Brain-Mind Operational Architectonics Imaging: Technical and Methodological Aspects
Fingelkurts, Andrew A; Fingelkurts, Alexander A
2008-01-01
This review paper deals with methodological and technical foundations of the Operational Architectonics framework of brain and mind functioning. This theory provides a framework for mapping and understanding important aspects of the brain mechanisms that constitute perception, cognition, and eventually consciousness. The methods utilized within Operational Architectonics framework allow analyzing with an incredible detail the operational behavior of local neuronal assemblies and their joint activity in the form of unified and metastable operational modules, which constitute the whole hierarchy of brain operations, operations of cognition and phenomenal consciousness. PMID:19526071
Osechinskiy, Sergey; Kruggel, Frithjof
2009-01-01
The architectonic analysis of the human cerebral cortex is presently based on the examination of stained tissue sections. Recent progress in high-resolution magnetic resonance imaging (MRI) promotes the feasibility of an in vivo architectonic analysis. Since the exact relationship between the laminar fine-structure of a cortical MRI signal and histological cyto-and myeloarchitectonic staining patterns is not known, a quantitative study comparing high-resolution MRI to histological ground truth images is necessary for validating a future MRI based architectonic analysis. This communication describes an ongoing study comparing post mortem MR images to a myelin-stained histology of the brain cortex. After establishing a close spatial correspondence between histological sections and MRI using a slice-to-volume nonrigid registration algorithm, transcortical intensity profiles, extracted from both imaging modalities along curved trajectories of a Laplacian vector field, are compared via a cross-correlational analysis.
Wavelet analysis of biological tissue's Mueller-matrix images
NASA Astrophysics Data System (ADS)
Tomka, Yu. Ya.
2008-05-01
The interrelations between statistics of the 1st-4th orders of the ensemble of Mueller-matrix images and geometric structure of birefringent architectonic nets of different morphological structure have been analyzed. The sensitivity of asymmetry and excess of statistic distributions of matrix elements Cik to changing of orientation structure of optically anisotropic protein fibrils of physiologically normal and pathologically changed biological tissues architectonics has been shown.
An extended retinotopic map of mouse cortex
Zhuang, Jun; Ng, Lydia; Williams, Derric; Valley, Matthew; Li, Yang; Garrett, Marina; Waters, Jack
2017-01-01
Visual perception and behavior are mediated by cortical areas that have been distinguished using architectonic and retinotopic criteria. We employed fluorescence imaging and GCaMP6 reporter mice to generate retinotopic maps, revealing additional regions of retinotopic organization that extend into barrel and retrosplenial cortices. Aligning retinotopic maps to architectonic borders, we found a mismatch in border location, indicating that architectonic borders are not aligned with the retinotopic transition at the vertical meridian. We also assessed the representation of visual space within each region, finding that four visual areas bordering V1 (LM, P, PM and RL) display complementary representations, with overlap primarily at the central hemifield. Our results extend our understanding of the organization of mouse cortex to include up to 16 distinct retinotopically organized regions. DOI: http://dx.doi.org/10.7554/eLife.18372.001 PMID:28059700
Quantitative Architectural Analysis: A New Approach to Cortical Mapping
ERIC Educational Resources Information Center
Schleicher, Axel; Morosan, Patricia; Amunts, Katrin; Zilles, Karl
2009-01-01
Results from functional imaging studies are often still interpreted using the classical architectonic brain maps of Brodmann and his successors. One obvious weakness in traditional, architectural mapping is the subjective nature of localizing borders between cortical areas by means of a purely visual, microscopical examination of histological…
ERIC Educational Resources Information Center
Tennis, Joseph T.
2013-01-01
Introduction: This paper presents three metaphors of time present in knowledge organization systems. Analysis: These three metaphors the architectonic, ouroboric, and lachesic, can be used as lenses to analyse extant or newly designed knowledge organization systems. Conclusion: A foundational view of evaluating and theorizing about knowledge…
The Architectonic Experience of Body and Space in Augmented Interiors
Pasqualini, Isabella; Blefari, Maria Laura; Tadi, Tej; Serino, Andrea; Blanke, Olaf
2018-01-01
The environment shapes our experience of space in constant interaction with the body. Architectonic interiors amplify the perception of space through the bodily senses; an effect also known as embodiment. The interaction of the bodily senses with the space surrounding the body can be tested experimentally through the manipulation of multisensory stimulation and measured via a range of behaviors related to bodily self-consciousness. Many studies have used Virtual Reality to show that visuotactile conflicts mediated via a virtual body or avatar can disrupt the unified subjective experience of the body and self. In the full-body illusion paradigm, participants feel as if the avatar was their body (ownership, self-identification) and they shift their center of awareness toward the position of the avatar (self-location). However, the influence of non-bodily spatial cues around the body on embodiment remains unclear, and data about the impact of architectonic space on human perception and self-conscious states are sparse. We placed participants into a Virtual Reality arena, where large and narrow virtual interiors were displayed with and without an avatar. We then applied synchronous or asynchronous visuotactile strokes to the back of the participants and avatar, or, to the front wall of the void interiors. During conditions of illusory self-identification with the avatar, participants reported sensations of containment, drift, and touch with the architectonic environment. The absence of the avatar suppressed such feelings, yet, in the large space, we found an effect of continuity between the physical and the virtual interior depending on the full-body illusion. We discuss subjective feelings evoked by architecture and compare the full-body illusion in augmented interiors to architectonic embodiment. A relevant outcome of this study is the potential to dissociate the egocentric, first-person view from the physical point of view through augmented architectonic space. PMID:29755378
The Architectonic Experience of Body and Space in Augmented Interiors.
Pasqualini, Isabella; Blefari, Maria Laura; Tadi, Tej; Serino, Andrea; Blanke, Olaf
2018-01-01
The environment shapes our experience of space in constant interaction with the body. Architectonic interiors amplify the perception of space through the bodily senses; an effect also known as embodiment. The interaction of the bodily senses with the space surrounding the body can be tested experimentally through the manipulation of multisensory stimulation and measured via a range of behaviors related to bodily self-consciousness. Many studies have used Virtual Reality to show that visuotactile conflicts mediated via a virtual body or avatar can disrupt the unified subjective experience of the body and self. In the full-body illusion paradigm, participants feel as if the avatar was their body (ownership, self-identification) and they shift their center of awareness toward the position of the avatar (self-location). However, the influence of non-bodily spatial cues around the body on embodiment remains unclear, and data about the impact of architectonic space on human perception and self-conscious states are sparse. We placed participants into a Virtual Reality arena, where large and narrow virtual interiors were displayed with and without an avatar. We then applied synchronous or asynchronous visuotactile strokes to the back of the participants and avatar, or, to the front wall of the void interiors. During conditions of illusory self-identification with the avatar, participants reported sensations of containment, drift, and touch with the architectonic environment. The absence of the avatar suppressed such feelings, yet, in the large space, we found an effect of continuity between the physical and the virtual interior depending on the full-body illusion. We discuss subjective feelings evoked by architecture and compare the full-body illusion in augmented interiors to architectonic embodiment. A relevant outcome of this study is the potential to dissociate the egocentric, first-person view from the physical point of view through augmented architectonic space.
The Cortical Connectivity of the Prefrontal Cortex in the Monkey Brain
Yeterian, Edward H.; Pandya, Deepak N.; Tomaiuolo, Francesco; Petrides, Michael
2011-01-01
One dimension of understanding the functions of the prefrontal cortex is knowledge of cortical connectivity. We have surveyed three aspects of prefrontal cortical connections: local projections (within the frontal lobe), the termination patterns of long association (post-Rolandic) projections, and the trajectories of major fiber pathways. The local connections appear to be organized in relation to dorsal (hippocampal origin) and ventral (paleocortical origin) architectonic trends. According to the proposal of a dual origin of the cerebral cortex, cortical areas can be traced as originating from archicortex (hippocampus) on the one hand, and paleocortex, on the other hand, in a stepwise manner (e.g., Sanides, 1969; Pandya and Yeterian, 1985). Prefrontal areas within each trend are connected with less architectonically differentiated areas, and, on the other hand, with more differentiated areas. Such organization may allow for the systematic exchange of information within each architectonic trend. The long connections of the prefrontal cortex with post-Rolandic regions seem to be organized preferentially in relation to dorsal and ventral prefrontal architectonic trends. Prefrontal areas are connected with post-Rolandic auditory, visual and somatosensory association areas, and with multimodal and paralimbic regions. This long connectivity likely works in conjunction with local connections to serve prefrontal cortical functions. The afferent and efferent connections of the prefrontal cortex with post-Rolandic regions are conveyed by specific long association pathways. These pathways as well appear to be organized in relation to dorsal and ventral prefrontal architectonic trends. Finally, although prefrontal areas have preferential connections in relation to dual architectonic trends, it is clear that there are interconnections between and among areas in each trend, which may provide a substrate for the overall integrative function of the prefrontal cortex. Prefrontal corticocortical connectivity may help to elucidate both region-specific and integrative perspectives on the functions of the prefrontal cortex. PMID:21481342
Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, D.N.; Seltzer, B.
1982-01-10
By means of autoradiographic and ablation-degeneration techniques, the intrinsic cortical connections of the posterior parietal cortex in the rhesus monkey were traced and correlated with a reappraisal of cerebral architectonics. Two major rostral-to-caudal connectional sequences exist. One begins in the dorsal postcentral gyrus (area 2) and proceeds, through architectonic divisions of the superior parietal lobule (areas PE and PEc), to a cortical region on the medial surface of the parietal lobe (area PGm). This area has architectonic features similar to those of the caudal inferior parietal lobule (area PG). The second sequence begins in the ventral post/central gyrus (area 2)more » and passes through the rostral inferior parietal lobule (areas PG and PFG) to reach the caudal inferior parietal lobule (area PG). Both the superior parietal lobule and the rostral inferior parietal lobule also send projections to various other zones located in the parietal opercular region, the intraparietal sulcus, and the caudalmost portion of the cingulate sulcus. Areas PGm and PG, on the other hand, project to each other, to the cingulate region, to the caudalmost portion of the superior temporal gyrus, and to the upper bank of the superior temporal sulcus. Finally, a reciprocal sequence of connections, directed from caudal to rostral, links together many of the above-mentioned parietal zones. With regard to the laminar pattern of termination, the rostral-to-caudal connections are primarily distributed in the form of cortical ''columns'' while the caudal-to-rostral connections are found mainly over the first cortical cell layer.« less
Fingelkurts, Andrew A; Fingelkurts, Alexander A; Neves, Carlos F H
2012-01-05
Instead of using low-level neurophysiology mimicking and exploratory programming methods commonly used in the machine consciousness field, the hierarchical operational architectonics (OA) framework of brain and mind functioning proposes an alternative conceptual-theoretical framework as a new direction in the area of model-driven machine (robot) consciousness engineering. The unified brain-mind theoretical OA model explicitly captures (though in an informal way) the basic essence of brain functional architecture, which indeed constitutes a theory of consciousness. The OA describes the neurophysiological basis of the phenomenal level of brain organization. In this context the problem of producing man-made "machine" consciousness and "artificial" thought is a matter of duplicating all levels of the operational architectonics hierarchy (with its inherent rules and mechanisms) found in the brain electromagnetic field. We hope that the conceptual-theoretical framework described in this paper will stimulate the interest of mathematicians and/or computer scientists to abstract and formalize principles of hierarchy of brain operations which are the building blocks for phenomenal consciousness and thought. Copyright © 2010 Elsevier B.V. All rights reserved.
In vivo architectonic stability of fully de novo designed protein-only nanoparticles.
Céspedes, María Virtudes; Unzueta, Ugutz; Tatkiewicz, Witold; Sánchez-Chardi, Alejandro; Conchillo-Solé, Oscar; Álamo, Patricia; Xu, Zhikun; Casanova, Isolda; Corchero, José Luis; Pesarrodona, Mireia; Cedano, Juan; Daura, Xavier; Ratera, Imma; Veciana, Jaume; Ferrer-Miralles, Neus; Vazquez, Esther; Villaverde, Antonio; Mangues, Ramón
2014-05-27
The fully de novo design of protein building blocks for self-assembling as functional nanoparticles is a challenging task in emerging nanomedicines, which urgently demand novel, versatile, and biologically safe vehicles for imaging, drug delivery, and gene therapy. While the use of viruses and virus-like particles is limited by severe constraints, the generation of protein-only nanocarriers is progressively reachable by the engineering of protein-protein interactions, resulting in self-assembling functional building blocks. In particular, end-terminal cationic peptides drive the organization of structurally diverse protein species as regular nanosized oligomers, offering promise in the rational engineering of protein self-assembling. However, the in vivo stability of these constructs, being a critical issue for their medical applicability, needs to be assessed. We have explored here if the cross-molecular contacts between protein monomers, generated by end-terminal cationic peptides and oligohistidine tags, are stable enough for the resulting nanoparticles to overcome biological barriers in assembled form. The analyses of renal clearance and biodistribution of several tagged modular proteins reveal long-term architectonic stability, allowing systemic circulation and tissue targeting in form of nanoparticulate material. This observation fully supports the value of the engineered of protein building blocks addressed to the biofabrication of smart, robust, and multifunctional nanoparticles with medical applicability that mimic structure and functional capabilities of viral capsids.
Pasqualini, Isabella; Llobera, Joan; Blanke, Olaf
2013-01-01
Over the centuries architectural theory evolved several notions of embodiment, proposing in the nineteenth and twentieth century that architectonic experience is related to physiological responses of the observer. Recent advances in the cognitive neuroscience of embodiment (or bodily self-consciousness) enable empirical studies of architectonic embodiment. Here, we investigated how architecture modulates bodily self-consciousness by adapting a video-based virtual reality (VR) setup previously used to investigate visuo-tactile mechanisms of bodily self-consciousness. While standing in two different interiors, participants were filmed from behind and watched their own virtual body online on a head-mounted display (HMD). Visuo-tactile strokes were applied in synchronous or asynchronous mode to the participants and their virtual body. Two interiors were simulated in the laboratory by placing the sidewalls either far or near from the participants, generating a large and narrow room. We tested if bodily self-consciousness was differently modulated when participants were exposed to both rooms and whether these changes depend on visuo-tactile stimulation. We measured illusory touch, self-identification, and performed length estimations. Our data show that synchronous stroking of the physical and the virtual body induces illusory touch and self-identification with the virtual body, independent of room-size. Moreover, in the narrow room we observed weak feelings of illusory touch with the sidewalls and of approaching walls. These subjective changes were complemented by a stroking-dependent modulation of length estimation only in the narrow room with participants judging the room-size more accurately during conditions of illusory self-identification. We discuss our findings and previous notions of architectonic embodiment in the context of the cognitive neuroscience of bodily self-consciousness and propose an empirical framework grounded in architecture, cognitive neuroscience, and VR. PMID:23805112
Pasqualini, Isabella; Llobera, Joan; Blanke, Olaf
2013-01-01
Over the centuries architectural theory evolved several notions of embodiment, proposing in the nineteenth and twentieth century that architectonic experience is related to physiological responses of the observer. Recent advances in the cognitive neuroscience of embodiment (or bodily self-consciousness) enable empirical studies of architectonic embodiment. Here, we investigated how architecture modulates bodily self-consciousness by adapting a video-based virtual reality (VR) setup previously used to investigate visuo-tactile mechanisms of bodily self-consciousness. While standing in two different interiors, participants were filmed from behind and watched their own virtual body online on a head-mounted display (HMD). Visuo-tactile strokes were applied in synchronous or asynchronous mode to the participants and their virtual body. Two interiors were simulated in the laboratory by placing the sidewalls either far or near from the participants, generating a large and narrow room. We tested if bodily self-consciousness was differently modulated when participants were exposed to both rooms and whether these changes depend on visuo-tactile stimulation. We measured illusory touch, self-identification, and performed length estimations. Our data show that synchronous stroking of the physical and the virtual body induces illusory touch and self-identification with the virtual body, independent of room-size. Moreover, in the narrow room we observed weak feelings of illusory touch with the sidewalls and of approaching walls. These subjective changes were complemented by a stroking-dependent modulation of length estimation only in the narrow room with participants judging the room-size more accurately during conditions of illusory self-identification. We discuss our findings and previous notions of architectonic embodiment in the context of the cognitive neuroscience of bodily self-consciousness and propose an empirical framework grounded in architecture, cognitive neuroscience, and VR.
Marszałek, Mariola; Alexandrowicz, Zofia; Rzepa, Grzegorz
2014-12-01
This work presents mineralogical and chemical characteristics of weathering crusts developed on sandstones exposed to various air pollution conditions. The samples have been collected from sandstone tors in the Carpathian Foothill and from buildings in Kraków. It has been stated that these crusts differ in both fabric and composition. The sandstone black crust from tors is rich in organic matter and composed of amorphous silica. Sulphate incrustations accompanied by dust particles have been only sometimes observed. Beneath the black crust, a zone coloured by iron (oxyhydr)oxides occurs. The enrichment of the surface crust in silica and iron compounds protects the rock interior from atmospheric impact. The sandstones from architectonic details are also covered by a thin carbon-rich black crust, but they are visibly loosened. Numerous salts, mainly gypsum and halite, crystallise here, thus enhancing deterioration of the rock. Moreover, spherical particles originated from industrial emissions are much more common. Gypsum in natural outcrops, forms isolated and well-developed crystals, whilst these found on the architectonic details are finer and densely cover the surface. Such diversity reflects various concentrations of acid air pollutants in solutions.
The architectonics of programmable RNA and DNA nanostructures.
Jaeger, Luc; Chworos, Arkadiusz
2006-08-01
The past several years have witnessed the emergence of a new world of nucleic-acid-based architectures with highly predictable and programmable self-assembly properties. For almost two decades, DNA has been the primary material for nucleic acid nanoconstruction. More recently, the dramatic increase in RNA structural information led to the development of RNA architectonics, the scientific study of the principles of RNA architecture with the aim of constructing RNA nanostructures of any arbitrary size and shape. The remarkable modularity and the distinct but complementary nature of RNA and DNA nanomaterials are revealed by the various self-assembly strategies that aim to achieve control of the arrangement of matter at a nanoscale level.
Architectonics: Design of Molecular Architecture for Functional Applications.
Avinash, M B; Govindaraju, Thimmaiah
2018-02-20
The term architectonics has its roots in the architectural and philosophical (as early as 1600s) literature that refers to "the theory of structure" and "the structure of theory", respectively. The concept of architectonics has been adapted to advance the field of molecular self-assembly and termed as molecular architectonics. In essence, the methodology of organizing molecular units in the required and controlled configurations to develop advanced functional systems for materials and biological applications comprises the field of molecular architectonics. This concept of designing noncovalent systems enables to focus on different functional aspects of designer molecules for biological and nonbiological applications and also strengthens our efforts toward the mastery over the art of controlled molecular self-assemblies. Programming complex molecular interactions and assemblies for specific functions has been one of the most challenging tasks in the modern era. Meticulously ordered molecular assemblies can impart remarkable developments in several areas spanning energy, health, and environment. For example, the well-defined nano-, micro-, and macroarchitectures of functional molecules with specific molecular ordering possess potential applications in flexible electronics, photovoltaics, photonic crystals, microreactors, sensors, drug delivery, biomedicine, and superhydrophobic coatings, among others. The functional molecular architectures having unparalleled properties are widely evident in various designs of Nature. By drawing inspirations from Nature, intended molecular architectures can be designed and developed to harvest various functions, as there is an inexhaustible resource and scope. In this Account, we present exquisite designer molecules developed by our group and others with an objective to master the art of molecular recognition and self-assembly for functional applications. We demonstrate the tailor-ability of molecular self-assemblies by employing biomolecules like amino acids and nucleobases as auxiliaries. Naphthalenediimide (NDI), perylenediimide (PDI), and few other molecular systems serve as functional modules. The effects of stereochemistry and minute structural modifications in the molecular designs on the supramolecular interactions, and construction of self-assembled zero-dimensional (OD), one-dimensional (1D), and two-dimensional (2D) nano- and microarchitectures like particles, spheres, cups, bowls, fibers, belts, helical belts, supercoiled helices, sheets, fractals, and honeycomb-like arrays are discussed in extensive detail. Additionally, we present molecular systems that showcase the elegant designs of coassembly, templated assembly, hierarchical assembly, transient self-assembly, chiral denaturation, retentive helical memory, self-replication, supramolecular regulation, supramolecular speciation, supernon linearity, dynamic pathway complexity, supramolecular heterojunction, living supramolecular polymerization, and molecular machines. Finally, we describe the molecular engineering principles learnt over the years that have led to several applications, namely, organic electronics, self-cleaning, high-mechanical strength, and tissue engineering.
Slice-to-Volume Nonrigid Registration of Histological Sections to MR Images of the Human Brain
Osechinskiy, Sergey; Kruggel, Frithjof
2011-01-01
Registration of histological images to three-dimensional imaging modalities is an important step in quantitative analysis of brain structure, in architectonic mapping of the brain, and in investigation of the pathology of a brain disease. Reconstruction of histology volume from serial sections is a well-established procedure, but it does not address registration of individual slices from sparse sections, which is the aim of the slice-to-volume approach. This study presents a flexible framework for intensity-based slice-to-volume nonrigid registration algorithms with a geometric transformation deformation field parametrized by various classes of spline functions: thin-plate splines (TPS), Gaussian elastic body splines (GEBS), or cubic B-splines. Algorithms are applied to cross-modality registration of histological and magnetic resonance images of the human brain. Registration performance is evaluated across a range of optimization algorithms and intensity-based cost functions. For a particular case of histological data, best results are obtained with a TPS three-dimensional (3D) warp, a new unconstrained optimization algorithm (NEWUOA), and a correlation-coefficient-based cost function. PMID:22567290
An Architectonic Study of the Neocortex of the Short-Tailed Opossum (Monodelphis domestica)
Wong, Peiyan; Kaas, Jon H.
2013-01-01
Short-tailed opossums (Monodelphis domestica) belong to the branch of marsupial mammals that diverged from eutherian mammals approximately 180 million years ago. They are small in size, lack a marsupial pouch, and may have retained more morphological characteristics of early marsupial neocortex than most other marsupials. In the present study, we used several different histochemical and immunochemical procedures to reveal the architectonic characteristics of cortical areas in short-tailed opossums. Subdivisions of cortex were identified in brain sections cut in the coronal, sagittal, horizontal or tangential planes and processed for a calcium-binding protein, parvalbumin (PV), neurofilament protein epitopes recognized by SMI-32, the vesicle glutamate transporter 2 (VGluT2), myelin, cytochrome oxidase (CO), and Nissl substance. These different procedures revealed similar boundaries among areas, suggesting that functionally relevant borders were detected. The results allowed a fuller description and more precise demarcation of previously identified sensory areas, and the delineation of additional subdivisions of cortex. Area 17 (V1) was especially prominent, with a densely populated layer 4, high myelination levels, and dark staining of PV and VGluT2 immunopositive terminations. These architectonic features were present, albeit less pronounced, in somatosensory and auditory cortex. The major findings support the conclusion that short-tailed opossums have fewer cortical areas and their neocortex is less distinctly laminated than most other mammals. PMID:19546531
Lateral prefrontal cortex: architectonic and functional organization
Petrides, Michael
2005-01-01
A comparison of the architecture of the human prefrontal cortex with that of the macaque monkey showed a very similar architectonic organization in these two primate species. There is no doubt that the prefrontal cortical areas of the human brain have undergone considerable development, but it is equally clear that the basic architectonic organization is the same in the two species. Thus, a comparative approach to the study of the functional organization of the primate prefrontal cortex is more likely to reveal the essential aspects of the various complex control processes that are the domain of frontal function. The lateral frontal cortex appears to be functionally organized along both a rostral–caudal axis and a dorsal–ventral axis. The most caudal frontal region, the motor region on the precentral gyrus, is involved in fine motor control and direct sensorimotor mappings, whereas the caudal lateral prefrontal region is involved in higher order control processes that regulate the selection among multiple competing responses and stimuli based on conditional operations. Further rostrally, the mid-lateral prefrontal region plays an even more abstract role in cognitive control. The mid-lateral prefrontal region is itself organized along a dorsal–ventral axis of organization, with the mid-dorsolateral prefrontal cortex being involved in the monitoring of information in working memory and the mid-ventrolateral prefrontal region being involved in active judgments on information held in posterior cortical association regions that are necessary for active retrieval and encoding of information. PMID:15937012
Writing Classroom as A&P Parking Lot.
ERIC Educational Resources Information Center
Sirc, Geoffrey
1993-01-01
Calls for a new urbanism in composition studies. Attempts to reconfigure the landscape of the writing classroom around the very notion of landscape, to reposition the architectonics of college writing more strictly according to architecture. (RS)
Schubert, Nicole; Axer, Markus; Schober, Martin; Huynh, Anh-Minh; Huysegoms, Marcel; Palomero-Gallagher, Nicola; Bjaalie, Jan G.; Leergaard, Trygve B.; Kirlangic, Mehmet E.; Amunts, Katrin; Zilles, Karl
2016-01-01
High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space. Thereby, a multiscale and multimodal rat brain model was created in the Waxholm Space atlas of the rat brain. Since the registration of these multimodal high-resolution datasets into the same coordinate system is an indispensable requisite for multi-parameter analyses, this approach enables combined studies on receptor and cell distributions as well as fiber densities in the same anatomical structures at microscopic scales for the first time. PMID:27199682
Schubert, Nicole; Axer, Markus; Schober, Martin; Huynh, Anh-Minh; Huysegoms, Marcel; Palomero-Gallagher, Nicola; Bjaalie, Jan G; Leergaard, Trygve B; Kirlangic, Mehmet E; Amunts, Katrin; Zilles, Karl
2016-01-01
High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space. Thereby, a multiscale and multimodal rat brain model was created in the Waxholm Space atlas of the rat brain. Since the registration of these multimodal high-resolution datasets into the same coordinate system is an indispensable requisite for multi-parameter analyses, this approach enables combined studies on receptor and cell distributions as well as fiber densities in the same anatomical structures at microscopic scales for the first time.
NASA Astrophysics Data System (ADS)
di Maio, Rosa; Meola, Carosena; Fedi, Maurizio; Carlomagno, Giovanni Maria
2010-05-01
An integration of high-resolution non-destructive techniques is presented for the inspection and evaluation of ancient architectonic structures. Infrared thermography (IRT) represents a valuable tool for nondestructive evaluation of architectonic structures and artworks because it is capable of giving indications about most of the degradation sources of artworks and buildings of both historical interest and civil use. In particular, it is possible to detect cracks, disbondings, alteration of material consistency, etc. Indeed, by choosing the most adequate thermographic technique, it is possible to monitor the conservation state of artworks in time and to detect the presence of many types of defects (e.g., voids, cracks, disbondings, etc.) in different types of materials (e.g., concrete, masonry structures, bronze, etc.). The main advantages of infrared thermography when dealing with precious artworks may be summarized with three words: non-contact, non-invasive, and two-dimensionality. It is possible to inspect either a large surface such as the facade of a palace, or a very small surface of only few square millimetres. Conversely, the inspection depth is quite small; generally, of the order of centimetres. However, as demonstrated in previous work, IRT well matches with electric-and electromagnetic-type geophysical methods to characterize the overlapping zone from low-to-high depth in masonry structures. In particular, the use of high-frequency electromagnetic techniques, such as the ground penetrating radar (GPR), permits to reach investigation depths of some ten of centimetres by choosing appropriate frequencies of the transmitted electromagnetic signal. In the last decade a large utilisation of the GPR methodology to non-destructive analysis of engineering and architectural materials and structures has been experienced. This includes diverse features, such as definition of layer thickness, characterisation of different constructive materials, identification of voids and/or degraded zones, water content mapping, location of reinforcing bars and metal elements in concrete structures. The attention of this work is focused on the integration of both techniques for inspection of architectonic structures. First, an integration of techniques is performed in laboratory by considering an ad hoc specimen with insertion of anomalies. Then, the techniques are used for the inspection in situ of some important Italian archaeological sites, such as Pompei (Naples) and Nora (Cagliari). In the first site, the exploration is devoted to the analysis of wall decoration of the architectonical complex of Villa Imperiale with the aim to support the hypothesis that attributes the Villa to Imperial property as well as to evaluate the state of conservation of frescoes and underneath structure. As main findings, the applied techniques allows for detection of hidden previous decorative layers and for discrimination of different types of paint used as well as for identification of areas damaged by ingression in-depth of moisture and/or by disaggregation of the constituent materials. In the archaeological area of Nora, instead, the prospecting is devised to the evaluation of the state of degradation of two significant buildings of the ancient site: the temple and the theatre. Due to the very high horizontal and vertical resolution of the performed surveys, detailed physical anomaly maps of the investigated structures are obtained. Large portions of the masonry walls appear interested by decomposition of the mortar binding the stone blocks, which sometimes propagates along the whole stone wall. The information coming from a joint interpretation of IRT and GPR data allows detailed 3D images of the two investigated buildings, which are useful for future restoration planning.
Architectural design for space tourism
NASA Astrophysics Data System (ADS)
Martinez, Vera
2009-01-01
The paper describes the main issues for the design of an appropriately planned habitat for tourists in space. Due study and analysis of the environment of space stations (ISS, MIR, Skylab) delineate positive and negative aspects of architectonical design. Analysis of the features of architectonical design for touristic needs and verification of suitability with design for space habitat. Space tourism environment must offer a high degree of comfort and suggest correct behavior of the tourists. This is intended for the single person as well as for the group. Two main aspects of architectural planning will be needed: the design of the private sphere and the design of the public sphere. To define the appearance of environment there should be paid attention to some main elements like the materiality of surfaces used; the main shapes of areas and the degree of flexibility and adaptability of the environment to specific needs.
The architectonic encoding of the minor lunar standstills in the horizon of the Giza pyramids.
NASA Astrophysics Data System (ADS)
Hossam, M. K. Aboulfotouh
The paper is an attempt to show the architectonic method of the ancient Egyptian designers for encoding the horizontal-projections of the moon's declinations during two events of the minor lunar standstills, in the design of the site-plan of the horizon of the Giza pyramids, using the methods of descriptive geometry. It shows that the distance of the eastern side of the second Giza pyramid from the north-south axis of the great pyramid encodes a projection of a lunar declination, when earth's obliquity-angle was ~24.10°. Besides, it shows that the angle of inclination of the causeway of the second Giza pyramid, of ~13.54° south of the cardinal east, encodes the projection of another lunar declination when earth's obliquity-angle reaches ~22.986°. In addition, it shows the encoded coordinate system in the site-plan of the horizon of the Giza pyramids.
Cyto-, myelo- and chemoarchitecture of the prefrontal cortex of the Cebus monkey
2011-01-01
Background According to several lines of evidence, the great expansion observed in the primate prefrontal cortex (PfC) was accompanied by the emergence of new cortical areas during phylogenetic development. As a consequence, the structural heterogeneity noted in this region of the primate frontal lobe has been associated with diverse behavioral and cognitive functions described in human and non-human primates. A substantial part of this evidence was obtained using Old World monkeys as experimental model; while the PfC of New World monkeys has been poorly studied. In this study, the architecture of the PfC in five capuchin monkeys (Cebus apella) was analyzed based on four different architectonic tools, Nissl and myelin staining, histochemistry using the lectin Wisteria floribunda agglutinin and immunohistochemistry using SMI-32 antibody. Results Twenty-two architectonic areas in the Cebus PfC were distinguished: areas 8v, 8d, 9d, 12l, 45, 46v, 46d, 46vr and 46dr in the lateral PfC; areas 11l, 11m, 12o, 13l, 13m, 13i, 14r and 14c in the orbitofrontal cortex, with areas 14r and 14c occupying the ventromedial corner; areas 32r, 32c, 25 and 9m in the medial PfC, and area 10 in the frontal pole. This number is significantly higher than the four cytoarchitectonic areas previously recognized in the same species. However, the number and distribution of these areas in Cebus were to a large extent similar to those described in Old World monkeys PfC in more recent studies. Conclusions The present parcellation of the Cebus PfC considerably modifies the scheme initially proposed for this species but is in line with previous studies on Old World monkeys. Thus, it was observed that the remarkable anatomical similarity between the brains of genera Macaca and Cebus may extend to architectonic aspects. Since monkeys of both genera evolved independently over a long period of time facing different environmental pressures, the similarities in the architectonic maps of PfC in both genera are issues of interest. However, additional data about the connectivity and function of the Cebus PfC are necessary to evaluate the possibility of potential homologies or parallelisms. PMID:21232115
3D DCE-MRA of pedal arteries in patients with diabetes mellitus
NASA Astrophysics Data System (ADS)
Zamyshevskaya, M.; Zavadovskaya, V.; Zorkaltsev, M.; Udodov, V.; Grigorev, E.
2016-02-01
Purpose was identification and evaluation of pedal vascularization in diabetic patients of using contrast MR-angiography (3D DCE-MRA). 23 diabetic feet of 23 patients (15 male, 8 female; mean age 56 ± 14.6) underwent 3D DCE-MRA (Gadobutrol 15ml) at 1.5 T. Imaging analysis included blood-flow's speed, vascular architectonic's condition and character of contrast's accumulation. Osteomyelitis was verified by surgery in 15 cases. All patients were divided in 3 groups: neuropathic, neuroischemic, ischemic forms of diabetic foot. First- pass MRA detected significant delay of contrast's arrival in ischemic group. There were no significant differences between the values of neuropathic and neuroischemic forms of diabetic foot. Pedal vessels in patients were absent. Contrast MRA revealed three types of contrast distribution in soft tissues: uniform, local increase and local absence. Osteomyelitis was associated with diffuse enhanced contrast accumulation in all cases. In summary, MRI blood vessel imaging is a promising and valuable method for examining peripheral arterial changes in diabetic foot and might be useful for treatment planning in different forms of diabetic foot.
Digital Architectonics: A Case Study of Educator Designed Multimodal Texts
ERIC Educational Resources Information Center
Klein, Sipai
2011-01-01
This dissertation examines the composition process of three experienced professors who spent a semester designing instructional videos to be delivered online to students. The growing adoption of online education, in conjunction with the dominance of the screen in everyday communication, has required university educators to develop strategies for…
Somaesthetics and Racism: Toward an Embodied Pedagogy of Difference
ERIC Educational Resources Information Center
Granger, David A.
2010-01-01
This paper begins by examining the architectonics of the body and the mind-body relationship in the work of John Dewey, Michel Foucault, and Ludwig Wittgenstein. In doing so, it utilizes philosopher Richard Shusterman's analytic somaesthetics to expose the way racist ideology is covertly materialized and preserved through encoding in somatic norms…
NASA Astrophysics Data System (ADS)
Pereira, Dolores; Martinez-Frías, Jesus; Mantovani, Franco
2014-05-01
In the framework of the ERASMUS Intensive Programme (IP) on "Global Heritage and Sustainability: Geological, Cultural and Historical", a round table was organised on "Geoeducation and Geoethics in Earth and Planetary Sciences" taking advantage of the role of the IP coordinator also being responsible for the "Heritage Stone Task Group" (HSTG) at IUGS and in addition the presence of the responsible for the "IUGS Commission on Geoscience Education, Training and Technology Transfer" (IUGS-COGE) and President of the International Association of Geoethics (IAGETH). Another responsible for the round table was an expert on natural risks. This topic formed an important part of the program of this IP, that in 2013 was celebrating its third and final edition. This round table was one of the first exchanges of views among different IUGS commissions and task groups. It offered a very good opportunity to analyse how aware is the scientific community about the importance of education and ethics in communicating natural hazards risks and their relationship preserving architectonic heritage, which was the main subject of the Intensive Programme. Eighteen participants contributed to the event with the following backgrounds: Geology, Engineering Geology, Architecture, Civil Engineering, Environmental Engineering, Civil Protection and English Philology. All participants were either undergraduate students or graduate students, at a Masters and Doctoral level from the following countries: Spain, Portugal, Italy and Hungary. The purpose of this study is to establish an initial link between geoethics and geoeducation when teaching university students at different levels of subject such as natural hazards risks communication and the preservation of architectonic heritage. The respective IUGS Commissions and Task Groups can lead the debate. This work was sponsored by the ERASMUS Intensive Programme 2012-1-ES1-ERA10-54375 and it was done within the framework of the IUGS Heritage Stone Task Group and COGE commission activities.
McNab, Jennifer A.; Polimeni, Jonathan R.; Wang, Ruopeng; Augustinack, Jean C.; Fujimoto, Kyoko; Player, Allison; Janssens, Thomas; Farivar, Reza; Folkerth, Rebecca D.; Vanduffel, Wim; Wald, Lawrence L.
2012-01-01
Diffusion tensor MRI is sensitive to the coherent structure of brain tissue and is commonly used to study large-scale white matter structure. Diffusion in grey matter is more isotropic, however, several groups have observed coherent patterns of diffusion anisotropy within the cerebral cortical grey matter. We extend the study of cortical diffusion anisotropy by relating it to the local coordinate system of the folded cerebral cortex. We use 1mm and sub-millimeter isotropic resolution diffusion imaging to perform a laminar analysis of the principal diffusion orientation, fractional anisotropy, mean diffusivity and partial volume effects. Data from 6 in vivo human subjects, a fixed human brain specimen and an anesthetized macaque were examined. Large regions of cortex show a radial diffusion orientation. In vivo human and macaque data displayed a sharp transition from radial to tangential diffusion orientation at the border between primary motor and somatosensory cortex, and some evidence of tangential diffusion in secondary somatosensory cortex and primary auditory cortex. Ex vivo diffusion imaging in a human tissue sample showed some tangential diffusion orientation in S1 but mostly radial diffusion orientations in both M1 and S1. PMID:23247190
Richter, J
2000-09-01
The investigation of Lenin's brain by the German neurobiologist Oskar Vogt from Berlin and his Russian collaborators in Moscow is one of the most exciting and simultaneously oddest chapters in the history of medicine. With the bizarre claim to be able to detect the material substrate of genius it provoked as much unrealistic expectations in the public as strong criticism by the scientific community of brain researchers. The present paper deals in a brief survey with the history of collecting and measuring the brains of famous persons in general and particularly with the historical, political and social circumstances of the performed investigation of Lenin's brain. In this connection the epistemological and technical prerequisites of architectonical brain research and its means of the topographical representation of complex histo-anatomical and physiological differences in the brain cortex are shortly discussed. The opening of Russian archives after the socio-economic turn of the year 1991 brought up new background facts in Lenin's pathobiography; together with the sources from German archives a rather extensive reconstruction of the historical events between Lenin's death in 1924 and the final report of the Moscow Brain Research Institute (Institute Mozga) to the Politburo of the Russian Communist Party (Bolsheviki) in 1936 is possible now.
Morawski, Markus; Kirilina, Evgeniya; Scherf, Nico; Jäger, Carsten; Reimann, Katja; Trampel, Robert; Gavriilidis, Filippos; Geyer, Stefan; Biedermann, Bernd; Arendt, Thomas; Weiskopf, Nikolaus
2017-11-28
Recent breakthroughs in magnetic resonance imaging (MRI) enabled quantitative relaxometry and diffusion-weighted imaging with sub-millimeter resolution. Combined with biophysical models of MR contrast the emerging methods promise in vivo mapping of cyto- and myelo-architectonics, i.e., in vivo histology using MRI (hMRI) in humans. The hMRI methods require histological reference data for model building and validation. This is currently provided by MRI on post mortem human brain tissue in combination with classical histology on sections. However, this well established approach is limited to qualitative 2D information, while a systematic validation of hMRI requires quantitative 3D information on macroscopic voxels. We present a promising histological method based on optical 3D imaging combined with a tissue clearing method, Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging compatible Tissue hYdrogel (CLARITY), adapted for hMRI validation. Adapting CLARITY to the needs of hMRI is challenging due to poor antibody penetration into large sample volumes and high opacity of aged post mortem human brain tissue. In a pilot experiment we achieved transparency of up to 8 mm-thick and immunohistochemical staining of up to 5 mm-thick post mortem brain tissue by a combination of active and passive clearing, prolonged clearing and staining times. We combined 3D optical imaging of the cleared samples with tailored image processing methods. We demonstrated the feasibility for quantification of neuron density, fiber orientation distribution and cell type classification within a volume with size similar to a typical MRI voxel. The presented combination of MRI, 3D optical microscopy and image processing is a promising tool for validation of MRI-based microstructure estimates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Target-specific contrast agents for magnetic resonance microscopy
Blackwell, Megan L.; Farrar, Christian T.; Fischl, Bruce; Rosen, Bruce R.
2009-01-01
High-resolution ex vivo magnetic resonance (MR) imaging can be used to delineate prominent architectonic features in the human brain, but increased contrast is required to visualize more subtle distinctions. To aid MR sensitivity to cell density and myelination, we have begun the development of target-specific paramagnetic contrast agents. This work details the first application of luxol fast blue (LFB), an optical stain for myelin, as a white matter-selective MR contrast agent for human ex vivo brain tissue. Formalin-fixed human visual cortex was imaged with an isotropic resolution between 80 and 150 μm at 4.7 and 14 T before and after en bloc staining with LFB. Longitudinal (R1) and transverse (R2) relaxation rates in LFB-stained tissue increased proportionally with myelination at both field strengths. Changes in R1 resulted in larger contrast-to-noise ratios (CNR), per unit time, on T1-weighted images between more myelinated cortical layers (IV–VI) and adjacent, superficial layers (I–III) at both field strengths. Specifically, CNR for LFB-treated samples increased by 229±13% at 4.7 T and 269±25% at 14 T when compared to controls. Also, additional cortical layers (IVca, IVd, and Va) were resolvable in 14T-MR images of LFB-treated samples but not in control samples. After imaging, samples were sliced in 40-micron sections, mounted, and photographed. Both the macroscopic and microscopic distributions of LFB were found to mimic those of traditional histological preparations. Our results suggest target-specific contrast agents will enable more detailed MR images with applications in imaging pathological ex vivo samples and constructing better MR atlases from ex vivo brains. PMID:19385012
Blockface histology with optical coherence tomography: a comparison with Nissl staining.
Magnain, Caroline; Augustinack, Jean C; Reuter, Martin; Wachinger, Christian; Frosch, Matthew P; Ragan, Timothy; Akkin, Taner; Wedeen, Van J; Boas, David A; Fischl, Bruce
2014-01-01
Spectral domain optical coherence tomography (SD-OCT) is a high resolution imaging technique that generates excellent contrast based on intrinsic optical properties of the tissue, such as neurons and fibers. The SD-OCT data acquisition is performed directly on the tissue block, diminishing the need for cutting, mounting and staining. We utilized SD-OCT to visualize the laminar structure of the isocortex and compared cortical cytoarchitecture with the gold standard Nissl staining, both qualitatively and quantitatively. In histological processing, distortions routinely affect registration to the blockface image and prevent accurate 3D reconstruction of regions of tissue. We compared blockface registration to SD-OCT and Nissl, respectively, and found that SD-OCT-blockface registration was significantly more accurate than Nissl-blockface registration. Two independent observers manually labeled cortical laminae (e.g. III, IV and V) in SD-OCT images and Nissl stained sections. Our results show that OCT images exhibit sufficient contrast in the cortex to reliably differentiate the cortical layers. Furthermore, the modalities were compared with regard to cortical laminar organization and showed good agreement. Taken together, these SD-OCT results suggest that SD-OCT contains information comparable to standard histological stains such as Nissl in terms of distinguishing cortical layers and architectonic areas. Given these data, we propose that SD-OCT can be used to reliably generate 3D reconstructions of multiple cubic centimeters of cortex that can be used to accurately and semi-automatically perform standard histological analyses. © 2013.
Blockface Histology with Optical Coherence Tomography: A Comparison with Nissl Staining
Magnain, Caroline; Augustinack, Jean C.; Reuter, Martin; Wachinger, Christian; Frosch, Matthew P.; Ragan, Timothy; Akkin, Taner; Wedeen, Van J.; Boas, David A.; Fischl, Bruce
2015-01-01
Spectral domain optical coherence tomography (SD-OCT) is a high resolution imaging technique that generates excellent contrast based on intrinsic optical properties of the tissue, such as neurons and fibers. The SD-OCT data acquisition is performed directly on the tissue block, diminishing the need for cutting, mounting and staining. We utilized SD-OCT to visualize the laminar structure of the isocortex and compared cortical cytoarchitecture with the gold standard Nissl staining, both qualitatively and quantitatively. In histological processing, distortions routinely affect registration to the blockface image and prevent accurate 3D reconstruction of regions of tissue. We compared blockface registration to SD-OCT and Nissl, respectively, and found that SD-OCT-blockface registration was significantly more accurate than Nissl-blockface registration. Two independent observers manually labeled cortical laminae (e.g. III, IV and V) in SD-OCT images and Nissl stained sections. Our results show that OCT images exhibit sufficient contrast in the cortex to reliably differentiate the cortical layers. Furthermore, the modalities were compared with regard to cortical laminar organization and showed good agreement. Taken together, these SD-OCT results suggest that SD-OCT contains information comparable to standard histological stains such as Nissl in terms of distinguishing cortical layers and architectonic areas. Given these data, we propose that SD-OCT can be used to reliably generate 3D reconstructions of multiple cubic centimeters of cortex that can be used to accurately and semi-automatically perform standard histological analyses. PMID:24041872
Integration of a CAS/DGS as a CAD System in the Mathematics Curriculum for Architecture Students
ERIC Educational Resources Information Center
Falcon, R. M.
2011-01-01
Students of Architecture and Building Engineering Degrees work with Computer Aided Design systems daily in order to design and model architectonic constructions. Since this kind of software is based on the creation and transformation of geometrical objects, it seems to be a useful tool in Maths classes in order to capture the attention of the…
School Buildings for the 21st Century -- Some Features of New School Buildings in Iceland
ERIC Educational Resources Information Center
Sigurðardóttir, Anna Kristín; Hjartarson, Torfi
2011-01-01
The aim of this study is to identify features of change in the recent design of school buildings in Iceland, and how they might affect teaching practices. Environmental and architectonic features characterising school buildings designed and built at the beginning of the 21st century are examined in light of challenges involving architecture,…
Non-amyloidogenic peptide tags for the regulatable self-assembling of protein-only nanoparticles.
Unzueta, Ugutz; Ferrer-Miralles, Neus; Cedano, Juan; Zikung, Xu; Pesarrodona, Mireia; Saccardo, Paolo; García-Fruitós, Elena; Domingo-Espín, Joan; Kumar, Pradeep; Gupta, Kailash C; Mangues, Ramón; Villaverde, Antonio; Vazquez, Esther
2012-11-01
Controlling the self-assembling of building blocks as nanoscale entities is a requisite for the generation of bio-inspired vehicles for nanomedicines. A wide spectrum of functional peptides has been incorporated to different types of nanoparticles for the delivery of conventional drugs and nucleic acids, enabling receptor-specific cell binding and internalization, endosomal escape, cytosolic trafficking, nuclear targeting and DNA condensation. However, the development of architectonic tags to induce the self-assembling of functionalized monomers has been essentially neglected. We have examined here the nanoscale architectonic capabilities of arginine-rich cationic peptides, that when displayed on His-tagged proteins, promote their self-assembling as monodisperse, protein-only nanoparticles. The scrutiny of the cross-molecular interactivity cooperatively conferred by poly-arginines and poly-histidines has identified regulatable electrostatic interactions between building blocks that can also be engineered to encapsulate cargo DNA. The combined use of cationic peptides and poly-histidine tags offers an unusually versatile approach for the tailored design and biofabrication of protein-based nano-therapeutics, beyond the more limited spectrum of possibilities so far offered by self-assembling amyloidogenic peptides. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kakiashvili, Tamar; Koczkodaj, Waldemar W.; Magnot, Jean-Pierre
2017-07-01
The innovative approach in [1], ;Topodynamics of Metastable Brains; by Arturo Tozzi, James Peters, Andrew Fingelkurts, Alexander Fingelkurts, and Pedro Marijuan has a high potential of becoming a paradigm shift in the brain research. It seems that this study has successfully explored the possibility of applying a celebrated Borsuk-Ulam theorem to the operational architectonics of the fundamental brain-mind processes.
Alho, A T D L; Hamani, C; Alho, E J L; da Silva, R E; Santos, G A B; Neves, R C; Carreira, L L; Araújo, C M M; Magalhães, G; Coelho, D B; Alegro, M C; Martin, M G M; Grinberg, L T; Pasqualucci, C A; Heinsen, H; Fonoff, E T; Amaro, E
2017-08-01
The pedunculopontine nucleus (PPN) has been proposed as target for deep brain stimulation (DBS) in patients with postural instability and gait disorders due to its involvement in muscle tonus adjustments and control of locomotion. However, it is a deep-seated brainstem nucleus without clear imaging or electrophysiological markers. Some studies suggested that diffusion tensor imaging (DTI) may help guiding electrode placement in the PPN by showing the surrounding fiber bundles, but none have provided a direct histological correlation. We investigated DTI fractional anisotropy (FA) maps from in vivo and in situ post-mortem magnetic resonance images (MRI) compared to histological evaluations for improving PPN targeting in humans. A post-mortem brain was scanned in a clinical 3T MR system in situ. Thereafter, the brain was processed with a special method ideally suited for cytoarchitectonic analyses. Also, nine volunteers had in vivo brain scanning using the same MRI protocol. Images from volunteers were compared to those obtained in the post-mortem study. FA values of the volunteers were obtained from PPN, inferior colliculus, cerebellar crossing fibers and medial lemniscus using histological data and atlas information. FA values in the PPN were significantly lower than in the surrounding white matter region and higher than in areas with predominantly gray matter. In Nissl-stained histologic sections, the PPN extended for more than 10 mm in the rostro-caudal axis being closely attached to the lateral parabrachial nucleus. Our DTI analyses and the spatial correlation with histological findings proposed a location for PPN that matched the position assigned to this nucleus in the literature. Coregistration of neuroimaging and cytoarchitectonic features can add value to help establishing functional architectonics of the PPN and facilitate neurosurgical targeting of this extended nucleus.
[Giving up life in the labyrinth].
Portera Sánchez, A
2001-01-01
A brief historic survey of the labyrinth, from prehistoric images carved in stone, to gardens, Renaissance drawings and architectonic constructions will presented. The metaphor of the labyrinths, which began with Theseus killing the Minotaur with the help of Ariadne, can be applied to all: scientific investigation, artistic creation, wickedness, theology ... to life. In these eculiar and chaotic designs, structural simplicity and functional complexity coincide and therefore may produce repeated erroneous decisions. To wander successfully through these labyrinths, caution and repeated decision-makings are required to enable the traveller to reach the desired and elusive center. In each instant, decisions are made in our mind as a consequence of complex cerebral systems, activated by stimuli which originate in the intimate regions of the mind, the most complex labyrinth of all. These types of mental labyrinths are immaterial, without paths or walks, where each successive decision made facing multiple bifurcations, causes the mental traveller to advance until reaching the center. This center deceptively becomes the entrance to another of the innumerable and unknown mental labyrinths that the intimate life proposes.
"Piedra Franca": the same name for many different natural stones.
NASA Astrophysics Data System (ADS)
Pereira, Dolores; Navarro, Rafael; Baltuille, Jose Manuel
2014-05-01
The Spanish name "Piedra Franca" refers to all the stones of sedimentary origin that have uniform coloration and easeof cutting/carving in order to obtain dimensional blocks for construction. The first references to this denomination occurred during medieval times, when builders had to choose the best materials to construct magnificent cathedrals. The largest volume of such natural stones were extracted from Caen, northern France, and historic records use the English term, "freestone", ie stone easy to cut, and to work by the masons dedicated to build cathedrals ("freemasons") in contrast to the "roughstone", hard stones worked by the hard hewers or "rough masons". The original French name referred to the limestones extracted at Caen, but over time, the original meaning expanded to include other natural stones with similar coloration and ease to carve. Notably this included many sandstones that were used in adjacent countries such as Spain. In the latter, although the most popular for its importance in architectural heritage is the Villamayor sandstone from Salamanca, other historically important natural stones are also known as "Piedra Franca" including the calcarenite from Santa Pudia (Granada), the limestone from Alava, the sandstone from Jaen and the sandstone from Cádiz. All of them were used in the construction of Spanish architectonic heritage and share similar exterior characteristics. In fact, several are known as golden stones. However when conservation and restoration of architectonic heritage is involved, the correct and original material should be used. The existence of national networks (e.g. CONSTRUROCK) and international task groups (e.g. IUGS Heritage Stone Task Group) can help to properly characterize, document, and differentiate between the varieties of "Piedra Franca" and they should be consulted by builders, architects and any other stone professsionals involved in such activities. An error in choosing the natural stone can result in significant damage to the architectonic heritage. The same issue that occurs with "Piedra Franca" also extends to other natural stones in Spain and around the world. This explains the importance of these networks and task groups. This work was sponsored by the ERASMUS Intensive Programme 2012-1-ES1-ERA10-54375 and it was done within the framework of the Heritage Stone Task Group and CONSTRUROCK activities.
Liver CT image processing: a short introduction of the technical elements.
Masutani, Y; Uozumi, K; Akahane, Masaaki; Ohtomo, Kuni
2006-05-01
In this paper, we describe the technical aspects of image analysis for liver diagnosis and treatment, including the state-of-the-art of liver image analysis and its applications. After discussion on modalities for liver image analysis, various technical elements for liver image analysis such as registration, segmentation, modeling, and computer-assisted detection are covered with examples performed with clinical data sets. Perspective in the imaging technologies is also reviewed and discussed.
Formation of Neural Networks in 3D Scaffolds Fabricated by Means of Laser Microstereolithography.
Vedunova, M V; Timashev, P S; Mishchenko, T A; Mitroshina, E V; Koroleva, A V; Chichkov, B N; Panchenko, V Ya; Bagratashvili, V N; Mukhina, I V
2016-08-01
We developed and tested new 3D scaffolds for neurotransplantation. Scaffolds of predetermined architectonic were prepared using microstereolithography technique. Scaffolds were highly biocompatible with the nervous tissue cells. In vitro studies showed that the material of fabricated scaffolds is not toxic for dissociated brain cells and promotes the formation of functional neural networks in the matrix. These results demonstrate the possibility of fabrication of tissue-engineering constructs for neurotransplantation based on created scaffolds.
Judaš, Miloš; Sedmak, Goran; Pletikos, Mihovil
2010-01-01
In this historical review, we trace the early history of research on the fetal subplate zone, subplate neurons and interstitial neurons in the white matter of the adult nervous system. We arrive at several general conclusions. First, a century of research clearly testifies that interstitial neurons, subplate neurons and the subplate zone were first observed and variously described in the human brain – or, in more general terms, in large brains of gyrencephalic mammals, characterized by an abundant white matter and slow and protracted prenatal and postnatal development. Secondly, the subplate zone cannot be meaningfully defined using a single criterion – be it a specific population of cells, fibres or a specific molecular or genetic marker. The subplate zone is a highly dynamic architectonic compartment and its size and cellular composition do not remain constant during development. Thirdly, it is important to make a clear distinction between the subplate zone and the subplate (and interstitial) neurons. The transient existence of the subplate zone (as a specific architectonic compartment of the fetal telencephalic wall) should not be equated with the putative transient existence of subplate neurons. It is clear that in rodents, and to an even greater extent in humans and monkeys, a significant number of subplate cells survive and remain functional throughout life. PMID:20979585
Yoon, Hyun Jin; Cheon, Sang Myung; Jeong, Young Jin; Kang, Do-Young
2012-02-01
We assign the anatomical names of functional activation regions in the brain, based on the probabilistic cyto-architectonic atlas by Anatomy 1.7 from an analysis of correlations between regional cerebral blood flow (rCBF) and clinical parameters of the non-demented Parkinson's disease (PD) patients by SPM8. We evaluated Anatomy 1.7 of SPM toolbox compared to 'Talairach Daemon' (TD) Client 2.4.2 software. One hundred and thirty-six patients (mean age 60.0 ± 9.09 years; 73 women and 63 men) with non-demented PD were selected. Tc-99m-HMPAO brain single-photon emission computed tomography (SPECT) scans were performed on the patients using a two-head gamma-camera. We analyzed the brain image of PD patients by SPM8 and found the anatomical names of correlated regions of rCBF perfusion with the clinical parameters using TD Client 2.4.2 and Anatomy 1.7. The SPM8 provided a correlation coefficient between clinical parameters and cerebral hypoperfusion by a simple regression method. To the clinical parameters were added age, duration of disease, education period, Hoehn and Yahr (H&Y) stage and Korean mini-mental state examination (K-MMSE) score. Age was correlated with cerebral perfusion in the Brodmann area (BA) 6 and BA 3b assigned by Anatomy 1.7 and BA 6 and pyramis in gray matter by TD Client 2.4.2 with p < 0.001 uncorrected. Also, assigned significant correlated regions were found in the left and right lobules VI (Hem) with duration of disease, in left and right lobules VIIa crus I (Hem) with education, in left insula (Ig2), left and right lobules VI (Hem) with H&Y, and in BA 4a and 6 with K-MMSE score with p < 0.05 uncorrected by Anatomy 1.7, respectively. Most areas of correlation were overlapped by two different anatomical labeling methods, but some correlation areas were found with different names. Age was the most significantly correlated clinical parameter with rCBF. TD Client found the exact anatomical name by the peak intensity position of the cluster while Anatomy 1.7 of SPM8 toolbox, using the cyto-architectonic probability maps, assigned the anatomical name by percentage value of the probability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuccaro, G.; Cacace, F.; Albanese, V.
The paper describes technical and functional surveys on COM buildings (Mixed Operative Centre). This activity started since 2005, with the contribution of both Italian Civil Protection Department and the Regions involved. The project aims to evaluate the efficiency of COM buildings, checking not only structural, architectonic and functional characteristics but also paying attention to surrounding real estate vulnerability, road network, railways, harbours, airports, area morphological and hydro-geological characteristics, hazardous activities, etc. The first survey was performed in eastern Sicily, before the European Civil Protection Exercise 'EUROSOT 2005'. Then, since 2006, a new survey campaign started in Abruzzo, Molise, Calabria andmore » Puglia Regions. The more important issue of the activity was the vulnerability assessment. So this paper deals with a more refined vulnerability evaluation technique by means of the SAVE methodology, developed in the 1st task of SAVE project within the GNDT-DPC programme 2000-2002 (Zuccaro, 2005); the SAVE methodology has been already successfully employed in previous studies (i.e. school buildings intervention programme at national scale; list of strategic public buildings in Campania, Sicilia and Basilicata). In this paper, data elaborated by SAVE methodology are compared with expert evaluations derived from the direct inspections on COM buildings. This represents a useful exercise for the improvement either of the survey forms or of the methodology for the quick assessment of the vulnerability.« less
Poppinga, Simon; Weisskopf, Carmen; Westermeier, Anna Sophia; Masselter, Tom; Speck, Thomas
2016-01-01
Understanding the physics of plant movements, which describe the interplay between plant architecture, movement speed and actuation principles, is essential for the comprehension of important processes like plant morphogenesis. Recent investigations especially on rapid plant movements at the interface of biology, physics and engineering sciences highlight how such fast motions can be achieved without the presence of muscles, nerves and technical hinge analogies. The suction traps (bladders) of carnivorous bladderworts (Utricularia spp., Lentibulariaceae, Lamiales) are considered as some of the most elaborate moving structures in the plant kingdom. A complex interplay of morphological and physiological adaptations allows the traps to pump water out of their body and to store elastic energy in the deformed bladder walls. Mechanical stimulation by prey entails opening of the otherwise watertight trapdoor, followed by trap wall relaxation, sucking in of water and prey, and consecutive trapdoor closure. Suction can also occur spontaneously in non-stimulated traps. We review the current state of knowledge about the suction trap mechanism with a focus on architectonically homogeneous traps of aquatic bladderwort species from section Utricularia (the so-called ‘Utricularia vulgaris trap type’). The functional morphology and biomechanics of the traps are described in detail. We discuss open questions and propose promising aspects for future studies on these sophisticated ultra-fast trapping devices. PMID:26602984
47 CFR 15.513 - Technical requirements for medical imaging systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for medical imaging systems. 15.513 Section 15.513 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Ultra-Wideband Operation § 15.513 Technical requirements for medical imaging systems. (a) The UWB...
47 CFR 15.510 - Technical requirements for through D-wall imaging systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for through D-wall imaging systems. 15.510 Section 15.510 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Ultra-Wideband Operation § 15.510 Technical requirements for through D-wall imaging...
Resource Planning Model | Energy Analysis | NREL
balancing authority. An image of a overlapping circles labelled Resource, Technical, Economic, and Market competing electricity technologies. An image of a overlapping circles labelled Resource, Technical, Economic ; Federal Resource Planning. Volume 1: Sectoral, Technical, and Economic Trends, NREL Technical Report (2016
Technical aspects of cardiac PET/MRI.
Masuda, Atsuro; Nemoto, Ayaka; Takeishi, Yasuchika
2018-06-01
PET/MRI is a novel modality that enables to combine PET and MR images, and has significant potential to evaluate various cardiac diseases through the combination of PET molecular imaging and MRI functional imaging. Precise management of technical issues, however, is necessary for cardiac PET/MRI. This article describes several technical points, including patient preparation, MR attenuation correction, parallel acquisition of PET with MRI, clinical aspects, and image quality control.
Short-Term Memory Trace in Rapidly Adapting Synapses of Inferior Temporal Cortex
Sugase-Miyamoto, Yasuko; Liu, Zheng; Wiener, Matthew C.; Optican, Lance M.; Richmond, Barry J.
2008-01-01
Visual short-term memory tasks depend upon both the inferior temporal cortex (ITC) and the prefrontal cortex (PFC). Activity in some neurons persists after the first (sample) stimulus is shown. This delay-period activity has been proposed as an important mechanism for working memory. In ITC neurons, intervening (nonmatching) stimuli wipe out the delay-period activity; hence, the role of ITC in memory must depend upon a different mechanism. Here, we look for a possible mechanism by contrasting memory effects in two architectonically different parts of ITC: area TE and the perirhinal cortex. We found that a large proportion (80%) of stimulus-selective neurons in area TE of macaque ITCs exhibit a memory effect during the stimulus interval. During a sequential delayed matching-to-sample task (DMS), the noise in the neuronal response to the test image was correlated with the noise in the neuronal response to the sample image. Neurons in perirhinal cortex did not show this correlation. These results led us to hypothesize that area TE contributes to short-term memory by acting as a matched filter. When the sample image appears, each TE neuron captures a static copy of its inputs by rapidly adjusting its synaptic weights to match the strength of their individual inputs. Input signals from subsequent images are multiplied by those synaptic weights, thereby computing a measure of the correlation between the past and present inputs. The total activity in area TE is sufficient to quantify the similarity between the two images. This matched filter theory provides an explanation of what is remembered, where the trace is stored, and how comparison is done across time, all without requiring delay period activity. Simulations of a matched filter model match the experimental results, suggesting that area TE neurons store a synaptic memory trace during short-term visual memory. PMID:18464917
Micromégas: Altered Body-Environment Scaling in Literary Fiction.
Dieguez, Sebastian
2016-01-01
Architectonic embodiment postulates a bidirectional link between bodily awareness and the architectural environment. The standard size and features of the human body, for instance, are thought to influence the structure of interiors and buildings, as well as their perception and appreciation. Whereas architectural practice and theory, the visual arts and more recently the cognitive sciences have explored this relationship of humans with their crafted environments, many fictional literary works have long experimented with alterations of body-environment scaling. This so-called Gulliver theme - popular in the science-fiction genre but also in children's literature and philosophical satire - reveals, as a recurrent thought-experiment, our preoccupation with proportions and our fascination for the infinitely small and large. Here I provide an overview of the altered scaling theme in literature, including classics such as Voltaire's Micromégas, Swift's Gulliver's Travels, Caroll's Alice, and Matheson's The Shrinking man, closely examining issues relevant to architectonic embodiment such as: bodily, perceptual, cognitive, affective, and social changes related to alterations in body size relative to people, objects and architectural environments. I next provide a taxonomy of the Gulliver theme and highlight its main psychological features, and then proceed to review relevant work from cognitive science. Although fictional alterations of body-environment scaling far outreach current possibilities in experimental research, I argue that the peripetiae and morals outlined in the literary realm, as products of the human imagination, provide a unique window into the folk-psychology of body and space.
Kaniuka, O P; Filiak, Ie Z; Kulachkovs'kyĭ, O R; Osyp, Iu L; Sybirna, N O
2014-01-01
A pttg gene knockout affects the functional state of erythron in mice which could be associated with structural changes in the structure of erythrocyte membranes. The pttg gene knockout causes a significant modification of fatty acids composition of erythrocyte membrane lipids by reducing the content of palmitic acid and increasing of polyunsaturated fatty acids amount by 18%. Analyzing the erythrocyte surface architectonics of mice under pttg gene knockout, it was found that on the background of reduction of the functionally complete biconcave discs population one could observe an increase of the number of transformed cells at different degeneration stages. Researches have shown that in mice with a pttg gene knockout compared with a control group of animals cytoskeletal protein--beta-spectrin was reduced by 17.03%. However, there is a reduction of membrane protein band 3 by 33.04%, simultaneously the content of anion transport protein band 4.5 increases by 35.2% and protein band 4.2 by 32.1%. The lectin blot analysis has helped to reveal changes in the structure of the carbohydrate determinants of erythrocyte membrane glycoproteins under conditions of directed pttg gene inactivation, accompanied by changes in the type of communication, which joins the terminal residue in carbohydrate determinant of glycoproteins. Thus, a significant redistribution of protein and fatty acids contents in erythrocyte membranes that manifested in the increase of the deformed shape of red blood cells is observed underpttg gene knockout.
Morecraft, RJ; Stilwell-Morecraft, KS; Ge, J; Cipolloni, PB; Pandya, DN
2015-01-01
The cytoarchitecture and cortical connections of the ventral motor region are investigated using Nissl, and NeuN staining methods and the fluorescent retrograde tract tracing technique in the rhesus monkey. On the basis of gradual laminar differentiation, it is shown that the ventral motor region stems from the ventral proisocortical area (anterior insula and dorsal Sylvian opercular region). The cytoarchitecture of the ventral motor region is shown to progress in three lines, as we have recently shown for the dorsal motor region. Namely, root (anterior insular and dorsal Sylvian opercular area ProM), belt (ventral premotor cortex) and core (precentral motor cortex) lines. This stepwise architectonic organization is supported by the overall patterns of corticocortical connections. Areas in each line are sequentially interconnected (intralineal connections) and all lines are interconnected (interlinear connections). Moreover, root areas, as well as some of the belt areas of the ventral and dorsal trend are interconnected. The ventral motor region is also connected with the ventral somatosensory areas in a topographic manner. The root and belt areas of ventral motor region are connected with paralimbic, multimodal and prefrontal (outer belt) areas. In contrast, the core area has a comparatively more restricted pattern of corticocortical connections. This architectonic and connectional organization is consistent in part, with the functional organization of the ventral motor region as reported in behavioral and neuroimaging studies which include the mediation of facial expression and emotion, communication, phonic articulation, and language in human. PMID:26496798
47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system operating...
47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system operating...
47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system operating...
47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system operating...
47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system operating...
Poppinga, Simon; Weisskopf, Carmen; Westermeier, Anna Sophia; Masselter, Tom; Speck, Thomas
2015-11-24
Understanding the physics of plant movements, which describe the interplay between plant architecture, movement speed and actuation principles, is essential for the comprehension of important processes like plant morphogenesis. Recent investigations especially on rapid plant movements at the interface of biology, physics and engineering sciences highlight how such fast motions can be achieved without the presence of muscles, nerves and technical hinge analogies. The suction traps (bladders) of carnivorous bladderworts (Utricularia spp., Lentibulariaceae, Lamiales) are considered as some of the most elaborate moving structures in the plant kingdom. A complex interplay of morphological and physiological adaptations allows the traps to pump water out of their body and to store elastic energy in the deformed bladder walls. Mechanical stimulation by prey entails opening of the otherwise watertight trapdoor, followed by trap wall relaxation, sucking in of water and prey, and consecutive trapdoor closure. Suction can also occur spontaneously in non-stimulated traps. We review the current state of knowledge about the suction trap mechanism with a focus on architectonically homogeneous traps of aquatic bladderwort species from section Utricularia (the so-called 'Utricularia vulgaris trap type'). The functional morphology and biomechanics of the traps are described in detail. We discuss open questions and propose promising aspects for future studies on these sophisticated ultra-fast trapping devices. Published by Oxford University Press on behalf of the Annals of Botany Company.
NASA Astrophysics Data System (ADS)
Barone, Z.; Nuccio, G.
2017-05-01
The archaeological site of Ancient Noto is all that remains of one of the most interesting and important cities in the Est part of Sicily. Architecture and political life made Noto a point of reference for the island, expecially in XVI and XVII century, before it was destroyed by a devastating earthquake in 1963. A general project of safeguard, together with archaeological excavations, could hand a great amount of information, archaeological finds, pieces of architecture, that are useful to understand the site, known as a "Sicilian Pompei". Our intervention has the aim to describe the importance of EFIAN (Experimental Fruition Ingenious Ancient Noto). The project is carried out as a collaboration between Palermo University, Catania University, SIQUILLIYA s.r.l. and Service & Advice s.r.l.. The project answers to the need of improving the valorisation of the site, according to the principles of Italian Code for Cultural Heritage and Landscape. EFIAN's purpose is that of improving public's sensibilisation, to open lines of research and restauration of monuments. The working method is based on the strong relationship established between History, Architectonic Relief, Restauration, and Study of ancient technics of construction linked to the territory. The research is supported by new generation technologies. Datas are used to build digital reconstructions of ruins in the shape of virtual anastylosis and digital reconstruction of whole buildings. Four different sites have been studied during the project development.
Technical aspects of CT imaging of the spine.
Tins, Bernhard
2010-11-01
This review article discusses technical aspects of computed tomography (CT) imaging of the spine. Patient positioning, and its influence on image quality and movement artefact, is discussed. Particular emphasis is placed on the choice of scan parameters and their relation to image quality and radiation burden to the patient. Strategies to reduce radiation burden and artefact from metal implants are outlined. Data acquisition, processing, image display and steps to reduce artefact are reviewed. CT imaging of the spine is put into context with other imaging modalities for specific clinical indications or problems. This review aims to review underlying principles for image acquisition and to provide a rough guide for clinical problems without being prescriptive. Individual practice will always vary and reflect differences in local experience, technical provisions and clinical requirements.
Karbalaei Akbari, Mohammad; Hai, Zhenyin; Wei, Zihan; Detavernier, Christophe; Solano, Eduardo; Verpoort, Francis; Zhuiykov, Serge
2018-03-28
Electrically responsive plasmonic devices, which benefit from the privilege of surface plasmon excited hot carries, have supported fascinating applications in the visible-light-assisted technologies. The properties of plasmonic devices can be tuned by controlling charge transfer. It can be attained by intentional architecturing of the metal-semiconductor (MS) interfaces. In this study, the wafer-scaled fabrication of two-dimensional (2D) TiO 2 semiconductors on the granular Au metal substrate is achieved using the atomic layer deposition (ALD) technique. The ALD-developed 2D MS heterojunctions exhibited substantial enhancement of the photoresponsivity and demonstrated the improvement of response time for 2D Au-TiO 2 -based plasmonic devices under visible light illumination. To circumvent the undesired dark current in the plasmonic devices, a 2D WO 3 nanofilm (∼0.7 nm) was employed as the intermediate layer on the MS interface to develop the metal-insulator-semiconductor (MIS) 2D heterostructure. As a result, 13.4% improvement of the external quantum efficiency was obtained for fabricated 2D Au-WO 3 -TiO 2 heterojunctions. The impedancometry measurements confirmed the modulation of charge transfer at the 2D MS interface using MIS architectonics. Broadband photoresponsivity from the UV to the visible light region was observed for Au-TiO 2 and Au-WO 3 -TiO 2 heterostructures, whereas near-infrared responsivity was not observed. Consequently, considering the versatile nature of the ALD technique, this approach can facilitate the architecturing and design of novel 2D MS and MIS heterojunctions for efficient plasmonic devices.
Architectonic subdivisions of neocortex in the tree shrew (Tupaia belangeri)
Wong, Peiyan; Kaas, Jon H.
2010-01-01
Tree shrews are small mammals that bear some semblance to squirrels, but are actually close relatives of primates. Thus, they have been extensively studied as a model for the early stages of primate evolution. In the present study, subdivisions of cortex were reconstructed from brain sections cut in the coronal, sagittal or horizontal planes, and processed for parvalbumin (PV), SMI-32 immunopositive neurofilament protein epitopes, vesicle glutamate transporter 2 (VGluT2), free ionic zinc, myelin, cytochrome oxidase (CO) and Nissl substance. These different procedures revealed similar boundaries between areas, suggesting the detection of functionally relevant borders and allowed a more precise demarcation of cortical areal boundaries. Primary cortical areas were most clearly revealed by the zinc stain, due to the poor staining of layer 4, as thalamocortical terminations lack free ionic zinc. Area 17 (V1) was especially prominent, as the broad layer 4 was nearly free of zinc stain. However, this feature was less pronounced in primary auditory and somatosensory, cortex. In primary sensory areas, thalamocortical terminations in layer 4 densely express VGluT2. Auditory cortex consists of two architectonically distinct subdivisions, a primary core region (Ac), surrounded by a belt region (Ab) that had a slightly less developed koniocellular appearance. Primary motor cortex (M1) was identified by the absence of VGluT2 staining in the poorly developed granular layer 4 and the presence of SMI-32 labeled pyramidal cells in layers 3 and 5. The presence of well-differentiated cortical areas in tree shrews indicates their usefulness in studies of cortical organization and function. PMID:19462403
Micromégas: Altered Body–Environment Scaling in Literary Fiction
Dieguez, Sebastian
2016-01-01
Architectonic embodiment postulates a bidirectional link between bodily awareness and the architectural environment. The standard size and features of the human body, for instance, are thought to influence the structure of interiors and buildings, as well as their perception and appreciation. Whereas architectural practice and theory, the visual arts and more recently the cognitive sciences have explored this relationship of humans with their crafted environments, many fictional literary works have long experimented with alterations of body–environment scaling. This so-called Gulliver theme – popular in the science-fiction genre but also in children’s literature and philosophical satire – reveals, as a recurrent thought-experiment, our preoccupation with proportions and our fascination for the infinitely small and large. Here I provide an overview of the altered scaling theme in literature, including classics such as Voltaire’s Micromégas, Swift’s Gulliver’s Travels, Caroll’s Alice, and Matheson’s The Shrinking man, closely examining issues relevant to architectonic embodiment such as: bodily, perceptual, cognitive, affective, and social changes related to alterations in body size relative to people, objects and architectural environments. I next provide a taxonomy of the Gulliver theme and highlight its main psychological features, and then proceed to review relevant work from cognitive science. Although fictional alterations of body-environment scaling far outreach current possibilities in experimental research, I argue that the peripetiae and morals outlined in the literary realm, as products of the human imagination, provide a unique window into the folk-psychology of body and space. PMID:27148156
Parallel Algorithms for Image Analysis.
1982-06-01
8217 _ _ _ _ _ _ _ 4. TITLE (aid Subtitle) S. TYPE OF REPORT & PERIOD COVERED PARALLEL ALGORITHMS FOR IMAGE ANALYSIS TECHNICAL 6. PERFORMING O4G. REPORT NUMBER TR-1180...Continue on reverse side it neceesary aid Identlfy by block number) Image processing; image analysis ; parallel processing; cellular computers. 20... IMAGE ANALYSIS TECHNICAL 6. PERFORMING ONG. REPORT NUMBER TR-1180 - 7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(s) Azriel Rosenfeld AFOSR-77-3271 9
Image formation in diffusion MRI: A review of recent technical developments
Miller, Karla L.
2017-01-01
Diffusion magnetic resonance imaging (MRI) is a standard imaging tool in clinical neurology, and is becoming increasingly important for neuroscience studies due to its ability to depict complex neuroanatomy (eg, white matter connectivity). Single‐shot echo‐planar imaging is currently the predominant formation method for diffusion MRI, but suffers from blurring, distortion, and low spatial resolution. A number of methods have been proposed to address these limitations and improve diffusion MRI acquisition. Here, the recent technical developments for image formation in diffusion MRI are reviewed. We discuss three areas of advance in diffusion MRI: improving image fidelity, accelerating acquisition, and increasing the signal‐to‐noise ratio. Level of Evidence: 5 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:646–662 PMID:28194821
NASA Astrophysics Data System (ADS)
Fassi, F.; Fregonese, L.; Ackermann, S.; De Troia, V.
2013-02-01
In Cultural Heritage field, the necessity to survey objects in a fast manner, with the ability to repeat the measurements several times for deformation or degradation monitoring purposes, is increasing. In this paper, two significant cases, an architectonical one and an archaeological one, are presented. Due to different reasons and emergency situations, the finding of the optimal solution to enable quick and well-timed survey for a complete digital reconstruction of the object is required. In both cases, two survey methods have been tested and used: a laser scanning approach that allows to obtain high-resolution and complete scans within a short time and a photogrammetric one that allows the three-dimensional reconstruction of the object from images. In the last months, several methodologies, including free or low cost techniques, have arisen. These kinds of software allow the fully automatically three-dimensional reconstruction of objects from images, giving back a dense point cloud and, in some case, a surfaced mesh model. In this paper some comparisons between the two methodologies above mentioned are presented, using the example of some real cases of study. The surveys have been performed by employing both photogrammetry and laser scanner techniques. The methodological operational choices, depending on the required goal, the difficulties encountered during the survey with these methods, the execution time (that is the key parameter), and finally the obtained results, are fully described and examinated. On the final 3D model, an analytical comparison has been made, to analyse the differences, the tolerances, the possibility of accuracy improvement and the future developments.
Choi, Hi-Jae; Zilles, Karl; Mohlberg, Hartmut; Schleicher, Axel; Fink, Gereon R.; Armstrong, Este; Amunts, Katrin
2008-01-01
Anatomical studies in the macaque cortex and functional imaging studies in humans have demonstrated the existence of different cortical areas within the IntraParietal Sulcus (IPS). Such functional segregation, however, does not correlate with presently available architectonic maps of the human brain. This is particularly true for the classical Brodmann map, which is still widely used as an anatomical reference in functional imaging studies. The aim of this cytoarchitectonic mapping study was to use previously defined algorithms to determine whether consistent regions and borders can be found within the cortex of the anterior IPS in a population of ten postmortem human brains. Two areas, the human IntraParietal area 1 (hIP1) and the human IntraParietal area 2 (hIP2), were delineated in serial histological sections of the anterior, lateral bank of the human IPS. The region hIP1 is located posterior and medial to hIP2, and the former is always within the depths of the IPS. The latter, on the other hand, sometimes reaches the free surface of the superior parietal lobule. The delineations were registered to standard reference space, and probabilistic maps were calculated, thereby quantifying the intersubject variability in location and extent of both areas. In the future, they can be a tool in analyzing structure – function relationships and a basis for determining degrees of homology in the IPS among anthropoid primates. We conclude that the human intraparietal sulcus has a finer grained parcellation than shown in Brodmann’s map. PMID:16432904
The relativistic titls of Giza pyramids' entrance-passages
NASA Astrophysics Data System (ADS)
Aboulfotouh, H.
The tilts of Giza pyramids' entrance-passages have never been considered as if they were the result of relativistic mathematical equations, and never been thought to encode the Earth's obliquity parameters. This paper presents an attempt to retrieve the method of establishing the equations that the pyramids' designer used to quantify the entrance-passages' tilts of these architectonic masterpieces. It proves that the pyramids' designer was able to include the geographic, astronomical and time parameters in one relativistic equation, encoding the date of the design of the Giza pyramids in the tilt of the entrance passage of the great pyramid.
NASA Astrophysics Data System (ADS)
Martyniv, Oleksandra; Kinasz, Roman
2017-10-01
This material covers the row of basic factors that influence on architectonically-spatial solution formation of building of Higher educational establishments (hereinafter universities). For this purpose, the systematization process of factors that influence on the university architecture was conducted and presented. The conclusion of this article was the proposed concept of considering universities as a hierarchical system, elements of which act as factors of influence, which in the process of alternating influence lead to the main goal, namely the formation of a new university building.
Sierra Nevada serpentinites. An important element in the architectonic heritage of Granada (Spain).
NASA Astrophysics Data System (ADS)
Navarro, Rafael; Pereira, Dolores; Rodríguez-Navarro, Carlos; Sebastián-Pardo, Eduardo
2013-04-01
Serpentinites are widely used in historic buildings in the whole world, from Ancient Greek or Egypt to more recent colonial buildings in the USA. Serpentinites from Sierra Nevada (S of Spain) have been traditionally used as ornamental elements in historic buildings of Granada city, both indoors and outdoors. The Cathedral, Carlos V Palace, Royal Chancery and some others are good examples of their use. Some other important cases can be found outside Granada, like El Escorial monastery, Las Salesas Reales convent, etc… all of them part of Madrid architectonic heritage. There are two quarries located in Sierra Nevada that supplied all the material to make the different elements in the cited buildings. In this work, a thorough characterization of the main serpentinites from Sierra Nevada, their uses, and their state of conservation in selected buildings from Granada has been performed. Samples from the main original quarry and from one historical building (Real Chancillería) have been analysed, determining the mineralogical and geochemical composition, texture, water parameters (absorption, porosity, density) and possible alteration by salt formation. It has been observed that the mineralogical and geochemical compositions are similar in both sets of samples, although the ones coming from the historical building show a highly advanced state of alteration. Regarding physical and mechanical parameters, samples from the quarry have very low water absorption values, while the porosity of serpentinites sampled from the Real Chancillería is comparatively much higher. We explain this difference as due to the weathering of the emplaced serpentinites by salt crystallization processes (mainly gypsum or epsomite), that generate strong internal pressures causing the disintegration of the whole natural stone. In addition, the increase of the porosity can be caused by dissolution processes related to the presence of acid solutions related to oxidation and hydrolysis of iron, chrome and nickel sulphides that were present in the original rock, and/or air pollution-derived SO2-attack. Knowing the condition of some of the serpentinite architectonic elements in Granada's historic buildings as well as the original quarry materials will help to face restoration in a more appropriate way than what has been done so far. Our work can be used as the base to establish future methods of remediation / conservation to prevent the deterioration of the serpentinite built heritage, but as well to recognize a natural stone that has been profusely used in the past in the construction of a magnificent heritage of an important city and historical quarries should be protected to provide original material if needed. This is a contribution of the Spanish network CONSTRUROCK.
Metrology Standards for Quantitative Imaging Biomarkers
Obuchowski, Nancy A.; Kessler, Larry G.; Raunig, David L.; Gatsonis, Constantine; Huang, Erich P.; Kondratovich, Marina; McShane, Lisa M.; Reeves, Anthony P.; Barboriak, Daniel P.; Guimaraes, Alexander R.; Wahl, Richard L.
2015-01-01
Although investigators in the imaging community have been active in developing and evaluating quantitative imaging biomarkers (QIBs), the development and implementation of QIBs have been hampered by the inconsistent or incorrect use of terminology or methods for technical performance and statistical concepts. Technical performance is an assessment of how a test performs in reference objects or subjects under controlled conditions. In this article, some of the relevant statistical concepts are reviewed, methods that can be used for evaluating and comparing QIBs are described, and some of the technical performance issues related to imaging biomarkers are discussed. More consistent and correct use of terminology and study design principles will improve clinical research, advance regulatory science, and foster better care for patients who undergo imaging studies. © RSNA, 2015 PMID:26267831
Quantitative architectural analysis: a new approach to cortical mapping.
Schleicher, A; Palomero-Gallagher, N; Morosan, P; Eickhoff, S B; Kowalski, T; de Vos, K; Amunts, K; Zilles, K
2005-12-01
Recent progress in anatomical and functional MRI has revived the demand for a reliable, topographic map of the human cerebral cortex. Till date, interpretations of specific activations found in functional imaging studies and their topographical analysis in a spatial reference system are, often, still based on classical architectonic maps. The most commonly used reference atlas is that of Brodmann and his successors, despite its severe inherent drawbacks. One obvious weakness in traditional, architectural mapping is the subjective nature of localising borders between cortical areas, by means of a purely visual, microscopical examination of histological specimens. To overcome this limitation, more objective, quantitative mapping procedures have been established in the past years. The quantification of the neocortical, laminar pattern by defining intensity line profiles across the cortical layers, has a long tradition. During the last years, this method has been extended to enable a reliable, reproducible mapping of the cortex based on image analysis and multivariate statistics. Methodological approaches to such algorithm-based, cortical mapping were published for various architectural modalities. In our contribution, principles of algorithm-based mapping are described for cyto- and receptorarchitecture. In a cytoarchitectural parcellation of the human auditory cortex, using a sliding window procedure, the classical areal pattern of the human superior temporal gyrus was modified by a replacing of Brodmann's areas 41, 42, 22 and parts of area 21, with a novel, more detailed map. An extension and optimisation of the sliding window procedure to the specific requirements of receptorarchitectonic mapping, is also described using the macaque central sulcus and adjacent superior parietal lobule as a second, biologically independent example. Algorithm-based mapping procedures, however, are not limited to these two architectural modalities, but can be applied to all images in which a laminar cortical pattern can be detected and quantified, e.g. myeloarchitectonic and in vivo high resolution MR imaging. Defining cortical borders, based on changes in cortical lamination in high resolution, in vivo structural MR images will result in a rapid increase of our knowledge on the structural parcellation of the human cerebral cortex.
A mobile laboratory for surface and subsurface imaging in geo-hazard monitoring activity
NASA Astrophysics Data System (ADS)
Cornacchia, Carmela; Bavusi, Massimo; Loperte, Antonio; Pergola, Nicola; Pignatti, Stefano; Ponzo, Felice; Lapenna, Vincenzo
2010-05-01
A new research infrastructure for supporting ground-based remote sensing observations in the different phases of georisk management cycle is presented. This instrumental facility has been designed and realised by TeRN, a public-private consortium on Earth Observations and Natural Risks, in the frame of the project "ImpresAmbiente" funded by Italian Ministry of Research and University. The new infrastructure is equipped with ground-based sensors (hyperspectral cameras, thermal cameras, laser scanning and electromagnetic antennae) able to remotely map physical parameters and/or earth-surface properties (temperature, soil moisture, land cover, etc…) and to illuminate near-surface geological structures (fault, groundwater tables, landslide bodies etc...). Furthermore, the system can be used for non-invasive investigations of architectonic buildings and civil infrastructures (bridges, tunnel, road pavements, etc...) interested by natural and man-made hazards. The hyperspectral cameras can acquire high resolution images of earth-surface and cultural objects. They are operating in the Visible Near InfraRed (0.4÷1.0μm) with 1600 spatial pixel and 3.7nm of spectral sampling and in the Short Wave InfraRed (1.3÷2.5µm) spectral region with 320 spatial pixel and 5nm of spectral sampling. The IR cameras are operating in the Medium Wavelength InfraRed (3÷5µm; 640x512; NETD< 20 mK) and in the Very Long Wavelength InfraRed region (7.7÷11.5 µm; 320x256; NETD<25 mK) with a frame rate higher than 100Hz and are both equipped with a set of optical filters in order to operate in multi-spectral configuration. The technological innovation of ground-based laser scanning equipment has led to an increased resolution performances of surveys with applications in several field, as geology, architecture, environmental monitoring and cultural heritage. As a consequence, laser data can be useful integrated with traditional monitoring techniques. The Laser Scanner is characterized by very high data acquisition repetition rate up to 500.000 pxl/sec with a range resolution of 0.1 mm, vertical and horizontal FoV of 310° and 360° respectively with a resolution of 0.0018°. The system is also equipped with a metric camera allows to georeference the high resolution images acquired. The electromagnetic sensors allow to obtain in near real time high-resolution 2D and 3D subsurface tomographic images. The main components are a fully automatic resistivity meter for DC electrical surveys (resistivity) and Induced Polarization, a Ground Penetrating Radar with antennas covering range for 400 MHz to 1.5 GHz and a gradiometric magnetometric system. All the sensors can be installed on a mobile van and remotely controlled using wi-fi technologies. An all-time network connection capability is guaranteed by a self-configurable satellite link for data communication, which allows to transmit in near-real time experimental data coming from the field surveys and to share other geospatial information. This ICT facility is well suited for emergency response activities during and after catastrophic events. Sensor synergy, multi-temporal and multi-scale resolutions of surface and sub-surface imaging are the key technical features of this instrumental facility. Finally, in this work we shortly present some first preliminary results obtained during the emergence phase of Abruzzo earthquake (Central Italy).
Seismic risk evaluation aided by IR thermography
NASA Astrophysics Data System (ADS)
Grinzato, E.; Cadelano, G.; Bison, P.; Petracca, A.
2009-05-01
Conservation of buildings in areas at seismic risk must take prevention into account. The safeguard architectonic heritage is an ambitious objective, but a priority for planning programmes at varying levels of decision making. Preservation and restoration activities must be optimized to cover a vast and widespread historical and architectonic heritage present in many countries. Masonry buildings requires an adequate level of knowledge based on the importance of structural geometry, which may include the damage, details of construction and properties of materials. For identification and classification of masonry is necessary to find shape, type and size of the elements, texture, size of mortar joints, assemblage. The recognition can be done through a visual inspection of the surface of walls, which can be examined, where is not visible, removing a layer of plaster. Thermography is an excellent tool for a fast survey and collection of vital information for this purpose, but it is extremely important define a precise procedure in the development of more efficient monitoring tools. Thermography is a non-destructive method that allows recognizing the structural damage below plaster, detecting the presence of discontinuity in masonry, for added storeys, cavity, filled openings, and repairs. Furthermore, the fast identification of subsurface state allows to select areas where other methods either more penetrating or partially destructive have to be applied. The paper reports experimental results achieved in the mainframe of the European project RECES Modiquus. The main aim of the project is to improve methods, techniques and instruments for facing antiseismic options. Both passive and active thermographic techniques have been applied in different weather conditions and time schemes. A dedicated algorithm has been developed to enhance the visibility of wall bonding.
Balaram, Pooja; Hackett, Troy A.; Kaas, Jon H.
2013-01-01
Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006). PMID:23524295
Balaram, Pooja; Hackett, Troy A; Kaas, Jon H
2013-05-01
Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006). Copyright © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Smith, Gregory D.; Nunan, Elizabeth; Walker, Claire; Kushel, Dan
2009-01-01
Imaging of artwork is an important aspect of art conservation, technical art history, and art authentication. Many forms of near-infrared (NIR) imaging are used by conservators, archaeologists, forensic scientists, and technical art historians to examine the underdrawings of paintings, to detect damages and restorations, to enhance faded or…
An image, looking east into Room 112A, filled with technical ...
An image, looking east into Room 112A, filled with technical equipment pertinent to the building's recent use - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH
First results of ground-based LWIR hyperspectral imaging remote gas detection
NASA Astrophysics Data System (ADS)
Zheng, Wei-jian; Lei, Zheng-gang; Yu, Chun-chao; Wang, Hai-yang; Fu, Yan-peng; Liao, Ning-fang; Su, Jun-hong
2014-11-01
The new progress of ground-based long-wave infrared remote sensing is presented. The LWIR hyperspectral imaging by using the windowing spatial and temporal modulation Fourier spectroscopy, and the results of outdoor ether gas detection, verify the features of LWIR hyperspectral imaging remote sensing and technical approach. It provides a new technical means for ground-based gas remote sensing.
Technical aspects of contrast-enhanced ultrasound (CEUS) examinations: tips and tricks.
Greis, C
2014-01-01
Ultrasound contrast agents have substantially extended the clinical value of ultrasound, allowing the assessment of blood flow and distribution in real-time down to microcapillary level. Selective imaging of contrast agent signals requires a contrast-specific imaging mode on the ultrasound scanner, allowing real-time separation of tissue and contrast agent signals. The creation of a contrast image requires a specific interaction between the insonated ultrasound wave and the contrast agent microbubbles, leading to persistent oscillation of the bubbles. Several technical and procedural parameters have a significant influence on the quality of CEUS images and should be controlled carefully to obtain good image quality and a reliable diagnosis. Achieving the proper balance between the respective parameters is a matter of technical knowledge and experience. Appropriate training and education should be mandatory for every investigator performing CEUS examinations.
[The microcirculatory bed of the human epididymis].
Aleksieiev, O M
1998-08-01
Based on the material of 24 human epididymides at ages 18 to 54, hemomicrocirculatory bed was studied of epididymis in man with the aid of a complex of morphologic techniques (injection of 20% Chinese ink-gelatine suspension, injection of a weak solution of caustic silver, transmission electron microscopy). It has been ascertained that architectonics and ultrastructural features of various links of the hemomicrocirculatory bed have signs of regional specificity for the subcapsular vascular network, small seminal ducts of caput epididymidis, ductus epididymidis of the head, body and tail of the organ. Reasons are discussed why specific hemomicrocirculatory bed should be caused to develop in different parts of the organ.
[The perichromatin compartment of the cell nucleus].
Bogoliubov, D S
2014-01-01
In this review, the data on the structure and composition of the perichromatin compartment, a special border area between the condensed chromatin and the interchromatin space of the cell nucleus, are discussed in the light of the concept of nuclear functions in complex nuclear architectonics. Morphological features, molecular composition and functions of main extrachromosomal structures of the perichromatin compartment, perichromatin fibrils (PFs) and perichromatin granules (PGs) including nuclear stress-bodies (nSBs) that are derivates of the PGs under heat shock, are presented. A special attention was paid to the features of the molecular compositions of PFs and PGs in different cell types and at different physiological conditions.
Technical parameters for specifying imagery requirements
NASA Technical Reports Server (NTRS)
Coan, Paul P.; Dunnette, Sheri J.
1994-01-01
Providing visual information acquired from remote events to various operators, researchers, and practitioners has become progressively more important as the application of special skills in alien or hazardous situations increases. To provide an understanding of the technical parameters required to specify imagery, we have identified, defined, and discussed seven salient characteristics of images: spatial resolution, linearity, luminance resolution, spectral discrimination, temporal discrimination, edge definition, and signal-to-noise ratio. We then describe a generalizing imaging system and identified how various parts of the system affect the image data. To emphasize the different applications of imagery, we have constrasted the common television system with the significant parameters of a televisual imaging system for technical applications. Finally, we have established a method by which the required visual information can be specified by describing certain technical parameters which are directly related to the information content of the imagery. This method requires the user to complete a form listing all pertinent data requirements for the imagery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giaddui, T; Chen, W; Yu, J
2014-06-15
Purpose: To review IGRT credentialing experience and unexpected technical issues encountered in connection with advanced radiotherapy technologies as implemented in RTOG clinical trials. To update IGRT credentialing procedures with the aim of improving the quality of the process, and to increase the proportion of IGRT credentialing compliance. To develop a living disease site-specific IGRT encyclopedia. Methods: Numerous technical issues were encountered during the IGRT credentialing process. The criteria used for credentialing review were based on: image quality; anatomy included in fused data sets and shift results. Credentialing requirements have been updated according to the AAPM task group reports for IGRTmore » to ensure that all required technical items are included in the quality review process. Implementation instructions have been updated and expanded for recent protocols. Results: Technical issues observed during the credentialing review process include, but are not limited to: poor quality images; inadequate image acquisition region; poor data quality; shifts larger than acceptable; no soft tissue surrogate. The updated IGRT credentialing process will address these issues and will also include the technical items required from AAPM: TG 104; TG 142 and TG 179 reports. An instruction manual has been developed describing a remote credentialing method for reviewers. Submission requirements are updated, including images/documents as well as facility questionnaire. The review report now includes summary of the review process and the parameters that reviewers check. We have reached consensus on the minimum IGRT technical requirement for a number of disease sites. RTOG 1311(NRG-BR002A Phase 1 Study of Stereotactic Body Radiotherapy (SBRT) for the Treatment of Multiple Metastases) is an example, here; the protocol specified the minimum requirement for each anatomical sites (with/without fiducials). Conclusion: Technical issues are identified and reported. IGRT guidelines are updated, with the corresponding credentialing requirements. An IGRT encyclopedia describing site-specific implementation issues is currently in development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tedeschi, Jonathan R.; Bernacki, Bruce E.; Kelly, James F.
2011-12-31
This report describes research and development efforts toward a novel passive millimeter-wave (mm-wave) electromagnetic imaging device for broad-area search. It addresses the technical challenge of detecting anomalies that occupy a small fraction of a pixel. The purpose of the imager is to pinpoint suspicious locations for cuing subsequent higher-resolution imaging. The technical basis for the approach is to exploit thermal and polarization anomalies that distinguish man-made features from natural features.
Recognizing 3 D Objects from 2D Images Using Structural Knowledge Base of Genetic Views
1988-08-31
technical report. [BIE85] I. Biederman , "Human image understanding: Recent research and a theory", Computer Vision, Graphics, and Image Processing, vol...model bases", Technical Report 87-85, COINS Dept, University of Massachusetts, Amherst, MA 01003, August 1987 . [BUR87b) Burns, J. B. and L. J. Kitchen...34Recognition in 2D images of 3D objects from large model bases using prediction hierarchies", Proc. IJCAI-10, 1987 . [BUR891 J. B. Burns, forthcoming
Effects of Company Visits on Dutch Primary School Children's Attitudes toward Technical Professions
ERIC Educational Resources Information Center
Post, Tim; Walma van der Molen, Juliette H.
2014-01-01
Technology-oriented company visits could potentially provide children with a stimulating "real-world" setting to develop more broad and positive images of and attitudes toward technology and technical professions. The present study was the first to explore whether children's images of and attitudes toward technology, technical…
García-Cabezas, Miguel Ángel; Barbas, Helen
2018-01-01
Noninvasive imaging and tractography methods have yielded information on broad communication networks but lack resolution to delineate intralaminar cortical and subcortical pathways in humans. An important unanswered question is whether we can use the wealth of precise information on pathways from monkeys to understand connections in humans. We addressed this question within a theoretical framework of systematic cortical variation and used identical high-resolution methods to compare the architecture of cortical gray matter and the white matter beneath, which gives rise to short- and long-distance pathways in humans and rhesus monkeys. We used the prefrontal cortex as a model system because of its key role in attention, emotions, and executive function, which are processes often affected in brain diseases. We found striking parallels and consistent trends in the gray and white matter architecture in humans and monkeys and between the architecture and actual connections mapped with neural tracers in rhesus monkeys and, by extension, in humans. Using the novel architectonic portrait as a base, we found significant changes in pathways between nearby prefrontal and distant areas in autism. Our findings reveal that a theoretical framework allows study of normal neural communication in humans at high resolution and specific disruptions in diverse psychiatric and neurodegenerative diseases. PMID:29401206
Technical aspects of dental CBCT: state of the art
Araki, K; Siewerdsen, J H; Thongvigitmanee, S S
2015-01-01
As CBCT is widely used in dental and maxillofacial imaging, it is important for users as well as referring practitioners to understand the basic concepts of this imaging modality. This review covers the technical aspects of each part of the CBCT imaging chain. First, an overview is given of the hardware of a CBCT device. The principles of cone beam image acquisition and image reconstruction are described. Optimization of imaging protocols in CBCT is briefly discussed. Finally, basic and advanced visualization methods are illustrated. Certain topics in these review are applicable to all types of radiographic imaging (e.g. the principle and properties of an X-ray tube), others are specific for dental CBCT imaging (e.g. advanced visualization techniques). PMID:25263643
ERIC Educational Resources Information Center
Gunn, Therese; Jones, Lee; Bridge, Pete; Rowntree, Pam; Nissen, Lisa
2018-01-01
In recent years, simulation has increasingly underpinned the acquisition of pre-clinical skills by undergraduate medical imaging (diagnostic radiography) students. This project aimed to evaluate the impact of an innovative virtual reality (VR) learning environment on the development of technical proficiency by students. The study assessed the…
Technical Communication Competence and Projected Teacher Success.
ERIC Educational Resources Information Center
Powers, William G.; Lowry, David N.
Technical Communication Competence (TCC)is the competence involved in communicating mental images to others in such a manner as to result in their constructing comparable mental images, a process similar to the primary task demanded of teachers at all levels. In a study designed to discover the extent to which a positive relationship existed…
Effects of hypokinesia and hypodynamia on the intraorganic arteries of the heart
NASA Technical Reports Server (NTRS)
Aleksina, L. A.
1980-01-01
The experiments were performed on rabbits kept in small cages for 2-12 weeks. Their motor activity was greatly restricted. The arteries of the heart were injected with an India ink-gelatine mass; injection was directly into the coronary arteries. After fixation in 10% formaline solution 120 micron sections were cut. These were cleared by the Malygin method and examined with a light microscope. After exposure to hypokinetic conditions the picture of the cardiac arterial bed changed. During the first weeks the capillaries of the myocardium were significantly constricted, their course becoming sinuous. With prolonged exposure to hypokinetic conditions the vessels were found to dilate gradually and myocardial architectonics changed.
Huang, Erich P; Wang, Xiao-Feng; Choudhury, Kingshuk Roy; McShane, Lisa M; Gönen, Mithat; Ye, Jingjing; Buckler, Andrew J; Kinahan, Paul E; Reeves, Anthony P; Jackson, Edward F; Guimaraes, Alexander R; Zahlmann, Gudrun
2015-02-01
Medical imaging serves many roles in patient care and the drug approval process, including assessing treatment response and guiding treatment decisions. These roles often involve a quantitative imaging biomarker, an objectively measured characteristic of the underlying anatomic structure or biochemical process derived from medical images. Before a quantitative imaging biomarker is accepted for use in such roles, the imaging procedure to acquire it must undergo evaluation of its technical performance, which entails assessment of performance metrics such as repeatability and reproducibility of the quantitative imaging biomarker. Ideally, this evaluation will involve quantitative summaries of results from multiple studies to overcome limitations due to the typically small sample sizes of technical performance studies and/or to include a broader range of clinical settings and patient populations. This paper is a review of meta-analysis procedures for such an evaluation, including identification of suitable studies, statistical methodology to evaluate and summarize the performance metrics, and complete and transparent reporting of the results. This review addresses challenges typical of meta-analyses of technical performance, particularly small study sizes, which often causes violations of assumptions underlying standard meta-analysis techniques. Alternative approaches to address these difficulties are also presented; simulation studies indicate that they outperform standard techniques when some studies are small. The meta-analysis procedures presented are also applied to actual [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) test-retest repeatability data for illustrative purposes. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Huang, Erich P; Wang, Xiao-Feng; Choudhury, Kingshuk Roy; McShane, Lisa M; Gönen, Mithat; Ye, Jingjing; Buckler, Andrew J; Kinahan, Paul E; Reeves, Anthony P; Jackson, Edward F; Guimaraes, Alexander R; Zahlmann, Gudrun
2017-01-01
Medical imaging serves many roles in patient care and the drug approval process, including assessing treatment response and guiding treatment decisions. These roles often involve a quantitative imaging biomarker, an objectively measured characteristic of the underlying anatomic structure or biochemical process derived from medical images. Before a quantitative imaging biomarker is accepted for use in such roles, the imaging procedure to acquire it must undergo evaluation of its technical performance, which entails assessment of performance metrics such as repeatability and reproducibility of the quantitative imaging biomarker. Ideally, this evaluation will involve quantitative summaries of results from multiple studies to overcome limitations due to the typically small sample sizes of technical performance studies and/or to include a broader range of clinical settings and patient populations. This paper is a review of meta-analysis procedures for such an evaluation, including identification of suitable studies, statistical methodology to evaluate and summarize the performance metrics, and complete and transparent reporting of the results. This review addresses challenges typical of meta-analyses of technical performance, particularly small study sizes, which often causes violations of assumptions underlying standard meta-analysis techniques. Alternative approaches to address these difficulties are also presented; simulation studies indicate that they outperform standard techniques when some studies are small. The meta-analysis procedures presented are also applied to actual [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) test–retest repeatability data for illustrative purposes. PMID:24872353
HVAC--the importance of clean intake section and dry air filter in cold climate.
Hanssen, S O
2004-01-01
HVAC systems, if properly designed, installed, operated and maintained, will improve thermal conditions and air quality indoors. However, the success strongly depends on the design of the system and the quality of the components we use in our HVAC installations. Regrettably, several investigations have revealed that many HVAC installations have a lot of operational and maintenance problems, especially related to moisture, rain and snow entrainment. In short, it seems that too little attention is placed on the design of the intake section, despite the fact that there exists a large number of national and international guidelines and recommendations. This is a serious problem because the air intake is the initial component of the ventilation plant and as such the first line of defense against debris and other outdoor air pollutants. Unfortunately, the design is often an argued compromise between the architect, the civil engineer and the HVAC engineer. In the future, the technical, hygienic and microbiological feature of air intakes must be better ensured in order to avoid the air intake becoming a risk component as regards contamination and indoor air quality. Further, it seems that the magnitude of the problem is not well known, or recognized, by the building designers, engineers and professionals involved in the construction and operation of buildings. This fact needs to be addressed more seriously, because obviously there is a big difference between the idealistic architectonic design, engineering intentions and the real life situation. Several practical recommendations for design and operation of HVAC systems are presented. Following the recommendations will result in less pollution from the HVAC-system and increased indoor environmental quality.
The impact of age on the art of mammography and how to adapt accordingly.
Lake, B; Cielecki, L; Williams, S; Worrall, C; Metelko, M
2017-11-01
Breast cancer is increasingly a disease of the elderly, and combined with the NHS Breast Screening Extension means that more elderly patients are having mammography. Increasing age can make mammography more technically difficult. This is a technical note detailing the results of a local audit which may be of interest due to potential service implications. A retrospective audit of the first year of screening extension of The Shropshire Breast Screening Programme. Aims to collect data on patient demographics and describe the technical adaptations developed in Shropshire. Breast screening extension has increased by 2.5 times the number of women aged 70-74 screened, and doubled the overall numbers of women over 70 screened. Significantly more older patients are being screened to present technical challenges to a screening programme. Data was obtained from a month of screening showed that 29% of patients over 70 needed extra time for positioning. Reasons included 22% difficulty in obtaining adequate positioning and 15% needed a relative to aid with consent. In the Shropshire screening programme different technical adaptations have been developed and are key to ensuring adequate images. These include double appointments, two radiographers, thorough assessment, steeper angles, seated examinations, from-below imaging and pre-planning for subsequent screen. Significantly more older women are having breast screening due to the increasing incidence of breast cancer and the Breast Screening Programme extension. Increasing age can significantly increase time taken for adequate imaging and present technical challenges. Development of technical adaptations to art of mammography is key to achieve adequate images. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.
Ma, Wang Kei; Borgen, Rita; Kelly, Judith; Millington, Sara; Hilton, Beverley; Aspin, Rob; Lança, Carla; Hogg, Peter
2017-03-01
Blurred images in full-field digital mammography are a problem in the UK Breast Screening Programme. Technical recalls may be due to blurring not being seen on lower resolution monitors used for review. This study assesses the visual detection of blurring on a 2.3-MP monitor and a 5-MP report grade monitor and proposes an observer standard for the visual detection of blurring on a 5-MP reporting grade monitor. 28 observers assessed 120 images for blurring; 20 images had no blurring present, whereas 100 images had blurring imposed through mathematical simulation at 0.2, 0.4, 0.6, 0.8 and 1.0 mm levels of motion. Technical recall rate for both monitors and angular size at each level of motion were calculated. χ 2 tests were used to test whether significant differences in blurring detection existed between 2.3- and 5-MP monitors. The technical recall rate for 2.3- and 5-MP monitors are 20.3% and 9.1%, respectively. The angular size for 0.2- to 1-mm motion varied from 55 to 275 arc s. The minimum amount of motion for visual detection of blurring in this study is 0.4 mm. For 0.2-mm simulated motion, there was no significant difference [χ 2 (1, N = 1095) = 1.61, p = 0.20] in blurring detection between the 2.3- and 5-MP monitors. According to this study, monitors ≤2.3 MP are not suitable for technical review of full-field digital mammography images for the detection of blur. Advances in knowledge: This research proposes the first observer standard for the visual detection of blurring.
Borgen, Rita; Kelly, Judith; Millington, Sara; Hilton, Beverley; Aspin, Rob; Lança, Carla; Hogg, Peter
2017-01-01
Objective: Blurred images in full-field digital mammography are a problem in the UK Breast Screening Programme. Technical recalls may be due to blurring not being seen on lower resolution monitors used for review. This study assesses the visual detection of blurring on a 2.3-MP monitor and a 5-MP report grade monitor and proposes an observer standard for the visual detection of blurring on a 5-MP reporting grade monitor. Methods: 28 observers assessed 120 images for blurring; 20 images had no blurring present, whereas 100 images had blurring imposed through mathematical simulation at 0.2, 0.4, 0.6, 0.8 and 1.0 mm levels of motion. Technical recall rate for both monitors and angular size at each level of motion were calculated. χ2 tests were used to test whether significant differences in blurring detection existed between 2.3- and 5-MP monitors. Results: The technical recall rate for 2.3- and 5-MP monitors are 20.3% and 9.1%, respectively. The angular size for 0.2- to 1-mm motion varied from 55 to 275 arc s. The minimum amount of motion for visual detection of blurring in this study is 0.4 mm. For 0.2-mm simulated motion, there was no significant difference [χ2 (1, N = 1095) = 1.61, p = 0.20] in blurring detection between the 2.3- and 5-MP monitors. Conclusion: According to this study, monitors ≤2.3 MP are not suitable for technical review of full-field digital mammography images for the detection of blur. Advances in knowledge: This research proposes the first observer standard for the visual detection of blurring. PMID:28134567
Ogawa, Yukihisa; Nishimaki, Hiroshi; Osuga, Keigo; Ikeda, Osamu; Hongo, Norio; Iwakoshi, Shinichi; Kawasaki, Ryota; Woodhams, Reiko; Yamaguchi, Masato; Kamiya, Mika; Kanematsu, Masayuki; Honda, Masanori; Kaminou, Toshio; Koizumi, Jun; Kichikawa, Kimihiko
2016-08-01
To investigate the current status of interventional radiology (IR) procedures for a type II endoleak (T2EL) in Japan, and to identify the technical aspects that affect treatment results. A retrospective survey was conducted by distributing questionnaires to 25 institutions. The eligibility criteria were endovascular aortic repair (EVAR) performed using commercial stent grafts and IR performed for T2EL between January 2007 and December 2013. Technical success was defined as disappearance of the EL on digital subtraction angiography immediately after embolization, and imaging success was defined as no EL on contrast-enhanced computed tomography within 6 months. Statistical comparisons of the number of involved branches, embolization level, embolic material, and changes in aneurysm size were made between the imaging success and imaging failure groups. The technical and imaging success rates were also compared between the initial therapy and repeat groups. A total of 166 cases were investigated. Initial therapy was performed in 147 cases (88.6 %), with repeat therapy in 19 cases (11.4 %). Transcatheter arterial embolization (TAE) was used most frequently, in 161 cases (97 %), with direct puncture (DP) used in 5 cases (3 %). Both coil embolization for the branches and NBCA embolization for the sac were frequently chosen. The technical success rate was 83.2 % (TAE group), and the imaging success rate was 46.5 % (TAE + DP groups). Branch + sac embolization was performed more frequently in the imaging success group. There was no significant difference in the number of involved branches or embolic material between the imaging success and imaging failure groups. Enlargement of the aneurysm was more frequently seen in the imaging failure group. There were no significant differences in the technical success and imaging success rates between the initial therapy and repeat groups. This is the first report of a multi-institutional questionnaire survey of IR procedures for T2EL after EVAR in Japan that was conducted to determine the current status. Enlargement of aneurysm size after embolization was more frequently seen in the imaging failure group. It is important to embolize both branch and sac to achieve imaging success, regardless of embolic material. Long-term outcomes need to be investigated.
The Image of Career and Technical Education. Practice Application Brief.
ERIC Educational Resources Information Center
Brown, Bettina Lankard
Career and technical education (CTE) instructors can use four strategies to present a new image of CTE as a viable strategy for education and work. Strategy 1 is to give students something to brag about. Three ways to help students see their vocational studies as unique and special opportunities for satisfying and rich experiences are to provide…
Malhotra, Saurabh; Sobieraj, Diana M; Mann, April; Parker, Matthew W
2017-12-22
Background/Objectives: The specific credentials and continuing education (CME/CE) of nuclear cardiology laboratory medical and technical staff are important factors in the delivery of quality imaging services that have not been systematically evaluated. Methods: Nuclear cardiology accreditation application data from the Intersocietal Accreditation Commission (IAC) was used to characterize facilities performing myocardial perfusion imaging by setting, size, previous accreditation and credentials of the medical and technical staff. Credentials and CME/CE were compared against initial accreditation decisions (grant or delay) using multivariable logistic regression. Results: Complete data were available for 1913 nuclear cardiology laboratories from 2011-2014. Laboratories with initial positive accreditation decisions had a greater prevalence of Certification Board in Nuclear Cardiology (CBNC) certified medical directors and specialty credentialed technical directors. Certification and credentials of the medical and technical directors, respectively, staff CME/CE compliance, and assistance of a consultant with the application were positively associated with accreditation decisions. Conclusion: Nuclear cardiology laboratories directed by CBNC-certified physicians and NCT- or PET-credentialed technologists were less likely to receive delay decisions for MPI. CME/CE compliance of both the medical and technical directors was associated with accreditation decision. Medical and technical directors' years of experience were not associated with accreditation decision. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
The use of near-infrared fluorescence imaging in endocrine surgical procedures.
Kahramangil, Bora; Berber, Eren
2017-06-01
Near-infrared fluorescence imaging in endocrine surgery is a new, yet highly investigated area. It involves indocyanine green use as well as parathyroid autofluorescence. Several groups have described their technique and reported on the observed utility. However, there is no consensus on technical details. Furthermore, the correlation between intraoperative findings and postoperative outcomes is unclear. With this study, we aim to review the current literature on fluorescence imaging and share our insights on technical details. © 2017 Wiley Periodicals, Inc.
Evaluation of a Delay-Doppler Imaging Algorithm Based on the Wigner-Ville Distribution
1989-10-18
exchanging the frequency and time variables. 2.3 PROPERTIES OF THE WIGNER - VILLE DISTRIBUTION A partial list of the properties of the WVD is provided...ESD-TH-89-163 N Technical Report (N R55 00 Lfl Evaluation of a Delay-Doppler Imaging Algorithm Based on the Wigner - Ville Distribution K.I. Schultz 18...DOPPLER IMAGING ALGORITHM BASED ON THE WIGNER - VILLE DISTRIBUTION K.I. SCHULTZ Group 52 TECHNICAL REPORT 855 18 OCTOBER 1989 Approved for public release
Hod, Nir; Anconina, Reut; Levin, Daniel; Ezroh Kazap, Dina; Lantsberg, Sophie
2018-06-01
As with any new molecular imaging modality, accurate characterization of abnormalities on Ga-PSMA PET/CT imaging can be accomplished only if one is aware of the normal distribution pattern, physiological variants, and potential sources of false imaging findings. Altered biodistribution can have a significant impact on scan interpretation. Presented here is a rare case in which radiopharmaceutical radiolysis occurred causing excessive free Ga-citrate showing as an increased vascular activity. As Ga-PSMA PET/CT imaging is a relatively new imaging technique, it is important to be aware of such a potential technical pitfall in clinical practice in order to prevent scan misinterpretation.
Review of Portuguese Cistercian Monastic Heritage
NASA Astrophysics Data System (ADS)
Martins, Ana M. T.
2017-10-01
This paper aims to present a contribution to the history of the reform and renewal in the Portuguese Cistercian monasteries throughout almost nine centuries of cultural and architectural history in this Country. The Cistercian Order played a remarkable role in the affirmation of Portugal (1143) and had unquestionable position, since the medieval period, in the construction of a significant part of the Portuguese culture. The reform of many Monasteries came with the Autonomous Congregation of Alcobaça (1567). In fact, the Portuguese Cistercian Monasteries absorbed the regional ways of construction with masonry (granite in the north and limestone in the south) but it is without a doubt in its architecture that change and renewal can be found as strength and a tool for achieving a status of cultural landmarks. The renewal and reform in the Portuguese Cistercian Monasteries was not restricted to the styles in vogue but also was related to the physical expansion of the monasteries. This could be achieved by adding new aisles and cloisters like in Alcobaça or Salzedas Monasteries. Though there are cases of unconventional renewals and reformations such as the existence of two churches in the Monastery of Salzedas and the example of the open air Museum of the Monastery of S. João de Tarouca were can be found the former medieval monastery, as a result of new archaeological research and a prospective hypothesis of its volumetric layout, in between the walls of the 17th century dormitories and the Church. This continuous architectonic renewal is still being carried out in the 21st century either by the Portuguese Government, through several heritage institutes since the 20th century, or a few individuals on their one.The history of the Portuguese Cistercian Monasteries blends itself with the history of Portugal as the continuous architectonic renewals and reforms were also a result of nine centuries of events and changes in this Country.
Imaging windows for long-term intravital imaging: General overview and technical insights.
Alieva, Maria; Ritsma, Laila; Giedt, Randy J; Weissleder, Ralph; van Rheenen, Jacco
2014-01-01
Intravital microscopy is increasingly used to visualize and quantitate dynamic biological processes at the (sub)cellular level in live animals. By visualizing tissues through imaging windows, individual cells (e.g., cancer, host, or stem cells) can be tracked and studied over a time-span of days to months. Several imaging windows have been developed to access tissues including the brain, superficial fascia, mammary glands, liver, kidney, pancreas, and small intestine among others. Here, we review the development of imaging windows and compare the most commonly used long-term imaging windows for cancer biology: the cranial imaging window, the dorsal skin fold chamber, the mammary imaging window, and the abdominal imaging window. Moreover, we provide technical details, considerations, and trouble-shooting tips on the surgical procedures and microscopy setups for each imaging window and explain different strategies to assure imaging of the same area over multiple imaging sessions. This review aims to be a useful resource for establishing the long-term intravital imaging procedure.
Geospatial Analysis | Energy Analysis | NREL
products and tools. Image of a triangle divided into sections called Market, Economic, Technical, and Featured Study U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis summarizes the achievable energy generation, or technical potential, of specific renewable energy technologies given system
NASA Technical Reports Server (NTRS)
Vanderspiegel, Jan
1994-01-01
This report surveys different technologies and approaches to realize sensors for image warping. The goal is to study the feasibility, technical aspects, and limitations of making an electronic camera with special geometries which implements certain transformations for image warping. This work was inspired by the research done by Dr. Juday at NASA Johnson Space Center on image warping. The study has looked into different solid-state technologies to fabricate image sensors. It is found that among the available technologies, CMOS is preferred over CCD technology. CMOS provides more flexibility to design different functions into the sensor, is more widely available, and is a lower cost solution. By using an architecture with row and column decoders one has the added flexibility of addressing the pixels at random, or read out only part of the image.
High-Resolution X-Ray Telescopes
NASA Technical Reports Server (NTRS)
ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.
2010-01-01
Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.
[Motivation as a basis of mental activity].
Sudakov, K V
2006-01-01
Motivation is considered as a key component of systemic organization of mental activity. Forming on the stage of afferent synthesis, motivation determines activity of the subsequent systemic architectonic stages of mental acts: decision-making, construction of an acceptor of resulting actions, efferent synthesis and the very purposeful action. It is shown that motivation acts as an energy basis of mental activity. The foresight instrument of required resulting actions--an acceptor of resulting actions that, strongly linked to dominating motivation, is a leading guiding component of mental actions. A role of motivation in the processes of perception, memory, movement organization, intellectual and creative activity and their relationship to emotions are considered. A conception of motivation as a basis of intellect is formulated.
NASA Astrophysics Data System (ADS)
Akopova, T. A.; Demina, T. S.; Bagratashvili, V. N.; Bardakova, K. N.; Novikov, M. M.; Selezneva, I. I.; Istomin, A. V.; Svidchenko, E. A.; Cherkaev, G. V.; Surin, N. M.; Timashev, P. S.
2015-07-01
Chitosans with various degrees of deacetylation and molecular weights and their allyl substituted derivatives were obtained through a solvent-free reaction under shear deformation in an extruder. Structure and physical-chemical analysis of the samples were carried out using nuclear magnetic resonance (NMR), ultraviolet (UV) and infrared radiation (IR) spectroscopy. Photosensitive materials based on the synthesized polymers were successfully used for microfabrication of 3D well-defined architectonic structures by laser stereolithography. Study on the metabolic activity of NCTC L929 cultured in the presence of the cured chitosan extracts indicates that the engineered biomaterials could support adhesion, spreading and growth of adherent-dependent cells, and thus could be considered as biocompatible scaffolds.
Synthesis and characterization of thin-transparent nanostructured films for surface protection
NASA Astrophysics Data System (ADS)
Veltri, S.; Sokullu, E.; Barberio, M.; Gauthier, M. A.; Antici, P.
2017-01-01
This work demonstrates that very thin and optically transparent nanocomposite films can be conveniently applied on surface materials, displaying potent antibacterial properties without affecting the aesthetics of the underlying material. In our approach we propose new composite materials, which ensure the surface protection by inactivating the bacteria before a biofilm can be formed. The films contain very small loadings of TiO2, graphene, or fullerene, and can easily be applied on large surfaces using conventional brushes or air-brushes. These nanocomposite films are very promising candidates for the preservation of statues, mosaics, floors, buildings, and other objects that are exposed to challenging environmental conditions such as Architectonical Heritage or building materials (materials featuring stone, pigments, bronze, granite, marble, and glass).
``A Minority View'' Gian-Carlo Rota's Phenomenological Realism
NASA Astrophysics Data System (ADS)
Palombi, Fabrizio
In 1997 Rota's second anthology was published, entitled Indiscrete Thoughts. The theses put forward in the book were "minority" positions in a Unites States cultural context that, after long having attempted to replace philosophy with logical analysis and the analysis of language (Hersh, 1997, pp. IX-X), was preparing to interpret it also in neuroscientific terms. Rota intended to show that he did not fear uncomfortable positions and chose the phrase "a minority view" as a provocative title for the philosophy section of the book, inspired by phenomenology. We cannot understand the importance of Rota's intellectual figure, within the American cultural context of the end of the twentieth century, and the importance of his heritage if we interpret it in terms of architectonic of philosophy.
Nondestructive evaluation of the preservation state of stone columns in the Hospital Real of Granada
NASA Astrophysics Data System (ADS)
Moreno de Jong van Coevorden, C.; Cobos Sánchez, C.; Rubio Bretones, A.; Fernández Pantoja, M.; García, Salvador G.; Gómez Martín, R.
2012-12-01
This paper describes the results of the employment of two nondestructive evaluation methods for the diagnostic of the preservation state of stone elements. The first method is based on ultrasonic (US) pulses while the second method uses short electromagnetic pulses. Specifically, these methods were applied to some columns, some of them previously restored. These columns are part of the architectonic heritage of the University of Granada, in particular they are located at the patio de la capilla del Hospital Real of Granada. The objective of this work was the application of systems based on US pulses (in transmission mode) and the ground-penetrating radar systems (electromagnetic tomography) in the diagnosis and detection of possible faults in the interior of columns.
Raunig, David L; McShane, Lisa M; Pennello, Gene; Gatsonis, Constantine; Carson, Paul L; Voyvodic, James T; Wahl, Richard L; Kurland, Brenda F; Schwarz, Adam J; Gönen, Mithat; Zahlmann, Gudrun; Kondratovich, Marina V; O'Donnell, Kevin; Petrick, Nicholas; Cole, Patricia E; Garra, Brian; Sullivan, Daniel C
2015-02-01
Technological developments and greater rigor in the quantitative measurement of biological features in medical images have given rise to an increased interest in using quantitative imaging biomarkers to measure changes in these features. Critical to the performance of a quantitative imaging biomarker in preclinical or clinical settings are three primary metrology areas of interest: measurement linearity and bias, repeatability, and the ability to consistently reproduce equivalent results when conditions change, as would be expected in any clinical trial. Unfortunately, performance studies to date differ greatly in designs, analysis method, and metrics used to assess a quantitative imaging biomarker for clinical use. It is therefore difficult or not possible to integrate results from different studies or to use reported results to design studies. The Radiological Society of North America and the Quantitative Imaging Biomarker Alliance with technical, radiological, and statistical experts developed a set of technical performance analysis methods, metrics, and study designs that provide terminology, metrics, and methods consistent with widely accepted metrological standards. This document provides a consistent framework for the conduct and evaluation of quantitative imaging biomarker performance studies so that results from multiple studies can be compared, contrasted, or combined. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Interventional articular and para-articular knee procedures
Lalam, Radhesh K; Winn, Naomi
2016-01-01
The knee is a common area of the body to undergo interventional procedures. This article discusses image-guided interventional issues specific to the knee area. The soft tissues in and around the knee are frequently affected by sport-related injuries and often need image-guided intervention. This article details the specific technical issues related to intervention in these soft tissues, including the iliotibial tract, fat pads, patellar tendon and other tendons, bursae and the meniscus. Most often, simple procedures such as injection and aspiration are performed without image guidance. Rarely image-guided diagnostic arthrography and therapeutic joint injections are necessary. The technique, indications and diagnostic considerations for arthrography are discussed in this article. Primary bone and soft-tissue tumours may involve the knee and adjacent soft tissues. Image-guided biopsies are frequently necessary for these lesions; this article details the technical issues related to image-guided biopsy around the knee. A number of newer ablation treatments are now available, including cryoablation, high-frequency ultrasound and microwave ablation. Radiofrequency ablation, however, still remains the most commonly employed ablation technique. The indications, technical and therapeutic considerations related to the application of this technique around the knee are discussed here. Finally, we briefly discuss some newer, but as of yet, unproven image-guided interventions for osteochondral lesions and Brodie's abscess. PMID:26682669
Mauri, Giovanni; Sconfienza, Luca Maria; Pescatori, Lorenzo Carlo; Fedeli, Maria Paola; Alì, Marco; Di Leo, Giovanni; Sardanelli, Francesco
2017-08-01
To systematically review studies concerning imaging-guided minimally-invasive breast cancer treatments. An online database search was performed for English-language articles evaluating percutaneous breast cancer ablation. Pooled data and 95% confidence intervals (CIs) were calculated. Technical success, technique efficacy, minor and major complications were analysed, including ablation technique subgroup analysis and effect of tumour size on outcome. Forty-five studies were analysed, including 1,156 patients and 1,168 lesions. Radiofrequency (n=577; 50%), microwaves (n=78; 7%), laser (n=227; 19%), cryoablation (n=156; 13%) and high-intensity focused ultrasound (HIFU, n=129; 11%) were used. Pooled technical success was 96% (95%CI 94-97%) [laser=98% (95-99%); HIFU=96% (90-98%); radiofrequency=96% (93-97%); cryoablation=95% (90-98%); microwave=93% (81-98%)]. Pooled technique efficacy was 75% (67-81%) [radiofrequency=82% (74-88); cryoablation=75% (51-90); laser=59% (35-79); HIFU=49% (26-74)]. Major complications pooled rate was 6% (4-8). Minor complications pooled rate was 8% (5-13%). Differences between techniques were not significant for technical success (p=0.449), major complications (p=0.181) or minor complications (p=0.762), but significant for technique efficacy (p=0.009). Tumour size did not impact on variables (p>0.142). Imaging-guided percutaneous ablation techniques of breast cancer have a high rate of technical success, while technique efficacy remains suboptimal. Complication rates are relatively low. • Imaging-guided ablation techniques for breast cancer are 96% technically successful. • Overall technique efficacy rate is 75% but largely inhomogeneous among studies. • Overall major and minor complication rates are low (6-8%).
Sujlana, Parvinder; Skrok, Jan; Fayad, Laura M
2018-04-01
Although postcontrast imaging has been used for many years in musculoskeletal imaging, dynamic contrast enhanced (DCE) MRI is not routinely used in many centers around the world. Unlike conventional contrast-enhanced sequences, DCE-MRI allows the evaluation of the temporal pattern of enhancement in the musculoskeletal system, perhaps best known for its use in oncologic applications (such as differentiating benign from malignant tumors, evaluating for treatment response after neoadjuvant chemotherapy, and differentiating postsurgical changes from residual tumor). However, DCE-MRI can also be used to evaluate inflammatory processes such as Charcot foot and synovitis, and evaluate bone perfusion in entities like Legg Calve Perthes disease and arthritis. Finally, vascular abnormalities and associated complications may be better characterized with DCE-MRI than conventional imaging. The goal of this article is to review the applications and technical aspects of DCE-MRI in the musculoskeletal system. 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:875-890. © 2017 International Society for Magnetic Resonance in Medicine.
Adaptive optics for in-vivo exploration of human retinal structures
NASA Astrophysics Data System (ADS)
Paques, Michel; Meimon, Serge; Grieve, Kate; Rossant, Florence
2017-06-01
Adaptive optics (AO)-enhanced imaging of the retina is now reaching a level of technical maturity which fosters its expanding use in research and clinical centers in the world. By achieving wavelength-limited resolution it did not only allow a better observation of retinal substructures already visible by other means, it also broke anatomical frontiers such as individual photoreceptors or vessel walls. The clinical applications of AO-enhanced imaging has been slower than that of optical coherence tomography because of the combination of technical complexity, costs and the paucity of interpretative scheme of complex data. In several diseases, AO-enhanced imaging has already proven to provide added clinical value and quantitative biomarkers. Here, we will review some of the clinical applications of AO-enhanced en face imaging, and trace perspectives to improve its clinical pertinence in these applications. An interesting perspective is to document cell motion through time-lapse imaging such as during agerelated macular degeneration. In arterial hypertension, the possibility to measure parietal thickness and perform fine morphometric analysis is of interest for monitoring patients. In the near future, implementation of novel approaches and multimodal imaging, including in particular optical coherence tomography, will undoubtedly expand our imaging capabilities. Tackling the technical, scientific and medical challenges offered by high resolution imaging are likely to contribute to our rethinking of many retinal diseases, and, most importantly, may find applications in other areas of medicine.
Scientific and Technical Information. Handbook for Technical Report Preparation
1991-05-31
31................. 16 Typography .......................................... 32.... ... ........ 16 Section Vill--REQUIREMENTS...marks. 16 AFDTCP 83-2 31 May 1991 SECTION VII ERRATA/ TYPOGRAPHY 31. ERRATA. Errors are normally corrected during proofing. If an error does-become... TYPOGRAPHY : a. Paper Size and Image Area. Paper size will be 8 1/2 by irc.• .,,.;od quality 50-pound white bond stock. The image area should be 6 1/2- by 8 3/4
Xu, J; Reh, D D; Carey, J P; Mahesh, M; Siewerdsen, J H
2012-08-01
As cone-beam CT (CBCT) systems dedicated to various imaging specialties proliferate, technical assessment grounded in imaging physics is important to ensuring that image quality and radiation dose are quantified, understood, and justified. This paper involves technical assessment of a new CBCT scanner (CS 9300, Carestream Health, Rochester, NY) dedicated to imaging of the ear and sinuses for applications in otolaryngology-head and neck surgery (OHNS). The results guided evaluation of technique protocols to minimize radiation dose in a manner sufficient for OHNS imaging tasks. The technical assessment focused on the imaging performance and radiation dose for each of seven technique protocols recommended by the manufacturer: three sinus protocols and four ear (temporal bone) protocols. Absolute dose was measured using techniques adapted from AAPM Task Group Report No. 111, involving three stacked 16 cm diameter acrylic cylinders (CTDI phantoms) and a 0.6 cm(3) Farmer ionization chamber to measure central and peripheral dose. The central dose (D(o)) was also measured as a function of longitudinal position (z) within and beyond the primary radiation field to assess, for example, out-of-field dose to the neck. Signal-difference-to-noise ratio (SDNR) and Hounsfield unit (HU) accuracy were assessed in a commercially available quality assurance phantom (CATPHAN module CTP404, The Phantom Laboratory, Greenwich, NY) and a custom phantom with soft-tissue-simulating plastic inserts (Gammex RMI, Madison, WI). Spatial resolution was assessed both qualitatively (a line-pair pattern, CATPHAN module CTP528) and quantitatively (modulation transfer function, MTF, measured with a wire phantom). Imaging performance pertinent to various OHNS imaging tasks was qualitatively assessed using an anthropomorphic phantom as evaluated by two experienced OHNS specialists. The technical assessment motivated a variety of modifications to the manufacturer-specified protocols to provide reduced radiation dose without compromising pertinent task-based imaging performance. The revised protocols yielded D(o) ranging 2.9-5.7 mGy, representing a ∼30% reduction in dose from the original technique chart. Out-of-field dose was ∼10% of D(o) at a distance of ∼8 cm from the field edge. Soft-tissue contrast resolution was fairly limited (water-brain SDNR ∼0.4-0.7) while high-contrast performance was reasonably good (SDNR ∼2-4 for a polystyrene insert in the CATPHAN). The scanner does not demonstrate (or claim to provide) accurate HU and exhibits a systematic error in CT number that could potentially be addressed by further calibration. The spatial resolution is ∼10-16 lp∕cm as assessed in a line-pair phantom, with MTF exceeding 10% out to ∼20 lp∕cm. Qualitative assessment by expert readers suggested limited soft-tissue visibility but excellent high-contrast (bone) visualization with isotropic spatial resolution suitable to a broad spectrum of pertinent sinus and temporal bone imaging tasks. The CBCT scanner provided spatial and contrast resolution suitable to visualization of high-contrast morphology in sinus, maxillofacial, and otologic imaging applications. Rigorous technical assessment guided revision of technique protocols to reduce radiation dose while maintaining image quality sufficient for pertinent imaging tasks. The scanner appears well suited to high-contrast sinus and temporal bone imaging at doses comparable to or less than that reported for conventional diagnostic CT of the head.
Technical Considerations on Scanning and Image Analysis for Amyloid PET in Dementia.
Akamatsu, Go; Ohnishi, Akihito; Aita, Kazuki; Ikari, Yasuhiko; Yamamoto, Yasuji; Senda, Michio
2017-01-01
Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), can provide essential and objective information for the early and differential diagnosis of dementia. Amyloid PET is especially useful to evaluate the amyloid-β pathological process as a biomarker of Alzheimer's disease. This article reviews critical points about technical considerations on the scanning and image analysis methods for amyloid PET. Each amyloid PET agent has its own proper administration instructions and recommended uptake time, scan duration, and the method of image display and interpretation. In addition, we have introduced general scanning information, including subject positioning, reconstruction parameters, and quantitative and statistical image analysis. We believe that this article could make amyloid PET a more reliable tool in clinical study and practice.
Hybrid PET/MR imaging: physics and technical considerations.
Shah, Shetal N; Huang, Steve S
2015-08-01
In just over a decade, hybrid imaging with FDG PET/CT has become a standard bearer in the management of cancer patients. An exquisitely sensitive whole-body imaging modality, it combines the ability to detect subtle biologic changes with FDG PET and the anatomic information offered by CT scans. With advances in MR technology and advent of novel targeted PET radiotracers, hybrid PET/MRI is an evolutionary technique that is poised to revolutionize hybrid imaging. It offers unparalleled spatial resolution and functional multi-parametric data combined with biologic information in the non-invasive detection and characterization of diseases, without the deleterious effects of ionizing radiation. This article reviews the basic principles of FDG PET and MR imaging, discusses the salient technical developments of hybrid PET/MR systems, and provides an introduction to FDG PET/MR image acquisition.
Quantitative imaging biomarkers: Effect of sample size and bias on confidence interval coverage.
Obuchowski, Nancy A; Bullen, Jennifer
2017-01-01
Introduction Quantitative imaging biomarkers (QIBs) are being increasingly used in medical practice and clinical trials. An essential first step in the adoption of a quantitative imaging biomarker is the characterization of its technical performance, i.e. precision and bias, through one or more performance studies. Then, given the technical performance, a confidence interval for a new patient's true biomarker value can be constructed. Estimating bias and precision can be problematic because rarely are both estimated in the same study, precision studies are usually quite small, and bias cannot be measured when there is no reference standard. Methods A Monte Carlo simulation study was conducted to assess factors affecting nominal coverage of confidence intervals for a new patient's quantitative imaging biomarker measurement and for change in the quantitative imaging biomarker over time. Factors considered include sample size for estimating bias and precision, effect of fixed and non-proportional bias, clustered data, and absence of a reference standard. Results Technical performance studies of a quantitative imaging biomarker should include at least 35 test-retest subjects to estimate precision and 65 cases to estimate bias. Confidence intervals for a new patient's quantitative imaging biomarker measurement constructed under the no-bias assumption provide nominal coverage as long as the fixed bias is <12%. For confidence intervals of the true change over time, linearity must hold and the slope of the regression of the measurements vs. true values should be between 0.95 and 1.05. The regression slope can be assessed adequately as long as fixed multiples of the measurand can be generated. Even small non-proportional bias greatly reduces confidence interval coverage. Multiple lesions in the same subject can be treated as independent when estimating precision. Conclusion Technical performance studies of quantitative imaging biomarkers require moderate sample sizes in order to provide robust estimates of bias and precision for constructing confidence intervals for new patients. Assumptions of linearity and non-proportional bias should be assessed thoroughly.
Novel Developments in Instrumentation for PET Imaging
NASA Astrophysics Data System (ADS)
Karp, Joel
2013-04-01
Advances in medical imaging, in particular positron emission tomography (PET), have been based on technical developments in physics and instrumentation that have common foundations with detection systems used in other fields of physics. New detector materials are used in PET systems that maximize efficiency, timing characteristics and robustness, and which lead to improved image quality and quantitative accuracy for clinical imaging. Time of flight (TOF) techniques are now routinely used in commercial PET scanners that combine physiological imaging with anatomical imaging provided by x-ray computed tomography. Using new solid-state photo-sensors instead of traditional photo-multiplier tubes makes it possible to combine PET with magnetic resonance imaging which is a significant technical challenge, but one that is creating new opportunities for both research and clinical applications. An overview of recent advances in instrumentation, such as TOF and PET/MR will be presented, along with examples of imaging studies to demonstrate the impact on patient care and basic research of diseases.
Career and Technical Education in the Crossroads of Change
ERIC Educational Resources Information Center
Quailey, Janice
2012-01-01
Career and technical education (CTE) is faced with numerous forces that may impact its future. A variety of forces directly or indirectly affect CTE, ranging from the persisting stigma or negative image of career and technical education, the schools' curricular structure and requirements, along with federal laws such as No Child Left Behind (NCLB)…
Molecular imaging of malignant tumor metabolism: whole-body image fusion of DWI/CT vs. PET/CT.
Reiner, Caecilia S; Fischer, Michael A; Hany, Thomas; Stolzmann, Paul; Nanz, Daniel; Donati, Olivio F; Weishaupt, Dominik; von Schulthess, Gustav K; Scheffel, Hans
2011-08-01
To prospectively investigate the technical feasibility and performance of image fusion for whole-body diffusion-weighted imaging (wbDWI) and computed tomography (CT) to detect metastases using hybrid positron emission tomography/computed tomography (PET/CT) as reference standard. Fifty-two patients (60 ± 14 years; 18 women) with different malignant tumor disease examined by PET/CT for clinical reasons consented to undergo additional wbDWI at 1.5 Tesla. WbDWI was performed using a diffusion-weighted single-shot echo-planar imaging during free breathing. Images at b = 0 s/mm(2) and b = 700 s/mm(2) were acquired and apparent diffusion coefficient (ADC) maps were generated. Image fusion of wbDWI and CT (from PET/CT scan) was performed yielding for wbDWI/CT fused image data. One radiologist rated the success of image fusion and diagnostic image quality. The presence or absence of metastases on wbDWI/CT fused images was evaluated together with the separate wbDWI and CT images by two different, independent radiologists blinded to results from PET/CT. Detection rate and positive predictive values for diagnosing metastases was calculated. PET/CT examinations were used as reference standard. PET/CT identified 305 malignant lesions in 39 of 52 (75%) patients. WbDWI/CT image fusion was technically successful and yielded diagnostic image quality in 73% and 92% of patients, respectively. Interobserver agreement for the evaluation of wbDWI/CT images was κ = 0.78. WbDWI/CT identified 270 metastases in 43 of 52 (83%) patients. Overall detection rate and positive predictive value of wbDWI/CT was 89% (95% CI, 0.85-0.92) and 94% (95% CI, 0.92-0.97), respectively. WbDWI/CT image fusion is technically feasible in a clinical setting and allows the diagnostic assessment of metastatic tumor disease detecting nine of 10 lesions as compared with PET/CT. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.
3D printing of PLGA scaffolds for tissue engineering.
Mironov, Anton V; Grigoryev, Aleksey M; Krotova, Larisa I; Skaletsky, Nikolaj N; Popov, Vladimir K; Sevastianov, Viktor I
2017-01-01
We proposed a novel method of generation of bioresorbable polymeric scaffolds with specified architectonics for tissue engineering using extrusion three-dimensional (3D) printing with solutions of polylactoglycolide in tetraglycol with their subsequent solidifying in aqueous medium. On the basis of 3D computer models, we obtained the matrix structures with interconnected system of pores ranging in size from 0.5 to 500 µm. The results of in vitro studies using cultures of line NIH 3Т3 mouse fibroblasts, floating islet cultures of newborn rabbit pancreas, and mesenchymal stem cells of human adipose tissue demonstrated the absence of cytotoxicity and good adhesive properties of scaffolds in regard to the cell cultures chosen. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 104-109, 2017. © 2016 Wiley Periodicals, Inc.
Patterning and templating for nanoelectronics.
Galatsis, Kosmas; Wang, Kang L; Ozkan, Mihri; Ozkan, Cengiz S; Huang, Yu; Chang, Jane P; Monbouquette, Harold G; Chen, Yong; Nealey, Paul; Botros, Youssry
2010-02-09
The semiconductor industry will soon be launching 32 nm complementary metal oxide semiconductor (CMOS) technology node using 193 nm lithography patterning technology to fabricate microprocessors with more than 2 billion transistors. To ensure the survival of Moore's law, alternative patterning techniques that offer advantages beyond conventional top-down patterning are aggressively being explored. It is evident that most alternative patterning techniques may not offer compelling advantages to succeed conventional top-down lithography for silicon integrated circuits, but alternative approaches may well indeed offer functional advantages in realising next-generation information processing nanoarchitectures such as those based on cellular, bioinsipired, magnetic dot logic, and crossbar schemes. This paper highlights and evaluates some patterning methods from the Center on Functional Engineered Nano Architectonics in Los Angeles and discusses key benchmarking criteria with respect to CMOS scaling.
Acetylcholinesterase and Nissl staining in the same histological section.
Shipley, M T; Ennis, M; Behbehani, M M
1989-12-18
Acetylcholinesterase (AChE) enzyme histochemistry and Nissl staining are commonly utilized in neural architectonic studies. However, the opaque reaction deposit produced by the most commonly used AChE histochemical methods is not compatible with satisfactory Nissl staining. As a result, precise correlation of AChE and Nissl staining necessitates time-consuming comparisons of adjacent sections which may have differential shrinkage. Here, we have modified the Koelle-Friedenwald histochemical reaction for AChE by omitting the final intensification steps. The modified reaction yields a non-opaque reaction product that is selectively visualized by darkfield illumination. This non-intensified darkfield AChE (NIDA) reaction allows clear visualization of Nissl staining in the same histological section. This combined AChE-Nissl method greatly facilitates detailed correlation of enzyme and cytoarchitectonic organization.
Mapping visual cortex in monkeys and humans using surface-based atlases
NASA Technical Reports Server (NTRS)
Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.
2001-01-01
We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.
Voigt, Jens-Uwe; Pedrizzetti, Gianni; Lysyansky, Peter; Marwick, Tom H; Houle, Hélène; Baumann, Rolf; Pedri, Stefano; Ito, Yasuhiro; Abe, Yasuhiko; Metz, Stephen; Song, Joo Hyun; Hamilton, Jamie; Sengupta, Partho P; Kolias, Theodore J; d'Hooge, Jan; Aurigemma, Gerard P; Thomas, James D; Badano, Luigi Paolo
2015-02-01
Recognizing the critical need for standardization in strain imaging, in 2010, the European Association of Echocardiography (now the European Association of Cardiovascular Imaging, EACVI) and the American Society of Echocardiography (ASE) invited technical representatives from all interested vendors to participate in a concerted effort to reduce intervendor variability of strain measurement. As an initial product of the work of the EACVI/ASE/Industry initiative to standardize deformation imaging, we prepared this technical document which is intended to provide definitions, names, abbreviations, formulas, and procedures for calculation of physical quantities derived from speckle tracking echocardiography and thus create a common standard. Copyright © 2015 American Society of Echocardiography. All rights reserved.
Digital radiography: optimization of image quality and dose using multi-frequency software.
Precht, H; Gerke, O; Rosendahl, K; Tingberg, A; Waaler, D
2012-09-01
New developments in processing of digital radiographs (DR), including multi-frequency processing (MFP), allow optimization of image quality and radiation dose. This is particularly promising in children as they are believed to be more sensitive to ionizing radiation than adults. To examine whether the use of MFP software reduces the radiation dose without compromising quality at DR of the femur in 5-year-old-equivalent anthropomorphic and technical phantoms. A total of 110 images of an anthropomorphic phantom were imaged on a DR system (Canon DR with CXDI-50 C detector and MLT[S] software) and analyzed by three pediatric radiologists using Visual Grading Analysis. In addition, 3,500 images taken of a technical contrast-detail phantom (CDRAD 2.0) provide an objective image-quality assessment. Optimal image-quality was maintained at a dose reduction of 61% with MLT(S) optimized images. Even for images of diagnostic quality, MLT(S) provided a dose reduction of 88% as compared to the reference image. Software impact on image quality was found significant for dose (mAs), dynamic range dark region and frequency band. By optimizing image processing parameters, a significant dose reduction is possible without significant loss of image quality.
Applications and limitations of radiomics
NASA Astrophysics Data System (ADS)
Yip, Stephen S. F.; Aerts, Hugo J. W. L.
2016-07-01
Radiomics is an emerging field in quantitative imaging that uses advanced imaging features to objectively and quantitatively describe tumour phenotypes. Radiomic features have recently drawn considerable interest due to its potential predictive power for treatment outcomes and cancer genetics, which may have important applications in personalized medicine. In this technical review, we describe applications and challenges of the radiomic field. We will review radiomic application areas and technical issues, as well as proper practices for the designs of radiomic studies.
Transforming Dermatologic Imaging for the Digital Era: Metadata and Standards.
Caffery, Liam J; Clunie, David; Curiel-Lewandrowski, Clara; Malvehy, Josep; Soyer, H Peter; Halpern, Allan C
2018-01-17
Imaging is increasingly being used in dermatology for documentation, diagnosis, and management of cutaneous disease. The lack of standards for dermatologic imaging is an impediment to clinical uptake. Standardization can occur in image acquisition, terminology, interoperability, and metadata. This paper presents the International Skin Imaging Collaboration position on standardization of metadata for dermatologic imaging. Metadata is essential to ensure that dermatologic images are properly managed and interpreted. There are two standards-based approaches to recording and storing metadata in dermatologic imaging. The first uses standard consumer image file formats, and the second is the file format and metadata model developed for the Digital Imaging and Communication in Medicine (DICOM) standard. DICOM would appear to provide an advantage over using consumer image file formats for metadata as it includes all the patient, study, and technical metadata necessary to use images clinically. Whereas, consumer image file formats only include technical metadata and need to be used in conjunction with another actor-for example, an electronic medical record-to supply the patient and study metadata. The use of DICOM may have some ancillary benefits in dermatologic imaging including leveraging DICOM network and workflow services, interoperability of images and metadata, leveraging existing enterprise imaging infrastructure, greater patient safety, and better compliance to legislative requirements for image retention.
Muzic, Raymond F.; DiFilippo, Frank P.
2015-01-01
PET/MR is a hybrid imaging technology with the potential to combine the molecular and functional information of PET with the soft-tissue contrast of MR. Herein we review the technical features and challenges of putting these different technologies together. We emphasize the conceptual to make the material accessible to a wide audience. We begin by reviewing PET/CT, a more mature multi-modality imaging technology, to provide a basis for comparison to the history of PET/MR development. We discuss the motivation and challenges of PET/MR and different approaches that have been used to meet the challenges. We conclude with a speculation about the future of this exciting imaging method. PMID:25497909
NASA Technical Reports Server (NTRS)
Ong, C,; Mueller, A.; Thome, K.; Bachmann, M.; Czapla-Myers, J.; Holzwarth, S.; Khalsa, S. J.; Maclellan, C.; Malthus, T.; Nightingale, J.;
2016-01-01
Calibration and validation are fundamental for obtaining quantitative information from Earth Observation (EO) sensor data. Recognising this and the impending launch of at least five sensors in the next five years, the International Spaceborne Imaging Spectroscopy Technical Committee instigated a calibration and validation initiative. A workshop was conducted recently as part of this initiative with the objective of establishing a good practice framework for radiometric and spectral calibration and validation in support of spaceborne imaging spectroscopy missions. This paper presents the outcomes and recommendations for future work arising from the workshop.
Follow-up of negative MRI-targeted prostate biopsies: when are we missing cancer?
Gold, Samuel A; Hale, Graham R; Bloom, Jonathan B; Smith, Clayton P; Rayn, Kareem N; Valera, Vladimir; Wood, Bradford J; Choyke, Peter L; Turkbey, Baris; Pinto, Peter A
2018-05-21
Multiparametric magnetic resonance imaging (mpMRI) has improved clinicians' ability to detect clinically significant prostate cancer (csPCa). Combining or fusing these images with the real-time imaging of transrectal ultrasound (TRUS) allows urologists to better sample lesions with a targeted biopsy (Tbx) leading to the detection of greater rates of csPCa and decreased rates of low-risk PCa. In this review, we evaluate the technical aspects of the mpMRI-guided Tbx procedure to identify possible sources of error and provide clinical context to a negative Tbx. A literature search was conducted of possible reasons for false-negative TBx. This includes discussion on false-positive mpMRI findings, termed "PCa mimics," that may incorrectly suggest high likelihood of csPCa as well as errors during Tbx resulting in inexact image fusion or biopsy needle placement. Despite the strong negative predictive value associated with Tbx, concerns of missed disease often remain, especially with MR-visible lesions. This raises questions about what to do next after a negative Tbx result. Potential sources of error can arise from each step in the targeted biopsy process ranging from "PCa mimics" or technical errors during mpMRI acquisition to failure to properly register MRI and TRUS images on a fusion biopsy platform to technical or anatomic limits on needle placement accuracy. A better understanding of these potential pitfalls in the mpMRI-guided Tbx procedure will aid interpretation of a negative Tbx, identify areas for improving technical proficiency, and improve both physician understanding of negative Tbx and patient-management options.
2000-07-01
UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1348 TITLE: Internet Color Imaging DISTRIBUTION: Approved for public...Paper Internet Color Imaging Hsien-Che Lee Imaging Science and Technology Laboratory Eastman Kodak Company, Rochester, New York 14650-1816 USA...ABSTRACT The sharing and exchange of color images over the Internet pose very challenging problems to color science and technology . Emerging color standards
Kashyap, Ravi; Dondi, Maurizio; Paez, Diana; Mariani, Guliano
2013-05-01
The growth in nuclear medicine, in the past decade, is largely due to hybrid imaging, specifically single-photon emission tomography-computed tomography (SPECT-CT) and positron emission tomography-computed tomography (PET-CT). Introduction and use of hybrid imaging has been growing at a fast pace. This has led to many challenges and opportunities to the personnel dealing with it. The International Atomic Energy Agency (IAEA) keeps a close watch on the trends in applications of nuclear techniques in health by many ways, including obtaining inputs from member states and professional societies. In 2012, a Technical Meeting on trends in hybrid imaging was organized by IAEA to understand the current status and trends of hybrid imaging using nuclear techniques, its role in clinical practice, and associated educational needs and challenges. Perspective of scientific societies and professionals from all the regions of the world was obtained. Heterogeneity in value, educational needs, and access was noted and the drivers of this heterogeneity were discussed. This article presents the key points shared during the technical meeting, focusing primarily on SPECT-CT and PET-CT, and shares the action plan for IAEA to deal with heterogeneity as suggested by the participants. Copyright © 2013 Elsevier Inc. All rights reserved.
Is screening with digital imaging using one retinal view adequate?
Herbert, H M; Jordan, K; Flanagan, D W
2003-05-01
To compare the detection of diabetic retinopathy from digital images with slit-lamp biomicroscopy, and to determine whether British Diabetic Association (BDA) screening criteria are attained (>80% sensitivity, >95% specificity, &<5% technical failure). Diabetics referred for screening were studied in a prospective fashion. A single 45 degrees fundus image was obtained using the nonmydriatic digital camera. Each patient subsequently underwent slit-lamp biomicroscopy and diabetic retinopathy grading by a consultant ophthalmologist. Diabetic retinopathy and maculopathy was graded according to the Early Treatment of Diabetic Retinopathy Study. A total of 145 patients (288 eyes) were identified for screening. Of these, 26% of eyes had diabetic retinopathy, and eight eyes (3%) had sight-threatening diabetic retinopathy requiring treatment. The sensitivity for detection of any diabetic retinopathy was 38% and the specificity 95%. There was a 4% technical failure rate. There were 42/288 false negatives and 10/288 false positives. Of the 42 false negatives, 18 represented diabetic maculopathy, 20 represented peripheral diabetic retinopathy and four eyes had both macular and peripheral changes. Three eyes in the false-negative group (1% of total eyes) had sight-threatening retinopathy. There was good concordance between the two consultants (79% agreement on slit-lamp biomicroscopy and 84% on digital image interpretation). The specificity value and technical failure rate compare favourably with BDA guidelines. The low sensitivity for detection of any retinopathy reflects failure to detect minimal maculopathy and retinopathy outside the 45 degrees image. This could be improved by an additional nasal image and careful evaluation of macular images with a low threshold for slit-lamp biomicroscopy if image quality is poor.
Mind Operational Semantics and Brain Operational Architectonics: A Putative Correspondence
Benedetti, Giulio; Marchetti, Giorgio; Fingelkurts, Alexander A; Fingelkurts, Andrew A
2010-01-01
Despite allowing for the unprecedented visualization of brain functional activity, modern neurobiological techniques have not yet been able to provide satisfactory answers to important questions about the relationship between brain and mind. The aim of this paper is to show how two different but complementary approaches, Mind Operational Semantics (OS) and Brain Operational Architectonics (OA), can help bridge the gap between a specific kind of mental activity—the higher-order reflective thought or linguistic thought—and brain. The fundamental notion that allows the two different approaches to be jointly used under a common framework is that of operation. According to OS, which is based on introspection and linguistic data, the meanings of words can be analyzed in terms of elemental mental operations (EOMC), amongst which those of attention play a key role. Linguistic thought is made possible by special kinds of elements, which OS calls “correlators”, which have the function of tying together the other elements of thought, which OS calls “correlata” (a "correlational network” that is, a sentence, is so formed). Therefore, OS conceives of linguistic thought as a hierarchy of operations of increasing complexity. Likewise, according to OA, which is based on the joint analysis of cognitive and electromagnetic data (EEG and MEG), every conscious phenomenon is brought to existence by the joint operations of many functional and transient neuronal assemblies in the brain. According to OA, the functioning of the brain is always operational (made up of operations), and its structure is characterized by a hierarchy of operations of increasing complexity: single neurons, single assemblies of neurons, synchronized neuronal assemblies or Operational Modules (OM), integrated or complex OMs. The authors put forward the hypothesis that the whole level of OS’s description (EOMC, correlators, and correlational networks) corresponds to the level of OMs (or set of them) of different complexity within OA’s theory: EOMC could correspond to simple OMs, correlators to complex OMs and the correlational network to a set of simple and complex OMs. Finally, a set of experiments is proposed to verify the putative correspondence between OS and OA and prove the existence of an integrated continuum between brain and mind. PMID:21113277
Laparoscopic partial nephrectomy: Technical considerations and an update
Dominguez-Escrig, Jose L; Vasdev, Nikhil; O’Riordon, Anna; Soomro, Naeem
2011-01-01
The widespread use of radiological imaging (ultrasound, computed tomography and magnetic resonance imaging) has resulted in a steady increase in the incidental diagnosis of small renal masses. While open partial nephrectomy (OPN) remains the reference standard for the management of small renal masses, laparoscopic partial nephrectomy (LPN) continues to evolve. LPN is currently advocated to be at par with OPN oncologically. The steep learning curve and technical demand of LPN make it challenging to establish this as a new procedure. We present a detailed up-to-date review on the previous, current and planned technical considerations for the use of LPN, highlighting important surgical techniques, including single-port and robotic surgery, techniques on improving intra-operative haemostasis and the management of complications specific to LPN. PMID:22022109
ATM experiment S-056 image processing requirements definition
NASA Technical Reports Server (NTRS)
1972-01-01
A plan is presented for satisfying the image data processing needs of the S-056 Apollo Telescope Mount experiment. The report is based on information gathered from related technical publications, consultation with numerous image processing experts, and on the experience that was in working on related image processing tasks over a two-year period.
Omoumi, Patrick; Becce, Fabio; Racine, Damien; Ott, Julien G; Andreisek, Gustav; Verdun, Francis R
2015-12-01
In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been used successfully in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits; to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Omoumi, Patrick; Verdun, Francis R; Guggenberger, Roman; Andreisek, Gustav; Becce, Fabio
2015-12-01
In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been successfully used in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits, to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
NASA Astrophysics Data System (ADS)
Robleda, P. G.; Caroti, G.; Martínez-Espejo Zaragoza, I.; Piemonte, A.
2016-06-01
Sometimes it is difficult to represent "on paper" the existing reality of architectonic elements, depending on the complexity of his geometry, but not only in cases with complex geometries: non-relief surfaces, can need a "special planar format" for its graphical representation. Nowadays, there are a lot of methods to obtain tridimensional recovery of our Cultural Heritage with different ranges of the relationship accuracy / costs, even getting high accuracy using "low-cost" recovery methods as digital photogrammetry, which allow us easily to obtain a graphical representation "on paper": ortho-images of different points of view. This can be useful for many purposes but, for others, an orthographic projection is not really very interesting. In non-site restoration tasks of frescoed vaults, a "planar format" representation in needed to see in true magnitude the paintings represented on the intrados vault, because of the general methodology used: gluing the fresco on a fabric, removing the fresco-fabric from the support, moving to laboratory, removing the fresco from the fabric, restoring the fresco, gluing back the restored fresco on another fabric, laying the restored fresco on the original location and removing the fabric. Because of this, many times, an unfolded model is needed, in a similar way a cylinder or cone can be unfolded, but in this case with a texture included: UV unwrapping. Unfold and fold-back processes, can be especially interesting in restoration field of frescoed vaults and domes at: chromatic recovery of paintings, reconstruction of partially missed geometries, transference of paintings on surfaces, etc.
Gender differences in cerebral metabolism for color processing in mice: A PET/MRI Study.
Njemanze, Philip C; Kranz, Mathias; Amend, Mario; Hauser, Jens; Wehrl, Hans; Brust, Peter
2017-01-01
Color processing is a central component of mammalian vision. Gender-related differences of color processing revealed by non-invasive functional transcranial Doppler ultrasound suggested right hemisphere pattern for blue/yellow chromatic opponency by men, and a left hemisphere pattern by women. The present study measured the accumulation of [18F]fluorodeoxyglucose ([18F]FDG) in mouse brain using small animal positron emission tomography and magnetic resonance imaging (PET/MRI) with statistical parametric mapping (SPM) during light stimulation with blue and yellow filters compared to darkness condition. PET revealed a reverse pattern relative to dark condition compared to previous human studies: Male mice presented with left visual cortex dominance for blue through the right eye, while female mice presented with right visual cortex dominance for blue through the left eye. We applied statistical parametric mapping (SPM) to examine gender differences in activated architectonic areas within the orbital and medial prefrontal cortex and related cortical and sub-cortical areas that lead to the striatum, medial thalamus and other brain areas. The metabolic connectivity of the orbital and medial prefrontal cortex evoked by blue stimulation spread through a wide range of brain structures implicated in viscerosensory and visceromotor systems in the left intra-hemispheric regions in male, but in the right-to-left inter-hemispheric regions in female mice. Color functional ocular dominance plasticity was noted in the right eye in male mice but in the left eye in female mice. This study of color processing in an animal model could be applied in the study of the role of gender differences in brain disease.
Predicting the Location of Human Perirhinal Cortex, Brodmann's area 35, from MRI
Augustinack, Jean C.; Huber, Kristen E.; Stevens, Allison A.; Roy, Michelle; Frosch, Matthew P.; van der Kouwe, André J.W.; Wald, Lawrence L.; Van Leemput, Koen; McKee, Ann; Fischl, Bruce
2012-01-01
The perirhinal cortex (Brodmann's area 35) is a multimodal area that is important for normal memory function. Specifically, perirhinal cortex is involved in detection of novel objects and manifests neurofibrillary tangles in Alzheimer's disease very early in disease progression. We scanned ex vivo brain hemispheres at standard resolution (1 mm × 1 mm × 1 mm) to construct pial/white matter surfaces in FreeSurfer and scanned again at high resolution (120 μm × 120 μm × 120 μm) to determine cortical architectural boundaries. After labeling perirhinal area 35 in the high resolution images, we mapped the high resolution labels to the surface models to localize area 35 in fourteen cases. We validated the area boundaries determined using histological Nissl staining. To test the accuracy of the probabilistic mapping, we measured the Hausdorff distance between the predicted and true labels and found that the median Hausdorff distance was 4.0 mm for left hemispheres (n = 7) and 3.2 mm for right hemispheres (n = 7) across subjects. To show the utility of perirhinal localization, we mapped our labels to a subset of the Alzheimer's Disease Neuroimaging Initiative dataset and found decreased cortical thickness measures in mild cognitive impairment and Alzheimer's disease compared to controls in the predicted perirhinal area 35. Our ex vivo probabilistic mapping of perirhinal cortex provides histologically validated, automated and accurate labeling of architectonic regions in the medial temporal lobe, and facilitates the analysis of atrophic changes in a large dataset for earlier detection and diagnosis. PMID:22960087
History and future technical innovation in positron emission tomography
Jones, Terry; Townsend, David
2017-01-01
Abstract. Instrumentation for positron emission tomography (PET) imaging has experienced tremendous improvements in performance over the past 60 years since it was first conceived as a medical imaging modality. Spatial resolution has improved by a factor of 10 and sensitivity by a factor of 40 from the early designs in the 1970s to the high-performance scanners of today. Multimodality configurations have emerged that combine PET with computed tomography (CT) and, more recently, with MR. Whole-body scans for clinical purposes can now be acquired in under 10 min on a state-of-the-art PET/CT. This paper will review the history of these technical developments over 40 years and summarize the important clinical research and healthcare applications that have been made possible by these technical advances. Some perspectives for the future of this technology will also be presented that promise to bring about new applications of this imaging modality in clinical research and healthcare. PMID:28401173
Features and limitations of mobile tablet devices for viewing radiological images.
Grunert, J H
2015-03-01
Mobile radiological image display systems are becoming increasingly common, necessitating a comparison of the features of these systems, specifically the operating system employed, connection to stationary PACS, data security and rang of image display and image analysis functions. In the fall of 2013, a total of 17 PACS suppliers were surveyed regarding the technical features of 18 mobile radiological image display systems using a standardized questionnaire. The study also examined to what extent the technical specifications of the mobile image display systems satisfy the provisions of the Germany Medical Devices Act as well as the provisions of the German X-ray ordinance (RöV). There are clear differences in terms of how the mobile systems connected to the stationary PACS. Web-based solutions allow the mobile image display systems to function independently of their operating systems. The examined systems differed very little in terms of image display and image analysis functions. Mobile image display systems complement stationary PACS and can be used to view images. The impacts of the new quality assurance guidelines (QS-RL) as well as the upcoming new standard DIN 6868 - 157 on the acceptance testing of mobile image display units for the purpose of image evaluation are discussed. © Georg Thieme Verlag KG Stuttgart · New York.
Technical Challenges of Enterprise Imaging: HIMSS-SIIM Collaborative White Paper.
Clunie, David A; Dennison, Don K; Cram, Dawn; Persons, Kenneth R; Bronkalla, Mark D; Primo, Henri Rik
2016-10-01
This white paper explores the technical challenges and solutions for acquiring (capturing) and managing enterprise images, particularly those involving visible light applications. The types of acquisition devices used for various general-purpose photography and specialized applications including dermatology, endoscopy, and anatomic pathology are reviewed. The formats and standards used, and the associated metadata requirements and communication protocols for transfer and workflow are considered. Particular emphasis is placed on the importance of metadata capture in both order- and encounter-based workflow. The benefits of using DICOM to provide a standard means of recording and accessing both metadata and image and video data are considered, as is the role of IHE and FHIR.
Garwood, Elisabeth R; Souza, Richard B; Zhang, Amy; Zhang, Alan L; Ma, C Benjamin; Link, Thomas M; Motamedi, Daria
Evaluate technical feasibility and potential applications of glenohumeral (GH) joint axial traction magnetic resonance imaging (MRI) in healthy volunteers. Eleven shoulders were imaged in neutral and with 4kg axial traction at 3T. Quantitative measurements were assessed. Axial traction was well tolerated. There was statistically significant widening of the superior GH joint space (p=0.002) and acromial angle (p=0.017) with traction. Inter-rater agreement was high. GH joint axial traction MRI is technically feasible and well tolerated in volunteers. Traction of the capsule, widening of the superior GH joint space and acromial angle were observed. Copyright © 2017 Elsevier Inc. All rights reserved.
2017-01-01
Technological developments and greater rigor in the quantitative measurement of biological features in medical images have given rise to an increased interest in using quantitative imaging biomarkers (QIBs) to measure changes in these features. Critical to the performance of a QIB in preclinical or clinical settings are three primary metrology areas of interest: measurement linearity and bias, repeatability, and the ability to consistently reproduce equivalent results when conditions change, as would be expected in any clinical trial. Unfortunately, performance studies to date differ greatly in designs, analysis method and metrics used to assess a QIB for clinical use. It is therefore, difficult or not possible to integrate results from different studies or to use reported results to design studies. The Radiological Society of North America (RSNA) and the Quantitative Imaging Biomarker Alliance (QIBA) with technical, radiological and statistical experts developed a set of technical performance analysis methods, metrics and study designs that provide terminology, metrics and methods consistent with widely accepted metrological standards. This document provides a consistent framework for the conduct and evaluation of QIB performance studies so that results from multiple studies can be compared, contrasted or combined. PMID:24919831
[Virtual endoscopy with a volumetric reconstruction technic: the technical aspects].
Pavone, P; Laghi, A; Panebianco, V; Catalano, C; Giura, R; Passariello, R
1998-06-01
We analyze the peculiar technical features of virtual endoscopy obtained with volume rendering. Our preliminary experience is based on virtual endoscopy images from volumetric data acquired with spiral CT (Siemens, Somatom Plus 4) using acquisition protocols standardized for different anatomic areas. Images are reformatted at the CT console, to obtain 1 mm thick contiguous slices, and transferred in DICOM format to an O2 workstation (Silicon Graphics, Mountain View CA, USA) with processor speed of 180 Mhz, 256 Mbyte RAM memory and 4.1 Gbyte hard disk. The software is Vitrea 1.0 (Vital Images, Fairfield, Iowa), running on a Unix platform. Image output is obtained through the Ethernet network to a Macintosh computer and a thermic printer (Kodak 8600 XLS). Diagnostic quality images were obtained in all the cases. Fly-through in the airways allowed correct evaluation of the main bronchi and of the origin of segmentary bronchi. In the vascular district, both carotid strictures and abdominal aortic aneurysms were depicted, with the same accuracy as with conventional reconstruction techniques. In the colon studies, polypoid lesions were correctly depicted in all the cases, with good correlation with endoscopic and double-contrast barium enema findings. In a case of lipoma of the ascending colon, virtual endoscopy allowed to study the colon both cranially and caudally to the lesion. The simultaneous evaluation of axial CT images permitted to characterize the lesion correctly on the basis of its density values. The peculiar feature of volume rendering is the use of the whole information inside the imaging volume to reconstruct three-dimensional images; no threshold values are used and no data are lost as opposite to conventional image reconstruction techniques. The different anatomic structures are visualized modifying the reciprocal opacities, showing the structures of no interest as translucent. The modulation of different opacities is obtained modifying the shape of the opacity curve, either using pre-set curves or in a completely independent way. Other technical features of volume rendering are the perspective evaluation of the objects, color and lighting. In conclusion, volume rendering is a promising technique to elaborate three-dimensional images, offering very realistic endoscopic views. At present, the main limitation is represented by the need of powerful and high-cost workstations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... form of text, numeric data or images), and (2) Information that bears on business and industry... determines such information would be of value to consumers of the information described in paragraph (1) of... TECHNICAL INFORMATION SERVICE, DEPARTMENT OF COMMERCE TRANSFER BY FEDERAL AGENCIES OF SCIENTIFIC, TECHNICAL...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameli-Renani, S., E-mail: seyedameli@doctors.org.uk; Morgan, R. A., E-mail: Robert.morgan@stgeorges.nhs.uk
2015-10-15
AimTo evaluate the technical success and mid-term outcomes following transcatheter embolisation of type 1a endoleak after Nellix endovascular aneurysm sealing (EVAS).Materials and MethodsSeven patients (5 men; mean age 83; range 79–90) underwent transcatheter embolisation between July 2013 and August 2014. The average time from EVAS to embolisation was 136 days (range 6–301) and from endoleak diagnosis to embolisation was 20 days (range 2–50). Embolisation was performed with coils and Onyx in six cases and Onyx only in one case. Technical success, imaging and clinical outcomes of embolisation were reviewed. Technical success was defined as elimination of the endoleak on completion angiography and first imaging follow-up.more » Clinical success was defined as unchanged or decreased aneurysm sac size on subsequent follow-up (average 8 months; range 103–471 days).ResultsAll cases were technically successful. One patient required a second endovascular procedure following Onyx reflux into the Nellix endograft and another patient required surgical closure of a brachial puncture site. All patients are endoleak free with stable sac size on the latest available follow-up imaging.ConclusionIf a type 1 endoleak occurs after EVAS, embolisation using Onyx with or without coils is feasible and effective with high technical success and freedom from endoleak recurrence at mid-term follow-up.« less
Anderson, Misti Ault; Giordano, James
2013-04-23
The importance of strong science, technology, engineering, and mathematics education continues to grow as society, medicine, and the economy become increasingly focused and dependent upon bioscientific and technological innovation. New advances in frontier sciences (e.g., genetics, neuroscience, bio-engineering, nanoscience, cyberscience) generate ethical issues and questions regarding the use of novel technologies in medicine and public life. In light of current emphasis upon science, technology, engineering, and mathematics education (at the pre-collegiate, undergraduate, graduate, and professional levels), the pace and extent of advancements in science and biotechnology, the increasingly technological orientation and capabilities of medicine, and the ways that medicine - as profession and practice - can engage such scientific and technological power upon the multi-cultural world-stage to affect the human predicament, human condition, and perhaps nature of the human being, we argue that it is critical that science, technology, engineering, and mathematics education go beyond technical understanding and directly address ethical, legal, social, and public policy implications of new innovations. Toward this end, we propose a paradigm of integrative science, technology, ethics, and policy studies that meets these needs through early and continued educational exposure that expands extant curricula of science, technology, engineering, and mathematics programs from the high school through collegiate, graduate, medical, and post-graduate medical education. We posit a synthetic approach that elucidates the historical, current, and potential interaction of scientific and biotechnological development in addition to the ethico-legal and social issues that are important to educate and sustain the next generation of medical and biomedical professionals who can appreciate, articulate, and address the realities of scientific and biotechnological progress given the shifting architectonics of the global social milieu. We assert that current trends in science, technology, medicine, and global politics dictate that these skills will be necessary to responsibly guide ethically sound employment of science, technology, and engineering advancements in medicine so as to enable more competent and humanitarian practice within an increasingly pluralistic world culture.
NASA Astrophysics Data System (ADS)
Ariga, Katsuhiko; Aono, Masakazu
2016-11-01
The construction of functional systems with nanosized parts would not possible by simple technology (nanotechnology). It can be handled by certain kinds of more sophisticated carpenter work or artistic architectonics (nanoarchitectonics). However, architecting materials in the nanoscale is not very simple because of various unexpected and uncontrollable thermal/statistical fluctuations and mutual interactions. The latter factors inevitably disturb the interactions between component building blocks. Therefore, several techniques and actions, including the regulation of atomic/molecular manipulation, molecular modification by organic chemistry, control of physicochemical interactions, self-assembly/organization, and application of external physical stimuli, must be well combined. This short review describes the historical backgrounds and essences of nanoarchitectonics, followed by a brief introduction of recent examples related to nanoarchitectonics. These examples are categorized in accordance with their physical usages: (i) atom/molecule control; (ii) devices and sensors; (iii) the other applications based on interfacial nanoarchitectonics.
Adaptive Image Processing Methods for Improving Contaminant Detection Accuracy on Poultry Carcasses
USDA-ARS?s Scientific Manuscript database
Technical Abstract A real-time multispectral imaging system has demonstrated a science-based tool for fecal and ingesta contaminant detection during poultry processing. In order to implement this imaging system at commercial poultry processing industry, the false positives must be removed. For doi...
Ultrasonic Imaging and Automated Flaw Detection System
1986-03-01
176 007 !----------------------------- DS 176 500 ------------------------- ! STEPPER MOOC TOR MAP 176 ~ ~ IGR 509------------------- I I28 * 4W...ATTN: SMCAR-CCB-R 2 -R (ELLEN FOGARTY) 1 -RA 1 -RM 1 -RP I -RT TECHNICAL LIBRARY 5 ATTN: SMCAR-CCB-TL TECHNICAL PUBLICATIONS & EDITING UNIT 2 ATTN...WEAPONS CTR ATTN: TECHNICAL LIBRARY CODE X212 DAIILGREN, VA 22448 ’.1 -_ NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH AND DEVELOPMENT CENTER, US
Airborne imaging spectrometers developed in China
NASA Astrophysics Data System (ADS)
Wang, Jianyu; Xue, Yongqi
1998-08-01
Airborne imaging spectral technology, principle means in airborne remote sensing, has been developed rapidly both in the world and in China recently. This paper describes Modular Airborne Imaging Spectrometer (MAIS), Operational Modular Airborne Imaging Spectrometer (OMAIS) and Pushbroom Hyperspectral Imagery (PHI) that have been developed or are being developed in Airborne Remote Sensing Lab of Shanghai Institute of Technical Physics, CAS.
Scripes, Paola G; Yaparpalvi, Ravindra
2012-09-01
The usage of functional data in radiation therapy (RT) treatment planning (RTP) process is currently the focus of significant technical, scientific, and clinical development. Positron emission tomography (PET) using ((18)F) fluorodeoxyglucose is being increasingly used in RT planning in recent years. Fluorodeoxyglucose is the most commonly used radiotracer for diagnosis, staging, recurrent disease detection, and monitoring of tumor response to therapy (Lung Cancer 2012;76:344-349; Lung Cancer 2009;64:301-307; J Nucl Med 2008;49:532-540; J Nucl Med 2007;48:58S-67S). All the efforts to improve both PET and computed tomography (CT) image quality and, consequently, lesion detectability have a common objective to increase the accuracy in functional imaging and thus of coregistration into RT planning systems. In radiotherapy, improvement in target localization permits reduction of tumor margins, consequently reducing volume of normal tissue irradiated. Furthermore, smaller treated target volumes create the possibility of dose escalation, leading to increased chances of tumor cure and control. This article focuses on the technical aspects of PET/CT image acquisition, fusion, usage, and impact on the physics of RTP. The authors review the basic elements of RTP, modern radiation delivery, and the technical parameters of coregistration of PET/CT into RT computerized planning systems. Copyright © 2012 Elsevier Inc. All rights reserved.
MRI of the Musculoskeletal System: Advanced Applications using High and Ultrahigh Field MRI.
Alizai, Hamza; Chang, Gregory; Regatte, Ravinder R
2015-09-01
In vivo MRI has revolutionized the diagnosis and treatment of musculoskeletal disorders over the past 3 decades. Traditionally performed at 1.5 T, MRI at higher field strengths offers several advantages over lower field strengths including increased signal-to-noise ratio, higher spatial resolution, improved spectral resolution for spectroscopy, improved sensitivity for X-nucleus imaging, and decreased image acquisition times. However, the physics of imaging at higher field strengths also presents technical challenges. These include B0 and B1+ field inhomogeneity, design and construction of dedicated radiofrequency (RF) coils for use at high field, increased chemical shift and susceptibility artifacts, increased RF energy deposition (specific absorption rate), increased metal artifacts, and changes in relaxation times compared with the lower field scanners. These challenges were overcome in optimizing high-field (HF) (3 T) MRI over a decade ago. HF MRI systems have since gained universal acceptance for clinical musculoskeletal imaging and have also been widely utilized for the study of musculoskeletal anatomy and physiology. Recently there has been an increasing interest in exploring musculoskeletal applications of ultrahigh field (UHF) (7 T) systems. However, technical challenges similar to those encountered when moving from 1.5 T to 3 T have to be overcome to optimize 7 T musculoskeletal imaging. In this narrative review, we discuss the many potential opportunities and technical challenges presented by the HF and UHF MRI systems. We highlight recent developments in in vivo imaging of musculoskeletal tissues that benefit most from HF imaging including cartilage, skeletal muscle, and bone. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Liquid Crystals, PIV and IR-Photography in Selected Technical and Biomedical Applications
NASA Astrophysics Data System (ADS)
Stasiek, Jan; Jewartowski, Marcin
2017-10-01
Thermochromic liquid crystals (TLC), Particle Image Velocimetry (PIV), Infrared Imaging Themography (IR) and True-Colour Digital Image Processing (TDIP) have been successfully used in non-intrusive technical, industrial and biomedical studies and applications. These four tools (based on the desktop computers) have come together during the past two decades to produce a powerful advanced experimental technique as a judgment of quality of information that cannot be obtained from any other imaging procedure. The brief summary of the history of this technique is reviewed, principal methods and tools are described and some examples are presented. With this objective, a new experimental technique have been developed and applied to the study of heat and mass transfer and for biomedical diagnosis. Automated evaluation allows determining the heat and flow visualisation and locate the area of suspicious tissue of human body.
Voigt, Jens-Uwe; Pedrizzetti, Gianni; Lysyansky, Peter; Marwick, Tom H; Houle, Helen; Baumann, Rolf; Pedri, Stefano; Ito, Yasuhiro; Abe, Yasuhiko; Metz, Stephen; Song, Joo Hyun; Hamilton, Jamie; Sengupta, Partho P; Kolias, Theodore J; d'Hooge, Jan; Aurigemma, Gerard P; Thomas, James D; Badano, Luigi Paolo
2015-01-01
Recognizing the critical need for standardization in strain imaging, in 2010, the European Association of Echocardiography (now the European Association of Cardiovascular Imaging, EACVI) and the American Society of Echocardiography (ASE) invited technical representatives from all interested vendors to participate in a concerted effort to reduce intervendor variability of strain measurement. As an initial product of the work of the EACVI/ASE/Industry initiative to standardize deformation imaging, we prepared this technical document which is intended to provide definitions, names, abbreviations, formulas, and procedures for calculation of physical quantities derived from speckle tracking echocardiography and thus create a common standard. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
Ma, Teng; Zhou, Bill; Hsiai, Tzung K.; Shung, K. Kirk
2015-01-01
Catheter-based intravascular imaging modalities are being developed to visualize pathologies in coronary arteries, such as high-risk vulnerable atherosclerotic plaques known as thin-cap fibroatheroma, to guide therapeutic strategy at preventing heart attacks. Mounting evidences have shown three distinctive histopathological features—the presence of a thin fibrous cap, a lipid-rich necrotic core, and numerous infiltrating macrophages—are key markers of increased vulnerability in atherosclerotic plaques. To visualize these changes, the majority of catheter-based imaging modalities used intravascular ultrasound (IVUS) as the technical foundation and integrated emerging intravascular imaging techniques to enhance the characterization of vulnerable plaques. However, no current imaging technology is the unequivocal “gold standard” for the diagnosis of vulnerable atherosclerotic plaques. Each intravascular imaging technology possesses its own unique features that yield valuable information although encumbered by inherent limitations not seen in other modalities. In this context, the aim of this review is to discuss current scientific innovations, technical challenges, and prospective strategies in the development of IVUS-based multi-modality intravascular imaging systems aimed at assessing atherosclerotic plaque vulnerability. PMID:26400676
Technical Summary of the Half-Degree Imager (HDI)
NASA Astrophysics Data System (ADS)
Richmond, Michael W.
2017-01-01
The Half-Degree Imager (HDI) was first attached to the WIYN 0.9-m Telescope in October, 2013. In the three years since then, it has served a large community of astronomers throughout the WIYN 0.9-m consortium. The large field of view and relatively short readout time, combined with a large selection of broad-band and narrow-band filters, make HDI a powerful tool for large-area surveys. I will provide a summary of the technical features of this CCD camera and its operations, and present statistics on its use -- showing the fraction of time lost due to bad weather and technical problems. I will reserve time to answer questions from the audience, including those who may be interested in using HDI for their own projects.
Technical Directions In High Resolution Non-Impact Printers
NASA Astrophysics Data System (ADS)
Dunn, S. Thomas; Dunn, Patrice M.
1987-04-01
There are several factors to consider when addressing the issue of non-impact printer resolution. One will find differences between the imaging resolution and the final output resolution, and most assuradly differences exist between the advertised and actual resolution of many of these systems. Beyond that some of the technical factors that effect the resolution of a system in-clude: . Scan Line Density . Overlap . Spot Size . Energy Profile . Symmetry of Imaging Generally speaking, the user of graphic arts equipment, is best advised to view output to determine the degree of acceptable quality.
Wong, A.K.O.
2016-01-01
The choice of an appropriate imaging technique to quantify bone, muscle, or muscle adiposity needs to be guided by a thorough understanding of its competitive advantages over other modalities balanced by its limitations. This review details the technical machinery and methods behind peripheral quantitative computed tomography (pQCT), high-resolution (HR)-pQCT, and magnetic resonance imaging (MRI) that drive successful depiction of bone and muscle morphometry, densitometry, and structure. It discusses a number of image acquisition settings, the challenges associated with using one versus another, and compares the risk-benefits across the different modalities. Issues related to all modalities including partial volume artifact, beam hardening, calibration, and motion assessment are also detailed. The review further provides data and images to illustrate differences between methods to better guide the reader in selecting an imaging method strategically. Overall, investigators should be cautious of the impact of imaging parameters on image signal or contrast-to-noise-ratios, and the need to report these settings in future publications. The effect of motion should be assessed on images and a decision made to exclude prior to segmentation. A more standardized approach to imaging bone and muscle on pQCT and MRI could enhance comparability across studies and could improve the quality of meta-analyses. PMID:27973379
Wong, A K
2016-12-14
The choice of an appropriate imaging technique to quantify bone, muscle, or muscle adiposity needs to be guided by a thorough understanding of its competitive advantages over other modalities balanced by its limitations. This review details the technical machinery and methods behind peripheral quantitative computed tomography (pQCT), high-resolution (HR)-pQCT, and magnetic resonance imaging (MRI) that drive successful depiction of bone and muscle morphometry, densitometry, and structure. It discusses a number of image acquisition settings, the challenges associated with using one versus another, and compares the risk-benefits across the different modalities. Issues related to all modalities including partial volume artifact, beam hardening, calibration, and motion assessment are also detailed. The review further provides data and images to illustrate differences between methods to better guide the reader in selecting an imaging method strategically. Overall, investigators should be cautious of the impact of imaging parameters on image signal or contrast-to-noise-ratios, and the need to report these settings in future publications. The effect of motion should be assessed on images and a decision made to exclude prior to segmentation. A more standardized approach to imaging bone and muscle on pQCT and MRI could enhance comparability across studies and could improve the quality of meta-analyses.
Digital Imaging: An Adobe Photoshop Course
ERIC Educational Resources Information Center
Cobb, Kristine
2007-01-01
This article introduces digital imaging, an Adobe Photoshop course at Shrewsbury High School in Shrewsbury, Massachusetts. Students are able to earn art credits to graduate by successfully completing the course. Digital imaging must cover art criteria as well as technical skills. The course begins with tutorials created by the instructor and other…
Duncan, Niall W; Wiebking, Christine; Muñoz-Torres, Zeidy; Northoff, Georg
2014-01-15
There is an increasing interest in combining different imaging modalities to investigate the relationship between neural and biochemical activity. More specifically, imaging techniques like MRS and PET that allow for biochemical measurement are combined with techniques like fMRI and EEG that measure neural activity in different states. Such combination of neural and biochemical measures raises not only technical issues, such as merging the different data sets, but also several methodological issues. These methodological issues – ranging from hypothesis generation and hypothesis-guided use of technical facilities to target measures and experimental measures – are the focus of this paper. We discuss the various methodological problems and issues raised by the combination of different imaging methodologies in order to investigate neuro-biochemical relationships on a regional level in humans. For example, the choice of transmitter and scan type is discussed, along with approaches to allow the establishment of particular specificities (such as regional or biochemical) to in turn make results fully interpretable. An algorithm that can be used as a form of checklist for designing such multimodal studies is presented. The paper concludes that while several methodological and technical caveats needs to be overcome and addressed, multimodal imaging of the neuro-biochemical relationship provides an important tool to better understand the physiological mechanisms of the human brain.
Duncan, Niall W; Wiebking, Christine; Munoz-Torres, Zeidy; Northoff, Georg
2013-10-25
There is an increasing interest in combining different imaging modalities to investigate the relationship between neural and biochemical activity. More specifically, imaging techniques like MRS and PET that allow for biochemical measurement are combined with techniques like fMRI and EEG that measure neural activity in different states. Such combination of neural and biochemical measures raises not only technical issues, such as merging the different data sets, but also several methodological issues. These methodological issues - ranging from hypothesis generation and hypothesis-guided use of technical facilities to target measures and experimental measures - are the focus of this paper. We discuss the various methodological problems and issues raised by the combination of different imaging methodologies in order to investigate neuro-biochemical relationships on a regional level in humans. For example, the choice of transmitter and scan type is discussed, along with approaches to allow the establishment of particular specificities (such as regional or biochemical) to in turn make results fully interpretable. An algorithm that can be used as a form of checklist for designing such multimodal studies is presented. The paper concludes that while several methodological and technical caveats needs to be overcome and addressed, multimodal imaging of the neuro-biochemical relationship provides an important tool to better understand the physiological mechanisms of the human brain. Copyright © 2013. Published by Elsevier B.V.
Research on remote sensing image pixel attribute data acquisition method in AutoCAD
NASA Astrophysics Data System (ADS)
Liu, Xiaoyang; Sun, Guangtong; Liu, Jun; Liu, Hui
2013-07-01
The remote sensing image has been widely used in AutoCAD, but AutoCAD lack of the function of remote sensing image processing. In the paper, ObjectARX was used for the secondary development tool, combined with the Image Engine SDK to realize remote sensing image pixel attribute data acquisition in AutoCAD, which provides critical technical support for AutoCAD environment remote sensing image processing algorithms.
Naval Signal and Image Analysis Conference Report
1998-02-26
Arlington Hilton Hotel in Arlington, Virginia. The meeting was by invitation only and consisted of investigators in the ONR Signal and Image Analysis Program...in signal and image analysis . The conference provided an opportunity for technical interaction between academic researchers and Naval scientists and...plan future directions for the ONR Signal and Image Analysis Program as well as informal recommendations to the Program Officer.
Dual-Energy CT: New Horizon in Medical Imaging
Goo, Jin Mo
2017-01-01
Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector. PMID:28670151
Comparative Study Of Image Enhancement Algorithms For Digital And Film Mammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado-Gonzalez, A.; Sanmiguel, R. E.
2008-08-11
Here we discuss the application of edge enhancement algorithms on images obtained with a Mammography System which has a Selenium Detector and on the other hand, on images obtained from digitized film mammography. Comparative analysis of such images includes the study of technical aspects of image acquisition, storage, compression and display. A protocol for a local database has been created as a result of this study.
iPhone 4s and iPhone 5s Imaging of the Eye.
Jalil, Maaz; Ferenczy, Sandor R; Shields, Carol L
2017-01-01
To evaluate the technical feasibility of a consumer-grade cellular iPhone camera as an ocular imaging device compared to existing ophthalmic imaging equipment for documentation purposes. A comparison of iPhone 4s and 5s images was made with external facial images (macrophotography) using Nikon cameras, slit-lamp images (microphotography) using Zeiss photo slit-lamp camera, and fundus images (fundus photography) using RetCam II. In an analysis of six consecutive patients with ophthalmic conditions, both iPhones achieved documentation of external findings (macrophotography) using standard camera modality, tap to focus, and built-in flash. Both iPhones achieved documentation of anterior segment findings (microphotography) during slit-lamp examination through oculars. Both iPhones achieved fundus imaging using standard video modality with continuous iPhone illumination through an ophthalmic lens. Comparison to standard ophthalmic cameras, macrophotography and microphotography were excellent. In comparison to RetCam fundus photography, iPhone fundus photography revealed smaller field and was technically more difficult to obtain, but the quality was nearly similar to RetCam. iPhone versions 4s and 5s can provide excellent ophthalmic macrophotography and microphotography and adequate fundus photography. We believe that iPhone imaging could be most useful in settings where expensive, complicated, and cumbersome imaging equipment is unavailable.
CT vaginography: a new CT technique for imaging of upper and middle vaginal fistulas.
Botsikas, Diomidis; Pluchino, Nicola; Kalovidouri, Anastasia; Platon, Alexandra; Montet, Xavier; Dallenbach, Patrick; Poletti, Pierre-Alexandre
2017-05-01
Different types of vaginal fistulas is a relatively uncommon condition in the Western world but very frequent in developing countries. In the past, conventional vaginography was the radiological examination of choice for exploring this condition. CT and MRI are now both used for this purpose. Our objective was to test the feasibility and to explore the potential role of a new CT imaging technique implementing vaginal introitus obstruction and opacification of the vagina with iodine contrast agent, to show patency of a fistula. We describe the technical protocol of CT-vaginography as performed in Geneva University Hospitals, including vaginal catheterization with a Foley catheter and obstruction of the introitus by inflating the balloon of the catheter. We also report three cases of patients with suspected vaginal fistula who underwent CT-vaginography. The examinations were technically successful. In one patient, it revealed the presence of fistulous pathways from the vaginal fornix along the bilateral infected surgical prostheses. In a second patient, it showed a fistula between the vagina and the necrotic cavity of a recurrent cervical cancer. In a third patient, it proved the absence of a suspected vaginal fistula. CT-vaginography is a technically feasible CT protocol that provides anatomical and functional information on clinically suspected vaginal fistulas. Advances in knowledge: After the abandon of conventional vaginography in the era of transaxial imaging, the current modalities of imaging vaginal fistulas provide excellent anatomical detail but less functional information concerning the permeability of a vaginal fistulous pathway. We propose the use of CT-vaginography, a technical protocol that we describe in detail.
To zoom or not to zoom: do we have enough pixels?
NASA Astrophysics Data System (ADS)
Youngworth, Richard N.; Herman, Eric
2015-09-01
Common lexicon in imaging systems includes the frequently used term digital zoom. Of course this term is somewhat of a misnomer as there is no actual zooming in such systems. Instead, digital zoom describes the zoom effect that comes with an image rewriting or reprinting that perhaps can be more accurately described as cropping and enlarging an image (a pixel remapping) for viewing. If done properly, users of the overall hybrid digital-optical system do not know the methodology employed. Hence the essential question, pondered and manipulated since the advent of mature digital image science, really becomes "do we have enough pixels to avoid optical zoom." This paper discusses known imaging factors for hybrid digital-optical systems, most notably resolution considerations. The paper is fundamentally about communication, and thereby includes information useful to the greater consumer, technical, and business community who all have an interest in understanding the key technical details that have driven the amazing technology and development of zoom systems.
Surprising Beauty in Technical Photography
ERIC Educational Resources Information Center
Davidhazy, Andrew
2009-01-01
The Imaging and Photographic Technology area, in which the author teaches, is an applications- and technology-oriented photography program designed to prepare students for work in technical, corporate, industrial, and scientific environments. One day, the author received an e-mail message from an editor who had found his Web site and thought he…
Chattanooga State Technical Community College Marketing Plan 1981-82.
ERIC Educational Resources Information Center
Hoppe, Sherry; Haddock, David
Chattanooga State Technical Community College's (CSTCC's) marketing plan is presented in six parallel sections. The first of these deals with building the overall image of the college, increasing community awareness, and disseminating general information. The other five sections focus on marketing the following college programs and services:…
Archival Stability of Microfilm--A Technical Review.
ERIC Educational Resources Information Center
Materazzi, Albert R.
The purpose of this report is to acquaint all personnel with some technical aspects of micrographics. The various film types used in the production of microfiche are discussed, including silver halide, diazo, and vesicular films. Other imaging systems used in micrographics are reviewed, and a basic introduction to sensitometry is given. The…
NASA STI Program Seminar: Electronic documents
NASA Technical Reports Server (NTRS)
1994-01-01
The theme of this NASA Scientific and Technical Information Program Seminar was electronic documents. Topics covered included Electronic Documents Management at the CASI, the Impact of Electronic Publishing on User Expectations and Searching Image Record Management, Secondary Publisher Considerations for Electronic Journal Literature, and the Technical Manual Publishing On Demand System (TMPODS).
An update on technical and methodological aspects for cardiac PET applications.
Presotto, Luca; Busnardo, Elena; Gianolli, Luigi; Bettinardi, Valentino
2016-12-01
Positron emission tomography (PET) is indicated for a large number of cardiac diseases: perfusion and viability studies are commonly used to evaluate coronary artery disease; PET can also be used to assess sarcoidosis and endocarditis, as well as to investigate amyloidosis. Furthermore, a hot topic for research is plaque characterization. Most of these studies are technically very challenging. High count rates and short acquisition times characterize perfusion scans while very small targets have to be imaged in inflammation/infection and plaques examinations. Furthermore, cardiac PET suffers from respiratory and cardiac motion blur. Each type of studies has specific requirements from the technical and methodological point of view, thus PET systems with overall high performances are required. Furthermore, in the era of hybrid PET/computed tomography (CT) and PET/Magnetic Resonance Imaging (MRI) systems, the combination of complementary functional and anatomical information can be used to improve diagnosis and prognosis. Moreover, PET images can be qualitatively and quantitatively improved exploiting information from the other modality, using advanced algorithms. In this review we will report the latest technological and methodological innovations for PET cardiac applications, with particular reference to the state of the art of the hybrid PET/CT and PET/MRI. We will also report the most recent advancements in software, from reconstruction algorithms to image processing and analysis programs.
Sequential Processes in Image Generation: An Objective Measure. Technical Report #6.
ERIC Educational Resources Information Center
Kosslyn, Stephen M.; And Others
This paper investigates the processes by which visual mental images--the precept-like short-term memory representations--are created from information stored in long-term memory. It also presents a new method for studying image generation. Three experiments were conducted using college students as subjects. In the first experiment, a Podgorny and…
Lee, Kam L; Ireland, Timothy A; Bernardo, Michael
2016-06-01
This is the first part of a two-part study in benchmarking the performance of fixed digital radiographic general X-ray systems. This paper concentrates on reporting findings related to quantitative analysis techniques used to establish comparative image quality metrics. A systematic technical comparison of the evaluated systems is presented in part two of this study. A novel quantitative image quality analysis method is presented with technical considerations addressed for peer review. The novel method was applied to seven general radiographic systems with four different makes of radiographic image receptor (12 image receptors in total). For the System Modulation Transfer Function (sMTF), the use of grid was found to reduce veiling glare and decrease roll-off. The major contributor in sMTF degradation was found to be focal spot blurring. For the System Normalised Noise Power Spectrum (sNNPS), it was found that all systems examined had similar sNNPS responses. A mathematical model is presented to explain how the use of stationary grid may cause a difference between horizontal and vertical sNNPS responses.
Nano-Computed Tomography: Technique and Applications.
Kampschulte, M; Langheinirch, A C; Sender, J; Litzlbauer, H D; Althöhn, U; Schwab, J D; Alejandre-Lafont, E; Martels, G; Krombach, G A
2016-02-01
Nano-computed tomography (nano-CT) is an emerging, high-resolution cross-sectional imaging technique and represents a technical advancement of the established micro-CT technology. Based on the application of a transmission target X-ray tube, the focal spot size can be decreased down to diameters less than 400 nanometers (nm). Together with specific detectors and examination protocols, a superior spatial resolution up to 400 nm (10 % MTF) can be achieved, thereby exceeding the resolution capacity of typical micro-CT systems. The technical concept of nano-CT imaging as well as the basics of specimen preparation are demonstrated exemplarily. Characteristics of atherosclerotic plaques (intraplaque hemorrhage and calcifications) in a murine model of atherosclerosis (ApoE (-/-)/LDLR(-/-) double knockout mouse) are demonstrated in the context of superior spatial resolution in comparison to micro-CT. Furthermore, this article presents the application of nano-CT for imaging cerebral microcirculation (murine), lung structures (porcine), and trabecular microstructure (ovine) in contrast to micro-CT imaging. This review shows the potential of nano-CT as a radiological method in biomedical basic research and discusses the application of experimental, high resolution CT techniques in consideration of other high resolution cross-sectional imaging techniques. Nano-computed tomography is a high resolution CT-technology for 3D imaging at sub-micrometer resolution. The technical concept bases on a further development of the established ex-vivo-micro-CT technology. By improvement of the spatial resolution, structures at a cellular level become visible (e.g. osteocyte lacunae). © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang
2017-08-01
According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.
Kobayashi, Yuta; Kawaguchi, Yoshikuni; Kobayashi, Kosuke; Mori, Kazuhiro; Arita, Junichi; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Kokudo, Norihiro
2017-12-01
Portal vein (PV) territory identification during liver resection may be performed using indocyanine green (ICG) fluorescence imaging technique. However, the technical details of the fluorescence staining technique have not been fully elucidated. This study was performed to demonstrate the technical details of PV territory identification using fluorescence imaging and evaluates the short-term outcomes. From 2011 to 2015, 105 underwent liver resection at the University of Tokyo Hospital with one of the following fluorescence staining techniques by transhepatic PV injection or intravenous injection of ICG: single staining (n = 36), multiple staining (n = 31), counterstaining (n = 22), negative staining (n = 13), or paradoxical negative staining (n = 3). The PV territory was identified as a region with fluorescence or a defect of fluorescence using one of the five staining techniques. ICG was administered by transhepatic PV injection in all but the negative staining technique, which employed intravenous injection. No adverse events associated with the ICG administration occurred. The mortality, postoperative total morbidity, and the major complication (Clavien-Dindo grade ≥III) rates were 0.0%, 14.3%, and 7.6%. We have demonstrated the technical details of five types of fluorescence staining techniques. These techniques are safe to perform and facilitate clear visualization of the PV territory in real time, enhancing the efficacy of anatomical removal of such territories. © 2017 Wiley Periodicals, Inc.
System of technical vision for autonomous unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Bondarchuk, A. S.
2018-05-01
This paper is devoted to the implementation of image recognition algorithm using the LabVIEW software. The created virtual instrument is designed to detect the objects on the frames from the camera mounted on the UAV. The trained classifier is invariant to changes in rotation, as well as to small changes in the camera's viewing angle. Finding objects in the image using particle analysis, allows you to classify regions of different sizes. This method allows the system of technical vision to more accurately determine the location of the objects of interest and their movement relative to the camera.
1989-08-01
Automatic Line Network Extraction from Aerial Imangery of Urban Areas Sthrough KnowledghBased Image Analysis N 04 Final Technical ReportI December...Automatic Line Network Extraction from Aerial Imagery of Urban Areas through Knowledge Based Image Analysis Accesion For NTIS CRA&I DTIC TAB 0...paittern re’ognlition. blac’kboardl oriented symbollic processing, knowledge based image analysis , image understanding, aer’ial imsagery, urban area, 17
Magneto-optic imaging inspection of selected corrosion specimens : technical note
DOT National Transportation Integrated Search
1992-06-21
A feasibility demonstration was conducted at the facilities of Physical Research Instrumentation Company, (RI) in Redmond, Washington. The purpose of the demonstration was to compare the effectiveness of the PRI Model 301-1 magneto-optic imaging (MOI...
Rudebeck, Peter H.; Murray, Elisabeth A.
2014-01-01
The primate orbitofrontal cortex (OFC) is often treated as a single entity, but architectonic and connectional neuroanatomy indicates that it has distinguishable parts. Nevertheless, few studies have attempted to dissociate the functions of its subregions. Here we review findings from recent neuropsychological and neurophysiological studies that do so. The lateral OFC seems to be important for learning, representing and updating specific object–reward associations. Medial OFC seems to be important for value comparisons and choosing among objects on that basis. Rather than viewing this dissociation of function in terms of learning versus choosing, however, we suggest that it reflects the distinction between contrasts and comparisons: differences versus similarities. Making use of high-dimensional representations that arise from the convergence of several sensory modalities, the lateral OFC encodes contrasts among outcomes. The medial MFC reduces these contrasting representations of value to a single dimension, a common currency, in order to compare alternative choices. PMID:22145870
Living longer living happier: My journey from clinical neurology to complexities of brain
Panagariya, Ashok
2011-01-01
The present article is a treatise on the illuminating voyage of a Neurophysician along the fascinating horizons and frontiers of neurosciences. During the career as a clinical neurologist, some very interesting and intriguing cases and issues were dealt with and documented scientifically. The working of the brain and its operational architectonics came up for critical analysis, opening up new vistas in the appreciation and management of various neurological disorders. Issues regarding the working of the mind and the guidelines for health and happiness became apparent, and some very interesting generalizations with far-reaching consequences on the general well-being and health have been formulated and put forward for a healthy and happy future for mankind. A paradigm shift is warranted for a closer and better appreciation of neural dynamics at all levels of the brain, namely microscopic, mesoscopic and macroscopic levels! PMID:22346008
[BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF): NEUROBIOLOGY AND MARKER VALUE IN NEUROPSYCHIATRY].
Levada, O A; Cherednichenko, N V
2015-01-01
In this review current publications about neurobiology and marker value of brain derived neurotrophic factor (BDNF) in neuropsychiatry are analyzed. It is shown that BDNF is an important member of the family of neurotrophins which widely represented in various structures of the CNS. In prenatal period BDNF is involved in all stages of neuronal networks formation, and in the postnatal period its main role is maintaining the normal brain architectonics, involvement in the processes of neurogenesis and realization of neuroprotective functions. BDNF plays an important role in learning and memory organization, food and motor behavior. BDNF brain expression decreases with age, as well as in degenerative and vascular dementias, affective, anxiety, and behavioral disorders. The reducing of BDNF serum, level reflects the decreasing of its cerebral expression and could be used as a neurobiological marker of these pathological processes but the rising of its concentration could indicate the therapy effectiveness.
Riazantseva, N V; Novitskiĭ, V V
2003-02-01
Investigation into structural, metabolic, and functional conditions of red blood cells was performed in 24 patients with a neurosis (neurasthenia, disturbance of asaptation) with the aid of electrophoretic division of proteins of the erythrocyte membrane, thin-layer chromatography, fluorescent probing of membranes, evaluation of peroxidative oxidation process, scanning and transmission electron microscopy, laser diphractometry, photometry. The patients with neurotic disorders at the early period after the influence of psychogenic factors (up to 3 months) revealed disorganization of lipid and protein composition of the red cell membrane, increase in microviscosity of its lipid phase, impairment of surface architectonics and ultrastructure of red cells, decrease of a deformation ability and increase of aggregate properties of erythrocytes. The authors treat stability of erythrocytes' homeostasis under the long-term influence of psychogenic factors from a viewpoint of adaptive changes in organism under the influence of neurogenic factors.
Chekhun, V F; Lozovs'ka, Iu V; Luk'ianova, N Iu; Demash, D V; Todor, I M; Nalieskina, L A
2013-01-01
Cyto- and genotoxic effects of nanoparticles on the basis of FM, CMF or their combination have been studied in AKE cells, BM cells of erythroid line, and peripheral blood lymphocytes with the use of MN test and "DNA-comet" assay. It has been shown that expression of mentioned effects is related to FM concentration and duration of tested agent action. It has been also demonstrated that action of CMF alone in the studied cells did not cause any changes in cell architectonics or affect MN counts which are associated with DNA damage. When FM and CMF were used in combination there has been observed the phenomenon of induction of CMF action with FM nanoparticles. The obtained results allow recommend MN test and "DNA-comet" assay as the markers of genome stability in the tests of genotoxic effects of nanomaterials for development of vector nanosystems.
Naleskina, L A; Todor, I N; Nosko, M M; Lukianova, N Y; Pivnyuk, V M; Chekhun, V F
2013-09-01
To study in vivo changes of lipid composition of plasma membranes of sensitive and resistant to cisplatin Guerin carcinoma cells under influence of free and liposomal cisplatin forms. The isolation of plasma membranes from parental (sensitive) and resistant to cisplatin Guerin carcinoma cells was by differential ultracentrifugation in sucrose density gradient. Lipids were detected by method of thin-layer chromatography. It was determined that more effective action of cisplatin liposomal form on resistant cells is associated with essential abnormalities of conformation of plasma membrane due to change of lipid components and architectonics of rafts. It results in the increase of membrane fluidity. Reconstructions in lipid composition of plasma membranes of cisplatin-resistant Guerin carcinoma cells provide more intensive delivery of drug into the cells, increase of its concentration and more effective interaction with cellular structural elements.
[Recommendations for the prevention of drowning].
Rubio, B; Yagüe, F; Benítez, M T; Esparza, M J; González, J C; Sánchez, F; Vila, J J; Mintegi, S
2015-01-01
Drowning is the second leading cause of non-intentional death in children under the age of 19 in Europe. Weather conditions in Spain allow an extended period of contact with water, therefore increasing the risk of drowning (due to the increased exposure), and constitutes the second leading cause of accidental death in children less than 14 years of age. In children younger than 5 years, drowning occurs mostly in pools belonging to private homes or communities, while in older children, drowning is often linked to aquatic recreational activities in lakes, sea, rivers and canals, and at times associated with alcohol consumption. In this article, the Committee on Safety and Non-Intentional Injury Prevention in Childhood of the Spanish Association of Pediatrics provides a series of architectonic, educational and legislative recommendations to prevent such incidents. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.
Interdisciplinary Data Fusion for Diachronic 3d Reconstruction of Historic Sites
NASA Astrophysics Data System (ADS)
Micoli, L. L.; Gonizzi Barsanti, S.; Guidi, G.
2017-02-01
In recent decades, 3D reconstruction has progressively become a tool to show archaeological and architectural monuments in their current state, presumed past aspect and to predict their future evolution. The 3D representations trough time can be useful in order to study and preserve the memory of Cultural Heritage and to plan maintenance and promotion of the historical sites. This paper represent a case study, at architectonic and urbanistic scale, based on methodological approach for CH time-varying representations proposed by JPI-CH European Project called Cultural Heritage Through Time (CHT2). The work is focused on the area of Milan Roman circus, relatively to which was conducted both a thorough philological research based on several sources and a 3D survey campaign of still accessible remains, aiming at obtaining the monumental representation of the area in 3 different ages.
The image acquisition system design of floor grinder
NASA Astrophysics Data System (ADS)
Wang, Yang-jiang; Liu, Wei; Liu, Hui-qin
2018-01-01
Based on linear CCD, high resolution image real-time acquisition system serves as designing a set of image acquisition system for floor grinder through the calculation of optical imaging system. The entire image acquisition system can collect images of ground before and after the work of the floor grinder, and the data is transmitted through the Bluetooth system to the computer and compared to realize real-time monitoring of its working condition. The system provides technical support for the design of unmanned ground grinders.
Advanced Motion Compensation Methods for Intravital Optical Microscopy
Vinegoni, Claudio; Lee, Sungon; Feruglio, Paolo Fumene; Weissleder, Ralph
2013-01-01
Intravital microscopy has emerged in the recent decade as an indispensible imaging modality for the study of the micro-dynamics of biological processes in live animals. Technical advancements in imaging techniques and hardware components, combined with the development of novel targeted probes and new mice models, have enabled us to address long-standing questions in several biology areas such as oncology, cell biology, immunology and neuroscience. As the instrument resolution has increased, physiological motion activities have become a major obstacle that prevents imaging live animals at resolutions analogue to the ones obtained in vitro. Motion compensation techniques aim at reducing this gap and can effectively increase the in vivo resolution. This paper provides a technical review of some of the latest developments in motion compensation methods, providing organ specific solutions. PMID:24273405
A method of semi-quantifying β-AP in brain PET-CT 11C-PiB images.
Jiang, Jiehui; Lin, Xiaoman; Wen, Junlin; Huang, Zhemin; Yan, Zhuangzhi
2014-01-01
Alzheimer's disease (AD) is a common health problem for elderly populations. Positron emission tomography-computed tomography (PET-CT)11C-PiB for beta-P (amyloid-β peptide, β-AP) imaging is an advanced method to diagnose AD in early stage. However, in practice radiologists lack a standardized value to semi-quantify β-AP. This paper proposes such a standardized value: SVβ-AP. This standardized value measures the mean ratio between the dimension of β-AP areas in PET and CT images. A computer aided diagnosis approach is also proposed to achieve SVβ-AP. A simulation experiment was carried out to pre-test the technical feasibility of the CAD approach and SVβ-AP. The experiment results showed that it is technically feasible.
Ernst, E J; Speck, P M; Fitzpatrick, J J
2012-01-01
Digital photography is a valuable adjunct to document physical injuries after sexual assault. In order for a digital photograph to have high image quality, there must exist a high level of naturalness. Digital photo documentation has varying degrees of naturalness; however, for a photograph to be natural, specific technical elements for the viewer must be satisfied. No tool was available to rate the naturalness of digital photo documentation of female genital injuries after sexual assault. The Photo Documentation Image Quality Scoring System (PDIQSS) tool was developed to rate technical elements for naturalness. Using this tool, experts evaluated randomly selected digital photographs of female genital injuries captured following sexual assault. Naturalness of female genital injuries following sexual assault was demonstrated when measured in all dimensions.
Technical considerations for implementation of x-ray CT polymer gel dosimetry.
Hilts, M; Jirasek, A; Duzenli, C
2005-04-21
Gel dosimetry is the most promising 3D dosimetry technique in current radiation therapy practice. X-ray CT has been shown to be a feasible method of reading out polymer gel dosimeters and, with the high accessibility of CT scanners to cancer hospitals, presents an exciting possibility for clinical implementation of gel dosimetry. In this study we report on technical considerations for implementation of x-ray CT polymer gel dosimetry. Specifically phantom design, CT imaging methods, imaging time requirements and gel dose response are investigated. Where possible, recommendations are made for optimizing parameters to enhance system performance. The dose resolution achievable with an optimized system is calculated given voxel size and imaging time constraints. Results are compared with MRI and optical CT polymer gel dosimetry results available in the literature.
Tu, Haohua; Boppart, Stephen A.
2015-01-01
Clinical translation of coherent anti-Stokes Raman scattering microscopy is of great interest because of the advantages of noninvasive label-free imaging, high sensitivity, and chemical specificity. For this to happen, we have identified and review the technical barriers that must be overcome. Prior investigations have developed advanced techniques (features), each of which can be used to effectively overcome one particular technical barrier. However, the implementation of one or a small number of these advanced features in previous attempts for clinical translation has often introduced more tradeoffs than benefits. In this review, we outline a strategy that would integrate multiple advanced features to overcome all the technical barriers simultaneously, effectively reduce tradeoffs, and synergistically optimize CARS microscopy for clinical translation. The operation of the envisioned system incorporates coherent Raman micro-spectroscopy for identifying vibrational biomolecular markers of disease and single-frequency (or hyperspectral) Raman imaging of these specific biomarkers for real-time in vivo diagnostics and monitoring. An optimal scheme of clinical CARS micro-spectroscopy for thin ex vivo tissues. PMID:23674234
Advanced Diagnostics for Reacting Flows
2006-06-01
TECHNICAL DISCUSSION: 1. Infrared-PLIF Imaging Diagnostics using Vibrational Transitions IR-PLIF allows for imaging a group of molecular species important...excitation of IR-active vibrational modes with imaging of the subsequent vibrational fluorescence. Quantitative interpretation requires knowledge of...the vibrational energy transfer processes, and hence in recent years we have been developing models for infrared fluorescence. During the past year
Ehara, Shigeru
2010-11-28
Technical innovations in digital data management pose a threat to radiologists in that can we remain in the process of clinical decision making or be assigned to a secondary role in future clinical practice. The value added to the imaging studies by diagnostic radiologists, or imaging specialists, has never been questioned more seriously.
The ELISE II Project: A Digital Image Library for Europe.
ERIC Educational Resources Information Center
Strunz, Bob; Waters, Mairead
This paper describes the progress made under the ELISE II electronic image library project from a technical standpoint. The ELISE II project is a European-wide initiative that aims to provide a comprehensive electronic image library service for Europe. It is funded under the European Commission, DG XIII-E, Telematics for Libraries Initiative. The…
Strain Imaging Using Terahertz Waves and Metamaterials
2016-11-01
TECHNICAL REPORT RDMR-WD-16-48 STRAIN IMAGING USING TERAHERTZ WAVES AND METAMATERIALS Henry O. Everitt and Martin S...TITLE AND SUBTITLE Strain Imaging Using Terahertz Waves and Metamaterials 5. FUNDING NUMBERS 6. AUTHOR(S) Henry O. Everitt, Martin S...predictions. 14. SUBJECT TERMS Birefringence, Terahertz Waves , Metamaterials 15. NUMBER OF PAGES 16 16. PRICE CODE 17. SECURITY
ERIC Educational Resources Information Center
Filinger, Ronald H.; Hall, Paul W.
Because large scale individualized learning systems place excessive demands on conventional means of producing audiovisual software, electronic image generation has been investigated as an alternative. A prototype, experimental device, Scanimate-500, was designed and built by the Computer Image Corporation. It uses photographic, television, and…
Viking orbiter stereo imaging catalog
NASA Technical Reports Server (NTRS)
Blasius, K. R.; Vertrone, A. V.; Lewis, B. H.; Martin, M. D.
1982-01-01
The extremely long mission of the two Viking Orbiter spacecraft produced a wealth of photos of surface features. Many of these photos can be used to form stereo images allowing the student of Mars to examine a subject in three dimensional. This catalog is a technical guide to the use of stereo coverage within the complex Viking imaging data set.
Structural and functional studies of bioobjects prepared from femoral heads
NASA Astrophysics Data System (ADS)
Kirilova, I. A.; Sharkeev, Yu. P.; Podorozhnaya, V. T.; Popova, K. S.; Uvarkin, P. V.
2015-11-01
Results of examination of physicomechanical characteristics of samples of medial femoral head cuts are presented. The samples of medial femoral head cuts resected in 6 patients with coxarthrosis in primary endoprosthetic replacement of a coxofemoral joint have been tested for micro- and nanohardness. Young's modulus and elemental composition of bone tissue have been investigated. To estimate the architectonics of cancellous tissue of the femoral head, adjacent cuts of the same patient have been analyzed. The porosity of bone tissue was estimated from macroscopic images obtained using macrophotography. The total porosity is calculated as the ratio of the total length of straight line segments overlapping pores to the total length of secants. A three-point bending test of the samples has shown that their strength changed from 0.187 to 1.650 MPa and their elasticity modulus changes from 1.69 to 8.15 MPa. The microhardness of the samples changes in the range 220-265 MPa and the average microhardness of medial femoral head cuts is 240 MPa. The elemental composition of medial femoral head cuts is represented by basic Ca, P, O, Na and Mg elements as well as by Sn, S, Fe, Cr, and C in microamounts. The atomic Ca to P ratio for bone tissue is 1.55. It is revealed that pores of the upper part of the femoral head have a more regular shape and in the lower part they are more elongated along the cut and occupy a larger volume. The lower part of the femoral head has a higher porosity (39 and 33%) than the upper part (34 and 30%). The total porosity of all samples does not exceed 37%.
Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems.
Schmahmann, Jeremy D; Pandya, Deepak N
2008-09-01
Disconnection syndromes were originally conceptualized as a disruption of communication between different cerebral cortical areas. Two developments mandate a re-evaluation of this notion. First, we present a synopsis of our anatomical studies in monkey elucidating principles of organization of cerebral cortex. Efferent fibers emanate from every cortical area, and are directed with topographic precision via association fibers to ipsilateral cortical areas, commissural fibers to contralateral cerebral regions, striatal fibers to basal ganglia, and projection subcortical bundles to thalamus, brainstem and/or pontocerebellar system. We note that cortical areas can be defined by their patterns of subcortical and cortical connections. Second, we consider motor, cognitive and neuropsychiatric disorders in patients with lesions restricted to basal ganglia, thalamus, or cerebellum, and recognize that these lesions mimic deficits resulting from cortical lesions, with qualitative differences between the manifestations of lesions in functionally related areas of cortical and subcortical nodes. We consider these findings on the basis of anatomical observations from tract tracing studies in monkey, viewing them as disconnection syndromes reflecting loss of the contribution of subcortical nodes to the distributed neural circuits. We introduce a new theoretical framework for the distributed neural circuits, based on general, and specific, principles of anatomical organization, and on the architecture of the nodes that comprise these systems. We propose that neural architecture determines function, i.e., each architectonically distinct cortical and subcortical area contributes a unique transform, or computation, to information processing; anatomically precise and segregated connections between nodes define behavior; and association fiber tracts that link cerebral cortical areas with each other enable the cross-modal integration required for evolved complex behaviors. This model enables the formulation and testing of future hypotheses in investigations using evolving magnetic resonance imaging techniques in humans, and in clinical studies in patients with cortical and subcortical lesions.
Structural and functional studies of bioobjects prepared from femoral heads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirilova, I. A., E-mail: IKirilova@niito.ru; Podorozhnaya, V. T., E-mail: VPodorognaya@niito.ru; Sharkeev, Yu. P., E-mail: sharkeev@ispms.tsc.ru
2015-11-17
Results of examination of physicomechanical characteristics of samples of medial femoral head cuts are presented. The samples of medial femoral head cuts resected in 6 patients with coxarthrosis in primary endoprosthetic replacement of a coxofemoral joint have been tested for micro- and nanohardness. Young’s modulus and elemental composition of bone tissue have been investigated. To estimate the architectonics of cancellous tissue of the femoral head, adjacent cuts of the same patient have been analyzed. The porosity of bone tissue was estimated from macroscopic images obtained using macrophotography. The total porosity is calculated as the ratio of the total length ofmore » straight line segments overlapping pores to the total length of secants. A three-point bending test of the samples has shown that their strength changed from 0.187 to 1.650 MPa and their elasticity modulus changes from 1.69 to 8.15 MPa. The microhardness of the samples changes in the range 220–265 MPa and the average microhardness of medial femoral head cuts is 240 MPa. The elemental composition of medial femoral head cuts is represented by basic Ca, P, O, Na and Mg elements as well as by Sn, S, Fe, Cr, and C in microamounts. The atomic Ca to P ratio for bone tissue is 1.55. It is revealed that pores of the upper part of the femoral head have a more regular shape and in the lower part they are more elongated along the cut and occupy a larger volume. The lower part of the femoral head has a higher porosity (39 and 33%) than the upper part (34 and 30%). The total porosity of all samples does not exceed 37%.« less
TU-EF-204-02: Hiigh Quality and Sub-MSv Cerebral CT Perfusion Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ke; Niu, Kai; Wu, Yijing
2015-06-15
Purpose: CT Perfusion (CTP) imaging is of great importance in acute ischemic stroke management due to its potential to detect hypoperfused yet salvageable tissue and distinguish it from definitely unsalvageable tissue. However, current CTP imaging suffers from poor image quality and high radiation dose (up to 5 mSv). The purpose of this work was to demonstrate that technical innovations such as Prior Image Constrained Compressed Sensing (PICCS) have the potential to address these challenges and achieve high quality and sub-mSv CTP imaging. Methods: (1) A spatial-temporal 4D cascaded system model was developed to indentify the bottlenecks in the current CTPmore » technology; (2) A task-based framework was developed to optimize the CTP system parameters; (3) Guided by (1) and (2), PICCS was customized for the reconstruction of CTP source images. Digital anthropomorphic perfusion phantoms, animal studies, and preliminary human subject studies were used to validate and evaluate the potentials of using these innovations to advance the CTP technology. Results: The 4D cascaded model was validated in both phantom and canine stroke models. Based upon this cascaded model, it has been discovered that, as long as the spatial resolution and noise properties of the 4D source CT images are given, the 3D MTF and NPS of the final CTP maps can be analytically derived for a given set of processing methods and parameters. The cascaded model analysis also identified that the most critical technical factor in CTP is how to acquire and reconstruct high quality source images; it has very little to do with the denoising techniques often used after parametric perfusion calculations. This explained why PICCS resulted in a five-fold dose reduction or substantial improvement in image quality. Conclusion: Technical innovations generated promising results towards achieving high quality and sub-mSv CTP imaging for reliable and safe assessment of acute ischemic strokes. K. Li, K. Niu, Y. Wu: Nothing to disclose. G.-H. Chen: Research funded, GE Healthcare; Research funded, Siemens AX.« less
Visual Tour Based on Panaromic Images for Indoor Places in Campus
NASA Astrophysics Data System (ADS)
Bakirman, T.
2012-07-01
In this paper, it is aimed to create a visual tour based on panoramic images for Civil Engineering Faculty in Yildiz Technical University. For this purpose, panoramic images should be obtained. Thus, photos taken with a tripod to have the same angle of view in every photo and panoramic images were created with stitching photos. Two different cameras with different focal length were used. With the panoramic images, visual tour with navigation tools created.
iPhone 4s and iPhone 5s Imaging of the Eye
Jalil, Maaz; Ferenczy, Sandor R.; Shields, Carol L.
2017-01-01
Background/Aims To evaluate the technical feasibility of a consumer-grade cellular iPhone camera as an ocular imaging device compared to existing ophthalmic imaging equipment for documentation purposes. Methods A comparison of iPhone 4s and 5s images was made with external facial images (macrophotography) using Nikon cameras, slit-lamp images (microphotography) using Zeiss photo slit-lamp camera, and fundus images (fundus photography) using RetCam II. Results In an analysis of six consecutive patients with ophthalmic conditions, both iPhones achieved documentation of external findings (macrophotography) using standard camera modality, tap to focus, and built-in flash. Both iPhones achieved documentation of anterior segment findings (microphotography) during slit-lamp examination through oculars. Both iPhones achieved fundus imaging using standard video modality with continuous iPhone illumination through an ophthalmic lens. Comparison to standard ophthalmic cameras, macrophotography and microphotography were excellent. In comparison to RetCam fundus photography, iPhone fundus photography revealed smaller field and was technically more difficult to obtain, but the quality was nearly similar to RetCam. Conclusions iPhone versions 4s and 5s can provide excellent ophthalmic macrophotography and microphotography and adequate fundus photography. We believe that iPhone imaging could be most useful in settings where expensive, complicated, and cumbersome imaging equipment is unavailable. PMID:28275604
Prototype for Meta-Algorithmic, Content-Aware Image Analysis
2015-03-01
PROTOTYPE FOR META-ALGORITHMIC, CONTENT-AWARE IMAGE ANALYSIS UNIVERSITY OF VIRGINIA MARCH 2015 FINAL TECHNICAL REPORT...ALGORITHMIC, CONTENT-AWARE IMAGE ANALYSIS 5a. CONTRACT NUMBER FA8750-12-C-0181 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62305E 6. AUTHOR(S) S...approaches were studied in detail and their results on a sample dataset are presented. 15. SUBJECT TERMS Image Analysis , Computer Vision, Content
Spreadsheet-Like Image Analysis
1992-08-01
1 " DTIC AD-A254 395 S LECTE D, ° AD-E402 350 Technical Report ARPAD-TR-92002 SPREADSHEET-LIKE IMAGE ANALYSIS Paul Willson August 1992 U.S. ARMY...August 1992 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS SPREADSHEET-LIKE IMAGE ANALYSIS 6. AUTHOR(S) Paul Willson 7. PERFORMING ORGANIZATION NAME(S) AND...14. SUBJECT TERMS 15. NUMBER OF PAGES Image analysis , nondestructive inspection, spreadsheet, Macintosh software, 14 neural network, signal processing
Rodríguez-Díez, María Cristina; Alegre, Manuel; Díez, Nieves; Arbea, Leire; Ferrer, Marta
2016-02-03
The main factor that determines the selection of a medical specialty in Spain after obtaining a medical degree is the MIR ("médico interno residente", internal medical resident) exam. This exam consists of 235 multiple-choice questions with five options, some of which include images provided in a separate booklet. The aim of this study was to analyze the technical quality of the multiple-choice questions included in the MIR exam over the last five years. All the questions included in the exams from 2009 to 2013 were analyzed. We studied the proportion of questions including clinical vignettes, the number of items related to an image and the presence of technical flaws in the questions. For the analysis of technical flaws, we adapted the National Board of Medical Examiners (NBME) guidelines. We looked for 18 different issues included in the manual, grouped into two categories: issues related to testwiseness and issues related to irrelevant difficulties. The final number of questions analyzed was 1,143. The percentage of items based on clinical vignettes increased from 50% in 2009 to 56-58% in the following years (2010-2013). The percentage of items based on an image increased progressively from 10% in 2009 to 15% in 2012 and 2013. The percentage of items with at least one technical flaw varied between 68 and 72%. We observed a decrease in the percentage of items with flaws related to testwiseness, from 30% in 2009 to 20% in 2012 and 2013. While most of these issues decreased dramatically or even disappeared (such as the imbalance in the correct option numbers), the presence of non-plausible options remained frequent. With regard to technical flaws related to irrelevant difficulties, no improvement was observed; this is especially true with respect to negative stem questions and "hinged" questions. The formal quality of the MIR exam items has improved over the last five years with regard to testwiseness. A more detailed revision of the items submitted, checking systematically for the presence of technical flaws, could improve the validity and discriminatory power of the exam, without increasing its difficulty.
Ko, Gi-Young; Kwon, Young Baek; Yoon, Hyun-Ki; Sung, Kyu-Bo
2018-01-01
Objective To investigate the technical and clinical outcomes of plug-assisted retrograde transvenous obliteration (PARTO) for the treatment of gastric varices (GV) and to evaluate the role of intra-procedural cone-beam computed tomography (CBCT) performed during PARTO to confirm its technical success. Materials and Methods From January 2016 to December 2016, 17 patients with GV who had undergone PARTO were retrospectively evaluated. When the proximal part of the afferent vein was identified on a fluoroscopy, non-contrast CBCT images were obtained. In patients with incomplete embolization of GV, an additional injection of gelatin sponges was performed. Follow-up data from contrast-enhanced CT and upper intestinal endoscopy, as well as clinical and laboratory data were collected. Results Plug-assisted retrograde transvenous obliteration procedures were technically successful in all 17 patients. Complete embolization of GV was detected on CBCT images in 15 patients; whereas, incomplete embolization was detected in two. Complete embolization of GV was then achieved after an additional injection of gelatin sponges in these two patients as demonstrated on the 2nd CBCT image. The mean follow-up period after PARTO was 193 days (range, 73–383 days). A follow-up CT obtained 2–4 months after PARTO demonstrated marked shrinkage or complete obliteration of GV and portosystemic shunts in all 17 patients. There were no cases of variceal bleeding during the follow-up. Conclusion Plug-assisted retrograde transvenous obliteration is technically and clinically effective for the treatment of GV. In addition, intra-procedural CBCT can be an adjunct tool to fluoroscopy, because it can provide an immediate and accurate evaluation of the technical success of PARTO. PMID:29520179
How much image noise can be added in cardiac x-ray imaging without loss in perceived image quality?
NASA Astrophysics Data System (ADS)
Gislason-Lee, Amber J.; Kumcu, Asli; Kengyelics, Stephen M.; Rhodes, Laura A.; Davies, Andrew G.
2015-03-01
Dynamic X-ray imaging systems are used for interventional cardiac procedures to treat coronary heart disease. X-ray settings are controlled automatically by specially-designed X-ray dose control mechanisms whose role is to ensure an adequate level of image quality is maintained with an acceptable radiation dose to the patient. Current commonplace dose control designs quantify image quality by performing a simple technical measurement directly from the image. However, the utility of cardiac X-ray images is in their interpretation by a cardiologist during an interventional procedure, rather than in a technical measurement. With the long term goal of devising a clinically-relevant image quality metric for an intelligent dose control system, we aim to investigate the relationship of image noise with clinical professionals' perception of dynamic image sequences. Computer-generated noise was added, in incremental amounts, to angiograms of five different patients selected to represent the range of adult cardiac patient sizes. A two alternative forced choice staircase experiment was used to determine the amount of noise which can be added to a patient image sequences without changing image quality as perceived by clinical professionals. Twenty-five viewing sessions (five for each patient) were completed by thirteen observers. Results demonstrated scope to increase the noise of cardiac X-ray images by up to 21% +/- 8% before it is noticeable by clinical professionals. This indicates a potential for 21% radiation dose reduction since X-ray image noise and radiation dose are directly related; this would be beneficial to both patients and personnel.
Tools for a Document Image Utility.
ERIC Educational Resources Information Center
Krishnamoorthy, M.; And Others
1993-01-01
Describes a project conducted at Rensselaer Polytechnic Institute (New York) that developed methods for automatically subdividing pages from technical journals into smaller semantic units for transmission, display, and further processing in an electronic environment. Topics discussed include optical scanning and image compression, digital image…
Bibliography of geologic studies using imaging radar
NASA Technical Reports Server (NTRS)
Bryan, M. L.
1979-01-01
Articles concerning imaging studies on the geomorphology, mineralogy, and topology of various landforms are reported. One hundred and ninety citations are listed and an index by National Technical Information service citation number is included. Several illustrations of L-band radar imagery are presented.
Digital image analysis techniques for fiber and soil mixtures : technical summary.
DOT National Transportation Integrated Search
1999-05-01
This project used to innovative technologies of digital image analysis for the characterization of a material currently being considered for broad use at DOTD. The material under consideration is a mixture of fiber and soil for use in the stabilizati...
High-resolution ultrashort echo time (UTE) imaging on human knee with AWSOS sequence at 3.0 T.
Qian, Yongxian; Williams, Ashley A; Chu, Constance R; Boada, Fernando E
2012-01-01
To demonstrate the technical feasibility of high-resolution (0.28-0.14 mm) ultrashort echo time (UTE) imaging on human knee at 3T with the acquisition-weighted stack of spirals (AWSOS) sequence. Nine human subjects were scanned on a 3T MRI scanner with an 8-channel knee coil using the AWSOS sequence and isocenter positioning plus manual shimming. High-resolution UTE images were obtained on the subject knees at TE = 0.6 msec with total acquisition time of 5.12 minutes for 60 slices at an in-plane resolution of 0.28 mm and 10.24 minutes for 40 slices at an in-plane resolution of 0.14 mm. Isocenter positioning, manual shimming, and the 8-channel array coil helped minimize image distortion and achieve high signal-to-noise ratio (SNR). It is technically feasible on a clinical 3T MRI scanner to perform UTE imaging on human knee at very high spatial resolutions (0.28-0.14 mm) within reasonable scan time (5-10 min) using the AWSOS sequence. Copyright © 2011 Wiley Periodicals, Inc.
Characterizing the scientific potential of satellite sensors. [San Francisco, California
NASA Technical Reports Server (NTRS)
1984-01-01
Analytical and programming support is to be provided to characterize the potential of the LANDSAT thematic mapper (TM) digital imagery for scientific investigations in the Earth sciences and in terrestrial physics. In addition, technical support to define lower atmospheric and terrestrial surface experiments for the space station and technical support to the Research Optical Sensor (ROS) study scientist for advanced studies in remote sensing are to be provided. Eleven radiometric calibration and correction programs are described. Coherent noise and bright target saturation correction are discussed along with image processing on the LAS/VAX and Hp-300/IDIMS. An image of San Francisco, California from TM band 2 is presented.
7T: Physics, safety, and potential clinical applications.
Kraff, Oliver; Quick, Harald H
2017-12-01
With more than 60 installed magnetic resonance imaging (MRI) systems worldwide operating at a magnetic field strength of 7T or higher, ultrahigh-field (UHF) MRI has been established as a platform for clinically oriented research in recent years. Profound technical and methodological developments have helped overcome the inherent physical challenges of UHF radiofrequency (RF) signal homogenization in the human body. The ongoing development of dedicated RF coil arrays was pivotal in realizing UHF body MRI, beyond mere brain imaging applications. Another precondition to clinical application of 7T MRI is the safety testing of implants and the establishment of safety concepts. Against this backdrop, 7T MRI and MR spectroscopy (MRS) recently have demonstrated capabilities and potentials for clinical diagnostics in a variety of studies. This article provides an overview of the immanent physical challenges of 7T UHF MRI and discusses recent technical solutions and safety concepts. Furthermore, recent clinically oriented studies are highlighted that span a broad application spectrum from 7T UHF brain to body MRI. 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1573-1589. © 2017 International Society for Magnetic Resonance in Medicine.
Adrenal Vein Sampling for Conn's Syndrome: Diagnosis and Clinical Outcomes.
Deipolyi, Amy R; Bailin, Alexander; Wicky, Stephan; Alansari, Shehab; Oklu, Rahmi
2015-06-19
Adrenal vein sampling (AVS) is the gold standard test to determine unilateral causes of primary aldosteronism (PA). We have retrospectively characterized our experience with AVS including concordance of AVS results and imaging, and describe the approach for the PA patient in whom bilateral AVS is unsuccessful. We reviewed the medical records of 85 patients with PA and compared patients who were treated medically and surgically on pre-procedure presentation and post-treatment outcomes, and evaluated how technically unsuccessful AVS results were used in further patient management. Out of the 92 AVS performed in 85 patients, AVS was technically successful bilaterally in 58 (63%) of cases. Either unsuccessful AVS prompted a repeat AVS, or results from the contralateral side and from CT imaging were used to guide further therapy. Patients who were managed surgically with adrenalectomy had higher initial blood pressure and lower potassium levels compared with patients who were managed medically. Adrenalectomy results in significantly decreased blood pressure and normalization of potassium levels. AVS can identify surgically curable causes of PA, but can be technically challenging. When one adrenal vein fails to be cannulated, results from the contralateral vein can be useful in conjunction with imaging and clinical findings to suggest further management.
BMC Ecology image competition 2014: the winning images
2014-01-01
BMC Ecology showcases the winning entries from its second Ecology Image Competition. More than 300 individual images were submitted from an international array of research scientists, depicting life on every continent on earth. The journal’s Editorial Board and guest judge Caspar Henderson outline why their winning selections demonstrated high levels of technical skill and aesthetic sense in depicting the science of ecology, and we also highlight a small selection of highly commended images that we simply couldn’t let you miss out on. PMID:25178017
BMC Ecology image competition 2014: the winning images.
Harold, Simon; Henderson, Caspar; Baguette, Michel; Bonsall, Michael B; Hughes, David; Settele, Josef
2014-08-29
BMC Ecology showcases the winning entries from its second Ecology Image Competition. More than 300 individual images were submitted from an international array of research scientists, depicting life on every continent on earth. The journal's Editorial Board and guest judge Caspar Henderson outline why their winning selections demonstrated high levels of technical skill and aesthetic sense in depicting the science of ecology, and we also highlight a small selection of highly commended images that we simply couldn't let you miss out on.
Ehara, Shigeru
2010-01-01
Technical innovations in digital data management pose a threat to radiologists in that can we remain in the process of clinical decision making or be assigned to a secondary role in future clinical practice. The value added to the imaging studies by diagnostic radiologists, or imaging specialists, has never been questioned more seriously. PMID:21179309
A Checklist for Successful Quantitative Live Cell Imaging in Systems Biology
Sung, Myong-Hee
2013-01-01
Mathematical modeling of signaling and gene regulatory networks has provided unique insights about systems behaviors for many cell biological problems of medical importance. Quantitative single cell monitoring has a crucial role in advancing systems modeling of molecular networks. However, due to the multidisciplinary techniques that are necessary for adaptation of such systems biology approaches, dissemination to a wide research community has been relatively slow. In this essay, I focus on some technical aspects that are often under-appreciated, yet critical in harnessing live cell imaging methods to achieve single-cell-level understanding and quantitative modeling of molecular networks. The importance of these technical considerations will be elaborated with examples of successes and shortcomings. Future efforts will benefit by avoiding some pitfalls and by utilizing the lessons collectively learned from recent applications of imaging in systems biology. PMID:24709701
Kossaify, Antoine; Grollier, Gilles
2014-01-01
Echocardiography accounts for nearly half of all cardiac imaging techniques. It is a widely available and adaptable tool, as well as being a cost-effective and mainly a non-invasive test. In addition, echocardiography provides extensive clinical data, which is related to the presence or advent of different modalities (tissue Doppler imaging, speckle tracking imaging, three-dimensional mode, contrast echo, etc.), different approaches (transesophageal, intravascular, etc.), and different applications (ie, heart failure/resynchronization studies, ischemia/stress echo, etc.). In view of this, it is essential to conform to criteria of appropriate use and to keep standards of competence. In this study, we sought to review and discuss clinical practice of echocardiography in light of the criteria of appropriate clinical use, also we present an insight into echocardiographic technical competence and quality improvement project. PMID:24516342
Biological imaging with coherent Raman scattering microscopy: a tutorial
Alfonso-García, Alba; Mittal, Richa; Lee, Eun Seong; Potma, Eric O.
2014-01-01
Abstract. Coherent Raman scattering (CRS) microscopy is gaining acceptance as a valuable addition to the imaging toolset of biological researchers. Optimal use of this label-free imaging technique benefits from a basic understanding of the physical principles and technical merits of the CRS microscope. This tutorial offers qualitative explanations of the principles behind CRS microscopy and provides information about the applicability of this nonlinear optical imaging approach for biological research. PMID:24615671
Schmidt, Mark E; Chiao, Ping; Klein, Gregory; Matthews, Dawn; Thurfjell, Lennart; Cole, Patricia E; Margolin, Richard; Landau, Susan; Foster, Norman L; Mason, N Scott; De Santi, Susan; Suhy, Joyce; Koeppe, Robert A; Jagust, William
2015-09-01
In vivo imaging of amyloid burden with positron emission tomography (PET) provides a means for studying the pathophysiology of Alzheimer's and related diseases. Measurement of subtle changes in amyloid burden requires quantitative analysis of image data. Reliable quantitative analysis of amyloid PET scans acquired at multiple sites and over time requires rigorous standardization of acquisition protocols, subject management, tracer administration, image quality control, and image processing and analysis methods. We review critical points in the acquisition and analysis of amyloid PET, identify ways in which technical factors can contribute to measurement variability, and suggest methods for mitigating these sources of noise. Improved quantitative accuracy could reduce the sample size necessary to detect intervention effects when amyloid PET is used as a treatment end point and allow more reliable interpretation of change in amyloid burden and its relationship to clinical course. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
A look at 15 years of planar thallium-201 imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaul, S.
1989-09-01
Extensive experience has been accumulated over the past 15 years regarding planar thallium-201 imaging. Quantitation of technically superior images provides a high sensitivity and specificity for the detection of CAD. In addition, planar thallium-201 images provide very important prognostic information in different clinical situations. Although single photon emission computerized tomography offers potential theoretical advantages over planar imaging, because of the problems involved in reconstruction, specifically the creation of artifacts, it may not be the ideal imaging modality in all situations. Good quality planar thallium-201 imaging still has an important role in clinical cardiology today. 144 references.
Continuing Support of Cloud Free Line of Sight Determination Including Whole Sky Imaging of Clouds
2007-11-30
which is documented in Shields et al. 2007a, Technical Note 271, and Contract N00014-01-D- 0043 DO #11, which is reviewed in Section 2 and documented in...Shields et al. 2007b, Technical Note 272. Under DO #13, we finished preparation of two of the WSI units and their software, and fielded them...and b, and 2005b and c). One of the first two units was fielded at the Air Force’s Starfire Optical Range in October 1992. Technical Memo AV06
ERIC Educational Resources Information Center
Tataw, Oben Moses
2013-01-01
Interdisciplinary research in computer science requires the development of computational techniques for practical application in different domains. This usually requires careful integration of different areas of technical expertise. This dissertation presents image and time series analysis algorithms, with practical interdisciplinary applications…
Implementation of a thesaurus in an electronic photograph imaging system
NASA Astrophysics Data System (ADS)
Partlow, Denise
1995-11-01
A photograph imaging system presents a unique set of requirements for indexing and retrieving images, unlike a standard imaging system for written documents. This paper presents the requirements, technical design, and development results for a hierarchical ANSI standard thesaurus embedded into a photograph archival system. The thesaurus design incorporates storage reduction techniques, permits fast searches, and contains flexible indexing methods. It can be extended to many applications other than the retrieval of photographs. When photographic images are indexed into an electronic system, they are subject to a variety of indexing problems based on what the indexer `sees.' For instance, the indexer may categorize an image as a boat when others might refer to it as a ship, sailboat, or raft. The thesaurus will allow a user to locate images containing any synonym for boat, regardless of how the image was actually indexed. In addition to indexing problems, photos may need to be retrieved based on a broad category, for instance, flowers. The thesaurus allows a search for `flowers' to locate all images containing a rose, hibiscus, or daisy, yet still allow a specific search for an image containing only a rose. The technical design and method of implementation for such a thesaurus is presented. The thesaurus is implemented using an SQL relational data base management system that supports blobs, binary large objects. The design incorporates unique compression methods for storing the thesaurus words. Words are indexed to photographs using the compressed word and allow for very rapid searches, eliminating lengthy string matches.
Swerdlow, Daniel R; Cleary, Kevin; Wilson, Emmanuel; Azizi-Koutenaei, Bamshad; Monfaredi, Reza
2017-04-01
Ultrasound imaging requires trained personnel. Advances in robotics and data transmission create the possibility of telesonography. This review introduces clinicians to current technical work in and potential applications of this developing capability. Telesonography offers advantages in hazardous or remote environments. Robotically assisted ultrasound can reduce stress injuries in sonographers and has potential utility during robotic surgery and interventional procedures.
ERIC Educational Resources Information Center
Chadwell, Briael Marie
2016-01-01
This quantitative study examines the perceptions of career and technical education (CTE) among high school students based on their socioeconomic status and gender, and the interaction between the two. The study used a convenience sample of 207 students from four coastal South Carolina high schools. The data was collected using the Image of…
SSME propellant path leak detection real-time
NASA Technical Reports Server (NTRS)
Crawford, R. A.; Smith, L. M.
1994-01-01
Included are four documents that outline the technical aspects of the research performed on NASA Grant NAG8-140: 'A System for Sequential Step Detection with Application to Video Image Processing'; 'Leak Detection from the SSME Using Sequential Image Processing'; 'Digital Image Processor Specifications for Real-Time SSME Leak Detection'; and 'A Color Change Detection System for Video Signals with Applications to Spectral Analysis of Rocket Engine Plumes'.
NASA Technical Reports Server (NTRS)
vonOfenheim. William H. C.; Heimerl, N. Lynn; Binkley, Robert L.; Curry, Marty A.; Slater, Richard T.; Nolan, Gerald J.; Griswold, T. Britt; Kovach, Robert D.; Corbin, Barney H.; Hewitt, Raymond W.
1998-01-01
This paper discusses the technical aspects of and the project background for the NASA Image exchange (NIX). NIX, which provides a single entry point to search selected image databases at the NASA Centers, is a meta-search engine (i.e., a search engine that communicates with other search engines). It uses these distributed digital image databases to access photographs, animations, and their associated descriptive information (meta-data). NIX is available for use at the following URL: http://nix.nasa.gov./NIX, which was sponsored by NASAs Scientific and Technical Information (STI) Program, currently serves images from seven NASA Centers. Plans are under way to link image databases from three additional NASA Centers. images and their associated meta-data, which are accessible by NIX, reside at the originating Centers, and NIX utilizes a virtual central site that communicates with each of these sites. Incorporated into the virtual central site are several protocols to support searches from a diverse collection of database engines. The searches are performed in parallel to ensure optimization of response times. To augment the search capability, browse functionality with pre-defined categories has been built into NIX, thereby ensuring dissemination of 'best-of-breed' imagery. As a final recourse, NIX offers access to a help desk via an on-line form to help locate images and information either within the scope of NIX or from available external sources.
Selected Aspects of Vocational Image as Perceived by a Public Categorized by Occupational Levels.
ERIC Educational Resources Information Center
Shultz, Fred A.; Terry, H. Robert
In six north-central Oklahoma cities, representatives from professional, technical, skilled, semiskilled, and unskilled occupations were interviewed to determine their perceptions of the image of vocational education in Oklahoma. Findings for the seven specific research objectives included: (1) Concerning the adequacy of available vocational…
CHARGE Image Generator: Theory of Operation and Author Language Support. Technical Report 75-3.
ERIC Educational Resources Information Center
Gunwaldsen, Roger L.
The image generator function and author language software support for the CHARGE (Color Halftone Area Graphics Environment) Interactive Graphics System are described. Designed initially for use in computer-assisted instruction (CAI) systems, the CHARGE Interactive Graphics System can provide graphic displays for various applications including…
How To Put Your Maps on the Internet.
ERIC Educational Resources Information Center
Allen, David Yehling
Many libraries are creating raster images of paper maps and making them available over the Internet. This presentation provides an overview of imaging technology for map librarians and administrators considering such projects. References in footnotes and the bibliography enable those interested to explore technical questions in depth. There are…
Quantitative techniques for musculoskeletal MRI at 7 Tesla.
Bangerter, Neal K; Taylor, Meredith D; Tarbox, Grayson J; Palmer, Antony J; Park, Daniel J
2016-12-01
Whole-body 7 Tesla MRI scanners have been approved solely for research since they appeared on the market over 10 years ago, but may soon be approved for selected clinical neurological and musculoskeletal applications in both the EU and the United States. There has been considerable research work on musculoskeletal applications at 7 Tesla over the past decade, including techniques for ultra-high resolution morphological imaging, 3D T2 and T2* mapping, ultra-short TE applications, diffusion tensor imaging of cartilage, and several techniques for assessing proteoglycan content in cartilage. Most of this work has been done in the knee or other extremities, due to technical difficulties associated with scanning areas such as the hip and torso at 7 Tesla. In this manuscript, we first provide some technical context for 7 Tesla imaging, including challenges and potential advantages. We then review the major quantitative MRI techniques being applied to musculoskeletal applications on 7 Tesla whole-body systems.
The current and ideal state of anatomic pathology patient safety.
Raab, Stephen Spencer
2014-01-01
An anatomic pathology diagnostic error may be secondary to a number of active and latent technical and/or cognitive components, which may occur anywhere along the total testing process in clinical and/or laboratory domains. For the pathologist interpretive steps of diagnosis, we examine Kahneman's framework of slow and fast thinking to explain different causes of error in precision (agreement) and in accuracy (truth). The pathologist cognitive diagnostic process involves image pattern recognition and a slow thinking error may be caused by the application of different rationally-constructed mental maps of image criteria/patterns by different pathologists. This type of error is partly related to a system failure in standardizing the application of these maps. A fast thinking error involves the flawed leap from image pattern to incorrect diagnosis. In the ideal state, anatomic pathology systems would target these cognitive error causes as well as the technical latent factors that lead to error.
Malcolm, James G; Tan, Lee A; Johnson, Andrew K
2017-07-20
A sagittal split fracture of the C1 lateral mass is an unstable subtype of C1 fractures and has a high propensity for developing late deformities and pain with nonoperative management. A primary internal fixation of this type of fracture has been recently described with good clinical outcomes and preservation of motion. We present a modified technique of primary internal fixation using an obliquely inserted C1 lag screw with imaging guidance. We successfully treated a 55-year-old woman with a unilateral C1 oblique sagittal split fracture who failed nonoperative management. Technical nuances are discussed with a review of pertinent literature.
Data management in pattern recognition and image processing systems
NASA Technical Reports Server (NTRS)
Zobrist, A. L.; Bryant, N. A.
1976-01-01
Data management considerations are important to any system which handles large volumes of data or where the manipulation of data is technically sophisticated. A particular problem is the introduction of image-formatted files into the mainstream of data processing application. This report describes a comprehensive system for the manipulation of image, tabular, and graphical data sets which involve conversions between the various data types. A key characteristic is the use of image processing technology to accomplish data management tasks. Because of this, the term 'image-based information system' has been adopted.
1990-01-01
7 . ,: 1& *U _’ ś TECHNICAL REPORT AD NATICK/TR-90/014 (V) N* IMAGE ANALYSIS PROGRAM FOR MEASURING PARTICLES < WITH THE ZEISS CSM 950 SCANNING... image analysis program for measuring particles using the Zeiss CSM 950/Kontron system is as follows: A>CSM calls the image analysis program. Press D to...27 vili LIST OF TABLES TABLE PAGE 1. Image Analysis Program for Measuring 29 Spherical Particles 14 2. Printout of Statistical Data Frcm Table 1 16 3
Standards to support information systems integration in anatomic pathology.
Daniel, Christel; García Rojo, Marcial; Bourquard, Karima; Henin, Dominique; Schrader, Thomas; Della Mea, Vincenzo; Gilbertson, John; Beckwith, Bruce A
2009-11-01
Integrating anatomic pathology information- text and images-into electronic health care records is a key challenge for enhancing clinical information exchange between anatomic pathologists and clinicians. The aim of the Integrating the Healthcare Enterprise (IHE) international initiative is precisely to ensure interoperability of clinical information systems by using existing widespread industry standards such as Digital Imaging and Communication in Medicine (DICOM) and Health Level Seven (HL7). To define standard-based informatics transactions to integrate anatomic pathology information to the Healthcare Enterprise. We used the methodology of the IHE initiative. Working groups from IHE, HL7, and DICOM, with special interest in anatomic pathology, defined consensual technical solutions to provide end-users with improved access to consistent information across multiple information systems. The IHE anatomic pathology technical framework describes a first integration profile, "Anatomic Pathology Workflow," dedicated to the diagnostic process including basic image acquisition and reporting solutions. This integration profile relies on 10 transactions based on HL7 or DICOM standards. A common specimen model was defined to consistently identify and describe specimens in both HL7 and DICOM transactions. The IHE anatomic pathology working group has defined standard-based informatics transactions to support the basic diagnostic workflow in anatomic pathology laboratories. In further stages, the technical framework will be completed to manage whole-slide images and semantically rich structured reports in the diagnostic workflow and to integrate systems used for patient care and those used for research activities (such as tissue bank databases or tissue microarrayers).
De Crop, An; Casselman, Jan; Van Hoof, Tom; Dierens, Melissa; Vereecke, Elke; Bossu, Nicolas; Pamplona, Jaime; D'Herde, Katharina; Thierens, Hubert; Bacher, Klaus
2015-08-01
Metal artifacts may negatively affect radiologic assessment in the oral cavity. The aim of this study was to evaluate different metal artifact reduction techniques for metal artifacts induced by dental hardware in CT scans of the oral cavity. Clinical image quality was assessed using a Thiel-embalmed cadaver. A Catphan phantom and a polymethylmethacrylate (PMMA) phantom were used to evaluate physical-technical image quality parameters such as artifact area, artifact index (AI), and contrast detail (IQFinv). Metal cylinders were inserted in each phantom to create metal artifacts. CT images of both phantoms and the Thiel-embalmed cadaver were acquired on a multislice CT scanner using 80, 100, 120, and 140 kVp; model-based iterative reconstruction (Veo); and synthesized monochromatic keV images with and without metal artifact reduction software (MARs). Four radiologists assessed the clinical image quality, using an image criteria score (ICS). Significant influence of increasing kVp and the use of Veo was found on clinical image quality (p = 0.007 and p = 0.014, respectively). Application of MARs resulted in a smaller artifact area (p < 0.05). However, MARs reconstructed images resulted in lower ICS. Of all investigated techniques, Veo shows to be most promising, with a significant improvement of both the clinical and physical-technical image quality without adversely affecting contrast detail. MARs reconstruction in CT images of the oral cavity to reduce dental hardware metallic artifacts is not sufficient and may even adversely influence the image quality.
Treatment of type II endoleak using Onyx with long-term imaging follow-up.
Khaja, Minhaj S; Park, Auh Whan; Swee, Warren; Evans, Avery J; Fritz Angle, J; Turba, Ulku C; Sabri, Saher S; Matsumoto, Alan H
2014-06-01
The purpose of our study is to report our experience with the use of an ethylene vinyl alcohol copolymer (Onyx) in an off-label fashion for the treatment of type II endoleak after endovascular repair of the thoracic (TEVAR) and abdominal (EVAR) aorta. A retrospective review of patients with type I and/or II endoleak treated with Onyx was performed. Data regarding the technical, clinical, and imaging outcomes were collected. Technical success was defined as decreased or eliminated endoleak on the first imaging follow-up. Clinical success was defined as unchanged or decreased aneurysm sac size on subsequent follow-up. Eighteen patients (15 male, 3 female) with a mean age of 79 years (range 69-92) met inclusion criteria (16 abdominal aortic aneurysm, 2 thoracic aortic aneurysm). Sixteen patients had type II endoleak, and 2 had complex type II endoleak with a type I component. The interval between endograft placement and treatment was a mean of 30 months. Direct sac treatment approach was used in 13 patients; transarterial approach was used in 3 patients. Seven patients required the use of coils, N-butyl cyanoacrylate glue, or Amplatzer vascular plugs. The average volume of Onyx used per treatment was 5.6 mL (range 2.5-13). Duration of imaging follow-up was 0.75-72.5 months (mean 32.8). Sixteen of 18 (88.9 %) patients had initial technical and clinical success. Two of 18 patients (11.1 %) were initial technical failures, and 1 remained a failure despite a second treatment and attempted surgical ligation. Eight of 18 (44.4 %) of patients eventually required a second intervention, 5 (27.8 %) of them due to delayed clinical failure. Complications included 1 psoas hematoma, 1 transient L2 nerve paresis, and 1 intraperitoneal Onyx leak; all of these were without clinical sequelae. Onyx with or without coil/glue/Amplatzer plug embolization is safe and useful in the treatment of type II endoleak after TEVAR and EVAR. However, long-term clinical and imaging follow-up is needed for early detection and management of recurrence of the primary endoleak or the development of new, secondary endoleaks or enlargement of the aneurysm sac.
Digital visual communications using a Perceptual Components Architecture
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1991-01-01
The next era of space exploration will generate extraordinary volumes of image data, and management of this image data is beyond current technical capabilities. We propose a strategy for coding visual information that exploits the known properties of early human vision. This Perceptual Components Architecture codes images and image sequences in terms of discrete samples from limited bands of color, spatial frequency, orientation, and temporal frequency. This spatiotemporal pyramid offers efficiency (low bit rate), variable resolution, device independence, error-tolerance, and extensibility.
PET/MR Imaging in Gynecologic Oncology.
Ohliger, Michael A; Hope, Thomas A; Chapman, Jocelyn S; Chen, Lee-May; Behr, Spencer C; Poder, Liina
2017-08-01
MR imaging and PET using 2-Deoxy-2-[ 18 F]fluoroglucose (FDG) are both useful in the evaluation of gynecologic malignancies. MR imaging is superior for local staging of disease whereas fludeoxyglucose FDG PET is superior for detecting distant metastases. Integrated PET/MR imaging scanners have great promise for gynecologic malignancies by combining the advantages of each modality into a single scan. This article reviews the technology behind PET/MR imaging acquisitions and technical challenges relevant to imaging the pelvis. A dedicated PET/MR imaging protocol; the roles of PET and MR imaging in cervical, endometrial, and ovarian cancers; and future directions for PET/MR imaging are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Ultrasonography of the pancreas. 6. Endoscopic imaging.
Chaya, C T; Bhutani, M S
2007-01-01
EUS is a high-resolution technique for pancreatic imaging. EUS has applictions in detecting and staging pancreatic tumors, EUS guided FNA of the pancreas for tissue diagnosis, and evaluation of chronic pancreatitis as well as EUS guided therapy such as celiac plexus block. This is a review of EUS imaging (EUS) of the pancreas covering technical aspects, clinical indications, advantages, and pitfalls as well as emerging trends in the field.
Toward microendoscopy-inspired cardiac optogenetics in vivo: technical overview and perspective
NASA Astrophysics Data System (ADS)
Klimas, Aleksandra; Entcheva, Emilia
2014-08-01
The ability to perform precise, spatially localized actuation and measurements of electrical activity in the heart is crucial in understanding cardiac electrophysiology and devising new therapeutic solutions for control of cardiac arrhythmias. Current cardiac imaging techniques (i.e. optical mapping) employ voltage- or calcium-sensitive fluorescent dyes to visualize the electrical signal propagation through cardiac syncytium in vitro or in situ with very high-spatiotemporal resolution. The extension of optogenetics into the cardiac field, where cardiac tissue is genetically altered to express light-sensitive ion channels allowing electrical activity to be elicited or suppressed in a precise cell-specific way, has opened the possibility for all-optical interrogation of cardiac electrophysiology. In vivo application of cardiac optogenetics faces multiple challenges and necessitates suitable optical systems employing fiber optics to actuate and sense electrical signals. In this technical perspective, we present a compendium of clinically relevant access routes to different parts of the cardiac electrical conduction system based on currently employed catheter imaging systems and determine the quantitative size constraints for endoscopic cardiac optogenetics. We discuss the relevant technical advancements in microendoscopy, cardiac imaging, and optogenetics and outline the strategies for combining them to create a portable, miniaturized fiber-based system for all-optical interrogation of cardiac electrophysiology in vivo.
Adrenal Vein Sampling for Conn’s Syndrome: Diagnosis and Clinical Outcomes
Deipolyi, Amy R.; Bailin, Alexander; Wicky, Stephan; Alansari, Shehab; Oklu, Rahmi
2015-01-01
Adrenal vein sampling (AVS) is the gold standard test to determine unilateral causes of primary aldosteronism (PA). We have retrospectively characterized our experience with AVS including concordance of AVS results and imaging, and describe the approach for the PA patient in whom bilateral AVS is unsuccessful. We reviewed the medical records of 85 patients with PA and compared patients who were treated medically and surgically on pre-procedure presentation and post-treatment outcomes, and evaluated how technically unsuccessful AVS results were used in further patient management. Out of the 92 AVS performed in 85 patients, AVS was technically successful bilaterally in 58 (63%) of cases. Either unsuccessful AVS prompted a repeat AVS, or results from the contralateral side and from CT imaging were used to guide further therapy. Patients who were managed surgically with adrenalectomy had higher initial blood pressure and lower potassium levels compared with patients who were managed medically. Adrenalectomy results in significantly decreased blood pressure and normalization of potassium levels. AVS can identify surgically curable causes of PA, but can be technically challenging. When one adrenal vein fails to be cannulated, results from the contralateral vein can be useful in conjunction with imaging and clinical findings to suggest further management. PMID:26854152
Reliability of image-free navigation to monitor lower-limb alignment.
Pearle, Andrew D; Goleski, Patrick; Musahl, Volker; Kendoff, Daniel
2009-02-01
Proper alignment of the mechanical axis of the lower limb is the principal goal of a high tibial osteotomy. A well-accepted and relevant technical specification is the coronal plane lower-limb alignment. Target values for coronal plane alignment after high tibial osteotomy include 2 degrees of overcorrection, while tolerances for this specification have been established as 2 degrees to 4 degrees. However, the role of axial plane and sagittal plane realignment after high tibial osteotomy is poorly understood; consequently, targets and tolerance for this technical specification remain undefined. This article reviews the literature concerning the reliability and precision of navigation in monitoring the clinically relevant specification of lower-limb alignment in high tibial osteotomy. We conclude that image-free navigation registration may be clinically useful for intraoperative monitoring of the coronal plane only. Only fair and poor results for the axial and sagittal planes can be obtained by image-free navigation systems. In the future, combined image-based data, such as those from radiographs, magnetic resonance imaging, and gait analysis, may be used to help to improve the accuracy and reproducibility of quantitative intraoperative monitoring of lower-limb alignment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohn, Paul W.; Shrout, J. D.; Sweedler, J. V.
This document constitutes the final technical report for DE-SC0006642, In Situ Correlated Molecular Imaging of Chemically Communicating Microbial Communities, a project carried out collaboratively by investigators at Notre Dame and UIUC. The work carried out under DOE support in this project produced advances in two areas: development of new highly sophisticated correlated imaging approaches and the application of these new tools to the growth and differentiation of microbial communities under a variety of environmental conditions. A significant effort involved the creation of technical enhancements and sampling approaches to allow us to advance heterocorrelated mass spectrometry imaging (MSI) and correlated Ramanmore » microscopy (CRM) from bacterial cultures and biofilms. We then exploited these measurement advances in heterocorrelated MS/CRM imaging to determine relationship of signaling molecules and excreted signaling molecules produced by P. aeruginosa to conditions relevant to the rhizosphere. In particular, we: (1) developed a laboratory testbed mimic for the rhizosphere to enable microbial growth on slides under controlled conditions; (2) integrated specific measurements of (a) rhamnolipids, (b) quinolone/quinolones, and (c) phenazines specific to P. aeruginosa; and (3) utilized the imaging tools to probe how messenger secretion, quorum sensing and swarming behavior are correlated with behavior.« less
Mid-IR hyperspectral imaging for label-free histopathology and cytology
NASA Astrophysics Data System (ADS)
Hermes, M.; Brandstrup Morrish, R.; Huot, L.; Meng, L.; Junaid, S.; Tomko, J.; Lloyd, G. R.; Masselink, W. T.; Tidemand-Lichtenberg, P.; Pedersen, C.; Palombo, F.; Stone, N.
2018-02-01
Mid-infrared (MIR) imaging has emerged as a valuable tool to investigate biological samples, such as tissue histological sections and cell cultures, by providing non-destructive chemical specificity without recourse to labels. While feasibility studies have shown the capabilities of MIR imaging approaches to address key biological and clinical questions, these techniques are still far from being deployable by non-expert users. In this review, we discuss the current state of the art of MIR technologies and give an overview on technical innovations and developments with the potential to make MIR imaging systems more readily available to a larger community. The most promising developments over the last few years are discussed here. They include improvements in MIR light sources with the availability of quantum cascade lasers and supercontinuum IR sources as well as the recently developed upconversion scheme to improve the detection of MIR radiation. These technical advances can substantially speed up data acquisition of multispectral or hyperspectral datasets thus providing the end user with vast amounts of data when imaging whole tissue areas of many mm2. Therefore, effective data analysis is of tremendous importance, and progress in method development is discussed with respect to the specific biomedical context.
Developmental imaging: the avian embryo hatches to the challenge.
Kulesa, Paul M; McKinney, Mary C; McLennan, Rebecca
2013-06-01
The avian embryo provides a multifaceted model to study developmental mechanisms because of its accessibility to microsurgery, fluorescence cell labeling, in vivo imaging, and molecular manipulation. Early two-dimensional planar growth of the avian embryo mimics human development and provides unique access to complex cell migration patterns using light microscopy. Later developmental events continue to permit access to both light and other imaging modalities, making the avian embryo an excellent model for developmental imaging. For example, significant insights into cell and tissue behaviors within the primitive streak, craniofacial region, and cardiovascular and peripheral nervous systems have come from avian embryo studies. In this review, we provide an update to recent advances in embryo and tissue slice culture and imaging, fluorescence cell labeling, and gene profiling. We focus on how technical advances in the chick and quail provide a clearer understanding of how embryonic cell dynamics are beautifully choreographed in space and time to sculpt cells into functioning structures. We summarize how these technical advances help us to better understand basic developmental mechanisms that may lead to clinical research into human birth defects and tissue repair. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Guozhi; Petrov, Dimitar; Marshall, Nicholas; Bosmans, Hilde
2017-03-01
Digital breast tomosynthesis (DBT) is a relatively new diagnostic imaging modality for women. Currently, various models of DBT systems are available on the market and the number of installations is rapidly increasing. EUREF, the European Reference Organization for Quality Assured Breast Screening and Diagnostic Services, has proposed a preliminary Guideline - protocol for the quality control of the physical and technical aspects of digital breast tomosynthesis systems, with an ultimate aim of providing limiting values guaranteeing proper performance for different applications of DBT. In this work, we introduce an adaptive toolkit developed in accordance with this guideline to facilitate the process of image quality evaluation in DBT performance test. This toolkit implements robust algorithms to quantify various technical parameters of DBT images and provides a convenient user interface in practice. Each test is built into a separate module with configurations set corresponding to the European guideline, which can be easily adapted to different settings and extended with additional tests. This toolkit largely improves the efficiency for image quality evaluation of DBT. It is also going to evolve with the development of protocols in quality control of DBT systems.
Hellerhoff, K
2010-11-01
In recent years digital full field mammography has increasingly replaced conventional film mammography. High quality imaging is guaranteed by high quantum efficiency and very good contrast resolution with optimized dosing even for women with dense glandular tissue. However, digital mammography remains a projection procedure by which overlapping tissue limits the detectability of subtle alterations. Tomosynthesis is a procedure developed from digital mammography for slice examination of breasts which eliminates the effects of overlapping tissue and allows 3D imaging of breasts. A curved movement of the X-ray tube during scanning allows the acquisition of many 2D images from different angles. Subseqently, reconstruction algorithms employing a shift and add method improve the recognition of details at a defined level and at the same time eliminate smear artefacts due to overlapping structures. The total dose corresponds to that of conventional mammography imaging. The technical procedure, including the number of levels, suitable anodes/filter combinations, angle regions of images and selection of reconstruction algorithms, is presently undergoing optimization. Previous studies on the clinical value of tomosynthesis have examined screening parameters, such as recall rate and detection rate as well as information on tumor extent for histologically proven breast tumors. More advanced techniques, such as contrast medium-enhanced tomosynthesis, are presently under development and dual-energy imaging is of particular importance.
Palmucci, Stefano; Roccasalva, Federica; Piccoli, Marina; Fuccio Sanzà, Giovanni; Foti, Pietro Valerio; Ragozzino, Alfonso; Milone, Pietro; Ettorre, Giovanni Carlo
2017-01-01
Since its introduction, MRCP has been improved over the years due to the introduction of several technical advances and innovations. It consists of a noninvasive method for biliary tree representation, based on heavily T2-weighted images. Conventionally, its protocol includes two-dimensional single-shot fast spin-echo images, acquired with thin sections or with multiple thick slabs. In recent years, three-dimensional T2-weighted fast-recovery fast spin-echo images have been added to the conventional protocol, increasing the possibility of biliary anatomy demonstration and leading to a significant benefit over conventional 2D imaging. A significant innovation has been reached with the introduction of hepatobiliary contrasts, represented by gadoxetic acid and gadobenate dimeglumine: they are excreted into the bile canaliculi, allowing the opacification of the biliary tree. Recently, 3D interpolated T1-weighted spoiled gradient echo images have been proposed for the evaluation of the biliary tree, obtaining images after hepatobiliary contrast agent administration. Thus, the acquisition of these excretory phases improves the diagnostic capability of conventional MRCP-based on T2 acquisitions. In this paper, technical features of contrast-enhanced magnetic resonance cholangiography are briefly discussed; main diagnostic tips of hepatobiliary phase are showed, emphasizing the benefit of enhanced cholangiography in comparison with conventional MRCP.
Sequeiros, Roberto Blanco; Fritz, Jan; Ojala, Risto; Carrino, John A
2011-08-01
Magnetic resonance imaging (MRI) is promising tool for image-guided therapy. In musculoskeletal setting, image-guided therapy is used to direct diagnostic and therapeutic procedures and to steer patient management. Studies have demonstrated that MRI-guided interventions involving bone, soft tissue, joints, and intervertebral disks are safe and in selected indications can be the preferred action to manage clinical situation. Often, these procedures are technically similar to those performed in other modalities (computed tomography, fluoroscopy) for bone and soft tissue lesions. However, the procedural perception to the operator can be very different to other modalities because of the vastly increased data.Magnetic resonance imaging guidance is particularly advantageous should the lesion not be visible by other modalities, for selective lesion targeting, intra-articular locations, cyst aspiration, and locations adjacent to surgical hardware. Palliative tumor-related pain management such as ablation therapy forms a subset of procedures that are frequently performed under MRI. Another suitable entity for MRI guidance are the therapeutic percutaneous osseous or joint-related benign or reactive conditions such as osteoid osteoma, epiphyseal bone bridging, osteochondritis dissecans, bone cysts, localized bone necrosis, and posttraumatic lesions. In this article, we will describe in detail the technical aspects of performing MRI-guided therapeutic musculoskeletal procedures as well as the clinical indications.
EDITORIAL: Imaging Systems and Techniques Imaging Systems and Techniques
NASA Astrophysics Data System (ADS)
Giakos, George; Yang, Wuqiang; Petrou, M.; Nikita, K. S.; Pastorino, M.; Amanatiadis, A.; Zentai, G.
2011-10-01
This special feature on Imaging Systems and Techniques comprises 27 technical papers, covering essential facets in imaging systems and techniques both in theory and applications, from research groups spanning three different continents. It mainly contains peer-reviewed articles from the IEEE International Conference on Imaging Systems and Techniques (IST 2011), held in Thessaloniki, Greece, as well a number of articles relevant to the scope of this issue. The multifaceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment, and the technological revolution; there is an urgent need to address and propose dynamic and innovative solutions to problems that tend to be either complex and static or rapidly evolving with a lot of unknowns. For instance, exploration of the engineering and physical principles of new imaging systems and techniques for medical applications, remote sensing, monitoring of space resources and enhanced awareness, exploration and management of natural resources, and environmental monitoring, are some of the areas that need to be addressed with urgency. Similarly, the development of efficient medical imaging techniques capable of providing physiological information at the molecular level is another important area of research. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, using high resolution and high selectivity nanoimaging techniques, can play an important role in the diagnosis and treatment of cancer, as well as provide efficient drug-delivery imaging solutions for disease treatment with increased sensitivity and specificity. On the other hand, technical advances in the development of efficient digital imaging systems and techniques and tomographic devices operating on electric impedance tomography, computed tomography, single-photon emission and positron emission tomography detection principles are anticipated to have a significant impact on a wide spectrum of technological areas, such as medical imaging, pharmaceutical industry, analytical instrumentation, aerospace, remote sensing, lidars and ladars, surveillance, national defense, corrosion imaging and monitoring, sub-terrestrial and marine imaging. The complexity of the involved imaging scenarios, and demanding design parameters such as speed, signal-to-noise ratio, high specificity, high contrast and spatial resolution, high-scatter rejection, complex background and harsh environment, necessitate the development of a multifunctional, scalable and efficient imaging suite of sensors, solutions driven by innovation, operating on diverse detection and imaging principles. Finally, pattern recognition and image processing algorithms can significantly contribute to enhanced detection and imaging, including object classification, clustering, feature selection, texture analysis, segmentation, image compression and color representation under complex imaging scenarios, with applications in medical imaging, remote sensing, aerospace, radars, defense and homeland security. We feel confident that the exciting new contributions of this special feature on Imaging Systems and Techniques will appeal to the technical community. We would like to thank all authors as well as all anonymous reviewers and the MST Editorial Board, Publisher and staff for their tremendous efforts and invaluable support to enhance the quality of this significant endeavor.
Lombardo, Marco; Serrao, Sebastiano; Lombardo, Giuseppe
2014-01-01
Purpose To investigate the influence of various technical factors on the variation of cone packing density estimates in adaptive optics flood illuminated retinal images. Methods Adaptive optics images of the photoreceptor mosaic were obtained in fifteen healthy subjects. The cone density and Voronoi diagrams were assessed in sampling windows of 320×320 µm, 160×160 µm and 64×64 µm at 1.5 degree temporal and superior eccentricity from the preferred locus of fixation (PRL). The technical factors that have been analyzed included the sampling window size, the corrected retinal magnification factor (RMFcorr), the conversion from radial to linear distance from the PRL, the displacement between the PRL and foveal center and the manual checking of cone identification algorithm. Bland-Altman analysis was used to assess the agreement between cone density estimated within the different sampling window conditions. Results The cone density declined with decreasing sampling area and data between areas of different size showed low agreement. A high agreement was found between sampling areas of the same size when comparing density calculated with or without using individual RMFcorr. The agreement between cone density measured at radial and linear distances from the PRL and between data referred to the PRL or the foveal center was moderate. The percentage of Voronoi tiles with hexagonal packing arrangement was comparable between sampling areas of different size. The boundary effect, presence of any retinal vessels, and the manual selection of cones missed by the automated identification algorithm were identified as the factors influencing variation of cone packing arrangements in Voronoi diagrams. Conclusions The sampling window size is the main technical factor that influences variation of cone density. Clear identification of each cone in the image and the use of a large buffer zone are necessary to minimize factors influencing variation of Voronoi diagrams of the cone mosaic. PMID:25203681
Lombardo, Marco; Serrao, Sebastiano; Lombardo, Giuseppe
2014-01-01
To investigate the influence of various technical factors on the variation of cone packing density estimates in adaptive optics flood illuminated retinal images. Adaptive optics images of the photoreceptor mosaic were obtained in fifteen healthy subjects. The cone density and Voronoi diagrams were assessed in sampling windows of 320×320 µm, 160×160 µm and 64×64 µm at 1.5 degree temporal and superior eccentricity from the preferred locus of fixation (PRL). The technical factors that have been analyzed included the sampling window size, the corrected retinal magnification factor (RMFcorr), the conversion from radial to linear distance from the PRL, the displacement between the PRL and foveal center and the manual checking of cone identification algorithm. Bland-Altman analysis was used to assess the agreement between cone density estimated within the different sampling window conditions. The cone density declined with decreasing sampling area and data between areas of different size showed low agreement. A high agreement was found between sampling areas of the same size when comparing density calculated with or without using individual RMFcorr. The agreement between cone density measured at radial and linear distances from the PRL and between data referred to the PRL or the foveal center was moderate. The percentage of Voronoi tiles with hexagonal packing arrangement was comparable between sampling areas of different size. The boundary effect, presence of any retinal vessels, and the manual selection of cones missed by the automated identification algorithm were identified as the factors influencing variation of cone packing arrangements in Voronoi diagrams. The sampling window size is the main technical factor that influences variation of cone density. Clear identification of each cone in the image and the use of a large buffer zone are necessary to minimize factors influencing variation of Voronoi diagrams of the cone mosaic.
Muhit, A; Zbijewski, W; Stayman, J; Thawait, G; Yorkston, J; Foos, D; Packard, N; Yang, D; Senn, R; Carrino, J; Siewerdsen, J
2012-06-01
To assess the diagnostic performance of a prototype cone-beam CT (CBCT) scanner developed for musculoskeletal extremity imaging. Studies involved controlled observer studies conducted subsequent to rigorous technical assessment as well as patient images from the first clinical trial in imaging the hand and knee. Performance assessment included: 1.) rigorous technical assessment; 2.) controlled observer studies using CBCT images of cadaveric specimens; and 3.) first clinical images. Technical assessment included measurement of spatial resolution (MTF), constrast, and noise (SDNR) versus kVp and dose using standard CT phantoms. Diagnostic performance in comparison to multi- detector CT (MDCT) was assessed in controlled observer studies involving 12 cadaveric hands and knees scanned with and without abnormality (fracture). Observer studies involved five radiologists rating pertinent diagnostics tasks in 9-point preference and 10-point diagnostic satisfaction scales. Finally, the first clinical images from an ongoing pilot study were assessed in terms of diagnostic utility in disease assessment and overall workflow in patient setup. Quantitative assessment demonstrated sub-mm spatial resolution (MTF exceeding 10% out to 15-20 cm-1) and SDNR sufficient for relevant soft-tissue visualization tasks at dose <10 mGy. Observer studies confirmed optimal acquisition techniques and demonstrated superior utility of combined soft-tissue visualization and isotropic spatial resolution in diagnostic tasks. Images from the patient trial demonstrate exquisite contrast and detail and the ability to detect tissue impingement in weight-bearing exams. The prototype CBCT scanner provides isotropic spatial resolution superior to standard-protocol MDCT with soft-tissue visibility sufficient for a broad range of diagnostic tasks in musculoskeletal radiology. Dosimetry and workflow were advantageous in comparison to whole-body MDCT. Multi-mode and weight-bearing capabilities add valuable functionality. An ongoing clinical study further assesses diagnostic utility and defines the role of such technology in the diagnostic arsenal. - Research Grant, Carestream Health - Research Grant, National Institutes of Health 2R01-CA-112163. © 2012 American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Ong, Cindy; Mueller, Andreas; Thome, Kurtis; Pierce, Leland E.; Malthus, Timothy
2016-01-01
Calibration is the process of quantitatively defining a system's responses to known, controlled signal inputs, and validation is the process of assessing, by independent means, the quality of the data products derived from those system outputs [1]. Similar to other Earth observation (EO) sensors, the calibration and validation of spaceborne imaging spectroscopy sensors is a fundamental underpinning activity. Calibration and validation determine the quality and integrity of the data provided by spaceborne imaging spectroscopy sensors and have enormous downstream impacts on the accuracy and reliability of products generated from these sensors. At least five imaging spectroscopy satellites are planned to be launched within the next five years, with the two most advanced scheduled to be launched in the next two years [2]. The launch of these sensors requires the establishment of suitable, standardized, and harmonized calibration and validation strategies to ensure that high-quality data are acquired and comparable between these sensor systems. Such activities are extremely important for the community of imaging spectroscopy users. Recognizing the need to focus on this underpinning topic, the Geoscience Spaceborne Imaging Spectroscopy (previously, the International Spaceborne Imaging Spectroscopy) Technical Committee launched a calibration and validation initiative at the 2013 International Geoscience and Remote Sensing Symposium (IGARSS) in Melbourne, Australia, and a post-conference activity of a vicarious calibration field trip at Lake Lefroy in Western Australia.
Bourantas, Christos V; Jaffer, Farouc A; Gijsen, Frank J; van Soest, Gijs; Madden, Sean P; Courtney, Brian K; Fard, Ali M; Tenekecioglu, Erhan; Zeng, Yaping; van der Steen, Antonius F W; Emelianov, Stanislav; Muller, James; Stone, Peter H; Marcu, Laura; Tearney, Guillermo J; Serruys, Patrick W
2017-02-07
Cumulative evidence from histology-based studies demonstrate that the currently available intravascular imaging techniques have fundamental limitations that do not allow complete and detailed evaluation of plaque morphology and pathobiology, limiting the ability to accurately identify high-risk plaques. To overcome these drawbacks, new efforts are developing for data fusion methodologies and the design of hybrid, dual-probe catheters to enable accurate assessment of plaque characteristics, and reliable identification of high-risk lesions. Today several dual-probe catheters have been introduced including combined near infrared spectroscopy-intravascular ultrasound (NIRS-IVUS), that is already commercially available, IVUS-optical coherence tomography (OCT), the OCT-NIRS, the OCT-near infrared fluorescence (NIRF) molecular imaging, IVUS-NIRF, IVUS intravascular photoacoustic imaging and combined fluorescence lifetime-IVUS imaging. These multimodal approaches appear able to overcome limitations of standalone imaging and provide comprehensive visualization of plaque composition and plaque biology. The aim of this review article is to summarize the advances in hybrid intravascular imaging, discuss the technical challenges that should be addressed in order to have a use in the clinical arena, and present the evidence from their first applications aiming to highlight their potential value in the study of atherosclerosis. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakime, Antoine, E-mail: thakime@yahoo.com; Yevich, Steven; Tselikas, Lambros
PurposeTo assess whether fusion imaging-guided percutaneous microwave ablation (MWA) can improve visibility and targeting of liver metastasis that were deemed inconspicuous on ultrasound (US).Materials and MethodsMWA of liver metastasis not judged conspicuous enough on US was performed under CT/US fusion imaging guidance. The conspicuity before and after the fusion imaging was graded on a five-point scale, and significance was assessed by Wilcoxon test. Technical success, procedure time, and procedure-related complications were evaluated.ResultsA total of 35 patients with 40 liver metastases (mean size 1.3 ± 0.4 cm) were enrolled. Image fusion improved conspicuity sufficiently to allow fusion-targeted MWA in 33 patients. The time requiredmore » for image fusion processing and tumors’ identification averaged 10 ± 2.1 min (range 5–14). Initial conspicuity on US by inclusion criteria was 1.2 ± 0.4 (range 0–2), while conspicuity after localization on fusion imaging was 3.5 ± 1 (range 1–5, p < 0.001). Technical success rate was 83% (33/40) in intention-to-treat analysis and 100% in analysis of treated tumors. There were no major procedure-related complications.ConclusionsFusion imaging broadens the scope of US-guided MWA to metastasis lacking adequate conspicuity on conventional US. Fusion imaging is an effective tool to increase the conspicuity of liver metastases that were initially deemed non visualizable on conventional US imaging.« less
Caballero Perea, Begoña; Villegas, Antonio Cabrera; Rodríguez, José Miguel Delgado; Velloso, María José García; Vicente, Ana María García; Cabrerizo, Carlos Huerga; López, Rosa Morera; Romasanta, Luis Alberto Pérez; Beltrán, Moisés Sáez
2012-01-01
Positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process.
Caballero Perea, Begoña; Villegas, Antonio Cabrera; Rodríguez, José Miguel Delgado; Velloso, María José García; Vicente, Ana María García; Cabrerizo, Carlos Huerga; López, Rosa Morera; Romasanta, Luis Alberto Pérez; Beltrán, Moisés Sáez
2012-01-01
Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process. PMID:24377032
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iverson, Adam; Carlson, Carl; Young, Jason
2013-07-08
The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSEmore » experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.« less
2013-01-01
Background The importance of strong science, technology, engineering, and mathematics education continues to grow as society, medicine, and the economy become increasingly focused and dependent upon bioscientific and technological innovation. New advances in frontier sciences (e.g., genetics, neuroscience, bio-engineering, nanoscience, cyberscience) generate ethical issues and questions regarding the use of novel technologies in medicine and public life. Discussion In light of current emphasis upon science, technology, engineering, and mathematics education (at the pre-collegiate, undergraduate, graduate, and professional levels), the pace and extent of advancements in science and biotechnology, the increasingly technological orientation and capabilities of medicine, and the ways that medicine – as profession and practice – can engage such scientific and technological power upon the multi-cultural world-stage to affect the human predicament, human condition, and perhaps nature of the human being, we argue that it is critical that science, technology, engineering, and mathematics education go beyond technical understanding and directly address ethical, legal, social, and public policy implications of new innovations. Toward this end, we propose a paradigm of integrative science, technology, ethics, and policy studies that meets these needs through early and continued educational exposure that expands extant curricula of science, technology, engineering, and mathematics programs from the high school through collegiate, graduate, medical, and post-graduate medical education. We posit a synthetic approach that elucidates the historical, current, and potential interaction of scientific and biotechnological development in addition to the ethico-legal and social issues that are important to educate and sustain the next generation of medical and biomedical professionals who can appreciate, articulate, and address the realities of scientific and biotechnological progress given the shifting architectonics of the global social milieu. Summary We assert that current trends in science, technology, medicine, and global politics dictate that these skills will be necessary to responsibly guide ethically sound employment of science, technology, and engineering advancements in medicine so as to enable more competent and humanitarian practice within an increasingly pluralistic world culture. PMID:23617840
Cortical parcellation based on structural connectivity: A case for generative models.
Tittgemeyer, Marc; Rigoux, Lionel; Knösche, Thomas R
2018-06-01
One of the major challenges in systems neuroscience is to identify brain networks and unravel their significance for brain function -this has led to the concept of the 'connectome'. Connectomes are currently extensively studied in large-scale international efforts at multiple scales, and follow different definitions with respect to their connections as well as their elements. Perhaps the most promising avenue for defining the elements of connectomes originates from the notion that individual brain areas maintain distinct (long-range) connection profiles. These connectivity patterns determine the areas' functional properties and also allow for their anatomical delineation and mapping. This rationale has motivated the concept of connectivity-based cortex parcellation. In the past ten years, non-invasive mapping of human brain connectivity has led to immense advances in the development of parcellation techniques and their applications. Unfortunately, many of these approaches primarily aim for confirmation of well-known, existing architectonic maps and, to that end, unsuitably incorporate prior knowledge and frequently build on circular argumentation. Often, current approaches also tend to disregard the specific apertures of connectivity measurements, as well as the anatomical specificities of cortical areas, such as spatial compactness, regional heterogeneity, inter-subject variability, the multi-scaling nature of connectivity information, and potential hierarchical organisation. From a methodological perspective, however, a useful framework that regards all of these aspects in an unbiased way is technically demanding. In this commentary, we first outline the concept of connectivity-based cortex parcellation and discuss its prospects and limitations in particular with respect to structural connectivity. To improve reliability and efficiency, we then strongly advocate for connectivity-based cortex parcellation as a modelling approach; that is, an approximation of the data based on (model) parameter inference. As such, a parcellation algorithm can be formally tested for robustness -the precision of its predictions can be quantified and statistics about potential generalization of the results can be derived. Such a framework also allows the question of model constraints to be reformulated in terms of hypothesis testing through model selection and offers a formative way to integrate anatomical knowledge in terms of prior distributions. Copyright © 2018 Elsevier Inc. All rights reserved.
Textbooks and technical references for remote sensing
NASA Technical Reports Server (NTRS)
Rudd, R. D.; Bowden, L. W.; Colwell, R. N.; Estes, J. E.
1980-01-01
A selective bibliography is presented which cites 89 textbooks, monographs, and articles covering introductory and advanced remote sensing techniques, photointerpretation, photogrammetry, and image processing.
TU-G-201-00: Imaging Equipment Specification and Selection in Radiation Oncology Departments
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This session will update therapeutic physicists on technological advancements and radiation oncology features of commercial CT, MRI, and PET/CT imaging systems. Also described are physicists’ roles in every stage of equipment selection, purchasing, and operation, including defining specifications, evaluating vendors, making recommendations, and optimal and safe use of imaging equipment in radiation oncology environment. The first presentation defines important terminology of CT and PET/CT followed by a review of latest innovations, such as metal artifact reduction, statistical iterative reconstruction, radiation dose management, tissue classification by dual energy CT and spectral CT, improvement in spatial resolution and sensitivity in PET, andmore » potentials of PET/MR. We will also discuss important technical specifications and items in CT and PET/CT purchasing quotes and their impacts. The second presentation will focus on key components in the request for proposal for a MRI simulator and how to evaluate vendor proposals. MRI safety issues in radiation Oncology, including MRI scanner Zones (4-zone design), will be discussed. Basic MR terminologies, important functionalities, and advanced features, which are relevant to radiation therapy, will be discussed. In the third presentation, justification of imaging systems for radiation oncology, considerations in room design and construction in a RO department, shared use with diagnostic radiology, staffing needs and training, clinical/research use cases and implementation, will be discussed. The emphasis will be on understanding and bridging the differences between diagnostic and radiation oncology installations, building consensus amongst stakeholders for purchase and use, and integrating imaging technologies into the radiation oncology environment. Learning Objectives: Learn the latest innovations of major imaging systems relevant to radiation therapy Be able to describe important technical specifications of CT, MRI, and PET/CT Understand the process of budget request, equipment justification, comparisons of technical specifications, site visits, vendor selection, and contract development.« less
La detection de changement au service de la gestion de catastrophe
NASA Astrophysics Data System (ADS)
Gagnon, Olaf
In recent times, when we think of major disasters, whether they are natural or a result of our activities, we often think of satellite images of the affected areas. This comes in part from the media coverage of such events that uses more and more the same data sources that we use to help plan and manage relief efforts. The processing and analysis of satellite images, in such contexts, is of great assistance because of the numerous types of information we can glean from them and the diverse uses we can put them to during the different steps involved in disaster management. To this effect, the various techniques and tools used in remote sensing, that were developed by research teams, analysts and photo interpreters, are used efficiently to help in the rapid treatment and analysis of satellite images as well as the creation of value added cartographic products that are likely to help in relief management. This paper deals with one of the many technical aspects that is particularly well suited to the analysis of crisis images, change detection. It is easily understandable that the analysis, entailed by the use of satellite images in the context of disaster management, is essentially the comparison of what "was" before the catastrophe with what "is" after it has happened. In light of this, it seems that change detection is the most appropriate tool to use in such situations, but is this truly the case? To answer this question, we will present the sequence of operations entailed by the use and analysis of satellite images as well as the technical constraints and pitfalls that must be considered as pertains to the context of disaster management and the problems associated with the use of change detection. We will underline the pertinent conceptual, technical and functional concepts that must be taken into consideration to increase the usability of change detection in disaster management.
Mechanisation and automation technologies development in work at construction sites
NASA Astrophysics Data System (ADS)
Sobotka, A.; Pacewicz, K.
2017-10-01
Implementing construction work that creates buildings is a very complicated and laborious task and requires the use of various types of machines and equipment. For years there has been a desire for designers and technologists to introduce devices that replace people’s work on machine construction, automation and even robots. Technologies for building construction are still being developed and implemented to limit people’s hard work and improve work efficiency and quality in innovative architectonical and construction solutions. New opportunities for improving work on the construction site include computerisation of technological processes and construction management for projects and processes. The aim of the paper was to analyse the development of mechanisation, automation and computerisation of construction processes and selected building technologies, with special attention paid to 3D printing technology. The state of mechanisation of construction works in Poland and trends in its development in construction technologies are presented. These studies were conducted on the basis of the available literature and a survey of Polish construction companies.
[Memories of an antituberculous sanatorium].
Maldonado, Héctor; Hernández, Mario
2004-06-01
A summary of the existence of the Hospital San Carlos in Bogotá as an antituberculous sanatorium is presented. Its origins, architectonic aspects of its building, the criteria with which it was equipped with state of the art scientific equipment and elements and the excellent facilities for attention of inpatients during their prolonged hospital stay are presented. The life of a sanatorium in the pre-antibiotic era, the changes in its routine brought upon by the introduction of effective anti-TB drugs as well as the evolution of treatments which eventually led to the disappearance of sanatoriums, with all its traumatic effects on the hospitals which had been specifically built for this purpose, are described. The contributions made by the hospital to the different medical and surgical aspects of TB management and to the introduction of effective short course ambulatory treatment regimens are also referred. Mention is also given to the rescue of this memory, an important part of the Health Sciences Museum which will shortly open in Bogotá.
Rudebeck, Peter H; Murray, Elisabeth A
2011-12-01
The primate orbitofrontal cortex (OFC) is often treated as a single entity, but architectonic and connectional neuroanatomy indicate that it has distinguishable parts. Nevertheless, few studies have attempted to dissociate the functions of its subregions. Here we review findings from recent neuropsychological and neurophysiological studies that do so. The lateral OFC seems to be important for learning, representing, and updating specific object-reward associations. The medial OFC seems to be important for value comparisons and choosing among objects on that basis. Rather than viewing this dissociation of function in terms of learning versus choosing, however, we suggest that it reflects the distinction between contrasts and comparisons: differences versus similarities. Making use of high-dimensional representations that arise from the convergence of several sensory modalities, the lateral OFC encodes contrasts among outcomes. The medial OFC reduces these contrasting representations of value to a single dimension, a common currency, in order to compare alternative choices. © 2011 New York Academy of Sciences.
Gray-level transformations for interactive image enhancement. M.S. Thesis. Final Technical Report
NASA Technical Reports Server (NTRS)
Fittes, B. A.
1975-01-01
A gray-level transformation method suitable for interactive image enhancement was presented. It is shown that the well-known histogram equalization approach is a special case of this method. A technique for improving the uniformity of a histogram is also developed. Experimental results which illustrate the capabilities of both algorithms are described. Two proposals for implementing gray-level transformations in a real-time interactive image enhancement system are also presented.
Proceedings of the Augmented VIsual Display (AVID) Research Workshop
NASA Technical Reports Server (NTRS)
Kaiser, Mary K. (Editor); Sweet, Barbara T. (Editor)
1993-01-01
The papers, abstracts, and presentations were presented at a three day workshop focused on sensor modeling and simulation, and image enhancement, processing, and fusion. The technical sessions emphasized how sensor technology can be used to create visual imagery adequate for aircraft control and operations. Participants from industry, government, and academic laboratories contributed to panels on Sensor Systems, Sensor Modeling, Sensor Fusion, Image Processing (Computer and Human Vision), and Image Evaluation and Metrics.
National Defense Center of Excellence for Industrial Metrology and 3D Imaging
2012-10-18
validation rather than mundane data-reduction/analysis tasks. Indeed, the new financial and technical resources being brought to bear by integrating CT...of extremely fast axial scanners. By replacing the single-spot detector by a detector array, a three-dimensional image is acquired by one depth scan...the number of acquired voxels per complete two-dimensional or three-dimensional image, the axial and lateral resolution, the depth range, the
McCrea, C; Neil, W J; Flanigan, J W; Summerfield, A B
1988-08-01
In this study a new modified videosystem, designed for measuring body-image, was evaluated alongside the major size-estimation measure, namely, the visual size-estimation apparatus. The advantages afforded by a videosystem which allows independent adjustment of size and height/width proportions were highlighted, and its validity and reliability were examined, based on estimates made by obese, normal weight, and pregnant groups.
MODIS Validation, Data Merger and Other Activities Accomplished by the SIMBIOS Project: 2002-2003
NASA Technical Reports Server (NTRS)
Fargion, Giulietta S.; McClain, Charles R.
2003-01-01
The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, satellite data processing, and data product validation. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report focuses on the SIMBIOS Project s efforts in support of the Moderate-Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra platform (similar evaluations of MODIS/Aqua are underway). This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project.
Application of DNA Profiling in Resolving Aviation Forensic Toxicology Issues
2009-10-01
National Technical Information Service, Springfield, VA 22161 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21 ...J,. Schumm. JW ..Development. of. highly. polymorphic.pentanucleotide.tandem.repeat.loci. with.low.stutter ..Profiles in DNA ..1998;2:3–6 . 21 ... PowerPlex ™ 16 System, Technical Manual No. D012 ..Madison,.WI:.Promega.Cor- poration;. 2000. (Available. at:. www .cstl .nist .gov/ strbase/images
Technical errors in planar bone scanning.
Naddaf, Sleiman Y; Collier, B David; Elgazzar, Abdelhamid H; Khalil, Magdy M
2004-09-01
Optimal technique for planar bone scanning improves image quality, which in turn improves diagnostic efficacy. Because planar bone scanning is one of the most frequently performed nuclear medicine examinations, maintaining high standards for this examination is a daily concern for most nuclear medicine departments. Although some problems such as patient motion are frequently encountered, the degraded images produced by many other deviations from optimal technique are rarely seen in clinical practice and therefore may be difficult to recognize. The objectives of this article are to list optimal techniques for 3-phase and whole-body bone scanning, to describe and illustrate a selection of deviations from these optimal techniques for planar bone scanning, and to explain how to minimize or avoid such technical errors.
Malcolm, James G; Johnson, Andrew K
2017-01-01
A sagittal split fracture of the C1 lateral mass is an unstable subtype of C1 fractures and has a high propensity for developing late deformities and pain with nonoperative management. A primary internal fixation of this type of fracture has been recently described with good clinical outcomes and preservation of motion. We present a modified technique of primary internal fixation using an obliquely inserted C1 lag screw with imaging guidance. We successfully treated a 55-year-old woman with a unilateral C1 oblique sagittal split fracture who failed nonoperative management. Technical nuances are discussed with a review of pertinent literature. PMID:28948116
East, James E; Vleugels, Jasper L; Roelandt, Philip; Bhandari, Pradeep; Bisschops, Raf; Dekker, Evelien; Hassan, Cesare; Horgan, Gareth; Kiesslich, Ralf; Longcroft-Wheaton, Gaius; Wilson, Ana; Dumonceau, Jean-Marc
2016-11-01
Background and aim: This technical review is an official statement of the European Society of Gastrointestinal Endoscopy (ESGE). It addresses the utilization of advanced endoscopic imaging in gastrointestinal (GI) endoscopy. Methods: This technical review is based on a systematic literature search to evaluate the evidence supporting the use of advanced endoscopic imaging throughout the GI tract. Technologies considered include narrowed-spectrum endoscopy (narrow band imaging [NBI]; flexible spectral imaging color enhancement [FICE]; i-Scan digital contrast [I-SCAN]), autofluorescence imaging (AFI), and confocal laser endomicroscopy (CLE). The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was adopted to define the strength of recommendation and the quality of evidence. Main recommendations: 1. We suggest advanced endoscopic imaging technologies improve mucosal visualization and enhance fine structural and microvascular detail. Expert endoscopic diagnosis may be improved by advanced imaging, but as yet in community-based practice no technology has been shown consistently to be diagnostically superior to current practice with high definition white light. (Low quality evidence.) 2. We recommend the use of validated classification systems to support the use of optical diagnosis with advanced endoscopic imaging in the upper and lower GI tracts (strong recommendation, moderate quality evidence). 3. We suggest that training improves performance in the use of advanced endoscopic imaging techniques and that it is a prerequisite for use in clinical practice. A learning curve exists and training alone does not guarantee sustained high performances in clinical practice. (Weak recommendation, low quality evidence.) Conclusion: Advanced endoscopic imaging can improve mucosal visualization and endoscopic diagnosis; however it requires training and the use of validated classification systems. © Georg Thieme Verlag KG Stuttgart · New York.
Comparison of three-dimensional surface-imaging systems.
Tzou, Chieh-Han John; Artner, Nicole M; Pona, Igor; Hold, Alina; Placheta, Eva; Kropatsch, Walter G; Frey, Manfred
2014-04-01
In recent decades, three-dimensional (3D) surface-imaging technologies have gained popularity worldwide, but because most published articles that mention them are technical, clinicians often have difficulties gaining a proper understanding of them. This article aims to provide the reader with relevant information on 3D surface-imaging systems. In it, we compare the most recent technologies to reveal their differences. We have accessed five international companies with the latest technologies in 3D surface-imaging systems: 3dMD, Axisthree, Canfield, Crisalix and Dimensional Imaging (Di3D; in alphabetical order). We evaluated their technical equipment, independent validation studies and corporate backgrounds. The fastest capturing devices are the 3dMD and Di3D systems, capable of capturing images within 1.5 and 1 ms, respectively. All companies provide software for tissue modifications. Additionally, 3dMD, Canfield and Di3D can fuse computed tomography (CT)/cone-beam computed tomography (CBCT) images into their 3D surface-imaging data. 3dMD and Di3D provide 4D capture systems, which allow capturing the movement of a 3D surface over time. Crisalix greatly differs from the other four systems as it is purely web based and realised via cloud computing. 3D surface-imaging systems are becoming important in today's plastic surgical set-ups, taking surgeons to a new level of communication with patients, surgical planning and outcome evaluation. Technologies used in 3D surface-imaging systems and their intended field of application vary within the companies evaluated. Potential users should define their requirements and assignment of 3D surface-imaging systems in their clinical as research environment before making the final decision for purchase. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Time-lapse imaging of neural development: zebrafish lead the way into the fourth dimension.
Rieger, Sandra; Wang, Fang; Sagasti, Alvaro
2011-07-01
Time-lapse imaging is often the only way to appreciate fully the many dynamic cell movements critical to neural development. Zebrafish possess many advantages that make them the best vertebrate model organism for live imaging of dynamic development events. This review will discuss technical considerations of time-lapse imaging experiments in zebrafish, describe selected examples of imaging studies in zebrafish that revealed new features or principles of neural development, and consider the promise and challenges of future time-lapse studies of neural development in zebrafish embryos and adults. Copyright © 2011 Wiley-Liss, Inc.
Fundamentals of quantitative dynamic contrast-enhanced MR imaging.
Paldino, Michael J; Barboriak, Daniel P
2009-05-01
Quantitative analysis of dynamic contrast-enhanced MR imaging (DCE-MR imaging) has the power to provide information regarding physiologic characteristics of the microvasculature and is, therefore, of great potential value to the practice of oncology. In particular, these techniques could have a significant impact on the development of novel anticancer therapies as a promising biomarker of drug activity. Standardization of DCE-MR imaging acquisition and analysis to provide more reproducible measures of tumor vessel physiology is of crucial importance to realize this potential. The purpose of this article is to review the pathophysiologic basis and technical aspects of DCE-MR imaging techniques.
Nimchuk, Zachary L.; Perdue, Tony D.
2017-01-01
Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory. PMID:28579995
NASA Astrophysics Data System (ADS)
Taruttis, Adrian; Razansky, Daniel; Ntziachristos, Vasilis
2012-02-01
Optoacoustic imaging has enabled the visualization of optical contrast at high resolutions in deep tissue. Our Multispectral optoacoustic tomography (MSOT) imaging results reveal internal tissue heterogeneity, where the underlying distribution of specific endogenous and exogenous sources of absorption can be resolved in detail. Technical advances in cardiac imaging allow motion-resolved multispectral measurements of the heart, opening the way for studies of cardiovascular disease. We further demonstrate the fast characterization of the pharmacokinetic profiles of lightabsorbing agents. Overall, our MSOT findings indicate new possibilities in high resolution imaging of functional and molecular parameters.
Nimchuk, Zachary L; Perdue, Tony D
2017-01-01
Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory.
Goerke, Sebastian M; Neubauer, J; Zajonc, H; Thiele, J R; Kotter, E; Langer, M; Stark, G B; Lampert, F M
2015-02-01
During the last decade, DVT (digital volume tomography) imaging has become a widely used standard technique in head and neck imaging. Lower radiation exposure compared to conventional computed tomography (MDCT) has been described. Recently, DVT has been developed as an extremity scanner and as such represents a new imaging technique for hand surgery. We here describe the first 24 months experience with this new imaging modality in hand and wrist imaging by presenting representative cases and by describing the technical background. Furthermore, the method's advantages and disadvantages are discussed with reference to the given literature. © Georg Thieme Verlag KG Stuttgart · New York.
Low-cost printing of computerised tomography (CT) images where there is no dedicated CT camera.
Tabari, Abdulkadir M
2007-01-01
Many developing countries still rely on conventional hard copy images to transfer information among physicians. We have developed a low-cost alternative method of printing computerised tomography (CT) scan images where there is no dedicated camera. A digital camera is used to photograph images from the CT scan screen monitor. The images are then transferred to a PC via a USB port, before being printed on glossy paper using an inkjet printer. The method can be applied to other imaging modalities like ultrasound and MRI and appears worthy of emulation elsewhere in the developing world where resources and technical expertise are scarce.
Digital imaging technology assessment: Digital document storage project
NASA Technical Reports Server (NTRS)
1989-01-01
An ongoing technical assessment and requirements definition project is examining the potential role of digital imaging technology at NASA's STI facility. The focus is on the basic components of imaging technology in today's marketplace as well as the components anticipated in the near future. Presented is a requirement specification for a prototype project, an initial examination of current image processing at the STI facility, and an initial summary of image processing projects at other sites. Operational imaging systems incorporate scanners, optical storage, high resolution monitors, processing nodes, magnetic storage, jukeboxes, specialized boards, optical character recognition gear, pixel addressable printers, communications, and complex software processes.
Kang, Tae Wook; Lee, Min Woo; Song, Kyoung Doo; Kim, Mimi; Kim, Seung Soo; Kim, Seong Hyun; Ha, Sang Yun
2017-01-01
To assess whether contrast-enhanced ultrasonography (CEUS) with Sonazoid can improve the lesion conspicuity and feasibility of percutaneous biopsies for focal hepatic lesions invisible on fusion imaging of real-time ultrasonography (US) with computed tomography/magnetic resonance images, and evaluate its impact on clinical decision making. The Institutional Review Board approved this retrospective study. Between June 2013 and January 2015, 711 US-guided percutaneous biopsies were performed for focal hepatic lesions. Biopsies were performed using CEUS for guidance if lesions were invisible on fusion imaging. We retrospectively evaluated the number of target lesions initially invisible on fusion imaging that became visible after applying CEUS, using a 4-point scale. Technical success rates of biopsies were evaluated based on histopathological results. In addition, the occurrence of changes in clinical decision making was assessed. Among 711 patients, 16 patients (2.3%) were included in the study. The median size of target lesions was 1.1 cm (range, 0.5-1.9 cm) in pre-procedural imaging. After CEUS, 15 of 16 (93.8%) focal hepatic lesions were visualized. The conspicuity score was significantly increased after adding CEUS, as compared to that on fusion imaging (p < 0.001). The technical success rate of biopsy was 87.6% (14/16). After biopsy, there were changes in clinical decision making for 11 of 16 patients (68.8%). The addition of CEUS could improve the conspicuity of focal hepatic lesions invisible on fusion imaging. This dual guidance using CEUS and fusion imaging may affect patient management via changes in clinical decision-making.
Mutch, S J; Wentworth, S D P
2007-11-01
Modern neonatal incubators incorporate an X-ray tray device into the mattress support structure to facilitate patient examination with minimal disturbance and distress. However, the usual method of examination is to place the image plate directly underneath the baby. Users often cite radiological reasons for not using X-ray trays but modern quantitative evidence is lacking. This work looks at the technical and clinical aspects of imaging neonates in incubators and the impact that these may have in determining the imaging protocol. A number of hospitals were surveyed to determine their current method of examination and the reasons for their preference. Experimental measurements of the radiological impact of using (or not using) the X-ray tray were performed for a range of neonatal incubators. The average dose to the image plate was 5.9 microGy (range 5.4-6.4 microGy) for the "plate on mattress" method and 3.0 microGy (2.0-3.8 microGy) when using the tray--a 49% reduction owing to the mattress support materials. However, when using a computed radiography (CR) imaging system, the image quality differences were marginal. Survey results indicated that nurses preferred to use the tray but that radiographers were reluctant. We conclude that incubator manufacturers could do much to improve the radiological performance of their equipment and we offer recommendations. We also conclude that, with appropriate nurse and radiographer training and the advent of CR imaging systems, use of X-ray tray facilities may optimize imaging of the neonate in the incubator.
Heads-up 3D Microscopy: An Ergonomic and Educational Approach to Microsurgery
Mendez, Bernardino M.; Chiodo, Michael V.; Vandevender, Darl
2016-01-01
Summary: Traditional microsurgery can lead surgeons to use postures that cause musculoskeletal fatigue, leaving them more prone to work-related injuries. A new technology from TrueVision transmits the microscopic image onto a 3-dimensional (3D) monitor, allowing surgeons to operate while sitting/standing in a heads-up position. The purpose of this study was to evaluate the feasibility of performing heads-up 3D microscopy as a more ergonomic alternative to traditional microsurgery. A feasibility study was conducted comparing heads-up 3D microscopy and traditional microscopy by performing femoral artery anastomoses on 8 Sprague-Dawley rats. Operative times and patency rates for each technology were compared. The 8 microsurgeons completed a questionnaire comparing image quality, comfort, technical feasibility, and educational value of the 2 technologies. Rat femoral artery anastomoses were successfully carried out by all 8 microsurgeons with each technology. There was no significant difference in anastomosis time between heads-up 3D and traditional microscopy (average times, 34.5 and 33.8 minutes, respectively; P = 0.66). Heads-up 3D microscopy was rated superior in neck and back comfort by 75% of participants. Image resolution, field of view, and technical feasibility were found to be superior or equivalent in 75% of participants, whereas 63% evaluated depth perception to be superior or equivalent. Heads-up 3D microscopy is a new technology that improves comfort for the microsurgeon without compromising image quality or technical feasibility. Its use has become prevalent in the field of ophthalmology and may also have utility in plastic and reconstructive surgery. PMID:27579241
Roth, Christopher J; Lannum, Louis M; Dennison, Donald K; Towbin, Alexander J
2016-10-01
Clinical specialties have widely varied needs for diagnostic image interpretation, and clinical image and video image consumption. Enterprise viewers are being deployed as part of electronic health record implementations to present the broad spectrum of clinical imaging and multimedia content created in routine medical practice today. This white paper will describe the enterprise viewer use cases, drivers of recent growth, technical considerations, functionality differences between enterprise and specialty viewers, and likely future states. This white paper is aimed at CMIOs and CIOs interested in optimizing the image-enablement of their electronic health record or those who may be struggling with the many clinical image viewers their enterprises may employ today.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrafiello, Gianpaolo, E-mail: gcarraf@gmail.com; Ierardi, Anna Maria; Radaelli, Alessandro
AimTo evaluate safety, feasibility, technical success, and clinical success of direct percutaneous sac injection (DPSI) for the treatment of type II endoleaks (T2EL) using anatomical landmarks on cone beam computed tomography (CBCT) and fusion imaging (FI).Materials and MethodsEight patients with T2EL were treated with DPSI using CBCT as imaging guidance. Anatomical landmarks on unenhanced CBCT were used for referencing T2EL location in the first five patients, while FI between unenhanced CBCT and pre-procedural computed tomography angiography (CTA) was used in the remaining three patients. Embolization was performed with thrombin, glue, and ethylene–vinyl alcohol copolymer. Technical and clinical success, iodinated contrastmore » utilization, procedural time, fluoroscopy time, and mean radiation dose were registered.ResultsDPSI was technically successful in all patients: the needle was correctly positioned at the first attempt in six patients, while in two of the first five patients the needle was repositioned once. Neither minor nor major complications were registered. Average procedural time was 45 min and the average administered iodinated contrast was 13 ml. Mean radiation dose of the procedure was 60.43 Gy cm{sup 2} and mean fluoroscopy time was 18 min. Clinical success was achieved in all patients (mean follow-up of 36 months): no sign of T2EL was reported in seven patients until last CT follow-up, while it persisted in one patient with stability of sac diameter.ConclusionsDPSI using unenhanced CBCT and FI is feasible and provides the interventional radiologist with an accurate and safe alternative to endovascular treatment with limited iodinated contrast utilization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blasel, Stella, E-mail: Stella.Blasel@kgu.de; Hattingen, Elke; Berkefeld, Joachim
2009-07-15
The detection of clinically silent ischemic lesions on postprocedural diffusion-weighted magnetic resonance images has become a preferred method for the description of embolic risks. The purpose of this single-center study was to evaluate whether diffusion-weighted imaging (DWI) could determine material related or technical risk factors of filter-protected carotid stenting. Eighty-four patients with symptomatic severe ({>=}60%) carotid artery stenoses received filter-protected carotid stenting. Standard DWI (b = 1000) was performed within 48 h before and after carotid stenting. The occurrence and load of new postinterventional DWI lesions were assessed. Multivariate analysis was performed to determine risk factors associated with DWI lesions,more » with emphasis on technical factors such as use of different access devices (guiding catheter method vs. long carotid sheath method), type of stent (open-cell nitinol stent vs. closed-cell Wallstent), and protective device (filters with 80-{mu}m vs. 110-120-{mu}m pore size). Markers for generalized atherosclerosis and for degree and site of stenosis were assessed to allow comparison of adequate risk profiles. Access, protective device, and stent type were not significantly associated with new embolic DWI lesions when we compared patients with equivalent risk profiles (long carotid sheath method 48% [11 of 23] vs. guiding catheter method 44% [27 of 61], Wallstent 47% [15 of 32] vs. nitinol stent 44% [23 of 52], and small pore size filter 61% [11 of 18] vs. large pore size filter 41% [27 of 66]). Single-center DWI studies with a moderate number of cases are inadequate for proper assessment of the embolic risk of technical- or material-related risk factors in carotid stenting. Larger multicenter studies with more cases are needed.« less
Thermochemical Process Integration, Scale-Up, and Piloting Publications |
-Economic Assessment of Ex Situ Catalytic Fast Pyrolysis of Biomass: A Fixed Bed Reactor Implementation Scenario for Future Feasibility, Topics in Catalysis Image of a schematic of hot gas filter and ex situ Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors, NREL Technical Report Image
32 CFR 286.30 - Collection of fees and fee rates for technical data.
Code of Federal Regulations, 2011 CFR
2011-07-01
... hourly rates). (2) Computer search is based on the total cost of the central processing unit, input... made by Components at the following rates: (1) Minimum charge for office copy (up to six images) $3.50 (2) Each additional image .10 (3) Each typewritten page 3.50 (4) Certification and validation with...
32 CFR 286.30 - Collection of fees and fee rates for technical data.
Code of Federal Regulations, 2010 CFR
2010-07-01
... hourly rates). (2) Computer search is based on the total cost of the central processing unit, input... made by Components at the following rates: (1) Minimum charge for office copy (up to six images) $3.50 (2) Each additional image .10 (3) Each typewritten page 3.50 (4) Certification and validation with...
32 CFR 286.30 - Collection of fees and fee rates for technical data.
Code of Federal Regulations, 2013 CFR
2013-07-01
... hourly rates). (2) Computer search is based on the total cost of the central processing unit, input... made by Components at the following rates: (1) Minimum charge for office copy (up to six images) $3.50 (2) Each additional image .10 (3) Each typewritten page 3.50 (4) Certification and validation with...
32 CFR 286.30 - Collection of fees and fee rates for technical data.
Code of Federal Regulations, 2012 CFR
2012-07-01
... hourly rates). (2) Computer search is based on the total cost of the central processing unit, input... made by Components at the following rates: (1) Minimum charge for office copy (up to six images) $3.50 (2) Each additional image .10 (3) Each typewritten page 3.50 (4) Certification and validation with...
Development of Data Analysis Techniques to Provide Photometric Images for a Heliospheric Imager
2008-10-31
drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to...manufacture, use, or sell any patented invention that may relate to them. This report is published in the interest of scientific and technical... signed / / signed / JANET C. JOHNSTON
Magnetic resonance imaging of glenohumeral joint instability.
Steinbach, Lynne S
2005-03-01
Shoulder instability is common, especially anterior subluxation and dislocation. The sequelae are well seen on magnetic resonance imaging and include tears of the labrum, glenohumeral ligaments, capsule, tendons, and muscles. This article seeks to discuss and illustrate common pitfalls and lesions associated with instability. Anatomic and technical considerations, including the use of magnetic resonance arthrography, are also addressed.
[Principles of MR-guided interventions, surgery, navigation, and robotics].
Melzer, A
2010-08-01
The application of magnetic resonance imaging (MRI) as an imaging technique in interventional and surgical techniques provides a new dimension of soft tissue-oriented precise procedures without exposure to ionizing radiation and nephrotoxic allergenic, iodine-containing contrast agents. The technical capabilities of MRI in combination with interventional devices and systems, navigation, and robotics are discussed.
Moire-Fringe Images of Twin Boundaries in Chemical Vapor Deposited Diamond
1992-07-10
Moire-Fringe Images of Twin Boundaries in Chemical Vapor Deposited Diamond IJ PERSONAL AUITHOR(S) - D. Shechtman. A. Fldman, M.D. Vaudin, and J.L...micrographs of chemical vapor deposited diamond can be interprete as Moire fringes that occur when viewing twin boundaries that are inclined to the electron...Dist J Special TECHNICAL REPORT No. 14 eca MOIRE-FRINGE IMAGES OF TWIN BOUNDARIES IN CHEMICAL VAPOR DEPOSITED DIAMOND D. Shechtman, A. Feldman, M.D
Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction
Stucht, Daniel; Danishad, K. Appu; Schulze, Peter; Godenschweger, Frank; Zaitsev, Maxim; Speck, Oliver
2015-01-01
High field MRI systems, such as 7 Tesla (T) scanners, can deliver higher signal to noise ratio (SNR) than lower field scanners and thus allow for the acquisition of data with higher spatial resolution, which is often demanded by users in the fields of clinical and neuroscientific imaging. However, high resolution scans may require long acquisition times, which in turn increase the discomfort for the subject and the risk of subject motion. Even with a cooperative and trained subject, involuntary motion due to heartbeat, swallowing, respiration and changes in muscle tone can cause image artifacts that reduce the effective resolution. In addition, scanning with higher resolution leads to increased sensitivity to even very small movements. Prospective motion correction (PMC) at 3T and 7T has proven to increase image quality in case of subject motion. Although the application of prospective motion correction is becoming more popular, previous articles focused on proof of concept studies and technical descriptions, whereas this paper briefly describes the technical aspects of the optical tracking system, marker fixation and cross calibration and focuses on the application of PMC to very high resolution imaging without intentional motion. In this study we acquired in vivo MR images at 7T using prospective motion correction during long acquisitions. As a result, we present images among the highest, if not the highest resolution of in vivo human brain MRI ever acquired. PMID:26226146
Modeling and performance assessment in QinetiQ of EO and IR airborne reconnaissance systems
NASA Astrophysics Data System (ADS)
Williams, John W.; Potter, Gary E.
2002-11-01
QinetiQ are the technical authority responsible for specifying the performance requirements for the procurement of airborne reconnaissance systems, on behalf of the UK MoD. They are also responsible for acceptance of delivered systems, overseeing and verifying the installed system performance as predicted and then assessed by the contractor. Measures of functional capability are central to these activities. The conduct of these activities utilises the broad technical insight and wide range of analysis tools and models available within QinetiQ. This paper focuses on the tools, methods and models that are applicable to systems based on EO and IR sensors. The tools, methods and models are described, and representative output for systems that QinetiQ has been responsible for is presented. The principle capability applicable to EO and IR airborne reconnaissance systems is the STAR (Simulation Tools for Airborne Reconnaissance) suite of models. STAR generates predictions of performance measures such as GRD (Ground Resolved Distance) and GIQE (General Image Quality) NIIRS (National Imagery Interpretation Rating Scales). It also generates images representing sensor output, using the scene generation software CAMEO-SIM and the imaging sensor model EMERALD. The simulated image 'quality' is fully correlated with the predicted non-imaging performance measures. STAR also generates image and table data that is compliant with STANAG 7023, which may be used to test ground station functionality.
Quantitative techniques for musculoskeletal MRI at 7 Tesla
Taylor, Meredith D.; Tarbox, Grayson J.; Palmer, Antony J.; Park, Daniel J.
2016-01-01
Whole-body 7 Tesla MRI scanners have been approved solely for research since they appeared on the market over 10 years ago, but may soon be approved for selected clinical neurological and musculoskeletal applications in both the EU and the United States. There has been considerable research work on musculoskeletal applications at 7 Tesla over the past decade, including techniques for ultra-high resolution morphological imaging, 3D T2 and T2* mapping, ultra-short TE applications, diffusion tensor imaging of cartilage, and several techniques for assessing proteoglycan content in cartilage. Most of this work has been done in the knee or other extremities, due to technical difficulties associated with scanning areas such as the hip and torso at 7 Tesla. In this manuscript, we first provide some technical context for 7 Tesla imaging, including challenges and potential advantages. We then review the major quantitative MRI techniques being applied to musculoskeletal applications on 7 Tesla whole-body systems. PMID:28090448
DMDs for multi-object near-infrared spectrographs in astronomy
NASA Astrophysics Data System (ADS)
Smee, Stephen A.; Barkhouser, Robert; Hope, Stephen; Conley, Devin; Gray, Aidan; Hope, Gavin; Robberto, Massimo
2018-02-01
The Digital Micromirror Device (DMD), typically used in projection screen technology, has utility in instrumentation for astronomy as a digitally programmable slit in a spectrograph. When placed at an imaging focal plane the device can be used to selectively direct light from astronomical targets into the optical path of a spectrograph, while at the same time directing the remaining light into an imaging camera, which can be used for slit alignment, science imaging, or both. To date the use of DMDs in astronomy has been limited, especially for instruments that operate in the near infrared (1 - 2.5 μm). This limitation is due in part to a host of technical challenges with respect to DMDs that, to date, have not been thoroughly explored. Those challenges include operation at cryogenic temperature, control electronics that facilitate DMD use at these temperatures, window coatings properly coated for the near infrared bandpass, and scattered light. This paper discusses these technical challenges and presents progress towards understanding and mitigating them.
Badano, Luigi P; Kolias, Theodore J; Muraru, Denisa; Abraham, Theodore P; Aurigemma, Gerard; Edvardsen, Thor; D'Hooge, Jan; Donal, Erwan; Fraser, Alan G; Marwick, Thomas; Mertens, Luc; Popescu, Bogdan A; Sengupta, Partho P; Lancellotti, Patrizio; Thomas, James D; Voigt, Jens-Uwe
2018-03-27
The EACVI/ASE/Industry Task Force to standardize deformation imaging prepared this consensus document to standardize definitions and techniques for using two-dimensional (2D) speckle tracking echocardiography (STE) to assess left atrial, right ventricular, and right atrial myocardial deformation. This document is intended for both the technical engineering community and the clinical community at large to provide guidance on selecting the functional parameters to measure and how to measure them using 2D STE.This document aims to represent a significant step forward in the collaboration between the scientific societies and the industry since technical specifications of the software packages designed to post-process echocardiographic datasets have been agreed and shared before their actual development. Hopefully, this will lead to more clinically oriented software packages which will be better tailored to clinical needs and will allow industry to save time and resources in their development.
Stress Computed Tomography Myocardial Perfusion Imaging: A New Topic in Cardiology.
Seitun, Sara; Castiglione Morelli, Margherita; Budaj, Irilda; Boccalini, Sara; Galletto Pregliasco, Athena; Valbusa, Alberto; Cademartiri, Filippo; Ferro, Carlo
2016-02-01
Since its introduction about 15 years ago, coronary computed tomography angiography has become today the most accurate clinical instrument for noninvasive assessment of coronary atherosclerosis. Important technical developments have led to a continuous stream of new clinical applications together with a significant reduction in radiation dose exposure. Latest generation computed tomography scanners (≥ 64 slices) allow the possibility of performing static or dynamic perfusion imaging during stress by using coronary vasodilator agents (adenosine, dipyridamole, or regadenoson), combining both functional and anatomical information in the same examination. In this article, the emerging role and state-of-the-art of myocardial computed tomography perfusion imaging are reviewed and are illustrated by clinical cases from our experience with a second-generation dual-source 128-slice scanner (Somatom Definition Flash, Siemens; Erlangen, Germany). Technical aspects, data analysis, diagnostic accuracy, radiation dose and future prospects are reviewed. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Jobke, B.; Bolbos, R.; Saadat, E.; Cheng, J.; Li, X.; Majumdar, S.
2012-01-01
The application of biomolecular magnetic resonance imaging becomes increasingly important in the context of early cartilage changes in degenerative and inflammatory joint disease before gross morphological changes become apparent. In this limited technical report, we investigate the correlation of MRI T1, T2 and T1
2017-03-13
support of airborne laser designator use during test and training exercises on military ranges. The initial MATILDA tool, MATILDA PRO Version-1.6.1...was based on the 2007 PRA model developed to perform range safety clearances for the UK Thermal Imaging Airborne Laser Designator (TIALD) system...AFRL Technical Reports. This Technical Report, designated Part I, con- tains documentation of the computational procedures for probabilistic fault
MRI of the lung: state of the art.
Wielpütz, Mark; Kauczor, Hans-Ulrich
2012-01-01
Magnetic resonance imaging (MRI) of the lung is technically challenging due to the low proton density and fast signal decay of the lung parenchyma itself. Additional challenges consist of tissue loss, hyperinflation, and hypoxic hypoperfusion, e.g., in emphysema, a so-called "minus-pathology". However, pathological changes resulting in an increase of tissue ("plus-pathology"), such as atelectases, nodules, infiltrates, mucus, or pleural effusion, are easily depicted with high diagnostic accuracy. Although MRI is inferior or at best equal to multi-detector computed tomography (MDCT) for the detection of subtle morphological features, MRI now offers an increasing spectrum of functional imaging techniques such as perfusion assessment and measurement of ventilation and respiratory mechanics that are superior to what is possible with MDCT. Without putting patients at risk with ionizing radiation, repeated examinations allow for the evaluation of the course of lung disease and monitoring of the therapeutic response through quantitative imaging, providing a level of functional detail that cannot be obtained by any other single imaging modality. As such, MRI will likely be used for clinical applications beyond morphological imaging for many lung diseases. In this article, we review the technical aspects and protocol suggestions for chest MRI and discuss the role of MRI in the evaluation of nodules and masses, airway disease, respiratory mechanics, ventilation, perfusion and hemodynamics, and pulmonary vasculature.
Fetal MRI: A Technical Update with Educational Aspirations
Gholipour, Ali; Estroff, Judith A.; Barnewolt, Carol E.; Robertson, Richard L.; Grant, P. Ellen; Gagoski, Borjan; Warfield, Simon K.; Afacan, Onur; Connolly, Susan A.; Neil, Jeffrey J.; Wolfberg, Adam; Mulkern, Robert V.
2015-01-01
Fetal magnetic resonance imaging (MRI) examinations have become well-established procedures at many institutions and can serve as useful adjuncts to ultrasound (US) exams when diagnostic doubts remain after US. Due to fetal motion, however, fetal MRI exams are challenging and require the MR scanner to be used in a somewhat different mode than that employed for more routine clinical studies. Herein we review the techniques most commonly used, and those that are available, for fetal MRI with an emphasis on the physics of the techniques and how to deploy them to improve success rates for fetal MRI exams. By far the most common technique employed is single-shot T2-weighted imaging due to its excellent tissue contrast and relative immunity to fetal motion. Despite the significant challenges involved, however, many of the other techniques commonly employed in conventional neuro- and body MRI such as T1 and T2*-weighted imaging, diffusion and perfusion weighted imaging, as well as spectroscopic methods remain of interest for fetal MR applications. An effort to understand the strengths and limitations of these basic methods within the context of fetal MRI is made in order to optimize their use and facilitate implementation of technical improvements for the further development of fetal MR imaging, both in acquisition and post-processing strategies. PMID:26225129
Spatial encoding using the nonlinear field perturbations from magnetic materials.
Karimi, Hirad; Dominguez-Viqueira, William; Cunningham, Charles H
2014-08-01
A proof-of-concept study was performed to assess the technical feasibility of using magnetic materials to generate spatial encoding fields. Spatially varying magnetic fields were generated by the placement of markers with different volume susceptibilities within the imaging volume. No linear gradients were used for spatial encoding during the signal acquisition. A signal-encoding model is described for reconstructing the images encoded with these field perturbations. Simulation and proof-of-concept experimental results are presented. Experiments were performed using field perturbations from a cylindrical marker as an example of the new encoding fields. Based on this experimental setup, annular rings were reconstructed from signals encoded with the new fields. Simulation results were presented for different acquisition parameters. Proof-of-concept was supported by the correspondence of regions in an image reconstructed from experimental data compared to those in a conventional gradient-echo image. Experimental results showed that inclusions of dimensions 1.5 mm in size could be resolved with the experimental setup. This study shows the technical feasibility of using magnetic markers to produce encoding fields. Magnetic materials will allow generating spatial encoding fields, which can be tailored to an imaging application with less complexity and at lower cost compared to the use of gradient inserts. Copyright © 2013 Wiley Periodicals, Inc.
Konishi, Masaru; Lindh, Christina; Nilsson, Mats; Tanimoto, Keiji; Rohlin, Madeleine
2012-08-01
The aims of this study were to review the literature on intraoral digital radiography in endodontic treatment with focus on technical parameters and to propose recommendations for improving the quality of reports in future publications. Two electronic databases were searched. Titles and abstracts were selected according to preestablished criteria. Data were extracted using a model of image acquisition and interpretation. The literature search yielded 233 titles and abstracts; 61 reports were read in full text. Recent reports presented technical parameters more thoroughly than older reports. Most reported important parameters for the x-ray unit, but for image interpretation only about one-half of the publications cited resolution of the display system and fewer than one-half bit depth of the graphics card. The methodologic quality of future publications must be improved to permit replication of studies and comparison of results between studies in dental digital radiography. Our recommendations can improve the quality of studies on diagnostic accuracy. Copyright © 2012 Mosby, Inc. All rights reserved.
Scientific and technical photography at NASA Langley Research Center
NASA Astrophysics Data System (ADS)
Davidhazy, Andrew
1994-12-01
As part of my assignment connected with the Scientific and Technical Photography & Lab (STPL) at the NASA Langley Research Center I conducted a series of interviews and observed the day to day operations of the STPL with the ultimate objective of becoming exposed first hand to a scientific and technical photo/imaging department for which my school prepares its graduates. I was also asked to share my observations with the staff in order that these comments and observations might assist the STPL to better serve its customers. Meetings with several individuals responsible for various wind tunnels and with a group that provides photo-optical instrumentation services at the Center gave me an overview of the services provided by the Lab and possible areas for development. In summary form these are some of the observations that resulted from the interviews and daily contact with the STPL facility. (1) The STPL is perceived as a valuable and almost indispensable service group within the organization. This comment was invariably made by everyone. Everyone also seemed to support the idea that the STPL continue to provide its current level of service and quality. (2) The STPL generally is not perceived to be a highly technically oriented group but rather as a provider of high quality photographic illustration and documentation services. In spite of the importance and high marks assigned to the STPL there are several observations that merit consideration and evaluation for possible inclusion into the STPL's scope of expertise and future operating practices. (1) While the care and concern for artistic rendition of subjects is seen as laudable and sometimes valuable, the time that this often requires is seen as interfering with keeping the tunnels operating at maximum productivity. Tunnel managers would like to shorten down-time due to photography, have services available during evening hours and on short notice. It may be of interest to the STPL that tunnel managers are incorporating ever greater imaging capabilities in their facilities. To some extent this could mean a reduced demand for traditional photographic services. (2) The photographic archive is seen as a Center resource. Archiving of images, as well as data, is a matter of concern to the investigators. The early holdings of the Photographic Archives are quickly deteriorating. The relative inaccessibility of the material held in the archives is problematic. (3) In certain cases delivery or preparation of digital image files instead of, or along with, hardcopy is already being perceived by the STPL's customers as desirable. The STPL should make this option available, and the fact that it has, or will have this capability widely known. (4) The STPL needs to continue to provide expert advice and technical imaging support in terms of application information to users of traditional photographic and new electronic imaging systems. Cooperative demo projects might be undertaken to maintain or improve the capabilities of the Lab. (5) STPL personnel do not yet have significant electronic imaging or electronic communication skills and improvements in this is an area could potentially have a positive impact on the Center. (6) High speed photographic or imaging services are often mentioned by the STPL as being of primary importance to their mission but the lab supports very few projects calling for high speed imaging services. Much high speed equipment is in poor state of repair. It is interesting to note that when the operation of lasers, digital imaging or quantitative techniques are requested these are directed to another NASA department. Could joint activities be initiated to solve problems? (7).
Scientific and technical photography at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Davidhazy, Andrew
1994-01-01
As part of my assignment connected with the Scientific and Technical Photography & Lab (STPL) at the NASA Langley Research Center I conducted a series of interviews and observed the day to day operations of the STPL with the ultimate objective of becoming exposed first hand to a scientific and technical photo/imaging department for which my school prepares its graduates. I was also asked to share my observations with the staff in order that these comments and observations might assist the STPL to better serve its customers. Meetings with several individuals responsible for various wind tunnels and with a group that provides photo-optical instrumentation services at the Center gave me an overview of the services provided by the Lab and possible areas for development. In summary form these are some of the observations that resulted from the interviews and daily contact with the STPL facility. (1) The STPL is perceived as a valuable and almost indispensable service group within the organization. This comment was invariably made by everyone. Everyone also seemed to support the idea that the STPL continue to provide its current level of service and quality. (2) The STPL generally is not perceived to be a highly technically oriented group but rather as a provider of high quality photographic illustration and documentation services. In spite of the importance and high marks assigned to the STPL there are several observations that merit consideration and evaluation for possible inclusion into the STPL's scope of expertise and future operating practices. (1) While the care and concern for artistic rendition of subjects is seen as laudable and sometimes valuable, the time that this often requires is seen as interfering with keeping the tunnels operating at maximum productivity. Tunnel managers would like to shorten down-time due to photography, have services available during evening hours and on short notice. It may be of interest to the STPL that tunnel managers are incorporating ever greater imaging capabilities in their facilities. To some extent this could mean a reduced demand for traditional photographic services. (2) The photographic archive is seen as a Center resource. Archiving of images, as well as data, is a matter of concern to the investigators. The early holdings of the Photographic Archives are quickly deteriorating. The relative inaccessibility of the material held in the archives is problematic. (3) In certain cases delivery or preparation of digital image files instead of, or along with, hardcopy is already being perceived by the STPL's customers as desirable. The STPL should make this option available, and the fact that it has, or will have this capability widely known. (4) The STPL needs to continue to provide expert advice and technical imaging support in terms of application information to users of traditional photographic and new electronic imaging systems. Cooperative demo projects might be undertaken to maintain or improve the capabilities of the Lab. (5) STPL personnel do not yet have significant electronic imaging or electronic communication skills and improvements in this is an area could potentially have a positive impact on the Center. (6) High speed photographic or imaging services are often mentioned by the STPL as being of primary importance to their mission but the lab supports very few projects calling for high speed imaging services. Much high speed equipment is in poor state of repair. It is interesting to note that when the operation of lasers, digital imaging or quantitative techniques are requested these are directed to another NASA department. Could joint activities be initiated to solve problems? (7). The STPL could acquire more technical assignments if examples of the areas where they posses expertise would be circulated around the center. The fact that the STPL owns high speed video capability could be 'advertised' among its customer base if there truly was an interest in building up a customer base in this area. The STPL could participate in events like TOPS as an exhibitor, as well as a documenter, of the event.
High-speed photoacoustic imaging using an LED-based photoacoustic imaging system
NASA Astrophysics Data System (ADS)
Sato, Naoto; Kuniyil Ajith Singh, Mithun; Shigeta, Yusuke; Hanaoka, Takamitsu; Agano, Toshitaka
2018-02-01
Recently we developed a multispectral LED-based photoacoustic/ultrasound imaging system (AcousticX) and have been continuously working on its technical/functional improvements. AcousticX is a linear array ultrasound transducer (128 elements, 10 MHz)-based system in which LED arrays (selectable wavelengths, pulse repetition frequency: 4 kHz, pulse width: tunable from 40 - 100 ns) are fixed on both sides of the transducer to illuminate the tissue for photoacoustic imaging. The ultrasound/photoacoustic data from all 128 elements can be simultaneously acquired, processed and displayed. We already demonstrated our system's capability to perform photoacoustic/ultrasound imaging for dynamic imaging of the tissue at a frame rate of 10 Hz (for example to visualize the pulsation of arteries in vivo in human subjects). In this work, we present the development of a new high-speed imaging mode in AcousticX. In this mode, instead of toggling between ultrasound and photoacoustic measurements, it is possible to continuously acquire only photoacoustic data for 1.5 seconds with a time interval of 1 ms. With this improvement, we can record photoacoustic signals from the whole aperture (38 mm) at fast rate and can be reviewed later at different speeds for analyzing dynamic changes in the photoacoustic signals. We believe that AcousticX with this new high-speed mode opens up a feasible technical path for multiple dynamic studies, for example one which focus on imaging the response of voltage sensitive dyes. We envisage to improve the acquisition speed further in future for exploring ultra-high-speed applications.
Winfield, Jessica M.; Payne, Geoffrey S.; Weller, Alex; deSouza, Nandita M.
2016-01-01
Abstract Multi-parametric magnetic resonance imaging (mpMRI) offers a unique insight into tumor biology by combining functional MRI techniques that inform on cellularity (diffusion-weighted MRI), vascular properties (dynamic contrast-enhanced MRI), and metabolites (magnetic resonance spectroscopy) and has scope to provide valuable information for prognostication and response assessment. Challenges in the application of mpMRI in the clinic include the technical considerations in acquiring good quality functional MRI data, development of robust techniques for analysis, and clinical interpretation of the results. This article summarizes the technical challenges in acquisition and analysis of multi-parametric MRI data before reviewing the key applications of multi-parametric MRI in clinical research and practice. PMID:27748710
Chung, Sun Young; Choi, Jin Woo; Choi, Byung Se; In, Hyun Sin; Kim, Sun Mi; Choi, Choong Gon; Kim, Sang Joon; Suh, Dae Chul
2010-01-01
Objective To evaluate our early experience using self-expanding stents to treat atherosclerotic vertebral artery ostial stenosis (VAOS), with respect to technical feasibility and clinical and imaging follow-up results. Materials and Methods A total of 20 lesions in 20 patients underwent stenting of the VAOS using a self-expanding stent (Precise RX; Cordis Neurovascular, Miami Lakes, FL). Two patients were asymptomatic. We analyzed the technical success rate, causes of technical failure, occurrence of any vascular or neurological event, and the occurrence of any neurological abnormality or in-stent restenosis (ISR) seen on follow-up. The imaging follow-up was performed with Doppler ultrasound (DUS) as a primary screening modality. Results One instance of technical failure was caused by failure of the guidewire passage. The stent diameter was 5 mm, and post-stenting balloon dilatations were necessary in all cases. Stent misplacement requiring placement of an additional stent occurred in four cases. Following a 14.8 month average clinical follow-up time, two patients showed anterior circulation ischemia, which was not attributed to the VAOS we treated. Following a 13.7 month average DUS follow-up, five patients showed a mild degree of diffuse or focal intimal thickening in the stent lumen; however, none of the stenosis showed luminal loss of more than 50% and no stent fracture was noted. Conclusion The use of self-expanding stents for treating VAOS was technically feasible and helped to improve artery patency during our limited follow-up interval. PMID:20191062
Automatic 3D relief acquisition and georeferencing of road sides by low-cost on-motion SfM
NASA Astrophysics Data System (ADS)
Voumard, Jérémie; Bornemann, Perrick; Malet, Jean-Philippe; Derron, Marc-Henri; Jaboyedoff, Michel
2017-04-01
3D terrain relief acquisition is important for a large part of geosciences. Several methods have been developed to digitize terrains, such as total station, LiDAR, GNSS or photogrammetry. To digitize road (or rail tracks) sides on long sections, mobile spatial imaging system or UAV are commonly used. In this project, we compare a still fairly new method -the SfM on-motion technics- with some traditional technics of terrain digitizing (terrestrial laser scanning, traditional SfM, UAS imaging solutions, GNSS surveying systems and total stations). The SfM on-motion technics generates 3D spatial data by photogrammetric processing of images taken from a moving vehicle. Our mobile system consists of six action cameras placed on a vehicle. Four fisheye cameras mounted on a mast on the vehicle roof are placed at 3.2 meters above the ground. Three of them have a GNNS chip providing geotagged images. Two pictures were acquired every second by each camera. 4K resolution fisheye videos were also used to extract 8.3M not geotagged pictures. All these pictures are then processed with the Agisoft PhotoScan Professional software. Results from the SfM on-motion technics are compared with results from classical SfM photogrammetry on a 500 meters long alpine track. They were also compared with mobile laser scanning data on the same road section. First results seem to indicate that slope structures are well observable up to decimetric accuracy. For the georeferencing, the planimetric (XY) accuracy of few meters is much better than the altimetric (Z) accuracy. There is indeed a Z coordinate shift of few tens of meters between GoPro cameras and Garmin camera. This makes necessary to give a greater freedom to altimetric coordinates in the processing software. Benefits of this low-cost SfM on-motion method are: 1) a simple setup to use in the field (easy to switch between vehicle types as car, train, bike, etc.), 2) a low cost and 3) an automatic georeferencing of 3D points clouds. Main disadvantages are: 1) results are less accurate than those from LiDAR system, 2) a heavy images processing and 3) a short distance of acquisition.
NASA Astrophysics Data System (ADS)
Brandner, Wolfgang; Hormuth, Felix
Lucky Imaging improves the angular resolution of astronomical observations hampered by atmospheric turbulence ("seeing"). Unlike adaptive optics, Lucky Imaging is a passive observing technique with individual integration times comparable to the atmospheric coherence time. Thanks to the advent of essentially noise free "Electron multiplying CCD" detectors, Lucky Imaging saw a renewed interest in the past decade. It is now routinely used at a number of 2-5-m class telescopes, such as ESO's NTT. We review the history of Lucky Imaging, present the technical implementation, describe the data analysis philosophy, and show some recent results obtained with this technique. We also discuss the advantages and limitations of Lucky Imaging compared to other passive and active high angular resolution observing techniques.
Liszewski, Mark C; Hersman, F William; Altes, Talissa A; Ohno, Yoshiharu; Ciet, Pierluigi; Warfield, Simon K; Lee, Edward Y
2013-07-01
Magnetic resonance (MR) imaging is a noninvasive imaging modality, particularly attractive for pediatric patients given its lack of ionizing radiation. Despite many advantages, the physical properties of the lung (inherent low signal-to-noise ratio, magnetic susceptibility differences at lung-air interfaces, and respiratory and cardiac motion) have posed technical challenges that have limited the use of MR imaging in the evaluation of thoracic disease in the past. However, recent advances in MR imaging techniques have overcome many of these challenges. This article discusses these advances in MR imaging techniques and their potential role in the evaluation of thoracic disorders in pediatric patients. Copyright © 2013 Elsevier Inc. All rights reserved.
Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging.
Combs, Stephanie E; Nüsslin, Fridtjof; Wilkens, Jan J
2016-04-01
Image-guided radiotherapy (IGRT) has been integrated into daily clinical routine and can today be considered the standard especially with high-dose radiotherapy. Currently imaging is based on MV- or kV-CT, which has clear limitations especially in soft-tissue contrast. Thus, combination of magnetic resonance (MR) imaging and high-end radiotherapy opens a new horizon. The intricate technical properties of MR imagers pose a challenge to technology when combined with radiation technology. Several solutions that are almost ready for routine clinical application have been developed. The clinical questions include dose-escalation strategies, monitoring of changes during treatment as well as imaging without additional radiation exposure during treatment.
Steganography Detection Using Entropy Measures
2012-11-16
latter leads to the level of compression of the image . 3.3. Least Significant Bit ( LSB ) The object of steganography is to prevent suspicion upon the...structured user interface developer tools. Steganography Detection Using Entropy Measures Technical Report By Eduardo Meléndez Universidad Politécnica de ...6 2.3. Different kinds of steganography . . . . . . . . . . . . . . . . . . . . . 6 II. Steganography 8 3. Images and Significance of
Determining subcanopy Psidium cattleianum invasion in Hawaiian forests using imaging spectroscopy
Jomar Barbosa; Gregory Asner; Roberta Martin; Claire Baldeck; Flint Hughes; Tracy Johnson
2016-01-01
High-resolution airborne imaging spectroscopy represents a promising avenue for mapping the spread of invasive tree species through native forests, but for this technology to be useful to forest managers there are two main technical challenges that must be addressed: (1) mapping a single focal species amongst a diverse array of other tree species; and (2) detecting...
Algorithmic Approaches for Place Recognition in Featureless, Walled Environments
2015-01-01
inertial measurement unit LIDAR light detection and ranging RANSAC random sample consensus SLAM simultaneous localization and mapping SUSAN smallest...algorithm 38 21 Typical input image for general junction based algorithm 39 22 Short exposure image of hallway junction taken by LIDAR 40 23...discipline of simultaneous localization and mapping ( SLAM ) has been studied intensively over the past several years. Many technical approaches
Focused Ultrasound Surgery in Oncology: Overview and Principles
McDannold, Nathan J.; Hynynen, Kullervo; Jolesz, Ferenc A.
2011-01-01
Focused ultrasound surgery (FUS) is a noninvasive image-guided therapy and an alternative to surgical interventions. It presents an opportunity to revolutionize cancer therapy and to affect or change drug delivery of therapeutic agents in new focally targeted ways. In this article the background, principles, technical devices, and clinical cancer applications of image-guided FUS are reviewed. © RSNA, 2011 PMID:21436096
Assessing change in large-scale forest area by visually interpreting Landsat images
Jerry D. Greer; Frederick P. Weber; Raymond L. Czaplewski
2000-01-01
As part of the Forest Resources Assessment 1990, the Food and Agriculture Organization of the United Nations visually interpreted a stratified random sample of 117 Landsat scenes to estimate global status and change in tropical forest area. Images from 1980 and 1990 were interpreted by a group of widely experienced technical people in many different tropical countries...
ERIC Educational Resources Information Center
Schwartz, Stanley F.
This publication introduces electronic document imaging systems and provides guidance for local governments in New York in deciding whether such systems should be adopted for their own records and information management purposes. It advises local governments on how to develop plans for using such technology by discussing its advantages and…
Advanced scanners and imaging systems for earth observations. [conferences
NASA Technical Reports Server (NTRS)
1973-01-01
Assessments of present and future sensors and sensor related technology are reported along with a description of user needs and applications. Five areas are outlined: (1) electromechanical scanners, (2) self-scanned solid state sensors, (3) electron beam imagers, (4) sensor related technology, and (5) user applications. Recommendations, charts, system designs, technical approaches, and bibliographies are included for each area.
New Window into the Human Body
NASA Technical Reports Server (NTRS)
1985-01-01
Michael Vannier, MD, a former NASA engineer, recognized the similarity between NASA's computerized image processing technology and nuclear magnetic resonance. With technical assistance from Kennedy Space Center, he developed a computer program for Mallinckrodt Institute of Radiology enabling Nuclear Magnetic Resonance (NMR) to scan body tissue for earlier diagnoses. Dr. Vannier feels that "satellite imaging" has opened a new window into the human body.
Zhang, Shao-Xiang; Heng, Pheng-Ann; Liu, Zheng-Jin; Tan, Li-Wen; Qiu, Ming-Guo; Li, Qi-Yu; Liao, Rong-Xia; Li, Kai; Cui, Gao-Yu; Guo, Yan-Li; Yang, Xiao-Ping; Liu, Guang-Jiu; Shan, Jing-Lu; Liu, Ji-Jun; Zhang, Wei-Guo; Chen, Xian-Hong; Chen, Jin-Hua; Wang, Jian; Chen, Wei; Lu, Ming; You, Jian; Pang, Xue-Li; Xiao, Hong; Xie, Yong-Ming; Cheng, Jack Chun-Yiu
2004-01-01
We report the availability of a digitized Chinese male and a digitzed Chinese female typical of the population and with no obvious abnormalities. The embalming and milling procedures incorporate three technical improvements over earlier digitized cadavers. Vascular perfusion with coloured gelatin was performed to facilitate blood vessel identification. Embalmed cadavers were embedded in gelatin and cryosectioned whole so as to avoid section loss resulting from cutting the body into smaller pieces. Milling performed at −25 °C prevented small structures (e.g. teeth, concha nasalis and articular cartilage) from falling off from the milling surface. The male image set (.tiff images each of 36 Mb) has a section resolution of 3072 × 2048 pixels (∼170 μm, the accompanying magnetic resonance imaging and computer tomography data have a resolution of 512 × 512, i.e. ∼440 μm). The Chinese Visible Human male and female datasets are available at http://www.chinesevisiblehuman.com. (The male is 90.65 Gb and female 131.04 Gb). MPEG videos of direct records of real-time volume rendering are at: http://www.cse.cuhk.edu.hk/~crc PMID:15032906
Bergamino, M; Bonzano, L; Levrero, F; Mancardi, G L; Roccatagliata, L
2014-09-01
In the last few years, several imaging methods, such as magnetic resonance imaging (MRI) and computed tomography, have been used to investigate the degree of blood-brain barrier (BBB) permeability in patients with neurological diseases including multiple sclerosis, ischemic stroke, and brain tumors. One promising MRI method for assessing the BBB permeability of patients with neurological diseases in vivo is T1-weighted dynamic contrast-enhanced (DCE)-MRI. Here we review the technical issues involved in DCE-MRI in the study of human brain tumors. In the first part of this paper, theoretical models for the DCE-MRI analysis will be described, including the Toft-Kety models, the adiabatic approximation to the tissue homogeneity model and the two-compartment exchange model. These models can be used to estimate important kinetic parameters related to BBB permeability. In the second part of this paper, details of the data acquisition, issues related to the arterial input function, and procedures for DCE-MRI image analysis are illustrated. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Imaging of the peripheral retina
Kernt, Marcus; Kampik, Anselm
2013-01-01
The technical progress of the recent years has revolutionized imaging in ophthalmology. Scanning laser ophthalmoscopy (SLO), digital angiography, optical coherence tomography (OCT), and detection of fundus autofluorescence (FAF) have fundamentally changed our understanding of numerous retinal and choroidal diseases. Besides the tremendous advances in macular diagnostics, there is more and more evidence that central pathologies are often directly linked to changes in the peripheral retina. This review provides a brief overview on current posterior segment imaging techniques with a special focus on the peripheral retina. PMID:24391370
EOS image data processing system definition study
NASA Technical Reports Server (NTRS)
Gilbert, J.; Honikman, T.; Mcmahon, E.; Miller, E.; Pietrzak, L.; Yorsz, W.
1973-01-01
The Image Processing System (IPS) requirements and configuration are defined for NASA-sponsored advanced technology Earth Observatory System (EOS). The scope included investigation and definition of IPS operational, functional, and product requirements considering overall system constraints and interfaces (sensor, etc.) The scope also included investigation of the technical feasibility and definition of a point design reflecting system requirements. The design phase required a survey of present and projected technology related to general and special-purpose processors, high-density digital tape recorders, and image recorders.
1991-11-01
publication. APPROVED: a LEE A. UVANNI Project Engineer FOR THE COMMANDER: GARRY W. BARRINGER Technical Director Intelligence & Reconnaissance...f Od1cAtl nd ir-’bm a UNl tofU~rtaw ."t Pu’ o scrxr± ing twra fa revrl r Jt,= seagrg d un zla souLces gahwtW" r T , iUm rm , rruk4 c adiwvctws coa w...1990j matches straight lines extracted from an image with model lines r projected to the image plane using an assumed location of the camera. This
Research of flaw image collecting and processing technology based on multi-baseline stereo imaging
NASA Astrophysics Data System (ADS)
Yao, Yong; Zhao, Jiguang; Pang, Xiaoyan
2008-03-01
Aiming at the practical situations such as accurate optimal design, complex algorithms and precise technical demands of gun bore flaw image collecting, the design frame of a 3-D image collecting and processing system based on multi-baseline stereo imaging was presented in this paper. This system mainly including computer, electrical control box, stepping motor and CCD camera and it can realize function of image collection, stereo matching, 3-D information reconstruction and after-treatments etc. Proved by theoretical analysis and experiment results, images collected by this system were precise and it can slake efficiently the uncertainty problem produced by universally veins or repeated veins. In the same time, this system has faster measure speed and upper measure precision.
Zugaj, D; Chenet, A; Petit, L; Vaglio, J; Pascual, T; Piketty, C; Bourdes, V
2018-02-04
Currently, imaging technologies that can accurately assess or provide surrogate markers of the human cutaneous microvessel network are limited. Dynamic optical coherence tomography (D-OCT) allows the detection of blood flow in vivo and visualization of the skin microvasculature. However, image processing is necessary to correct images, filter artifacts, and exclude irrelevant signals. The objective of this study was to develop a novel image processing workflow to enhance the technical capabilities of D-OCT. Single-center, vehicle-controlled study including healthy volunteers aged 18-50 years. A capsaicin solution was applied topically on the subject's forearm to induce local inflammation. Measurements of capsaicin-induced increase in dermal blood flow, within the region of interest, were performed by laser Doppler imaging (LDI) (reference method) and D-OCT. Sixteen subjects were enrolled. A good correlation was shown between D-OCT and LDI, using the image processing workflow. Therefore, D-OCT offers an easy-to-use alternative to LDI, with good repeatability, new robust morphological features (dermal-epidermal junction localization), and quantification of the distribution of vessel size and changes in this distribution induced by capsaicin. The visualization of the vessel network was improved through bloc filtering and artifact removal. Moreover, the assessment of vessel size distribution allows a fine analysis of the vascular patterns. The newly developed image processing workflow enhances the technical capabilities of D-OCT for the accurate detection and characterization of microcirculation in the skin. A direct clinical application of this image processing workflow is the quantification of the effect of topical treatment on skin vascularization. © 2018 The Authors. Skin Research and Technology Published by John Wiley & Sons Ltd.
Kang, Tae Wook; Song, Kyoung Doo; Kim, Mimi; Kim, Seung Soo; Kim, Seong Hyun; Ha, Sang Yun
2017-01-01
Objective To assess whether contrast-enhanced ultrasonography (CEUS) with Sonazoid can improve the lesion conspicuity and feasibility of percutaneous biopsies for focal hepatic lesions invisible on fusion imaging of real-time ultrasonography (US) with computed tomography/magnetic resonance images, and evaluate its impact on clinical decision making. Materials and Methods The Institutional Review Board approved this retrospective study. Between June 2013 and January 2015, 711 US-guided percutaneous biopsies were performed for focal hepatic lesions. Biopsies were performed using CEUS for guidance if lesions were invisible on fusion imaging. We retrospectively evaluated the number of target lesions initially invisible on fusion imaging that became visible after applying CEUS, using a 4-point scale. Technical success rates of biopsies were evaluated based on histopathological results. In addition, the occurrence of changes in clinical decision making was assessed. Results Among 711 patients, 16 patients (2.3%) were included in the study. The median size of target lesions was 1.1 cm (range, 0.5–1.9 cm) in pre-procedural imaging. After CEUS, 15 of 16 (93.8%) focal hepatic lesions were visualized. The conspicuity score was significantly increased after adding CEUS, as compared to that on fusion imaging (p < 0.001). The technical success rate of biopsy was 87.6% (14/16). After biopsy, there were changes in clinical decision making for 11 of 16 patients (68.8%). Conclusion The addition of CEUS could improve the conspicuity of focal hepatic lesions invisible on fusion imaging. This dual guidance using CEUS and fusion imaging may affect patient management via changes in clinical decision-making. PMID:28096725
Approach to implementing a DICOM network: incorporate both economics and workflow adaptation
NASA Astrophysics Data System (ADS)
Beaver, S. Merritt; Sippel-Schmidt, Teresa M.
1995-05-01
This paper describes an approach to aide in the decision-making process for the justification and design of a digital image and information management system. It identifies key technical and clinical issues that need to be addressed by a healthcare institution during this process. Some issues identified here are very controversial and may take months or years for a department to determine solutions which meet their specific staffing, financial, and technical needs.
[Low-field magnetic resonance imaging for rheumatoid arthritis].
Ostendorf, B; Edelmann, E; Kellner, H; Scherer, A
2010-02-01
Magnetic resonance imaging (MRI) as a cross-sectional imaging procedure allows a three-dimensional representation of musculature, ligaments, tendons, capsules, synovial membranes, bones and cartilage with high resolution quality. An activity assessment is further possible by application of a contrast medium (gadolinium-DTPA) to differentiate between active and chronic inflammatory processes. Evidence of a bone marrow edema detected by MRI in patients with rheumatoid arthritis (RA) can be interpreted as a prognostic and predictive factor for the development of bone erosions. On the basis of these advantages MRI is being employed more and more in the early diagnosis of inflammatory joint diseases. Semi-quantitative scores for analysis and grading of findings have already been developed and are in clinical use. Because MRI technical performances are invariably reproducible they can be practically retrieved in the course of examination which is particularly relevant in rheumatology. Therapy response or progression can thus be adequately displayed. Open, dedicated low-field MRI with a low signal strength of 0.2 Tesla (T) has been known since the 90s and now represents new MRI examination options in rheumatology. Smaller devices with lower acquisition and maintenance expenses as well as considerably more convenience due to the device itself result in a higher subjective acceptability by the patients as well as objectively more data records of low-field MRI scans of RA, which underline the significance of this new technical method. The German Society for Rheumatology (DGRh), represented by the Committee for "Diagnostic Imaging", meets this development with the release of recommendations and standards for the procedures of low-field MRI and their scoring and summarizes the most important technical data and information on clinical indications.
Understanding Your Test Results
... consuming. MRI (magnetic resonance imaging) MRI is a non-invasive study that uses mag- netic energy, not ... 1. Disease recurrence. 2. Disease that is technically non-secretory (so low level that it cannot be ...
Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron light
NASA Astrophysics Data System (ADS)
Olbinado, M. P.; Grenzer, J.; Pradel, P.; De Resseguier, T.; Vagovic, P.; Zdora, M.-C.; Guzenko, V. A.; David, C.; Rack, A.
2018-04-01
We report on indirect X-ray detector systems for various full-field, ultra high-speed X-ray imaging methodologies, such as X-ray phase-contrast radiography, diffraction topography, grating interferometry and speckle-based imaging performed at the hard X-ray imaging beamline ID19 of the European Synchrotron—ESRF. Our work highlights the versatility of indirect X-ray detectors to multiple goals such as single synchrotron pulse isolation, multiple-frame recording up to millions frames per second, high efficiency, and high spatial resolution. Besides the technical advancements, potential applications are briefly introduced and discussed.
Huang, Shuo; Liu, Jing
2010-05-01
Application of clinical digital medical imaging has raised many tough issues to tackle, such as data storage, management, and information sharing. Here we investigated a mobile phone based medical image management system which is capable of achieving personal medical imaging information storage, management and comprehensive health information analysis. The technologies related to the management system spanning the wireless transmission technology, the technical capabilities of phone in mobile health care and management of mobile medical database were discussed. Taking medical infrared images transmission between phone and computer as an example, the working principle of the present system was demonstrated.
MR imaging of the elbow in the injured athlete.
Wenzke, Daniel R
2013-03-01
This article summarizes key MR imaging findings in common athletic elbow injuries including little leaguer's elbow, Panner disease, osteochondritis dissecans, olecranon stress fracture, occult fracture, degenerative osteophyte formation, flexor-pronator strain, ulnar collateral ligament tear, lateral ulnar collateral ligament and radial collateral ligament tear, lateral epicondylitis, medial epicondylitis, biceps tear, bicipitoradial bursitis, triceps tear, olecranon bursitis, ulnar neuropathy, posterior interosseous nerve syndrome, and radial tunnel syndrome. The article also summarizes important technical considerations in elbow MR imaging that enhance image quality and contribute to the radiologist's success. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, C.
This session will update therapeutic physicists on technological advancements and radiation oncology features of commercial CT, MRI, and PET/CT imaging systems. Also described are physicists’ roles in every stage of equipment selection, purchasing, and operation, including defining specifications, evaluating vendors, making recommendations, and optimal and safe use of imaging equipment in radiation oncology environment. The first presentation defines important terminology of CT and PET/CT followed by a review of latest innovations, such as metal artifact reduction, statistical iterative reconstruction, radiation dose management, tissue classification by dual energy CT and spectral CT, improvement in spatial resolution and sensitivity in PET, andmore » potentials of PET/MR. We will also discuss important technical specifications and items in CT and PET/CT purchasing quotes and their impacts. The second presentation will focus on key components in the request for proposal for a MRI simulator and how to evaluate vendor proposals. MRI safety issues in radiation Oncology, including MRI scanner Zones (4-zone design), will be discussed. Basic MR terminologies, important functionalities, and advanced features, which are relevant to radiation therapy, will be discussed. In the third presentation, justification of imaging systems for radiation oncology, considerations in room design and construction in a RO department, shared use with diagnostic radiology, staffing needs and training, clinical/research use cases and implementation, will be discussed. The emphasis will be on understanding and bridging the differences between diagnostic and radiation oncology installations, building consensus amongst stakeholders for purchase and use, and integrating imaging technologies into the radiation oncology environment. Learning Objectives: Learn the latest innovations of major imaging systems relevant to radiation therapy Be able to describe important technical specifications of CT, MRI, and PET/CT Understand the process of budget request, equipment justification, comparisons of technical specifications, site visits, vendor selection, and contract development.« less
TU-G-201-02: An MRI Simulator From Proposal to Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Y.
2015-06-15
This session will update therapeutic physicists on technological advancements and radiation oncology features of commercial CT, MRI, and PET/CT imaging systems. Also described are physicists’ roles in every stage of equipment selection, purchasing, and operation, including defining specifications, evaluating vendors, making recommendations, and optimal and safe use of imaging equipment in radiation oncology environment. The first presentation defines important terminology of CT and PET/CT followed by a review of latest innovations, such as metal artifact reduction, statistical iterative reconstruction, radiation dose management, tissue classification by dual energy CT and spectral CT, improvement in spatial resolution and sensitivity in PET, andmore » potentials of PET/MR. We will also discuss important technical specifications and items in CT and PET/CT purchasing quotes and their impacts. The second presentation will focus on key components in the request for proposal for a MRI simulator and how to evaluate vendor proposals. MRI safety issues in radiation Oncology, including MRI scanner Zones (4-zone design), will be discussed. Basic MR terminologies, important functionalities, and advanced features, which are relevant to radiation therapy, will be discussed. In the third presentation, justification of imaging systems for radiation oncology, considerations in room design and construction in a RO department, shared use with diagnostic radiology, staffing needs and training, clinical/research use cases and implementation, will be discussed. The emphasis will be on understanding and bridging the differences between diagnostic and radiation oncology installations, building consensus amongst stakeholders for purchase and use, and integrating imaging technologies into the radiation oncology environment. Learning Objectives: Learn the latest innovations of major imaging systems relevant to radiation therapy Be able to describe important technical specifications of CT, MRI, and PET/CT Understand the process of budget request, equipment justification, comparisons of technical specifications, site visits, vendor selection, and contract development.« less
Possibilities of Use of UAVS for Technical Inspection of Buildings and Constructions
NASA Astrophysics Data System (ADS)
Banaszek, Anna; Banaszek, Sebastian; Cellmer, Anna
2017-12-01
In recent years, Unmanned Aerial Vehicles (UAVs) have been used in various sectors of the economy. This is due to the development of new technologies for acquiring and processing geospatial data. The paper presents the results of experiments using UAV, equipped with a high resolution digital camera, for a visual assessment of the technical condition of the building roof and for the inventory of energy infrastructure and its surroundings. The usefulness of digital images obtained from the UAV deck is presented in concrete examples. The use of UAV offers new opportunities in the area of technical inspection due to the detail and accuracy of the data, low operating costs and fast data acquisition.
Real-time endoscopic image orientation correction system using an accelerometer and gyrosensor.
Lee, Hyung-Chul; Jung, Chul-Woo; Kim, Hee Chan
2017-01-01
The discrepancy between spatial orientations of an endoscopic image and a physician's working environment can make it difficult to interpret endoscopic images. In this study, we developed and evaluated a device that corrects the endoscopic image orientation using an accelerometer and gyrosensor. The acceleration of gravity and angular velocity were retrieved from the accelerometer and gyrosensor attached to the handle of the endoscope. The rotational angle of the endoscope handle was calculated using a Kalman filter with transmission delay compensation. Technical evaluation of the orientation correction system was performed using a camera by comparing the optical rotational angle from the captured image with the rotational angle calculated from the sensor outputs. For the clinical utility test, fifteen anesthesiology residents performed a video endoscopic examination of an airway model with and without using the orientation correction system. The participants reported numbers written on papers placed at the left main, right main, and right upper bronchi of the airway model. The correctness and the total time it took participants to report the numbers were recorded. During the technical evaluation, errors in the calculated rotational angle were less than 5 degrees. In the clinical utility test, there was a significant time reduction when using the orientation correction system compared with not using the system (median, 52 vs. 76 seconds; P = .012). In this study, we developed a real-time endoscopic image orientation correction system, which significantly improved physician performance during a video endoscopic exam.
Techniques for Interventional MRI Guidance in Closed-Bore Systems.
Busse, Harald; Kahn, Thomas; Moche, Michael
2018-02-01
Efficient image guidance is the basis for minimally invasive interventions. In comparison with X-ray, computed tomography (CT), or ultrasound imaging, magnetic resonance imaging (MRI) provides the best soft tissue contrast without ionizing radiation and is therefore predestined for procedural control. But MRI is also characterized by spatial constraints, electromagnetic interactions, long imaging times, and resulting workflow issues. Although many technical requirements have been met over the years-most notably magnetic resonance (MR) compatibility of tools, interventional pulse sequences, and powerful processing hardware and software-there is still a large variety of stand-alone devices and systems for specific procedures only.Stereotactic guidance with the table outside the magnet is common and relies on proper registration of the guiding grids or manipulators to the MR images. Instrument tracking, often by optical sensing, can be added to provide the physicians with proper eye-hand coordination during their navigated approach. Only in very short wide-bore systems, needles can be advanced at the extended arm under near real-time imaging. In standard magnets, control and workflow may be improved by remote operation using robotic or manual driving elements.This work highlights a number of devices and techniques for different interventional settings with a focus on percutaneous, interstitial procedures in different organ regions. The goal is to identify technical and procedural elements that might be relevant for interventional guidance in a broader context, independent of the clinical application given here. Key challenges remain the seamless integration into the interventional workflow, safe clinical translation, and proper cost effectiveness.
Volumetric CT in lung cancer: an example for the qualification of imaging as a biomarker.
Buckler, Andrew J; Mozley, P David; Schwartz, Lawrence; Petrick, Nicholas; McNitt-Gray, Michael; Fenimore, Charles; O'Donnell, Kevin; Hayes, Wendy; Kim, Hyun J; Clarke, Laurence; Sullivan, Daniel
2010-01-01
New ways to understand biology as well as increasing interest in personalized treatments requires new capabilities for the assessment of therapy response. The lack of consensus methods and qualification evidence needed for large-scale multicenter trials, and in turn the standardization that allows them, are widely acknowledged to be the limiting factor in the deployment of qualified imaging biomarkers. The Quantitative Imaging Biomarker Alliance is organized to establish a methodology whereby multiple stakeholders collaborate. It has charged the Volumetric Computed Tomography (CT) Technical Subcommittee with investigating the technical feasibility and clinical value of quantifying changes over time in either volume or other parameters as biomarkers. The group selected solid tumors of the chest in subjects with lung cancer as its first case in point. Success is defined as sufficiently rigorous improvements in CT-based outcome measures to allow individual patients in clinical settings to switch treatments sooner if they are no longer responding to their current regimens, and reduce the costs of evaluating investigational new drugs to treat lung cancer. The team has completed a systems engineering analysis, has begun a roadmap of experimental groundwork, documented profile claims and protocols, and documented a process for imaging biomarker qualification as a general paradigm for qualifying other imaging biomarkers as well. This report addresses a procedural template for the qualification of quantitative imaging biomarkers. This mechanism is cost-effective for stakeholders while simultaneously advancing the public health by promoting the use of measures that prove effective.
A large-stroke cryogenic imaging FTS system for SPICA-Safari
NASA Astrophysics Data System (ADS)
Jellema, Willem; van Loon, Dennis; Naylor, David; Roelfsema, Peter
2014-08-01
The scientific goals of the far-infrared astronomy mission SPICA challenge the design of a large-stroke imaging FTS for Safari, inviting for the development of a new generation of cryogenic actuators with very low dissipation. In this paper we present the Fourier Transform Spectrometer (FTS) system concept, as foreseen for SPICA-Safari, and we discuss the technical developments required to satisfy the instrument performance.
SWIR Sky Glow Imaging for Detection of Turbulence in the Upper Atmosphere: Postprint
2010-01-01
TP-2010-1015 SWIR SKY GLOW IMAGING FOR DETECTION OF TURBULENCE IN THE UPPER... the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this...number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 01-01-2010 2. REPORT TYPE Technical Paper 3. DATES COVERED
An introduction to scriptwriting for video and multimedia.
Guth, J
1995-06-01
The elements of audiovisual productions are explained and illustrated, including words, moving images, still images, graphics, narration, music, landscape sounds, pacing and tilting and font styles. Three different production styles are analysed, and examples of those styles are discussed. Rules for writing spoken words, composing blocks of information, and explaining technical information to a lay audience are also provided. Storyboard and scripting forms and examples are included.
1983-10-19
knowledge -based symbolic reasoning, it nonetheless remains de- pendent on the lower levels of iconic processing for its raw information . Both sorts of...priori knowledge of where any particular line might go, and therefore no information regarding the extent of memory access required for the local...IC FILE COPY ,. c 4/t/7 ISG Report 104 IMAGE UNDERSTANDING RESEARCH Final Technical Report Covering Research Activity During the Period October 1
Rosen, Eyal; Taschieri, Silvio; Del Fabbro, Massimo; Beitlitum, Ilan; Tsesis, Igor
2015-07-01
The aim of this study was to evaluate the diagnostic efficacy of cone-beam computed tomographic (CBCT) imaging in endodontics based on a systematic search and analysis of the literature using an efficacy model. A systematic search of the literature was performed to identify studies evaluating the use of CBCT imaging in endodontics. The identified studies were subjected to strict inclusion criteria followed by an analysis using a hierarchical model of efficacy (model) designed for appraisal of the literature on the levels of efficacy of a diagnostic imaging modality. Initially, 485 possible relevant articles were identified. After title and abstract screening and a full-text evaluation, 58 articles (12%) that met the inclusion criteria were analyzed and allocated to levels of efficacy. Most eligible articles (n = 52, 90%) evaluated technical characteristics or the accuracy of CBCT imaging, which was defined in this model as low levels of efficacy. Only 6 articles (10%) proclaimed to evaluate the efficacy of CBCT imaging to support the practitioner's decision making; treatment planning; and, ultimately, the treatment outcome, which was defined as higher levels of efficacy. The expected ultimate benefit of CBCT imaging to the endodontic patient as evaluated by its level of diagnostic efficacy is unclear and is mainly limited to its technical and diagnostic accuracy efficacies. Even for these low levels of efficacy, current knowledge is limited. Therefore, a cautious and rational approach is advised when considering CBCT imaging for endodontic purposes. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Uneri, Ali; Schafer, Sebastian; Mirota, Daniel; Nithiananthan, Sajendra; Otake, Yoshito; Reaungamornrat, Sureerat; Yoo, Jongheun; Stayman, J. Webster; Reh, Douglas; Gallia, Gary L.; Khanna, A. Jay; Hager, Gregory; Taylor, Russell H.; Kleinszig, Gerhard; Siewerdsen, Jeffrey H.
2011-03-01
Intraoperative imaging modalities are becoming more prevalent in recent years, and the need for integration of these modalities with surgical guidance is rising, creating new possibilities as well as challenges. In the context of such emerging technologies and new clinical applications, a software architecture for cone-beam CT (CBCT) guided surgery has been developed with emphasis on binding open-source surgical navigation libraries and integrating intraoperative CBCT with novel, application-specific registration and guidance technologies. The architecture design is focused on accelerating translation of task-specific technical development in a wide range of applications, including orthopaedic, head-and-neck, and thoracic surgeries. The surgical guidance system is interfaced with a prototype mobile C-arm for high-quality CBCT and through a modular software architecture, integration of different tools and devices consistent with surgical workflow in each of these applications is realized. Specific modules are developed according to the surgical task, such as: 3D-3D rigid or deformable registration of preoperative images, surgical planning data, and up-to-date CBCT images; 3D-2D registration of planning and image data in real-time fluoroscopy and/or digitally reconstructed radiographs (DRRs); compatibility with infrared, electromagnetic, and video-based trackers used individually or in hybrid arrangements; augmented overlay of image and planning data in endoscopic or in-room video; real-time "virtual fluoroscopy" computed from GPU-accelerated DRRs; and multi-modality image display. The platform aims to minimize offline data processing by exposing quantitative tools that analyze and communicate factors of geometric precision. The system was translated to preclinical phantom and cadaver studies for assessment of fiducial (FRE) and target registration error (TRE) showing sub-mm accuracy in targeting and video overlay within intraoperative CBCT. The work culminates in the development of a CBCT guidance system (reported here for the first time) that leverages the technical developments in Carm CBCT and associated technologies for realizing a high-performance system for translation to clinical studies.
Special feature on imaging systems and techniques
NASA Astrophysics Data System (ADS)
Yang, Wuqiang; Giakos, George
2013-07-01
The IEEE International Conference on Imaging Systems and Techniques (IST'2012) was held in Manchester, UK, on 16-17 July 2012. The participants came from 26 countries or regions: Austria, Brazil, Canada, China, Denmark, France, Germany, Greece, India, Iran, Iraq, Italy, Japan, Korea, Latvia, Malaysia, Norway, Poland, Portugal, Sweden, Switzerland, Taiwan, Tunisia, UAE, UK and USA. The technical program of the conference consisted of a series of scientific and technical sessions, exploring physical principles, engineering and applications of new imaging systems and techniques, as reflected by the diversity of the submitted papers. Following a rigorous review process, a total of 123 papers were accepted, and they were organized into 30 oral presentation sessions and a poster session. In addition, six invited keynotes were arranged. The conference not only provided the participants with a unique opportunity to exchange ideas and disseminate research outcomes but also paved a way to establish global collaboration. Following the IST'2012, a total of 55 papers, which were technically extended substantially from their versions in the conference proceeding, were submitted as regular papers to this special feature of Measurement Science and Technology . Following a rigorous reviewing process, 25 papers have been finally accepted for publication in this special feature and they are organized into three categories: (1) industrial tomography, (2) imaging systems and techniques and (3) image processing. These papers not only present the latest developments in the field of imaging systems and techniques but also offer potential solutions to existing problems. We hope that this special feature provides a good reference for researchers who are active in the field and will serve as a catalyst to trigger further research. It has been our great pleasure to be the guest editors of this special feature. We would like to thank the authors for their contributions, without which it would not be possible to have this special feature published. We are grateful to all reviewers, who devoted their time and effort, on a voluntary basis, to ensure that all submissions were reviewed rigorously and fairly. The publishing staff of Measurement Science and Technology are particularly acknowledged for giving us timely advice on guest-editing this special feature.
1991-05-01
or may not bypass the editing function. At present, editing rules beyond those required for translation have not been stipulated. 2When explicit... editing rules become defined, the editor at a site LGN may perform two levels of edit checking: warning, which would insert blanks or pass as submitted...position image transactions into a transaction set. This low-level edit checking is performed at the site LGN to reduce transmission costs and to
Crockett, G. S.
1970-01-01
During the assessment of monitoring equipment on acute medical cases in a general ward, a quantitative investigation of technical faults revealed that 44% of these occurred at the patient-sensor interface. While the attachment of the equipment was accepted by the patient and was suitable for application by nursing staff, this degree of technical breakdown indicates that more progress is necessary in the design of this aspect of monitoring equipment before it is possible to have a reliable system. ImagesFig. 1 PMID:5476136
Technical tips to perform safe and effective ultrasound guided steroid joint injections in children.
Parra, Dimitri A
2015-01-01
The aim of this article is to describe the technique used to perform ultrasound guided steroid joint injections in children in a group of joints that can be injected using ultrasound as the only image guidance modality. The technique is described and didactic figures are provided to illustrate key technical concepts. It is very important to be familiar with the sonographic appearance of the pediatric joints and the developing bone when performing ultrasound-guided joint injections in children.
Optimizing care for the obese patient in interventional radiology
Aberle, Dwight; Charles, Hearns; Hodak, Steven; O’Neill, Daniel; Oklu, Rahmi; Deipolyi, Amy R.
2017-01-01
With the rising epidemic of obesity, interventional radiologists are treating increasing numbers of obese patients, as comorbidities associated with obesity preclude more invasive treatments. These patients are at heightened risk of vascular and oncologic disease, both of which often require interventional radiology care. Obese patients pose unique challenges in imaging, technical feasibility, and periprocedural monitoring. This review describes the technical and clinical challenges posed by this population, with proposed methods to mitigate these challenges and optimize care. PMID:28082253
Allan Cormack, Computerized Axial Tomography (CAT), and Magnetic Resonance
Radiopharmaceuticals, DOE Technical Report, 1977 Emission Computed Tomography: A New Technique for the Quantitative Extending the Power of Nuclear Magnetic Resonance Techniques Magnetic Resonance Imaging Research Top Some
NASA Astrophysics Data System (ADS)
Liu, Brent; Lee, Jasper; Documet, Jorge; Guo, Bing; King, Nelson; Huang, H. K.
2006-03-01
By implementing a tracking and verification system, clinical facilities can effectively monitor workflow and heighten information security in today's growing demand towards digital imaging informatics. This paper presents the technical design and implementation experiences encountered during the development of a Location Tracking and Verification System (LTVS) for a clinical environment. LTVS integrates facial biometrics with wireless tracking so that administrators can manage and monitor patient and staff through a web-based application. Implementation challenges fall into three main areas: 1) Development and Integration, 2) Calibration and Optimization of Wi-Fi Tracking System, and 3) Clinical Implementation. An initial prototype LTVS has been implemented within USC's Healthcare Consultation Center II Outpatient Facility, which currently has a fully digital imaging department environment with integrated HIS/RIS/PACS/VR (Voice Recognition).
How to make deposition of images a reality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guss, J. Mitchell, E-mail: mitchell.guss@sydney.edu.au; McMahon, Brian; School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006
2014-10-01
An analysis is performed of the technical and financial challenges to be overcome if deposition of primary experimental data is to become routine. The IUCr Diffraction Data Deposition Working Group is investigating the rationale and policies for routine deposition of diffraction images (and other primary experimental data sets). An information-management framework is described that should inform policy directions, and some of the technical and other issues that need to be addressed in an effort to achieve such a goal are analysed. In the near future, routine data deposition could be encouraged at one of the growing number of institutional repositoriesmore » that accept data sets or at a generic data-publishing web repository service. To realise all of the potential benefits of depositing diffraction data, specialized archives would be preferable. Funding such an initiative will be challenging.« less
Small image laser range finder for planetary rover
NASA Technical Reports Server (NTRS)
Wakabayashi, Yasufumi; Honda, Masahisa; Adachi, Tadashi; Iijima, Takahiko
1994-01-01
A variety of technical subjects need to be solved before planetary rover navigation could be a part of future missions. The sensors which will perceive terrain environment around the rover will require critical development efforts. The image laser range finder (ILRF) discussed here is one of the candidate sensors because of its advantage in providing range data required for its navigation. The authors developed a new compact-sized ILRF which is a quarter of the size of conventional ones. Instead of the current two directional scanning system which is comprised of nodding and polygon mirrors, the new ILRF is equipped with the new concept of a direct polygon mirror driving system, which successfully made its size compact to accommodate the design requirements. The paper reports on the design concept and preliminary technical specifications established in the current development phase.
[Investigation on Mobile Phone Based Thermal Imaging System and Its Preliminary Application].
Li, Fufeng; Chen, Feng; Liu, Jing
2015-03-01
The technical structure of a low-cost thermal imaging system (TIM) lunched on a mobile phone was investigated, which consists of a thermal infrared module and mobile phone and application software. The designing strategies and technical factors toward realizing various TIM array performances are interpreted, including sensor cost and Noise Equivalent Temperature Difference (NETD). In the software algorithm, a mechanism for scene-change detection was implemented to optimize the efficiency of non-uniformity correction (NUC). The performance experiments and analysis indicate that the NETD of the system can be smaller than 150 mK when the integration time is larger than 16 frames. Furthermore, a practical application for human temperature monitoring during physical exercise is proposed and interpreted. The measurement results support the feasibility and facility of the system in the medical application.
MO-FG-207-00: Technological Advances in PET/MR Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-06-15
The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applicationsmore » that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee.« less
Final Technical Report for SISGR: Ultrafast Molecular Scale Chemical Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hersam, Mark C.; Guest, Jeffrey R.; Guisinger, Nathan P.
2017-04-10
The Northwestern-Argonne SISGR program utilized newly developed instrumentation and techniques including integrated ultra-high vacuum tip-enhanced Raman spectroscopy/scanning tunneling microscopy (UHV-TERS/STM) and surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS) to advance the spatial and temporal resolution of chemical imaging for the study of photoinduced dynamics of molecules on plasmonically active surfaces. An accompanying theory program addressed modeling of charge transfer processes using constrained density functional theory (DFT) in addition to modeling of SE-FSRS, thereby providing a detailed description of the excited state dynamics. This interdisciplinary and highly collaborative research resulted in 62 publications with ~ 48% of them being co-authored by multiplemore » SISGR team members. A summary of the scientific accomplishments from this SISGR program is provided in this final technical report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroeze, Stephanie G. C.; Huisman, Merel; Verkooijen, Helena M.
2012-06-15
Introduction: Three-dimensional (3D) real-time fluoroscopy cone beam CT is a promising new technique for image-guided biopsy of solid tumors. We evaluated the technical feasibility, diagnostic accuracy, and complications of this technique for guidance of large-core needle biopsy in patients with suspicious renal masses. Methods: Thirteen patients with 13 suspicious renal masses underwent large-core needle biopsy under 3D real-time fluoroscopy cone beam CT guidance. Imaging acquisition and subsequent 3D reconstruction was done by a mobile flat-panel detector (FD) C-arm system to plan the needle path. Large-core needle biopsies were taken by the interventional radiologist. Technical success, accuracy, and safety were evaluatedmore » according to the Innovation, Development, Exploration, Assessment, Long-term study (IDEAL) recommendations. Results: Median tumor size was 2.6 (range, 1.0-14.0) cm. In ten (77%) patients, the histological diagnosis corresponded to the imaging findings: five were malignancies, five benign lesions. Technical feasibility was 77% (10/13); in three patients biopsy results were inconclusive. The lesion size of these three patients was <2.5 cm. One patient developed a minor complication. Median follow-up was 16.0 (range, 6.4-19.8) months. Conclusions: 3D real-time fluoroscopy cone beam CT-guided biopsy of renal masses is feasible and safe. However, these first results suggest that diagnostic accuracy may be limited in patients with renal masses <2.5 cm.« less
Teleneurosonology: a novel application of transcranial and carotid ultrasound.
Rubin, Mark N; Barrett, Kevin M; Freeman, W David; Lee Iannotti, Joyce K; Channer, Dwight D; Rabinstein, Alejandro A; Demaerschalk, Bart M
2015-03-01
To demonstrate the technical feasibility of interfacing transcranial Doppler (TCD) and carotid "duplex" ultrasonography (CUS) peripherals with telemedicine end points to provide real-time spectral waveform and duplex imaging data for remote review and interpretation. We performed remote TCD and CUS examinations on a healthy, volunteer employee from our institution without known cerebrovascular disease. The telemedicine end point was stationed in our institution's hospital where the neurosonology examinations took place and the control station was in a dedicated telemedicine room in a separate building. The examinations were performed by a postgraduate level neurohospitalist trainee (M.N.R.) and interpreted by an attending vascular neurologist, both with experience in the performance and interpretation of TCD and CUS. Spectral waveform and duplex ultrasound data were successfully transmitted from TCD and CUS instruments through a telemedicine end point to a remote reviewer at a control station. Image quality was preserved in all cases, and technical failures were not encountered. This proof-of-concept study demonstrates the technical feasibility of interfacing TCD and CUS peripherals with a telemedicine end point to provide real-time spectral waveform and duplex imaging data for remote review and interpretation. Medical diagnostic and telemedicine devices should be equipped with interfaces that allow simple transmission of high-quality audio and video information from the medical devices to the telemedicine technology. Further study is encouraged to determine the clinical impact of teleneurosonology. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Niendorf, Thoralf; Paul, Katharina; Oezerdem, Celal; Graessl, Andreas; Klix, Sabrina; Huelnhagen, Till; Hezel, Fabian; Rieger, Jan; Waiczies, Helmar; Frahm, Jens; Nagel, Armin M; Oberacker, Eva; Winter, Lukas
2016-09-01
The objective of this study was to document and review advances and groundbreaking progress in cardiac and body MR at ultrahigh fields (UHF, B0 ≥ 7.0 T) with the goal to attract talent, clinical adopters, collaborations and resources to the biomedical and diagnostic imaging communities. This review surveys traits, advantages and challenges of cardiac and body MR at 7.0 T. The considerations run the gamut from technical advances to clinical opportunities. Key concepts, emerging technologies, practical considerations, frontier applications and future directions of UHF body and cardiac MR are provided. Examples of UHF cardiac and body imaging strategies are demonstrated. Their added value over the kindred counterparts at lower fields is explored along with an outline of research promises. The achievements of cardiac and body UHF-MR are powerful motivators and enablers, since extra speed, signal and imaging capabilities may be invested to overcome the fundamental constraints that continue to hamper traditional cardiac and body MR applications. If practical obstacles, concomitant physics effects and technical impediments can be overcome in equal measure, sophisticated cardiac and body UHF-MR will help to open the door to new MRI and MRS approaches for basic research and clinical science, with the lessons learned at 7.0 T being transferred into broad clinical use including diagnostics and therapy guiding at lower fields. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Mai, Tuan V; Ahn, David T; Phillips, Colin T; Agan, Donna L; Kimura, Bruce J
2013-01-01
Background. The potential of pocket-sized ultrasound devices (PUDs) to improve global healthcare delivery is limited by the lack of a suitable imaging protocol and trained users. Therefore, we investigated the feasibility of performing a brief, evidence-based cardiac limited ultrasound exam (CLUE) through wireless guidance of novice users. Methods. Three trainees applied PUDs on 27 subjects while directed by an off-site cardiologist to obtain a CLUE to screen for LV systolic dysfunction (LVSD), LA enlargement (LAE), ultrasound lung comets (ULC+), and elevated CVP (eCVP). Real-time remote audiovisual guidance and interpretation by the cardiologist were performed using the iPhone 4/iPod (FaceTime, Apple, Inc.) attached to the PUD and transmitted data wirelessly. Accuracy and technical quality of transmitted images were compared to on-site, gold-standard echo thresholds. Results. Novice versus sonographer imaging yielded technically adequate views in 122/135 (90%) versus 130/135 (96%) (P < 0.05). CLUE's combined SN, SP, and ACC were 0.67, 0.96, and 0.90. Technical adequacy (%) and accuracy for each abnormality (n) were LVSD (85%, 0.93, n = 5), LAE (89%, 0.74, n = 16), ULC+ (100%, 0.94, n = 5), and eCVP (78%, 0.91, n = 1). Conclusion. A novice can perform the CLUE using PUD when wirelessly guided by an expert. This method could facilitate PUD use for off-site bedside medical decision making and triaging of patients.
CυBE: Coherent υ Beam Educator
NASA Astrophysics Data System (ADS)
Sureshkumar, Vivian Amos; Richardson, M.
2017-03-01
Holography has advanced rapidly over the years due to technical melioration in the field of optics. Three-dimensional imaging has gained importance to upgrade the existing imaging and display system. Holography has become one of the branches of optics gaining significant importance with a vast number of technical and industrial applications. When we address holography the first thing that comes to mind is projecting a three dimensional object on thin air. The word holography has always been confused between peppers ghost effect. The famous English phrase "A picture is worth a thousand words", means a complex idea can be conveyed by a single picture. The basic principle of holography sounds complex with all its technical terms. This paper aims to explain the concept of the CυBE: Coherent υ Beam Educator that contains a transmission hologram illuminated with a laser diode. This paper summarizes the construction details of the CυBE and the optical setup to record the transmission hologram. It also briefs the circuit connections for the laser diode that's works with an aid of a push button. When viewer presses the push button the original scene is reconstructed. It provides details regarding the angle of reference beam at recording and how the reference beam is compensated at reconstruction. Also this paper highlights how the magnification of the recorded image is affected with respect to the path length of the laser diode inside the box during reconstruction of the recorded hologram.
NASA Technical Reports Server (NTRS)
Pieters, Carle M.
1992-01-01
Science and technology applications for the Moon have not fully kept pace with technical advancements in sensor development and analytical information extraction capabilities. Appropriate unanswered questions for the Moon abound, but until recently there has been little motivation to link sophisticated technical capabilities with specific measurement and analysis projects. Over the last decade enormous technical progress has been made in the development of (1) CCD photometric array detectors; (2) visible to near-infrared imaging spectrometers; (3)infrared spectroscopy; (4) high-resolution dual-polarization radar imaging at 3.5, 12, and 70 cm; and equally important (5) data analysis and information extraction techniques using compact powerful computers. Parts of each of these have been tested separately, but there has been no programmatic effort to develop and optimize instruments to meet lunar science and resource assessment needs (e.g., specific wavelength range, resolution, etc.) nor to coordinate activities so that the symbiotic relation between different kinds of data can be fully realized. No single type of remotely acquired data completely characterizes the lunar environment, but there has been little opportunity for integration of diverse advanced sensor data for the Moon. Two examples of technology concepts for lunar measurements are given. Using VIS/near-IR spectroscopy, the mineral composition of surface material can be derived from visible and near-infrared radiation reflected from the surface. The surface and subsurface scattering properties of the Moon can be analyzed using radar backscattering imaging.
Uğurbil, Kamil; Xu, Junqian; Auerbach, Edward J.; Moeller, Steen; Vu, An; Duarte-Carvajalino, Julio M.; Lenglet, Christophe; Wu, Xiaoping; Schmitter, Sebastian; Van de Moortele, Pierre Francois; Strupp, John; Sapiro, Guillermo; De Martino, Federico; Wang, Dingxin; Harel, Noam; Garwood, Michael; Chen, Liyong; Feinberg, David A.; Smith, Stephen M.; Miller, Karla L.; Sotiropoulos, Stamatios N; Jbabdi, Saad; Andersson, Jesper L; Behrens, Timothy EJ; Glasser, Matthew F.; Van Essen, David; Yacoub, Essa
2013-01-01
The human connectome project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce ‘functional connectivity’; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3 Tesla, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 second for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 Tesla magnetic field are also presented, targeting higher resolution, specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields and power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure. PMID:23702417
Multiparametric magnetic resonance imaging of the prostate: current concepts*
Bittencourt, Leonardo Kayat; Hausmann, Daniel; Sabaneeff, Natalia; Gasparetto, Emerson Leandro; Barentsz, Jelle O.
2014-01-01
Multiparametric MR (mpMR) imaging is rapidly evolving into the mainstay in prostate cancer (PCa) imaging. Generally, the examination consists of T2-weighted sequences, diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) evaluation, and less often proton MR spectroscopy imaging (MRSI). Those functional techniques are related to biological properties of the tumor, so that DWI correlates to cellularity and Gleason scores, DCE correlates to angiogenesis, and MRSI correlates to cell membrane turnover. The combined use of those techniques enhances the diagnostic confidence and allows for better characterization of PCa. The present article reviews and illustrates the technical aspects and clinical applications of each component of mpMR imaging, in a practical approach from the urological standpoint. PMID:25741104
MR signal intensity: staying on the bright side in MR image interpretation
Bloem, Johan L; Reijnierse, Monique; Huizinga, Tom W J
2018-01-01
In 2003, the Nobel Prize for Medicine was awarded for contribution to the invention of MRI, reflecting the incredible value of MRI for medicine. Since 2003, enormous technical advancements have been made in acquiring MR images. However, MRI has a complicated, accident-prone dark side; images are not calibrated and respective images are dependent on all kinds of subjective choices in the settings of the machine, acquisition technique parameters, reconstruction techniques, data transmission, filtering and postprocessing techniques. The bright side is that understanding MR techniques increases opportunities to unravel characteristics of tissue. In this viewpoint, we summarise the different subjective choices that can be made to generate MR images and stress the importance of communication between radiologists and rheumatologists to correctly interpret images.
Kinoshita, Hidefumi; Nakagawa, Ken; Usui, Yukio; Iwamura, Masatsugu; Ito, Akihiro; Miyajima, Akira; Hoshi, Akio; Arai, Yoichi; Baba, Shiro; Matsuda, Tadashi
2015-08-01
Three-dimensional (3D) imaging systems have been introduced worldwide for surgical instrumentation. A difficulty of laparoscopic surgery involves converting two-dimensional (2D) images into 3D images and depth perception rearrangement. 3D imaging may remove the need for depth perception rearrangement and therefore have clinical benefits. We conducted a multicenter, open-label, randomized trial to compare the surgical outcome of 3D-high-definition (HD) resolution and 2D-HD imaging in laparoscopic radical prostatectomy (LRP), in order to determine whether an LRP under HD resolution 3D imaging is superior to that under HD resolution 2D imaging in perioperative outcome, feasibility, and fatigue. One-hundred twenty-two patients were randomly assigned to a 2D or 3D group. The primary outcome was time to perform vesicourethral anastomosis (VUA), which is technically demanding and may include a number of technical difficulties considered in laparoscopic surgeries. VUA time was not significantly shorter in the 3D group (26.7 min, mean) compared with the 2D group (30.1 min, mean) (p = 0.11, Student's t test). However, experienced surgeons and 3D-HD imaging were independent predictors for shorter VUA times (p = 0.000, p = 0.014, multivariate logistic regression analysis). Total pneumoperitoneum time was not different. No conversion case from 3D to 2D or LRP to open RP was observed. Fatigue was evaluated by a simulation sickness questionnaire and critical flicker frequency. Results were not different between the two groups. Subjective feasibility and satisfaction scores were significantly higher in the 3D group. Using a 3D imaging system in LRP may have only limited advantages in decreasing operation times over 2D imaging systems. However, the 3D system increased surgical feasibility and decreased surgeons' effort levels without inducing significant fatigue.
NASA Astrophysics Data System (ADS)
Enomoto, Ayano; Hirata, Hiroshi
2014-02-01
This article describes a feasibility study of parallel image-acquisition using a two-channel surface coil array in continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Parallel EPR imaging was performed by multiplexing of EPR detection in the frequency domain. The parallel acquisition system consists of two surface coil resonators and radiofrequency (RF) bridges for EPR detection. To demonstrate the feasibility of this method of parallel image-acquisition with a surface coil array, three-dimensional EPR imaging was carried out using a tube phantom. Technical issues in the multiplexing method of EPR detection were also clarified. We found that degradation in the signal-to-noise ratio due to the interference of RF carriers is a key problem to be solved.
Spinning Disk Confocal Imaging of Neutrophil Migration in Zebrafish
Lam, Pui-ying; Fischer, Robert S; Shin, William D.; Waterman, Clare M; Huttenlocher, Anna
2014-01-01
Live-cell imaging techniques have been substantially improved due to advances in confocal microscopy instrumentation coupled with ultrasensitive detectors. The spinning disk confocal system is capable of generating images of fluorescent live samples with broad dynamic range and high temporal and spatial resolution. The ability to acquire fluorescent images of living cells in vivo on a millisecond timescale allows the dissection of biological processes that have not previously been visualized in a physiologically relevant context. In vivo imaging of rapidly moving cells such as neutrophils can be technically challenging. In this chapter, we describe the practical aspects of imaging neutrophils in zebrafish embryos using spinning disk confocal microscopy. Similar setups can also be applied to image other motile cell types and signaling processes in translucent animals or tissues. PMID:24504955
The linac coherent light source single particle imaging road map
Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R. N. C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Santra, R.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.
2015-01-01
Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources. PMID:26798801
The linac coherent light source single particle imaging road map
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aquila, A.; Barty, A.; Bostedt, C.
Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electronmore » laser sources.« less
Lung magnetic resonance imaging for pneumonia in children.
Liszewski, Mark C; Görkem, Süreyya; Sodhi, Kushaljit S; Lee, Edward Y
2017-10-01
Technical factors have historically limited the role of MRI in the evaluation of pneumonia in children in routine clinical practice. As imaging technology has advanced, recent studies utilizing practical MR imaging protocols have shown MRI to be an accurate potential alternative to CT for the evaluation of pneumonia and its complications. This article provides up-to-date MR imaging techniques that can be implemented in most radiology departments to evaluate pneumonia in children. Imaging findings in pneumonia on MRI are also reviewed. In addition, the current literature describing the diagnostic performance of MRI for pneumonia is discussed. Furthermore, potential risks and limitations of MRI for the evaluation of pneumonia in children are described.
Digital image film generation: from the photoscientist's perspective
Boyd, John E.
1982-01-01
The technical sophistication of photoelectronic transducers, integrated circuits, and laser-beam film recorders has made digital imagery an alternative to traditional analog imagery for remote sensing. Because a digital image is stored in discrete digital values, image enhancement is possible before the data are converted to a photographic image. To create a special film-reproduction curve - which can simulate any desired gamma, relative film speed, and toe/shoulder response - the digital-to-analog transfer function of the film recorder is uniquely defined and implemented by a lookup table in the film recorder. Because the image data are acquired in spectral bands, false-color composites also can be given special characteristics by selecting a reproduction curve tailored for each band.
Fluorescence imaging host pathogen interactions: fifteen years benefit of hindsight….
Aulner, Nathalie; Danckaert, Anne; Fernandes, Julien; Nicola, Marie-Anne; Roux, Pascal; Salles, Audrey; Tinevez, Jean-Yves; Shorte, Spencer L
2018-03-19
We consider in review current state-of-the-art fluorescence microscopy for investigating the host-pathogen interface. Our perspective is honed from years with literally thousands of microbiologists using the variety of imaging technologies available within our dedicated BSL2/BSL3 optical imaging research service facilities at the Institut Pasteur Paris founded from scratch in 2001. During fifteen years learning from the success and failures of introducing different fluorescence imaging technologies, methods, and technical development strategies we provide here a synopsis review of our experience to date and a synthesis of how we see the future in perspective for fluorescence imaging at the host-pathogen interface. Copyright © 2018. Published by Elsevier Ltd.
Wagner, Mathilde; Corcuera-Solano, Idoia; Lo, Grace; Esses, Steven; Liao, Joseph; Besa, Cecilia; Chen, Nelson; Abraham, Ginu; Fung, Maggie; Babb, James S; Ehman, Richard L; Taouli, Bachir
2017-08-01
Purpose To assess the determinants of technical failure of magnetic resonance (MR) elastography of the liver in a large single-center study. Materials and Methods This retrospective study was approved by the institutional review board. Seven hundred eighty-one MR elastography examinations performed in 691 consecutive patients (mean age, 58 years; male patients, 434 [62.8%]) in a single center between June 2013 and August 2014 were retrospectively evaluated. MR elastography was performed at 3.0 T (n = 443) or 1.5 T (n = 338) by using a gradient-recalled-echo pulse sequence. MR elastography and anatomic image analysis were performed by two observers. Additional observers measured liver T2* and fat fraction. Technical failure was defined as no pixel value with a confidence index higher than 95% and/or no apparent shear waves imaged. Logistic regression analysis was performed to assess potential predictive factors of technical failure of MR elastography. Results The technical failure rate of MR elastography at 1.5 T was 3.5% (12 of 338), while it was higher, 15.3% (68 of 443), at 3.0 T. On the basis of univariate analysis, body mass index, liver iron deposition, massive ascites, use of 3.0 T, presence of cirrhosis, and alcoholic liver disease were all significantly associated with failure of MR elastography (P < .004); but on the basis of multivariable analysis, only body mass index, liver iron deposition, massive ascites, and use of 3.0 T were significantly associated with failure of MR elastography (P < .004). Conclusion The technical failure rate of MR elastography with a gradient-recalled-echo pulse sequence was low at 1.5 T but substantially higher at 3.0 T. Massive ascites, iron deposition, and high body mass index were additional independent factors associated with failure of MR elastography of the liver with a two-dimensional gradient-recalled-echo pulse sequence. © RSNA, 2017.
Panych, Lawrence P; Madore, Bruno
2018-01-01
The main risks associated with magnetic resonance imaging (MRI) have been extensively reported and studied; for example, everyday objects may turn into projectiles, energy deposition can cause burns, varying fields can induce nerve stimulation, and loud noises can lead to auditory loss. The present review article is geared toward providing intuition about the physical mechanisms that give rise to these risks. On the one hand, excellent literature already exists on the practical aspect of risk management, with clinical workflow and recommendations. On the other hand, excellent technical articles also exist that explain these risks from basic principles of electromagnetism. We felt that an underserved niche might be found between the two, ie, somewhere between basic science and practical advice, to help develop intuition about electromagnetism that might prove of practical value when working around MR scanners. Following a wide-ranging introduction, risks originating from the main magnetic field, the excitation RF electromagnetic field, and switching of the imaging gradients will be presented in turn. 5 Technical Efficacy: 1 J. Magn. Reson. Imaging 2018;47:28-43. © 2017 International Society for Magnetic Resonance in Medicine.
The smartphone brain scanner: a portable real-time neuroimaging system.
Stopczynski, Arkadiusz; Stahlhut, Carsten; Larsen, Jakob Eg; Petersen, Michael Kai; Hansen, Lars Kai
2014-01-01
Combining low-cost wireless EEG sensors with smartphones offers novel opportunities for mobile brain imaging in an everyday context. Here we present the technical details and validation of a framework for building multi-platform, portable EEG applications with real-time 3D source reconstruction. The system--Smartphone Brain Scanner--combines an off-the-shelf neuroheadset or EEG cap with a smartphone or tablet, and as such represents the first fully portable system for real-time 3D EEG imaging. We discuss the benefits and challenges, including technical limitations as well as details of real-time reconstruction of 3D images of brain activity. We present examples of brain activity captured in a simple experiment involving imagined finger tapping, which shows that the acquired signal in a relevant brain region is similar to that obtained with standard EEG lab equipment. Although the quality of the signal in a mobile solution using an off-the-shelf consumer neuroheadset is lower than the signal obtained using high-density standard EEG equipment, we propose mobile application development may offset the disadvantages and provide completely new opportunities for neuroimaging in natural settings.
Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications
Leng, Shuai; Yu, Lifeng; Fletcher, Joel G.
2015-01-01
In x-ray computed tomography (CT), materials having different elemental compositions can be represented by identical pixel values on a CT image (ie, CT numbers), depending on the mass density of the material. Thus, the differentiation and classification of different tissue types and contrast agents can be extremely challenging. In dual-energy CT, an additional attenuation measurement is obtained with a second x-ray spectrum (ie, a second “energy”), allowing the differentiation of multiple materials. Alternatively, this allows quantification of the mass density of two or three materials in a mixture with known elemental composition. Recent advances in the use of energy-resolving, photon-counting detectors for CT imaging suggest the ability to acquire data in multiple energy bins, which is expected to further improve the signal-to-noise ratio for material-specific imaging. In this review, the underlying motivation and physical principles of dual- or multi-energy CT are reviewed and each of the current technical approaches is described. In addition, current and evolving clinical applications are introduced. © RSNA, 2015 PMID:26302388
An innovative and shared methodology for event reconstruction using images in forensic science.
Milliet, Quentin; Jendly, Manon; Delémont, Olivier
2015-09-01
This study presents an innovative methodology for forensic science image analysis for event reconstruction. The methodology is based on experiences from real cases. It provides real added value to technical guidelines such as standard operating procedures (SOPs) and enriches the community of practices at stake in this field. This bottom-up solution outlines the many facets of analysis and the complexity of the decision-making process. Additionally, the methodology provides a backbone for articulating more detailed and technical procedures and SOPs. It emerged from a grounded theory approach; data from individual and collective interviews with eight Swiss and nine European forensic image analysis experts were collected and interpreted in a continuous, circular and reflexive manner. Throughout the process of conducting interviews and panel discussions, similarities and discrepancies were discussed in detail to provide a comprehensive picture of practices and points of view and to ultimately formalise shared know-how. Our contribution sheds light on the complexity of the choices, actions and interactions along the path of data collection and analysis, enhancing both the researchers' and participants' reflexivity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Removing inter-subject technical variability in magnetic resonance imaging studies.
Fortin, Jean-Philippe; Sweeney, Elizabeth M; Muschelli, John; Crainiceanu, Ciprian M; Shinohara, Russell T
2016-05-15
Magnetic resonance imaging (MRI) intensities are acquired in arbitrary units, making scans non-comparable across sites and between subjects. Intensity normalization is a first step for the improvement of comparability of the images across subjects. However, we show that unwanted inter-scan variability associated with imaging site, scanner effect, and other technical artifacts is still present after standard intensity normalization in large multi-site neuroimaging studies. We propose RAVEL (Removal of Artificial Voxel Effect by Linear regression), a tool to remove residual technical variability after intensity normalization. As proposed by SVA and RUV [Leek and Storey, 2007, 2008, Gagnon-Bartsch and Speed, 2012], two batch effect correction tools largely used in genomics, we decompose the voxel intensities of images registered to a template into a biological component and an unwanted variation component. The unwanted variation component is estimated from a control region obtained from the cerebrospinal fluid (CSF), where intensities are known to be unassociated with disease status and other clinical covariates. We perform a singular value decomposition (SVD) of the control voxels to estimate factors of unwanted variation. We then estimate the unwanted factors using linear regression for every voxel of the brain and take the residuals as the RAVEL-corrected intensities. We assess the performance of RAVEL using T1-weighted (T1-w) images from more than 900 subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as healthy controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compare RAVEL to two intensity-normalization-only methods: histogram matching and White Stripe. We show that RAVEL performs best at improving the replicability of the brain regions that are empirically found to be most associated with AD, and that these regions are significantly more present in structures impacted by AD (hippocampus, amygdala, parahippocampal gyrus, enthorinal area, and fornix stria terminals). In addition, we show that the RAVEL-corrected intensities have the best performance in distinguishing between MCI subjects and healthy subjects using the mean hippocampal intensity (AUC=67%), a marked improvement compared to results from intensity normalization alone (AUC=63% and 59% for histogram matching and White Stripe, respectively). RAVEL is promising for many other imaging modalities. Published by Elsevier Inc.
Chitale, Rohan; Ghobrial, George M; Lobel, Darlene; Harrop, James
2013-10-01
The learning and development of technical skills are paramount for neurosurgical trainees. External influences and a need for maximizing efficiency and proficiency have encouraged advancements in simulator-based learning models. To confirm the importance of establishing an educational curriculum for teaching minimally invasive techniques of pedicle screw placement using a computer-enhanced physical model of percutaneous pedicle screw placement with simultaneous didactic and technical components. A 2-hour educational curriculum was created to educate neurosurgical residents on anatomy, pathophysiology, and technical aspects associated with image-guided pedicle screw placement. Predidactic and postdidactic practical and written scores were analyzed and compared. Scores were calculated for each participant on the basis of the optimal pedicle screw starting point and trajectory for both fluoroscopy and computed tomographic navigation. Eight trainees participated in this module. Average mean scores on the written didactic test improved from 78% to 100%. The technical component scores for fluoroscopic guidance improved from 58.8 to 52.9. Technical score for computed tomography-navigated guidance also improved from 28.3 to 26.6. Didactic and technical quantitative scores with a simulator-based educational curriculum improved objectively measured resident performance. A minimally invasive spine simulation model and curriculum may serve a valuable function in the education of neurosurgical residents and outcomes for patients.
Nuclear cardiac imaging: Principles and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iskandrian, A.S.
1987-01-01
This book is divided into 11 chapters. The first three provide a short description of the instrumentation, radiopharmaceuticals, and imaging techniques used in nuclear cardiology. Chapter 4 discusses exercise testing. Chapter 5 gives the theory, technical aspects, and interpretations of thallium-201 myocardial imaging and radionuclide ventriculography. The remaining chapters discuss the use of these techniques in patients with coronary artery disease, acute myocardial infarction, valvular heart disease, and other forms of cardiac disease. The author intended to emphasize the implications of nuclear cardiology procedures on patient care management and to provide a comprehensive bibliography.
Diffusion-weighted imaging and demyelinating diseases: new aspects of an old advanced sequence.
Rueda-Lopes, Fernanda C; Hygino da Cruz, Luiz C; Doring, Thomas M; Gasparetto, Emerson L
2014-01-01
The purpose of this article is to discuss classic applications in diffusion-weighted imaging (DWI) in demyelinating disease and progression of DWI in the near future. DWI is an advanced technique used in the follow-up of demyelinating disease patients, focusing on the diagnosis of a new lesion before contrast enhancement. With technical advances, diffusion-tensor imaging; new postprocessing techniques, such as tract-based spatial statistics; new ways of calculating diffusion, such as kurtosis; and new applications for DWI and its spectrum are about to arise.
Transvaginal Ultrasound for the Diagnosis of Abnormal Uterine Bleeding.
Wheeler, Karen C; Goldstein, Steven R
2017-03-01
Transvaginal ultrasound is the first-line imaging test for the evaluation of abnormal uterine bleeding in both premenopausal and postmenopausal women. Transvaginal ultrasound can be used to diagnose structural causes of abnormal bleeding such as polyps, adenomyosis, leiomyomas, hyperplasia, and malignancy, and can also be beneficial in making the diagnosis of ovulatory dysfunction. Traditional 2-dimensional imaging is often enhanced by the addition of 3-dimension imaging with coronal reconstruction and saline infusion sonohysterography. In this article we discuss specific ultrasound findings and technical considerations useful in the diagnosis of abnormal uterine bleeding.
NASA Astrophysics Data System (ADS)
Holmes, John; Welzel, Julia
OCT is increasingly interesting for non-invasive skin imaging in Dermatology. Due to its resolution and imaging depth, OCT is already routinely established for diagnosis of nonmelanoma skin cancer, whereas for pigmented lesions, the resolution is still not high enough. OCT has also a high value for monitoring of treatment effects, for example to control healing after non-surgical topical treatment of basal cell carcinomas. In summary, there are several indications for applications of OCT to image skin diseases, and its importance will grow in the future due to further technical developments like speckle variance OCT.
Viking orbiter stereo imaging catalog
NASA Technical Reports Server (NTRS)
Blasius, K. R.; Vetrone, A. V.; Martin, M. D.
1980-01-01
The extremely long missions of the two Viking Orbiter spacecraft produced a wealth of photos of surface features. Many of which can be used to form stereo images allowing the earth-bound student of Mars to examine the subject in 3-D. This catalog is a technical guide to the use of stereo coverage within the complex Viking imaging data set. Since that data set is still growing (January, 1980, about 3 1/2 years after the mission began), a second edition of this catalog is planned with completion expected about November, 1980.
NASA Astrophysics Data System (ADS)
Fleckenstein, Monika; Schmitz-Valckenberg, Steffen; Holz, Frank G.
Age-related macular degeneration (AMD) is a complex disease with both genetic and environmental factors influencing its development. With the advent of high-resolution OCT imaging, the characterization of drusen in AMD has become possible. The in vivo morphologic characteristics imaged with SD-OCT may represent distinct subclasses of drusen variants, may relate closely to ultrastructural drusen elements identified in donor eyes, and may be useful imaging biomarkers for disease severity or risk of progression [Khanifar et al. Ophthalmology 115(11):1883-1890, 2008].
Mars Rover imaging systems and directional filtering
NASA Technical Reports Server (NTRS)
Wang, Paul P.
1989-01-01
Computer literature searches were carried out at Duke University and NASA Langley Research Center. The purpose is to enhance personal knowledge based on the technical problems of pattern recognition and image understanding which must be solved for the Mars Rover and Sample Return Mission. Intensive study effort of a large collection of relevant literature resulted in a compilation of all important documents in one place. Furthermore, the documents are being classified into: Mars Rover; computer vision (theory); imaging systems; pattern recognition methodologies; and other smart techniques (AI, neural networks, fuzzy logic, etc).
SUPERFUND REMOTE SENSING SUPPORT
This task provides remote sensing technical support to the Superfund program. Support includes the collection, processing, and analysis of remote sensing data to characterize hazardous waste disposal sites and their history. Image analysis reports, aerial photographs, and assoc...
Schloß, Manuel; Heckrodt, Jan; Schneider, Christian; Discher, Thomas; Krombach, Gabriele Anja
2015-05-01
We report a case of a pregnant 21-year-old woman with pulmonary tuberculosis in which magnetic resonance imaging of the lung was used to assess the extent and characteristics of the pathological changes. Although the lung has been mostly ignored in magnetic resonance imaging for many decades, today technical development enables detailed examinations of the lung. The technique is now entering the clinical arena and its indications are increasing. Magnetic resonance imaging of the lung is not only an alternative method without radiation exposure, it can provide additional information in pulmonary imaging compared to other modalities including computed tomography. We describe a successful application of magnetic resonance imaging of the lung and the imaging appearance of post-primary tuberculosis. This case report indicates that magnetic resonance imaging of the lung can potentially be the first choice imaging technique in pregnant women with suspected pulmonary tuberculosis.
Physics of fractional imaging in biomedicine.
Sohail, Ayesha; Bég, O A; Li, Zhiwu; Celik, Sebahattin
2018-03-12
The mathematics of imaging is a growing field of research and is evolving rapidly parallel to evolution in the field of imaging. Imaging, which is a sub-field of biomedical engineering, considers novel approaches to visualize biological tissues with the general goal of improving health. "Medical imaging research provides improved diagnostic tools in clinical settings and supports the development of drugs and other therapies. The data acquisition and diagnostic interpretation with minimum error are the important technical aspects of medical imaging. The image quality and resolution are really important in portraying the internal aspects of patient's body. Although there are several user friendly resources for processing image features, such as enhancement, colour manipulation and compression, the development of new processing methods is still worthy of efforts. In this article we aim to present the role of fractional calculus in imaging with the aid of practical examples. Copyright © 2018 Elsevier Ltd. All rights reserved.
Application of near-infrared image processing in agricultural engineering
NASA Astrophysics Data System (ADS)
Chen, Ming-hong; Zhang, Guo-ping; Xia, Hongxing
2009-07-01
Recently, with development of computer technology, the application field of near-infrared image processing becomes much wider. In this paper the technical characteristic and development of modern NIR imaging and NIR spectroscopy analysis were introduced. It is concluded application and studying of the NIR imaging processing technique in the agricultural engineering in recent years, base on the application principle and developing characteristic of near-infrared image. The NIR imaging would be very useful in the nondestructive external and internal quality inspecting of agricultural products. It is important to detect stored-grain insects by the application of near-infrared spectroscopy. Computer vision detection base on the NIR imaging would be help to manage food logistics. Application of NIR imaging promoted quality management of agricultural products. In the further application research fields of NIR image in the agricultural engineering, Some advices and prospect were put forward.
Handheld real-time volumetric imaging of the spine: technology development.
Tiouririne, Mohamed; Nguyen, Sarah; Hossack, John A; Owen, Kevin; William Mauldin, F
2014-03-01
Technical difficulties, poor image quality and reliance on pattern identifications represent some of the drawbacks of two-dimensional ultrasound imaging of spinal bone anatomy. To overcome these limitations, this study sought to develop real-time volumetric imaging of the spine using a portable handheld device. The device measured 19.2 cm × 9.2 cm × 9.0 cm and imaged at 5 MHz centre frequency. 2D imaging under conventional ultrasound and volumetric (3D) imaging in real time was achieved and verified by inspection using a custom spine phantom. Further device performance was assessed and revealed a 75-min battery life and an average frame rate of 17.7 Hz in volumetric imaging mode. The results suggest that real-time volumetric imaging of the spine is a feasible technique for more intuitive visualization of the spine. These results may have important ramifications for a large array of neuraxial procedures.
Technical report on semiautomatic segmentation using the Adobe Photoshop.
Park, Jin Seo; Chung, Min Suk; Hwang, Sung Bae; Lee, Yong Sook; Har, Dong-Hwan
2005-12-01
The purpose of this research is to enable users to semiautomatically segment the anatomical structures in magnetic resonance images (MRIs), computerized tomographs (CTs), and other medical images on a personal computer. The segmented images are used for making 3D images, which are helpful to medical education and research. To achieve this purpose, the following trials were performed. The entire body of a volunteer was scanned to make 557 MRIs. On Adobe Photoshop, contours of 19 anatomical structures in the MRIs were semiautomatically drawn using MAGNETIC LASSO TOOL and manually corrected using either LASSO TOOL or DIRECT SELECTION TOOL to make 557 segmented images. In a similar manner, 13 anatomical structures in 8,590 anatomical images were segmented. Proper segmentation was verified by making 3D images from the segmented images. Semiautomatic segmentation using Adobe Photoshop is expected to be widely used for segmentation of anatomical structures in various medical images.
NASA Astrophysics Data System (ADS)
Shalkov, Anton; Mamaeva, Mariya
2017-11-01
The article considers the questions of application of nondestructive methods control of reducers of conveyor belts as a means of transport. Particular attention is paid to such types of diagnostics of technical condition as thermal control and analysis of the state of lubricants. The urgency of carrying out types of nondestructive testing presented in the article is determined by the increase of energy efficiency of transport systems of coal and mining enterprises, in particular, reducers of belt conveyors. Periodic in-depth spectral-emission diagnostics and monitoring of a temperature mode of operation oil in the operation of the control equipment and its technical condition and prevent the MTBF allows the monitoring of the actual technical condition of the gearbox of a belt conveyor. In turn, the thermal imaging diagnostics reveals defects at the earliest stage of their formation and development, which allows planning the volumes and terms of equipment repair. Presents diagnostics of the technical condition will allow monitoring in time the technical condition of the equipment and avoiding its premature failure. Thereby it will increase the energy efficiency of both the transport system and the enterprise as a whole, and also avoid unreasonable increases in operating and maintenance costs.
Myocardial contrast echocardiography in mice: technical and physiological aspects.
Verkaik, Melissa; van Poelgeest, Erik M; Kwekkeboom, Rick F J; Ter Wee, Piet M; van den Brom, Charissa E; Vervloet, Marc G; Eringa, Etto C
2018-03-01
Myocardial contrast echocardiography (MCE) offers the opportunity to study myocardial perfusion defects in mice in detail. The value of MCE compared with single-photon emission computed tomography, positron emission tomography, and computed tomography consists of high spatial resolution, the possibility of quantification of blood volume, and relatively low costs. Nevertheless, a number of technical and physiological aspects should be considered to ensure reproducibility among research groups. The aim of this overview is to describe technical aspects of MCE and the physiological parameters that influence myocardial perfusion data obtained with this technique. First, technical aspects of MCE discussed in this technical review are logarithmic compression of ultrasound data by ultrasound systems, saturation of the contrast signal, and acquisition of images during different phases of the cardiac cycle. Second, physiological aspects of myocardial perfusion that are affected by the experimental design are discussed, including the anesthesia regimen, systemic cardiovascular effects of vasoactive agents used, and fluctuations in body temperature that alter myocardial perfusion. When these technical and physiological aspects of MCE are taken into account and adequately standardized, MCE is an easily accessible technique for mice that can be used to study the control of myocardial perfusion by a wide range of factors.
A novel data processing technique for image reconstruction of penumbral imaging
NASA Astrophysics Data System (ADS)
Xie, Hongwei; Li, Hongyun; Xu, Zeping; Song, Guzhou; Zhang, Faqiang; Zhou, Lin
2011-06-01
CT image reconstruction technique was applied to the data processing of the penumbral imaging. Compared with other traditional processing techniques for penumbral coded pinhole image such as Wiener, Lucy-Richardson and blind technique, this approach is brand new. In this method, the coded aperture processing method was used for the first time independent to the point spread function of the image diagnostic system. In this way, the technical obstacles was overcome in the traditional coded pinhole image processing caused by the uncertainty of point spread function of the image diagnostic system. Then based on the theoretical study, the simulation of penumbral imaging and image reconstruction was carried out to provide fairly good results. While in the visible light experiment, the point source of light was used to irradiate a 5mm×5mm object after diffuse scattering and volume scattering. The penumbral imaging was made with aperture size of ~20mm. Finally, the CT image reconstruction technique was used for image reconstruction to provide a fairly good reconstruction result.
Imaging windows for long-term intravital imaging
Alieva, Maria; Ritsma, Laila; Giedt, Randy J; Weissleder, Ralph; van Rheenen, Jacco
2014-01-01
Intravital microscopy is increasingly used to visualize and quantitate dynamic biological processes at the (sub)cellular level in live animals. By visualizing tissues through imaging windows, individual cells (e.g., cancer, host, or stem cells) can be tracked and studied over a time-span of days to months. Several imaging windows have been developed to access tissues including the brain, superficial fascia, mammary glands, liver, kidney, pancreas, and small intestine among others. Here, we review the development of imaging windows and compare the most commonly used long-term imaging windows for cancer biology: the cranial imaging window, the dorsal skin fold chamber, the mammary imaging window, and the abdominal imaging window. Moreover, we provide technical details, considerations, and trouble-shooting tips on the surgical procedures and microscopy setups for each imaging window and explain different strategies to assure imaging of the same area over multiple imaging sessions. This review aims to be a useful resource for establishing the long-term intravital imaging procedure. PMID:28243510
Skweres, Justin; Yang, Zhiyun; Gonzalez-Toledo, Eduardo
2014-12-01
When unexpected results are obtained with standard image collection, the nuclear medicine physician must consider many technical factors that may have contributed. When image quality is poor, prior radiotracer administration, among other things, should always be considered. Our case demonstrates how knowledge of patient history and basic principles of nuclear medicine physics allows recognition of the septal penetration artifact. This allows the nuclear medicine physician to tailor the exam to an individual patient and obtain the most useful diagnostic information for the clinician. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Imaging Fukushima Daiichi reactors with muons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.
2013-05-15
A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi tomore » make this determination in the near future.« less
Imaging Fukushima Daiichi reactors with muons
NASA Astrophysics Data System (ADS)
Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Lukić, Zarija; Masuda, Koji; Milner, Edward C.; Morris, Christopher L.; Perry, John O.
2013-05-01
A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.
Probst, Yasmine; Nguyen, Duc Thanh; Tran, Minh Khoi; Li, Wanqing
2015-07-27
Dietary assessment, while traditionally based on pen-and-paper, is rapidly moving towards automatic approaches. This study describes an Australian automatic food record method and its prototype for dietary assessment via the use of a mobile phone and techniques of image processing and pattern recognition. Common visual features including scale invariant feature transformation (SIFT), local binary patterns (LBP), and colour are used for describing food images. The popular bag-of-words (BoW) model is employed for recognizing the images taken by a mobile phone for dietary assessment. Technical details are provided together with discussions on the issues and future work.
[The procedure for documentation of digital images in forensic medical histology].
Putintsev, V A; Bogomolov, D V; Fedulova, M V; Gribunov, Iu P; Kul'bitskiĭ, B N
2012-01-01
This paper is devoted to the novel computer technologies employed in the studies of histological preparations. These technologies allow to visualize digital images, structurize the data obtained and store the results in computer memory. The authors emphasize the necessity to properly document digital images obtained during forensic-histological studies and propose the procedure for the formulation of electronic documents in conformity with the relevant technical and legal requirements. It is concluded that the use of digital images as a new study object permits to obviate the drawbacks inherent in the work with the traditional preparations and pass from descriptive microscopy to their quantitative analysis.
Using EO-1 Hyperion Images to Prototype Environmental Products for Hyspiri
NASA Technical Reports Server (NTRS)
Middleton, Elizabeth M.; Campbell, Petya K. E.; Ungar, Stephen G.; Ong, Lawrence; Zhang, Qingyuan; Huemmrich, K. Fred; Mandl, Daniel J.; Frye, Stuart W.
2011-01-01
In November 2010, the Earth Observing One (EO-1) Satellite Mission will successfully complete a decade of Earth imaging by its two unique instruments, the Hyperion and the Advanced Land Imager (ALI). Both instruments are serving as prototypes for new orbital sensors, and the EO-1 is a heritage platform for the upcoming German mission, EnMAP. We provide an overview of the mission's lifetime. We briefly describe calibration & validation activities and overview the technical and scientific accomplishments of this mission. Some examples of the Mission Science Office (MSO) products are provided, as is an example of a image collected for disaster monitoring.
A complete database for the Einstein imaging proportional counter
NASA Technical Reports Server (NTRS)
Helfand, David J.
1991-01-01
A complete database for the Einstein Imaging Proportional Counter (IPC) was completed. The original data that makes up the archive is described as well as the structure of the database, the Op-Ed analysis system, the technical advances achieved relative to the analysis of (IPC) data, the data products produced, and some uses to which the database has been put by scientists outside Columbia University over the past year.
2007-10-01
The atrial chamber that is connected to the inferior vena cava is typically the right atrium . The pulmonary veins typically empty into the left ...only “a left chest wall 6 cm scar consistent with surgical history.” The screening chest x-ray is presented below (Fig 1A). Technical limitations...Cardiac MRI images further define the internal cardiac anatomy. On a coronal bright blood MRI image (Fig. 1B; LA = left atrium ; LPA = left
UNDERWATER MAPPING USING GLORIA AND MIPS.
Chavez, Pat S.; Anderson, Jeffrey A.; Schoonmaker, James W.
1987-01-01
Advances in digital image processing of the (GLORIA) Geological Long-Range Induced Asdic) sidescan-sonar image data have made it technically and economically possible to map large areas of the ocean floor including the Exclusive Economic Zone. Software was written to correct both geometric and radiometric distortions that exist in the original raw GLORIA data. A digital mosaicking technique was developed enabling 2 degree by 2 degree quadrangles to be generated.
Digital Semaphore: Technical Feasibility of QR Code Optical Signaling for Fleet Communications
2013-06-01
Standards (http://www.iso.org) JIS Japanese Industrial Standard JPEG Joint Photographic Experts Group (digital image format; http://www.jpeg.org) LED...Denso Wave corporation in the 1990s for the Japanese automotive manufacturing industry. See Appendix A for full details. Reed-Solomon Error...eliminates camera blur induced by the shutter, providing clear images at extremely high frame rates. Thusly, digital cinema cameras are more suitable
C-arm Cone Beam Computed Tomography: A New Tool in the Interventional Suite.
Raj, Santhosh; Irani, Farah Gillan; Tay, Kiang Hiong; Tan, Bien Soo
2013-11-01
C-arm Cone Beam CT (CBCT) is a technology that is being integrated into many of the newer angiography systems in the interventional suite. Due to its ability to provide cross sectional imaging, it has opened a myriad of opportunities for creating new clinical applications. We review the technical aspects, current reported clinical applications and potential benefits of this technology. Searches were made via PubMed using the string "CBCT", "Cone Beam CT", "Cone Beam Computed Tomography" and "C-arm Cone Beam Computed Tomography". All relevant articles in the results were reviewed. CBCT clinical applications have been reported in both vascular and non-vascular interventions. They encompass many aspects of a procedure including preprocedural planning, intraprocedural guidance and postprocedural assessment. As a result, they have allowed the interventionalist to be safer and more accurate in performing image guided procedures. There are however several technical limitations. The quality of images produced is not comparable to conventional computed tomography (CT). Radiation doses are also difficult to quantify when compared to CT and fluoroscopy. CBCT technology in the interventional suite has contributed significant benefits to the patient despite its current limitations. It is a tool that will evolve and potentially become an integral part of imaging guidance for intervention.
Conley, David B.; Tan, Bruce; Bendok, Bernard R.; Batjer, H. Hunt; Chandra, Rakesh; Sidle, Douglas; Rahme, Rudy J.; Adel, Joseph G.; Fishman, Andrew J.
2011-01-01
Precise and safe management of complex skull base lesions can be enhanced by intraoperative computed tomography (CT) scanning. Surgery in these areas requires real-time feedback of anatomic landmarks. Several portable CT scanners are currently available. We present a comparison of our clinical experience with three portable scanners in skull base and craniofacial surgery. We present clinical case series and the participants were from the Northwestern Memorial Hospital. Three scanners are studied: one conventional multidetector CT (MDCT), two digital flat panel cone-beam CT (CBCT) devices. Technical considerations, ease of use, image characteristics, and integration with image guidance are presented for each device. All three scanners provide good quality images. Intraoperative scanning can be used to update the image guidance system in real time. The conventional MDCT is unique in its ability to resolve soft tissue. The flat panel CBCT scanners generally emit lower levels of radiation and have less metal artifact effect. In this series, intraoperative CT scanning was technically feasible and deemed useful in surgical decision-making in 75% of patients. Intraoperative portable CT scanning has significant utility in complex skull base surgery. This technology informs the surgeon of the precise extent of dissection and updates intraoperative stereotactic navigation. PMID:22470270
Matar, M; Picone, O; Dalmon, C; Ayoubi, J-M
2013-09-01
To evaluate the sonographers' knowledge of the National Technical Committee of Ultrasound's recommendations concerning second trimester ultrasound. Anonymous questionnaire was sent by e-mails containing 25 questions about demographic elements, the practice of second trimester ultrasound and the recommendations of the National Technical Committee of Ultrasound about second trimester ultrasound. Six hundred and eighty-four responses were obtained. Six hundred and fifty-three upon 684 (95%) of respondents practice second trimester ultrasound and 635 upon 653 (97%) know about the existence of the report of the National Technical Committee of Ultrasound. The rates of correct answers concerning recommended biometrical images vary between 97% for the biparietal diameter and head circumference, 98% for abdominal circumference and 100% for the femur length. While for morphological images, rates vary between 52% and 100%. A subgroup analysis (whether the respondents have already read the recommendations or not) showed that those who had read the recommendations have significantly better results than those who did not. Those who have already read the recommendations have better knowledge and global knowledge can be improved. National recommendations serve to promote a policy of quality assurance of ultrasound and may be used in medicolegal issues. The societies that make recommendations should more diffuse their work and practitioners should make effort to pursue the continuing medical education and to implement the recommendations. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Advanced Thermal Emission Imaging Systems Definition and Development
NASA Technical Reports Server (NTRS)
Blasius, Karl; Nava, David (Technical Monitor)
2002-01-01
Santa Barbara Remote Sensing (SBRS), Raytheon Company, is pleased to submit this quarterly progress report of the work performed in the third quarter of Year 2 of the Advanced THEMIS Project, July through September 2002. We review here progress in the proposed tasks. During July through September 2002 progress was made in two major tasks, Spectral Response Characterization and Flight Instrument Definition. Because of staffing problems and technical problems earlier in the program we have refocused the remaining time and budget on the key technical tasks. Current technical problems with a central piece of test equipment has lead us to request a 1 quarter extension to the period of performance. This request is being made through a separate letter independent of this report.
Prefocal station mechanical design concept study for the E-ELT
NASA Astrophysics Data System (ADS)
Jolley, Paul; Brunetto, Enzo; Frank, Christoph; Lewis, Steffan; Marchetti, Enrico
2016-07-01
The Nasmyth platforms of the E-ELT will contain one Prefocal Station (PFS) each. The main PFS functional requirements are to provide a focal plane to the three Nasmyth focal stations and the Coudé focus, optical sensing supporting telescope low order optimisation and seeing limited image quality, and optical sensing supporting characterising and phasing of M1 and other telescope subsystems. The PFS user requirements are used to derive the PFS technical requirements specification that will form the basis for design, development and production of the system. This specification process includes high-level architectural decisions and technical performance budget allocations. The mechanical design concepts reported here have been developed in order to validate key system specifications and associated technical budgets.
A multinational report of technical factors on stereotactic body radiotherapy for oligometastases.
Redmond, Kristin J; Lo, Simon S; Dagan, Roi; Poon, Ian; Foote, Matthew C; Erler, Darby; Lee, Young; Lohr, Frank; Biswas, Tithi; Ricardi, Umberto; Sahgal, Arjun
2017-05-01
Oligometastatic cancer is being increasingly managed with aggressive local therapy using stereotactic body radiation therapy (SBRT). However, few guidelines exist. We summarize the results of an international survey reviewing technical factors for extracranial SBRT for oligometastatic disease to guide safe management. Seven high-volume centers contributed. Levels of agreement were categorized as strong (6-7 common responses), moderate (4-5), low (2-3) or no agreement. We present the results of a multi-national and multi-institutional survey of technical factors of SBRT for extracranial oligometastases. Key methods including target delineation, prescription doses, normal tissue constraints, imaging and set-up for safe implementation and practice of SBRT for oligometastasis have been identified. This manuscript will serve as a foundation for future clinical evaluations.
NASA Astrophysics Data System (ADS)
Miyagi, Kazuya; Namihira, Yoshinori; Kasamatsu, Yuho; Hossain, Md. Anwar
2013-07-01
We demonstrate dynamic control of the effective area ( A eff) of photonic crystal fibers (PCFs) in the range of 18.1-8.22 μm2 and the mode field diameter in the range of 4.78-3.42 μm. This control was realized by altering their structural properties and varying the germanium (Ge) doping rate, which changed the refractive index difference (Δ n Ge) between 1.0 and 3.0% relative to the refractive index of the silica cladding. This was achieved by adjusting the Ge doping rate in the core and changing the radius ( d core) of the doped region, i.e., by changing the equivalent refractive index, using numerical calculations. Numerical results were verified by comparison with experimental results for a fabricated Gedoped PCF obtained by far-field scanning based on the ITU-T Petermann II definition. The proposed approach will simultaneously decrease Aeff and achieves high light confinement and high nonlinearity in PCFs. It enables architectonics/controllability of highly nonlinear PCFs with passive optical devices in photonic networks and life science applications.
Amaral, Fabienne Louise Juvêncio dos Santos; Motta, Márcia Heloyse Alves; da Silva, Laíla Pereira Gomes; Alves, Simone Bezerra
2012-11-01
This study seeks to analyze which are the variables associated with the difficulty of elderly people with disabilities gaining access to the health services. This is an observational study of an analytical cross-sectional nature, with a sample of 244 elderly people with disabilities. Data relating to socio-economic profile, the nature of the disability, and the conditions of access to health services were gathered. Version 11.0 of the Statistical Package for the Social Sciences software was used for descriptive, statistical and analytical assessment of the data. The protection variables for difficulties in being treated in the health services were: the lack of drains, culverts, trash, bags of refuse, or irregular floor surfaces; the absence of ramps on sidewalks and pavements; the availability of transport; ease in scheduling appointments; and the length of the waiting period to be attended. The number of factors listed shows that the architectonic barriers and the current situation of healthcare need to be adequate in order to ensure full access and use by the elderly with disabilities to the health services.
Functionalization of 3D scaffolds with protein-releasing biomaterials for intracellular delivery.
Seras-Franzoso, Joaquin; Steurer, Christoph; Roldán, Mònica; Vendrell, Meritxell; Vidaurre-Agut, Carla; Tarruella, Anna; Saldaña, Laura; Vilaboa, Nuria; Parera, Marc; Elizondo, Elisa; Ratera, Imma; Ventosa, Nora; Veciana, Jaume; Campillo-Fernández, Alberto J; García-Fruitós, Elena; Vázquez, Esther; Villaverde, Antonio
2013-10-10
Appropriate combinations of mechanical and biological stimuli are required to promote proper colonization of substrate materials in regenerative medicine. In this context, 3D scaffolds formed by compatible and biodegradable materials are under continuous development in an attempt to mimic the extracellular environment of mammalian cells. We have here explored how novel 3D porous scaffolds constructed by polylactic acid, polycaprolactone or chitosan can be decorated with bacterial inclusion bodies, submicron protein particles formed by releasable functional proteins. A simple dipping-based decoration method tested here specifically favors the penetration of the functional particles deeper than 300μm from the materials' surface. The functionalized surfaces support the intracellular delivery of biologically active proteins to up to more than 80% of the colonizing cells, a process that is slightly influenced by the chemical nature of the scaffold. The combination of 3D soft scaffolds and protein-based sustained release systems (Bioscaffolds) offers promise in the fabrication of bio-inspired hybrid matrices for multifactorial control of cell proliferation in tissue engineering under complex architectonic setting-ups. © 2013.
The architecture of psychological management: the Irish asylums (1801-1922).
Reuber, M
1996-11-01
This analysis examines some of the psychological, philosophical and sociological motives behind the development of pauper lunatic asylum architecture in Ireland during the time of the Anglo-Irish union (1801-1922). Ground plans and structural features are used to define five psycho-architectonic generations. While isolation and classification were the prime objectives in the first public asylum in Ireland (1810-1814), a combination of the ideas of a psychological, 'moral', management and 'panoptic' architecture led to a radial institutional design during the next phase of construction (1817-1835). The asylums of the third generation (1845-1855) lacked 'panoptic' features but they were still intended to allow a proper 'moral' management of the inmates, and to create a therapeutic family environment. By the time the institutions of the fourth epoch were erected (1862-1869) the 'moral' treatment approach had been given up, and asylums were built to allow a psychological management by 'association'. The last institutions (1894-1922) built before Ireland's acquisition of Dominion status (1922) were intended to foster the development of a curative society.
Grammatikakis, Ioannis Emm
2011-07-01
Minoan Civilization (3000-1150 BC) was the first European civilization on the GREEK island of Crete. Fabulous architectonical constructions like great palaces, wonderful frescoes, and pottery as well as jewellery characterize this amazing civilization. According to all existing descriptions from ancient Greek historians and philosophers like Plato, Thucydides, Strabon but also from all the archaeological findings men and women lived freely and peacefully participating equal in all daily activities, sports, and games. The women were predominating. Minoan women enjoyed a higher social status than other women in later civilizations. Investigation of all the existing data concerning the Minoan culture. Archaeological databases, as well as data from the National University of Athens and other Greek historical institutions were collected and analyzed in order to present the Minoan culture. The Minoic civilization represents a paradigm of a well being society in which the woman played a dominant role. She was the 'mother' but also the 'active woman', who participated in all city activities. Four thousand years later a prototype of a society in which the role of the mother was recognized in an admirably way remains a magnificent paradigm.
"Azul Platino": another Spanish natural stone to be considered as Global Heritage Stone Resource.
NASA Astrophysics Data System (ADS)
José Tejado, Juan; Mota, M. Isabel; Pereira, Dolores
2014-05-01
Several granites are quarried in Extremadura, Spain, with very good aesthetic and physic and mechanical characteristics. "Azul Platino" has a striking bluish colour and its properties make this granite a perfect option for most applications as ornamental rocks. This granite has been used for centuries, first in the architectonic heritage of the extraction surrounding area, but afterwards in many important projects in Spain, Europe and all around the world: La Guardia Airport (NYC, USA), Yokohama Bridge (Tokyo, Japan), European Parliament (Brussels, Belgium), Planetarium (Valencia, Spain), Tenerife Auditorium (Tenerife, Spain), Suntec City (Singapore), MTR Kowlonn Station (Hong Kong), O'Connel Street (Dublin, Ireland), .... One important characteristic of this natural stone is the low radon exhalation that all the varieties, including the more weathered ones, show. For being a granite, this is an important characteristic for its use, both in interior and exterior use. But "Azul Platino" accomplishes all requirements to be considered as a nominee for Global Heritage Stone Resource consideration. Together with other local natural stones, it could be part as well of a Global Heritage Stone Province nomination.
Professional Growth: From First Job to Retirement.
ERIC Educational Resources Information Center
Hitt, Dorothy
1987-01-01
The author discusses how secretaries can manage their own professional development. Major points are (1) practice and update technical skills, (2) work toward certification, and (3) maintain a professional image, good etiquette, and a positive attitude. (CH)
Characterizing soil erosion potential using electrical resistivity imaging : technical summary.
DOT National Transportation Integrated Search
2017-04-01
The erosion rate, or erodibility, of soil depends on many soil characteristics : including: plasticity, water content, grain size, percent clay, compaction, and shear : strength. Many of these characteristics also influence soil in situ bulk electric...
NASA Technical Reports Server (NTRS)
Brown, Robert A. (Editor)
1993-01-01
The scientific and technical basis for an Advanced Camera (AC) for the Hubble Space Telescope (HST) is discussed. In March 1992, the NASA Program Scientist for HST invited the Space Telescope Science Institute to conduct a community-based study of an AC, which would be installed on a scheduled HST servicing mission in 1999. The study had three phases: a broad community survey of views on candidate science program and required performance of the AC, an analysis of technical issues relating to its implementation, and a panel of experts to formulate conclusions and prioritize recommendations. From the assessment of the imaging tasks astronomers have proposed for or desired from HST, we believe the most valuable 1999 instrument would be a camera with both near ultraviolet/optical (NUVO) and far ultraviolet (FUV) sensitivity, and with both wide field and high resolution options.
NASA Technical Reports Server (NTRS)
Watson, Dan M.
1997-01-01
Under the terms of our contract with NASA Ames Research Center, the University of Rochester (UR) offers the following final technical report on grant NAG 2-958, Molecular shocks associated with massive young stars: CO line images with a new far-infrared spectroscopic camera, given for implementation of the UR Far-Infrared Spectroscopic Camera (FISC) on the Kuiper Airborne Observatory (KAO), and use of this camera for observations of star-formation regions 1. Two KAO flights in FY 1995, the final year of KAO operations, were awarded to this program, conditional upon a technical readiness confirmation which was given in January 1995. The funding period covered in this report is 1 October 1994 - 30 September 1996. The project was supported with $30,000, and no funds remained at the conclusion of the project.
Application of nonlinear ultrasonics to inspection of stainless steel for dry storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulrich, Timothy James II; Anderson, Brain E.; Remillieux, Marcel C.
This report summarized technical work conducted by LANL staff an international collaborators in support of the UFD Storage Experimentation effort. The focus of the current technical work is on the detection and imaging of a failure mechanism known as stress corrosion cracking (SCC) in stainless steel using the nonlinear ultrasonic technique known as TREND. One of the difficulties faced in previous work is in finding samples that contain realistically sized SCC. This year such samples were obtained from EPRI. Reported here are measurements made on these samples. One of the key findings is the ability to detect subsurface changes tomore » the direction in which a crack is penetrating into the sample. This result follows from last year's report that demonstrated the ability of TREND techniques to image features below the sample surface. A new collaboration was established with AGH University of Science and Technology, Krakow, Poland.« less
Saranathan, Manojkumar; Worters, Pauline W; Rettmann, Dan W; Winegar, Blair; Becker, Jennifer
2017-12-01
A pedagogical review of fluid-attenuated inversion recovery (FLAIR) and double inversion recovery (DIR) imaging is conducted in this article. The basics of the two pulse sequences are first described, including the details of the inversion preparation and imaging sequences with accompanying mathematical formulae for choosing the inversion time in a variety of scenarios for use on clinical MRI scanners. Magnetization preparation (or T2prep), a strategy for improving image signal-to-noise ratio and contrast and reducing T 1 weighting at high field strengths, is also described. Lastly, image artifacts commonly associated with FLAIR and DIR are described with clinical examples, to help avoid misdiagnosis. 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1590-1600. © 2017 International Society for Magnetic Resonance in Medicine.
Venus Aerobot Surface Science Imaging System (VASSIS)
NASA Technical Reports Server (NTRS)
Greeley, Ronald
1999-01-01
The VASSIS task was to design and develop an imaging system and container for operation above the surface of Venus in preparation for a Discovery-class mission involving a Venus aerobot balloon. The technical goals of the effort were to: a) evaluate the possible nadir-viewed surface image quality as a function of wavelength and altitude in the Venus lower atmosphere, b) design a pressure vessel to contain the imager and supporting electronics that will meet the environmental requirements of the VASSIS mission, c) design and build a prototype imaging system including an Active-Pixel Sensor camera head and VASSIS-like optics that will meet the science requirements. The VASSIS science team developed a set of science requirements for the imaging system upon which the development work of this task was based.
Three-Dimensional Photoactivated Localization Microscopy with Genetically Expressed Probes
Temprine, Kelsey; York, Andrew G.; Shroff, Hari
2017-01-01
Photoactivated localization microscopy (PALM) and related single-molecule imaging techniques enable biological image acquisition at ~20 nm lateral and ~50–100 nm axial resolution. Although such techniques were originally demonstrated on single imaging planes close to the coverslip surface, recent technical developments now enable the 3D imaging of whole fixed cells. We describe methods for converting a 2D PALM into a system capable of acquiring such 3D images, with a particular emphasis on instrumentation that is compatible with choosing relatively dim, genetically expressed photoactivatable fluorescent proteins (PA-FPs) as PALM probes. After reviewing the basics of 2D PALM, we detail astigmatic and multiphoton imaging approaches well suited to working with PA-FPs. We also discuss the use of open-source localization software appropriate for 3D PALM. PMID:25391803
Some technical considerations on the evolution of the IBIS system. [Image Based Information System
NASA Technical Reports Server (NTRS)
Bryant, N. A.; Zobrist, A. L.
1982-01-01
In connection with work related to the use of earth-resources images, it became apparent by 1974, that certain system improvements are necessary for the efficient processing of digital data. To resolve this dilemma, Billingsley and Bryant (1975) proposed the use of image processing technology. Bryant and Zobrist (1976) reported the development of the Image Based Information System (IBIS) as a subset of an overall Video Image Communication and Retrieval (VICAR) image processing system. A description of IBIS is presented, and its employment in connection with advanced applications is discussed. It is concluded that several important lessons have been learned from the development of IBIS. The development of a flexible system such as IBIS is found to rest upon the prior development of a general purpose image processing system, such as VICAR.
Developing a knowledge base to support the annotation of ultrasound images of ectopic pregnancy.
Dhombres, Ferdinand; Maurice, Paul; Friszer, Stéphanie; Guilbaud, Lucie; Lelong, Nathalie; Khoshnood, Babak; Charlet, Jean; Perrot, Nicolas; Jauniaux, Eric; Jurkovic, Davor; Jouannic, Jean-Marie
2017-01-31
Ectopic pregnancy is a frequent early complication of pregnancy associated with significant rates of morbidly and mortality. The positive diagnosis of this condition is established through transvaginal ultrasound scanning. The timing of diagnosis depends on the operator expertise in identifying the signs of ectopic pregnancy, which varies dramatically among medical staff with heterogeneous training. Developing decision support systems in this context is expected to improve the identification of these signs and subsequently improve the quality of care. In this article, we present a new knowledge base for ectopic pregnancy, and we demonstrate its use on the annotation of clinical images. The knowledge base is supported by an application ontology, which provides the taxonomy, the vocabulary and definitions for 24 types and 81 signs of ectopic pregnancy, 484 anatomical structures and 32 technical elements for image acquisition. The knowledge base provides a sign-centric model of the domain, with the relations of signs to ectopic pregnancy types, anatomical structures and the technical elements. The evaluation of the ontology and knowledge base demonstrated a positive feedback from a panel of 17 medical users. Leveraging these semantic resources, we developed an application for the annotation of ultrasound images. Using this application, 6 operators achieved a precision of 0.83 for the identification of signs in 208 ultrasound images corresponding to 35 clinical cases of ectopic pregnancy. We developed a new ectopic pregnancy knowledge base for the annotation of ultrasound images. The use of this knowledge base for the annotation of ultrasound images of ectopic pregnancy showed promising results from the perspective of clinical decision support system development. Other gynecological disorders and fetal anomalies may benefit from our approach.
Obese patients and radiography literature: what do we know about a big issue?
Le, Nhat Tan Thanh; Robinson, John; Lewis, Sarah J
2015-01-01
Obesity is a global health issue with obese patients requiring specialised diagnosis, treatment and care through the health service. The practical and social difficulties associated with medical imaging of obese patients are an increasingly common problem and it is currently unknown how student and qualified radiographers perceive and respond to these challenges. By better understanding challenges presented in providing quality imaging and care of imaging obese patients, education for both qualified and student radiographers can be enhanced. Radiographers are heavily reliant on visual and tactile senses to locate the position of anatomical structures for diagnostic imaging and determine radiation exposure through a delicate consideration of dose, image quality and anatomical attenuation. However, obese patients require modifications to routine radiographic practice in terms of movement/assisted positioning, equipment capabilities to take increased weight or coverage. These patients may also be subject to compromised radiological diagnosis through poor visualisation of structures. In this paper, the professional and educational literature was narratively reviewed to assess gaps in the evidence base related to the skill and care knowledge for obese patients. Literature was sourced relating to discrete radiographic considerations such as the technical factors of imaging obese patients, exposure and the impact of obesity on imaging departments’ service provisions. The recent literature (post-2000 to coincide with the sharp increase in global obesity) on the perceptions of health professionals and student health practitioners has also been explored because there are no specific radiographer studies to report. By understanding the research in similar fields, we may identify what common attitudes qualified and student radiographer's hold and what challenges, technical and care related, can be prepared for. PMID:26229678
Obese patients and radiography literature: what do we know about a big issue?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Nhat Tan Thanh; Robinson, John; Lewis, Sarah J, E-mail: sarah.lewis@sydney.edu.au
Obesity is a global health issue with obese patients requiring specialised diagnosis, treatment and care through the health service. The practical and social difficulties associated with medical imaging of obese patients are an increasingly common problem and it is currently unknown how student and qualified radiographers perceive and respond to these challenges. By better understanding challenges presented in providing quality imaging and care of imaging obese patients, education for both qualified and student radiographers can be enhanced. Radiographers are heavily reliant on visual and tactile senses to locate the position of anatomical structures for diagnostic imaging and determine radiation exposuremore » through a delicate consideration of dose, image quality and anatomical attenuation. However, obese patients require modifications to routine radiographic practice in terms of movement/assisted positioning, equipment capabilities to take increased weight or coverage. These patients may also be subject to compromised radiological diagnosis through poor visualisation of structures. In this paper, the professional and educational literature was narratively reviewed to assess gaps in the evidence base related to the skill and care knowledge for obese patients. Literature was sourced relating to discrete radiographic considerations such as the technical factors of imaging obese patients, exposure and the impact of obesity on imaging departments’ service provisions. The recent literature (post-2000 to coincide with the sharp increase in global obesity) on the perceptions of health professionals and student health practitioners has also been explored because there are no specific radiographer studies to report. By understanding the research in similar fields, we may identify what common attitudes qualified and student radiographer's hold and what challenges, technical and care related, can be prepared for.« less
Updating the OMERACT Filter: Implications for imaging and soluble biomarkers
D’Agostino, Maria-Antonietta; Boers, Maarten; Kirwan, John; van der Heijde, Desirée; Østergaard, Mikkel; Schett, Georg; Landewé, Robert B.M.; Maksymowych, Walter P.; Naredo, Esperanza; Dougados, Maxime; Iagnocco, Annamaria; Bingham, Clifton O.; Brooks, Peter; Beaton, Dorcas; Gandjbakhch, Frederique; Gossec, Laure; Guillemin, Francis; Hewlett, Sarah; Kloppenburg, Margreet; March, Lyn; Mease, Philip J; Moller, Ingrid; Simon, Lee S; Singh, Jasvinder A; Strand, Vibeke; Wakefield, Richard J; Wells, George; Tugwell, Peter; Conaghan, Philip G
2014-01-01
Objective The OMERACT Filter provides a framework for the validation of outcome measures for use in rheumatology clinical research. However, imaging and biochemical measures may face additional validation challenges due to their technical nature. The Imaging and Soluble Biomarker Session at OMERACT 11 aimed to provide a guide for the iterative development of an imaging or biochemical measurement instrument so it can be used in therapeutic assessment. Methods A hierarchical structure was proposed, reflecting 3 dimensions needed for validating an imaging or biochemical measurement instrument: outcome domain(s), study setting and performance of the instrument. Movement along the axes in any dimension reflects increasing validation. For a given test instrument, the 3-axis structure assesses the extent to which the instrument is a validated measure for the chosen domain, whether it assesses a patient or disease centred-variable, and whether its technical performance is adequate in the context of its application. Some currently used imaging and soluble biomarkers for rheumatoid arthritis, spondyloarthritis and knee osteoarthritis were then evaluated using the original OMERACT filter and the newly proposed structure. Break-out groups critically reviewed the extent to which the candidate biomarkers complied with the proposed step-wise approach, as a way of examining the utility of the proposed 3 dimensional structure. Results Although there was a broad acceptance of the value of the proposed structure in general, some areas for improvement were suggested including clarification of criteria for achieving a certain level of validation and how to deal with extension of the structure to areas beyond clinical trials. Conclusion General support was obtained for a proposed tri-axis structure to assess validation of imaging and soluble biomarkers; nevertheless, additional work is required to better evaluate its place within the OMERACT Filter 2.0. PMID:24584916
Updating the OMERACT filter: implications for imaging and soluble biomarkers.
D'Agostino, Maria-Antonietta; Boers, Maarten; Kirwan, John; van der Heijde, Désirée; Østergaard, Mikkel; Schett, Georg; Landewé, Robert B; Maksymowych, Walter P; Naredo, Esperanza; Dougados, Maxime; Iagnocco, Annamaria; Bingham, Clifton O; Brooks, Peter M; Beaton, Dorcas E; Gandjbakhch, Frederique; Gossec, Laure; Guillemin, Francis; Hewlett, Sarah E; Kloppenburg, Margreet; March, Lyn; Mease, Philip J; Moller, Ingrid; Simon, Lee S; Singh, Jasvinder A; Strand, Vibeke; Wakefield, Richard J; Wells, George A; Tugwell, Peter; Conaghan, Philip G
2014-05-01
The Outcome Measures in Rheumatology (OMERACT) Filter provides a framework for the validation of outcome measures for use in rheumatology clinical research. However, imaging and biochemical measures may face additional validation challenges because of their technical nature. The Imaging and Soluble Biomarker Session at OMERACT 11 aimed to provide a guide for the iterative development of an imaging or biochemical measurement instrument so it can be used in therapeutic assessment. A hierarchical structure was proposed, reflecting 3 dimensions needed for validating an imaging or biochemical measurement instrument: outcome domain(s), study setting, and performance of the instrument. Movement along the axes in any dimension reflects increasing validation. For a given test instrument, the 3-axis structure assesses the extent to which the instrument is a validated measure for the chosen domain, whether it assesses a patient-centered or disease-centered variable, and whether its technical performance is adequate in the context of its application. Some currently used imaging and soluble biomarkers for rheumatoid arthritis, spondyloarthritis, and knee osteoarthritis were then evaluated using the original OMERACT Filter and the newly proposed structure. Breakout groups critically reviewed the extent to which the candidate biomarkers complied with the proposed stepwise approach, as a way of examining the utility of the proposed 3-dimensional structure. Although there was a broad acceptance of the value of the proposed structure in general, some areas for improvement were suggested including clarification of criteria for achieving a certain level of validation and how to deal with extension of the structure to areas beyond clinical trials. General support was obtained for a proposed tri-axis structure to assess validation of imaging and soluble biomarkers; nevertheless, additional work is required to better evaluate its place within the OMERACT Filter 2.0.
Koukourakis, G; Maravelis, G; Koukouraki, S; Padelakos, P; Kouloulias, V
2009-01-01
The concept of emission and transmission tomography was introduced by David Kuhl and Roy Edwards in the late 1950s. Their work later led to the design and construction of several tomographic instruments at the University of Pennsylvania. Tomographic imaging techniques were further developed by Michel Ter-Pogossian, Michael E. Phelps and others at the Washington University School of Medicine. Positron emission tomography (PET) is a nuclear medicine imaging technique which produces a 3-dimensional image or map of functional processes in the body. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is introduced into the body on a biologically active molecule. Images of tracer concentration in 3-dimensional space within the body are then reconstructed by computer analysis. In modern scanners, this reconstruction is often accomplished with the aid of a CT X-ray scan performed on the patient during the same session, in the same machine. If the biologically active molecule chosen for PET is 18F-fluorodeoxyglucose (FDG), an analogue of glucose, the concentrations of tracer imaged give tissue metabolic activity in terms of regional glucose uptake. Although use of this tracer results in the most common type of PET scan, other tracer molecules are used in PET to image the tissue concentration of many other types of molecules of interest. The main role of this article was to analyse the available types of radiopharmaceuticals used in PET-CT along with the principles of its clinical and technical considerations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruners, Philipp, E-mail: bruners@hia.rwth-aachen.d; Braunschweig, Till; Hodenius, Michael
2010-02-15
The objective of this study was to assess the technical feasibility of CT-guided magnetic thermoablation for the treatment of malignant kidney tumors in a VX2 tumor rabbit model. VX2 tumors were implanted into the kidneys of five rabbits and allowed to grow for 2 weeks. After preinterventional CT perfusion imaging, CT-guided injection of superparamagnetic iron oxide particles (300 {mu}l) was performed, followed by exposure of the animals to an alternating electromagnetic field for 15 min ({approx}0.32 kA/m). Then animals underwent CT perfusion imaging again. Afterward, animals were sacrificed and kidneys were dissected for macroscopic and histological evaluation. Changes in perfusionmore » before and after exposure to the alternating magnetic field were analyzed. In one animal no tumor growth could be detected so the animal was used for optimization of the ablation procedure including injection technique and peri-interventional cross-sectional imaging (CT, MRI). After image-guided intratumoral injection of ferrofluids, the depiction of nanoparticle distribution by CT correlated well with macroscopic evaluation of the dissected kidneys. MRI was limited due to severe susceptibility artefacts. Postinterventional CT perfusion imaging revealed a perfusion deficiency around the ferrofluid deposits. Histological workup showed different zones of thermal damage adjacent to the ferrofluid deposits. In conclusion, CT-guided magnetic thermoablation of malignant kidney tumors is technically feasible in an animal model and results in a perfusion deficiency indicating tumor necrosis as depicted by CT perfusion imaging and shown in histological evaluation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veličković, Dušan; Chu, Rosalie K.; Carrell, Alyssa A.
One critical aspect of mass spectrometry imaging (MSI) is the need to confidently identify detected analytes. While orthogonal tandem MS (e.g., LC-MS 2) experiments from sample extracts can assist in annotating ions, the spatial information about these molecules is lost. Accordingly, this could cause mislead conclusions, especially in cases where isobaric species exhibit different distributions within a sample. In this Technical Note, we employed a multimodal imaging approach, using matrix assisted laser desorption/ionization (MALDI)-MSI and liquid extraction surface analysis (LESA)-MS 2I, to confidently annotate and One critical aspect of mass spectrometry imaging (MSI) is the need to confidently identify detectedmore » analytes. While orthogonal tandem MS (e.g., LC-MS2) experiments from sample extracts can assist in annotating ions, the spatial information about these molecules is lost. Accordingly, this could cause mislead conclusions, especially in cases where isobaric species exhibit different distributions within a sample. In this Technical Note, we employed a multimodal imaging approach, using matrix assisted laser desorption/ionization (MALDI)-MSI and liquid extraction surface analysis (LESA)-MS 2I, to confidently annotate and localize a broad range of metabolites involved in a tripartite symbiosis system of moss, cyanobacteria, and fungus. We found that the combination of these two imaging modalities generated very congruent ion images, providing the link between highly accurate structural information onfered by LESA and high spatial resolution attainable by MALDI. These results demonstrate how this combined methodology could be very useful in differentiating metabolite routes in complex systems.« less
Evaluation of automatic image quality assessment in chest CT - A human cadaver study.
Franck, Caro; De Crop, An; De Roo, Bieke; Smeets, Peter; Vergauwen, Merel; Dewaele, Tom; Van Borsel, Mathias; Achten, Eric; Van Hoof, Tom; Bacher, Klaus
2017-04-01
The evaluation of clinical image quality (IQ) is important to optimize CT protocols and to keep patient doses as low as reasonably achievable. Considering the significant amount of effort needed for human observer studies, automatic IQ tools are a promising alternative. The purpose of this study was to evaluate automatic IQ assessment in chest CT using Thiel embalmed cadavers. Chest CT's of Thiel embalmed cadavers were acquired at different exposures. Clinical IQ was determined by performing a visual grading analysis. Physical-technical IQ (noise, contrast-to-noise and contrast-detail) was assessed in a Catphan phantom. Soft and sharp reconstructions were made with filtered back projection and two strengths of iterative reconstruction. In addition to the classical IQ metrics, an automatic algorithm was used to calculate image quality scores (IQs). To be able to compare datasets reconstructed with different kernels, the IQs values were normalized. Good correlations were found between IQs and the measured physical-technical image quality: noise (ρ=-1.00), contrast-to-noise (ρ=1.00) and contrast-detail (ρ=0.96). The correlation coefficients between IQs and the observed clinical image quality of soft and sharp reconstructions were 0.88 and 0.93, respectively. The automatic scoring algorithm is a promising tool for the evaluation of thoracic CT scans in daily clinical practice. It allows monitoring of the image quality of a chest protocol over time, without human intervention. Different reconstruction kernels can be compared after normalization of the IQs. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
State-of-the-art radiation detectors for medical imaging: Demands and trends
NASA Astrophysics Data System (ADS)
Darambara, Dimitra G.
2006-12-01
Over the last half-century a variety of significant technical advances in several scientific fields has been pointing to an exploding growth in the field of medical imaging leading to a better interpretation of more specific anatomical, biochemical and molecular pathways. In particular, the development of novel imaging detectors and readout electronics has been critical to the advancement of medical imaging allowing the invention of breakthrough platforms for simultaneous acquisition of multi-modality images at molecular level. The present paper presents a review of the challenges, demands and constraints on radiation imaging detectors imposed by the nature of the modality and the physics of the imaging source. This is followed by a concise review and perspective on various types of state-of-the-art detector technologies that have been developed to meet these requirements. Trends, prospects and new concepts for future imaging detectors are also highlighted.
NASA Astrophysics Data System (ADS)
Lawman, Samuel; Romano, Vito; Madden, Peter W.; Mason, Sharon; Williams, Bryan M.; Zheng, Yalin; Shen, Yao-Chun
2018-03-01
Ultra high axial resolution (UHR) was demonstrated early in the development of optical coherence tomography (OCT), but has not yet reached clinical practice. We present the combination of supercontinuum light source and line field (LF-) OCT as a technical and economical route to get UHR-OCT into clinic and other OCT application areas. We directly compare images of a human donor cornea taken with low and high resolution current generation clinical OCT systems with UHR-LF-OCT. These images highlight the massive information increase of UHR-OCT. Application to pharmaceutical pellets, and the functionality and imaging performance of different imaging spectrograph choices for LF- OCT are also demonstrated.
Coherent Raman Scattering Microscopy in Biology and Medicine.
Zhang, Chi; Zhang, Delong; Cheng, Ji-Xin
2015-01-01
Advancements in coherent Raman scattering (CRS) microscopy have enabled label-free visualization and analysis of functional, endogenous biomolecules in living systems. When compared with spontaneous Raman microscopy, a key advantage of CRS microscopy is the dramatic improvement in imaging speed, which gives rise to real-time vibrational imaging of live biological samples. Using molecular vibrational signatures, recently developed hyperspectral CRS microscopy has improved the readout of chemical information available from CRS images. In this article, we review recent achievements in CRS microscopy, focusing on the theory of the CRS signal-to-noise ratio, imaging speed, technical developments, and applications of CRS imaging in bioscience and clinical settings. In addition, we present possible future directions that the use of this technology may take.
Coherent Raman Scattering Microscopy in Biology and Medicine
Zhang, Chi; Zhang, Delong; Cheng, Ji-Xin
2016-01-01
Advancements in coherent Raman scattering (CRS) microscopy have enabled label-free visualization and analysis of functional, endogenous biomolecules in living systems. When compared with spontaneous Raman microscopy, a key advantage of CRS microscopy is the dramatic improvement in imaging speed, which gives rise to real-time vibrational imaging of live biological samples. Using molecular vibrational signatures, recently developed hyperspectral CRS microscopy has improved the readout of chemical information available from CRS images. In this article, we review recent achievements in CRS microscopy, focusing on the theory of the CRS signal-to-noise ratio, imaging speed, technical developments, and applications of CRS imaging in bioscience and clinical settings. In addition, we present possible future directions that the use of this technology may take. PMID:26514285
Technological Innovations in Magnetic Resonance for Early Detection of Cardiovascular Diseases.
Santarelli, Maria F; Positano, Vincenzo; Martini, Nicola; Valvano, Giuseppe; Landini, Luigi
2016-01-01
Most recent technical innovations in cardiovascular MR imaging (CMRI) are presented in this review. They include hardware and software developments, and novelties in parametric mapping. All these recent improvements lead to high spatial and temporal resolution and quantitative information on the heart structure and function. They make it achievable ambitious goals in the field of magnetic resonance, such as the early detection of cardiovascular pathologies. In this review article, we present recent innovations in CMRI, emphasizing the progresses performed and the solutions proposed to some yet opened technical problems.
An "Intelligent" Optical Design Program
NASA Astrophysics Data System (ADS)
Bohachevsky, I. O.; Viswanathan, V. K.; Woodfin, G.
1984-06-01
Described is a general approach to the development of computer programs capable of designing image-forming optical systems without human intervention and of improving their performance with repeated attempts. The approach utilizes two ideas: 1) interpretation of technical design as a mapping in the configuration space of technical characteristics and 2) development of an "intelligent" routine that recognizes global optima. Examples of lens systems designed and used in the development of the general approach are presented, current status of the project is summarized, and plans for the future efforts are indicated.
Thyroid nodule ultrasound: technical advances and future horizons.
McQueen, Andrew S; Bhatia, Kunwar S S
2015-04-01
Thyroid nodules are extremely common and the vast majority are non-malignant; therefore the accurate discrimination of a benign lesion from malignancy is challenging. Ultrasound (US) characterisation has become the key component of many thyroid nodule guidelines and is primarily based on the detection of key features by high-resolution US. The thyroid imager should be familiar with the strengths and limitations of this modality and understand the technical factors that create and alter the imaging characteristics. Specific advances in high-resolution US are discussed with reference to individual features of thyroid cancer and benign disease. Potential roles for three-dimensional thyroid ultrasound and computer-aided diagnosis are also considered. The second section provides an overview of current evidence regarding thyroid ultrasound elastography (USE). USE is a novel imaging technique that quantifies tissue elasticity (stiffness) non-invasively and has potential utility because cancers cause tissue stiffening. In recent years, there has been much research into the value of thyroid USE for distinguishing benign and malignant nodules. Preliminary findings from multiple pilot studies and meta-analyses are promising and suggest that USE can augment the anatomical detail provided by high-resolution US. However, a definite role remains controversial and is discussed. • High-resolution US characterises thyroid nodules by demonstration of specific anatomical features • Technical advances heavily influence the key US features of thyroid nodules • Most papillary carcinomas appear stiffer than benign thyroid nodules on US elastography (USE) • Thyroid USE is controversial because of variation in the reported accuracies for malignancy • Combined grey-scale US/USE may lower the FNAC rate in benign nodules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabharwal, Rohan, E-mail: rohan50000@yahoo.com; Vladica, Philip
2006-04-15
Purpose. To evaluate the feasibility, safety, and technical efficacy of image-guided radiofrequency ablation (RFA) for the treatment of small peripheral renal tumors and to report our early results with this treatment modality. Methods. Twenty-two RFA sessions for 18 tumors were performed in 11 patients with renal tumors. Indications included coexistent morbidity, high surgical or anesthetic risk, solitary kidney, and hereditary predisposition to renal cell carcinoma. Ten patients had CT-guided percutaneous RFA performed on an outpatient basis. One patient had open intraoperative ultrasound-guided RFA. Technical success was defined as elimination of areas that enhanced at imaging within the entire tumor. Withmore » the exception of one patient with renal insufficiency who required gadolinium-enhanced MRI, the remaining patients underwent contrast-enhanced CT for post-treatment follow-up assessment. Follow-up was performed after 2-4 weeks and then at 3, 6, 12 months, and every 12 months thereafter. Results. Fourteen (78%) of 18 tumors were successfully ablated with one session. Three of the remaining four tumors required two sessions for successful ablation. One tumor will require a third session for areas of persistent enhancement. Mean patient age was 72.82 {+-} 10.43 years. Mean tumor size was 1.95 {+-} 0.79 cm. Mean follow-up time was 10.91 months. All procedures were performed without any major complications. Conclusions. Our early experience with percutaneous image-guided radiofrequency ablation demonstrates it to be a feasible, safe, noninvasive, and effective treatment of small peripheral renal tumors.« less
Synthetic aperture radar/LANDSAT MSS image registration
NASA Technical Reports Server (NTRS)
Maurer, H. E. (Editor); Oberholtzer, J. D. (Editor); Anuta, P. E. (Editor)
1979-01-01
Algorithms and procedures necessary to merge aircraft synthetic aperture radar (SAR) and LANDSAT multispectral scanner (MSS) imagery were determined. The design of a SAR/LANDSAT data merging system was developed. Aircraft SAR images were registered to the corresponding LANDSAT MSS scenes and were the subject of experimental investigations. Results indicate that the registration of SAR imagery with LANDSAT MSS imagery is feasible from a technical viewpoint, and useful from an information-content viewpoint.
Speckle imaging with the PAPA detector. [Precision Analog Photon Address
NASA Technical Reports Server (NTRS)
Papaliolios, C.; Nisenson, P.; Ebstein, S.
1985-01-01
A new 2-D photon-counting camera, the PAPA (precision analog photon address) detector has been built, tested, and used successfully for the acquisition of speckle imaging data. The camera has 512 x 512 pixels and operates at count rates of at least 200,000/sec. In this paper, technical details on the camera are presented and some of the laboratory and astronomical results are included which demonstrate the detector's capabilities.
Science, Technical Innovation and Applications in Bioacoustics: Summary of a Workshop
2004-07-01
binaural processing have been neglected. From a signal-processing standpoint, we should avoid complex computational methods and instead use massively...design and/or build transducers or arrays with anywhere near the performance and, most importantly, environmental adaptability of animal binaural ...shell Small animal imaging Cardiac Imaging in Mice The Challenge Mouse heart • 7mm diameter • 8 beats /sec Mouse Heart L16-28MHzL5-10MHz Laptop
Standards for electronic imaging for graphic arts systems
NASA Astrophysics Data System (ADS)
Dunn, S. T.; Dunn, Patrice M.
1991-03-01
This paper examines the development of electronic imaging standards by and for the graphic arts industry. Taken collectively this body of work is referred to as Digital Data Exchange Standards (DDES). Because these standards are being driven by market and user requirements there are several fundamental guiding principles to their development. This paper examines these and provides an overview to the technical developments undertaken by the accredited graphic arts industry standards committees to date.
Bonmati, Ester; Hu, Yipeng; Villarini, Barbara; Rodell, Rachael; Martin, Paul; Han, Lianghao; Donaldson, Ian; Ahmed, Hashim U; Moore, Caroline M; Emberton, Mark; Barratt, Dean C
2018-04-01
Image-guided systems that fuse magnetic resonance imaging (MRI) with three-dimensional (3D) ultrasound (US) images for performing targeted prostate needle biopsy and minimally invasive treatments for prostate cancer are of increasing clinical interest. To date, a wide range of different accuracy estimation procedures and error metrics have been reported, which makes comparing the performance of different systems difficult. A set of nine measures are presented to assess the accuracy of MRI-US image registration, needle positioning, needle guidance, and overall system error, with the aim of providing a methodology for estimating the accuracy of instrument placement using a MR/US-guided transperineal approach. Using the SmartTarget fusion system, an MRI-US image alignment error was determined to be 2.0 ± 1.0 mm (mean ± SD), and an overall system instrument targeting error of 3.0 ± 1.2 mm. Three needle deployments for each target phantom lesion was found to result in a 100% lesion hit rate and a median predicted cancer core length of 5.2 mm. The application of a comprehensive, unbiased validation assessment for MR/US guided systems can provide useful information on system performance for quality assurance and system comparison. Furthermore, such an analysis can be helpful in identifying relationships between these errors, providing insight into the technical behavior of these systems. © 2018 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluationmore » of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)« less
Conformal image-guided microbeam radiation therapy at the ESRF biomedical beamline ID17
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donzelli, Mattia, E-mail: donzelli@esrf.fr; Bräuer-Krisch, Elke; Nemoz, Christian
Purpose: Upcoming veterinary trials in microbeam radiation therapy (MRT) demand for more advanced irradiation techniques than in preclinical research with small animals. The treatment of deep-seated tumors in cats and dogs with MRT requires sophisticated irradiation geometries from multiple ports, which impose further efforts to spare the normal tissue surrounding the target. Methods: This work presents the development and benchmarking of a precise patient alignment protocol for MRT at the biomedical beamline ID17 of the European Synchrotron Radiation Facility (ESRF). The positioning of the patient prior to irradiation is verified by taking x-ray projection images from different angles. Results: Usingmore » four external fiducial markers of 1.7 mm diameter and computed tomography-based treatment planning, a target alignment error of less than 2 mm can be achieved with an angular deviation of less than 2{sup ∘}. Minor improvements on the protocol and the use of smaller markers indicate that even a precision better than 1 mm is technically feasible. Detailed investigations concerning the imaging dose lead to the conclusion that doses for skull radiographs lie in the same range as dose reference levels for human head radiographs. A currently used online dose monitor for MRT has been proven to give reliable results for the imaging beam. Conclusions: The ESRF biomedical beamline ID17 is technically ready to apply conformal image-guided MRT from multiple ports to large animals during future veterinary trials.« less
Hong-Seng, Gan; Sayuti, Khairil Amir; Karim, Ahmad Helmy Abdul
2017-01-01
Existing knee cartilage segmentation methods have reported several technical drawbacks. In essence, graph cuts remains highly susceptible to image noise despite extended research interest; active shape model is often constraint by the selection of training data while shortest path have demonstrated shortcut problem in the presence of weak boundary, which is a common problem in medical images. The aims of this study is to investigate the capability of random walks as knee cartilage segmentation method. Experts would scribble on knee cartilage image to initialize random walks segmentation. Then, reproducibility of the method is assessed against manual segmentation by using Dice Similarity Index. The evaluation consists of normal cartilage and diseased cartilage sections which is divided into whole and single cartilage categories. A total of 15 normal images and 10 osteoarthritic images were included. The results showed that random walks method has demonstrated high reproducibility in both normal cartilage (observer 1: 0.83±0.028 and observer 2: 0.82±0.026) and osteoarthritic cartilage (observer 1: 0.80±0.069 and observer 2: 0.83±0.029). Besides, results from both experts were found to be consistent with each other, suggesting the inter-observer variation is insignificant (Normal: P=0.21; Diseased: P=0.15). The proposed segmentation model has overcame technical problems reported by existing semi-automated techniques and demonstrated highly reproducible and consistent results against manual segmentation method.
Alternative vehicle detection technologies for traffic signal systems : technical report.
DOT National Transportation Integrated Search
2009-02-01
Due to the well-documented problems associated with inductive loops, most jurisdictions have : replaced many intersection loops with video image vehicle detection systems (VIVDS). While VIVDS : have overcome some of the problems with loops such as tr...
;background:url(/technical-assistance/assets/images/ajax-loader.gif) center center no-repeat}.btn-long{font-size :0 0 10px}.btn-long{height:80px}}@media only screen and (min-width :1200px){.btn-long{height:60px
Optimal mask characterization by Surrogate Wafer Print (SWaP) method
NASA Astrophysics Data System (ADS)
Kimmel, Kurt R.; Hoellein, Ingo; Peters, Jan Hendrick; Ackmann, Paul; Connolly, Brid; West, Craig
2008-10-01
Traditionally, definition of mask specifications is done completely by the mask user, while characterization of the mask relative to the specifications is done completely by the mask maker. As the challenges of low-k1 imaging continue to grow in scope of designs and in absolute complexity, the inevitable partnership between wafer lithographers and mask makers has strengthened as well. This is reflected in the jointly owned mask facilities and device manufacturers' continued maintenance of fully captive mask shops which foster the closer mask-litho relationships. However, while some device manufacturers have leveraged this to optimize mask specifications before the mask is built and, therefore, improve mask yield and cost, the opportunity for post-fabrication partnering on mask characterization is more apparent and compelling. The Advanced Mask Technology Center (AMTC) has been investigating the concept of assessing how a mask images, rather than the mask's physical attributes, as a technically superior and lower-cost method to characterize a mask. The idea of printing a mask under its intended imaging conditions, then characterizing the imaged wafer as a surrogate for traditional mask inspections and measurements represents the ultimate method to characterize a mask's performance, which is most meaningful to the user. Surrogate wafer print (SWaP) is already done as part of leading-edge wafer fab mask qualification to validate defect and dimensional performance. In the past, the prospect of executing this concept has generally been summarily discarded as technically untenable and logistically intractable. The AMTC published a paper at BACUS 2007 successfully demonstrating the performance of SWaP for the characterization of defects as an alternative to traditional mask inspection [1]. It showed that this concept is not only feasible, but, in some cases, desirable. This paper expands on last year's work at AMTC to assess the full implementation of SWaP as an enhancement to mask characterization quality including defectivity, dimensional control, pattern fidelity, and in-plane distortion. We present a thorough analysis of both the technical and logistical challenges coupled with an objective view of the advantages and disadvantages from both the technical and financial perspectives. The analysis and model used by the AMTC will serve to provoke other mask shops to prepare their own analyses then consider this new paradigm for mask characterization and qualification.
The Visi-Chroma VC-100: a new imaging colorimeter for dermatocosmetic research.
Barel, A O; Clarys, P; Alewaeters, K; Duez, C; Hubinon, J L; Mommaerts, M
2001-02-01
It was the aim of this study to carry out a comparative evaluation in vitro on standardized color charts and in vivo on healthy subjects using the Visi-Chroma VC-100, a new imaging tristimulus colorimeter and the Minolta Chromameter CR-200 as a reference instrument. The Visi-Chroma combines tristimulus color analysis with full color visualization of the skin area measured. The technical performances of both instruments were compared with the purpose of validating the use of this new imaging colorimeter in dermatocosmetic research. In vitro L*a*b* color parameters were taken with both instruments on standardized color charts (Macbeth and RAL charts) in order to evaluate accuracy, sensitivity range and repeatability. These measurements were completed by in vivo studies on different sites of human skin and studies of color changes induced by topical chemical agents on forearm skin. The accuracy, sensitivity range and repeatability of measurements of selected distances and surfaces in the measuring zone considered and specific color determinations of specific skin zones were also determined. The technical performance of this imaging colorimeter was rather good, with low coefficients of variation for repeatability of in vitro and vivo color measurements. High positive correlations were established in vitro and in vivo over a wide range of color measurements. The imaging colorimeter was able to measure the L*a*b* color parameters of specific chosen parts of the skin area considered and to measure accurately selected distances and surfaces in the same skin site considered. These comparative measurements show that both instruments have very similar technical performances and that high levels of correlation were obtained in vitro and in vivo using the L*a*b* color parameters. In addition, the Visi-Chroma presents the following improvements: 1) direct visualization and recording of the skin area considered with concomitant color measurements; 2) determination of the specific color parameters of skin areas chosen in the total measuring area; and 3) accurate determination of selected distances and surfaces in the same skin areas chosen.
[Research on spatially modulated Fourier transform imaging spectrometer data processing method].
Huang, Min; Xiangli, Bin; Lü, Qun-Bo; Zhou, Jin-Song; Jing, Juan-Juan; Cui, Yan
2010-03-01
Fourier transform imaging spectrometer is a new technic, and has been developed very rapidly in nearly ten years. The data catched by Fourier transform imaging spectrometer is indirect data, can not be used by user, and need to be processed by various approaches, including data pretreatment, apodization, phase correction, FFT, and spectral radicalization calibration. No paper so far has been found roundly to introduce this method. In the present paper, the author will give an effective method to process the interfering data to spectral data, and with this method we can obtain good result.
NASA Astrophysics Data System (ADS)
Salvemini, Filomena; Grazzi, Francesco; Kardjilov, Nikolay; Wieder, Frank; Manke, Ingo; Edge, David; Williams, Alan; Zoppi, Marco
2017-05-01
Non-invasive experimental methods play an important role in the field of cultural heritage. Benefiting from the technical progress in recent years, neutron imaging has been demonstrated to complement effectively studies based on surface analysis, allowing for a non-invasive characterization of the whole three-dimensional volume. This study focuses on a kris and a kanjar, two weapons from ancient Asia, to show the potential of the combined use of X-ray and neutron imaging techniques for the characterisation of the manufacturing methods and the authentication of objects of cultural and historical interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazaretski, E.; Yan, H.; Lauer, K.
2016-08-30
The Hard X-ray Nanoprobe (HXN) beamline at NSLS-II has been designed and constructed to enable imaging experiments with unprecedented spatial resolution and detection sensitivity. The HXN X-ray Microscope is a key instrument for the beamline, providing a suite of experimental capabilities which includes scanning fluorescence, diffraction, differential phase contrast and ptychography utilizing Multilayer Laue Lenses (MLL) and zoneplate (ZP) as nanofocusing optics. In this paper, we present technical requirements for the MLL-based scanning microscope, outline the development concept and present first ~15 x 15 nm 2 spatial resolution x-ray fluorescence images.
3.0 Tesla magnetic resonance imaging: A new standard in liver imaging?
Girometti, Rossano
2015-01-01
An ever-increasing number of 3.0 Tesla (T) magnets are installed worldwide. Moving from the standard of 1.5 T to higher field strength implies a number of potential advantage and drawbacks, requiring careful optimization of imaging protocols or implementation of novel hardware components. Clinical practice and literature review suggest that state-of-the-art 3.0 T is equivalent to 1.5 T in the assessment of focal liver lesions and diffuse liver disease. Therefore, further technical improvements are needed in order to fully exploit the potential of higher field strength. PMID:26244063