-11-01

    The electronic structures and defect formation energies for a series of stannate pyrochlores Ln2Sn2O7 *Ln=La, Pr, Nd, Sm, Gd, Tb, Ho, Er, Lu, and Y* have been investigated using the first-principles total energy calculations. The calculated results show that Ln-site cation ionic radius, x-O48f, lattice constant and the covalency of the *Sn–O48f* bond have a significant affect on the defect formation energies. The cation-antisite defect has the lowest formation energy, as compared with that of other defects, indicating that cation disorder causes local oxygen disordering. The present studies suggest that Lu2Sn2O7 is the most resistant to ion beam-induced amorphization. The electronic structure calculations reveal that Ln2Sn2O7 compounds have direct band gaps of 2.64– 2.95 eV at the * point in the Brillouin zone. © 2008 American Institute of Physics.

  20. CHARACTERIZATION OF A CERIUM-RICH PYROCHLORE-BASED CERAMIC NUCLEAR WASTE FORM

    SciTech Connect

    Giere, Reto; Segvich, Susan; Buck, Edgar C.

    2003-02-11

    Titanate ceramics have been proposed as candidate materials for immobilizing excess weapons plutonium. This study focuses on the characterization of a titanate-based ceramic through X-ray diffraction (XRD), electron probe microanalysis and electron energy-loss spectroscopy (EELS). Three distinct phases have been identified, and their volume fraction was determined from element distribution maps using Scionimage-NIH Analysis software. This analysis revealed that the pyrochlore-group phase betafite (A2Ti2O7) forms the matrix of the ceramic and occupies 90.4% of the volume. Uniformly distributed in this matrix are perovskite (A2Ti2O6) and Hf-enriched rutile (TiO2), which account for 6.4 vol% and 3.1 vol%, respectively. The studied ceramic exhibits an extremely low porosity (0.3 vol%), which is characterized by small (< 6 m), rounded and isolated pores. In the studied ceramic, A-site cations are represented by Ca, rare earth elements, and Hf. The powder XRD pattern of the ceramic allowed refining the unit cell parameters for the cubic betafite, which is characterized by a cell edge of 10.132±0.003Å. The EELS data indicate that Ce is present as both Ce3+ and Ce4+ in betafite, whereas in perovskite, all Ce is trivalent.

  1. Evaluation of pulmonary function and respiratory symptoms in pyrochlore mine workers

    PubMed Central

    Borges, Ritta de Cássia Canedo Oliveira; Barros, José Cerqueira; Oliveira, Fabrício Borges; Brunherotti, Marisa Andrade; Quemelo, Paulo Roberto Veiga

    2016-01-01

    ABSTRACT Objective: To identify respiratory symptoms and evaluate lung function in mine workers. Methods: This was a cross-sectional observational study involving production sector workers of a pyrochlore mining company. The subjects completed the British Medical Research Council questionnaire, which is designed to evaluate respiratory symptoms, occupational exposure factors, and smoking status. In addition, they underwent pulmonary function tests with a portable spirometer. Results: The study involved 147 workers (all male). The mean age was 41.37 ± 8.71 years, and the mean duration of occupational exposure was 12.26 ± 7.09 years. We found that 33 (22.44%) of the workers had respiratory symptoms and that 26 (17.69%) showed abnormalities in the spirometry results. However, we found that the spirometry results did not correlate significantly with the presence of respiratory symptoms or with the duration of occupational exposure. Conclusions: The frequencies of respiratory symptoms and spirometric changes were low when compared with those reported in other studies involving occupational exposure to dust. No significant associations were observed between respiratory symptoms and spirometry results. PMID:27832236

  2. Ground state selection under pressure in the quantum pyrochlore magnet Yb2Ti2O7.

    PubMed

    Kermarrec, E; Gaudet, J; Fritsch, K; Khasanov, R; Guguchia, Z; Ritter, C; Ross, K A; Dabkowska, H A; Gaulin, B D

    2017-03-15

    A quantum spin liquid is a state of matter characterized by quantum entanglement and the absence of any broken symmetry. In condensed matter, the frustrated rare-earth pyrochlore magnets Ho2Ti2O7 and Dy2Ti2O7, so-called spin ices, exhibit a classical spin liquid state with fractionalized thermal excitations (magnetic monopoles). Evidence for a quantum spin ice, in which the magnetic monopoles become long range entangled and an emergent quantum electrodynamics arises, seems within reach. The magnetic properties of the quantum spin ice candidate Yb2Ti2O7 have eluded a global understanding and even the presence or absence of static magnetic order at low temperatures is controversial. Here we show that sensitivity to pressure is the missing key to the low temperature behaviour of Yb2Ti2O7. By combining neutron diffraction and muon spin relaxation on a stoichiometric sample under pressure, we evidence a magnetic transition from a disordered, non-magnetic, ground state to a splayed ferromagnetic ground state.

  3. New insights on ion track morphology in pyrochlores by aberration corrected scanning transmission electron microscopy

    SciTech Connect

    Sachan, Ritesh; Zhang, Yanwen; Ou, Xin; Trautmann, Christina; Chisholm, Matthew F.; Weber, William J.

    2016-12-13

    Here we demonstrate the enhanced imaging capabilities of an aberration corrected scanning transmission electron microscope to advance the understanding of ion track structure in pyrochlore structured materials (i.e., Gd2Ti2O7 and Gd2TiZrO7). Track formation occurs due to the inelastic transfer of energy from incident ions to electrons, and atomic-level details of track morphology as a function of energy-loss are revealed in the present work. A comparison of imaging details obtained by varying collection angles of detectors is discussed in the present work. A quantitative analysis of phase identification using high-angle annular dark field imaging is performed on the ion tracks. Finally, a novel 3-dimensional track reconstruction method is provided that is based on depth dependent imaging of the ion tracks. The technique is used in extracting the atomic-level details of nanoscale features, such as the disordered ion tracks, which are embedded in relatively thicker matrix. Another relevance of the method is shown by measuring the tilt of the ion tracks relative to the electron beam incidence that helps in knowing the structure and geometry of ion tracks quantitatively.

  4. New insights on ion track morphology in pyrochlores by aberration corrected scanning transmission electron microscopy

    DOE PAGES

    Sachan, Ritesh; Zhang, Yanwen; Ou, Xin; ...

    2016-12-13

    Here we demonstrate the enhanced imaging capabilities of an aberration corrected scanning transmission electron microscope to advance the understanding of ion track structure in pyrochlore structured materials (i.e., Gd2Ti2O7 and Gd2TiZrO7). Track formation occurs due to the inelastic transfer of energy from incident ions to electrons, and atomic-level details of track morphology as a function of energy-loss are revealed in the present work. A comparison of imaging details obtained by varying collection angles of detectors is discussed in the present work. A quantitative analysis of phase identification using high-angle annular dark field imaging is performed on the ion tracks. Finally,more » a novel 3-dimensional track reconstruction method is provided that is based on depth dependent imaging of the ion tracks. The technique is used in extracting the atomic-level details of nanoscale features, such as the disordered ion tracks, which are embedded in relatively thicker matrix. Another relevance of the method is shown by measuring the tilt of the ion tracks relative to the electron beam incidence that helps in knowing the structure and geometry of ion tracks quantitatively.« less

  5. Ground state selection under pressure in the quantum pyrochlore magnet Yb2Ti2O7

    NASA Astrophysics Data System (ADS)

    Kermarrec, E.; Gaudet, J.; Fritsch, K.; Khasanov, R.; Guguchia, Z.; Ritter, C.; Ross, K. A.; Dabkowska, H. A.; Gaulin, B. D.

    2017-03-01

    A quantum spin liquid is a state of matter characterized by quantum entanglement and the absence of any broken symmetry. In condensed matter, the frustrated rare-earth pyrochlore magnets Ho2Ti2O7 and Dy2Ti2O7, so-called spin ices, exhibit a classical spin liquid state with fractionalized thermal excitations (magnetic monopoles). Evidence for a quantum spin ice, in which the magnetic monopoles become long range entangled and an emergent quantum electrodynamics arises, seems within reach. The magnetic properties of the quantum spin ice candidate Yb2Ti2O7 have eluded a global understanding and even the presence or absence of static magnetic order at low temperatures is controversial. Here we show that sensitivity to pressure is the missing key to the low temperature behaviour of Yb2Ti2O7. By combining neutron diffraction and muon spin relaxation on a stoichiometric sample under pressure, we evidence a magnetic transition from a disordered, non-magnetic, ground state to a splayed ferromagnetic ground state.

  6. A spin-liquid with pinch-line singularities on the pyrochlore lattice

    PubMed Central

    Benton, Owen; Jaubert, L.D.C.; Yan, Han; Shannon, Nic

    2016-01-01

    The mathematics of gauge theories lies behind many of the most profound advances in physics in the past 200 years, from Maxwell's theory of electromagnetism to Einstein's theory of general relativity. More recently it has become clear that gauge theories also emerge in condensed matter, a prime example being the spin-ice materials which host an emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed by the presence of pinch-point singularities in neutron-scattering measurements. Here we report the discovery of a spin-liquid where the low-temperature physics is naturally described by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like analogues of the pinch points observed in spin-ice. Remarkably, these features may already have been observed in the pyrochlore material Tb2Ti2O7. PMID:27225400

  7. Supercooled spin liquid state in the frustrated pyrochlore Dy2Ti2O7

    PubMed Central

    Kassner, Ethan R.; Eyvazov, Azar B.; Pichler, Benjamin; Munsie, Timothy J. S.; Dabkowska, Hanna A.; Luke, Graeme M.; Davis, J. C. Séamus

    2015-01-01

    A “supercooled” liquid develops when a fluid does not crystallize upon cooling below its ordering temperature. Instead, the microscopic relaxation times diverge so rapidly that, upon further cooling, equilibration eventually becomes impossible and glass formation occurs. Classic supercooled liquids exhibit specific identifiers including microscopic relaxation times diverging on a Vogel–Tammann–Fulcher (VTF) trajectory, a Havriliak–Negami (HN) form for the dielectric function ε(ω,T), and a general Kohlrausch–Williams–Watts (KWW) form for time-domain relaxation. Recently, the pyrochlore Dy2Ti2O7 has become of interest because its frustrated magnetic interactions may, in theory, lead to highly exotic magnetic fluids. However, its true magnetic state at low temperatures has proven very difficult to identify unambiguously. Here, we introduce high-precision, boundary-free magnetization transport techniques based upon toroidal geometries and gain an improved understanding of the time- and frequency-dependent magnetization dynamics of Dy2Ti2O7. We demonstrate a virtually universal HN form for the magnetic susceptibility χ(ω,T), a general KWW form for the real-time magnetic relaxation, and a divergence of the microscopic magnetic relaxation rates with the VTF trajectory. Low-temperature Dy2Ti2O7 therefore exhibits the characteristics of a supercooled magnetic liquid. One implication is that this translationally invariant lattice of strongly correlated spins may be evolving toward an unprecedented magnetic glass state, perhaps due to many-body localization of spin. PMID:26130810

  8. Two Spin Liquid phases in the anisotropic triangular Heisenberg model

    NASA Astrophysics Data System (ADS)

    Sorella, Sandro

    2005-03-01

    Recently there have been rather clean experimental realizations of the quantum spin 1/2 Heisenberg Hamiltonian on a 2D triangular lattice geometry in systems like Cs2Cu Cl4 and organic compounds like k-(ET)2Cu2(CN)3. These materials are nearly two dimensional and are characterized by an anisotropic antiferromagnetic superexchange. The strength of the spatial anisotropy can increase quantum fluctuations and can destabilize the magnetically ordered state leading to non conventional spin liquid phases. In order to understand these interesting phenomena we have studied, by Quantum Monte Carlo methods, the triangular lattice Heisenberg model as a function of the strength of this anisotropy, represented by the ratio r between the intra-chain nearest neighbor coupling J' and the inter-chain one J. We have found evidence of two spin liquid regions, well represented by projected BCS wave functions[1,2] of the type proposed by P. W. Anderson at the early stages of High temperature superconductivity [3]. The first spin liquid phase is stable for small values of the coupling r 0.6 and appears gapless and fractionalized, whereas the second one is a more conventional spin liquid, very similar to the one realized in the quantum dimer model in the triangular lattice[4]. It is characterized by a spin gap and a finite correlation length, and appears energetically favored in the region 0.6 r 0.9. The various phases are in good agreement with the experimental findings and supports the existence of spin liquid phases in 2D quantum spin-half systems. %%%%%%%%%%%%%%%%%% 1cm *[1] L. Capriotti F. Becca A. Parola and S. Sorella , Phys. Rev. Letters 87, 097201 (2001). *[2] S. Yunoki and S. Sorella Phys. Rev. Letters 92, 15003 (2004). *[3] P. W. Anderson, Science 235, 1186 (1987). *[4] P. Fendley, R. Moessner, and S. L. Sondhi Phys. Rev. B 66, 214513 (2002).

  9. Unified molecular field theory for collinear and noncollinear Heisenberg antiferromagnets

    DOE PAGES

    Johnston, David C.

    2015-02-27

    In this study, a unified molecular field theory (MFT) is presented that applies to both collinear and planar noncollinear Heisenberg antiferromagnets (AFs) on the same footing. The spins in the system are assumed to be identical and crystallographically equivalent. This formulation allows calculations of the anisotropic magnetic susceptibility χ versus temperature T below the AF ordering temperature TN to be carried out for arbitrary Heisenberg exchange interactions Jij between arbitrary neighbors j of a given spin i without recourse to magnetic sublattices. The Weiss temperature θp in the Curie-Weiss law is written in terms of the Jij values and TNmore » in terms of the Jij values and an assumed AF structure. Other magnetic and thermal properties are then expressed in terms of quantities easily accessible from experiment as laws of corresponding states for a given spin S. For collinear ordering these properties are the reduced temperature t=T/TN, the ratio f = θp/TN, and S. For planar noncollinear helical or cycloidal ordering, an additional parameter is the wave vector of the helix or cycloid. The MFT is also applicable to AFs with other AF structures. The MFT predicts that χ(T ≤ TN) of noncollinear 120° spin structures on triangular lattices is isotropic and independent of S and T and thus clarifies the origin of this universally observed behavior. The high-field magnetization and heat capacity for fields applied perpendicular to the ordering axis (collinear AFs) and ordering plane (planar noncollinear AFs) are also calculated and expressed for both types of AF structures as laws of corresponding states for a given S, and the reduced perpendicular field versus reduced temperature phase diagram is constructed.« less

  10. Unified molecular field theory for collinear and noncollinear Heisenberg antiferromagnets

    SciTech Connect

    Johnston, David C.

    2015-02-27

    In this study, a unified molecular field theory (MFT) is presented that applies to both collinear and planar noncollinear Heisenberg antiferromagnets (AFs) on the same footing. The spins in the system are assumed to be identical and crystallographically equivalent. This formulation allows calculations of the anisotropic magnetic susceptibility χ versus temperature T below the AF ordering temperature TN to be carried out for arbitrary Heisenberg exchange interactions Jij between arbitrary neighbors j of a given spin i without recourse to magnetic sublattices. The Weiss temperature θp in the Curie-Weiss law is written in terms of the Jij values and TN in terms of the Jij values and an assumed AF structure. Other magnetic and thermal properties are then expressed in terms of quantities easily accessible from experiment as laws of corresponding states for a given spin S. For collinear ordering these properties are the reduced temperature t=T/TN, the ratio f = θp/TN, and S. For planar noncollinear helical or cycloidal ordering, an additional parameter is the wave vector of the helix or cycloid. The MFT is also applicable to AFs with other AF structures. The MFT predicts that χ(T ≤ TN) of noncollinear 120° spin structures on triangular lattices is isotropic and independent of S and T and thus clarifies the origin of this universally observed behavior. The high-field magnetization and heat capacity for fields applied perpendicular to the ordering axis (collinear AFs) and ordering plane (planar noncollinear AFs) are also calculated and expressed for both types of AF structures as laws of corresponding states for a given S, and the reduced perpendicular field versus reduced temperature phase diagram is constructed.

  11. Ultralow dielectric losses in pyrochlore films of the PbO-MgO-Nb2O5-TiO2 system

    NASA Astrophysics Data System (ADS)

    Zhu, X. H.; Defaÿ, E.; Suhm, A.; Fribourg-blanc, E.; Aïd, M.

    2009-03-01

    (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMNT) (with x =0.1) thin films were prepared on Pt-coated silicon substrates by radio-frequency magnetron sputtering and postdeposition annealing method. A well-crystallized pyrochlore phase structure, which started to nucleate and grow at 450-500 °C, was formed in the PMNT thin films. These pyrochlore-structured PMNT thin films show ultralow dielectric losses with a typical loss tangent as low as 0.001, accompanied by a relatively high dielectric constant (ɛr=176). Such an extremely low dielectric loss, having never been obtained in thin films of perovskite PMNT, is probably ascribed to the specific structural feature of pyrochlore phase, chemically different from its perovskite counterpart, and ascribed to the avoidance of the polar domain-related losses.

  12. The Heisenberg-Euler Lagrangian as an example of an effective field theory

    NASA Astrophysics Data System (ADS)

    Dittrich, Walter

    2014-10-01

    We review the beginning of the effective Lagrangian in QED that was first introduced in the literature by W. Heisenberg and H. Euler in 1936. Deviating from their way of calculating the one-loop effective correction to the classical Maxwell Lagrangian, we use Green's functions and adopt the Fock-Schwinger proper-time method. The important role of the Heisenberg-Euler effective Lagrangian is explicitly demonstrated for low-energy photon-photon processes.

  13. Werner Heisenberg and Carl Friedrich Freiherr von Weizsäcker: A Fifty-Year Friendship*

    NASA Astrophysics Data System (ADS)

    Cassidy, David C.

    2015-03-01

    This paper follows Werner Heisenberg and Carl Friedrich von Weizsäcker during their fifty-year friendship from 1926, when they first met in Copenhagen, to Heisenberg's death in Munich in 1976. The relationship underwent profound changes during that period, as did physics, philosophy, and German society and politics, all of which exerted important influences on their lives, work, and interactions with each other. The nature of these developments and their impact are explored in this paper.

  14. Green function method study of the anisotropic ferromagnetic Heisenberg model on a square lattice

    NASA Astrophysics Data System (ADS)

    Hu, Ai-Yuan; Chen, Yuan

    2008-06-01

    We study the phase diagram of the anisotropic ferromagnetic Heisenberg model on a square lattice. We use the double-time Green’s function method within the Callen decoupling approximation. The dependence of the Curie temperature Tc on the spin S and on the anisotropy parameter Δ ( Δ=0 and 1 correspond to the isotropic Heisenberg and Ising model, respectively) is obtained explicitly. Our results are in agreement with results obtained from other theoretical approaches.

  15. Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster

    NASA Astrophysics Data System (ADS)

    Deb, Moumita; Ghosh, Asim Kumar

    2016-05-01

    Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu3WO6.

  16. Evidence for a bicritical point in the XXZ Heisenberg antiferromagnet on a simple cubic lattice.

    PubMed

    Selke, Walter

    2011-04-01

    The classical Heisenberg antiferromagnet with uniaxial exchange anisotropy (XXZ model) in a field on a simple cubic lattice is studied with the help of extensive Monte Carlo simulations. We analyze, in particular, various staggered susceptibilities and Binder cumulants and present clear evidence for the triple point of the antiferromagnetic, spin-flop, and paramagnetic phases being a bicritical point with Heisenberg symmetry. Results are compared to previous predictions applying various theoretical approaches.

  17. EHR query language (EQL)--a query language for archetype-based health records.

    PubMed

    Ma, Chunlan; Frankel, Heath; Beale, Thomas; Heard, Sam

    2007-01-01

    OpenEHR specifications have been developed to standardise the representation of an international electronic health record (EHR). The language used for querying EHR data is not as yet part of the specification. To fill in this gap, Ocean Informatics has developed a query language currently known as EHR Query Language (EQL), a declarative language supporting queries on EHR data. EQL is neutral to EHR systems, programming languages and system environments and depends only on the openEHR archetype model and semantics. Thus, in principle, EQL can be used in any archetype-based computational context. In the EHR context described here, particular queries mention concepts from the openEHR EHR Reference Model (RM). EQL can be used as a common query language for disparate archetype-based applications. The use of a common RM, archetypes, and a companion query language, such as EQL, semantic interoperability of EHR information is much closer. This paper introduces the EQL syntax and provides example clinical queries to illustrate the syntax. Finally, current implementations and future directions are outlined.

  18. Faulkner, Fitzgerald, and Pynchon: An Archetypal Approach to Modernism and Postmodernism in the Secondary School Curriculum.

    ERIC Educational Resources Information Center

    Holsberry, Carmen W.

    This paper suggests that teachers and curriculum planners should offer an overview of American fiction that presents the recurrent archetypes of American fiction and yet also deals with the unique aspects of individual works of fiction. The major pattern of experience in American fiction is explained as the transaction of the innocent self with…

  19. Feminism, Ecofeminism, and the Maternal Archetype: Motherhood as a Feminine Universal.

    ERIC Educational Resources Information Center

    Stearney, Lynn M.

    1994-01-01

    Argues that evoking the maternal archetype as a unifying principle to motivate the protection and sustenance of the environment confounds womanhood with motherhood, and fails to honor the complexity of motherhood as an ideologically and socially constructed institution. Maintains that a gender-neutral metaphor may more effectively serve both the…

  20. Exploring Organizational Culture: Teaching Notes on Metaphor, Totem, and Archetypal Images

    ERIC Educational Resources Information Center

    Starr-Glass, David

    2004-01-01

    The author introduces an experiential appreciation of organizational culture into a strategic management course. Students were asked to retrieve and to reflect on metaphors, totemic systems, and archetypal imagery associated with their college. Each technique was selected to explore the oblique views of organizational process and dynamics that…

  1. Using Mythic-Archetypal Approaches in the Language Arts. ERIC Digest.

    ERIC Educational Resources Information Center

    Stewart, Richard D.

    This digest considers approaches to langugae arts teaching that are based on mythic or archetypal ways of experiencing and knowing. The Digest argues that such approaches address students' inner lives more directly than do the usual instructional methods such as whole language or student-centered instruction, and thus can help to promote…

  2. Achieving clinical statement interoperability using R-MIM and archetype-based semantic transformations.

    PubMed

    Kilic, Ozgur; Dogac, Asuman

    2009-07-01

    Effective use of electronic healthcare records (EHRs) has the potential to positively influence both the quality and the cost of health care. Consequently, sharing patient's EHRs is becoming a global priority in the healthcare information technology domain. This paper addresses the interoperability of EHR structure and content. It describes how two different EHR standards derived from the same reference information model (RIM) can be mapped to each other by using archetypes, refined message information model (R-MIM) derivations, and semantic tools. It is also demonstrated that well-defined R-MIM derivation rules help tracing the class properties back to their origins when the R-MIMs of two EHR standards are derived from the same RIM. Using well-defined rules also enable finding equivalences in the properties of the source and target EHRs. Yet an R-MIM still defines the concepts at the generic level. Archetypes (or templates), on the other hand, constrain an R-MIM to domain-specific concepts, and hence, provide finer granularity semantics. Therefore, while mapping clinical statements between EHRs, we also make use of the archetype semantics. Derivation statements are inferred from the Web Ontology Language definitions of the RIM, the R-MIMs, and the archetypes. Finally, we show how to transform Health Level Seven clinical statement instances to EHRcom clinical statement instances and vice versa by using the generated mapping definitions.

  3. Revisiting Teaching Archetypes: Identifying Dominant Shaping Influences on Student Teacher's Identities

    ERIC Educational Resources Information Center

    Sugrue, Ciaran

    2004-01-01

    The primary aim of this article is to identify and interrogate the lay theories of contemporary student teachers and to indicate and illustrate the manner in which these "theories" manifest both continuity and change when contrasted with teaching archetypes and previously articulated lay theories of student teachers in the setting. It is…

  4. Identifying and Describing Tutor Archetypes: The Pragmatist, the Architect, and the Surveyor

    ERIC Educational Resources Information Center

    Harootunian, Jeff A.; Quinn, Robert J.

    2008-01-01

    In this article, the authors identify and anecdotally describe three tutor archetypes: the pragmatist, the architect, and the surveyor. These descriptions, based on observations of remedial mathematics tutors at a land-grant university, shed light on a variety of philosophical beliefs regarding and pedagogical approaches to tutoring. An analysis…

  5. American and Soviet Adolescent Archetypal Heroes of the Cold War. Professional Paper.

    ERIC Educational Resources Information Center

    Herman, William E.

    This study explores the value-oriented behaviors associated with membership in prominent youth organizations in the Soviet Union and the United States of America during the Cold War. The archetypal heroic ideals and values of the Soviet Octoberists and Pioneers and the U.S. Boy Scout and Girl Scout organizations were examined. Key political,…

  6. Neighborhood archetypes for population health research: is there no place like home?

    PubMed

    Weden, Margaret M; Bird, Chloe E; Escarce, José J; Lurie, Nicole

    2011-01-01

    This study presents a new, latent archetype approach for studying place in population health. Latent class analysis is used to show how the number, defining attributes, and change/stability of neighborhood archetypes can be characterized and tested for statistical significance. The approach is demonstrated using data on contextual determinants of health for US neighborhoods defined by census tracts in 1990 and 2000. Six archetypes (prevalence 13-20%) characterize the statistically significant combinations of contextual determinants of health from the social environment, built environment, commuting and migration patterns, and demographics and household composition of US neighborhoods. Longitudinal analyses based on the findings demonstrate notable stability (76.4% of neighborhoods categorized as the same archetype ten years later), with exceptions reflecting trends in (ex)urbanization, gentrification/downgrading, and racial/ethnic reconfiguration. The findings and approach is applicable to both research and practice (e.g. surveillance) and can be scaled up or down to study health and place in other geographical contexts or historical periods.

  7. The Female Rescuer in Newbery Fiction: Exploring the Archetype of Mother.

    ERIC Educational Resources Information Center

    Roberts, Sherron Killingsworth

    2002-01-01

    Examines the identity of female characters who rescue male protagonists in three works of Newbery-winning fiction, and realizes their archetypal roles of Mother. Provides readers with a vehicle for revisiting the interaction among characters in young adult fiction. Presents a rationale for using literary criticism to help students explore how…

  8. Validation of Minimum Data of Archetyped Telehealth Clinical Report for Monitoring Prenatal Care.

    PubMed

    Santos Alves, Danielle; Times, Valéria Cesário; de Araújo Novaes, Magdala

    2015-01-01

    Studies on the validation of minimum data sets from international information standards have drawn the attention of the academic community to the identification of necessary requirements for the development of Electronic Health Records (EHRs). The primary motivation of such studies is the development of systems using archetypes. The aim of this study was to validate the minimum data set that should be used when constructing an archetyped EHR for prenatal care applications in telehealth. In order to achieve this, a data validation tool was built and used by nine expert obstetricians. The statistical analysis employed was the percentage of agreement and the content validity index. The study was conducted in three steps: 1) Literature review, 2)Instrument development, and 3) Validation of the minimum data set. Of the 179 evaluated pieces of data, 157 of them were validated to be included in the archetyped record of the first prenatal consultation, while 56 of them were allocated for the subsequent consultation record. The benefit of this research is the standardization (data validation for an archetyped system) of prenatal care, with the perspective of employing, both nationally and internationally, an archtyped telehealth system.

  9. Dealing with the Archetypes Development Process for a Regional EHR System

    PubMed Central

    Santos, M.R.; Bax, M.P.; Kalra, D.

    2012-01-01

    Objectives This paper aims to present the archetype modelling process used for the Health Department of Minas Gerais State, Brazil (SES/MG), to support building its regional EHR system, and the lessons learned during this process. Methods This study was undertaken within the Minas Gerais project. The EHR system architecture was built assuming the reference model from the ISO 13606 norm. The whole archetype development process took about ten months, coordinated by a clinical team co-ordinated by three health professionals and one systems analyst from the SES/MG. They were supported by around 30 health professionals from the internal SES/MG areas, and 5 systems analysts from the PRODEMGE. Based on a bottom-up approach, the project team used technical interviews and brainstorming sessions to conduct the modelling process. Results The main steps of the archetype modelling process were identified and described, and 20 archetypes were created. Lessons learned: –The set of principles established during the selection of PCS elements helped the clinical team to keep the focus in their objectives;–The initial focus on the archetype structural organization aspects was important;–The data elements identified were subjected to a rigorous analysis aimed at determining the most suitable clinical domain;–Levelling the concepts to accommodate them within the hierarchical levels in the reference model was definitely no easy task, and the use of a mind mapping tool facilitated the modelling process;–Part of the difficulty experienced by the clinical team was related to a view focused on the original forms previously used;–The use of worksheets facilitated the modelling process by health professionals;–It was important to have a health professional that knew about the domain tables and health classifications from the Brazilian Federal Government as member in the clinical team. Conclusion The archetypes (referencing terminology, domain tables and term lists) provided a

  10. (119)Sn MAS NMR and first-principles calculations for the investigation of disorder in stannate pyrochlores.

    PubMed

    Mitchell, Martin R; Reader, Simon W; Johnston, Karen E; Pickard, Chris J; Whittle, Karl R; Ashbrook, Sharon E

    2011-01-14

    The local structure and cation disorder in Y(2)Ti(2-x)Sn(x)O(7) pyrochlores, materials proposed for the encapsulation of lanthanide- and actinide-bearing radioactive waste, is studied using (119)Sn (I = 1/2) NMR spectroscopy. NMR provides an excellent probe of disorder, as it is sensitive to the atomic scale environment without the need for any long-range periodicity. However, the complex and overlapping spectral resonances that often result can be difficult to interpret. Here, we demonstrate how (119)Sn DFT calculations can be used to aid the spectral interpretation and assignment, confirming that Sn occupies only the six-coordinate pyrochlore B site, and that the Sn chemical shift is sensitive to the number of Sn/Ti on the neighbouring B sites. Although distinct resonances are resolved experimentally when the Ti content is low, there is significant spectral overlap for Ti-rich compositions. We establish that this is a result of two competing contributions to the Sn chemical shift; an upfield shift resulting from the incorporation of the more polarizing Ti(4+) cation onto the neighbouring B sites, and a concomitant downfield shift arising from the decrease in unit cell size. Despite the considerably easier spectral acquisition, the lower resolution in the (119)Sn spectra hinders the extraction of the detailed structural information previously obtained using (89)Y NMR. However, the spectra we obtain are consistent with a random distribution of Sn/Ti on the pyrochlore B sites. Finally, we consider whether an equilibrium structure has been achieved by investigating materials that have been annealed for different durations.

  11. Electromagnetic Fields on Time-Involute Particles Around Biharmonic Particles and its Lorentz Transformations in Heisenberg Spacetime

    NASA Astrophysics Data System (ADS)

    Körpinar, Talat; Asi˙l, Vedat; Turhan, Essin

    2015-01-01

    In this paper, we obtain the new parametric representation for a time-involute particles in Heisenberg spacetime . By using the Frenet frame, we derive the necessary and sufficient conditions to construct a biharmonic particle Heisenberg spacetime . We give a geometrical description of time-involute particles around timelike biharmonic particle in . Moreover, we obtain Lorentz transformations this particles. Finally, we give the relationship of electromagnetic fields on Heisenberg spacetime.

  12. Quadrupole Order in the Frustrated Pyrochlore Tb2 +xTi2 -xO7 +y

    NASA Astrophysics Data System (ADS)

    Takatsu, H.; Onoda, S.; Kittaka, S.; Kasahara, A.; Kono, Y.; Sakakibara, T.; Kato, Y.; Fâk, B.; Ollivier, J.; Lynn, J. W.; Taniguchi, T.; Wakita, M.; Kadowaki, H.

    2016-05-01

    A hidden order that emerges in the frustrated pyrochlore Tb2 +xTi2 -xO7 +y with Tc=0.53 K is studied using specific heat, magnetization, and neutron scattering experiments on a high-quality single crystal. Semiquantitative analyses based on a pseudospin-1 /2 Hamiltonian for ionic non-Kramers magnetic doublets demonstrate that it is an ordered state of electric quadrupole moments. The elusive spin liquid state of the nominal Tb2 Ti2 O7 is most likely a U (1 ) quantum spin-liquid state.

  13. Crystal field states of Tb3 + in the pyrochlore spin liquid Tb2Ti2O7 from neutron spectroscopy

    NASA Astrophysics Data System (ADS)

    Princep, A. J.; Walker, H. C.; Adroja, D. T.; Prabhakaran, D.; Boothroyd, A. T.

    2015-06-01

    We report time-of-flight neutron scattering measurements of the magnetic spectrum of Tb3 + in Tb2Ti2O7 . The data, which extend up to 120 meV and have calibrated intensity, enable us to consolidate and extend previous studies of the single-ion crystal field spectrum. We successfully refine a model for the crystal field potential in Tb2Ti2O7 without relying on data from other rare-earth titanate pyrochlores, and we confirm that the ground state is a non-Kramers doublet with predominantly |±4 > components. We compare the model critically with earlier models.

  14. Low-temperature thermal expansion behavior of the geometrically frustrated pyrochlore Tb2Ti2O7

    NASA Astrophysics Data System (ADS)

    Kitani, Suguru; Tachibana, Makoto; Kawaji, Hitoshi

    2016-12-01

    The low-temperature lattice behavior of the pyrochlore magnet Tb2Ti2O7 has been investigated by thermal expansion measurements. The thermal expansion coefficient of Tb2Ti2O7 shows no anomaly except for a shoulder around 8 K, which can be explained by a Schottky type excitation arising from the energy gap between the ground-state and first excited CEF doublets. The analysis of the thermal expansion behavior combined with the heat capacity data indicates the lack of strong spin-lattice coupling in the thermal expansion at the low temperature region, where the spin liquid state emerges.

  15. Order-by-disorder near criticality in X Y pyrochlore magnets

    NASA Astrophysics Data System (ADS)

    Javanparast, Behnam; Day, Alexandre G. R.; Hao, Zhihao; Gingras, Michel J. P.

    2015-05-01

    We consider a system of spins on the sites of a three-dimensional pyrochlore lattice of corner-sharing tetrahedra interacting with a predominant effective x y exchange. In particular, we investigate the selection of a long-range ordered state with broken discrete symmetry induced by thermal fluctuations near the critical region. At the standard mean-field theory (s-MFT) level, in a region of the parameter space of this Hamiltonian that we refer to as Γ5 region, the ordered state possesses an accidental U(1) degeneracy. In this paper, we show that fluctuations beyond s-MFT lift this degeneracy by selecting one of two states (so-called ψ2 and ψ3) from the degenerate manifold, thus exposing a certain form of order-by-disorder (ObD). We analytically explore this selection at the microscopic level and close to criticality by elaborating upon and using an extension of the so-called TAP method, originally developed by Thouless, Anderson, and Palmer to study the effect of fluctuations in spin glasses. We also use a single-tetrahedron cluster-mean-field theory (c-MFT) to explore over what minimal length scale fluctuations can lift the degeneracy. We find the phase diagrams obtained by these two methods to be somewhat different since c-MFT only includes the shortest-range fluctuations. General symmetry arguments used to construct a Ginzburg-Landau theory to lowest order in the order parameters predict that a weak magnetic moment mz along the local <111 > (z ̂) direction is generically induced for a system ordering into a ψ2 state, but not so for ψ3 ordering. Both E-TAP and c-MFT calculations confirm this weak fluctuation-induced mz moment. Using a Ginzburg-Landau theory, we discuss the phenomenology of multiple phase transitions below the paramagnetic phase transition and within the Γ5 long-range ordered phase.

  16. OER activity manipulated by IrO6 coordination geometry: an insight from pyrochlore iridates

    PubMed Central

    Sun, Wei; Liu, Ji-Yuan; Gong, Xue-Qing; Zaman, Waqas-Qamar; Cao, Li-Mei; Yang, Ji

    2016-01-01

    The anodic reaction of oxygen evolution reaction (OER), an important point for electrolysis, however, remains the obstacle due to its complicated reaction at electrochemical interfaces. Iridium oxide (IrO2) is the only currently known 5d transition metal oxide possessing admirable OER activity. Tremendous efforts have been carried out to enhance the activity of iridium oxides. Unfortunately there lies a gap in understanding what factors responsible for the activity in doped IrO2 or the novel crystal structure. Based on two metallic pyrochlores (Bi2Ir2O7 and Pb2Ir2O6.5) and IrO2. It has been found that there exists a strong correlation between the specific OER activity and IrO6 coordination geometry. The more distortion in IrO6 geometry ascends the activity of Ir sites, and generates activity order of Pb-Ir > IrO2 > Bi-Ir. Our characterizations reveal that distorted IrO6 in Pb-Ir induces a disappearance of J = 1/2 subbands in valence band, while Bi-Ir and IrO2 resist this nature probe. The performed DFT calculations indicated the distortion in IrO6 geometry can optimize binding strength between Ir-5d and O-2p due to broader d band width. Based on this insight, enhancement in OER activity is obtained by effects that change IrO6 octahedral geometry through doping or utilizing structural manipulation with nature of distorted octahedral coordination. PMID:27910932

  17. Microscopic theory of Dzyaloshinsky-Moriya interaction in pyrochlore oxides with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Arakawa, Naoya

    2016-10-01

    Pyrochlore oxides show several fascinating phenomena, such as the formation of heavy fermions and the thermal Hall effect. Although a key to understanding some phenomena may be the Dzyaloshinsky-Moriya (DM) interaction, its microscopic origin is unclear. To clarify the microscopic origin, we constructed a t2 g-orbital model with the kinetic energy, the trigonal-distortion potential, the multiorbital Hubbard interactions, and the L S coupling, and derived the low-energy effective Hamiltonian for a d1 Mott insulator with the weak L S coupling. We first show that lack of the inversion center of each nearest-neighbor V-V bond causes the odd-mirror interorbital hopping integrals. Those are qualitatively different from the even-mirror hopping integrals, existing even with the inversion center. We next show that the second-order perturbation using the kinetic terms leads to the ferromagnetic and the antiferromagnetic superexchange interactions, whose competition is controllable by tuning the Hubbard interactions. Then, we show the most important result: the third-order perturbation terms using the combination of the even-mirror hopping integral, the odd-mirror hopping integral, and the L S coupling causes the DM interaction due to the mirror-mixing effect, where those hopping integrals are necessary to obtain the antisymmetric kinetic exchange and the L S coupling is necessary to excite the orbital angular momentum at one of two sites. We also show that the magnitude and sign of the DM interaction can be controlled by changing the positions of the O ions and the strength of the Hubbard interactions. We discuss the advantages in comparison with the phenomenological theory and Moriya's microscopic theory, applicability of our mechanism, and the similarities and differences between our case and the strong-L S -coupling case.

  18. X-ray Structure Refinements and Strain Analysis of Substituted Cubic Lead Pyrochlores Pb

    SciTech Connect

    Nalini, G.; Somashekar, R.; Guru Row T. N.

    2001-01-01

    The phase diagrams in the PbO-Nb{sub 2}O{sub 5} system and the PbO-Ta{sub 2}O{sub 5} system depict pyrochlore structure at certain molar ratios. Compositions Pb{sub 2}Nb{sub 1.51}Pb{sub 0.49}O{sub 6.30} (1), Pb{sub 2}Ta{sub 1.4}Pb{sub 0.6}O{sub 6.21} (2), and Pb{sub 2}Ta{sub 1.25}Pb{sub 0.75}O{sub 6.57} (3) belonging to this family, are refined in the cubic space group Fd{ovr 3}m (Z=8; lattice parameter a=10.762(1), 10.744(1), 10.757(5) {angstrom}, respectively) using the Rietveld refinement approach. The analyses suggest that the B-site is partially occupied by Pb leading to the general formula Pb{sub 2}(M{sub 2-y}Pb{sub y})O{sub 7-{delta}}(0.0 < y < 0.8; M=Nb or Ta). There is an overall broadening observed in the X-ray peak widths in 1, 2, and 3 compared to the Pb-deficient parent phases. It is observed that the X-ray peak widths of 2 is broad, while 3 displays narrow peak widths. It is found via strain analysis that the line broadening observed correlates with the strain in the lattice.

  19. OER activity manipulated by IrO6 coordination geometry: an insight from pyrochlore iridates

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Liu, Ji-Yuan; Gong, Xue-Qing; Zaman, Waqas-Qamar; Cao, Li-Mei; Yang, Ji

    2016-12-01

    The anodic reaction of oxygen evolution reaction (OER), an important point for electrolysis, however, remains the obstacle due to its complicated reaction at electrochemical interfaces. Iridium oxide (IrO2) is the only currently known 5d transition metal oxide possessing admirable OER activity. Tremendous efforts have been carried out to enhance the activity of iridium oxides. Unfortunately there lies a gap in understanding what factors responsible for the activity in doped IrO2 or the novel crystal structure. Based on two metallic pyrochlores (Bi2Ir2O7 and Pb2Ir2O6.5) and IrO2. It has been found that there exists a strong correlation between the specific OER activity and IrO6 coordination geometry. The more distortion in IrO6 geometry ascends the activity of Ir sites, and generates activity order of Pb-Ir > IrO2 > Bi-Ir. Our characterizations reveal that distorted IrO6 in Pb-Ir induces a disappearance of J = 1/2 subbands in valence band, while Bi-Ir and IrO2 resist this nature probe. The performed DFT calculations indicated the distortion in IrO6 geometry can optimize binding strength between Ir-5d and O-2p due to broader d band width. Based on this insight, enhancement in OER activity is obtained by effects that change IrO6 octahedral geometry through doping or utilizing structural manipulation with nature of distorted octahedral coordination.

  20. Metal-insulator transitions of bulk and domain-wall states in pyrochlore iridates

    NASA Astrophysics Data System (ADS)

    Ueda, Kentaro

    A family of pyrochlore iridates R2Ir2O7 offers an ideal platform to explore intriguing phases such as topological Mott insulator and Weyl semimetal. Here we report transport and spectroscopic studies on the metal-insulator transition (MIT) induced by the modulations of effective electron correlation and magnetic structures, which is finely tuned by external pressure, chemical substitutions (R = Nd1-x Prx and SmyNd1-y) , and magnetic field. A reentrant insulator-metal-insulator transition is observed near the paramagnetic insulator-metal phase boundary reminiscent of a first-order Mott transition for R = SmyNd1-y compounds (y~0.8). The metallic states on the magnetic domain walls (DWs), which are observed for R = Nd in real space as well as in transport properties, is simultaneously turned into the insulating one. These findings imply that the DW electronic state is intimately linked to the bulk states. For the mixed R = Nd1-x Prx compounds, the divergent behavior of resistivity with antiferromagnetic order is significantly suppressed by applying a magnetic field along [001] direction. It is attributed to the phase transition from the antiferromagnetic insulating state to the novel Weyl (semi-)metal state accompanied by the change of magnetic structure. The present study combined with experiment and theory suggests that there are abundant exotic phases with physical parameters such as electron correlation and Ir-5 d magnetic order pattern. Work performed in collaboration with J. Fujioka, B.-J. Yang, C. Terakura, N. Nagaosa, Y. Tokura (University of Tokyo, RIKEN CEMS), J. Shiogai, A. Tsukazaki, S. Nakamura, S. Awaji (Tohoku University). 1This work was supported by JSPS FIRST Program and Grant-in-Aid for Scientific Research (Grants No. 80609488 and No. 24224009).

  1. X-ray scattering study of pyrochlore iridates: Crystal structure, electronic, and magnetic excitations

    DOE PAGES

    Clancy, J. P.; Gretarsson, H.; Lee, E. K. H.; ...

    2016-07-06

    We have investigated the structural, electronic, and magnetic properties of the pyrochlore iridates Eu2Ir2O7 and Pr2Ir2O7 using a combination of resonant elastic x-ray scattering, x-ray powder diffraction, and resonant inelastic x-ray scattering (RIXS). The structural parameters of Eu2Ir2O7 have been examined as a function of temperature and applied pressure, with a particular emphasis on regions of the phase diagram where electronic and magnetic phase transitions have been reported. We find no evidence of crystal symmetry change over the range of temperatures (~6 to 300 K) and pressures (~0.1 to 17 GPa) studied. We have also investigated the electronic and magneticmore » excitations in single-crystal samples of Eu2Ir2O7 and Pr2Ir2O7 using high-resolution Ir L-3-edge RIXS. In spite of very different ground state properties, we find that these materials exhibit qualitatively similar excitation spectra, with crystal field excitations at ~3-5 eV, spin-orbit excitations at ~ 0.5-1 eV, and broad low-lying excitations below ~0.15 eV. In single-crystal samples of "Eu-rich" Eu2Ir2O7 (found to possess an actual stoichiometry of Eu2.18Ir1.82O7.06) we observe highly damped magnetic excitations at ~45 meV, which display significant momentum dependence. Here, we compare these results with recent dynamical structure factor calculations« less

  2. X-ray scattering study of pyrochlore iridates: Crystal structure, electronic, and magnetic excitations

    SciTech Connect

    Clancy, J. P.; Gretarsson, H.; Lee, E. K. H.; Tian, Di; Kim, J.; Upton, M. H.; Casa, D.; Gog, T.; Islam, Z.; Jeon, Byung -Gu; Kim, Kee Hoon; Desgreniers, S.; Kim, Yong Baek; Julian, S. J.; Kim, Young -June

    2016-07-06

    We have investigated the structural, electronic, and magnetic properties of the pyrochlore iridates Eu2Ir2O7 and Pr2Ir2O7 using a combination of resonant elastic x-ray scattering, x-ray powder diffraction, and resonant inelastic x-ray scattering (RIXS). The structural parameters of Eu2Ir2O7 have been examined as a function of temperature and applied pressure, with a particular emphasis on regions of the phase diagram where electronic and magnetic phase transitions have been reported. We find no evidence of crystal symmetry change over the range of temperatures (~6 to 300 K) and pressures (~0.1 to 17 GPa) studied. We have also investigated the electronic and magnetic excitations in single-crystal samples of Eu2Ir2O7 and Pr2Ir2O7 using high-resolution Ir L-3-edge RIXS. In spite of very different ground state properties, we find that these materials exhibit qualitatively similar excitation spectra, with crystal field excitations at ~3-5 eV, spin-orbit excitations at ~ 0.5-1 eV, and broad low-lying excitations below ~0.15 eV. In single-crystal samples of "Eu-rich" Eu2Ir2O7 (found to possess an actual stoichiometry of Eu2.18Ir1.82O7.06) we observe highly damped magnetic excitations at ~45 meV, which display significant momentum dependence. Here, we compare these results with recent dynamical structure factor calculations

  3. Supercooled spin liquid state in the frustrated pyrochlore Dy2Ti2O7

    DOE PAGES

    Kassner, Ethan R.; Eyvazov, Azar B.; Pichler, Benjamin; ...

    2015-06-30

    A “supercooled” liquid develops when a fluid does not crystallize upon cooling below its ordering temperature. Instead, the microscopic relaxation times diverge so rapidly that, upon further cooling, equilibration eventually becomes impossible and glass formation occurs. Classic supercooled liquids exhibit specific identifiers including microscopic relaxation times diverging on a Vogel–Tammann–Fulcher (VTF) trajectory, a Havriliak–Negami (HN) form for the dielectric function ε(ω,T), and a general Kohlrausch–Williams–Watts (KWW) form for time-domain relaxation. Recently, the pyrochlore Dy2Ti2O7 has become of interest because its frustrated magnetic interactions may, in theory, lead to highly exotic magnetic fluids. However, its true magnetic state at low temperaturesmore » has proven very difficult to identify unambiguously. Here, we introduce high-precision, boundary-free magnetization transport techniques based upon toroidal geometries and gain an improved understanding of the time- and frequency-dependent magnetization dynamics of Dy2Ti2O7. We demonstrate a virtually universal HN form for the magnetic susceptibility χ(ω,T), a general KWW form for the real-time magnetic relaxation, and a divergence of the microscopic magnetic relaxation rates with the VTF trajectory. Low-temperature Dy2Ti2O7 therefore exhibits the characteristics of a supercooled magnetic liquid. Lastly, one implication is that this translationally invariant lattice of strongly correlated spins may be evolving toward an unprecedented magnetic glass state, perhaps due to many-body localization of spin.« less

  4. Thermochemical investigations of zirconolite, pyrochlore and brannerite: Three materials relevant to issues of plutonium immobilization

    NASA Astrophysics Data System (ADS)

    Helean, Katheryn Bridget

    For the purpose of immobilizing plutonium, a crystalline ceramic waste form is being developed that can be described as a pseudo-quaternary system consisting of CaHfTi2O7- CaPuTi2O7- CaUTi2O7- GdTi2O7. High-temperature oxide melt solution calorimetry offers an effective methodology for the determination of enthalpies of formation of rare earth-bearing and other refractory oxides relevant to the proposed waste form. Calorimetric investigations of the waste form end-member phases (using Ce as a Pu analogue) plus brannerite, the major waste form impurity, were conducted using 3Na2O•4MoO3 solvent at 975 K. Standard enthalpies of formation, DeltaH°f (kJ/mol), were derived for three pyrochlore phases: Ca0.93Ce1.00Ti 2.035O7.00 (-3656.0 +/- 5.6), Ca1.46U 4+0.23U6+0.46Ti1.85O 7.00 (-3610.6 +/- 4.1) and Gd2Ti2O 7 (-3822.5 +/- 4.9). Enthalpies of formation with respect to an oxide phase assemblage, DeltaH°f-ox: CaO+MO2+2TiO2=CaMTi2O7 or Gd 2O3+2TiO2=Gd2Ti2O7 , and an oxide/perovskite phase assemblage, DeltaH° f-pv+ox: CaTiO3+MO2+TiO2=CaMTi 2O7, M = Ce, U were also calculated. DeltaH° f-ox (kJ/mol): Gd2Ti2O7 (-113.4 +/- 2.8); Ca1.46U4+0.23U 6+0.46Ti1.85O7.00 (-123.1 +/- 3.4); Ca0.93Ce1.00Ti2.035O7.00 (-54.1 +/- 5.2). DeltaH°f-pv+ox (kJ/mol): Ca1.46U4+0.23U6+ 0.46Ti1.85O7.00 (-5.1 +/- 4.0); Ca 0.93Ce1.00Ti2.035O7.00 (+21.0 +/- 5.5). A significant metastability field was defined with respect to an oxide/perovskite phase assemblage. DeltaH°f (kJ/mol) were derived for two zirconolite phases: CaZr1.03Ti1.97O7 (-3719.4 +/- 3.9) and CaHf1.02Ti1.98O 7 (-3720.5 +/- 3.9). DeltaH° f-ox (kJ/mol): CaZr1.03Ti1.97O7 (-89.6 +/- 2.8); CaHf1.02Ti1.98O7 (-74.8 +/- 3.1). CaZr1.03Ti1.97O7 was stable with respect to a perovskite plus oxides assemblage (DeltaH° f-pv+ox = -8.8 +/- 3.3 kJ/mol). CaHf1.02Ti 1.98O7 was marginally metastable in enthalpy (Delta H°f-pv+ox = +6.0 +/- 3.5 kJ/mol). DeltaH°f (kJ/mol) were derived for three brannerites: CeTi2O6 (-2948.8 +/- 4.3); U0.97Ti2.03O6

  5. Anisotropic Exchange within Decoupled Tetrahedra in the Quantum Breathing Pyrochlore Ba3Yb2Zn5O11

    SciTech Connect

    Rau, J. G.; Wu, L. S.; May, A. F.; Poudel, L.; Winn, B.; Garlea, V. O.; Huq, A.; Whitfield, P.; Taylor, A. E.; Lumsden, M. D.; Gingras, M. J. P.; Christianson, A. D.

    2016-06-24

    The low energy spin excitation spectrum of the breathing pyrochlore Ba3Yb2Zn5O11 has been investigated with inelastic neutron scattering. Several nearly resolution limited modes with no observable dispersion are observed at 250 mK while, at elevated temperatures, transitions between excited levels become visible. To gain deeper insight, a theoretical model of isolated Yb3+ tetrahedra parametrized by four anisotropic exchange constants is constructed. The model reproduces the inelastic neutron scattering data, specific heat, and magnetic susceptibility with high fidelity. The fitted exchange parameters reveal a Heisenberg antiferromagnet with a very large Dzyaloshinskii-Moriya interaction. Ultimately, using this model, we predict the appearance of an unusual octupolar paramagnet at low temperatures and speculate on the development of inter-tetrahedron correlations.

  6. Electronic structure properties and superconductivity of the β-pyrochlore Os oxides, AOs2O6 (A=alkali metal)

    NASA Astrophysics Data System (ADS)

    Saniz, R.

    2005-03-01

    The recently discoveredootnotetextT. Muramatsu et al. J. Phys. Soc. Jpn. 73, 10 (2004). family of superconducting β-pyrochlores AOs2O6 (A=alkali metal) represents a particularly interesting example of the interplay between superconductivity and orbital and crystal structure degrees of freedom. Indeed, the pyrochlore lattice formed by the Os-O staggered chains appears to lead to very high Sommerfeld coefficients, increasing of Tc under positive pressure, and other intriguing properties. We present results of a first-principles study of the electronic structure and superconducting properties of these materials (A=Na, K, Rb, and Cs) using the highly precise full-potential linearized augmented plane wave (FLAPW) method.ootnotetextWimmer, Krakauer, Weinert, Freeman, Phys. Rev. B 24, 864 (1981). We show that the observed increase of Tc with decreasing mass of A as well as under positive hydrostatic pressure can both be well understood within a conventional phonon-mediated pairing picture. Furthermore, the density of states at EF depends critically on spin-orbit coupling, due to a van Hove singularity near EF, with a direct effect on Tc; the Fermi surface shows strong nesting, which is reflected in the dynamic susceptibility and thus indicates that spin fluctuations may play an important role in these materials.

  7. Magnetic structure and crystal-field states of the pyrochlore antiferromagnet Nd2Zr2O7

    NASA Astrophysics Data System (ADS)

    Xu, J.; Anand, V. K.; Bera, A. K.; Frontzek, M.; Abernathy, D. L.; Casati, N.; Siemensmeyer, K.; Lake, B.

    2015-12-01

    We present synchrotron x-ray diffraction, neutron powder diffraction, and time-of-flight inelastic neutron scattering measurements on the rare earth pyrochlore oxide Nd2Zr2O7 to study the ordered state magnetic structure and cystal-field states. The structural characterization by high-resolution synchrotron x-ray diffraction confirms that the pyrochlore structure has no detectable O vacancies or Nd/Zr site mixing. The neutron diffraction reveals long-range all-in/all-out antiferromagnetic order below TN≈0.4 K with propagation vector k = (0 0 0) and an ordered moment of 1.26 (2 ) μB /Nd at 0.1 K. The ordered moment is much smaller than the estimated moment of 2.65 μB /Nd for the local <111 > Ising ground state of Nd3 + (J =9 /2 ) suggesting that the ordering is partially suppressed by quantum fluctuations. The inelastic neutron scattering experiment further confirms the Ising anisotropic ground state of Nd3 + and also reveals its dipolar-octupolar character which possibly induces the quantum fluctuation. The crystal-field level scheme and ground state wave function have been determined.

  8. Crystal-field study of magnetization and specific heat properties of frustrated pyrochlore Pr2Zr2O7

    NASA Astrophysics Data System (ADS)

    Alam, J.; Jana, Y. M.; Biswas, A. Ali

    2016-10-01

    The experimental results of temperature dependent dc magnetic susceptibility, field dependent isothermal magnetization, magnetic specific heat and entropy of the pyrochlore Pr2Zr2O7 are simulated and analyzed using appropriate D3d crystal-field (CF) and anisotropic molecular field tensors at Pr-sites in the self-consistent mean-field approach involving four magnetically non-equivalent rare-earth spins on the tetrahedral unit of the pyrochlore structure. CF level pattern and wave-functions of the ground 3H4 multiplet of the Pr3+ ions are obtained considering intermediate coupling between different Russell-Saunders terms of the 4f2 electronic configurations of Pr-ion and J-mixing effects. CF analysis shows that the CF ground-state of the Pr3+ ion in Pr2Zr2O7 is a well-isolated doublet, with significant admixtures of terms coming from |MJ=±4> and |MJ=±1>, and the Pr-spins are effectively Ising-like along the local <111> axes. Magnetic specific heat in zero-field is simulated by considering a temperature dependence of the exchange splitting of the ground doublet.

  9. Magnetic structure and crystal-field states of the pyrochlore antiferromagnet Nd2Zr2O7

    DOE PAGES

    Xu, J.; Anand, V. K.; Bera, A. K.; ...

    2015-12-28

    In this paper, we present synchrotron x-ray diffraction, neutron powder diffraction, and time-of-flight inelastic neutron scattering measurements on the rare earth pyrochlore oxide Nd2Zr2O7 to study the ordered state magnetic structure and cystal-field states. The structural characterization by high-resolution synchrotron x-ray diffraction confirms that the pyrochlore structure has no detectable O vacancies or Nd/Zr site mixing. The neutron diffraction reveals long-range all-in/all-out antiferromagnetic order below TN≈0.4 K with propagation vector k = (0 0 0) and an ordered moment of 1.26(2) μB/Nd at 0.1 K. The ordered moment is much smaller than the estimated moment of 2.65μB/Nd for the localmore » <111> Ising ground state of Nd3+ (J=9/2) suggesting that the ordering is partially suppressed by quantum fluctuations. The inelastic neutron scattering experiment further confirms the Ising anisotropic ground state of Nd3+ and also reveals its dipolar-octupolar character which possibly induces the quantum fluctuation. Lastly, the crystal-field level scheme and ground state wave function have been determined.« less

  10. Pressure-induced phase transitions of β-type pyrochlore CsTaWO6

    SciTech Connect

    Zhang, F. X.; Tracy, C. L.; Shamblin, J.; Palomares, R. I.; Lang, M.; Park, S.; Park, C.; Tkachev, S.; Ewing, R. C.

    2016-09-30

    The β-type pyrochlore CsTaWO6 was studied by synchrotron X-ray diffraction (XRD) and Raman scattering methods up to pressures of 43 GPa using a diamond anvil cell (DAC). With increasing pressure, the cubic pyrochlore in space group of Fd-3¯m with combining macron]m transforms to an orthorhombic structure (space group: Pnma) at 5.9 GPa and then to a monoclinic structure (space group: P21/c) at ~18 GPa. The structural evolution in CsTaWO6 is a continuous process and experimental results suggest that the initial cubic phase has a tetragonal distortion at ambient conditions. Both XRD and Raman measurements indicate that the pressure-induced phase transitions in CsTaWO6 are reversible. Lastly, these results may provide a structural explanation of previous experimental resistivity measurement results for the isostructural superconductor K(Cs)Os2O6 at high pressure conditions.

  11. Possible observation of highly itinerant quantum magnetic monopoles in the frustrated pyrochlore Yb2Ti2O7

    PubMed Central

    Tokiwa, Y.; Yamashita, T.; Udagawa, M.; Kittaka, S.; Sakakibara, T; Terazawa, D.; Shimoyama, Y.; Terashima, T.; Yasui, Y.; Shibauchi, T.; Matsuda, Y.

    2016-01-01

    The low-energy elementary excitations in frustrated quantum magnets have fascinated researchers for decades. In frustrated Ising magnets on a pyrochlore lattice possessing macroscopically degenerate spin-ice ground states, the excitations have been discussed in terms of classical magnetic monopoles, which do not contain quantum fluctuations. Here we report unusual behaviours of magneto-thermal conductivity in the disordered spin-liquid regime of pyrochlore Yb2Ti2O7, which hosts frustrated spin-ice correlations with large quantum fluctuations owing to pseudospin-1/2 of Yb ions. The analysis of the temperature and magnetic field dependencies shows the presence of gapped elementary excitations. We find that the gap energy is largely suppressed from that expected in classical monopoles. Moreover, these excitations propagate a long distance without being scattered, in contrast to the diffusive nature of classical monopoles. These results suggests the emergence of highly itinerant quantum magnetic monopole, which is a heavy quasiparticle that propagates coherently in three-dimensional spin liquids. PMID:26912080

  12. Catalytic combustion of soot particulates over rare-earth substituted Ln2Sn2O7 pyrochlores (Ln=La, Nd and Sm).

    PubMed

    Wang, Zhongpeng; Zhu, Hongjian; Ai, Lijie; Liu, Xuhui; Lv, Min; Wang, Liguo; Ma, Zhenmin; Zhang, Zhaoliang

    2016-09-15

    Catalytic combustion is one of the most promising methods for diesel soot removal. Ln2Sn2O7 pyrochlores substituted with different rare-earth (RE) elements (Ln=La, Nd and Sm) were prepared through co-precipitation method for catalytic combustion of soot particulates. The structural, textural and redox properties, together with the oxygen vacancy of the catalysts were investigated systematically. Their catalytic activities were evaluated by both temperature-programmed oxidation and isothermal reaction techniques. With the increasing in RE ionic radius (r), the SnO bond strength in Ln2Sn2O7 pyrochlores evaluated from the stretching IR band was decreased, resulting in the improved reducibility and enhanced oxygen vacancies of catalysts. The increase of oxygen vacancy concentration was further confirmed by photoluminescence (PL) investigations wherein upon excitation with UV radiation, the pyrochlores nanoparticles exhibited strong and sharp transition at 408nm attributed to oxygen vacancies. Catalytic combustion and isothermal reactions revealed that the ignition activity (ignition temperature, T5) and the intrinsic activity (turnover frequency, TOF) were shown to depend correlatedly on redox properties and oxygen vacancy concentrations, both of which were influenced by the substitution of different RE elements. Among the pyrochlore oxides, the as-synthesized La2Sn2O7 sample displayed relatively the highest ignition activity and the largest intrinsic activity with TOF of 2.33×10(-3)s(-1).

  13. Self-irradiation induced structural changes in the transplutonium pyrochlores An{sub 2}Zr{sub 2}O{sub 7} (An=Am, Cf)

    SciTech Connect

    Sykora, Richard E. . E-mail: sykorare@ornl.gov; Raison, P.E.; Haire, Richard G.

    2005-02-15

    We have pursued the fundamental chemistry of actinide pyrochlore oxides, An{sub 2}Zr{sub 2}O{sub 7} (An=Am, Cm, Bk, and Cf), using X-ray diffraction as well as optical spectroscopy. One recent facet of our studies has been to observe the structural changes of these materials under self-irradiation as a function of time. It has been reported that both titanate and silicate materials transform from a crystalline to an amorphous state under irradiation. With the Zr-based actinide pyrochlores studied here, we have observed a phase change from a pyrochlore structure to a fluorite-type structure with the retention of crystallinity. We focus here on the impact of {alpha}-radiation ({sup 243}Am and {sup 249}Cf), rather than that from neutrons ({sup 248}Cm) or {beta}-radiation ({sup 249}Bk), on the An{sub 2}Zr{sub 2}O{sub 7} pyrochlore structures. As a result of this phase change, the local coordination environments of both the actinide and zirconium atoms are altered. We consider a defect/ion deficiency driven mechanism and also address the occurrence of oxidation of the trivalent actinides during the self-irradiation process as being potential mechanisms responsible for the observed phase change.

  14. Critical dynamics of the classical anisotropic BCC Heisenberg antiferromagnet.

    NASA Astrophysics Data System (ADS)

    Tsai, Shan-Ho; Bunker, Alex; Landau, D. P.

    2001-03-01

    Large-scale spin-dynamics simulations have been used to investigate the dynamic behavior of the classical Heisenberg antiferromagnet with single-site uniaxial anisotropy, in bcc lattices. Time evolutions of spin configurations were determined numerically from coupled equations of motion for individual spins using an algorithm implemented by Krech et al [1], which is based on fourth-order Suzuki-Trotter decompositions of exponential operators. The dynamic structure factor S(q,ω) was calculated from the space- and time-displaced spin-spin correlation function. Preliminary results for the transverse and the longitudinal components of S(q,ω) show that while the former is propagative, with a relatively short time scale, the latter is diffusive and its computation requires very long time integrations. Because of difficulties for experiments to probe the critical region, experimental data have not yet been able to distinguish between competing theories. While limited by finite lattice size and finite integration time, simulations offer the hope of shedding light on the differences between theories and experiment. [1] M. Krech, A. Bunker, D.P. Landau, Comput. Phys. Commun. 111, 1 (1998). Supported by NSF and SDSC

  15. Excited state correlations of the finite Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Pozsgay, Balázs

    2017-02-01

    We consider short range correlations in excited states of the finite XXZ and XXX Heisenberg spin chains. We conjecture that the known results for the factorized ground state correlations can be applied to the excited states too, if the so-called physical part of the construction is changed appropriately. For the ground state we derive simple algebraic expressions for the physical part; the formulas only use the ground state Bethe roots as an input. We conjecture that the same formulas can be applied to the excited states as well, if the exact Bethe roots of the excited states are used instead. In the XXZ chain the results are expected to be valid for all states (except certain singular cases where regularization is needed), whereas in the XXX case they only apply to singlet states or group invariant operators. Our conjectures are tested against numerical data from exact diagonalization and coordinate Bethe Ansatz calculations, and perfect agreement is found in all cases. In the XXX case we also derive a new result for the nearest-neighbour correlator < σ 1zσ 2z> , which is valid for non-singlet states as well. Our results build a bridge between the known theory of factorized correlations, and the recently conjectured TBA-like description for the building blocks of the construction.

  16. Field dependent spin transport of anisotropic Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Rezania, H.

    2016-04-01

    We have addressed the static spin conductivity and spin Drude weight of one-dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain in the finite magnetic field. We have investigated the behavior of transport properties by means of excitation spectrum in terms of a hard core bosonic representation. The effect of in-plane anisotropy on the spin transport properties has also been studied via the bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the spin conductivity and spin Drude weight in the gapped field induced spin-polarized phase for various magnetic field and anisotropy parameters. Furthermore we have studied the magnetic field dependence of static spin conductivity and Drude weight for various anisotropy parameters. Our results show the regular part of spin conductivity vanishes in isotropic case however Drude weight has a finite non-zero value and the system exhibits ballistic transport properties. We also find the peak in the static spin conductivity factor moves to higher temperature upon increasing the magnetic field at fixed anisotropy. The static spin conductivity is found to be monotonically decreasing with magnetic field due to increase of energy gap in the excitation spectrum. Furthermore we have studied the temperature dependence of spin Drude weight for different magnetic field and various anisotropy parameters.

  17. Soft Heisenberg hair on black holes in three dimensions

    NASA Astrophysics Data System (ADS)

    Afshar, Hamid; Detournay, Stephane; Grumiller, Daniel; Merbis, Wout; Perez, Alfredo; Tempo, David; Troncoso, Ricardo

    2016-05-01

    Three-dimensional Einstein gravity with a negative cosmological constant admits stationary black holes that are not necessarily spherically symmetric. We propose boundary conditions for the near-horizon region of these black holes that lead to a surprisingly simple near-horizon symmetry algebra consisting of two affine u ^(1 ) current algebras. The symmetry algebra is essentially equivalent to the Heisenberg algebra. The associated charges give a specific example of "soft hair" on the horizon, as defined by Hawking, Perry and Strominger. We show that soft hair does not contribute to the Bekenstein-Hawking entropy of Bañados-Teitelboim-Zanelli black holes and "black flower" generalizations. From the near-horizon perspective the conformal generators at asymptotic infinity appear as composite operators, which we interpret in the spirit of black hole complementarity. Another remarkable feature of our boundary conditions is that they are singled out by requiring that the whole spectrum is compatible with regularity at the horizon, regardless of the value of the global charges like mass or angular momentum. Finally, we address black hole microstates and generalizations to cosmological horizons.

  18. Mott glass phase in a diluted bilayer Heisenberg quantum antiferromagnet

    NASA Astrophysics Data System (ADS)

    Ma, Nv-Sen; Sandvik, Anders W.; Yao, Dao-Xin

    2015-09-01

    We use quantum Monte Carlo simulations to study a dimer-diluted S = 1/2 Heisenberg model on a bilayer square lattice with intralayer interaction J1 and interlayer interaction J2. Below the classical percolation threshold pc, the system has three phases reachable by tuning the interaction ratio g = J2/J1: a Néel ordered phase, a gapless quantum glass phase, and a gapped quantum paramagnetic phase. We present the ground-state phase diagram in the plane of dilution p and interaction ratio g. The quantum glass phase is certified to be of the gapless Mott glass type, having a uniform susceptibility vanishing at zero temperature T and following a stretched exponential form at T > 0; χu exp(-b/Tα) with α < 1. At the phase transition point from Neel ordered to Mott glass, we find that the critical exponents are different from those of the clean system described by the standard O(3) universality class in 2+1 dimensions.

  19. Valence bond distribution and correlation in bipartite Heisenberg antiferromagnets

    NASA Astrophysics Data System (ADS)

    Schwandt, David; Alet, Fabien; Oshikawa, Masaki

    2014-03-01

    Every singlet state of a quantum spin-1/2 system can be decomposed into a linear combination of valence bond basis states. The range of valence bonds within this linear combination as well as the correlations between them can reveal the nature of the singlet state and are key ingredients in variational calculations. In this work, we study the bipartite valence bond distributions and their correlations within the ground state of the Heisenberg antiferromagnet on bipartite lattices. In terms of field theory, this problem can be mapped to correlation functions near a boundary. In dimension d ≥2, a nonlinear σ model analysis reveals that at long distances the probability distribution P (r) of valence bond lengths decays as |r|-d-1 and that valence bonds are uncorrelated. By a bosonization analysis, we also obtain P(r )∝|r|-d-1 in d =1 despite the different mechanism. On the other hand, we find that correlations between valence bonds are important even at large distances in d =1, in stark contrast to d ≥2. The analytical results are confirmed by high-precision quantum Monte Carlo simulations in d =1, 2, and 3. We develop a single-projection loop variant of the valence bond projection algorithm, which is well designed to compute valence bond probabilities and for which we provide algorithmic details.

  20. Frustrated square lattice Heisenberg model and magnetism in Iron Telluride

    NASA Astrophysics Data System (ADS)

    Zaliznyak, Igor; Xu, Zhijun; Gu, Genda; Tranquada, John; Stone, Matthew

    2011-03-01

    We have measured spin excitations in iron telluride Fe1.1Te, the parent material of (1,1) family of iron-based superconductors. It has been recognized that J1-J2-J3 frustrated Heisenberg model on a square lattice might be relevant for the unusual magnetism and, perhaps, the superconductivity in cuprates [1,2]. Recent neutron scattering measurements show that similar frustrated model might also provide reasonable account for magnetic excitations in iron pnictide materials. We find that it also describes general features of spin excitations in FeTe parent compound observed in our recent neutron measurements, as well as in those by other groups. Results imply proximity of magnetic system to the limit of extreme frustration. Selection of spin ground state under such conditions could be driven by weak extrinsic interactions, such as lattice distortion, or strain. Consequently, different nonuniversal types of magnetic order could arise, both commensurate and incommensurate. These are not necessarily intrinsic to an ideal J1-J2-J3 model, but might result from lifting of its near degeneracy by weak extrinsic perturbations.

  1. Callen-like method for the classical Heisenberg ferromagnet

    NASA Astrophysics Data System (ADS)

    Campana, L. S.; Cavallo, A.; De Cesare, L.; Esposito, U.; Naddeo, A.

    2012-02-01

    A study of the d-dimensional classical Heisenberg ferromagnetic model in the presence of a magnetic field is performed within the two-time Green function's framework in classical statistical physics. We extend the well known quantum Callen method to derive analytically a new formula for magnetization. Although this formula is valid for any dimensionality, we focus on one- and three- dimensional models and compare the predictions with those arising from a different expression suggested many years ago in the context of the classical spectral density method. Both frameworks give results in good agreement with the exact numerical transfer-matrix data for the one-dimensional case and with the exact high-temperature-series results for the three-dimensional one. In particular, for the ferromagnetic chain, the zero-field susceptibility results are found to be consistent with the exact analytical ones obtained by M.E. Fisher. However, the formula derived in the present paper provides more accurate predictions in a wide range of temperatures of experimental and numerical interest.

  2. NMR spin relaxation rates in the Heisenberg bilayer

    NASA Astrophysics Data System (ADS)

    Mendes, Tiago; Curro, Nicholas; Scalettar, Richard; Paiva, Thereza; Dos Santos, Raimundo R.

    One of the striking features of heavy fermions is the fact that in the vicinity of a quantum phase transition these systems exhibit the breakdown of Fermi-liquid behavior and superconductivity. Nuclear magnetic resonance (NMR) expirements play an important role in the study of these phenomena. Measurements of NMR spin relaxation rates and Knight shift, for instance, can be used to probe the electronic spin susceptibility of these systems. Here we studied the NMR response of the Heisenberg bilayer model. In this model, it is well known that the increase of the interplane coupling between the planes, Jperp, supresses the antiferromagnetic order at a quantum critical point (QCP). We use stochastic series expansion (SSE) and the maximum-entropy analytic continuation method to calculate the NMR spin lattice relaxation rate 1 /T1 and the spin echo decay 1 /T2 G as function of Jperp. The spin echo decay, T2 G increases for small Jperp, due to the increase of the order parameter, and then vanishes abruptly in the QCP. The effects of Jperp dilution disorder in the QCP and the relaxation rates are also discussed. This research was supported by the NNSA Grant Number DE-NA 0002908, and Ciência sem fronteiras program/CNPQ.

  3. Stapp's quantum dualism: The James and Heisenberg model of consciousness

    NASA Astrophysics Data System (ADS)

    Noyes, H. P.

    1994-02-01

    Henry Stapp attempts to resolve the Cartesian dilemma by introducing what the author would characterize as an ontological dualism between mind and matter. His model for mind comes from William James' description of conscious events and for matter from Werner Heisenberg's ontological model for quantum events (wave function collapse). His demonstration of the isomorphism between the two types of events is successful, but in the author's opinion fails to establish a monistic, scientific theory. The author traces Stapp's failure to his adamant rejection of arbitrariness, or 'randomness.' This makes it impossible for him (or for Bohr and Pauli before him) to understand the power of Darwin's explanation of biology, let alone the triumphs of modern 'neo-Darwinism.' The author notes that the point at issue is a modern version of the unresolved opposition between Leucippus and Democritus on one side and Epicurus on the other. Stapp's views are contrasted with recent discussions of consciousness by two eminent biologists: Crick and Edelman. They locate the problem firmly in the context of natural selection on the surface of the earth. Their approaches provide a sound basis for further scientific work. The author briefly examines the connection between this scientific (rather than ontological) framework and the new fundamental theory based on bit-strings and the combinatorial hierarchy.

  4. Variational Monte Carlo investigation of SU (N ) Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Dufour, Jérôme; Nataf, Pierre; Mila, Frédéric

    2015-05-01

    Motivated by recent experimental progress in the context of ultracold multicolor fermionic atoms in optical lattices, we have investigated the properties of the SU (N) Heisenberg chain with totally antisymmetric irreducible representations, the effective model of Mott phases with m

  5. Heavy ion irradiation-induced microstructural evolution in pyrochlore Lu{sub 2}Ti{sub 2}O{sub 7} at room temperature and 723 K

    SciTech Connect

    Xie, Q.R.; Zhang, J. Dong, X.N.; Guo, Q.X.; Li, N.

    2015-11-15

    Polycrystalline pyrochlore Lu{sub 2}Ti{sub 2}O{sub 7} pellets were irradiated with 600 keV Kr{sup 3+} at room temperature and 723 K to a fluence of 4×10{sup 15} ions/cm{sup 2}, corresponding to an average ballistic damage dose of 10 displacements per atom in the peak damage region. Irradiation-induced microstructural evolution was examined by grazing incidence X-ray diffraction, and cross-sectional transmission electron microscopy. Incomplete amorphization was observed in the sample irradiated at room temperature due to the formation of nano-crystal which has the identical structure of pyrochlore, and the formation of nano-crystal is attributed to the mechanism of epitaxial recrystallization. However, an ordered pyrochlore phase to a swelling disordered fluorite phase transformation is occurred for the Lu{sub 2}Ti{sub 2}O{sub 7} sample irradiated at 723 K, which is due to the disordering of metal cations and anion vacancies. - Graphical Abstract: Polycrystalline pyrochlore Lu{sub 2}Ti{sub 2}O{sub 7} pellets were irradiated with 600 keV Kr{sup 3+} to a fluence of 4×10{sup 15} ions/cm{sup 2} at room temperature and 723 K, Incomplete amorphization was observed in the sample irradiated at room temperature due to the formation of nano-crystal. However, an ordered pyrochlore phase to a swelling disordered fluorite phase transformation is occurred for the Lu{sub 2}Ti{sub 2}O{sub 7} sample irradiated at 723 K, which is due to the disordering of metal cations and anion vacancies. - Highlights: Pyrochlore Lu{sub 2}Ti{sub 2}O{sub 7} pellets were irradiated by heavy ions at RT and 723 K. At RT irradiation, ~75% of amorphization was achieved. The nano-crystals were formed in the damage layer at RT irradiation. The formed nano-crystals enhanced the radiation tolerance of Lu{sub 2}Ti{sub 2}O{sub 7}. A pyrochlore to fluorite phase transformation was observed at 723 K irradiation.

  6. Empirical study of Kanji as archetypal images: understanding the collective unconscious as part of the Japanese language.

    PubMed

    Sotirova-Kohli, Milena; Rosen, David H; Smith, Steven M; Henderson, Patti; Taki-Reece, Sachiko

    2011-02-01

    Chinese characters originated as a semiotic system independent from spoken language and in the Japanese language they function non-phonetically with speakers exhibiting right-hemispheric advantage in their processing. We tested the hypothesis that Chinese characters are archetypal images and therefore part of our collective unconscious memory. Our study builds on the first empirical study of archetypal memory of Rosen et al. (1991) which demonstrated that archetypal symbols presented matched with their correct meaning were better learned and recalled. In a series of three experiments we used 40 Chinese characters instead of the archetypal symbols used by Rosen, et al. (1991). The results provided empirical evidence that Chinese characters matched with their correct meaning were significantly better recalled than the ones that were mismatched. Thus, we demonstrated that there appears to be unconscious knowledge of the meaning of the Chinese characters which was triggered as a result of priming when the characters were correctly matched with their meaning. On this basis, we suggest that Chinese characters exhibit the same cognitive qualities as archetypal symbols. Thus, in the Japanese language an archetypal image is integrated non-phonetically into the system of language and signifies the concept independent from the phonetic signifier and is equal to it.

  7. Housing Archetype Analysis for Home Energy-Efficient Retrofit in the Great Lakes Region

    SciTech Connect

    Kim, S. -K.; Mrozowski, T.; Harrell-Seyburn, A.; Ehrlich, N.; Hembroff, L.; Lieburn, B.; Mazor, M.; McIntyre, A.; Mutton, C.; Parsons, G.; Syal, M. G.; Wilkinson, R.

    2014-09-01

    This project report details activities and results of the "Market Characterization" project undertaken by the Cost Effective Energy Retrofit (CEER) team targeted toward the DOE goal of achieving 30%-50% reduction in existing building energy use. CEER consists of members from the Dow Chemical Company, Michigan State University, Ferris State University, and Habitat for Humanity Kent County. The purpose of this market characterization project was to identify housing archetypes which are dominant within the Great Lakes region and therefore offer significant potential for energy-efficient retrofit research and implementation due to the substantial number of homes possessing similar characteristics. Understanding the characteristics of housing groups referred to as "archetypes" by vintage, style, and construction characteristics can allow research teams to focus their retrofit research and develop prescriptive solutions for those structure types which are prevalent and offer high potential uptake within a region or market.

  8. The multiplicity of dreams: cognitive-affective correlates of lucid, archetypal, and nightmare dreaming.

    PubMed

    Spadafora, A; Hunt, H T

    1990-10-01

    This preliminary research is the first to compare lucid, nightmare, and archetypal-mythological dreams on dimensions important in previous research on each. A first study of 100 subjects showed all three forms significantly correlated with each other and with estimates of dream recall. In a second study, 41 subjects were selected from the above on the basis of relative specialization in each dream form, with a control group equally high on dream recall. Here, the lucid and archetypal dreamers tended to separate themselves from nightmare sufferers on the basis of high imaginativeness, proclivity to waking mystical experience, spatial/analytic skills, and physical balance. It appears that the intensification of dreaming is expressed positively or negatively, depending on variations in these cognitive dimensions.

  9. Method to integrate clinical guidelines into the electronic health record (EHR) by applying the archetypes approach.

    PubMed

    Garcia, Diego; Moro, Claudia Maria Cabral; Cicogna, Paulo Eduardo; Carvalho, Deborah Ribeiro

    2013-01-01

    Clinical guidelines are documents that assist healthcare professionals, facilitating and standardizing diagnosis, management, and treatment in specific areas. Computerized guidelines as decision support systems (DSS) attempt to increase the performance of tasks and facilitate the use of guidelines. Most DSS are not integrated into the electronic health record (EHR), ordering some degree of rework especially related to data collection. This study's objective was to present a method for integrating clinical guidelines into the EHR. The study developed first a way to identify data and rules contained in the guidelines, and then incorporate rules into an archetype-based EHR. The proposed method tested was anemia treatment in the Chronic Kidney Disease Guideline. The phases of the method are: data and rules identification; archetypes elaboration; rules definition and inclusion in inference engine; and DSS-EHR integration and validation. The main feature of the proposed method is that it is generic and can be applied toany type of guideline.

  10. Managing care pathways combining SNOMED CT, archetypes and an electronic guideline system.

    PubMed

    Bernstein, Knut; Andersen, Ulrich

    2008-01-01

    Today electronic clinical guideline systems exist, but they are not well integrated with electronic health records. This paper thus proposes that the patient's "position" in the pathway during the patient journey should be made visible to all involved healthcare parties and the patient. This requires that the generic knowledge, which is represented in the guidelines, is combined with the patient specific information - and then made accessible for all relevant parties. In addition to the decision support provided by the guideline system documentation support can be provided by templates based on archetypes. This paper provides a proposal for how the guideline system and the EHR can be integrated by the use of archetypes and SNOMED CT. SNOMED CT provides the common reference terminology and the semantic links between the systems. The proposal also includes the use of a National Patient Index for storing data about the patient's position in the pathway and for sharing this information by all involved parties.

  11. Construction and use of facial archetypes in anthropology and syndrome diagnosis.

    PubMed

    Shaweesh, A I M; Clement, J G; Thomas, C D L; Bankier, A

    2006-05-15

    This paper describes the benefits of moving from recording simple Euclidian distances and angles between landmarks on the face to full three-dimensional visualisation and mapping using modern optical scanning techniques. Pilot experiments are reported on that strive to create facial archetypes which are accurately descriptive of various cohorts of people. Issues considered include variation amongst people of the same sex, age and population-of-origin. The study has discovered that very few people are needed to construct an "average" face, which is measurably indistinguishable from another average constructed using the faces of other people from within the group studied. This discovery has given the researchers confidence in the reliability of the archetypes which they have produced and this is important if such an analytical technique is to find application in discriminating between peoples on a population basis and in syndrome diagnosis.

  12. Towards automatically generating graphical user interfaces from openEHR archetypes.

    PubMed

    Schuler, Thilo; Garde, Sebastian; Heard, Sam; Beale, Thomas

    2006-01-01

    One of the main challenges in the field of Electronic Health Records (EHRs) is semantic interoperability. To utilise the full potential of interoperable EHR systems they have to be accepted by their users, the health care providers. Good Graphical User Interfaces (GUIs) that support customisation and data validation play a decisive role for user acceptance and data quality. This study investigates the use of openEHR archetypes to automatically generate coherent, customizable, data-validating GUIs. Using the Mozilla XML User Interface Language (XUL) a series of prototypes has been developed. The results show that the automatic generation of GUIs from openEHR archetypes is feasible in principle. Although XUL revealed some problems, the advantages of XML-based GUI languages are evident.

  13. The 'self' in analytical psychology: the function of the 'central archetype' within Fordham's model.

    PubMed

    Urban, Elizabeth

    2008-06-01

    This paper concerns the self as Fordham came to conceive it after a conceptual analysis of Jung's use of the term. Fordham identified a contradiction in Jung's usage, and resolved it by reserving 'self' for a definition of the psychosomatic entirety of the individual, and using a separate term for referring to expressions of the self in human experience (e.g. symbols). Fordham tentatively suggested that the latter be termed the 'central archetype', although this was neither developed nor dropped. I explore the value of this term from a developmental perspective and, more specifically in terms of the deintegration of psyche out of an early psychosomatic unity. This draws upon infant research and an observation of a 14-month old boy. Finally, further developments are briefly described and illustrated, whereby pre-symbolic expressions of the central archetype become symbolic and come to reflect what was for Jung, the 'ultimate', 'Formation, Transformation, Eternal Mind's eternal recreation'.

  14. Combining Archetypes with Fast Health Interoperability Resources in Future-proof Health Information Systems.

    PubMed

    Bosca, Diego; Moner, David; Maldonado, Jose Alberto; Robles, Montserrat

    2015-01-01

    Messaging standards, and specifically HL7 v2, are heavily used for the communication and interoperability of Health Information Systems. HL7 FHIR was created as an evolution of the messaging standards to achieve semantic interoperability. FHIR is somehow similar to other approaches like the dual model methodology as both are based on the precise modeling of clinical information. In this paper, we demonstrate how we can apply the dual model methodology to standards like FHIR. We show the usefulness of this approach for data transformation between FHIR and other specifications such as HL7 CDA, EN ISO 13606, and openEHR. We also discuss the advantages and disadvantages of defining archetypes over FHIR, and the consequences and outcomes of this approach. Finally, we exemplify this approach by creating a testing data server that supports both FHIR resources and archetypes.

  15. Certification of Electronic Health Record systems and the importance of the validation of clinical archetypes.

    PubMed

    De Moor, Georges; Kalra, Dipak; Devlies, Jos

    2008-01-01

    If Electronic Health Record (EHR) systems are to provide an effective contribution to healthcare across Europe, a set of benchmarks need to be set to ensure the quality of such systems. This article describes the results of the EU funded QRec- project and emphasizes the need for validation of clinical archetypes to support the semantic interoperability between EHR systems and other interacting eHealth applications.

  16. Off the Beat. An Appreciation of Werner Heisenberg and Some Talk About How Physics Was in the Good Old Days

    ERIC Educational Resources Information Center

    Thomsen, Dietrick E.

    1976-01-01

    Presented is an insight into man's idea about physics and being a physicist in the days when Heisenberg, P. A. M. Dirac, Louis de Broglic and other famous physicists were young men. Heisenberg is compared to Newton, inventing new math as he needed it. Emphasis is placed on the fact that he was not a Nazi sympathizer. (EB)

  17. Energy spectrum of the two-magnon bound states in the Heisenberg-Ising antiferromagnet on the square lattice

    NASA Astrophysics Data System (ADS)

    Hamer, C. J.

    2009-06-01

    The energy spectra of the two-magnon bound states in the Heisenberg-Ising antiferromagnet on the square lattice are calculated using series expansion methods. The results confirm an earlier spin-wave prediction of Oguchi and Ishikawa that the bound states vanish into the continuum before the isotropic Heisenberg limit is reached.

  18. Rearrangements of archetypal regulatory regions in JC virus genomes from urine.

    PubMed

    Agostini, H T; Ryschkewitsch, C F; Stoner, G L

    1998-01-01

    The regulatory region of progressive multifocal leukoencephalopathy-type JC virus (JCV) is rearranged in each host by a process of deletion and duplication. Of the more than 40 that have been examined, no two regulatory regions have been rearranged identically in the brain. The substrate for this rearrangement appears to be a highly stable archetypal regulatory region excreted in the urine. Its role as the transmissible form of the virus, although inferred, has never been proven. We have now amplified by PCR and cycle-sequenced the regulatory regions from 48 urinary strains of the virus. We find that the urinary form of the regulatory region is not entirely stable. Short deletions and duplications in the range of 2-16 bp were observed in seven of these strains. One of these, an inverted repeat, is a pattern of rearrangement not yet found in the brain. Two others (#208 and 230) showed a 2-bp deletion at position nos. 221 and 222, and an unusual mutation at position no. 219. These two urines were collected in different states of the USA at different times and analysed months apart. It is very unlikely that these unusual changes represent sample contamination or that they arose independently. This finding indicates that archetypal forms of the JCV regulatory region are infectious, despite their relative inactivity in tissue culture. While changes in the archetypal structure can be found, it is clear that rearrangements in the kidney are rare or rarely infectious.

  19. Development of ISO 13606 archetypes for the standardisation of data registration in the Primary Care environment.

    PubMed

    Barros Castro, Jesús; Lamelo Alfonsín, Alejandro; Prieto Cebreiro, Javier; Rimada Mora, Dolores; Carrajo García, Lino; Vázquez González, Guillermo

    2015-01-01

    On daily procedures, companies and organizations produce a wide quantity of data. Medical information doubles every five years approximately, and most of this information has no structure and cannot be utilised. Information obtained during Primary Health Care (PC) consultations is expected to be standardized and organised following instructions made by archetype 13606 of the International Organization for Standardization (ISO) in order to guarantee the Continuity of Care as well as the potential use of these data for secondary purposes, such as investigation or statistics. This study was designed to investigate the feasibility of representing the information collected in Primary Care consultations in a structured and normalized way. A key difference to other approaches is that the intended solution is, to the best of our knowledge, the first one to register all the information collected in this area. The participation of the Primary Health Care service (PC) from Complejo Hospitalario Universitario de A Coruña (CHUAC) has been of vital importance in this project as it has provided the necessary clinical knowledge and it has allowed us to verify the effectiveness obtained in actual environments. The archetypes developed can be reused in a wide range of projects. As an example of use, we have used these archetypes to create an intelligent system that generates organised reports based on the information dictated on a medical consultation which, afterwards, can be analysed from an analytical point of view.

  20. Impact of distributions on the archetypes and prototypes in heterogeneous nanoparticle ensembles.

    PubMed

    Fernandez, Michael; Wilson, Hugh F; Barnard, Amanda S

    2017-01-05

    The magnitude and complexity of the structural and functional data available on nanomaterials requires data analytics, statistical analysis and information technology to drive discovery. We demonstrate that multivariate statistical analysis can recognise the sets of truly significant nanostructures and their most relevant properties in heterogeneous ensembles with different probability distributions. The prototypical and archetypal nanostructures of five virtual ensembles of Si quantum dots (SiQDs) with Boltzmann, frequency, normal, Poisson and random distributions are identified using clustering and archetypal analysis, where we find that their diversity is defined by size and shape, regardless of the type of distribution. At the complex hull of the SiQD ensembles, simple configuration archetypes can efficiently describe a large number of SiQDs, whereas more complex shapes are needed to represent the average ordering of the ensembles. This approach provides a route towards the characterisation of computationally intractable virtual nanomaterial spaces, which can convert big data into smart data, and significantly reduce the workload to simulate experimentally relevant virtual samples.

  1. Using community archetypes to better understand differential community adaptation to wildfire risk.

    PubMed

    Carroll, Matthew; Paveglio, Travis

    2016-06-05

    One of the immediate challenges of wildfire management concerns threats to human safety and property in residential areas adjacent to non-cultivated vegetation. One approach for relieving this problem is to increase human community 'adaptiveness' to deal with the risk and reality of fire in a variety of landscapes. The challenge in creating 'fire-adapted communities' (FACs) is the great diversity in character and make-up of populations at risk from wildfire. This paper outlines a recently developed categorization scheme for Wildland-Urban Interface (WUI) communities based on a larger conceptual approach for understanding how social diversity is likely to influence the creation of FACs. The WUI categorization scheme situates four community archetypes on a continuum that recognizes dynamic change in human community functioning. We use results from the WUI classification scheme to outline key characteristics associated with each archetype and results from recent case studies to demonstrate the diversity across WUI communities. Differences among key characteristics of local social context will likely result in the need for different adaptation strategies to wildfire. While the WUI archetypes described here may not be broadly applicable to other parts of the world, we argue that the conceptual approach and strategies for systematically documenting local influences on wildfire adaptation have potential for broad application.This article is part of the themed issue 'The interaction of fire and mankind'.

  2. Spin correlations in the dipolar pyrochlore antiferromagnet Gd2Sn2O7

    NASA Astrophysics Data System (ADS)

    Paddison, Joseph A. M.; Ehlers, Georg; Petrenko, Oleg A.; Wildes, Andrew R.; Gardner, Jason S.; Stewart, J. Ross

    2017-04-01

    We investigate spin correlations in the dipolar Heisenberg antiferromagnet Gd2Sn2O7 using polarised neutron-scattering measurements in the correlated paramagnetic regime. Using Monte Carlo methods, we show that our data are sensitive to weak further-neighbour exchange interactions of magnitude  ∼0.5% of the nearest-neighbour interaction, and are compatible with either antiferromagnetic next-nearest-neighbour interactions, or ferromagnetic third-neighbour interactions that connect spins across hexagonal loops. Calculations of the magnetic scattering intensity reveal rods of diffuse scattering along [1 1 1] reciprocal-space directions, which we explain in terms of strong antiferromagnetic correlations parallel to the set of < 1 1 0> directions that connect a given spin with its nearest neighbours. Finally, we demonstrate that the spin correlations in Gd2Sn2O7 are highly anisotropic, and correlations parallel to third-neighbour separations are particularly sensitive to critical fluctuations associated with incipient long-range order.

  3. Competing orders and topology in the global phase diagram of pyrochlore iridates

    NASA Astrophysics Data System (ADS)

    Goswami, Pallab; Roy, Bitan; Das Sarma, Sankar

    2017-02-01

    Strong electronic interactions and spin-orbit coupling can be conducive for realizing novel broken symmetry phases supporting quasiparticles with nontrivial band topology. 227 pyrochlore iridates provide a suitable material platform for studying such emergent phenomena where both topology and competing orders play important roles. In contrast to the most members of this material class, which are thought to display "all-in-all-out" (AIAO) type magnetically ordered low-temperature insulating ground states, Pr2Ir2O7 remains metallic while exhibiting "spin-ice" (SI) correlations at low temperatures. Additionally, this is the only 227 iridate compound, which exhibits a large anomalous Hall effect (AHE) along the [1,1,1] direction below 1.5 K, without possessing any measurable magnetic moment. By focusing on the normal state of 227 iridates, described by a parabolic semimetal with quadratic band touching, we use renormalization group analysis, mean-field theory, and phenomenological Landau theory as three complementary methods to construct a global phase diagram in the presence of generic local interactions among itinerant electrons of Ir ions. While the global phase diagram supports several competing multipolar orders, motivated by the phenomenology of 227 iridates we particularly emphasize the competition between AIAO and SI orders and how it can cause a mixed phase with "three-in-one-out" (3I1O) spin configurations. In terms of topological properties of Weyl quasiparticles of the 3I1O state, we provide an explanation for the magnitude and the direction of the observed AHE in Pr2Ir2O7 . We propose a strain-induced enhancement of the onset temperature for AHE in thin films of Pr2Ir2O7 and additional experiments for studying competing orders in the vicinity of the metal-insulator transition. In addition to providing a theory for competing orders and magnetic properties of Pr2Ir2O7 , the theoretical framework developed in this work should also be useful for a better

  4. Magnetization Process and Magnetocaloric Effect of the Spin-1/2 XXZ Heisenberg Cuboctahedron

    NASA Astrophysics Data System (ADS)

    Karľová, Katarína; Strečka, Jozef

    2016-10-01

    Magnetic properties of the spin-1/2 XXZ Heisenberg cuboctahedron are examined using exact numerical diagonalization depending on a relative strength of the exchange anisotropy. While the Ising cuboctahedron exhibits in a low-temperature magnetization curve only one-third magnetization plateau, the XXZ Heisenberg cuboctahedron displays another four intermediate plateaux at zero, one-sixth, one-half and two-thirds of the saturation magnetization. The novel magnetization plateaux generally extend over a wider range of magnetic fields with increasing of a quantum (xy) part of the XXZ exchange interaction. It is shown that the XXZ Heisenberg cuboctahedron exhibits in the vicinity of all magnetization jumps anomalous thermodynamic behavior accompanied by an enhanced magnetocaloric effect.

  5. Near-Heisenberg-limited atomic clocks in the presence of decoherence.

    PubMed

    Borregaard, J; Sørensen, A S

    2013-08-30

    The ultimate stability of atomic clocks is limited by the quantum noise of the atoms. To reduce this noise it has been suggested to use entangled atomic ensembles with reduced atomic noise. Potentially this can push the stability all the way to the limit allowed by the Heisenberg uncertainty relation, which is denoted the Heisenberg limit. In practice, however, entangled states are often more prone to decoherence, which may prevent reaching this performance. Here we present an adaptive measurement protocol that in the presence of a realistic source of decoherence enables us to get near-Heisenberg-limited stability of atomic clocks using entangled atoms. The protocol may thus realize the full potential of entanglement for quantum metrology despite the detrimental influence of decoherence.

  6. Experimental violation and reformulation of the Heisenberg's error-disturbance uncertainty relation

    NASA Astrophysics Data System (ADS)

    Baek, So-Young; Kaneda, Fumihiro; Ozawa, Masanao; Edamatsu, Keiichi

    2013-07-01

    The uncertainty principle formulated by Heisenberg in 1927 describes a trade-off between the error of a measurement of one observable and the disturbance caused on another complementary observable such that their product should be no less than the limit set by Planck's constant. However, Ozawa in 1988 showed a model of position measurement that breaks Heisenberg's relation and in 2003 revealed an alternative relation for error and disturbance to be proven universally valid. Here, we report an experimental test of Ozawa's relation for a single-photon polarization qubit, exploiting a more general class of quantum measurements than the class of projective measurements. The test is carried out by linear optical devices and realizes an indirect measurement model that breaks Heisenberg's relation throughout the range of our experimental parameter and yet validates Ozawa's relation.

  7. Violation of Heisenberg's error-disturbance uncertainty relation in neutron-spin measurements

    NASA Astrophysics Data System (ADS)

    Sulyok, Georg; Sponar, Stephan; Erhart, Jacqueline; Badurek, Gerald; Ozawa, Masanao; Hasegawa, Yuji

    2013-08-01

    In its original formulation, Heisenberg's uncertainty principle dealt with the relationship between the error of a quantum measurement and the thereby induced disturbance on the measured object. Meanwhile, Heisenberg's heuristic arguments have turned out to be correct only for special cases. An alternative universally valid relation was derived by Ozawa in 2003. Here, we demonstrate that Ozawa's predictions hold for projective neutron-spin measurements. The experimental inaccessibility of error and disturbance claimed elsewhere has been overcome using a tomographic method. By a systematic variation of experimental parameters in the entire configuration space, the physical behavior of error and disturbance for projective spin-(1)/(2) measurements is illustrated comprehensively. The violation of Heisenberg's original relation, as well as the validity of Ozawa's relation become manifest. In addition, our results conclude that the widespread assumption of a reciprocal relation between error and disturbance is not valid in general.

  8. Effective low-energy description of almost Ising-Heisenberg diamond chain

    NASA Astrophysics Data System (ADS)

    Derzhko, Oleg; Krupnitska, Olesia; Lisnyi, Bohdan; Strečka, Jozef

    2015-11-01

    We consider a geometrically frustrated spin-(1/2) Ising-Heisenberg diamond chain, which is an exactly solvable model when assuming part of the exchange interactions as Heisenberg ones and another part as Ising ones. A small XY part is afterwards perturbatively added to the Ising couplings, which enabled us to derive an effective Hamiltonian describing the low-energy behavior of the modified but full quantum version of the initial model. The effective model is much simpler and free of frustration. It is shown that the XY part added to the originally Ising interaction gives rise to the spin-liquid phase with continuously varying magnetization, which emerges between the magnetization plateaus and is totally absent in the initial hybrid diamond-chain model. The elaborated approach can also be applied to other hybrid Ising-Heisenberg spin systems.

  9. Quantum phase diagrams and phase transitions in frustrated two-dimensional Heisenberg models

    NASA Astrophysics Data System (ADS)

    Sheng, Donna

    2014-03-01

    The quantum spin liquid is an emergent state of matter, which has attracted a lot of recent attention. I will review recent numerical progress based on the density matrix renormalization calculations in identifying gapped spin liquid in two-dimensional frustrated spin systems. I will first focus on extended model with Heisenberg exchange couplings on kagome lattice and demonstrate a topological state with fractionalized spinon and emergent gauge field clearly shown in numerical simulations. I will present concrete results on the quantum phase diagram of the extended kagome Heisenberg model, and compare that with the phase diagrams of the square and honeycomb lattice models with the dominant plaquette valence bond phase in nonmagnetic region. I will discuss numerical effort and theoretical challenge in fully pinning down the nature of the gapped topological phase, and also the nature of the quantum phase transitions in these Heisenberg systems. The research was supported by the National Science Foundation grant DMR-0906816.

  10. High-temperature series expansion for spin-1/2 Heisenberg models

    NASA Astrophysics Data System (ADS)

    Hehn, Andreas; van Well, Natalija; Troyer, Matthias

    2017-03-01

    We present a high-temperature series expansion code for spin-1/2 Heisenberg models on arbitrary lattices. As an example we demonstrate how to use the application for an anisotropic triangular lattice with two independent couplings J1 and J2 and calculate the high-temperature series of the magnetic susceptibility and the static structure factor up to 12th and 10th order, respectively. We show how to extract effective coupling constants for the triangular Heisenberg model from experimental data on Cs2CuBr4.

  11. Monte Carlo simulation of Prussian blue analogs described by Heisenberg ternary alloy model

    NASA Astrophysics Data System (ADS)

    Yüksel, Yusuf

    2015-11-01

    Within the framework of Monte Carlo simulation technique, we simulate magnetic behavior of Prussian blue analogs based on Heisenberg ternary alloy model. We present phase diagrams in various parameter spaces, and we compare some of our results with those based on Ising counterparts. We clarify the variations of transition temperature and compensation phenomenon with mixing ratio of magnetic ions, exchange interactions, and exchange anisotropy in the present ferro-ferrimagnetic Heisenberg system. According to our results, thermal variation of the total magnetization curves may exhibit N, L, P, Q, R type behaviors based on the Néel classification scheme.

  12. Topological triple-vortex lattice stabilized by mixed frustration in expanded honeycomb Kitaev-Heisenberg model

    PubMed Central

    Yao, Xiaoyan; Dong, Shuai

    2016-01-01

    The expanded classical Kitaev-Heisenberg model on a honeycomb lattice is investigated with the next-nearest-neighboring Heisenberg interaction considered. The simulation shows a rich phase diagram with periodic behavior in a wide parameter range. Beside the double 120° ordered phase, an inhomogeneous phase is uncovered to exhibit a topological triple-vortex lattice, corresponding to the hexagonal domain structure of vector chirality, which is stabilized by the mixed frustration of two sources: the geometrical frustration arising from the lattice structure as well as the frustration from the Kitaev couplings. PMID:27229486

  13. Heisenberg-limited interferometry with pair coherent states and parity measurements

    SciTech Connect

    Gerry, Christopher C.; Mimih, Jihane

    2010-07-15

    After reviewing parity-measurement-based interferometry with twin Fock states, which allows for supersensitivity (Heisenberg limited) and super-resolution, we consider interferometry with two different superpositions of twin Fock states, namely, two-mode squeezed vacuum states and pair coherent states. This study is motivated by the experimental challenge of producing twin Fock states on opposite sides of a beam splitter. We find that input two-mode squeezed states, while allowing for Heisenberg-limited sensitivity, do not yield super-resolutions, whereas both are possible with input pair coherent states.

  14. Anomalous pressure dependence of the superconducting transition temperature of beta-pyrochlore AOs2O6 oxides.

    PubMed

    Muramatsu, T; Takeshita, N; Terakura, C; Takagi, H; Tokura, Y; Yonezawa, S; Muraoka, Y; Hiroi, Z

    2005-10-14

    High-pressure effects on the superconducting transitions of beta-pyrochlore oxide superconductors AOs(2)O(6) (A = Cs,Rb,K) are studied by measuring resistivity under high pressures up to 10 GPa. The superconducting transition temperature T(c) first increases with increasing pressure in every compound and then exhibits a broad maximum at 7.6 K (6 GPa), 8.2 K (2 GPa), and 10 K (0.6 GPa) for A = Cs, Rb, and K, respectively. Finally, the superconductivity is suppressed completely at a critical pressure near 7 GPa and 6 GPa for A = Rb and K and probably above 10 GPa for A = Cs. Characteristic changes in the coefficient A of the T(2) term in resistivity and residual resistivity are observed, both of which are synchronized with the corresponding change in T(c).

  15. Thermal conductivity of the pyrochlore superconductor KOs2O6: strong electron correlations and fully gapped superconductivity.

    PubMed

    Kasahara, Y; Shimono, Y; Shibauchi, T; Matsuda, Y; Yonezawa, S; Muraoka, Y; Hiroi, Z

    2006-06-23

    To elucidate the nature of the superconducting ground state of the geometrically frustrated pyrochlore KOs2O6 (Tc=9.6 K), the thermal conductivity was measured down to low temperatures (approximately Tc/100). We found that the quasiparticle mean free path is strikingly enhanced below a transition at Tp=7.8 K, indicating enormous electron inelastic scattering in the normal state. In magnetic fields, the conduction at T-->0 K is nearly constant up to approximately 0.4Hc2, in contrast with the rapid growth expected for superconductors with an anisotropic gap. This unambiguously indicates a fully gapped superconductivity, in contrast with previous studies. These results highlight that KOs2O6 is unique among superconductors with strong electron correlations.

  16. Vortex redistribution below the first-order transition temperature in the beta-pyrochlore superconductor KOs2O6.

    PubMed

    Shibauchi, T; Konczykowski, M; van der Beek, C J; Okazaki, R; Matsuda, Y; Yamaura, J; Nagao, Y; Hiroi, Z

    2007-12-21

    A miniature Hall-sensor array was used to detect magnetic induction locally in the vortex states of the beta-pyrochlore superconductor KOs2O6. Below the first-order transition at T{p} approximately 8 K, which is associated with a change in the rattling motion of K ions, the lower critical field and the remanent magnetization both show a distinct decrease, suggesting that the electron-phonon coupling is weakened below the transition. At high magnetic fields, the local induction shows an unexpectedly large jump at T{p} whose sign changes with position inside the sample. Our results demonstrate a novel redistribution of vortices whose energy is reduced abruptly below the first-order transition at T{p}.

  17. Scanning Tunneling Spectroscopy in the Superconducting State and Vortex Cores of the β-Pyrochlore KOs2O6

    NASA Astrophysics Data System (ADS)

    Dubois, C.; Santi, G.; Cuttat, I.; Berthod, C.; Jenkins, N.; Petrović, A. P.; Manuel, A. A.; Fischer, Ø.; Kazakov, S. M.; Bukowski, Z.; Karpinski, J.

    2008-08-01

    We performed the first scanning tunneling spectroscopy measurements on the pyrochlore superconductor KOs2O6 (Tc=9.6K) in both zero magnetic field and the vortex state at several temperatures above 1.95 K. This material presents atomically flat surfaces, yielding spatially homogeneous spectra which reveal fully gapped superconductivity with a gap anisotropy of 30%. Measurements performed at fields of 2 and 6 T display a hexagonal Abrikosov flux line lattice. From the shape of the vortex cores, we extract a coherence length of 31 40 Å, in agreement with the value derived from the upper critical field Hc2. We observe a reduction in size of the vortex cores (and hence the coherence length) with increasing field which is consistent with the unexpectedly high and unsaturated upper critical field reported.

  18. Ab initio molecular dynamics simulations of ion-solid interactions in zirconate pyrochlores

    SciTech Connect

    Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.

    2015-01-31

    In this paper, an ab initio molecular dynamics method is employed to study low energy recoil events in zirconate pyrochlores (A2Zr2O7, A = La, Nd and Sm). It shows that both cations and anions in Nd2Zr2O7 and Sm2Zr2O7 are generally more likely to be displaced than those in La2Zr2O7. The damage end states mainly consist of Frenkel pair defects, and the Frenkel pair formation energies in Nd2Zr2O7 and Sm2Zr2O7 are lower than those in La2Zr2O7. These results suggest that the order–disorder structural transition more easily occurs in Nd2Zr2O7 and Sm2Zr2O7 resulting in a defect-fluorite structure, which agrees well with experimental observations. Our calculations indicate that oxygen migration from 48f and 8b to 8a sites is dominant under low energy irradiation. A number of new defects, including four types of cation Frenkel pairs and six types of anion Frenkel pairs, are revealed by ab initio molecular dynamics simulations. The present findings may help to advance the fundamental understanding of the irradiation response behavior of zirconate pyrochlores.

  19. High-pressure behavior of A2B2O7 pyrochlore (A=Eu, Dy; B=Ti, Zr)

    NASA Astrophysics Data System (ADS)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Fuentes, Antonio F.; Yan, Jinyuan; Ewing, Rodney C.; Mao, Wendy L.

    2017-01-01

    In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A2B2O7 pyrochlore (A = Eu, Dy; B = Ti, Zr) up to ˜50 GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ˜41 GPa for B = Ti and ˜16 GPa B = Zr. However, the A-site cation affected the kinetics of the phase transformation, with the transformation for compositions with the smaller ionic radii, i.e., A = Dy, proceeding faster than those with a larger ionic radii, i.e., A = Eu. These results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B = Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A = Eu than A = Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu2Zr2O7 as compared with the initially defect-fluorite structured Dy2Zr2O7.

  20. Synthesis and characterization of R{sub 2}MnTiO{sub 7} (R = Y and Er) pyrochlores oxides

    SciTech Connect

    Martínez-Coronado, R.; Alonso, J.A.; Fernández, M.T.

    2013-09-01

    Graphical abstract: - Abstract: New pyrochlore-like phases of composition R{sub 2}MnTiO{sub 7} (R = Er and Y) have been synthesized by a soft-chemistry procedure involving citrates of the different metal ions followed by thermal treatments at moderate temperatures (850 °C for 12 h in air). A characterization by X-ray diffraction and neutron powder diffraction (NPD) has been carried out in order to determine the crystal structure features: these phyrochlores are cubic, space group Fd-3m, defining an intrinsically frustrated three-dimensional system. The Rietveld-refinement from NPD data at room temperature evidences an antisite cation disorder (distribution of Mn between A and B positions) that is accompanied by an increment of the oxygen-vacancy concentration due to the reduction of Mn{sup 4+} at the B position to Mn{sup 2+} at the A position. Thermogravimetric analysis (TGA) was useful to evaluate the stability of these oxides in reducing conditions up to 500 °C. Magnetic susceptibility measurements indicate a ferromagnetic behavior, due to the random distribution of Mn{sup 4+} ions in the octahedral sublattice. At lower temperatures there is a polarization of the R{sup +3} magnetic moments, which also participate in the magnetic structure. Aiming to evaluate these materials as possible electrodes for solid oxide fuel cells (SOFC) we determined that the thermal expansion coefficients between 100 and 900 °C perfectly match with those of the usual electrolytes; however, these pyrochlore oxides display a semiconductor-like behavior with poor conductivity values, e.g. 6 × 10{sup −3} cm{sup −1} at 850 °C for Er, which would prevent its use as MIEC (mixed ionic-electronic conductors) oxides in SOFC devices.

  1. Experimental evidence for field-induced emergent clock anisotropies in the XY pyrochlore Er2Ti2O7

    NASA Astrophysics Data System (ADS)

    Gaudet, J.; Hallas, A. M.; Thibault, J.; Butch, N. P.; Dabkowska, H. A.; Gaulin, B. D.

    2017-02-01

    The XY pyrochlore antiferromagnet Er2Ti2O7 exhibits a rare case of Z6 discrete symmetry breaking in its ψ2 magnetic ground state. Despite being well-studied theoretically, systems with high discrete symmetry breakings are uncommon in nature. Thus, Er2Ti2O7 provides an experimental playground for the study of broken Zn symmetry, for n >2 . A recent theoretical work examined the effect of a magnetic field on a pyrochlore lattice with broken Z6 symmetry and applied it to Er2Ti2O7 . This study predicted multiple domain transitions depending on the crystallographic orientation of the magnetic field, inducing rich and controllable magnetothermodynamic behavior. In this work, we present neutron scattering measurements on Er2Ti2O7 with a magnetic field applied along the [001] and [111] directions and provide experimental observation of these exotic domain transitions. In a [001] field, we observe a ψ2 to ψ3 transition at a critical field of 0.18 ±0.05 T. We are thus able to extend the concept of the spin-flop transition, which has long been observed in Ising systems, to higher discrete Zn symmetries. In a [111] field, we observe a series of domain-based phase transitions for fields of 0.15 ±0.03 T and 0.40 ±0.03 T. We show that these field-induced transitions are consistent with the emergence of twofold, threefold, and possibly sixfold Zeeman terms. Considering all the possible ψ2 and ψ3 domains, these Zeeman terms can be mapped onto an analog clock—exemplifying a literal clock anisotropy. Lastly, our quantitative analysis of the [001] domain transition in Er2Ti2O7 is consistent with order-by-disorder as the dominant ground state selection mechanism.

  2. Detection of the archetypal regulatory region of JC virus from the tonsil tissue of patients with tonsillitis and tonsilar hypertrophy.

    PubMed

    Kato, Atsushi; Kitamura, Tadaichi; Takasaka, Tomokazu; Tominaga, Takashi; Ishikawa, Akira; Zheng, Huai-Ying; Yogo, Yoshiaki

    2004-08-01

    The regulatory regions of JC virus (JCV) DNAs in the brain of patients with progressive multifocal leukoencephalopathy (PML) (designated as PML-type regulatory regions) are hypervariable, whereas those in the urine and renal tissue of individuals without PML have the same basic structure, designated as the archetype. It is thought that JCV strains with the archetypal regulatory region circulate in the human population. Nevertheless, Monaco et al (J Virol 70: 7004-7012, 1996) reported that PML-type regulatory regions occur in human tonsil tissue. The purpose of this study is to confirm their findings. Using nested polymerase chain reaction (PCR), the authors detected the regulatory region of JCV DNA in the tonsil tissue from 14 (44%) of 32 donors with tonsillitis and tonsilar hypertrophy. Sequencing of the detected regulatory regions indicated that they were identical with the archetypal regulatory regions detected previously or, in a few cases, slightly deviated from the archetype. This finding suggests not only that tonsil tissue is the potential site of initial JCV infection but also that archetypal JCV strains circulate in the human population.

  3. Processing-thermal conductivity relationships in MGO-pyrochlore composite inert matrix materials

    NASA Astrophysics Data System (ADS)

    Yates, Samantha J.

    2009-12-01

    Inert matrix (IM) materials are proposed to act as non-fertile matrices to burn excess plutonium and minor actinides in nuclear reactors. MgO is a good IM candidate because of its high thermal conductivity, good radiation resistance, and high temperature stability, but its hot water corrosion resistance is poor limiting its use in light water reactors. A composite approach has been suggested to improve the hydration resistance of the MgO by adding a pyrochlore phase to act as a hydration barrier while maximizing the effective thermal conductivity of the composite. In this work, MgO-Nd 2Zr2O7 composites are fabricated using four different processing methods to deliberately vary the microstructure thus enabling the investigation of processing-microstructure-thermal conductivity relationships in the composites. The first processing-microstructure-property relationship that is developed is the effect of the composite processing method on the sample-to-sample variation in the thermal diffusivity. The processing method affects the formation of agglomerates in the mixed composite powders, and these agglomerates are the source of MgO and Nd2Zr2O7 heterogeneities in the sintered composites. Differential sintering occurs in some of the agglomerates, resulting in the formation of circumferential cracks between the heterogeneity and the matrix. The presence of the circumferential cracks cause sample-to-sample variations of up to +/- 2 Wm-1K-1 in the thermal conductivity between composites fabricated from the same batch of mixed composite powder. This variation makes it more difficult to accurately and reliably predict the thermal conductivity of the composites. The second processing-microstructure-property relationship developed describes the effect of the contiguity of the MgO on the average thermal conductivity of the composites. The processing method is found to affect the contiguity of the MgO in the composites. Lower MgO contiguity values cause the average thermal

  4. Chern-Simons theory of the anisotropic quantum Heisenberg antiferromagnet on a square lattice

    SciTech Connect

    Lopez, A. ); Rojo, A.G. Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120 ); Fradkin, E. )

    1994-06-01

    We consider the anisotropic quantum Heisenberg antiferromagnetic (with anistropy [lambda]) on a square lattice using a Chern-Simons (or Wigner-Jordan) approach. We show that the average field approximation (AFA) yields a phase diagram with two phases: a Neel state for [lambda][gt][lambda][sub [ital c

  5. Exact Baker–Campbell–Hausdorff formula for the contact Heisenberg algebra

    NASA Astrophysics Data System (ADS)

    Bravetti, Alessandro; Garcia-Chung, Angel; Tapias, Diego

    2017-03-01

    In this work we introduce the contact Heisenberg algebra which is the restriction of the Jacobi algebra on contact manifolds to the linear and constant functions. We give the exact expression of its corresponding Baker–Campbell–Hausdorff formula. We argue that this result is relevant to the quantization of contact systems.

  6. Studying the thermally entangled state of a three-qubit Heisenberg XX ring via quantum teleportation

    SciTech Connect

    Yeo, Ye

    2003-08-01

    We consider quantum teleportation as a tool to investigate the thermally entangled state of a three-qubit Heisenberg XX ring. Our investigation reveals interesting aspects of quantum entanglement not reflected by the pairwise thermal concurrence of the state. In particular, two mixtures of different pairs of W states, which result in the same concurrence, could yield very different average teleportation fidelities.

  7. Phase diagram of a three-sublattice mixed ferro-ferrimagnetic Heisenberg system

    NASA Astrophysics Data System (ADS)

    Mert, H. Şevki; Mert, Gülistan

    2013-10-01

    We present a numerical study of a three-sublattice mixed ferro-ferrimagnetic Heisenberg system. Green's function technique is used to calculate the magnetization as a function of temperature. The technique involves the random phase approximation and Anderson-Callen's decoupling. We obtain phase diagram and the first-order phase transition.

  8. While Heisenberg Is Not Looking: The Strength of "Weak Measurements" in Educational Research

    ERIC Educational Resources Information Center

    Geelan, David R.

    2015-01-01

    The concept of "weak measurements" in quantum physics is a way of "cheating" the Uncertainty Principle. Heisenberg stated (and 85 years of experiments have demonstrated) that it is impossible to know both the position and momentum of a particle with arbitrary precision. More precise measurements of one decrease the precision…

  9. The Taylor spectrum and transversality for a Heisenberg algebra of operators

    SciTech Connect

    Dosi, Anar A

    2010-05-11

    A problem on noncommutative holomorphic functional calculus is considered for a Banach module over a finite-dimensional nilpotent Lie algebra. As the main result, the transversality property of algebras of noncommutative holomorphic functions with respect to the Taylor spectrum is established for a family of bounded linear operators generating a Heisenberg algebra. Bibliography: 25 titles.

  10. Numerical evidence of spin-chirality decoupling in the three-dimensional heisenberg spin glass model.

    PubMed

    Viet, Dao Xuan; Kawamura, Hikaru

    2009-01-16

    Ordering of the three-dimensional Heisenberg spin glass with Gaussian coupling is studied by extensive Monte Carlo simulations. The model undergoes successive chiral-glass and spin-glass transitions at nonzero temperatures T_{CG}>T_{SG}>0, exhibiting spin-chirality decoupling.

  11. Permutation-parity exchange at a beam splitter: Application to Heisenberg-limited interferometry

    SciTech Connect

    Campos, Richard A.; Gerry, Christopher C.

    2005-12-15

    Quantum-optical permutation and parity observables are unitarily exchanged by a 50:50 beam splitter. Bosonic coalescence effects are reexamined from this point of view. We show that photon-number resolving counters behind a beam splitter define a permutation detector for the input optical field. With suitable phase encoding, the detector also enables Heisenberg-limited interferometry.

  12. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit.

    PubMed

    Napolitano, M; Koschorreck, M; Dubost, B; Behbood, N; Sewell, R J; Mitchell, M W

    2011-03-24

    Quantum metrology aims to use entanglement and other quantum resources to improve precision measurement. An interferometer using N independent particles to measure a parameter χ can achieve at best the standard quantum limit of sensitivity, δχ ∝ N(-1/2). However, using N entangled particles and exotic states, such an interferometer can in principle achieve the Heisenberg limit, δχ ∝ N(-1). Recent theoretical work has argued that interactions among particles may be a valuable resource for quantum metrology, allowing scaling beyond the Heisenberg limit. Specifically, a k-particle interaction will produce sensitivity δχ ∝ N(-k) with appropriate entangled states and δχ ∝ N(-(k-1/2)) even without entanglement. Here we demonstrate 'super-Heisenberg' scaling of δχ ∝ N(-3/2) in a nonlinear, non-destructive measurement of the magnetization of an atomic ensemble. We use fast optical nonlinearities to generate a pairwise photon-photon interaction (corresponding to k = 2) while preserving quantum-noise-limited performance. We observe super-Heisenberg scaling over two orders of magnitude in N, limited at large numbers by higher-order nonlinear effects, in good agreement with theory. For a measurement of limited duration, super-Heisenberg scaling allows the nonlinear measurement to overtake in sensitivity a comparable linear measurement with the same number of photons. In other situations, however, higher-order nonlinearities prevent this crossover from occurring, reflecting the subtle relationship between scaling and sensitivity in nonlinear systems. Our work shows that interparticle interactions can improve sensitivity in a quantum-limited measurement, and experimentally demonstrates a new resource for quantum metrology.

  13. Restructuring an EHR system and the Medical Markup Language (MML) standard to improve interoperability by archetype technology.

    PubMed

    Kobayashi, Shinji; Kume, Naoto; Yoshihara, Hiroyuki

    2015-01-01

    In 2001, we developed an EHR system for regional healthcare information inter-exchange and to provide individual patient data to patients. This system was adopted in three regions in Japan. We also developed a Medical Markup Language (MML) standard for inter- and intra-hospital communications. The system was built on a legacy platform, however, and had not been appropriately maintained or updated to meet clinical requirements. To improve future maintenance costs, we reconstructed the EHR system using archetype technology on the Ruby on Rails platform, and generated MML equivalent forms from archetypes. The system was deployed as a cloud-based system for preliminary use as a regional EHR. The system now has the capability to catch up with new requirements, maintaining semantic interoperability with archetype technology. It is also more flexible than the legacy EHR system.

  14. Tin(II)-functionalization of the archetypal {P8W48} polyoxotungstate.

    PubMed

    Izarova, N V; Klaß, L; de Oliveira, P; Mbomekalle, I-M; Peters, V; Haarmann, F; Kögerler, P

    2015-11-28

    The synthesis of [K(4.5) ⊂ (ClSn(II))8P8W48O184](17.5-), featuring Sn(II) ions in trigonal-pyramidal SnO2Cl environment coordinating to the two inner rims of the wheel-shaped {P8W48}-type polyoxotungstate(vi) archetype, showcases how high chloride ligand concentrations as well as the control of the polyanion solubility via electrolytes and evaporation rates are essential to prevent numerous competing reactions that can hamper the Sn(ii) functionalization of polyoxometalates.

  15. Recommendation of standardized health learning contents using archetypes and semantic web technologies.

    PubMed

    Legaz-García, María del Carmen; Martínez-Costa, Catalina; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás

    2012-01-01

    Linking Electronic Healthcare Records (EHR) content to educational materials has been considered a key international recommendation to enable clinical engagement and to promote patient safety. This would suggest citizens to access reliable information available on the web and to guide them properly. In this paper, we describe an approach in that direction, based on the use of dual model EHR standards and standardized educational contents. The recommendation method will be based on the semantic coverage of the learning content repository for a particular archetype, which will be calculated by applying semantic web technologies like ontologies and semantic annotations.

  16. Climate-based archetypes for the environmental fate assessment of chemicals.

    PubMed

    Ciuffo, Biagio; Sala, Serenella

    2013-11-15

    Emissions of chemicals have been on the rise for years, and their impacts are greatly influenced by spatial differentiation. Chemicals are usually emitted locally but their impact can be felt both locally and globally, due to their chemical properties and persistence. The variability of environmental parameters in the emission compartment may affect the chemicals' fate and the exposure at different orders of magnitude. The assessment of the environmental fate of chemicals and the inherent spatial differentiation requires the use of multimedia models at various levels of complexity (from a simple box model to complex computational and high-spatial-resolution models). The objective of these models is to support ecological and human health risk assessment, by reducing the uncertainty of chemical impact assessments. The parameterisation of spatially resolved multimedia models is usually based on scenarios of evaluative environments, or on geographical resolutions related to administrative boundaries (e.g. countries/continents) or landscape areas (e.g. watersheds, eco-regions). The choice of the most appropriate scale and scenario is important from a management perspective, as a balance should be reached between a simplified approach and computationally intensive multimedia models. In this paper, which aims to go beyond the more traditional approach based on scale/resolution (cell, country, and basin), we propose and assess climate-based archetypes for the impact assessment of chemicals released in air. We define the archetypes based on the main drivers of spatial variability, which we systematically identify by adopting global sensitivity analysis techniques. A case study that uses the high resolution multimedia model MAPPE (Multimedia Assessment of Pollutant Pathways in the Environment) is presented. Results of the analysis showed that suitable archetypes should be both climate- and chemical-specific, as different chemicals (or groups of them) have different traits

  17. The archetype gamma-class carbonic anhydrase (Cam) contains iron when synthesized in vivo.

    PubMed

    Macauley, Sheridan R; Zimmerman, Sabrina A; Apolinario, Ethel E; Evilia, Caryn; Hou, Ya-Ming; Ferry, James G; Sowers, Kevin R

    2009-02-10

    A recombinant protein overproduction system was developed in Methanosarcina acetivorans to facilitate biochemical characterization of oxygen-sensitive metalloenzymes from strictly anaerobic species in the Archaea domain. The system was used to overproduce the archetype of the independently evolved gamma-class carbonic anhydrase. The overproduced enzyme was oxygen sensitive and had full incorporation of iron instead of zinc observed when overproduced in Escherichia coli. This, the first report of in vivo iron incorporation for any carbonic anhydrase, supports the need to reevaluate the role of iron in all classes of carbonic anhydrases derived from anaerobic environments.

  18. Structural and photoluminescence properties of stannate based displaced pyrochlore-type red phosphors: Ca(3-x)Sn₃Nb₂O₁₄:xEu³⁺.

    PubMed

    Sreena, T S; Prabhakar Rao, P; Francis, T Linda; Raj, Athira K V; Babu, Parvathi S

    2015-05-14

    New stannate based displaced pyrochlore-type red phosphors, Ca(3-x)Sn3Nb2O14:xEu(3+), were prepared via a conventional solid state method. The influence of partial occupancy of Sn in both A and B sites of the pyrochlore-type oxides on the photoluminescence properties was studied using powder X-ray diffraction, FT-Raman, transmission electron microscopy, scanning electron microscopy with energy dispersive spectrometry, UV-visible absorption spectroscopy, and photoluminescence excitation and emission spectra with lifetime measurements. The structural analysis establishes that these oxides belong to a cubic displaced pyrochlore type structure with a space group Fd3̄m. These phosphors exhibit strong absorptions at near UV and blue wavelength regions and emit intense multiband emissions due to Eu(3+ 5)D0-(7)F(0, 1, 2) transitions. The absence of characteristic MD transition splitting points out that local cation disorder exists in this type of displaced pyrochlores, reducing the D(3d) inversion symmetry, which is not evidenced by such disorder in the X-ray diffraction analysis. The unusual forbidden intense sharp (5)D0-(7)F0 transition indicates single site occupancy of Eu(3+) with a narrower range of bonding environment, preventing the cluster formation. This is supported by the stable (5)D0 lifetime with Eu(3+) concentration. The Judd-Ofelt intensity parameter assessment corroborates these results. The CIE color coordinates of these phosphors were found to be (0.60, 0.40), which are close to the NTSC standard values (0.67, 0.33) for a potential red phosphor.

  19. Spin-orbit-driven magnetic structure and excitation in the 5d pyrochlore Cd2Os2O7

    SciTech Connect

    Calder, Stuart A; Vale, James G.; Bogdanov, Nikolay; Liu, Xeurong; Donnerer, Christian; Upton, Mary; Casa, Diego; Ayman, Said; Lumsden, M. D.; Zhao, Zhiying; Yan, J. -Q.; Mandrus, David; Satoshi, Nishimoto; Van den Brink, Jeroen; Hill, John P; McMorrow, D. F.; Christianson, Andrew D

    2016-06-07

    Here, much consideration has been given to the role of spin-orbit coupling (SOC) in 5d oxides, particularly on the formation of novel electronic states and manifested metal-insulator transitions (MITs). SOC plays a dominant role in 5d5 iridates (Ir4+), undergoing MITs both concurrent (pyrochlores) and separated (perovskites) from the onset of magnetic order. However, the role of SOC for other 5d configurations is less clear. For example, 5d3 (Os5+) systems are expected to have an orbital singlet with reduced effective SOC. The pyrochlore Cd2Os2O7 nonetheless exhibits a MIT entwined with magnetic order phenomenologically similar to pyrochlore iridates. Here, we resolve the magnetic structure in Cd2Os2O7 with neutron diffraction and then via resonant inelastic X-ray scattering determine the salient electronic and magnetic energy scales controlling the MIT. In particular, SOC plays a subtle role in creating the electronic ground state but drives the magnetic order and emergence of a multiple spin-flip magnetic excitation.

  20. Single crystal growth and structure refinements of CsM{sub x}Te{sub 2-x}O{sub 6} (M = Al, Ga, Ge, In) pyrochlores

    SciTech Connect

    Siritanon, Theeranun; Sleight, A.W.; Subramanian, M.A.

    2011-06-15

    Graphical abstract: Single crystals of CsM{sub x}Te{sub 2-x}O{sub 6} pyrochlores with M = Al, Ga, Ge, and In have been grown and structure refinements indicate deviations from ideal stoichiometry presumably related to mixed valency of tellurium. Highlights: {yields} Single crystals of CsM{sub x}Te{sub 2-x}O{sub 6} pyrochlores with M = Al, Ga, Ge, and In have been grown. {yields} Structure refinements from single crystal X-ray diffraction data confirm e structure. {yields} Deviations from ideal stoichiometry suggest mixed valency of tellurium and hence conductivity. -- Abstract: Single crystals of CsM{sub x}Te{sub 2-x}O{sub 6} pyrochlores with M = Al, Ga, Ge, and In have been grown from a TeO{sub 2} flux. Structure refinements from single crystal X-ray diffraction data are reported. These results are used to discuss deviations from ideal stoichiometry that result in electronic conductivity presumably related to mixed valency of tellurium.