Sample records for architecture seed development

  1. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice.

    PubMed

    Wu, Yongzhen; Fu, Yongcai; Zhao, Shuangshuang; Gu, Ping; Zhu, Zuofeng; Sun, Chuanqing; Tan, Lubin

    2016-01-01

    Panicle architecture and seed size are important agronomic traits that directly determine grain yield in rice (Oryza sativa L.). Although a number of key genes controlling panicle architecture and seed size have been cloned and characterized in recent years, their genetic and molecular mechanisms remain unclear. In this study, we identified a mutant that produced panicles with fascicled primary branching and reduced seeds in size. We isolated the underlying CLUSTERED PRIMARY BRANCH 1 (CPB1) gene, a new allele of DWARF11 (D11) encoding a cytochrome P450 protein involved in brassinosteroid (BR) biosynthesis pathway. Genetic transformation experiments confirmed that a His360Leu amino acid substitution residing in the highly conserved region of CPB1/D11 was responsible for the panicle architecture and seed size changes in the cpb1 mutants. Overexpression of CPB1/D11 under the background of cpb1 mutant not only rescued normal panicle architecture and plant height, but also had a larger leaf angle and seed size than the controls. Furthermore, the CPB1/D11 transgenic plants driven by panicle-specific promoters can enlarge seed size and enhance grain yield without affecting other favourable agronomic traits. These results demonstrated that the specific mutation in CPB1/D11 influenced development of panicle architecture and seed size, and manipulation of CPB1/D11 expression using the panicle-specific promoter could be used to increase seed size, leading to grain yield improvement in rice. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Seed tissue and nutrient partitioning, a case for the nucellus.

    PubMed

    Lu, Jing; Magnani, Enrico

    2018-06-05

    Flowering plants display a large spectrum of seed architectures. The volume ratio of maternal versus zygotic seed tissues changes considerably among species and underlies different nutrient-storing strategies. Such diversity arose through the evolution of cell elimination programs that regulate the relative growth of one tissue over another to become the major storage compartment. The elimination of the nucellus maternal tissue is regulated by developmental programs that marked the origin of angiosperms and outlined the most ancient seed architectures. This review focuses on such a defining mechanism for seed evolution and discusses the role of nucellus development in seed tissues and nutrient partitioning at the light of novel discoveries on its molecular regulation.

  3. Endosperm and Nucellus Develop Antagonistically in Arabidopsis Seeds

    PubMed Central

    Xu, Wenjia; Coen, Olivier; Pechoux, Christine; Magnani, Enrico

    2016-01-01

    In angiosperms, seed architecture is shaped by the coordinated development of three genetically different components: embryo, endosperm, and maternal tissues. The relative contribution of these tissues to seed mass and nutrient storage varies considerably among species. The development of embryo, endosperm, or nucellus maternal tissue as primary storage compartments defines three main typologies of seed architecture. It is still debated whether the ancestral angiosperm seed accumulated nutrients in the endosperm or the nucellus. During evolution, plants shifted repeatedly between these two storage strategies through molecular mechanisms that are largely unknown. Here, we characterize the regulatory pathway underlying nucellus and endosperm tissue partitioning in Arabidopsis thaliana. We show that Polycomb-group proteins repress nucellus degeneration before fertilization. A signal initiated in the endosperm by the AGAMOUS-LIKE62 MADS box transcription factor relieves this Polycomb-mediated repression and therefore allows nucellus degeneration. Further downstream in the pathway, the TRANSPARENT TESTA16 (TT16) and GORDITA MADS box transcription factors promote nucellus degeneration. Moreover, we demonstrate that TT16 mediates the crosstalk between nucellus and seed coat maternal tissues. Finally, we characterize the nucellus cell death program and its feedback role in timing endosperm development. Altogether, our data reveal the antagonistic development of nucellus and endosperm, in coordination with seed coat differentiation. PMID:27233529

  4. Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.

    PubMed

    Win, Zaw; Vrla, Geoffrey D; Steucke, Kerianne E; Sevcik, Emily N; Hald, Eric S; Alford, Patrick W

    2014-12-01

    The role of vascular smooth muscle architecture in the function of healthy and dysfunctional vessels is poorly understood. We aimed at determining the relationship between vascular smooth muscle architecture and contractile output using engineered vascular tissues. We utilized microcontact printing and a microfluidic cell seeding technique to provide three different initial seeding conditions, with the aim of influencing the cellular architecture within the tissue. Cells seeded in each condition formed confluent and aligned tissues but within the tissues, the cellular architecture varied. Tissues with a more elongated cellular architecture had significantly elevated basal stress and produced more contractile stress in response to endothelin-1 stimulation. We also found a correlation between the contractile phenotype marker expression and the cellular architecture, contrary to our previous findings in non-confluent tissues. Taken with previous results, these data suggest that within cell-dense vascular tissues, smooth muscle contractility is strongly influenced by cell and tissue architectures.

  5. Evolutionary Conservation and Divergence of Gene Coexpression Networks in Gossypium (Cotton) Seeds.

    PubMed

    Hu, Guanjing; Hovav, Ran; Grover, Corrinne E; Faigenboim-Doron, Adi; Kadmon, Noa; Page, Justin T; Udall, Joshua A; Wendel, Jonathan F

    2016-12-01

    The cotton genus (Gossypium) provides a superior system for the study of diversification, genome evolution, polyploidization, and human-mediated selection. To gain insight into phenotypic diversification in cotton seeds, we conducted coexpression network analysis of developing seeds from diploid and allopolyploid cotton species and explored network properties. Key network modules and functional associations were identified related to seed oil content and seed weight. We compared species-specific networks to reveal topological changes, including rewired edges and differentially coexpressed genes, associated with speciation, polyploidy, and cotton domestication. Network comparisons among species indicate that topologies are altered in addition to gene expression profiles, indicating that changes in transcriptomic coexpression relationships play a role in the developmental architecture of cotton seed development. The global network topology of allopolyploids, especially for domesticated G. hirsutum, resembles the network of the A-genome diploid more than that of the D-genome parent, despite its D-like phenotype in oil content. Expression modifications associated with allopolyploidy include coexpression level dominance and transgressive expression, suggesting that the transcriptomic architecture in polyploids is to some extent a modular combination of that of its progenitor genomes. Among allopolyploids, intermodular relationships are more preserved between two different wild allopolyploid species than they are between wild and domesticated forms of a cultivated cotton, and regulatory connections of oil synthesis-related pathways are denser and more closely clustered in domesticated vs. wild G. hirsutum. These results demonstrate substantial modification of genic coexpression under domestication. Our work demonstrates how network inference informs our understanding of the transcriptomic architecture of phenotypic variation associated with temporal scales ranging from thousands (domestication) to millions (speciation) of years, and by polyploidy. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton.

    PubMed

    Irizarry, I; White, J F

    2017-04-01

    Cotton seeds are frequently treated with acid to remove fibres and reduce seed-transmitted diseases. This process also eliminates beneficial bacteria on the seed surface. The goal of this research was to seek and apply beneficial bacteria to acid delinted cotton seeds to evaluate their growth-promoting and salt stress alleviating effects in seedlings. Bacteria were isolated from non-cultivated plants in the Malvaceae. Seeds were collected from Portia tree (Thespesia populnea) and wild cotton (Gossypium hirsutum) from coastal and arid areas of Puerto Rico. Bacillus amyloliquefaciens, Curtobacterium oceanosedimentum and Pseudomonas oryzihabitans were inoculated onto acid delinted cotton seeds. Bacteria increased cotton seed germination and length of emerging seedling radicles. Cotton seeds were inoculated with B. amyloliquefaciens to evaluate growth and root architecture of non-stressed and salt stressed seedlings. Inoculating cotton seeds with B. amyloliquefaciens led to a greater percentage of seedlings with expanded cotyledons after 8 days, enhanced primary and lateral root growth, and altered root architecture. Similar results were obtained when okra seeds were inoculated with B. amyloliquefaciens. The data supported the hypothesis that non-cultivated plants in the Malvaceae growing in stressful environments possess bacteria that promote growth, alter root architecture and alleviate salt stress of cotton and okra seedlings. This study demonstrated the effects of applying beneficial bacteria on acid delinted cotton seeds. Inoculating seeds with salt stress alleviating bacteria could improve the growth of crop seedlings that are vulnerable to soil salinization. © 2017 The Society for Applied Microbiology.

  7. Gaming Worlds: Secondary Students Creating An Interactive Video Game

    ERIC Educational Resources Information Center

    Alexander, Amanda; Ho, Tuan

    2015-01-01

    Since the summer of 2006, the University of Texas at Arlington (UTA), in the Dallas/Ft. Worth metroplex, has invited secondary students to participate in their summer SEED program on campus. The program was developed by the Dean of the School of Architecture and the Chair of the Art + Art History Department. SEED (Strategies, Events, Episodes +…

  8. Uncovering the genetic architecture of seed weight and size in intermediate wheatgrass through linkage and association mapping

    USDA-ARS?s Scientific Manuscript database

    Intermediate wheatgrass (IWG); Thinopyrum intermedium) is being developed as a new perennial grain crop that has a large allohexaploid genome similar to that of wheat (Triticum aestivum). Breeding for increased seed weight is one of the primary goals for improving grain yield of IWG. As a new crop, ...

  9. Distinct Cell Wall Architectures in Seed Endosperms in Representatives of the Brassicaceae and Solanaceae1[C][W][OA

    PubMed Central

    Lee, Kieran J.D.; Dekkers, Bas J.W.; Steinbrecher, Tina; Walsh, Cherie T.; Bacic, Antony; Bentsink, Leónie; Leubner-Metzger, Gerhard; Knox, J. Paul

    2012-01-01

    In some species, a crucial role has been demonstrated for the seed endosperm during germination. The endosperm has been shown to integrate environmental cues with hormonal networks that underpin dormancy and seed germination, a process that involves the action of cell wall remodeling enzymes (CWREs). Here, we examine the cell wall architectures of the endosperms of two related Brassicaceae, Arabidopsis (Arabidopsis thaliana) and the close relative Lepidium (Lepidium sativum), and that of the Solanaceous species, tobacco (Nicotiana tabacum). The Brassicaceae species have a similar cell wall architecture that is rich in pectic homogalacturonan, arabinan, and xyloglucan. Distinctive features of the tobacco endosperm that are absent in the Brassicaceae representatives are major tissue asymmetries in cell wall structural components that reflect the future site of radicle emergence and abundant heteromannan. Cell wall architecture of the micropylar endosperm of tobacco seeds has structural components similar to those seen in Arabidopsis and Lepidium endosperms. In situ and biomechanical analyses were used to study changes in endosperms during seed germination and suggest a role for mannan degradation in tobacco. In the case of the Brassicaceae representatives, the structurally homogeneous cell walls of the endosperm can be acted on by spatially regulated CWRE expression. Genetic manipulations of cell wall components present in the Arabidopsis seed endosperm demonstrate the impact of cell wall architectural changes on germination kinetics. PMID:22961130

  10. Parallel k-means++

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A parallelization of the k-means++ seed selection algorithm on three distinct hardware platforms: GPU, multicore CPU, and multithreaded architecture. K-means++ was developed by David Arthur and Sergei Vassilvitskii in 2007 as an extension of the k-means data clustering technique. These algorithms allow people to cluster multidimensional data, by attempting to minimize the mean distance of data points within a cluster. K-means++ improved upon traditional k-means by using a more intelligent approach to selecting the initial seeds for the clustering process. While k-means++ has become a popular alternative to traditional k-means clustering, little work has been done to parallelize this technique.more » We have developed original C++ code for parallelizing the algorithm on three unique hardware architectures: GPU using NVidia's CUDA/Thrust framework, multicore CPU using OpenMP, and the Cray XMT multithreaded architecture. By parallelizing the process for these platforms, we are able to perform k-means++ clustering much more quickly than it could be done before.« less

  11. Developmental patterning of the sub-epidermal integument cell layer in Arabidopsis seeds

    PubMed Central

    Coen, Olivier; Fiume, Elisa; Xu, Wenjia; De Vos, Delphine; Lu, Jing; Pechoux, Christine; Lepiniec, Loïc

    2017-01-01

    Angiosperm seed development is a paradigm of tissue cross-talk. Proper seed formation requires spatial and temporal coordination of the fertilization products – embryo and endosperm – and the surrounding seed coat maternal tissue. In early Arabidopsis seed development, all seed integuments were thought to respond homogenously to endosperm growth. Here, we show that the sub-epidermal integument cell layer has a unique developmental program. We characterized the cell patterning of the sub-epidermal integument cell layer, which initiates a previously uncharacterized extra cell layer, and identified TRANSPARENT TESTA 16 and SEEDSTICK MADS box transcription factors as master regulators of its polar development and cell architecture. Our data indicate that the differentiation of the sub-epidermal integument cell layer is insensitive to endosperm growth alone and to the repressive mechanism established by FERTILIZATION INDEPENDENT ENDOSPERM and MULTICOPY SUPPRESSOR OF IRA1 Polycomb group proteins. This work demonstrates the different responses of epidermal and sub-epidermal integument cell layers to fertilization. PMID:28348169

  12. BH-ShaDe: A Software Tool That Assists Architecture Students in the III-Structured Task of Housing Design

    ERIC Educational Resources Information Center

    Millan, Eva; Belmonte, Maria-Victoria; Ruiz-Montiel, Manuela; Gavilanes, Juan; Perez-de-la-Cruz, Jose-Luis

    2016-01-01

    In this paper, we present BH-ShaDe, a new software tool to assist architecture students learning the ill-structured domain/task of housing design. The software tool provides students with automatic or interactively generated floor plan schemas for basic houses. The students can then use the generated schemas as initial seeds to develop complete…

  13. Smooth muscle cell seeding of decellularized scaffolds: the importance of bioreactor preconditioning to development of a more native architecture for tissue-engineered blood vessels.

    PubMed

    Yazdani, Saami K; Watts, Benjamin; Machingal, Masood; Jarajapu, Yagna P R; Van Dyke, Mark E; Christ, George J

    2009-04-01

    Vascular smooth muscle cells (VSMCs) impart important functional characteristics in the native artery and, therefore, should logically be incorporated in the development of tissue-engineered blood vessels. However, the native architecture and low porosity of naturally derived biomaterials (i.e., decellularized vessels) have impeded efforts to seed and incorporate a VSMC layer in tissue-engineered blood vessels. To this end, the goal of this study was to develop improved methods for seeding, proliferation, and maturation of VSMCs on decellularized porcine carotid arteries. Decellularized vessels were prepared in the absence and presence of the adventitial layer, and statically seeded with a pipette containing a suspension of rat aortic VSMCs. After cell seeding, recellularized engineered vessels were placed in a custom bioreactor system for 1-2 weeks to enhance cellular proliferation, alignment, and maturation. Initial attachment of VSMCs was dramatically enhanced by removing the adventitial layer of the decellularized porcine artery. Moreover, cyclic bioreactor conditioning (i.e., flow and pressure) resulted in increased VSMC proliferation and accelerated formation of a muscularized medial layer in the absence of the adventitial layer during the first week of preconditioning. Fura-2-based digital imaging microscopy revealed marked and reproducible depolarization-induced calcium mobilization after bioreactor preconditioning in the absence, but not in the presence, of the adventitia. The major finding of this investigation is that bioreactor preconditioning accelerates the formation of a significant muscular layer on decellularized scaffolds, in particular on adventitia-denuded scaffolds. Further, the VSMC layer of bioreactor-preconditioned vessels was capable of mobilizing calcium in response to cellular depolarization. These findings represent an important first step toward the development of tissue-engineered vascular grafts that more closely mimic native vasculature.

  14. Genetic architecture underlying convergent evolution of egg-laying behavior in a seed-feeding beetle.

    PubMed

    Fox, Charles W; Wagner, James D; Cline, Sara; Thomas, Frances Ann; Messina, Frank J

    2009-05-01

    Independent populations subjected to similar environments often exhibit convergent evolution. An unresolved question is the frequency with which such convergence reflects parallel genetic mechanisms. We examined the convergent evolution of egg-laying behavior in the seed-feeding beetle Callosobruchus maculatus. Females avoid ovipositing on seeds bearing conspecific eggs, but the degree of host discrimination varies among geographic populations. In a previous experiment, replicate lines switched from a small host to a large one evolved reduced discrimination after 40 generations. We used line crosses to determine the genetic architecture underlying this rapid response. The most parsimonious genetic models included dominance and/or epistasis for all crosses. The genetic architecture underlying reduced discrimination in two lines was not significantly different from the architecture underlying differences between geographic populations, but the architecture underlying the divergence of a third line differed from all others. We conclude that convergence of this complex trait may in some cases involve parallel genetic mechanisms.

  15. Developmental changes in the germinability, desiccation tolerance, hardseededness, and longevity of individual seeds of Trifolium ambiguum

    PubMed Central

    Hay, F. R.; Smith, R. D.; Ellis, R. H.; Butler, L. H.

    2010-01-01

    Background and Aims Using two parental clones of outcrossing Trifolium ambiguum as a potential model system, we examined how during seed development the maternal parent, number of seeds per pod, seed position within the pod, and pod position within the inflorescence influenced individual seed fresh weight, dry weight, water content, germinability, desiccation tolerance, hardseededness, and subsequent longevity of individual seeds. Methods Near simultaneous, manual reciprocal crosses were carried out between clonal lines for two experiments. Infructescences were harvested at intervals during seed development. Each individual seed was weighed and then used to determine dry weight or one of the physiological behaviour traits. Key Results Whilst population mass maturity was reached at 33–36 days after pollination (DAP), seed-to-seed variation in maximum seed dry weight, when it was achieved, and when maturation drying commenced, was considerable. Individual seeds acquired germinability between 14 and 44 DAP, desiccation tolerance between 30 and 40 DAP, and the capability to become hardseeded between 30 and 47 DAP. The time for viability to fall to 50 % (p50) at 60 % relative humidity and 45 °C increased between 36 and 56 DAP, when the seed coats of most individuals had become dark orange, but declined thereafter. Individual seed f. wt at harvest did not correlate with air-dry storage survival period. Analysing survival data for cohorts of seeds reduced the standard deviation of the normal distribution of seed deaths in time, but no sub-population showed complete uniformity of survival period. Conclusions Variation in individual seed behaviours within a developing population is inherent and inevitable. In this outbreeder, there is significant variation in seed longevity which appears dependent on embryo genotype with little effect of maternal genotype or architectural factors. PMID:20228084

  16. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing.

    PubMed

    Melchels, Ferry P W; Barradas, Ana M C; van Blitterswijk, Clemens A; de Boer, Jan; Feijen, Jan; Grijpma, Dirk W

    2010-11-01

    The advance of rapid prototyping techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. In this work, we have assessed the influence of scaffold pore architecture on cell seeding and static culturing, by comparing a computer designed gyroid architecture fabricated by stereolithography with a random pore architecture resulting from salt leaching. The scaffold types showed comparable porosity and pore size values, but the gyroid type showed a more than 10-fold higher permeability due to the absence of size-limiting pore interconnections. The higher permeability significantly improved the wetting properties of the hydrophobic scaffolds and increased the settling speed of cells upon static seeding of immortalised mesenchymal stem cells. After dynamic seeding followed by 5 days of static culture gyroid scaffolds showed large cell populations in the centre of the scaffold, while salt-leached scaffolds were covered with a cell sheet on the outside and no cells were found in the scaffold centre. It was shown that interconnectivity of the pores and permeability of the scaffold prolonged the time of static culture before overgrowth of cells at the scaffold periphery occurred. Furthermore, novel scaffold designs are proposed to further improve the transport of oxygen and nutrients throughout the scaffolds and to create tissue engineering grafts with a designed, pre-fabricated vasculature. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Seed coat thickness in the evolution of angiosperms.

    PubMed

    Coen, Olivier; Magnani, Enrico

    2018-05-05

    The seed habit represents a remarkable evolutionary advance in plant sexual reproduction. Since the Paleozoic, seeds carry a seed coat that protects, nourishes and facilitates the dispersal of the fertilization product(s). The seed coat architecture evolved to adapt to different environments and reproductive strategies in part by modifying its thickness. Here, we review the great natural diversity observed in seed coat thickness among angiosperms and its molecular regulation in Arabidopsis.

  18. Manipulating the architecture of bimetallic nanostructures and their plasmonic properties

    NASA Astrophysics Data System (ADS)

    DeSantis, Christopher John

    There has been much interest in colloidal noble metal nanoparticles due to their fascinating plasmonic and catalytic properties. These properties make noble metal nanoparticles potentially useful for applications such as targeted drug delivery agents and hydrogen storage devices. Historically, shape-controlled noble metal nanoparticles have been predominantly monometallic. Recent synthetic advances provide access to bimetallic noble metal nanoparticles wherein their inherent multifunctionality and ability to fine tune or expand their surface chemistry and light scattering properties of metal nanoparticles make them popular candidates for many applications. Even so, there are currently few synthetic strategies to rationally design shape-controlled bimetallic nanocrystals; for this reason, few architectures are accessible. For example, the "seed-mediated method" is a popular means of achieving monodisperse shape-controlled bimetallic nanocrystals. In this process, small metal seeds are used as platforms for additional metal addition, allowing for conformal core shell nanostructures. However, this method has only been applied to single metal core/single metal shell structures; therefore, the surface compositions and architectures achievable are limited. This thesis expands upon the seed-mediated method by coupling it with co-reduction. In short, two metal precursors are simultaneously reduced to deposit metal onto pre-formed seeds in hopes that the interplay between two metal species facilitates bimetallic shell nanocrystals. Au/Pd was used as a test system due to favorable reduction potentials of metal precursors and good lattice match between Au and Pd. Alloyed shelled Au Au/Pd nanocrystals were achieved using this "seed-mediated co-reduction" approach. Symmetric eight-branched Au/Pd nanocrystals (octopods) are also prepared using this method. This thesis investigates many synthetic parameters that determine the shape outcome in Au/Pd nanocrystals during seed-mediated co-reduction. Plasmonic, catalytic, and assembly properties are also investigated in relation to nanocrystal shape and architecture. This work provides a foundation for the rational design of architecturally defined bimetallic nanostructures.

  19. Genetic Architecture of Cold Tolerance in Rice (Oryza sativa) Determined through High Resolution Genome-Wide Analysis

    USDA-ARS?s Scientific Manuscript database

    Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases se...

  20. Development of scaffold architectures and heterotypic cell systems for hepatocyte transplantation

    NASA Astrophysics Data System (ADS)

    Alzebdeh, Dalia Abdelrahim

    In vitro assembly of functional liver tissue is needed to enable the transplantation of tissue-engineered livers. In addition, there is an increasing demand for in vitro models that replicate complex events occurring in the liver. However, tissue engineering of sizable implantable liver systems is currently limited by the difficulty of assembling three dimensional hepatocyte cultures of a useful size, while maintaining full cell viability, an issue which is closely related to the high metabolic rate of hepatocytes. In this study, we first compared two designs of highly porous chitosan-heparin scaffolds seeded with hepatocytes in dynamic perfusion bioreactor systems. The aim was to promote cell seeding efficiency by effectively entrapping 100 million hepatocytes at high density. We found that scaffolds with radially tapering pore architecture had highly efficient cell entrapment that maximized donor hepatocyte utilization, compared to alternate pore structures. Hepatocytes showed higher seeding efficiency and metabolic function when seeded as single cell suspensions as opposed to pre-formed, 100microm aggregates. Seeding efficiency was found to increase with flow rate, with single cell and aggregate suspension exhibiting different optimal flow rates. However, metabolic performance results indicated significant shear damage to cells at high efficiency flow rates. To better maintain hepatocyte basement membrane and cell polarity, spheroid co-cultures with mesenchymal stem cells (MSC) were investigated. Hepatocytes and MSCs were seeded in three different architectures in an effort to optimize the spatial arrangement of the two cell types. MSC co-culture greatly enhanced hepatocyte metabolic function in agitated cultures. Interestingly, the effects of diffusion limitations in spheroid culture, coupled with shear damage and subsequent removal of outer hepatocyte layers produced a defined oscillation of urea production rates in certain co-culture arrangements. A mathematical model of urea synthesis in shear-exposed, co-culture spheroids reproduced the metabolic oscillations observed. This result together with culture observations suggests that MSCs can provide both physiological support and some direct shear protection to hepatocytes in perfused or shear-exposed culture environments. Finally, in order to reduce hepatocyte exposure to excessive shear forces in perfused scaffolds, a modular scaffold design based on polyelectrolyte fiber encapsulation was explored. Scaffolds with uniformly distributed, shear protected cells were achieved.

  1. Progress toward the Wisconsin Free Electron Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisognano, Joseph; Eisert, D; Fisher, M V

    2011-03-01

    The University of Wisconsin-Madison/Synchrotron Radiation Center is advancing its design for a seeded VUV/soft X-ray Free Electron Laser facility called WiFEL. To support this vision of an ultimate light source, we are pursuing a program of strategic R&D addressing several crucial elements. This includes development of a high repetition rate, VHF superconducting RF electron gun, R&D on photocathode materials by ARPES studies, and evaluation of FEL facility architectures (e.g., recirculation, compressor scenarios, CSR dechirping, undulator technologies) with the specific goal of cost containment. Studies of high harmonic generation for laser seeding are also planned.

  2. Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth

    PubMed Central

    Brower, Landon J; Gentry, Lauren K; Napier, Amanda L

    2017-01-01

    Integration of surface-anchored metal-organic frameworks (surMOFs) within hierarchical architectures is necessary for potential sensing, electronic, optical, or separation applications. It is important to understand the fundamentals of film formation for these surMOFs in order to develop strategies for their incorporation with nanoscale control over lateral and vertical dimensions. This research identified processing parameters to control the film morphology for surMOFs of HKUST-1 fabricated by codeposition and seeded deposition. Time and temperature were investigated to observe film formation, to control film thickness, and to tune morphology. Film thickness was investigated by ellipsometry, while film structure and film roughness were characterized by atomic force microscopy. Films formed via codeposition resulted in nanocrystallites anchored to the gold substrate. A dynamic process at the interface was observed with a low density of large particulates (above 100 nm) initially forming on the substrate; and over time these particulates were slowly replaced by the prevalence of smaller crystallites (ca. 10 nm) covering the substrate at a high density. Elevated temperature was found to expedite the growth process to obtain the full range of surface morphologies with reasonable processing times. Seed crystals formed by the codeposition method were stable and nucleated growth throughout a subsequent layer-by-layer deposition process. These seed crystals templated the final film structure and tailor the features in lateral and vertical directions. Using codeposition and seeded growth, different surface morphologies with controllable nanoscale dimensions can be designed and fabricated for integration of MOF systems directly into device architectures and sensor platforms. PMID:29181287

  3. Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth.

    PubMed

    Brower, Landon J; Gentry, Lauren K; Napier, Amanda L; Anderson, Mary E

    2017-01-01

    Integration of surface-anchored metal-organic frameworks (surMOFs) within hierarchical architectures is necessary for potential sensing, electronic, optical, or separation applications. It is important to understand the fundamentals of film formation for these surMOFs in order to develop strategies for their incorporation with nanoscale control over lateral and vertical dimensions. This research identified processing parameters to control the film morphology for surMOFs of HKUST-1 fabricated by codeposition and seeded deposition. Time and temperature were investigated to observe film formation, to control film thickness, and to tune morphology. Film thickness was investigated by ellipsometry, while film structure and film roughness were characterized by atomic force microscopy. Films formed via codeposition resulted in nanocrystallites anchored to the gold substrate. A dynamic process at the interface was observed with a low density of large particulates (above 100 nm) initially forming on the substrate; and over time these particulates were slowly replaced by the prevalence of smaller crystallites (ca. 10 nm) covering the substrate at a high density. Elevated temperature was found to expedite the growth process to obtain the full range of surface morphologies with reasonable processing times. Seed crystals formed by the codeposition method were stable and nucleated growth throughout a subsequent layer-by-layer deposition process. These seed crystals templated the final film structure and tailor the features in lateral and vertical directions. Using codeposition and seeded growth, different surface morphologies with controllable nanoscale dimensions can be designed and fabricated for integration of MOF systems directly into device architectures and sensor platforms.

  4. Synthesis of multimetallic nanoparticles by seeded methods

    NASA Astrophysics Data System (ADS)

    Weiner, Rebecca Gayle

    This dissertation focuses on the synthesis of metal nanocrystals (NCs) by seeded methods, in which preformed seeds serve as platforms for growth. Metal NCs are of interest due to their tunable optical and catalytic properties, which arise from their composition and crystallite size and shape. Moreover, multimetallic NCs are potentially multifunctional due to the integration of the properties of each metal within one structure. However, such structures are difficult to synthesize with structural definition due to differences in precursor reduction rates and the size-dependent solubility of bimetallic phases. Seed-mediated co-reduction (SMCR) is a method developed in the Skrabalak Laboratory that couples the advantages of a seeded method with co-reduction methods to achieve multimetallic nanomaterials with defined shape and architecture. This approach was originally demonstrated in a model Au-Pd system in which Au and Pd precursors were simultaneously reduced to deposit metal onto shape-controlled Au or Pd NC seeds. Using SMCR, uniformly branched core shell Au Au-Pd and Pd Au-Pd NCs were synthesized, with the shape of the seeds directing the symmetry of the final structures. By varying the seed shape and the temperature at which metal deposition occurs, the roles of adatom diffusion and seed shape on final NC morphology were decoupled. Moreover, by selecting seeds of a composition (Ag) different than the depositing metals (Au and Pd), trimetallic nanostructures are possible, including shape-controlled Ag Au-Pd NCs and hollow Au-Pd-Ag nanoparticles (NPs). The latter architecture arises through galvanic replacement. Shape-controlled core shell NCs with trimetallic shells are also possible by co-reducing three metal precursors (Ag, Au, and Pd) with shape-controlled Au seeds; for example, convex octopods, concave cubes, and truncated octahedra were achieved in this initial demonstration and was enabled by varying the ratio of Ag to Au/Pd in the overgrowth step as well as reaction pH. Ultimately, the final multimetallic nanostructure depends on the kinetics of metal deposition as well as seed composition, shape, reactivity, and crystallinity. In elucidating the roles of these parameters in nanomaterial synthesis, the rational design of new functional NCs becomes possible, which capitalize on the unique optical and catalytic properties of structurally defined multimetallic structures. In fact, branched Au-Pd NCs with high symmetry were found to be effective refractive index-based hydrogen sensors.

  5. Modulation of gene expression using electrospun scaffolds with templated architecture.

    PubMed

    Karchin, A; Wang, Y-N; Sanders, J E

    2012-06-01

    The fabrication of biomimetic scaffolds is a critical component to fulfill the promise of functional tissue-engineered materials. We describe herein a simple technique, based on printed circuit board manufacturing, to produce novel templates for electrospinning scaffolds for tissue-engineering applications. This technique facilitates fabrication of electrospun scaffolds with templated architecture, which we defined as a scaffold's bulk mechanical properties being driven by its fiber architecture. Electrospun scaffolds with templated architectures were characterized with regard to fiber alignment and mechanical properties. Fast Fourier transform analysis revealed a high degree of fiber alignment along the conducting traces of the templates. Mechanical testing showed that scaffolds demonstrated tunable mechanical properties as a function of templated architecture. Fibroblast-seeded scaffolds were subjected to a peak strain of 3 or 10% at 0.5 Hz for 1 h. Exposing seeded scaffolds to the low strain magnitude (3%) significantly increased collagen I gene expression compared to the high strain magnitude (10%) in a scaffold architecture-dependent manner. These experiments indicate that scaffolds with templated architectures can be produced, and modulation of gene expression is possible with templated architectures. This technology holds promise for the long-term goal of creating tissue-engineered replacements with the biomechanical and biochemical make-up of native tissues. Copyright © 2012 Wiley Periodicals, Inc.

  6. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution

    PubMed Central

    Zhang, Guo-Qiang; Xu, Qing; Bian, Chao; Tsai, Wen-Chieh; Yeh, Chuan-Ming; Liu, Ke-Wei; Yoshida, Kouki; Zhang, Liang-Sheng; Chang, Song-Bin; Chen, Fei; Shi, Yu; Su, Yong-Yu; Zhang, Yong-Qiang; Chen, Li-Jun; Yin, Yayi; Lin, Min; Huang, Huixia; Deng, Hua; Wang, Zhi-Wen; Zhu, Shi-Lin; Zhao, Xiang; Deng, Cao; Niu, Shan-Ce; Huang, Jie; Wang, Meina; Liu, Guo-Hui; Yang, Hai-Jun; Xiao, Xin-Ju; Hsiao, Yu-Yun; Wu, Wan-Lin; Chen, You-Yi; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Luo, Yi-Bo; Van de Peer, Yves; Liu, Zhong-Jian

    2016-01-01

    Orchids make up about 10% of all seed plant species, have great economical value, and are of specific scientific interest because of their renowned flowers and ecological adaptations. Here, we report the first draft genome sequence of a lithophytic orchid, Dendrobium catenatum. We predict 28,910 protein-coding genes, and find evidence of a whole genome duplication shared with Phalaenopsis. We observed the expansion of many resistance-related genes, suggesting a powerful immune system responsible for adaptation to a wide range of ecological niches. We also discovered extensive duplication of genes involved in glucomannan synthase activities, likely related to the synthesis of medicinal polysaccharides. Expansion of MADS-box gene clades ANR1, StMADS11, and MIKC*, involved in the regulation of development and growth, suggests that these expansions are associated with the astonishing diversity of plant architecture in the genus Dendrobium. On the contrary, members of the type I MADS box gene family are missing, which might explain the loss of the endospermous seed. The findings reported here will be important for future studies into polysaccharide synthesis, adaptations to diverse environments and flower architecture of Orchidaceae. PMID:26754549

  7. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution.

    PubMed

    Zhang, Guo-Qiang; Xu, Qing; Bian, Chao; Tsai, Wen-Chieh; Yeh, Chuan-Ming; Liu, Ke-Wei; Yoshida, Kouki; Zhang, Liang-Sheng; Chang, Song-Bin; Chen, Fei; Shi, Yu; Su, Yong-Yu; Zhang, Yong-Qiang; Chen, Li-Jun; Yin, Yayi; Lin, Min; Huang, Huixia; Deng, Hua; Wang, Zhi-Wen; Zhu, Shi-Lin; Zhao, Xiang; Deng, Cao; Niu, Shan-Ce; Huang, Jie; Wang, Meina; Liu, Guo-Hui; Yang, Hai-Jun; Xiao, Xin-Ju; Hsiao, Yu-Yun; Wu, Wan-Lin; Chen, You-Yi; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Luo, Yi-Bo; Van de Peer, Yves; Liu, Zhong-Jian

    2016-01-12

    Orchids make up about 10% of all seed plant species, have great economical value, and are of specific scientific interest because of their renowned flowers and ecological adaptations. Here, we report the first draft genome sequence of a lithophytic orchid, Dendrobium catenatum. We predict 28,910 protein-coding genes, and find evidence of a whole genome duplication shared with Phalaenopsis. We observed the expansion of many resistance-related genes, suggesting a powerful immune system responsible for adaptation to a wide range of ecological niches. We also discovered extensive duplication of genes involved in glucomannan synthase activities, likely related to the synthesis of medicinal polysaccharides. Expansion of MADS-box gene clades ANR1, StMADS11, and MIKC(*), involved in the regulation of development and growth, suggests that these expansions are associated with the astonishing diversity of plant architecture in the genus Dendrobium. On the contrary, members of the type I MADS box gene family are missing, which might explain the loss of the endospermous seed. The findings reported here will be important for future studies into polysaccharide synthesis, adaptations to diverse environments and flower architecture of Orchidaceae.

  8. A Genome-wide Combinatorial Strategy Dissects Complex Genetic Architecture of Seed Coat Color in Chickpea

    PubMed Central

    Bajaj, Deepak; Das, Shouvik; Upadhyaya, Hari D.; Ranjan, Rajeev; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. Laxmipathi; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    The study identified 9045 high-quality SNPs employing both genome-wide GBS- and candidate gene-based SNP genotyping assays in 172, including 93 cultivated (desi and kabuli) and 79 wild chickpea accessions. The GWAS in a structured population of 93 sequenced accessions detected 15 major genomic loci exhibiting significant association with seed coat color. Five seed color-associated major genomic loci underlying robust QTLs mapped on a high-density intra-specific genetic linkage map were validated by QTL mapping. The integration of association and QTL mapping with gene haplotype-specific LD mapping and transcript profiling identified novel allelic variants (non-synonymous SNPs) and haplotypes in a MATE secondary transporter gene regulating light/yellow brown and beige seed coat color differentiation in chickpea. The down-regulation and decreased transcript expression of beige seed coat color-associated MATE gene haplotype was correlated with reduced proanthocyanidins accumulation in the mature seed coats of beige than light/yellow brown seed colored desi and kabuli accessions for their coloration/pigmentation. This seed color-regulating MATE gene revealed strong purifying selection pressure primarily in LB/YB seed colored desi and wild Cicer reticulatum accessions compared with the BE seed colored kabuli accessions. The functionally relevant molecular tags identified have potential to decipher the complex transcriptional regulatory gene function of seed coat coloration and for understanding the selective sweep-based seed color trait evolutionary pattern in cultivated and wild accessions during chickpea domestication. The genome-wide integrated approach employed will expedite marker-assisted genetic enhancement for developing cultivars with desirable seed coat color types in chickpea. PMID:26635822

  9. Deep Phenotyping of Coarse Root Architecture in R. pseudoacacia Reveals That Tree Root System Plasticity Is Confined within Its Architectural Model

    PubMed Central

    Danjon, Frédéric; Khuder, Hayfa; Stokes, Alexia

    2013-01-01

    This study aims at assessing the influence of slope angle and multi-directional flexing and their interaction on the root architecture of Robinia pseudoacacia seedlings, with a particular focus on architectural model and trait plasticity. 36 trees were grown from seed in containers inclined at 0° (control) or 45° (slope) in a glasshouse. The shoots of half the plants were gently flexed for 5 minutes a day. After 6 months, root systems were excavated and digitized in 3D, and biomass measured. Over 100 root architectural traits were determined. Both slope and flexing increased significantly plant size. Non-flexed trees on 45° slopes developed shallow roots which were largely aligned perpendicular to the slope. Compared to the controls, flexed trees on 0° slopes possessed a shorter and thicker taproot held in place by regularly distributed long and thin lateral roots. Flexed trees on the 45° slope also developed a thick vertically aligned taproot, with more volume allocated to upslope surface lateral roots, due to the greater soil volume uphill. We show that there is an inherent root system architectural model, but that a certain number of traits are highly plastic. This plasticity will permit root architectural design to be modified depending on external mechanical signals perceived by young trees. PMID:24386227

  10. Bio-Derived Hierarchical 3D Architecture from Seeds for Supercapacitor Application

    NASA Astrophysics Data System (ADS)

    Intawin, Pratthana; Sayed, Farheen N.; Pengpat, Kamonpan; Joyner, Jarin; Tiwary, Chandra Sekhar; Ajayan, Pulickel M.

    2017-09-01

    The generation and storage of green energy (energy from abundant and nonfossil) is important for a sustainable and clean future. The electrode material in a supercapacitor is a major component. The properties of these materials depend on its inherent architecture and composition. Here, we have chosen sunflower seeds and pumpkin seeds with a completely different structure to obtain a carbonaceous product. The product obtained from sunflower seed carbon is a three-dimensional hierarchical macroporous carbon (SSC) composed of many granular nanocrystals of potassium magnesium phosphate dispersed in a matrix. Contrary to this, carbon from pumpkin seeds (PSC) is revealed to be a more rigid structure, with no porous or ordered morphology. The electrochemical supercapacitive behavior was assessed by cyclic voltammetry and galvanostatic charge-discharge tests. Electrochemical measurements showed that the SSC shows a high specific capacitance of 24.9 Fg-1 as compared with that obtained (2.46 Fg-1) for PSC with a cycling efficiency of 87% and 89%, respectively. On high-temperature cycling for 500 charge-discharge cycles at 0.1 Ag-1, an improved cycling efficiency of 100% and 98% for SSC and PSC, respectively, is observed.

  11. Soybean oil biosynthesis: role of diacylglycerol acyltransferases.

    PubMed

    Li, Runzhi; Hatanaka, Tomoko; Yu, Keshun; Wu, Yongmei; Fukushige, Hirotada; Hildebrand, David

    2013-03-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol to form seed oil triacylglycerol (TAG). To understand the features of genes encoding soybean (Glycine max) DGATs and possible roles in soybean seed oil synthesis and accumulation, two full-length cDNAs encoding type 1 diacylglycerol acyltransferases (GmDGAT1A and GmDGAT1B) were cloned from developing soybean seeds. These coding sequences share identities of 94 % and 95 % in protein and DNA sequences. The genomic architectures of GmDGAT1A and GmDGAT1B both contain 15 introns and 16 exons. Differences in the lengths of the first exon and most of the introns were found between GmDGAT1A and GmDGAT1B genomic sequences. Furthermore, detailed in silico analysis revealed a third predicted DGAT1, GmDGAT1C. GmDGAT1A and GmDGAT1B were found to have similar activity levels and substrate specificities. Oleoyl-CoA and sn-1,2-diacylglycerol were preferred substrates over vernoloyl-CoA and sn-1,2-divernoloylglycerol. Both transcripts are much more abundant in developing seeds than in other tissues including leaves, stem, roots, and flowers. Both soybean DGAT1A and DGAT1B are highly expressed at developing seed stages of maximal TAG accumulation with DGAT1B showing highest expression at somewhat later stages than DGAT1A. DGAT1A and DGAT1B show expression profiles consistent with important roles in soybean seed oil biosynthesis and accumulation.

  12. Effects of tree architecture on pollen dispersal and mating patterns in Abies pinsapo Boiss. (Pinaceae).

    PubMed

    Sánchez-Robles, Jose M; García-Castaño, Juan L; Balao, Francisco; Terrab, Anass; Navarro-Sampedro, Laura; Tremetsberger, Karin; Talavera, Salvador

    2014-12-01

    Plant architecture is crucial to pollination and mating in wind-pollinated species. We investigated the effect of crown architecture on pollen dispersal, mating system and offspring quality, combining phenotypic and genotypic analyses in a low-density population of the endangered species Abies pinsapo. A total of 598 embryos from three relative crown height levels (bottom, middle and top) in five mother plants were genotyped using eleven nuclear microsatellite markers (nSSRs). Paternity analysis and mating system models were used to infer mating and pollen dispersal parameters. In addition, seeds were weighed (N = 16 110) and germinated (N = 736), and seedling vigour was measured to assess inbreeding depression. Overall, A. pinsapo shows a fat-tailed dispersal kernel, with an average pollen dispersal distance of 113-227 m, an immigration rate of 0.84-26.92%, and a number of effective pollen donors (Nep ) ranging between 3.5 and 11.9. We found an effect of tree height and relative crown height levels on mating parameters. A higher proportion of seeds with embryo (about 50%) and a higher rate of self-fertilization (about 60%) were found at the bottom level in comparison with the top level. Seed weight and seedling vigour are positively related. Nevertheless, no differences were found in seed weight or in seedling-related variables such as weight and length of aerial and subterranean parts among the different relative crown height levels, suggesting that seeds from the more strongly inbred bottom level are not affected by inbreeding depression. Our results point to vertical isotropy for outcross-pollen and they suggest that self-pollen may ensure fertilization when outcross-pollen is not available in low-density population. © 2014 John Wiley & Sons Ltd.

  13. Photon counting readout pixel array in 0.18-μm CMOS technology for on-line gamma-ray imaging of 103palladium seeds for permanent breast seed implant (PBSI) brachytherapy

    NASA Astrophysics Data System (ADS)

    Goldan, A. H.; Karim, K. S.; Reznik, A.; Caldwell, C. B.; Rowlands, J. A.

    2008-03-01

    Permanent breast seed implant (PBSI) brachytherapy technique was recently introduced as an alternative to high dose rate (HDR) brachytherapy and involves the permanent implantation of radioactive 103Palladium seeds into the surgical cavity of the breast for cancer treatment. To enable accurate seed implantation, this research introduces a gamma camera based on a hybrid amorphous selenium detector and CMOS readout pixel architecture for real-time imaging of 103Palladium seeds during the PBSI procedure. A prototype chip was designed and fabricated in 0.18-μm n-well CMOS process. We present the experimental results obtained from this integrated photon counting readout pixel.

  14. ZEAXANTHIN EPOXIDASE Activity Potentiates Carotenoid Degradation in Maturing Seed1[OPEN

    PubMed Central

    Magallanes-Lundback, Maria; Lipka, Alexander E.; Angelovici, Ruthie; DellaPenna, Dean

    2016-01-01

    Elucidation of the carotenoid biosynthetic pathway has enabled altering the composition and content of carotenoids in various plants, but to achieve desired nutritional impacts, the genetic components regulating carotenoid homeostasis in seed, the plant organ consumed in greatest abundance, must be elucidated. We used a combination of linkage mapping, genome-wide association studies (GWAS), and pathway-level analysis to identify nine loci that impact the natural variation of seed carotenoids in Arabidopsis (Arabidopsis thaliana). ZEAXANTHIN EPOXIDASE (ZEP) was the major contributor to carotenoid composition, with mutants lacking ZEP activity showing a remarkable 6-fold increase in total seed carotenoids relative to the wild type. Natural variation in ZEP gene expression during seed development was identified as the underlying mechanism for fine-tuning carotenoid composition, stability, and ultimately content in Arabidopsis seed. We previously showed that two CAROTENOID CLEAVAGE DIOXYGENASE enzymes, CCD1 and CCD4, are the primary mediators of seed carotenoid degradation, and here we demonstrate that ZEP acts as an upstream control point of carotenoid homeostasis, with ZEP-mediated epoxidation targeting carotenoids for degradation by CCD enzymes. Finally, four of the nine loci/enzymatic activities identified as underlying natural variation in Arabidopsis seed carotenoids also were identified in a recent GWAS of maize (Zea mays) kernel carotenoid variation. This first comparison of the natural variation in seed carotenoids in monocots and dicots suggests a surprising overlap in the genetic architecture of these traits between the two lineages and provides a list of likely candidates to target for selecting seed carotenoid variation in other species. PMID:27208224

  15. The role of teosinte glume architecture (tga1) in coordinated regulation and evolution of grass glumes and inflorescence axes.

    PubMed

    Preston, Jill C; Wang, Huai; Kursel, Lisa; Doebley, John; Kellogg, Elizabeth A

    2012-01-01

    • Hardened floral bracts and modifications to the inflorescence axis of grasses have been hypothesized to protect seeds from predation and/or aid seed dispersal, and have evolved multiple times independently within the family. Previous studies have demonstrated that mutations in the maize (Zea mays ssp. mays) gene teosinte glume architecture (tga1) underlie a reduction in hardened structures, yielding free fruits that are easy to harvest. It remains unclear whether the causative mutation(s) occurred in the cis-regulatory or protein-coding regions of tga1, and whether similar mutations in TGA1-like genes can explain variation in the dispersal unit in related grasses. • To address these questions TGA1-like genes were cloned and sequenced from a number of grasses and analyzed phylogenetically in relation to morphology; protein expression was investigated by immunolocalization. • TGA1-like proteins were expressed throughout the spikelet in the early development of all grasses, and throughout the flower of the grass relative Joinvillea. Later in development, expression patterns differed between Tripsacum dactyloides, maize and teosinte (Z. mays ssp. parviglumis). • These results suggest an ancestral role for TGA1-like genes in early spikelet development, but do not support the hypothesis that TGA1-like genes have been repeatedly modified to affect glume and inflorescence axis diversification. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  16. Heterogeneous Seeding of a Prion Structure by a Generic Amyloid Form of the Fungal Prion-forming Domain HET-s(218–289)

    DOE PAGES

    Wan, William; Bian, Wen; McDonald, Michele; ...

    2013-08-28

    The fungal prion-forming domain HET-s(218–289) forms infectious amyloid fibrils at physiological pH that were shown by solid-state NMR to be assemblies of a two-rung β-solenoid structure. Under acidic conditions, HET-s(218–289) has been shown to form amyloid fibrils that have very low infectivity in vivo, but structural information about these fibrils has been very limited. In this paper, we show by x-ray fiber diffraction that the HET-s(218–289) fibrils formed under acidic conditions have a stacked β-sheet architecture commonly found in short amyloidogenic peptides and denatured protein aggregates. At physiological pH, stacked β-sheet fibrils nucleate the formation of the infectious β-solenoid prionsmore » in a process of heterogeneous seeding, but do so with kinetic profiles distinct from those of spontaneous or homogeneous (seeded with infectious β-solenoid fibrils) fibrillization. Several serial passages of stacked β-sheet-seeded solutions lead to fibrillization kinetics similar to homogeneously seeded solutions. Finally, our results directly show that structural mutation can occur between substantially different amyloid architectures, lending credence to the suggestion that the processes of strain adaptation and crossing species barriers are facilitated by structural mutation.« less

  17. Advanced laser architectures for high power eyesafe illuminators

    NASA Astrophysics Data System (ADS)

    Baranova, N.; Pati, B.; Stebbins, K.; Bystryak, I.; Rayno, M.; Ezzo, K.; DePriest, C.

    2018-02-01

    Q-Peak has demonstrated a novel pulsed eyesafe laser architecture operating with >50 mJ pulse energies at Pulse Repetition Frequencies (PRFs) as high as 320 Hz. The design leverages an Optical Parametric Oscillator (OPO) and Optical Parametric Amplifier (OPA) geometry, which provides the unique capability for high power in a comparatively compact package, while also offering the potential for additional eyesafe power scaling. The laser consists of a Commercial Off-the-Shelf (COTS) Q-switched front-end seed laser to produce pulse-widths around 10 ns at 1.06-μm, which is then followed by a pair of Multi-Pass Amplifier (MPA) architectures (comprised of side-pumped, multi-pass Nd:YAG slabs with a compact diode-pump-array imaging system), and finally involving two sequential nonlinear optical conversion architectures for transfer into the eyesafe regime. The initial seed beam is first amplified through the MPA, and then split into parallel optical paths. An OPO provides effective nonlinear conversion on one optical path, while a second MPA further amplifies the 1.06-μm beam for use in pumping an OPA on the second optical path. These paths are then recombined prior to seeding the OPA. Each nonlinear conversion subsystem utilizes Potassium Titanyl Arsenate (KTA) for effective nonlinear conversion with lower risk to optical damage. This laser architecture efficiently produces pulse energies of >50 mJ in the eyesafe band at PRFs as high as 320 Hz, and has been designed to fit within a volume of 4,500 in3 (0.074 m3 ). We will discuss theoretical and experimental details of the nonlinear optical system for achieving higher eyesafe powers.

  18. Development and recovery from winter embolism in silver birch: seasonal patterns and relationships with the phenological cycle in oceanic Scotland.

    PubMed

    Strati, Sara; Patiño, Sandra; Slidders, Caley; Cundall, Edward P; Mencuccini, Maurizio

    2003-07-01

    Silver birch (Betula pendula Roth) is increasingly used in the United Kingdom for reforestation. However, recent evidence indicates that, under some circumstances, planted birch can suffer serious and repeated mortality of the apical leaders and branches, with consequent loss of apical dominance and the formation of a contorted stem. Plants from 37 seed sources of silver birch from Scotland and northern England planted at two sites were compared for several characteristics related to hydraulic architecture, vulnerability to freeze-thaw cycle induced embolism and spring recovery from winter embolism during the period 2000-2002. Phenological rhythms were also monitored in late winter-early spring to document relationships between phenology and water relations parameters. Significant differences were found across seed sources in stage of bud flushing for four dates in spring. Early flushing seed sources differed by about 1 to 2 weeks from late-flushing seed sources across the two sites. Wintertime xylem embolism in stems reached a peak of about 50 to 70% loss of xylem hydraulic conductivity, depending on the size and position of the sample shoots in the canopy. Small apical shoots were significantly more embolized than large basal shoots. Development of winter embolism was coupled to the occurrence of frost events. As percent loss of hydraulic conductivity increased during the winter, wood relative water content declined. Embolism reversal occurred rapidly in spring at the time of development of positive root pressure. No significant differences in the degree of winter embolism in 2001 were found among the three seed sources examined. The investigation was expanded in the winter-spring of 2002 to include 10 seed sources across both sites. Significant differences were found in degree of winter embolism across sites, dates and seed sources. For each date, there was a significant relationship between flushing scores and wood relative water contents across the two sites and all seed sources, suggesting that differences in time of flushing across sites and seed sources were likely caused by differences in the time of occurrence of root pressure, a necessary precondition to flushing.

  19. Genome-wide scan for seed composition provides insights into the improvement of soybean quality and the impacts of domestication and modern breeding

    USDA-ARS?s Scientific Manuscript database

    Soybean (Glycine max (L.) Merrill) is a world-widely grown major crop rich in both protein and oil. Improvement of seed nutrients has long been one of the most important breeding objectives in soybean. To better understand the genetic architecture of the traits for improvement, we conducted genome-w...

  20. Estimation of genetic parameters and selection of high-yielding, upright common bean lines with slow seed-coat darkening.

    PubMed

    Alvares, R C; Silva, F C; Melo, L C; Melo, P G S; Pereira, H S

    2016-11-21

    Slow seed coat darkening is desirable in common bean cultivars and genetic parameters are important to define breeding strategies. The aims of this study were to estimate genetic parameters for plant architecture, grain yield, grain size, and seed-coat darkening in common bean; identify any genetic association among these traits; and select lines that associate desirable phenotypes for these traits. Three experiments were set up in the winter 2012 growing season, in Santo Antônio de Goiás and Brasília, Brazil, including 220 lines obtained from four segregating populations and five parents. A triple lattice 15 x 15 experimental design was used. The traits evaluated were plant architecture, grain yield, grain size, and seed-coat darkening. Analyses of variance were carried out and genetic parameters such as heritability, gain expected from selection, and correlations, were estimated. For selection of superior lines, a "weight-free and parameter-free" index was used. The estimates of genetic variance, heritability, and gain expected from selection were high, indicating good possibility for success in selection of the four traits. The genotype x environment interaction was proportionally more important for yield than for the other traits. There was no strong genetic correlation observed among the four traits, which indicates the possibility of selection of superior lines with many traits. Considering simultaneous selection, it was not possible to join high genetic gains for the four traits. Forty-four lines that combined high yield, more upright plant architecture, slow darkening grains, and commercial grade size were selected.

  1. Mediating human stem cell behaviour via defined fibrous architectures by melt electrospinning writing.

    PubMed

    Eichholz, Kian F; Hoey, David A

    2018-05-29

    The architecture within which cells reside is key to mediating their specific functions within the body. In this study, we use melt electrospinning writing (MEW) to fabricate cell micro-environments with various fibrous architectures to study their effect on human stem cell behaviour. We designed, built and optimised a MEW apparatus and used it to fabricate four different platform designs of 10.4±2μm fibre diameter, with angles between fibres on adjacent layers of 90°, 45°, 10° and R (random). Mechanical characterisation was conducted via tensile testing, and human skeletal stem cells (hSSCs) were seeded to scaffolds to study the effect of architecture on cell morphology and mechanosensing (nuclear YAP). Cell morphology was significantly altered between groups, with cells on 90° scaffolds having a lower aspect ratio, greater spreading, greater cytoskeletal tension and nuclear YAP expression. Long term cell culture studies were then conducted to determine the differentiation potential of scaffolds in terms of alkaline phosphatase activity, collagen and mineral production. Across these studies, an increased cell spreading in 3-dimensions is seen with decreasing alignment of architecture correlated with enhanced osteogenesis. This study therefore highlights the critical role of fibrous architecture in regulating stem cell behaviour with implications for tissue engineering and disease progression. This is the first study which has investigated the effect of controlled fibrous architectures fabricated via melt electrospinning writing on cell behaviour and differentiation. After optimising the process and characterising scaffolds via SEM and tensile testing, cells were seeded to fibrous scaffolds with various micro-architectures and studied in terms of cell morphology. Nuclear YAP expression was further investigated as a marker of cell shape, cytoskeletal tension and differentiation potential. In agreement with these early markers, long term cell culture studies revealed for the first time that a 90° fibrous architecture is optimal for the osteogenic differentiation of skeletal stem cells. This is the first study to investigate the effect of controlled fibrous material architectures fabricated via melt electrospinning writing on cell shape, mechanosignalling and differentiation. After optimising the biofabrication process and characterising scaffolds via SEM and tensile testing, cells were seeded to fibrous scaffolds with various micro-architectures and studied in terms of cell shape. Nuclear YAP expression was further investigated as a marker of cytoskeletal tension and differentiation potential. In agreement with these early markers, long term cell culture studies revealed for the first time that a 90° fibrous architecture is optimal for the osteogenic differentiation of skeletal stem cells, by driving a spread morphology and nuclear translocation of YAP in 3 dimensions . Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. bFGF-containing electrospun gelatin scaffolds with controlled nano-architectural features for directed angiogenesis

    PubMed Central

    Montero, Ramon B.; Vial, Ximena; Nguyen, Dat Tat; Farhand, Sepehr; Reardon, Mark; Pham, Si M.; Tsechpenakis, Gavriil; Andreopoulos, Fotios M.

    2011-01-01

    Current therapeutic angiogenesis strategies are focused on the development of biologically responsive scaffolds that can deliver multiple angiogenic cytokines and/or cells in ischemic regions. Herein, we report on a novel electrospinning approach to fabricate cytokine-containing nanofibrous scaffolds with tunable architecture to promote angiogenesis. Fiber diameter and uniformity were controlled by varying the concentration of the polymeric (i.e. gelatin) solution, the feed rate, needle to collector distance, and electric field potential between the collector plate and injection needle. Scaffold fiber orientation (random vs. aligned) was achieved by alternating the polarity of two parallel electrodes placed on the collector plate thus dictating fiber deposition patterns. Basic fibroblast growth factor (bFGF) was physically immobilized within the gelatin scaffolds at variable concentrations and human umbilical vein endothelial cells (HUVEC) were seeded on the top of the scaffolds. Cell proliferation and migration was assessed as a function of growth factor loading and scaffold architecture. HUVECs successfully adhered onto gelatin B scaffolds and cell proliferation was directly proportional to the loading concentrations of the growth factor (0–100 bFGF ng/mL). Fiber orientation had a pronounced effect on cell morphology and orientation. Cells were spread along the fibers of the electrospun scaffolds with the aligned orientation and developed a spindle-like morphology parallel to the scaffold's fibers. In contrast, cells seeded onto the scaffolds with random fiber orientation, did not demonstrate any directionality and appeared to have a rounder shape. Capillary formation (i.e. sprouts length and number of sprouts per bead), assessed in a 3-D in vitro angiogenesis assay, was a function of bFGF loading concentration (0 ng, 50 ng and 100 ng per scaffold) for both types of electrospun scaffolds (i.e. with aligned or random fiber orientation). PMID:22200610

  3. Genotyping-by-Sequencing-Based Investigation of the Genetic Architecture Responsible for a ∼Sevenfold Increase in Soybean Seed Stearic Acid.

    PubMed

    Heim, Crystal B; Gillman, Jason D

    2017-01-05

    Soybean oil is highly unsaturated but oxidatively unstable, rendering it nonideal for food applications. Until recently, the majority of soybean oil underwent partial chemical hydrogenation, which produces trans fats as an unavoidable consequence. Dietary intake of trans fats and most saturated fats are conclusively linked to negative impacts on cholesterol levels and cardiovascular health. Two major soybean oil breeding targets are: (1) to reduce or eliminate the need for chemical hydrogenation, and (2) to replace the functional properties of partially hydrogenated soybean oil. One potential solution is the elevation of seed stearic acid, a saturated fat which has no negative impacts on cardiovascular health, from 3 to 4% in typical cultivars to > 20% of the seed oil. We performed QTL analysis of a population developed by crossing two mutant lines, one with a missense mutation affecting a stearoyl-acyl-carrier protein desaturase gene resulting in ∼11% seed stearic acid crossed to another mutant, A6, which has 24-28% seed stearic acid. Genotyping-by-sequencing (GBS)-based QTL mapping identified 21 minor and major effect QTL for six seed oil related traits and plant height. The inheritance of a large genomic deletion affecting chromosome 14 is the basis for largest effect QTL, resulting in ∼18% seed stearic acid. This deletion contains SACPD-C and another gene(s); loss of both genes boosts seed stearic acid levels to ≥ 18%. Unfortunately, this genomic deletion has been shown in previous studies to be inextricably correlated with reduced seed yield. Our results will help inform and guide ongoing breeding efforts to improve soybean oil oxidative stability. Copyright © 2017 Heim and Gillman.

  4. Effects of scaffold architecture on mechanical characteristics and osteoblast response to static and perfusion bioreactor cultures.

    PubMed

    Bartnikowski, Michal; Klein, Travis J; Melchels, Ferry P W; Woodruff, Maria A

    2014-07-01

    Tissue engineering focuses on the repair and regeneration of tissues through the use of biodegradable scaffold systems that structurally support regions of injury while recruiting and/or stimulating cell populations to rebuild the target tissue. Within bone tissue engineering, the effects of scaffold architecture on cellular response have not been conclusively characterized in a controlled-density environment. We present a theoretical and practical assessment of the effects of polycaprolactone (PCL) scaffold architectural modifications on mechanical and flow characteristics as well as MC3T3-E1 preosteoblast cellular response in an in vitro static plate and custom-designed perfusion bioreactor model. Four scaffold architectures were contrasted, which varied in inter-layer lay-down angle and offset between layers, while maintaining a structural porosity of 60 ± 5%. We established that as layer angle was decreased (90° vs. 60°) and offset was introduced (0 vs. 0.5 between layers), structural stiffness, yield stress, strength, pore size, and permeability decreased, while computational fluid dynamics-modeled wall shear stress was increased. Most significant effects were noted with layer offset. Seeding efficiencies in static culture were also dramatically increased due to offset (∼ 45% to ∼ 86%), with static culture exhibiting a much higher seeding efficiency than perfusion culture. Scaffold architecture had minimal effect on cell response in static culture. However, architecture influenced osteogenic differentiation in perfusion culture, likely by modifying the microfluidic environment. © 2014 Wiley Periodicals, Inc.

  5. Innovative fiber-laser architecture-based compact wind lidar

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Tracy, Allen; Vetorino, Steve; Higgins, Richard; Sibell, Russ

    2016-03-01

    This paper describes an innovative, compact and eyesafe coherent lidar system developed for use in wind and wake vortex sensing applications. This advanced lidar system is field ruggedized with reduced size, weight, and power consumption (SWaP) configured based on an all-fiber and modular architecture. The all-fiber architecture is developed using a fiber seed laser that is coupled to uniquely configured fiber amplifier modules and associated photonic elements including an integrated 3D scanner. The scanner provides user programmable continuous 360 degree azimuth and 180 degree elevation scan angles. The system architecture eliminates free-space beam alignment issues and allows plug and play operation using graphical user interface software modules. Besides its all fiber architecture, the lidar system also provides pulsewidth agility to aid in improving range resolution. Operating at 1.54 microns and with a PRF of up to 20 KHz, the wind lidar is air cooled with overall dimensions of 30" x 46" x 60" and is designed as a Class 1 system. This lidar is capable of measuring wind velocities greater than 120 +/- 0.2 m/s over ranges greater than 10 km and with a range resolution of less than 15 m. This compact and modular system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. The current lidar architecture is amenable for trace gas sensing and as such it is being evolved for airborne and space based platforms. In this paper, the key features of wind lidar instrumentation and its functionality are discussed followed by results of recent wind forecast measurements on a wind farm.

  6. Watt-level single-frequency tunable neodymium MOPA fiber laser operating at 915-937 nm

    NASA Astrophysics Data System (ADS)

    Rota-Rodrigo, S.; Gouhier, B.; Laroche, M.; Zhao, J.; Canuel, B.; Bertoldi, A.; Bouyer, P.; Traynor, N.; Cadier, B.; Robin, T.; Santarelli, G.

    2018-02-01

    We have developed a Watt-level single-frequency tunable fiber laser in the 915-937 nm spectral window. The laser is based on a neodymium-doped fiber master oscillator power amplifier architecture, with two amplification stages using a 20 mW extended cavity diode laser as seed. The system output power is higher than 2 W from 921 to 933 nm, with a stability better than 1.4% and a low relative intensity noise.

  7. Genetic control of inflorescence architecture in legumes

    PubMed Central

    Benlloch, Reyes; Berbel, Ana; Ali, Latifeh; Gohari, Gholamreza; Millán, Teresa; Madueño, Francisco

    2015-01-01

    The architecture of the inflorescence, the shoot system that bears the flowers, is a main component of the huge diversity of forms found in flowering plants. Inflorescence architecture has also a strong impact on the production of fruits and seeds, and on crop management, two highly relevant agronomical traits. Elucidating the genetic networks that control inflorescence development, and how they vary between different species, is essential to understanding the evolution of plant form and to being able to breed key architectural traits in crop species. Inflorescence architecture depends on the identity and activity of the meristems in the inflorescence apex, which determines when flowers are formed, how many are produced and their relative position in the inflorescence axis. Arabidopsis thaliana, where the genetic control of inflorescence development is best known, has a simple inflorescence, where the primary inflorescence meristem directly produces the flowers, which are thus borne in the main inflorescence axis. In contrast, legumes represent a more complex inflorescence type, the compound inflorescence, where flowers are not directly borne in the main inflorescence axis but, instead, they are formed by secondary or higher order inflorescence meristems. Studies in model legumes such as pea (Pisum sativum) or Medicago truncatula have led to a rather good knowledge of the genetic control of the development of the legume compound inflorescence. In addition, the increasing availability of genetic and genomic tools for legumes is allowing to rapidly extending this knowledge to other grain legume crops. This review aims to describe the current knowledge of the genetic network controlling inflorescence development in legumes. It also discusses how the combination of this knowledge with the use of emerging genomic tools and resources may allow rapid advances in the breeding of grain legume crops. PMID:26257753

  8. Genome-Wide Association Study Dissects the Genetic Architecture of Seed Weight and Seed Quality in Rapeseed (Brassica napus L.)

    PubMed Central

    Li, Feng; Chen, Biyun; Xu, Kun; Wu, Jinfeng; Song, Weilin; Bancroft, Ian; Harper, Andrea L.; Trick, Martin; Liu, Shengyi; Gao, Guizhen; Wang, Nian; Yan, Guixin; Qiao, Jiangwei; Li, Jun; Li, Hao; Xiao, Xin; Zhang, Tianyao; Wu, Xiaoming

    2014-01-01

    Association mapping can quickly and efficiently dissect complex agronomic traits. Rapeseed is one of the most economically important polyploid oil crops, although its genome sequence is not yet published. In this study, a recently developed 60K Brassica Infinium® SNP array was used to analyse an association panel with 472 accessions. The single-nucleotide polymorphisms (SNPs) of the array were in silico mapped using ‘pseudomolecules’ representative of the genome of rapeseed to establish their hypothetical order and to perform association mapping of seed weight and seed quality. As a result, two significant associations on A8 and C3 of Brassica napus were detected for erucic acid content, and the peak SNPs were found to be only 233 and 128 kb away from the key genes BnaA.FAE1 and BnaC.FAE1. BnaA.FAE1 was also identified to be significantly associated with the oil content. Orthologues of Arabidopsis thaliana HAG1 were identified close to four clusters of SNPs associated with glucosinolate content on A9, C2, C7 and C9. For seed weight, we detected two association signals on A7 and A9, which were consistent with previous studies of quantitative trait loci mapping. The results indicate that our association mapping approach is suitable for fine mapping of the complex traits in rapeseed. PMID:24510440

  9. Subaru SEEDS Survey of Exoplanets and Disks

    NASA Astrophysics Data System (ADS)

    McElwain, Michael W.; SEEDS Collaboration

    2012-01-01

    The Strategic Exploration of Exoplanets and Disks at Subaru (SEEDS) is the first strategic observing program (SSOPs) awarded by the National Astronomical Observatory of Japan (NAOJ). SEEDS targets a broad sample of stars that span a wide range of masses and ages to explore the formation and evolution of planetary systems. This survey has been awarded 120 nights over five years time to observe nearly 500 stars. Currently in the second year, SEEDS has already uncovered exciting new results for the protoplanetary disk AB Aur, transitional disk LkCa15, and nearby companion to GJ 758. We present the survey architecture, performance, recent results, and the projected sample. Finally, we will discuss planned upgrades to the high contrast instrumentation at the Subaru Telescope.

  10. Signposts of Planets Observed by SEEDS

    NASA Technical Reports Server (NTRS)

    McElwain, Michael

    2011-01-01

    The Strategic Exploration of Exoplanets and Disks at Subaru (SEEDS) is the first strategic observing program (SSOPs) awarded by the National Astronomical Observatory of Japan (NAOJ). SEEDS targets a broad sample of stars that span a wide range of masses and ages to explore the formation and evolution of planetary systems. This survey has been awarded 120 nights over five years time to observe nearly 500 stars. Currently in the second year, SEEDS has already produced exciting new results for the protoplanetary disk AB AUf, transitional disk LkCa15, and nearby companion to GJ 758. We present the survey architecture, performance, recent results, and the projected sample. Finally, we will discuss planned upgrades to the high contrast instrumentation at the Subaru

  11. Subaru SEEDS Survey of Exoplanets and Disks

    NASA Technical Reports Server (NTRS)

    McElwain, Michael W.

    2012-01-01

    The Strategic Exploration of Exoplanets and Disks at Subaru (SEEDS) is the first strategic observing program (SSOPs) awarded by the National Astronomical Observatory of Japan (NAOJ). SEEDS targets a broad sample of stars that span a wide range of masses and ages to explore the formation and evolution of planetary systems. This survey has been awarded 120 nights over five years time to observe nearly 500 stars. Currently in the second year, SEEDS has already produced exciting new results for the protoplanetary disk AB Aur, transitional disk LkCa15, and nearby companion to GJ 758. We present the survey architecture, performance, recent results, and the projected sample. Finally, we will discuss planned upgrades to the high contrast instrumentation at the Subaru Telescope

  12. Three-dimensional assembly of tissue-engineered cartilage constructs results in cartilaginous tissue formation without retainment of zonal characteristics.

    PubMed

    Schuurman, W; Harimulyo, E B; Gawlitta, D; Woodfield, T B F; Dhert, W J A; van Weeren, P R; Malda, J

    2016-04-01

    Articular cartilage has limited regenerative capabilities. Chondrocytes from different layers of cartilage have specific properties, and regenerative approaches using zonal chondrocytes may yield better replication of the architecture of native cartilage than when using a single cell population. To obtain high seeding efficiency while still mimicking zonal architecture, cell pellets of expanded deep zone and superficial zone equine chondrocytes were seeded and cultured in two layers on poly(ethylene glycol)-terephthalate-poly(butylene terephthalate) (PEGT-PBT) scaffolds. Scaffolds seeded with cell pellets consisting of a 1:1 mixture of both cell sources served as controls. Parallel to this, pellets of superficial or deep zone chondrocytes, and combinations of the two cell populations, were cultured without the scaffold. Pellet cultures of zonal chondrocytes in scaffolds resulted in a high seeding efficiency and abundant cartilaginous tissue formation, containing collagen type II and glycosaminoglycans (GAGs) in all groups, irrespective of the donor (n = 3), zonal population or stratified scaffold-seeding approach used. However, whereas total GAG production was similar, the constructs retained significantly more GAG compared to pellet cultures, in which a high percentage of the produced GAGs were secreted into the culture medium. Immunohistochemistry for zonal markers did not show any differences between the conditions. We conclude that spatially defined pellet culture in 3D scaffolds is associated with high seeding efficiency and supports cartilaginous tissue formation, but did not result in the maintenance or restoration of the original zonal phenotype. The use of pellet-assembled constructs leads to a better retainment of newly produced GAGs than the use of pellet cultures alone. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production.

    PubMed

    Whitford, Ryan; Fleury, Delphine; Reif, Jochen C; Garcia, Melissa; Okada, Takashi; Korzun, Viktor; Langridge, Peter

    2013-12-01

    Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system.

  14. Integrated optical maze

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, E.V.; Hendrix, J.L.

    1994-06-01

    Improvements to Nuclear Weapons Surety through the development of new detonation control techniques incorporating electro-optic technology are reviewed and proposed in this report. The results of the Kansas City Division`s (KCD`s) literature and vendor search, potential system architecture synthesis, and device test results are the basis of this report. This study has revealed several potential reconfigureable optical interconnect architectures that meet Los Alamos National Laboratory`s preliminary performance specifications. Several planer and global architectures have the potential for meeting the Department of Energy`s applications. Preliminary conclusions on the proposed architectures are discussed. The planer approach of monolithic GaAs amplifier switch arraysmore » is the leading candidate because it meets most of the specifications now. LiNbO{sub 3} and LiTaO{sub 3} planer tree switch arrays are the second choice because they meet all the specifications except for laser power transmission. Although not atop choice, acousto-optical free space switch arrays have been considered and meet most of the specifications. Symmetric-Self Electro-Optic Effect Devices (S-SEED) free space switch arrays are being considered and have excellent potential for smart reconfigureable optical interconnects in the future.« less

  15. Three Program Architecture for Design Optimization

    NASA Technical Reports Server (NTRS)

    Miura, Hirokazu; Olson, Lawrence E. (Technical Monitor)

    1998-01-01

    In this presentation, I would like to review historical perspective on the program architecture used to build design optimization capabilities based on mathematical programming and other numerical search techniques. It is rather straightforward to classify the program architecture in three categories as shown above. However, the relative importance of each of the three approaches has not been static, instead dynamically changing as the capabilities of available computational resource increases. For example, we considered that the direct coupling architecture would never be used for practical problems, but availability of such computer systems as multi-processor. In this presentation, I would like to review the roles of three architecture from historical as well as current and future perspective. There may also be some possibility for emergence of hybrid architecture. I hope to provide some seeds for active discussion where we are heading to in the very dynamic environment for high speed computing and communication.

  16. Multivariate Analysis of the Cotton Seed Ionome Reveals a Shared Genetic Architecture

    PubMed Central

    Pauli, Duke; Ziegler, Greg; Ren, Min; Jenks, Matthew A.; Hunsaker, Douglas J.; Zhang, Min; Baxter, Ivan; Gore, Michael A.

    2018-01-01

    To mitigate the effects of heat and drought stress, a better understanding of the genetic control of physiological responses to these environmental conditions is needed. To this end, we evaluated an upland cotton (Gossypium hirsutum L.) mapping population under water-limited and well-watered conditions in a hot, arid environment. The elemental concentrations (ionome) of seed samples from the population were profiled in addition to those of soil samples taken from throughout the field site to better model environmental variation. The elements profiled in seeds exhibited moderate to high heritabilities, as well as strong phenotypic and genotypic correlations between elements that were not altered by the imposed irrigation regimes. Quantitative trait loci (QTL) mapping results from a Bayesian classification method identified multiple genomic regions where QTL for individual elements colocalized, suggesting that genetic control of the ionome is highly interrelated. To more fully explore this genetic architecture, multivariate QTL mapping was implemented among groups of biochemically related elements. This analysis revealed both additional and pleiotropic QTL responsible for coordinated control of phenotypic variation for elemental accumulation. Machine learning algorithms that utilized only ionomic data predicted the irrigation regime under which genotypes were evaluated with very high accuracy. Taken together, these results demonstrate the extent to which the seed ionome is genetically interrelated and predictive of plant physiological responses to adverse environmental conditions. PMID:29437829

  17. Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping

    PubMed Central

    2012-01-01

    Background Proanthocyanidins (PAs), or condensed tannins, are flavonoid polymers, widespread throughout the plant kingdom, which provide protection against herbivores while conferring organoleptic and nutritive values to plant-derived foods, such as wine. However, the genetic basis of qualitative and quantitative PA composition variation is still poorly understood. To elucidate the genetic architecture of the complex grape PA composition, we first carried out quantitative trait locus (QTL) analysis on a 191-individual pseudo-F1 progeny. Three categories of PA variables were assessed: total content, percentages of constitutive subunits and composite ratio variables. For nine functional candidate genes, among which eight co-located with QTLs, we performed association analyses using a diversity panel of 141 grapevine cultivars in order to identify causal SNPs. Results Multiple QTL analysis revealed a total of 103 and 43 QTLs, respectively for seed and skin PA variables. Loci were mainly of additive effect while some loci were primarily of dominant effect. Results also showed a large involvement of pairwise epistatic interactions in shaping PA composition. QTLs for PA variables in skin and seeds differed in number, position, involvement of epistatic interaction and allelic effect, thus revealing different genetic determinisms for grape PA composition in seeds and skin. Association results were consistent with QTL analyses in most cases: four out of nine tested candidate genes (VvLAR1, VvMYBPA2, VvCHI1, VvMYBPA1) showed at least one significant association with PA variables, especially VvLAR1 revealed as of great interest for further functional investigation. Some SNP-phenotype associations were observed only in the diversity panel. Conclusions This study presents the first QTL analysis on grape berry PA composition with a comparison between skin and seeds, together with an association study. Our results suggest a complex genetic control for PA traits and different genetic architectures for grape PA composition between berry skin and seeds. This work also uncovers novel genomic regions for further investigation in order to increase our knowledge of the genetic basis of PA composition. PMID:22369244

  18. Identification and Characterization of Arabidopsis Seed Coat Mucilage Proteins.

    PubMed

    Tsai, Allen Yi-Lun; Kunieda, Tadashi; Rogalski, Jason; Foster, Leonard J; Ellis, Brian E; Haughn, George W

    2017-02-01

    Plant cell wall proteins are important regulators of cell wall architecture and function. However, because cell wall proteins are difficult to extract and analyze, they are generally poorly understood. Here, we describe the identification and characterization of proteins integral to the Arabidopsis (Arabidopsis thaliana) seed coat mucilage, a specialized layer of the extracellular matrix composed of plant cell wall carbohydrates that is used as a model for cell wall research. The proteins identified in mucilage include those previously identified by genetic analysis, and several mucilage proteins are reduced in mucilage-deficient mutant seeds, suggesting that these proteins are genuinely associated with the mucilage. Arabidopsis mucilage has both nonadherent and adherent layers. Both layers have similar protein profiles except for proteins involved in lipid metabolism, which are present exclusively in the adherent mucilage. The most abundant mucilage proteins include a family of proteins named TESTA ABUNDANT1 (TBA1) to TBA3; a less abundant fourth homolog was named TBA-LIKE (TBAL). TBA and TBAL transcripts and promoter activities were detected in developing seed coats, and their expression requires seed coat differentiation regulators. TBA proteins are secreted to the mucilage pocket during differentiation. Although reverse genetics failed to identify a function for TBAs/TBAL, the TBA promoters are highly expressed and cell type specific and so should be very useful tools for targeting proteins to the seed coat epidermis. Altogether, these results highlight the mucilage proteome as a model for cell walls in general, as it shares similarities with other cell wall proteomes while also containing mucilage-specific features. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Identification and Characterization of Arabidopsis Seed Coat Mucilage Proteins1[OPEN

    PubMed Central

    Tsai, Allen Yi-Lun; Kunieda, Tadashi; Rogalski, Jason; Foster, Leonard J.; Ellis, Brian E.

    2017-01-01

    Plant cell wall proteins are important regulators of cell wall architecture and function. However, because cell wall proteins are difficult to extract and analyze, they are generally poorly understood. Here, we describe the identification and characterization of proteins integral to the Arabidopsis (Arabidopsis thaliana) seed coat mucilage, a specialized layer of the extracellular matrix composed of plant cell wall carbohydrates that is used as a model for cell wall research. The proteins identified in mucilage include those previously identified by genetic analysis, and several mucilage proteins are reduced in mucilage-deficient mutant seeds, suggesting that these proteins are genuinely associated with the mucilage. Arabidopsis mucilage has both nonadherent and adherent layers. Both layers have similar protein profiles except for proteins involved in lipid metabolism, which are present exclusively in the adherent mucilage. The most abundant mucilage proteins include a family of proteins named TESTA ABUNDANT1 (TBA1) to TBA3; a less abundant fourth homolog was named TBA-LIKE (TBAL). TBA and TBAL transcripts and promoter activities were detected in developing seed coats, and their expression requires seed coat differentiation regulators. TBA proteins are secreted to the mucilage pocket during differentiation. Although reverse genetics failed to identify a function for TBAs/TBAL, the TBA promoters are highly expressed and cell type specific and so should be very useful tools for targeting proteins to the seed coat epidermis. Altogether, these results highlight the mucilage proteome as a model for cell walls in general, as it shares similarities with other cell wall proteomes while also containing mucilage-specific features. PMID:28003327

  20. The Conserved and Unique Genetic Architecture of Kernel Size and Weight in Maize and Rice1[OPEN

    PubMed Central

    Lan, Liu; Wang, Hongze; Xu, Yuancheng; Yang, Xiaohong; Li, Wenqiang; Tong, Hao; Xiao, Yingjie; Pan, Qingchun; Qiao, Feng; Raihan, Mohammad Sharif; Liu, Haijun; Yang, Ning; Wang, Xiaqing; Deng, Min; Jin, Minliang; Zhao, Lijun; Luo, Xin; Zhan, Wei; Liu, Nannan; Wang, Hong; Chen, Gengshen

    2017-01-01

    Maize (Zea mays) is a major staple crop. Maize kernel size and weight are important contributors to its yield. Here, we measured kernel length, kernel width, kernel thickness, hundred kernel weight, and kernel test weight in 10 recombinant inbred line populations and dissected their genetic architecture using three statistical models. In total, 729 quantitative trait loci (QTLs) were identified, many of which were identified in all three models, including 22 major QTLs that each can explain more than 10% of phenotypic variation. To provide candidate genes for these QTLs, we identified 30 maize genes that are orthologs of 18 rice (Oryza sativa) genes reported to affect rice seed size or weight. Interestingly, 24 of these 30 genes are located in the identified QTLs or within 1 Mb of the significant single-nucleotide polymorphisms. We further confirmed the effects of five genes on maize kernel size/weight in an independent association mapping panel with 540 lines by candidate gene association analysis. Lastly, the function of ZmINCW1, a homolog of rice GRAIN INCOMPLETE FILLING1 that affects seed size and weight, was characterized in detail. ZmINCW1 is close to QTL peaks for kernel size/weight (less than 1 Mb) and contains significant single-nucleotide polymorphisms affecting kernel size/weight in the association panel. Overexpression of this gene can rescue the reduced weight of the Arabidopsis (Arabidopsis thaliana) homozygous mutant line in the AtcwINV2 gene (Arabidopsis ortholog of ZmINCW1). These results indicate that the molecular mechanisms affecting seed development are conserved in maize, rice, and possibly Arabidopsis. PMID:28811335

  1. The Conserved and Unique Genetic Architecture of Kernel Size and Weight in Maize and Rice.

    PubMed

    Liu, Jie; Huang, Juan; Guo, Huan; Lan, Liu; Wang, Hongze; Xu, Yuancheng; Yang, Xiaohong; Li, Wenqiang; Tong, Hao; Xiao, Yingjie; Pan, Qingchun; Qiao, Feng; Raihan, Mohammad Sharif; Liu, Haijun; Zhang, Xuehai; Yang, Ning; Wang, Xiaqing; Deng, Min; Jin, Minliang; Zhao, Lijun; Luo, Xin; Zhou, Yang; Li, Xiang; Zhan, Wei; Liu, Nannan; Wang, Hong; Chen, Gengshen; Li, Qing; Yan, Jianbing

    2017-10-01

    Maize ( Zea mays ) is a major staple crop. Maize kernel size and weight are important contributors to its yield. Here, we measured kernel length, kernel width, kernel thickness, hundred kernel weight, and kernel test weight in 10 recombinant inbred line populations and dissected their genetic architecture using three statistical models. In total, 729 quantitative trait loci (QTLs) were identified, many of which were identified in all three models, including 22 major QTLs that each can explain more than 10% of phenotypic variation. To provide candidate genes for these QTLs, we identified 30 maize genes that are orthologs of 18 rice ( Oryza sativa ) genes reported to affect rice seed size or weight. Interestingly, 24 of these 30 genes are located in the identified QTLs or within 1 Mb of the significant single-nucleotide polymorphisms. We further confirmed the effects of five genes on maize kernel size/weight in an independent association mapping panel with 540 lines by candidate gene association analysis. Lastly, the function of ZmINCW1 , a homolog of rice GRAIN INCOMPLETE FILLING1 that affects seed size and weight, was characterized in detail. ZmINCW1 is close to QTL peaks for kernel size/weight (less than 1 Mb) and contains significant single-nucleotide polymorphisms affecting kernel size/weight in the association panel. Overexpression of this gene can rescue the reduced weight of the Arabidopsis ( Arabidopsis thaliana ) homozygous mutant line in the AtcwINV2 gene (Arabidopsis ortholog of ZmINCW1 ). These results indicate that the molecular mechanisms affecting seed development are conserved in maize, rice, and possibly Arabidopsis. © 2017 American Society of Plant Biologists. All Rights Reserved.

  2. Mapping quantitative trait loci affecting Arabidopsis thaliana seed morphology features extracted computationally from images.

    PubMed

    Moore, Candace R; Gronwall, David S; Miller, Nathan D; Spalding, Edgar P

    2013-01-01

    Seeds are studied to understand dispersal and establishment of the next generation, as units of agricultural yield, and for other important reasons. Thus, elucidating the genetic architecture of seed size and shape traits will benefit basic and applied plant biology research. This study sought quantitative trait loci (QTL) controlling the size and shape of Arabidopsis thaliana seeds by computational analysis of seed phenotypes in recombinant inbred lines derived from the small-seeded Landsberg erecta × large-seeded Cape Verde Islands accessions. On the order of 10(3) seeds from each recombinant inbred line were automatically measured with flatbed photo scanners and custom image analysis software. The eight significant QTL affecting seed area explained 63% of the variation, and overlapped with five of the six major-axis (length) QTL and three of the five minor-axis (width) QTL, which accounted for 57% and 38% of the variation in those traits, respectively. Because the Arabidopsis seed is exalbuminous, lacking an endosperm at maturity, the results are relatable to embryo length and width. The Cvi allele generally had a positive effect of 2.6-4.0%. Analysis of variance showed heritability of the three traits ranged between 60% and 73%. Repeating the experiment with 2.2 million seeds from a separate harvest of the RIL population and approximately 0.5 million seeds from 92 near-isogenic lines confirmed the aforementioned results. Structured for download are files containing phenotype measurements, all sets of seed images, and the seed trait measuring tool.

  3. OsRAMOSA2 Shapes Panicle Architecture through Regulating Pedicel Length.

    PubMed

    Lu, Huan; Dai, Zhengyan; Li, Ling; Wang, Jiang; Miao, Xuexia; Shi, Zhenying

    2017-01-01

    The panicle architecture of rice is an important characteristic that influences reproductive success and yield. It is largely determined by the number and length of the primary and secondary branches. The number of panicle branches is defined by the inflorescence meristem state between determinacy and indeterminacy; for example, the maize ramosa2 ( ra2 ) mutant has more branches in its tassel through loss of spikelet determinacy. Some genes and factors influencing the number of primary and secondary branches have been studied, but little is known about the molecular mechanism underlying pedicel development, which also influences panicle architecture. We report here that rice OsRAMOSA2 ( OsRA2 ) gene modifies panicle architecture through regulating pedicel length. Ectopic expression of OsRA2 resulted in a shortened pedicel while inhibition of OsRA2 through RNA interference produced elongated pedicel. In addition, OsRA2 influenced seed morphology. The OsRA2 protein localized to the nucleus and showed transcriptional activation in yeast; in accordance with its function in pedicel development, OsRA2 mRNA was enriched in the anlagen of axillary meristems, such as primary and secondary branch meristems and the spikelet meristems of young panicles. This indicates a conserved role of OsRA2 for shaping the initial steps of inflorescence architecture. Genetic analysis revealed that OsRA2 may control panicle architecture using the same pathway as that of the axillary meristem gene LAX1 ( LAX PANICLE1 ). Moreover, OsRA2 acted downstream of RCN2 in regulating pedicel and branch lengths, but upstream of RCN2 for control of the number of secondary branches, indicating that branch number and length development in the panicle were respectively regulated using parallel pathway. Functional conservation between OsRA2 and AtLOB , and the conservation and diversification of RA2 in maize and rice are also discussed.

  4. Fabrication of single crystal architecture in Sb-S-I glass: Transition from dot to line

    DOE PAGES

    Savytskii, Dmytro; Dierolf, Volkmar; Tamura, Nobumichi; ...

    2017-12-08

    We have investigated the occurrence of the sometimes observed grain boundaries, as initial seed is extended to form line in laser-fabricated single-crystal architecture in glass (SCAG). In particular, for Sb 2S 3 SCAG in Sb-S-I glass as a model system, grain boundaries are formed during the transition from laser-written initial seed dot to crystal line. Such grain boundaries during the growth of Sb 2S 3 crystals occur in 16SbI 3-84Sb 2S 3glass, whereas they are absent in Sb 2S 3 glass. We correlate this difference in tendency to form multiple grains with the relative glass forming ability i.e. the dynamicsmore » of nucleation and crystal growth as determined by differential scanning calorimetry (DSC). On the basis of this understanding, methods to minimize the appearance of grain boundaries in the transition region are suggested.« less

  5. Fabrication of single crystal architecture in Sb-S-I glass: Transition from dot to line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savytskii, Dmytro; Dierolf, Volkmar; Tamura, Nobumichi

    We have investigated the occurrence of the sometimes observed grain boundaries, as initial seed is extended to form line in laser-fabricated single-crystal architecture in glass (SCAG). In particular, for Sb 2S 3 SCAG in Sb-S-I glass as a model system, grain boundaries are formed during the transition from laser-written initial seed dot to crystal line. Such grain boundaries during the growth of Sb 2S 3 crystals occur in 16SbI 3-84Sb 2S 3glass, whereas they are absent in Sb 2S 3 glass. We correlate this difference in tendency to form multiple grains with the relative glass forming ability i.e. the dynamicsmore » of nucleation and crystal growth as determined by differential scanning calorimetry (DSC). On the basis of this understanding, methods to minimize the appearance of grain boundaries in the transition region are suggested.« less

  6. Engineered disc-like angle-ply structures for intervertebral disc replacement.

    PubMed

    Nerurkar, Nandan L; Sen, Sounok; Huang, Alice H; Elliott, Dawn M; Mauck, Robert L

    2010-04-15

    To develop a construction algorithm in which electrospun nanofibrous scaffolds are coupled with a biocompatible hydrogel to engineer a mesenchymal stem cell (MSC)-based disc replacement. To engineer a disc-like angle-ply structure (DAPS) that replicates the multiscale architecture of the intervertebral disc. Successful engineering of a replacement for the intervertebral disc requires replication of its mechanical function and anatomic form. Despite many attempts to engineer a replacement for ailing and degenerated discs, no prior study has replicated the multiscale hierarchical architecture of the native disc, and very few have assessed the mechanical function of formed neo-tissues. A new algorithm for the construction of a disc analogue was developed, using agarose to form a central nucleus pulposus (NP) and oriented electrospun nanofibrous scaffolds to form the anulus fibrosus region (AF). Bovine MSCs were seeded into both regions and biochemical, histologic, and mechanical maturation were evaluated with in vitro culture. We show that mechanical testing in compression and torsion, loading methods commonly used to assess disc mechanics, reveal equilibrium and time-dependent behaviors that are qualitatively similar to native tissue, although lesser in magnitude. Further, we demonstrate that cells seeded into both AF and NP regions adopt distinct morphologies that mirror those seen in native tissue, and that, in the AF region, this ordered community of cells deposit matrix that is organized in an angle-ply configuration. Finally, constructs demonstrate functional development with long-term in vitro culture. These findings provide a new approach for disc tissue engineering that replicates multi-scale form and function of the intervertebral disc, providing a foundation from which to build a multi-scale, biologic, anatomically and hierarchically relevant composite disc analogue for eventual disc replacement.

  7. Leveraging FPGAs for Accelerating Short Read Alignment.

    PubMed

    Arram, James; Kaplan, Thomas; Luk, Wayne; Jiang, Peiyong

    2017-01-01

    One of the key challenges facing genomics today is how to efficiently analyze the massive amounts of data produced by next-generation sequencing platforms. With general-purpose computing systems struggling to address this challenge, specialized processors such as the Field-Programmable Gate Array (FPGA) are receiving growing interest. The means by which to leverage this technology for accelerating genomic data analysis is however largely unexplored. In this paper, we present a runtime reconfigurable architecture for accelerating short read alignment using FPGAs. This architecture exploits the reconfigurability of FPGAs to allow the development of fast yet flexible alignment designs. We apply this architecture to develop an alignment design which supports exact and approximate alignment with up to two mismatches. Our design is based on the FM-index, with optimizations to improve the alignment performance. In particular, the n-step FM-index, index oversampling, a seed-and-compare stage, and bi-directional backtracking are included. Our design is implemented and evaluated on a 1U Maxeler MPC-X2000 dataflow node with eight Altera Stratix-V FPGAs. Measurements show that our design is 28 times faster than Bowtie2 running with 16 threads on dual Intel Xeon E5-2640 CPUs, and nine times faster than Soap3-dp running on an NVIDIA Tesla C2070 GPU.

  8. Beneficial effects of Aesculus hippocastanum L. seed extract on the body's own antioxidant defense system on subacute administration.

    PubMed

    Küçükkurt, Ismail; Ince, Sinan; Keleş, Hikmet; Akkol, Esra Küpeli; Avci, Gülcan; Yeşilada, Erdem; Bacak, Elif

    2010-05-04

    Seeds of Aesculus hippocastanum L. have long been used in European phytotherapy to treat inflammatory and vascular problems. In Turkish folk medicine, tea prepared from the crushed seeds was used to pass kidney stone and against stomach ache, while a fraction of seed was swallowed to alleviate hemorrhoids symptoms. In order to evaluate the in vivo effects of escin mixture from Aesculus hippocastanum seed on the blood and tissue antioxidant defense systems in standard pellet diet (SPD) and in high-fat diet (HFD) consumed male mice. Escin mixture was obtained from the ethanol extract of seeds. Escin mixture was administered orally to male mice fed either standard pellet diet (SPD) or high-fat diet (HFD) at 100mg/kg doses daily for 5 weeks and the tissue (liver, kidney and heart) and blood samples were collected at the end of experimental period. The effect of escin mixture on the plasma antioxidant activity; blood and tissue malondialdehyde (MDA) and reduced glutathione (GSH) levels; erythrocyte and tissue superoxide dismutase (SOD) and catalase activity (CAT) in SPD and HFD consumed animals were experimentally studied. Escin mixture prohibited the adverse effects of oxidative stress and showed a protective effect on the liver architecture both in SPD and HFD consumed male mice. Escin mixture prohibited the adverse effects of oxidative stress and showed a protective effect on the liver architecture both in SPD and HFD consumed male mice. Combined administration of high-fat diet with escin mixture decreased blood (p<0.01), liver (p<0.01), kidney (p<0.05), and heart (p<0.05) of MDA, liver SOD (p<0.01) and CAT (p<0.05) levels and increased blood (p<0.01) and liver GSH (p<0.001) levels in mice. The present results indicate that Aesculus hippocastanum increase the antioxidative defense system of the body and prevent HFD-induced lipid peroxidation in male mice. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Development of three-dimensional collagen scaffolds with controlled architecture for cell migration studies using breast cancer cell lines.

    PubMed

    Campbell, Jonathan J; Husmann, Anke; Hume, Robert D; Watson, Christine J; Cameron, Ruth E

    2017-01-01

    Cancer is characterized by cell heterogeneity and the development of 3D in vitro assays that can distinguish more invasive or migratory phenotypes could enhance diagnosis or drug discovery. 3D collagen scaffolds have been used to develop analogues of complex tissues in vitro and are suited to routine biochemical and immunological assays. We sought to increase 3D model tractability and modulate the migration rate of seeded cells using an ice-templating technique to create either directional/anisotropic or non-directional/isotropic porous architectures within cross-linked collagen scaffolds. Anisotropic scaffolds supported the enhanced migration of an invasive breast cancer cell line MDA-MB-231 with an altered spatial distribution of proliferative cells in contrast to invasive MDA-MB-468 and non-invasive MCF-7 cells lines. In addition, MDA-MB-468 showed increased migration upon epithelial-to-mesenchymal transition (EMT) in anisotropic scaffolds. The provision of controlled architecture in this system may act both to increase assay robustness and as a tuneable parameter to capture detection of a migrated population within a set time, with consequences for primary tumour migration analysis. The separation of invasive clones from a cancer biomass with in vitro platforms could enhance drug development and diagnosis testing by contributing assay metrics including migration rate, as well as modelling cell-cell and cell-matrix interaction in a system compatible with routine histopathological testing. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Computing Competition for Light in the GREENLAB Model of Plant Growth: A Contribution to the Study of the Effects of Density on Resource Acquisition and Architectural Development

    PubMed Central

    Cournède, Paul-Henry; Mathieu, Amélie; Houllier, François; Barthélémy, Daniel; de Reffye, Philippe

    2008-01-01

    Background and Aims The dynamical system of plant growth GREENLAB was originally developed for individual plants, without explicitly taking into account interplant competition for light. Inspired by the competition models developed in the context of forest science for mono-specific stands, we propose to adapt the method of crown projection onto the x–y plane to GREENLAB, in order to study the effects of density on resource acquisition and on architectural development. Methods The empirical production equation of GREENLAB is extrapolated to stands by computing the exposed photosynthetic foliage area of each plant. The computation is based on the combination of Poisson models of leaf distribution for all the neighbouring plants whose crown projection surfaces overlap. To study the effects of density on architectural development, we link the proposed competition model to the model of interaction between functional growth and structural development introduced by Mathieu (2006, PhD Thesis, Ecole Centrale de Paris, France). Key Results and Conclusions The model is applied to mono-specific field crops and forest stands. For high-density crops at full cover, the model is shown to be equivalent to the classical equation of field crop production ( Howell and Musick, 1985, in Les besoins en eau des cultures; Paris: INRA Editions). However, our method is more accurate at the early stages of growth (before cover) or in the case of intermediate densities. It may potentially account for local effects, such as uneven spacing, variation in the time of plant emergence or variation in seed biomass. The application of the model to trees illustrates the expression of plant plasticity in response to competition for light. Density strongly impacts on tree architectural development through interactions with the source–sink balances during growth. The effects of density on tree height and radial growth that are commonly observed in real stands appear as emerging properties of the model. PMID:18037666

  11. Computing competition for light in the GREENLAB model of plant growth: a contribution to the study of the effects of density on resource acquisition and architectural development.

    PubMed

    Cournède, Paul-Henry; Mathieu, Amélie; Houllier, François; Barthélémy, Daniel; de Reffye, Philippe

    2008-05-01

    The dynamical system of plant growth GREENLAB was originally developed for individual plants, without explicitly taking into account interplant competition for light. Inspired by the competition models developed in the context of forest science for mono-specific stands, we propose to adapt the method of crown projection onto the x-y plane to GREENLAB, in order to study the effects of density on resource acquisition and on architectural development. The empirical production equation of GREENLAB is extrapolated to stands by computing the exposed photosynthetic foliage area of each plant. The computation is based on the combination of Poisson models of leaf distribution for all the neighbouring plants whose crown projection surfaces overlap. To study the effects of density on architectural development, we link the proposed competition model to the model of interaction between functional growth and structural development introduced by Mathieu (2006, PhD Thesis, Ecole Centrale de Paris, France). The model is applied to mono-specific field crops and forest stands. For high-density crops at full cover, the model is shown to be equivalent to the classical equation of field crop production (Howell and Musick, 1985, in Les besoins en eau des cultures; Paris: INRA Editions). However, our method is more accurate at the early stages of growth (before cover) or in the case of intermediate densities. It may potentially account for local effects, such as uneven spacing, variation in the time of plant emergence or variation in seed biomass. The application of the model to trees illustrates the expression of plant plasticity in response to competition for light. Density strongly impacts on tree architectural development through interactions with the source-sink balances during growth. The effects of density on tree height and radial growth that are commonly observed in real stands appear as emerging properties of the model.

  12. How the shapes of seeds can influence pathology.

    PubMed

    Melki, Ronald

    2018-01-01

    It is widely accepted that the loss of function of different cellular proteins following their aggregation into highly stable aggregates or the gain of pathologic function of the resulting macromolecular assemblies or both processes are tightly associated to distinct debilitating neurodegenerative diseases such as Alzheimer's, Parkinson's, Creutzfeldt-Jacob, Amyotrophic Lateral Sclerosis and Huntington's diseases. How the aggregation of one given protein leads to distinct diseases is unclear. Here, a structural-molecular explanation based on the ability of proteins such as α-synuclein or tau to form assemblies that differ by their intrinsic architecture, stability, seeding capacity, and surfaces is proposed to account for distinct synucleinopathies and tauopathies. The shape and surfaces of the seeds is proposed to define at the same time their seeding capacity, interactome and tropism for defined neuronal cells within the central nervous system. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Architecture and Bloch-Maxwell modelling of multi-mJ 100 fs fully-coherent soft X-ray laser based on X-ray CPA

    NASA Astrophysics Data System (ADS)

    Zeitoun, Ph.; Oliva, E.; Fajardo, M.; Cheriaux, G.; Le, T. T. T.; Li, L.; Pitman, M.; Ros, D.; Sebban, S.; Velarde, P.

    2012-07-01

    By seeding amplifying plasmas pumped with the so-called Transient collisionnal excitation scheme, the amplified pulse seems to be limited to an energy of several 10's of μJ. Aiming to attain several mJ, we study the seeding of plasma pumped by long laser pulse. Thanks to our time-dependent Maxwell-Bloch code, we demonstrate that direct seeding with femtosecond pulse is inefficient. We also study the amplification of pulse train with the drawback of re-synchronizing the pulses. We proposed and studied the amplification of high harmonic seed stretched by a grating pair, amplified finally compressed. We consider off-axis diffraction on the gratings for maximizing their efficiency. Considering the phase deformation induced by the amplification and the spectral narrowing the final pulse is 230 fs in duration and 5 mJ.

  14. Architecture and Bloch-Maxwell modelling of multi-mJ 100 fs fully-coherent soft X-ray laser based on X-ray CPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeitoun, Ph.; Oliva, E.; Fajardo, M.

    2012-07-09

    By seeding amplifying plasmas pumped with the so-called Transient collisionnal excitation scheme, the amplified pulse seems to be limited to an energy of several 10's of {mu}J. Aiming to attain several mJ, we study the seeding of plasma pumped by long laser pulse. Thanks to our time-dependent Maxwell-Bloch code, we demonstrate that direct seeding with femtosecond pulse is inefficient. We also study the amplification of pulse train with the drawback of re-synchronizing the pulses. We proposed and studied the amplification of high harmonic seed stretched by a grating pair, amplified finally compressed. We consider off-axis diffraction on the gratings formore » maximizing their efficiency. Considering the phase deformation induced by the amplification and the spectral narrowing the final pulse is 230 fs in duration and 5 mJ.« less

  15. Regulatory modules controlling maize inflorescence architecture

    USDA-ARS?s Scientific Manuscript database

    Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that...

  16. Sapling structure and regeneration strategy in 18 Shorea species co-occurring in a tropical rainforest.

    PubMed

    Aiba, Masahiro; Nakashizuka, Tohru

    2005-08-01

    Inevitable trade-offs in structure may be a basis for differentiation in plant strategies. Juvenile trees in different functional groups are characterized by specific suites of structural traits such as crown architecture and biomass distribution. The relationship between juvenile tree structure and function was tested to find out if it is robust among functionally and taxonomically similar species of the genus Shorea that coexist sympatrically in a tropical rain forest in Borneo. The sapling structures of 18 species were compared for standardized dry masses of 5 and 30 g. Pairwise simple correlation and multiple correlation patterns among structural traits of juveniles (0.1-1.5 m in height) of 18 Shorea species were examined using Pearson's correlation and principal component analysis (PCA), respectively. The correlation was then tested between the PCA results and three indices of shade tolerance: the net photosynthetic rate, the wood density of mature trees and seed size. The structural variation in saplings of the genus Shorea was as large as that found in sets of species with much more diverse origins. The PCA showed that both crown architecture and allocation to leaves are major sources of variation in the structures of the 18 species investigated. Of these two axes, allocation to leaves was significantly correlated with wood density and showed a limited correlation with photosynthetic rate, whereas crown architecture was significantly correlated to seed size. Overall, the results suggest that an allocation trade-off between leaves and other organs, which co-varied with wood density and to a certain extent with photosynthetic capacity, accounts for the difference in shade tolerance among congeneric, functionally similar species. In contrast, the relationship between the architecture and regeneration strategy differed from the pattern found between functional groups, and the function of crown architecture was ambiguous.

  17. Immunolocalization of pectic polysaccharides during abscission in pea seeds (Pisum sativum L.) and in abscission less def pea mutant seeds.

    PubMed

    Lee, YeonKyeong; Ayeh, Kwadwo Owusu; Ambrose, Mike; Hvoslef-Eide, Anne Kathrine

    2016-08-31

    In pea seeds (Pisum sativum L.), the presence of the Def locus determines abscission event between its funicle and the seed coat. Cell wall remodeling is a necessary condition for abscission of pea seed. The changes in cell wall components in wild type (WT) pea seed with Def loci showing seed abscission and in abscission less def mutant peas were studied to identify the factors determining abscission and non-abscission event. Changes in pectic polysaccharides components were investigated in WT and def mutant pea seeds using immunolabeling techniques. Pectic monoclonal antibodies (1 → 4)-β-D-galactan (LM5), (1 → 5)-α-L-arabinan(LM6), partially de-methyl esterified homogalacturonan (HG) (JIM5) and methyl esterified HG (JIM7) were used for this study. Prior to abscission zone (AZ) development, galactan and arabinan reduced in the predestined AZ of the pea seed and disappeared during the abscission process. The AZ cells had partially de-methyl esterified HG while other areas had highly methyl esterified HG. A strong JIM5 labeling in the def mutant may be related to cell wall rigidity in the mature def mutants. In addition, the appearance of pectic epitopes in two F3 populations resulting from cross between WT and def mutant parents was studied. As a result, we identified that homozygous dominant lines (Def/Def) showing abscission and homozygous recessive lines (def/def) showing non-abscission had similar immunolabeling pattern to their parents. However, the heterogeneous lines (Def/def) showed various immunolabeling pattern and the segregation pattern of the Def locus. Through the study of the complexity and variability of pectins in plant cell walls as well as understanding the segregation patterns of the Def locus using immunolabeling techniques, we conclude that cell wall remodeling occurs in the abscission process and de-methyl esterification may play a role in the non-abscission event in def mutant. Overall, this study contributes new insights into understanding the structural and architectural organization of the cell walls during abscission.

  18. Microenvironment Induced Spheroid to Sheeting Transition of Immortalized Human Keratinocytes (HaCaT) Cultured in Microbubbles Formed in Polydimethylsiloxane

    PubMed Central

    Chandrasekaran, Siddarth; Giang, Ut-Binh; King, Michael R.; DeLouise, Lisa A

    2011-01-01

    The in vivo cellular microenvironment is regulated by a complex interplay of soluble factors and signaling molecules secreted by cells and it plays a critical role in the growth and development of normal and diseased tissues. In vitro systems that can recapitulate the microenvironment at the cellular level are needed to investigate the influence of autocrine signaling and extracellular matrix effects on tissue homeostasis, regeneration, and disease development and progression. In this study we report the use of microbubble technology as a means to culture cells in a controlled microenvironment in which cells can influence their function through autocrine signaling. Microbubbles (MB) are small spherical cavities about 100–300 µm in diameter formed in hydrophobic polymer polydimethylsiloxane (PDMS) with ~60–100 µm circular openings and aspect ratio ~3.5. We demonstrate that the unique architecture of the microbubble compartment is advantaged for cell culture using HaCaT cells, an immortalized keratinocyte cell line. We observe that HaCaT cells, seeded in microbubbles (15–20 cells / MB) and cultured under standard conditions, adopt a compact 3-D spheroidal morphology. Within 2–3 days, the cells transition to a sheeting morphology. Through experimentation and simulation we show that this transition in morphology is due to the unique architecture of the microbubble compartment which enables cells to condition their local microenvironment. The small media volume per cell and the development of shallow concentration gradients allow factors secreted by the cells to rise to bioactive levels. The kinetics of the morphology transition depends on the number of cells seeded per microbubble; higher cell seeding induces a more rapid transition. HaCaT cells seeded onto PDMS cured in 96-well plates also form compact spheroids but they do not transition to a sheeting morphology even after several weeks of culture. The importance of soluble factor accumulation in driving this morphology transition in microbubbles is supported by the observation that spheroids do not form when cells - seeded into microbubbles or onto PDMS cured in 96 well plates - are cultured in media conditioned by HaCaT cells grown in standard tissue culture plate. We observed that the addition of TGF-β1 to the growth media induced cells to proliferate in a sheeting morphology from the onset both on PDMS cured in 96-well plates and in microbubbles. TGF-β1 is a morphogen known to regulate epithelial-to-mesenchymal transition (EMT). Studies of the role of Ca2+ concentration and changes in Ecadherin expression additionally support an EMT-like HaCaT morphology transition. These findings taken together validate the microbubble compartment as a unique cell culture platform that can potentially transform investigative studies in cell biology and in particular the tumor microenvironment. Targeting the tumor microenvironment is an emerging area of anti-cancer therapy. PMID:21724250

  19. Personality Is Reflected in the Brain's Intrinsic Functional Architecture

    PubMed Central

    Adelstein, Jonathan S.; Shehzad, Zarrar; Mennes, Maarten; DeYoung, Colin G.; Zuo, Xi-Nian; Kelly, Clare; Margulies, Daniel S.; Bloomfield, Aaron; Gray, Jeremy R.; Castellanos, F. Xavier; Milham, Michael P.

    2011-01-01

    Personality describes persistent human behavioral responses to broad classes of environmental stimuli. Investigating how personality traits are reflected in the brain's functional architecture is challenging, in part due to the difficulty of designing appropriate task probes. Resting-state functional connectivity (RSFC) can detect intrinsic activation patterns without relying on any specific task. Here we use RSFC to investigate the neural correlates of the five-factor personality domains. Based on seed regions placed within two cognitive and affective ‘hubs’ in the brain—the anterior cingulate and precuneus—each domain of personality predicted RSFC with a unique pattern of brain regions. These patterns corresponded with functional subdivisions responsible for cognitive and affective processing such as motivation, empathy and future-oriented thinking. Neuroticism and Extraversion, the two most widely studied of the five constructs, predicted connectivity between seed regions and the dorsomedial prefrontal cortex and lateral paralimbic regions, respectively. These areas are associated with emotional regulation, self-evaluation and reward, consistent with the trait qualities. Personality traits were mostly associated with functional connections that were inconsistently present across participants. This suggests that although a fundamental, core functional architecture is preserved across individuals, variable connections outside of that core encompass the inter-individual differences in personality that motivate diverse responses. PMID:22140453

  20. Controlling plant architecture by manipulation of gibberellic acid signalling in petunia

    USDA-ARS?s Scientific Manuscript database

    Gibberellic acid (GA), a plant hormone, regulates many crucial growth and developmental processes, including seed germination, leaf expansion, induction of flowering and stem elongation. A common problem in the production of ornamental potted plants is undesirably tall growth, so inhibitors of gibbe...

  1. Microengineering of cellular interactions.

    PubMed

    Folch, A; Toner, M

    2000-01-01

    Tissue function is modulated by an intricate architecture of cells and biomolecules on a micrometer scale. Until now, in vitro cellular interactions were mainly studied by random seeding over homogeneous substrates. Although this strategy has led to important discoveries, it is clearly a nonoptimal analog of the in vivo scenario. With the incorporation--and adaptation--of microfabrication technology into biology, it is now possible to design surfaces that reproduce some of the aspects of that architecture. This article reviews past research on the engineering of cell-substrate, cell-cell, and cell-medium interactions on the micrometer scale.

  2. Cryptic Genetic Variation for Arabidopsis thaliana Seed Germination Speed in a Novel Salt Stress Environment

    PubMed Central

    Yuan, Wei; Flowers, Jonathan M.; Sahraie, Dustin J.; Purugganan, Michael D.

    2016-01-01

    The expansion of species ranges frequently necessitates responses to novel environments. In plants, the ability of seeds to disperse to marginal areas relies in part to its ability to germinate under stressful conditions. Here we examine the genetic architecture of Arabidopsis thaliana germination speed under a novel, saline environment, using an Extreme QTL (X-QTL) mapping platform we previously developed. We find that early germination in normal and salt conditions both rely on a QTL on the distal arm of chromosome 4, but we also find unique QTL on chromosomes 1, 2, 4, and 5 that are specific to salt stress environments. Moreover, different QTLs are responsible for early vs. late germination, suggesting a temporal component to the expression of life history under these stress conditions. Our results indicate that cryptic genetic variation exists for responses to a novel abiotic stress, which may suggest a role of such variation in adaptation to new climactic conditions or growth environments. PMID:27543295

  3. Structural and transcriptional characterization of a novel member of the soybean urease gene family.

    PubMed

    Wiebke-Strohm, Beatriz; Ligabue-Braun, Rodrigo; Rechenmacher, Ciliana; De Oliveira-Busatto, Luisa Abruzzi; Carlini, Célia Regina; Bodanese-Zanettini, Maria Helena

    2016-04-01

    In plants, ureases have been related to urea degradation, to defense against pathogenic fungi and phytophagous insects, and to the soybean-Bradyrhizobium japonicum symbiosis. Two urease isoforms have been described for soybean: the embryo-specific, encoded by Eu1 gene, and the ubiquitous urease, encoded by Eu4. A third urease-encoding locus exists in the completed soybean genome. The gene was designated Eu5 and the putative product of its ORF as SBU-III. Phylogenetic analysis shows that 41 plant, moss and algal ureases have diverged from a common ancestor protein, but ureases from monocots, eudicots and ancient species have evolved independently. Genomes of ancient organisms present a single urease-encoding gene and urease-encoding gene duplication has occurred independently along the evolution of some eudicot species. SBU-III has a shorter amino acid sequence, since many gaps are found when compared to other sequences. A mutation in a highly conserved amino acid residue suggests absence of ureolytic activity, but the overall protein architecture remains very similar to the other ureases. The expression profile of urease-encoding genes in different organs and developmental stages was determined by RT-qPCR. Eu5 transcripts were detected in seeds one day after dormancy break, roots of young plants and embryos of developing seeds. Eu1 and Eu4 transcripts were found in all analyzed organs, but Eu4 expression was more prominent in seeds one day after dormancy break whereas Eu1 predominated in developing seeds. The evidence suggests that SBU-III may not be involved in nitrogen availability to plants, but it could be involved in other biological role(s). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. A novel Brassica-rhizotron system to unravel the dynamic changes in root system architecture of oilseed rape under phosphorus deficiency.

    PubMed

    Yuan, Pan; Ding, Guang-Da; Cai, Hong-Mei; Jin, Ke-Mo; Broadley, Martin Roger; Xu, Fang-Sen; Shi, Lei

    2016-08-01

    An important adaptation of plants to phosphorus (P) deficiency is to alter root system architecture (RSA) to increase P acquisition from the soil, but soil-based observations of RSA are technically challenging, especially in mature plants. The aim of this study was to investigate the root development and RSA of oilseed rape (Brassica napus L.) under low and high soil P conditions during an entire growth cycle. A new large Brassica-rhizotron system (approx. 118-litre volume) was developed to study the RSA dynamics of B. napus 'Zhongshuang11' in soils, using top-soils supplemented with low P (LP) or high P (HP) for a full plant growth period. Total root length (TRL), root tip number (RTN), root length density (RLD), biomass and seed yield traits were measured. TRL and RTN increased more rapidly in HP than LP plants from seedling to flowering stages. Both traits declined from flowering to silique stages, and then increased slightly in HP plants; in contrast, root senescence was observed in LP plants. RSA parameters measured from the polycarbonate plates were empirically consistent with analyses of excavated roots. Seed yield and shoot dry weights were closely associated positively with root dry weights, TRL, RLD and RTN at both HP and LP. The Brassica-rhizotron system is an effective method for soil-based root phenotyping across an entire growth cycle. Given that root senescence is likely to occur earlier under low P conditions, crop P deficiency is likely to affect late water and nitrogen uptake, which is critical for efficient resource use and optimal crop yields. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition.

    PubMed

    Bourgeois, Michael; Jacquin, Françoise; Cassecuelle, Florence; Savois, Vincent; Belghazi, Maya; Aubert, Grégoire; Quillien, Laurence; Huart, Myriam; Marget, Pascal; Burstin, Judith

    2011-05-01

    Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Nanofiber-structured hydrogel yarns with pH-response capacity and cardiomyocyte-drivability for bio-microactuator application.

    PubMed

    Wu, Shaohua; Duan, Bin; Qin, Xiaohong; Butcher, Jonathan T

    2017-09-15

    Polymeric hydrogels have great potential in soft biological micro-actuator applications. However, inappropriate micro-architecture, non-anisotropy, weak biomechanics, and inferior response behaviors limit their development. In this study, we designed and manufactured novel polyacrylonitrile (PAN)-based hydrogel yarns composed with uniaxially aligned nanofibers. The nanofibrous hydrogel yarns possessed anisotropic architecture and robust mechanical properties with flexibility, and could be assembled into defined scaffold structures by subsequent processes. The as-prepared hydrogel yarns showed excellent pH response behaviors, with around 100% maximum length and 900% maximum diameter changes, and the pH response was completed within several seconds. Moreover, the hydrogel yarns displayed unique cell-responsive abilities to promote the cell adhesion, proliferation, and smooth muscle differentiation of human adipose derived mesenchymal stem cells (HADMSC). Chicken cardiomyocytes were further seeded onto our nanofibrous hydrogel yarns to engineer living cell-based microactuators. Our results demonstrated that the uniaxially aligned nanofibrous networks within the hydrogel yarns were the key characteristics leading to the anisotropic organization of cardiac cells, and improved sarcomere organization, mimicking the cardiomyocyte bundles in the native myocardium. The construct is capable of sustaining spontaneous cardiomyocyte pumping behaviors for 7days. Our PAN-based nanofibrous hydrogel yarns are attractive for creating linear microactuators with pH-response capacity and biological microactuators with cardiomyocyte-drivability. A mechanically robust polyacrylonitrile-based nanofibrous hydrogel yarn is fabricated by using a modified electrospinning setup in combination with chemical modification processes. The as-prepared hydrogel yarn possesses a uniaxially aligned nanofiber microarchitecture and supports a rapid, pH-dependent expansion/contraction response within a few seconds. Embryonic cardiomyocytes-seeded hydrogel yarn improves the sarcomere organization and mimics the cardiomyocyte bundles in the native myocardium, which sustains spontaneous cardiomyocyte pumping behaviors. The nanofibrous hydrogel yarn has several advantages over traditional bulk hydrogel scaffolds in terms of robust biomechanics, anisotropic aligned architecture, and superior pH response behaviors. Our nanofibrous hydrogel yarn holds the potential to be developed into novel linear and biological microactuators for various biomedical applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Eco-friendly fabrication of Ag nanostructures using the seed extract of Pedalium murex, an ancient Indian medicinal plant: Histopathological effects on the Zika virus vector Aedes aegypti and inhibition of biofilm-forming pathogenic bacteria.

    PubMed

    Ishwarya, Ramachandran; Vaseeharan, Baskaralingam; Anuradha, Ramasamy; Rekha, Ravichandran; Govindarajan, Marimuthu; Alharbi, Naiyf S; Kadaikunnan, Shine; Khaled, Jamal M; Benelli, Giovanni

    2017-09-01

    The control of Zika virus mosquito vectors and well as the development of drugs in the fight against biofilm-forming microbial pathogens, are timely and important challenges in current bionanoscience. Here we focused on the eco-friendly fabrication of Ag nanostructures using the seed extract of Pedalium murex, an ancient Indian medicinal plant. Initial confirmation of Ag nanoparticles (AgNPs) production was showed by a color change from transparent to dark brown. The UV-Visible spectrum (476nm), X-ray diffraction peaks (101, 200, 220 and 311) and Fourier transform infrared spectroscopy shed light on the production of green-capped AgNPs. Morphological structure analysis using HR-TEM showed that the AgNPs were mostly hexagonal in shape with rough edges, and a size of 20-30nm. The larvicidal potential of P. murex seed extract and AgNPs fabricated using the P. murex seed extract (Pm-AgNPs) was tested on fourth instar mosquito larvae of the Zika virus vector Aedes aegypti. Maximum efficacy was achieved by Pm-AgNPs against Ae. aegypti after 24h (LC 50 34.88; LC 90 64.56mg/ml), if compared to the P. murex seed extract. Histopathological analyses showed severe damages to the hindgut and larval muscles in NPs-treated Ae. aegypti larvae. The sub-MIC concentrations of Pm-AgNPs exhibited significant anti-biofilm activity against Gram positive (Enterococcus faecalis, Staphylococcus aureus) and Gram negative (Shigella sonnei, Pseudomonas aeruginosa) bacterial pathogens, as showed by EPS and MTP assays. Light and CLSM microscopic studies highlighted a significant impact of P. murex seed extract and Pm-synthesized AgNPs on the surface topography and architecture of bacterial biofilm, both in Gram positive and Gram negative species. Overall, results reported here contribute to the development of reliable large-scale protocols for the green fabrication of effective mosquito larvicides and biofilm inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Maternal environment affects the genetic basis of seed dormancy in Arabidopsis thaliana.

    PubMed

    Postma, Froukje M; Ågren, Jon

    2015-02-01

    The genetic basis of seed dormancy, a key life history trait important for adaptive evolution in plant populations, has yet been studied only using seeds produced under controlled conditions in greenhouse environments. However, dormancy is strongly affected by maternal environmental conditions, and interactions between seed genotype and maternal environment have been reported. Consequently, the genetic basis of dormancy of seeds produced under natural field conditions remains unclear. We examined the effect of maternal environment on the genetic architecture of seed dormancy using a recombinant inbred line (RIL) population derived from a cross between two locally adapted populations of Arabidopsis thaliana from Italy and Sweden. We mapped quantitative trait loci (QTL) for dormancy of seeds produced in the greenhouse and at the native field sites of the parental genotypes. The Italian genotype produced seeds with stronger dormancy at fruit maturation than did the Swedish genotype in all three environments, and the maternal field environments induced higher dormancy levels compared to the greenhouse environment in both genotypes. Across the three maternal environments, a total of nine dormancy QTL were detected, three of which were only detected among seeds matured in the field, and six of which showed significant QTL × maternal environment interactions. One QTL had a large effect on dormancy across all three environments and colocalized with the candidate gene DOG1. Our results demonstrate the importance of studying the genetic basis of putatively adaptive traits under relevant conditions. © 2015 John Wiley & Sons Ltd.

  9. Remote-seeded WDM-PON upgrade using linear semiconductor opticalamplifiers

    NASA Astrophysics Data System (ADS)

    Martínez, J. J.; Merayo, N.; Villafranca, A.; Garcés, I.

    2013-05-01

    In this work we have assessed the capacity of a linear (gain-clamped) semiconductor optical amplifier to enhance the budget of WDM PON network links for their evolution from FTTC to FTTH access. A wavelength-seeded network architecture has been considered, evaluating the performance improvement obtained by the use of an amplifier for the cases of link reach extension and optical splitting to reach end users. The evaluation measurements have shown that the extra budget is enough to compensate for the losses of a passive splitter up to atleast 1:16 division rate or to highly increment reach of the network.

  10. Parallelized seeded region growing using CUDA.

    PubMed

    Park, Seongjin; Lee, Jeongjin; Lee, Hyunna; Shin, Juneseuk; Seo, Jinwook; Lee, Kyoung Ho; Shin, Yeong-Gil; Kim, Bohyoung

    2014-01-01

    This paper presents a novel method for parallelizing the seeded region growing (SRG) algorithm using Compute Unified Device Architecture (CUDA) technology, with intention to overcome the theoretical weakness of SRG algorithm of its computation time being directly proportional to the size of a segmented region. The segmentation performance of the proposed CUDA-based SRG is compared with SRG implementations on single-core CPUs, quad-core CPUs, and shader language programming, using synthetic datasets and 20 body CT scans. Based on the experimental results, the CUDA-based SRG outperforms the other three implementations, advocating that it can substantially assist the segmentation during massive CT screening tests.

  11. Potential Applications of Polyamines in Agriculture and Plant Biotechnology.

    PubMed

    Tiburcio, Antonio F; Alcázar, Rubén

    2018-01-01

    The polyamines putrescine, spermidine and spermine have been implicated in a myriad of biological functions in many organisms. Research done during the last decades has accumulated a large body of evidence demonstrating that polyamines are key modulators of plant growth and development. Different experimental approaches have been employed including the measurement of endogenous polyamine levels and the activities of polyamine metabolic enzymes, the study of the effects resulting from exogenous polyamine applications and chemical or genetic manipulation of endogenous polyamine titers. This chapter reviews the role of PAs in seed germination, root development, plant architecture, in vitro plant regeneration, flowering and plant senescence. Evidence presented here indicates that polyamines should be regarded as plant growth regulators with potential applications in agriculture and plant biotechnology.

  12. Anisotropic Shape-Memory Alginate Scaffolds Functionalized with Either Type I or Type II Collagen for Cartilage Tissue Engineering.

    PubMed

    Almeida, Henrique V; Sathy, Binulal N; Dudurych, Ivan; Buckley, Conor T; O'Brien, Fergal J; Kelly, Daniel J

    2017-01-01

    Regenerating articular cartilage and fibrocartilaginous tissue such as the meniscus is still a challenge in orthopedic medicine. While a range of different scaffolds have been developed for joint repair, none have facilitated the development of a tissue that mimics the complexity of soft tissues such as articular cartilage. Furthermore, many of these scaffolds are not designed to function in mechanically challenging joint environments. The overall goal of this study was to develop a porous, biomimetic, shape-memory alginate scaffold for directing cartilage regeneration. To this end, a scaffold was designed with architectural cues to guide cellular and neo-tissue alignment, which was additionally functionalized with a range of extracellular matrix cues to direct stem cell differentiation toward the chondrogenic lineage. Shape-memory properties were introduced by covalent cross-linking alginate using carbodiimide chemistry, while the architecture of the scaffold was modified using a directional freezing technique. Introducing such an aligned pore structure was found to improve the mechanical properties of the scaffold, and promoted higher levels of sulfated glycosaminoglycans (sGAG) and collagen deposition compared to an isotropic (nonaligned) pore geometry when seeded with adult human stem cells. Functionalization with collagen improved stem cell recruitment into the scaffold and facilitated more homogenous cartilage tissue deposition throughout the construct. Incorporating type II collagen into the scaffolds led to greater cell proliferation, higher sGAG and collagen accumulation, and the development of a stiffer tissue compared to scaffolds functionalized with type I collagen. The results of this study demonstrate how both scaffold architecture and composition can be tailored in a shape-memory alginate scaffold to direct stem cell differentiation and support the development of complex cartilaginous tissues.

  13. Genetic loci with parent-of-origin effects cause hybrid seed lethality in crosses between Mimulus species.

    PubMed

    Garner, Austin G; Kenney, Amanda M; Fishman, Lila; Sweigart, Andrea L

    2016-07-01

    In flowering plants, F1 hybrid seed lethality is a common outcome of crosses between closely related diploid species, but the genetic basis of this early-acting and potentially widespread form of postzygotic reproductive isolation is largely unknown. We intercrossed two closely related species of monkeyflower, Mimulus guttatus and Mimulus tilingii, to characterize the mechanisms and strength of postzygotic reproductive isolation. Then, using a reciprocal backcross design, we performed high-resolution genetic mapping to determine the genetic architecture of hybrid seed lethality and directly test for loci with parent-of-origin effects. We found that F1 hybrid seed lethality is an exceptionally strong isolating barrier between Mimulus species, with reciprocal crosses producing < 1% viable seeds. This form of postzygotic reproductive isolation appears to be highly polygenic, indicating that multiple incompatibility loci have accumulated rapidly between these closely related Mimulus species. It is also primarily caused by genetic loci with parent-of-origin effects, suggesting a possible role for imprinted genes in the evolution of Mimulus hybrid seed lethality. Our findings suggest that divergence in loci with parent-of-origin effects, which is probably driven by genomic coevolution within lineages, might be an important source of hybrid incompatibilities between flowering plant species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells

    NASA Astrophysics Data System (ADS)

    Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.

    2016-12-01

    Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.

  15. Biodegradable seeds of holmium don't change neurological function after implant in brain of rats.

    PubMed

    Diniz, Mirla Fiuza; Ferreira, Diogo Milioli; de Lima, Wanderson Geraldo; Pedrosa, Maria Lucia; Silva, Marcelo Eustáquio; de Almeida Araujo, Stanley; Sampaio, Kinulpe Honorato; de Campos, Tarcisio Passos Ribeiro; Siqueira, Savio Lana

    2017-01-01

    To evaluate the surgical procedure and parenchymal abnormalities related to implantation of ceramic seeds with holmium-165 in rats' brain. An effective method of cancer treatment is brachytherapy in which radioactive seeds are implanted in the tumor, generating a high local dose of ionizing radiation that can eliminate tumor cells while protecting the surrounding healthy tissue. Biodegradable Ho 166 -ceramic-seeds have been addressed recently. The experiments in this study were approved by the Ethics Committee on Animal Use at the Federal University of Ouro Preto, protocol number 2012/034. Twenty-one adult Fischer rats were divided into Naive Group, Sham Group and Group for seed implants (ISH). Surgical procedures for implantation of biodegradable seeds were done and 30 days after the implant radiographic examination and biopsy of the brain were performed. Neurological assays were also accomplished to exclude any injury resulting from either surgery or implantation of the seeds. Radiographic examination confirmed the location of the seeds in the brain. Neurological assays showed animals with regular spontaneous activity. The histological analysis showed an increase of inflammatory cells in the brain of the ISH group. Electron microscopy evidenced cytoplasmic organelles to be unchanged. Biochemical analyzes indicate there was neither oxidative stress nor oxidative damage in the ISH brain. CAT activity showed no difference between the groups as well as lipid peroxidation measured by TBARS. The analysis of the data pointed out that the performed procedure is safe as no animal showed alterations of the neurological parameters and the seeds did not promote histological architectural changes in the brain tissue.

  16. Cavernous nerve repair with allogenic adipose matrix and autologous adipose-derived stem cells.

    PubMed

    Lin, Guiting; Albersen, Maarten; Harraz, Ahmed M; Fandel, Thomas M; Garcia, Maurice; McGrath, Mary H; Konety, Badrinath R; Lue, Tom F; Lin, Ching-Shwun

    2011-06-01

    To investigate whether adipose-derived matrix seeded with adipose-derived stem cells (ADSC) can facilitate the repair of injured cavernous nerves (CNs). Human and rat adipose tissues were decellularized and fabricated into various forms, including adipose tissue-derived acellular matrix thread (ADMT). ADMT seeded with ADSC were transplanted into subcutaneous space and examined for signs of inflammation. ADSC-seeded ADMTs were then used to repair CN injury in rats, followed by assessment of histology and erectile function. Adipose tissue can be fabricated into acellular matrices of various shapes and sizes, including threads and sheets. Seeding of ADMT occurred rapidly: within 24 hours, 55% of the surface was covered with ADSC and within 1 week, 90% was covered. Transplantation of the seeded ADMT into the subcutaneous space of an allogenic host showed no signs of inflammatory reaction. At 3 months after grafting into CN injury rats, approximately twice as many cells were found on seeded ADMT as on unseeded ADMT. The seeded ADMT also had various degrees of S100 and neuronal nitric oxide synthase expression, suggesting CN axonal ingrowth. Rats grafted with seeded ADMT overall had the best erectile function recovery when compared with those grafted with unseeded ADMT and those ungrafted. However, as a result of large variations, the differences did not reach statistic significance (P = .07). Grafting of ADSC-seeded matrix resulted in a substantial recovery of erectile function and improvement of histology. However, further refinement of the matrix architecture is needed to improve the success rate. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Genotyping-by-sequencing-based investigation of the genetic architecture responsible for a ~sevenfold increase in soybean seed stearic acid

    USDA-ARS?s Scientific Manuscript database

    Soybean oil is highly unsaturated and oxidatively unstable, rendering it non-ideal for most food applications. Until recently, the majority of soybean oil underwent partial chemical hydrogenation, a process which produces trans fats as an unavoidable consequence. Dietary intake of trans fat and most...

  18. Parallelized Seeded Region Growing Using CUDA

    PubMed Central

    Park, Seongjin; Lee, Hyunna; Seo, Jinwook; Lee, Kyoung Ho; Shin, Yeong-Gil; Kim, Bohyoung

    2014-01-01

    This paper presents a novel method for parallelizing the seeded region growing (SRG) algorithm using Compute Unified Device Architecture (CUDA) technology, with intention to overcome the theoretical weakness of SRG algorithm of its computation time being directly proportional to the size of a segmented region. The segmentation performance of the proposed CUDA-based SRG is compared with SRG implementations on single-core CPUs, quad-core CPUs, and shader language programming, using synthetic datasets and 20 body CT scans. Based on the experimental results, the CUDA-based SRG outperforms the other three implementations, advocating that it can substantially assist the segmentation during massive CT screening tests. PMID:25309619

  19. Genetic basis of adaptation in Arabidopsis thaliana: local adaptation at the seed dormancy QTL DOG1.

    PubMed

    Kronholm, Ilkka; Picó, F Xavier; Alonso-Blanco, Carlos; Goudet, Jérôme; de Meaux, Juliette

    2012-07-01

    Local adaptation provides an opportunity to study the genetic basis of adaptation and investigate the allelic architecture of adaptive genes. We study delay of germination 1 (DOG1), a gene controlling natural variation in seed dormancy in Arabidopsis thaliana and investigate evolution of dormancy in 41 populations distributed in four regions separated by natural barriers. Using F(ST) and Q(ST) comparisons, we compare variation at DOG1 with neutral markers and quantitative variation in seed dormancy. Patterns of genetic differentiation among populations suggest that the gene DOG1 contributes to local adaptation. Although Q(ST) for seed dormancy is not different from F(ST) for neutral markers, a correlation with variation in summer precipitation supports that seed dormancy is adaptive. We characterize dormancy variation in several F(2) -populations and show that a series of functionally distinct alleles segregate at the DOG1 locus. Theoretical models have shown that the number and effect of alleles segregatin at quantitative trait loci (QTL) have important consequences for adaptation. Our results provide support to models postulating a large number of alleles at quantitative trait loci involved in adaptation. © 2012 The Author(s).

  20. Scaffold Architecture Controls Insulinoma Clustering, Viability, and Insulin Production

    PubMed Central

    Blackstone, Britani N.; Palmer, Andre F.; Rilo, Horacio R.

    2014-01-01

    Recently, in vitro diagnostic tools have shifted focus toward personalized medicine by incorporating patient cells into traditional test beds. These cell-based platforms commonly utilize two-dimensional substrates that lack the ability to support three-dimensional cell structures seen in vivo. As monolayer cell cultures have previously been shown to function differently than cells in vivo, the results of such in vitro tests may not accurately reflect cell response in vivo. It is therefore of interest to determine the relationships between substrate architecture, cell structure, and cell function in 3D cell-based platforms. To investigate the effect of substrate architecture on insulinoma organization and function, insulinomas were seeded onto 2D gelatin substrates and 3D fibrous gelatin scaffolds with three distinct fiber diameters and fiber densities. Cell viability and clustering was assessed at culture days 3, 5, and 7 with baseline insulin secretion and glucose-stimulated insulin production measured at day 7. Small, closely spaced gelatin fibers promoted the formation of large, rounded insulinoma clusters, whereas monolayer organization and large fibers prevented cell clustering and reduced glucose-stimulated insulin production. Taken together, these data show that scaffold properties can be used to control the organization and function of insulin-producing cells and may be useful as a 3D test bed for diabetes drug development. PMID:24410263

  1. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    PubMed Central

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S.; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil. PMID:23844412

  2. Jatropha curcas L. root structure and growth in diverse soils.

    PubMed

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  3. Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity

    PubMed Central

    Zhou, Yuan; Wang, Yun; Rao, Li-Lin; Liang, Zhu-Yuan; Chen, Xiao-Ping; Zheng, Dang; Tan, Cheng; Tian, Zhi-Qiang; Wang, Chun-Hui; Bai, Yan-Qiang; Chen, Shan-Guang; Li, Shu

    2014-01-01

    Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI) to study whether the functional architecture of the brain is altered after 45 days of −6° head-down tilt (HDT) bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of −6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC), to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC) analysis. We found decreased DC in two regions, the left anterior insula (aINS) and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies), in the male volunteers after 45 days of −6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function, and central neural activity. PMID:24926242

  4. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow.

    PubMed

    Costa, Pedro F; Vaquette, Cédryck; Baldwin, Jeremy; Chhaya, Mohit; Gomes, Manuela E; Reis, Rui L; Theodoropoulos, Christina; Hutmacher, Dietmar W

    2014-09-01

    This study reports on an original concept of additive manufacturing for the fabrication of tissue engineered constructs (TEC), offering the possibility of concomitantly manufacturing a customized scaffold and a bioreactor chamber to any size and shape. As a proof of concept towards the development of anatomically relevant TECs, this concept was utilized for the design and fabrication of a highly porous sheep tibia scaffold around which a bioreactor chamber of similar shape was simultaneously built. The morphology of the bioreactor/scaffold device was investigated by micro-computed tomography and scanning electron microscopy confirming the porous architecture of the sheep tibiae as opposed to the non-porous nature of the bioreactor chamber. Additionally, this study demonstrates that both the shape, as well as the inner architecture of the device can significantly impact the perfusion of fluid within the scaffold architecture. Indeed, fluid flow modelling revealed that this was of significant importance for controlling the nutrition flow pattern within the scaffold and the bioreactor chamber, avoiding the formation of stagnant flow regions detrimental for in vitro tissue development. The bioreactor/scaffold device was dynamically seeded with human primary osteoblasts and cultured under bi-directional perfusion for two and six weeks. Primary human osteoblasts were observed homogenously distributed throughout the scaffold, and were viable for the six week culture period. This work demonstrates a novel application for additive manufacturing in the development of scaffolds and bioreactors. Given the intrinsic flexibility of the additive manufacturing technology platform developed, more complex culture systems can be fabricated which would contribute to the advances in customized and patient-specific tissue engineering strategies for a wide range of applications.

  5. Free-electron laser emission architecture impact on extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Hosler, Erik R.; Wood, Obert R.; Barletta, William A.

    2017-10-01

    Laser-produced plasma (LPP) EUV sources have demonstrated ˜125 W at customer sites, establishing confidence in EUV lithography (EUVL) as a viable manufacturing technology. However, for extension to the 3-nm technology node and beyond, existing scanner/source technology must enable higher-NA imaging systems (requiring increased resist dose and providing half-field exposures) and/or EUV multipatterning (requiring increased wafer throughput proportional to the number of exposure passes). Both development paths will require a substantial increase in EUV source power to maintain the economic viability of the technology, creating an opportunity for free-electron laser (FEL) EUV sources. FEL-based EUV sources offer an economic, high-power/single-source alternative to LPP EUV sources. Should FELs become the preferred next-generation EUV source, the choice of FEL emission architecture will greatly affect its operational stability and overall capability. A near-term industrialized FEL is expected to utilize one of the following three existing emission architectures: (1) self-amplified spontaneous emission, (2) regenerative amplifier, or (3) self-seeding. Model accelerator parameters are put forward to evaluate the impact of emission architecture on FEL output. Then, variations in the parameter space are applied to assess the potential impact to lithography operations, thereby establishing component sensitivity. The operating range of various accelerator components is discussed based on current accelerator performance demonstrated at various scientific user facilities. Finally, comparison of the performance between the model accelerator parameters and the variation in parameter space provides a means to evaluate the potential emission architectures. A scorecard is presented to facilitate this evaluation and provides a framework for future FEL design and enablement for EUVL applications.

  6. ART-SCIENCE OF THE SPACE AGE: towards a platform for art-science collaborations at ESTEC

    NASA Astrophysics Data System (ADS)

    Domnitch, E.; Gelfand, D.

    2015-10-01

    In 2013, in collaboration with ESTEC scientist Bernard Foing and the ArtScience Interfaculty (Royal Academy of the Arts, The Hague), Synergetica Lab (Amsterdam) developed a course, which was repeated in 2015, for bachelor's and master's students aimed at seeding interactions with ESA researchers. The participants created artworks investigating space travel, radio astronomy, microgravity, ecosynthesis as well as extraterrestrial physics and architecture [1] [2]. After their initial presentation at the Royal Academy, these artworks were shown at ESTEC, TodaysArt Festival (The Hague), and TEC ART (Rotterdam). These presentations prompted diverse future collaborations and outreach opportunities, including the European Planetary Science Congress 2014 (Cascais) and the AxS Festival (Los Angeles).

  7. Characterization of a Honeycomb-Like Scaffold With Dielectrophoresis-Based Patterning for Tissue Engineering.

    PubMed

    Huan, Zhijie; Chu, Henry K; Yang, Jie; Sun, Dong

    2017-04-01

    Seeding and patterning of cells with an engineered scaffold is a critical process in artificial tissue construction and regeneration. To date, many engineered scaffolds exhibit simple intrinsic designs, which fail to mimic the geometrical complexity of native tissues. In this study, a novel scaffold that can automatically seed cells into multilayer honeycomb patterns for bone tissue engineering application was designed and examined. The scaffold incorporated dielectrophoresis for noncontact manipulation of cells and intrinsic honeycomb architectures were integrated in each scaffold layer. When a voltage was supplied to the stacked scaffold layers, three-dimensional electric fields were generated, thereby manipulating cells to form into honeycomb-like cellular patterns for subsequent culture. The biocompatibility of the scaffold material was confirmed through the cell viability test. Experiments were conducted to evaluate the cell viability during DEP patterning at different voltage amplitudes, frequencies, and manipulating time. Three different mammalian cells were examined and the effects of the cell size and the cell concentration on the resultant cellular patterns were evaluated. Results showed that the proposed scaffold structure was able to construct multilayer honeycomb cellular patterns in a manner similar to the natural tissue. This honeycomb-like scaffold and the dielectrophoresis-based patterning technique examined in this study could provide the field with a promising tool to enhance seeding and patterning of a wide range of cells for the development of high-quality artificial tissues.

  8. Whole-canopy gas exchange among four elite loblolly pine seed sources planted in the western gulf region

    Treesearch

    Bradley S. Osbon; Michael A. Blazier; Michael C. Tyree; Mary Anne Sword-Sayer

    2012-01-01

    Planting of artificially selected, improved seedlings has led to large increases in productivity of intensively managed loblolly pine (Pinus taeda L.) forests in the southeastern United States. However, more data are needed to give a deeper understanding of how physiology and crown architecture affect productivity of diverse genotypes. The objective...

  9. Environmentally stable seed source for high power ultrafast laser

    NASA Astrophysics Data System (ADS)

    Samartsev, Igor; Bordenyuk, Andrey; Gapontsev, Valentin

    2017-02-01

    We present an environmentally stable Yb ultrafast ring oscillator utilizing a new method of passive mode-locking. The laser is using all-fiber architecture which makes it insensitive to environmental factors, like temperature, humidity, vibrations, and shocks. The new method of mode-locking is utilizing crossed bandpass transmittance filters in ring architecture to discriminate against CW lasing. Broadband pulse evolves from cavity noise under amplification, after passing each filter, causing strong spectral broadening. The laser is self-starting. It generates transform limited spectrally flat pulses of 1 - 50 nm width at 6 - 15 MHz repetition rate and pulse energy 0.2 - 15 nJ at 1010 - 1080 nm CWL.

  10. Global Analysis of Small RNA Dynamics during Seed Development of Picea glauca and Arabidopsis thaliana Populations Reveals Insights on their Evolutionary Trajectories

    PubMed Central

    Liu, Yang; El-Kassaby, Yousry A.

    2017-01-01

    While DNA methylation carries genetic signals and is instrumental in the evolution of organismal complexity, small RNAs (sRNAs), ~18–24 ribonucleotide (nt) sequences, are crucial mediators of methylation as well as gene silencing. However, scant study deals with sRNA evolution via featuring their expression dynamics coupled with species of different evolutionary time. Here we report an atlas of sRNAs and microRNAs (miRNAs, single-stranded sRNAs) produced over time at seed-set of two major spermatophytes represented by populations of Picea glauca and Arabidopsis thaliana with different seed-set duration. We applied diverse profiling methods to examine sRNA and miRNA features, including size distribution, sequence conservation and reproduction-specific regulation, as well as to predict their putative targets. The top 27 most abundant miRNAs were highly overlapped between the two species (e.g., miR166,−319 and−396), but in P. glauca, they were less abundant and significantly less correlated with seed-set phases. The most abundant sRNAs in libraries were deeply conserved miRNAs in the plant kingdom for Arabidopsis but long sRNAs (24-nt) for P. glauca. We also found significant difference in normalized expression between populations for population-specific sRNAs but not for lineage-specific ones. Moreover, lineage-specific sRNAs were enriched in the 21-nt size class. This pattern is consistent in both species and alludes to a specific type of sRNAs (e.g., miRNA, tasiRNA) being selected for. In addition, we deemed 24 and 9 sRNAs in P. glauca and Arabidopsis, respectively, as sRNA candidates targeting known adaptive genes. Temperature had significant influence on selected gene and miRNA expression at seed development in both species. This study increases our integrated understanding of sRNA evolution and its potential link to genomic architecture (e.g., sRNA derivation from genome and sRNA-mediated genomic events) and organismal complexity (e.g., association between different sRNA expression and their functionality). PMID:29046688

  11. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells

    PubMed Central

    Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.

    2016-01-01

    Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process. PMID:27934940

  12. Genome-Wide Analysis of the Complex Transcriptional Networks of Rice Developing Seeds

    PubMed Central

    Xue, Liang-Jiao; Zhang, Jing-Jing; Xue, Hong-Wei

    2012-01-01

    Background The development of rice (Oryza sativa) seed is closely associated with assimilates storage and plant yield, and is fine controlled by complex regulatory networks. Exhaustive transcriptome analysis of developing rice embryo and endosperm will help to characterize the genes possibly involved in the regulation of seed development and provide clues of yield and quality improvement. Principal Findings Our analysis showed that genes involved in metabolism regulation, hormone response and cellular organization processes are predominantly expressed during rice development. Interestingly, 191 transcription factor (TF)-encoding genes are predominantly expressed in seed and 59 TFs are regulated during seed development, some of which are homologs of seed-specific TFs or regulators of Arabidopsis seed development. Gene co-expression network analysis showed these TFs associated with multiple cellular and metabolism pathways, indicating a complex regulation of rice seed development. Further, by employing a cold-resistant cultivar Hanfeng (HF), genome-wide analyses of seed transcriptome at normal and low temperature reveal that rice seed is sensitive to low temperature at early stage and many genes associated with seed development are down-regulated by low temperature, indicating that the delayed development of rice seed by low temperature is mainly caused by the inhibition of the development-related genes. The transcriptional response of seed and seedling to low temperature is different, and the differential expressions of genes in signaling and metabolism pathways may contribute to the chilling tolerance of HF during seed development. Conclusions These results provide informative clues and will significantly improve the understanding of rice seed development regulation and the mechanism of cold response in rice seed. PMID:22363552

  13. Development of a 3D co-culture model using human stem ...

    EPA Pesticide Factsheets

    Morphogenetic tissue fusion is a critical and complex event in embryonic development and failure of this event leads to birth defects, such as cleft palate. Palatal fusion requires adhesion and subsequent dissolution of the medial epithelial layer of the mesenchymal palatal shelves, and is regulated by the growth factors EGF and TGFβ, and others, although the complete regulatory mechanism is not understood. Three dimensional (3D) organotypic models allow us to mimic the native architecture of human tissue to facilitate the study of tissue dynamics and their responses to developmental toxicants. Our goal was to develop and characterize a spheroidal model of palatal fusion to investigate the mechanisms regulating fusion with exposure to growth factors and chemicals in the ToxCast program known to disrupt this event. We present a spheroidal model using human umbilical-derived mesenchymal stem cells (hMSC) spheroid cores cultured for 13 days and then coated with MaxGel™ basement membrane and a layer of human progenitor epithelial keratinocytes (hPEK) (hMSC+hPEK spheroids). We characterized the growth, differentiation, proliferation and fusion activity of the model. Spheroid diameter was dependent on hMSC seeding density, size of the seeding wells, time in culture, and type of medium. hMSC spheroid growth was enhanced with osteogenic differentiation medium. Alkaline phosphatase activity in the hMSC spheroid, indicating osteogenic differentiation, increased in inte

  14. Ongoing Capabilities and Developments of Re-Entry Plasma Ground Tests at EADS-ASTRIUM

    NASA Technical Reports Server (NTRS)

    Jullien, Pierre

    2008-01-01

    During re-entry, spacecrafts are subjected to extreme thermal loads. On mars, they may go through dust storms. These external heat loads are leading the design of re-entry vehicles or are affecting it for spacecraft facing solid propellant jet stream. Sizing the Thermal Protection System require a good knowledge of such solicitations and means to model and reproduce them on earth. Through its work on European projects, ASTRIUM has developed the full range of competences to deal with such issues. For instance, we have designed and tested the heat-shield of the Huygens probe which landed on Titan. In particular, our plasma generators aim to reproduce a wide variety of re-entry conditions. Heat loads are generated by the huge speed of the probes. Such conditions cannot be fully reproduced. Ground tests focus on reproducing local aerothermal loads by using slower but hotter flows. Our inductive plasma torch enables to test little samples at low TRL. Amongst the arc-jets, one was design to test architecture design of ISS crew return system and others fit more severe re-entry such as sample returns or Venus re-entry. The last developments aimed in testing samples in seeded flows. First step was to design and test the seeding device. Special diagnostics characterizing the resulting flow enabled us to fit it to the requirements.

  15. Bio-inspired active materials

    NASA Astrophysics Data System (ADS)

    Fratzl, Peter

    Biological tissues are naturally interactive and adaptive. In general, these features are due to the action of cells that provide sensing, actuation as well as tissue remodelling. There are also examples of materials synthesized by living organisms, such as plant seeds, which fulfil an active function without living cells working as mechanosensors and actuators. Thus the activity of these materials is based on physical principles alone, which provides inspiration for new concepts for artificial active materials. We will describe structural principles leading to movement in seed capsules triggered by ambient humidity and discuss the influence of internal architecture on the overall mechanical behaviour of materials, including actuation and motility. Several conceptual systems for actuating planar structures will be discussed.

  16. What Has Natural Variation Taught Us about Plant Development, Physiology, and Adaptation?

    PubMed Central

    Alonso-Blanco, Carlos; Aarts, Mark G.M.; Bentsink, Leonie; Keurentjes, Joost J.B.; Reymond, Matthieu; Vreugdenhil, Dick; Koornneef, Maarten

    2009-01-01

    Nearly 100 genes and functional polymorphisms underlying natural variation in plant development and physiology have been identified. In crop plants, these include genes involved in domestication traits, such as those related to plant architecture, fruit and seed structure and morphology, as well as yield and quality traits improved by subsequent crop breeding. In wild plants, comparable traits have been dissected mainly in Arabidopsis thaliana. In this review, we discuss the major contributions of the analysis of natural variation to our understanding of plant development and physiology, focusing in particular on the timing of germination and flowering, plant growth and morphology, primary metabolism, and mineral accumulation. Overall, functional polymorphisms appear in all types of genes and gene regions, and they may have multiple mutational causes. However, understanding this diversity in relation to adaptation and environmental variation is a challenge for which tools are now available. PMID:19574434

  17. Genetic relatedness among developing seeds and intra fruit seed abortion in Dalbergia sissoo (Fabaceae).

    PubMed

    Mohana, G S; Shaanker, R U; Ganeshaiah, K N; Dayanandan, S

    2001-07-01

    Dalbergia sissoo, a wind-dispersed tropical tree, exhibits high intrafruit seed abortion. Of the four to five ovules in the flower, generally one and occasionally two or three develop to maturity. It has been proposed that the seed abortion is a consequence of intense sibling competition for maternal resources and that this competition occurs as an inverse function of the genetic relatedness among the developing seeds. Accordingly, developing seeds compete intensely when they are genetically less related but tend to develop together when genetically more related. We tested this hypothesis by comparing the genetic similarity among the pairs of seeds developing within a pod with that among (a) random pairs from the pool of all seeds, (b) random pairs from single-seeded pods, and (c) random pairs from two-seeded pods, using both randomly amplified polymorphic DNA (RAPD) and isozymes in five trees. We found that the pairs of seeds developing within a pod are genetically more similar than any random pairs of seeds in a tree. Thus the formation of two-seeded pods appear to be associated with increased genetic relatedness among the developing seeds. We discuss the results in the context of possible fitness advantages and then discuss the possible mechanisms that promote tolerance among related seeds.

  18. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, P., E-mail: pkrishnan@iari.res.in; Singh, Ravender; Verma, A.P.S.

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T{sub 2}). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate ofmore » seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T{sub 2}) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds.« less

  19. Anatomy of the Pythagoras' Tree

    ERIC Educational Resources Information Center

    Teia, Luis

    2016-01-01

    The architecture of nature can be seen at play in a tree: no two are alike. The Pythagoras' tree behaves just as a "tree" in that the root plus the same movement repeated over and over again grows from a seed, to a plant, to a tree. In human life, this movement is termed cell division. With triples, this movement is a geometrical and…

  20. Sex-specific genetic variances in life-history and morphological traits of the seed beetle Callosobruchus maculatus.

    PubMed

    Hallsson, Lára R; Björklund, Mats

    2012-01-01

    Knowledge of heritability and genetic correlations are of central importance in the study of adaptive trait evolution and genetic constraints. We use a paternal half-sib-full-sib breeding design to investigate the genetic architecture of three life-history and morphological traits in the seed beetle, Callosobruchus maculatus. Heritability was significant for all traits under observation and genetic correlations between traits (r(A)) were low. Interestingly, we found substantial sex-specific genetic effects and low genetic correlations between sexes (r(MF)) in traits that are only moderately (weight at emergence) to slightly (longevity) sexually dimorphic. Furthermore, we found an increased sire ([Formula: see text]) compared to dam ([Formula: see text]) variance component within trait and sex. Our results highlight that the genetic architecture even of the same trait should not be assumed to be the same for males and females. Furthermore, it raises the issue of the presence of unnoticed environmental effects that may inflate estimates of heritability. Overall, our study stresses the fact that estimates of quantitative genetic parameters are not only population, time, environment, but also sex specific. Thus, extrapolation between sexes and studies should be treated with caution.

  1. Sex-specific genetic variances in life-history and morphological traits of the seed beetle Callosobruchus maculatus

    PubMed Central

    Hallsson, Lára R; Björklund, Mats

    2012-01-01

    Knowledge of heritability and genetic correlations are of central importance in the study of adaptive trait evolution and genetic constraints. We use a paternal half-sib-full-sib breeding design to investigate the genetic architecture of three life-history and morphological traits in the seed beetle, Callosobruchus maculatus. Heritability was significant for all traits under observation and genetic correlations between traits (rA) were low. Interestingly, we found substantial sex-specific genetic effects and low genetic correlations between sexes (rMF) in traits that are only moderately (weight at emergence) to slightly (longevity) sexually dimorphic. Furthermore, we found an increased sire () compared to dam () variance component within trait and sex. Our results highlight that the genetic architecture even of the same trait should not be assumed to be the same for males and females. Furthermore, it raises the issue of the presence of unnoticed environmental effects that may inflate estimates of heritability. Overall, our study stresses the fact that estimates of quantitative genetic parameters are not only population, time, environment, but also sex specific. Thus, extrapolation between sexes and studies should be treated with caution. PMID:22408731

  2. Bandwidth efficient bidirectional 5 Gb/s overlapped-SCM WDM PON with electronic equalization and forward-error correction.

    PubMed

    Buset, Jonathan M; El-Sahn, Ziad A; Plant, David V

    2012-06-18

    We demonstrate an improved overlapped-subcarrier multiplexed (O-SCM) WDM PON architecture transmitting over a single feeder using cost sensitive intensity modulation/direct detection transceivers, data re-modulation and simple electronics. Incorporating electronic equalization and Reed-Solomon forward-error correction codes helps to overcome the bandwidth limitation of a remotely seeded reflective semiconductor optical amplifier (RSOA)-based ONU transmitter. The O-SCM architecture yields greater spectral efficiency and higher bit rates than many other SCM techniques while maintaining resilience to upstream impairments. We demonstrate full-duplex 5 Gb/s transmission over 20 km and analyze BER performance as a function of transmitted and received power. The architecture provides flexibility to network operators by relaxing common design constraints and enabling full-duplex operation at BER ∼ 10(-10) over a wide range of OLT launch powers from 3.5 to 8 dBm.

  3. 3D Functional Corneal Stromal Tissue Equivalent Based on Corneal Stromal Stem Cells and Multi-Layered Silk Film Architecture.

    PubMed

    Ghezzi, Chiara E; Marelli, Benedetto; Omenetto, Fiorenzo G; Funderburgh, James L; Kaplan, David L

    2017-01-01

    The worldwide need for human cornea equivalents continues to grow. Few clinical options are limited to allogenic and synthetic material replacements. We hypothesized that tissue engineered human cornea systems based on mechanically robust, patterned, porous, thin, optically clear silk protein films, in combination with human corneal stromal stem cells (hCSSCs), would generate 3D functional corneal stroma tissue equivalents, in comparison to previously developed 2D approaches. Silk film contact guidance was used to control the alignment and distribution of hCSSCs on RGD-treated single porous silk films, which were then stacked in an orthogonally, multi-layered architecture and cultured for 9 weeks. These systems were compared similar systems generated with human corneal fibroblasts (hCFs). Both cell types were viable and preferentially aligned along the biomaterial patterns for up to 9 weeks in culture. H&E histological sections showed that the systems seeded with the hCSSCs displayed ECM production throughout the entire thickness of the constructs. In addition, the ECM proteins tested positive for keratocyte-specific tissue markers, including keratan sulfate, lumican, and keratocan. The quantification of hCSSC gene expression of keratocyte-tissue markers, including keratocan, lumican, human aldehyde dehydrogenase 3A1 (ALDH3A1), prostaglandin D2 synthase (PTDGS), and pyruvate dehydrogenase kinase, isozyme 4 (PDK4), within the 3D tissue systems demonstrated upregulation when compared to 2D single silk films and to the systems generated with the hCFs. Furthermore, the production of ECM from the hCSSC seeded systems and subsequent remodeling of the initial matrix significantly improved cohesiveness and mechanical performance of the constructs, while maintaining transparency after 9 weeks.

  4. Transcription Factor-Mediated Control of Anthocyanin Biosynthesis in Vegetative Tissues1[OPEN

    PubMed Central

    Outchkourov, Nikolay S.; Schrama, Xandra; Blilou, Ikram; Jongedijk, Esmer; Simon, Carmen Diez; Bosch, Dirk; Hall, Robert D.

    2018-01-01

    Plants accumulate secondary metabolites to adapt to environmental conditions. These compounds, here exemplified by the purple-colored anthocyanins, are accumulated upon high temperatures, UV-light, drought, and nutrient deficiencies, and may contribute to tolerance to these stresses. Producing compounds is often part of a more broad response of the plant to changes in the environment. Here we investigate how a transcription-factor-mediated program for controlling anthocyanin biosynthesis also has effects on formation of specialized cell structures and changes in the plant root architecture. A systems biology approach was developed in tomato (Solanum lycopersicum) for coordinated induction of biosynthesis of anthocyanins, in a tissue- and development-independent manner. A transcription factor couple from Antirrhinum that is known to control anthocyanin biosynthesis was introduced in tomato under control of a dexamethasone-inducible promoter. By application of dexamethasone, anthocyanin formation was induced within 24 h in vegetative tissues and in undifferentiated cells. Profiles of metabolites and gene expression were analyzed in several tomato tissues. Changes in concentration of anthocyanins and other phenolic compounds were observed in all tested tissues, accompanied by induction of the biosynthetic pathways leading from Glc to anthocyanins. A number of pathways that are not known to be involved in anthocyanin biosynthesis were observed to be regulated. Anthocyanin-producing plants displayed profound physiological and architectural changes, depending on the tissue, including root branching, root epithelial cell morphology, seed germination, and leaf conductance. The inducible anthocyanin-production system reveals a range of phenomena that accompanies anthocyanin biosynthesis in tomato, including adaptions of the plants architecture and physiology. PMID:29192027

  5. Three-dimensional visualization of morphology and ventilation procedure (air flow and diffusion) of a subdivision of the acinus using synchrotron radiation microtomography of the human lung specimens

    NASA Astrophysics Data System (ADS)

    Shimizu, Kenji; Ikura, Hirohiko; Ikezoe, Junpei; Nagareda, Tomofumi; Yagi, Naoto; Umetani, Keiji; Imai, Yutaka

    2004-04-01

    We have previously reported a synchrotron radiation (SR) microtomography system constructed at the bending magnet beamline at the SPring-8. This system has been applied to the lungs obtained at autopsy and inflated and fixed by Heitzman"s method. Normal lung and lung specimens with two different types of pathologic processes (fibrosis and emphysema) were included. Serial SR microtomographic images were stacked to yield the isotropic volumetric data with high-resolution (12 μm3 in voxel size). Within the air spaces of a subdivision of the acinus, each voxel is segmented three-dimensionally using a region growing algorithm ("rolling ball algorithm"). For each voxel within the segmented air spaces, two types of voxel coding have been performed: single-seeded (SS) coding and boundary-seeded (BS) coding, in which the minimum distance from an initial point as the only seed point and all object boundary voxels as a seed set were calculated and assigned as the code values to each voxel, respectively. With these two codes, combinations of surface rendering and volume rendering techniques were applied to visualize three-dimensional morphology of a subdivision of the acinus. Furthermore, sequentially filling process of air into a subdivision of the acinus was simulated under several conditions to visualize the ventilation procedure (air flow and diffusion). A subdivision of the acinus was reconstructed three-dimensionally, demonstrating the normal architecture of the human lung. Significant differences in appearance of ventilation procedure were observed between normal and two pathologic processes due to the alteration of the lung architecture. Three-dimensional reconstruction of the microstructure of a subdivision of the acinus and visualization of the ventilation procedure (air flow and diffusion) with SR microtomography would offer a new approach to study the morphology, physiology, and pathophysiology of the human respiratory system.

  6. Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield

    PubMed Central

    2012-01-01

    Background Lipids extracted from seeds of Camelina sativa have been successfully used as a reliable source of aviation biofuels. This biofuel is environmentally friendly because the drought resistance, frost tolerance and low fertilizer requirement of Camelina sativa allow it to grow on marginal lands. Improving the species growth and seed yield by genetic engineering is therefore a target for the biofuels industry. In Arabidopsis, overexpression of purple acid phosphatase 2 encoded by Arabidopsis (AtPAP2) promotes plant growth by modulating carbon metabolism. Overexpression lines bolt earlier and produce 50% more seeds per plant than wild type. In this study, we explored the effects of overexpressing AtPAP2 in Camelina sativa. Results Under controlled environmental conditions, overexpression of AtPAP2 in Camelina sativa resulted in longer hypocotyls, earlier flowering, faster growth rate, higher photosynthetic rate and stomatal conductance, increased seed yield and seed size in comparison with the wild-type line and null-lines. Similar to transgenic Arabidopsis, activity of sucrose phosphate synthase in leaves of transgenic Camelina was also significantly up-regulated. Sucrose produced in photosynthetic tissues supplies the building blocks for cellulose, starch and lipids for growth and fuel for anabolic metabolism. Changes in carbon flow and sink/source activities in transgenic lines may affect floral, architectural, and reproductive traits of plants. Conclusions Lipids extracted from the seeds of Camelina sativa have been used as a major constituent of aviation biofuels. The improved growth rate and seed yield of transgenic Camelina under controlled environmental conditions have the potential to boost oil yield on an area basis in field conditions and thus make Camelina-based biofuels more environmentally friendly and economically attractive. PMID:22472516

  7. Rice Root Architectural Plasticity Traits and Genetic Regions for Adaptability to Variable Cultivation and Stress Conditions1[OPEN

    PubMed Central

    Sandhu, Nitika; Raman, K. Anitha; Torres, Rolando O.; Audebert, Alain; Dardou, Audrey; Kumar, Arvind; Henry, Amelia

    2016-01-01

    Future rice (Oryza sativa) crops will likely experience a range of growth conditions, and root architectural plasticity will be an important characteristic to confer adaptability across variable environments. In this study, the relationship between root architectural plasticity and adaptability (i.e. yield stability) was evaluated in two traditional × improved rice populations (Aus 276 × MTU1010 and Kali Aus × MTU1010). Forty contrasting genotypes were grown in direct-seeded upland and transplanted lowland conditions with drought and drought + rewatered stress treatments in lysimeter and field studies and a low-phosphorus stress treatment in a Rhizoscope study. Relationships among root architectural plasticity for root dry weight, root length density, and percentage lateral roots with yield stability were identified. Selected genotypes that showed high yield stability also showed a high degree of root plasticity in response to both drought and low phosphorus. The two populations varied in the soil depth effect on root architectural plasticity traits, none of which resulted in reduced grain yield. Root architectural plasticity traits were related to 13 (Aus 276 population) and 21 (Kali Aus population) genetic loci, which were contributed by both the traditional donor parents and MTU1010. Three genomic loci were identified as hot spots with multiple root architectural plasticity traits in both populations, and one locus for both root architectural plasticity and grain yield was detected. These results suggest an important role of root architectural plasticity across future rice crop conditions and provide a starting point for marker-assisted selection for plasticity. PMID:27342311

  8. Transcriptome analyses of seed development in grape hybrids reveals a possible mechanism influencing seed size.

    PubMed

    Wang, Li; Hu, Xiaoyan; Jiao, Chen; Li, Zhi; Fei, Zhangjun; Yan, Xiaoxiao; Liu, Chonghuai; Wang, Yuejin; Wang, Xiping

    2016-11-09

    Seedlessness in grape (Vitis vinifera) is of considerable commercial importance for both the table grape and processing industries. Studies to date of grape seed development have been made certain progress, but many key genes have yet to be identified and characterized. In this study we analyzed the seed transcriptomes of progeny derived from the V. vinifera seeded maternal parent 'Red Globe' and the seedless paternal parent 'Centennial seedless' to identify genes associated with seedlessness. A total of 6,607 differentially expressed genes (DEGs) were identified and examined from multiple perspectives, including expression patterns, Gene Ontology (GO) annotations, pathway enrichment, inferred hormone influence and epigenetic regulation. The expression data of hormone-related genes and hormone level measurement reveals the differences during seed development between seedless and seeded progeny. Based on both our results and previous studies of A. thaliana seed development, we generated network maps of grape seed-related DEGs, with particular reference to hormone balance, seed coat and endosperm development, and seed identity complexes. In summary, the major differences identified during seed development of seedless and seeded progeny were associated with hormone and epigenetic regulation, the development of the seed coat and endosperm, and the formation of seed identity complexes. Overall the data provides insights into the possible molecular mechanism controlling grape seed size, which is of great importance for both basic research and future translation applications in the grape industry.

  9. [Study on procedure of seed quality testing and seed grading scale of Phellodendron amurense].

    PubMed

    Liu, Yanlu; Zhang, Zhao; Dai, Lingchao; Zhang, Bengang; Zhang, Xiaoling; Wang, Han

    2011-12-01

    To study the procedure of seed quality testing and seed grading scale of Phellodendron amurense. Seed quality testing methods were developed, which included the test of sampling, seed purity, weight per 1 000 seeds, seed moisture, seed viability and germination rate. The related data from 62 cases of seed specimens of P. amurense were analyzed by cluster analysis. The seed quality test procedure was developed, and the seed quality grading scale was formulated.

  10. Bio-mimetic hollow scaffolds for long bone replacement

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Deyhle, Hans; Fierz, Fabienne C.; Irsen, Stephan H.; Yoon, Jin Y.; Mushkolaj, Shpend; Boss, Oliver; Vorndran, Elke; Gburek, Uwe; Degistirici, Özer; Thie, Michael; Leukers, Barbara; Beckmann, Felix; Witte, Frank

    2009-08-01

    The tissue engineering focuses on synthesis or regeneration of tissues and organs. The hierarchical structure of nearly all porous scaffolds on the macro, micro- and nanometer scales resembles that of engineering foams dedicated for technical applications, but differ from the complex architecture of long bone. A major obstacle of scaffold architecture in tissue regeneration is the limited cell infiltration as the result of the engineering approaches. The biological cells seeded on the three-dimensional constructs are finally only located on the scaffold's periphery. This paper reports on the successful realization of calcium phosphate scaffolds with an anatomical architecture similar to long bones. Two base materials, namely nano-porous spray-dried hydroxyapatite hollow spheres and tri-calcium phosphate powder, were used to manufacture cylindrically shaped, 3D-printed scaffolds with micro-passages and one central macro-canal following the general architecture of long bones. The macro-canal is built for the surgical placement of nerves or larger blood vessels. The micro-passages allow for cell migration and capillary formation through the entire scaffold. Finally, the nanoporosity is essential for the molecule transport crucial for signaling, any cell nutrition and waste removal.

  11. Evaluating 3D bone tissue engineered constructs with different seeding densities using the alamarBlue assay and the effect on in vivo bone formation.

    PubMed

    Wilson, C E; Dhert, W J A; Van Blitterswijk, C A; Verbout, A J; De Bruijn, J D

    2002-12-01

    Bone tissue engineering using patient derived cells seeded onto porous scaffolds has gained much attention in recent years. Evaluating the viability of these 3D constructs is an essential step in optimizing the process. The alamarBlue (aB) assay was evaluated for its potential to follow in vitro cell proliferation on architecturally standardized hydroxyapatite scaffolds. The impact of the aB assayed and seeding density on subsequent in vivo bone formation was investigated. Twelve scaffolds were seeded with various densities from 250 to 2.5x10(6) cells/scaffold and assay by aB at 5 time points during the 7-day culture period. Twelve additional scaffolds were seeded with 2.5x10(5) cells/scaffold. Two control and 2 aB treated scaffolds were subcutaneously implanted into each of 6 nude mice for 6 weeks. Four observers ranked bone formation using a pair wise comparison of histological sections form each mouse. The aB assay successfully followed cell proliferation, however, the diffusion kinetics of the 3D constructs must be considered. The influence of in vitro aB treatment on subsequent in vivo bone formation cannot be ruled out but was not shown to be significant in the current study. The aB assay appears to be quite promising for evaluating a maximum or end-point viability of 3D tissue engineered constructs. Finally, higher seeding densities resulted in more observed bone formation.

  12. Altered functional connectivity architecture of the brain in medication overuse headache using resting state fMRI.

    PubMed

    Chen, Zhiye; Chen, Xiaoyan; Liu, Mengqi; Dong, Zhao; Ma, Lin; Yu, Shengyuan

    2017-12-01

    Functional connectivity density (FCD) could identify the abnormal intrinsic and spontaneous activity over the whole brain, and a seed-based resting-state functional connectivity (RSFC) could further reveal the altered functional network with the identified brain regions. This may be an effective assessment strategy for headache research. This study is to investigate the RSFC architecture changes of the brain in the patients with medication overuse headache (MOH) using FCD and RSFC methods. 3D structure images and resting-state functional MRI data were obtained from 37 MOH patients, 18 episodic migraine (EM) patients and 32 normal controls (NCs). FCD was calculated to detect the brain regions with abnormal functional activity over the whole brain, and the seed-based RSFC was performed to explore the functional network changes in MOH and EM. The decreased FCD located in right parahippocampal gyrus, and the increased FCD located in left inferior parietal gyrus and right supramarginal gyrus in MOH compared with NC, and in right caudate and left insula in MOH compared with EM. RSFC revealed that decreased functional connectivity of the brain regions with decreased FCD anchored in the right dorsal-lateral prefrontal cortex, right frontopolar cortex in MOH, and in left temporopolar cortex and bilateral visual cortices in EM compared with NC, and in frontal-temporal-parietal pattern in MOH compared with EM. These results provided evidence that MOH and EM suffered from altered intrinsic functional connectivity architecture, and the current study presented a new perspective for understanding the neuromechanism of MOH and EM pathogenesis.

  13. Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater

    PubMed Central

    Ling, Fangqiong; Liu, Wen-Tso

    2013-01-01

    This study evaluated the continuous impact of monochloramine disinfection on laboratory-grown biofilms through the characterization of biofilm architecture and microbial community structure. Biofilm development and disinfection were achieved using CDC (Centers for Disease Control and Prevention) biofilm reactor systems with polyvinyl chloride (PVC) coupons as the substratum and sand filter-pretreated groundwater as the source of microbial seeding and growth nutrient. After 2 weeks of growth, the biofilms were subjected to chloramination for 8 more weeks at concentrations of 7.5±1.4 to 9.1±0.4 mg Cl2 L−1. Control reactors received no disinfection during the development of biofilms. Confocal laser scanning microscopy and image analysis indicated that chloramination could lead to 81.4–83.5% and 86.3–95.6% reduction in biofilm biomass and thickness, respectively, but could not eliminate biofilm growth. 16S rRNA gene terminal restriction fragment length polymorphism analysis indicated that microbial community structures between chloraminated and non-chloraminated biofilms exhibited different successional trends. 16S rRNA gene pyrosequencing analysis further revealed that chloramination could select members of Actinobacteria and Acidobacteria as the dominant populations, whereas natural development leads to the selection of members of Nitrospira and Bacteroidetes as dominant biofilm populations. Overall, chloramination treatment could alter the growth of multi-species biofilms on the PVC surface, shape the biofilm architecture, and select a certain microbial community that can survive or proliferate under chloramination. PMID:23124766

  14. Fertilization-independent seed development in Arabidopsis thaliana

    PubMed Central

    Chaudhury, Abdul M.; Ming, Luo; Miller, Celia; Craig, Stuart; Dennis, Elizabeth S.; Peacock, W. James

    1997-01-01

    We report mutants in Arabidopsis thaliana (fertilization-independent seed: fis) in which certain processes of seed development are uncoupled from the double fertilization event that occurs after pollination. These mutants were isolated as ethyl methanesulfonate-induced pseudo-revertants of the pistillata phenotype. Although the pistillata (pi) mutant has short siliques devoid of seed, the fis mutants in the pi background have long siliques containing developing seeds, even though the flowers remain free of pollen. The three fis mutations map to loci on three different chromosomes. In fis1 and fis2 seeds, the autonomous endosperm nuclei are diploid and the endosperm develops to the point of cellularization; the partially developed seeds then atrophy. In these two mutants, proembryos are formed in a low proportion of seeds and do not develop beyond the globular stage. When FIS/fis plants are pollinated by pollen from FIS/FIS plants, ≈50% of the resulting seeds contain fully developed embryos; these seeds germinate and form viable seedlings (FIS/FIS). The other 50% of seeds shrivel and do not germinate; they contain embryos arrested at the torpedo stage (FIS/fis). In normal sexual reproduction, the products of the FIS genes are likely to play important regulatory roles in the development of seed after fertilization. PMID:9108133

  15. Fertilization-independent seed development in Arabidopsis thaliana.

    PubMed

    Chaudhury, A M; Ming, L; Miller, C; Craig, S; Dennis, E S; Peacock, W J

    1997-04-15

    We report mutants in Arabidopsis thaliana (fertilization-independent seed:fis) in which certain processes of seed development are uncoupled from the double fertilization event that occurs after pollination. These mutants were isolated as ethyl methanesulfonate-induced pseudo-revertants of the pistillata phenotype. Although the pistillata (pi) mutant has short siliques devoid of seed, the fis mutants in the pi background have long siliques containing developing seeds, even though the flowers remain free of pollen. The three fis mutations map to loci on three different chromosomes. In fis1 and fis2 seeds, the autonomous endosperm nuclei are diploid and the endosperm develops to the point of cellularization; the partially developed seeds then atrophy. In these two mutants, proembryos are formed in a low proportion of seeds and do not develop beyond the globular stage. When FIS/fis plants are pollinated by pollen from FIS/FIS plants, approximately 50% of the resulting seeds contain fully developed embryos; these seeds germinate and form viable seedlings (FIS/FIS). The other 50% of seeds shrivel and do not germinate; they contain embryos arrested at the torpedo stage (FIS/fis). In normal sexual reproduction, the products of the FIS genes are likely to play important regulatory roles in the development of seed after fertilization.

  16. Fabrication and characterization of La2Zr2O7 films on different buffer architectures for YBa2Cu3O7-δ coated conductors by RF magnetron sputtering.

    PubMed

    Xu, Da; Liu, Linfei; Xiao, Guina; Li, Yijie

    2013-02-27

    La2Zr2O7 (LZO) films were grown on different buffer architectures by radio frequency magnetron sputtering for the large-scale application of YBa2Cu3O7-x (YBCO)-coated conductors. The three different buffer architectures were cerium oxide (CeO2), yttria-stabilized zirconia (YSZ)/CeO2, and CeO2/YSZ/CeO2. The microstructure and surface morphology of the LZO film were studied by X-ray diffraction, optical microscopy, field emission scanning electron microscopy, and atomic force microscopy. The LZO films prepared on the CeO2, YSZ/CeO2, and CeO2/YSZ/CeO2 buffer architectures were preferentially c-axis-oriented and highly textured. The in-plane texture of LZO film on CeO2 single-buffer architecture was ∆ φ = 5.5° and the out-of-plane texture was ∆ ω = 3.4°. All the LZO films had very smooth surfaces, but LZO films grown on YSZ/CeO2 and CeO2/YSZ/CeO2 buffer architectures had cracks. The highly textured LZO film grown on CeO2-seed buffered NiW tape was suitable for the epitaxial growth of YBCO film with high currents.

  17. Critical phases in the seed development of common juniper (Juniperus communis).

    PubMed

    Gruwez, R; Leroux, O; De Frenne, P; Tack, W; Viane, R; Verheyen, K

    2013-01-01

    Common juniper (Juniperus communis L.) populations in northwest European lowlands are currently declining in size and number. An important cause of this decline is a lack of natural regeneration. Low seed viability seems to be one of the main bottlenecks in this process. Previous research revealed a negative relation between seed viability and both temperature and nitrogen deposition. Additionally, the seeds of common juniper have a variable ripening time, which possibly influences seed viability. However, the underlying mechanisms remain unresolved. In order to elucidate this puzzle, it is important to understand in which phases of seed production the main defects are situated, together with the influence of ripening time. In this study, we compared seed viability of populations with and without successful recruitment. We examined three seed phases: (i) gamete development; (ii) fertilisation and early-embryo development; and (iii) late-embryo development. After the first two phases, we found no difference in the percentage viable seeds between populations with or without recruitment. After late-embryo development, populations without recruitment showed a significantly lower percentage of viable seeds. These results suggest that late-embryo development is a bottleneck in seed development. However, the complex interaction between seed viability and ripening time suggest that the causes should be in the second seed phase, as the accelerated development of male and female gametophytes may disturb the male-female synchrony for successful mating. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2015-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  19. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2014-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  20. Dynamic self-guiding analysis of Alzheimer's disease

    PubMed Central

    Kurakin, Alexei; Bredesen, Dale E.

    2015-01-01

    We applied a self-guiding evolutionary algorithm to initiate the synthesis of the Alzheimer's disease-related data and literature. A protein interaction network associated with amyloid-beta precursor protein (APP) and a seed model that treats Alzheimer's disease as progressive dysregulation of APP-associated signaling were used as dynamic “guides” and structural “filters” in the recursive search, analysis, and assimilation of data to drive the evolution of the seed model in size, detail, and complexity. Analysis of data and literature across sub-disciplines and system-scale discovery platforms suggests a key role of dynamic cytoskeletal connectivity in the stability, plasticity, and performance of multicellular networks and architectures. Chronic impairment and/or dysregulation of cell adhesions/synapses, cytoskeletal networks, and/or reversible epithelial-to-mesenchymal-like transitions, which enable and mediate the stable and coherent yet dynamic and reconfigurable multicellular architectures, may lead to the emergence and persistence of the disordered, wound-like pockets/microenvironments of chronically disconnected cells. Such wound-like microenvironments support and are supported by pro-inflammatory, pro-secretion, de-differentiated cellular phenotypes with altered metabolism and signaling. The co-evolution of wound-like microenvironments and their inhabitants may lead to the selection and stabilization of degenerated cellular phenotypes, via acquisition of epigenetic modifications and mutations, which eventually result in degenerative disorders such as cancer and Alzheimer's disease. PMID:26041885

  1. The Genetic Architecture of Seed Composition in Soybean Is Refined by Genome-Wide Association Scans Across Multiple Populations

    PubMed Central

    Vaughn, Justin N.; Nelson, Randall L.; Song, Qijian; Cregan, Perry B.; Li, Zenglu

    2014-01-01

    Soybean oil and meal are major contributors to world-wide food production. Consequently, the genetic basis for soybean seed composition has been intensely studied using family-based mapping. Population-based mapping approaches, in the form of genome-wide association (GWA) scans, have been able to resolve loci controlling moderately complex quantitative traits (QTL) in numerous crop species. Yet, it is still unclear how soybean’s unique population history will affect GWA scans. Using one of the populations in this study, we simulated phenotypes resulting from a range of genetic architectures. We found that with a heritability of 0.5, ∼100% and ∼33% of the 4 and 20 simulated QTL can be recovered, respectively, with a false-positive rate of less than ∼6×10−5 per marker tested. Additionally, we demonstrated that combining information from multi-locus mixed models and compressed linear-mixed models improves QTL identification and interpretation. We applied these insights to exploring seed composition in soybean, refining the linkage group I (chromosome 20) protein QTL and identifying additional oil QTL that may allow some decoupling of highly correlated oil and protein phenotypes. Because the value of protein meal is closely related to its essential amino acid profile, we attempted to identify QTL underlying methionine, threonine, cysteine, and lysine content. Multiple QTL were found that have not been observed in family-based mapping studies, and each trait exhibited associations across multiple populations. Chromosomes 1 and 8 contain strong candidate alleles for essential amino acid increases. Overall, we present these and additional data that will be useful in determining breeding strategies for the continued improvement of soybean’s nutrient portfolio. PMID:25246241

  2. Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia.

    PubMed

    Frey, Anne; Godin, Béatrice; Bonnet, Magda; Sotta, Bruno; Marion-Poll, Annie

    2004-04-01

    The role of maternally derived abscisic acid (ABA) during seed development has been studied using ABA-deficient mutants of Nicotiana plumbaginifolia Viviani. ABA deficiency induced seed abortion, resulting in reduced seed yield, and delayed growth of the remaining embryos. Mutant grafting onto wild-type stocks and reciprocal crosses indicated that maternal ABA, synthesized in maternal vegetative tissues and translocated to the seed, promoted early seed development and growth. Moreover ABA deficiency delayed both seed coat pigmentation and capsule dehiscence. Mutant grafting did not restore these phenotypes, indicating that ABA synthesized in the seed coat and capsule envelope may have a positive effect on capsule and testa maturation. Together these results shed light on the positive role of maternal ABA during N. plumbaginifolia seed development.

  3. An All-Fiber, Modular, Compact Wind Lidar for Wind Sensing and Wake Vortex Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Sibell, Russ; Vetorino, Steve; Higgins, Richard; Tracy, Allen

    2015-01-01

    This paper discusses an innovative, compact and eyesafe coherent lidar system developed for wind and wake vortex sensing applications. With an innovative all-fiber and modular transceiver architecture, the wind lidar system has reduced size, weight and power requirements, and provides enhanced performance along with operational elegance. This all-fiber architecture is developed around fiber seed laser coupled to uniquely configured fiber amplifier modules. The innovative features of this lidar system, besides its all fiber architecture, include pulsewidth agility and user programmable 3D hemispherical scanner unit. Operating at a wavelength of 1.5457 microns and with a PRF of up to 20 KHz, the lidar transmitter system is designed as a Class 1 system with dimensions of 30"(W) x 46"(L) x 60"(H). With an operational range exceeding 10 km, the wind lidar is configured to measure wind velocities of greater than 120 m/s with an accuracy of +/- 0.2 m/s and allow range resolution of less than 15 m. The dynamical configuration capability of transmitted pulsewidths from 50 ns to 400 ns allows high resolution wake vortex measurements. The scanner uses innovative liquid metal slip ring and is built using 3D printer technology with light weight nylon. As such, it provides continuous 360 degree azimuth and 180 degree elevation scan angles with an incremental motion of 0.001 degree. The lidar system is air cooled and requires 110 V for its operation. This compact and modular lidar system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. Currently, this wind lidar is undergoing validation tests under various atmospheric conditions. Preliminary results of these field measurements of wind characteristics that were recently carried out in Colorado are discussed.

  4. Methyl phenlactonoates are efficient strigolactone analogs with simple structure

    PubMed Central

    Jamil, Muhammad; Kountche, Boubacar A; Haider, Imran; Guo, Xiujie; Ntui, Valentine O; Jia, Kun-Peng; Hameed, Umar S; Nakamura, Hidemitsu; Lyu, Ying; Jiang, Kai; Hirabayashi, Kei; Tanokura, Masaru; Arold, Stefan T; Asami, Tadao

    2018-01-01

    abstract Strigolactones (SLs) are a new class of phytohormones that also act as germination stimulants for root parasitic plants, such as Striga spp., and as branching factors for symbiotic arbuscular mycorrhizal fungi. Sources for natural SLs are very limited. Hence, efficient and simple SL analogs are needed for elucidating SL-related biological processes as well as for agricultural applications. Based on the structure of the non-canonical SL methyl carlactonoate, we developed a new, easy to synthesize series of analogs, termed methyl phenlactonoates (MPs), evaluated their efficacy in exerting different SL functions, and determined their affinity for SL receptors from rice and Striga hermonthica. Most of the MPs showed considerable activity in regulating plant architecture, triggering leaf senescence, and inducing parasitic seed germination. Moreover, some MPs outperformed GR24, a widely used SL analog with a complex structure, in exerting particular SL functions, such as modulating Arabidopsis roots architecture and inhibiting rice tillering. Thus, MPs will help in elucidating the functions of SLs and are promising candidates for agricultural applications. Moreover, MPs demonstrate that slight structural modifications clearly impact the efficiency in exerting particular SL functions, indicating that structural diversity of natural SLs may mirror a functional specificity. PMID:29300919

  5. Proteomic analysis of the seed development in Jatropha curcas: from carbon flux to the lipid accumulation.

    PubMed

    Liu, Hui; Wang, Cuiping; Komatsu, Setsuko; He, Mingxia; Liu, Gongshe; Shen, Shihua

    2013-10-08

    To characterize the metabolic signatures of lipid accumulation in Jatropha curcas seeds, comparative proteomic technique was employed to profile protein changes during the seed development. Temporal changes in comparative proteome were examined using gels-based proteomic technique at six developmental stages for lipid accumulation. And 104 differentially expressed proteins were identified by MALDI-TOF/TOF tandem mass spectrometry. These protein species were classified into 10 functional categories, and the results demonstrated that protein species related to energy and metabolism were notably accumulated and involved in the carbon flux to lipid accumulation that occurs primarily from early to late stage in seed development. Glycolysis and oxidative pentose phosphate pathways were the major pathways of producing carbon flux, and the glucose-6-phosphate and triose-phosphate are the major carbon source for fatty acid synthesis. Lipid analysis revealed that fatty acid accumulation initiated 25days after flowering at the late stage of seed development of J. curcas. Furthermore, C16:0 was initially synthesized as the precursor for the elongation to C18:1 and C18:2 in the developing seeds of J. curcas. Together, the metabolic signatures on protein changes in seed development provide profound knowledge and perspective insights into understanding lipid network in J. curcas. Due to the abundant oil content in seeds, Jatropha curcas seeds are being considered as the ideal materials for biodiesel. Although several studies had carried out the transcriptomic project to study the genes expression profiles in seed development of J. curcas, these ESTs hadn't been confirmed by qRT-PCR. Yet, the seed development of J. curcas had been described for a pool of developing seeds instead of being characterized systematically. Moreover, cellular metabolic events are also controlled by protein-protein interactions, posttranslational protein modifications, and enzymatic activities which cannot be described by transcriptional profiling approaches alone. In this study, within the overall objective of profiling differential protein abundance in developing J. curcas seeds, we provide a setting of physiological data with dynamic proteomic and qRT-PCR analysis to characterize the metabolic pathways and the relationship between mRNA and protein patterns from early stage to seed filling during the seed development of J. curcas. The construction of J. curcas seed development proteome profiles will significantly increase our understanding of the process of seed development and provide a foundation to examine the dynamic changes of the metabolic network during seed development process and certainly suggest some clues to improve the lipid content of J. curcas seeds. © 2013. Published by Elsevier B.V. All rights reserved.

  6. Phoenix dactylifera seeds ameliorate early diabetic complications in streptozotocin-induced diabetic rats.

    PubMed

    Abdelaziz, Dalia H A; Ali, Sahar A; Mostafa, Mahmoud M A

    2015-06-01

    In Arabic folk medicine, the seeds of Phoenix dactylifera L. (Arecaceae) have been used to manage diabetes for many years. Few studies have reported the antidiabetic effect of P. dactylifera seeds; however, their effect on diabetic complications is still unexplored. The present study investigates the protective effect of P. dactylifera seeds against diabetic complications in rats. The aqueous suspension of P. dactylifera seeds (aqPDS) (1 g/kg/d) was orally administered to streptozotocin-induced diabetic rats for 4 weeks. The serum biochemical parameters were assessed spectrophotometrically. Furthermore, oxidative stress was examined in both liver and kidney tissues by assessment of thiobarbituric acid reactive substances (TBARS), nitric oxide (NO), reduced glutathione, superoxide dismutase (SOD), glutathione S-transferase, and catalase. Oral administration of aqPDS significantly ameliorated the elevated levels of glucose (248 ± 42 versus 508 ± 60 mg/dl), urea (32 ± 3.3 versus 48.3 ± 5.6 mg/dl), creatinine (2.2 ± 0.35 versus 3.8 ± 0.37 mg/dl), ALT (29.6 ± 3.9 versus 46.4 ± 5.9 IU/l), and AST (73.3 ± 13 versus 127.8 ± 18.7 IU/l) compared with the untreated diabetic rats. In addition to significant augmentation in the activities of antioxidant enzymes, there was reduction in TBARS and NO levels and improvement of histopathological architecture of the liver and kidney of diabetic rats. The aqPDS showed potential protective effects against early diabetic complications of both liver and kidney. This effect may be explained by the antioxidant and free radical scavenging capabilities of P. dactylifera seeds.

  7. Free and Conjugated Indole-3-Acetic Acid in Developing Bean Seeds 1

    PubMed Central

    Bialek, Krystyna; Cohen, Jerry D.

    1989-01-01

    The changes in conjugated indole-3-acetic acid (IAA) levels compared to the levels of free IAA have been analyzed during the development of bean (Phaseolus vulgaris L.) seed using quantitative mass spectrometry. Free and ester-linked IAA levels are both relatively high in the early stages of seed development but drop during seed maturation. Concomitantly, the amide-linked IAA becomes the major form of IAA present as the seed matures. In fully mature seed, amide IAA accounts for 80% of the total IAA. The total IAA pool in the seed is maintained at approximately the same level (150-170 nanograms/seed) once the level of free IAA has attained its maximum. Thus, the amount of amide IAA conjugates that accumulate in mature seed is closely related to the amounts of free and ester-linked IAA that disappeared from the rapidly growing seed. Analysis of developing bean pods, from which the seeds were taken for analysis, showed very low levels of both ester and amide-linked IAA conjugates. The pattern of changes seen in the levels of free and conjugated IAA in developing bean seed supports our prior hypothesis suggesting a role of IAA conjugates in the storage of the phytohormone in the seed. PMID:16667099

  8. Low threshold linear cavity mode-locked fiber laser using microfiber-based carbon nanotube saturable absorber

    NASA Astrophysics Data System (ADS)

    Lau, K. Y.; Ng, E. K.; Abu Bakar, M. H.; Abas, A. F.; Alresheedi, M. T.; Yusoff, Z.; Mahdi, M. A.

    2018-06-01

    In this work, we demonstrate a linear cavity mode-locked erbium-doped fiber laser in C-band wavelength region. The passive mode-locking is achieved using a microfiber-based carbon nanotube saturable absorber. The carbon nanotube saturable absorber has low saturation fluence of 0.98 μJ/cm2. Together with the linear cavity architecture, the fiber laser starts to produce soliton pulses at low pump power of 22.6 mW. The proposed fiber laser generates fundamental soliton pulses with a center wavelength, pulse width, and repetition rate of 1557.1 nm, 820 fs, and 5.41 MHz, respectively. This mode-locked laser scheme presents a viable option in the development of low threshold ultrashort pulse system for deployment as a seed laser.

  9. Genome-wide analysis of coordinated transcript abundance during seed development in different Brassica rapa morphotypes.

    PubMed

    Basnet, Ram Kumar; Moreno-Pachon, Natalia; Lin, Ke; Bucher, Johan; Visser, Richard G F; Maliepaard, Chris; Bonnema, Guusje

    2013-12-01

    Brassica seeds are important as basic units of plant growth and sources of vegetable oil. Seed development is regulated by many dynamic metabolic processes controlled by complex networks of spatially and temporally expressed genes. We conducted a global microarray gene co-expression analysis by measuring transcript abundance of developing seeds from two diverse B. rapa morphotypes: a pak choi (leafy-type) and a yellow sarson (oil-type), and two of their doubled haploid (DH) progenies, (1) to study the timing of metabolic processes in developing seeds, (2) to explore the major transcriptional differences in developing seeds of the two morphotypes, and (3) to identify the optimum stage for a genetical genomics study in B. rapa seed. Seed developmental stages were similar in developing seeds of pak choi and yellow sarson of B. rapa; however, the colour of embryo and seed coat differed among these two morphotypes. In this study, most transcriptional changes occurred between 25 and 35 DAP, which shows that the timing of seed developmental processes in B. rapa is at later developmental stages than in the related species B. napus. Using a Weighted Gene Co-expression Network Analysis (WGCNA), we identified 47 "gene modules", of which 27 showed a significant association with temporal and/or genotypic variation. An additional hierarchical cluster analysis identified broad spectra of gene expression patterns during seed development. The predominant variation in gene expression was according to developmental stages rather than morphotype differences. Since lipids are the major storage compounds of Brassica seeds, we investigated in more detail the regulation of lipid metabolism. Four co-regulated gene clusters were identified with 17 putative cis-regulatory elements predicted in their 1000 bp upstream region, either specific or common to different lipid metabolic pathways. This is the first study of genome-wide profiling of transcript abundance during seed development in B. rapa. The identification of key physiological events, major expression patterns, and putative cis-regulatory elements provides useful information to construct gene regulatory networks in B. rapa developing seeds and provides a starting point for a genetical genomics study of seed quality traits.

  10. Cytochemical localization of reserves during seed development in Arabidopsis thaliana under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Xiao, Y.; Musgrave, M. E.

    1996-01-01

    Successful development of seeds under spaceflight conditions has been an elusive goal of numerous long-duration experiments with plants on orbital spacecraft. Because carbohydrate metabolism undergoes changes when plants are grown in microgravity, developing seed storage reserves might be detrimentally affected during spaceflight. Seed development in Arabidopsis thaliana plants that flowered during 11 d in space on shuttle mission STS-68 has been investigated in this study. Plants were grown to the rosette stage (13 d) on a nutrient agar medium on the ground and loaded into the Plant Growth Unit flight hardware 18 h prior to lift-off. Plants were retrieved 3 h after landing and siliques were immediately removed from plants. Young seeds were fixed and processed for microscopic observation. Seeds in both the ground control and flight plants are similar in their morphology and size. The oldest seeds from these plants contain completely developed embryos and seed coats. These embryos developed radicle, hypocotyl, meristematic apical tissue, and differentiated cotyledons. Protoderm, procambium, and primary ground tissue had differentiated. Reserves such as starch and protein were deposited in the embryos during tissue differentiation. The aleurone layer contains a large quantity of storage protein and starch grains. A seed coat developed from integuments of the ovule with gradual change in cell composition and cell material deposition. Carbohydrates were deposited in outer integument cells especially in the outside cell walls. Starch grains decreased in number per cell in the integument during seed coat development. All these characteristics during seed development represent normal features in the ground control plants and show that the spaceflight environment does not prevent normal development of seeds in Arabidopsis.

  11. Alterations in Seed Development Gene Expression Affect Size and Oil Content of Arabidopsis Seeds1[C][W][OPEN

    PubMed Central

    Fatihi, Abdelhak; Zbierzak, Anna Maria; Dörmann, Peter

    2013-01-01

    Seed endosperm development in Arabidopsis (Arabidopsis thaliana) is under control of the polycomb group complex, which includes Fertilization Independent Endosperm (FIE). The polycomb group complex regulates downstream factors, e.g. Pheres1 (PHE1), by genomic imprinting. In heterozygous fie mutants, an endosperm develops in ovules carrying a maternal fie allele without fertilization, finally leading to abortion. Another endosperm development pathway depends on MINISEED3 (a WRKY10 transcription factor) and HAIKU2 (a leucine-rich repeat kinase). While the role of seed development genes in the embryo and endosperm establishment has been studied in detail, their impact on metabolism and oil accumulation remained unclear. Analysis of oil, protein, and sucrose accumulation in mutants and overexpression plants of the four seed development genes revealed that (1) seeds carrying a maternal fie allele accumulate low oil with an altered composition of triacylglycerol molecular species; (2) homozygous mutant seeds of phe1, mini3, and iku2, which are smaller, accumulate less oil and slightly less protein, and starch, which accumulates early during seed development, remains elevated in mutant seeds; (3) embryo-specific overexpression of FIE, PHE1, and MINI3 has no influence on seed size and weight, nor on oil, protein, or sucrose content; and (4) overexpression of IKU2 results in seeds with increased size and weight, and oil content of overexpressed IKU2 seeds is increased by 35%. Thus, IKU2 overexpression represents a novel strategy for the genetic manipulation of the oil content in seeds. PMID:24014578

  12. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels.

    PubMed

    Cohen, Ana C; Bottini, Rubén; Pontin, Mariela; Berli, Federico J; Moreno, Daniela; Boccanlandro, Hernán; Travaglia, Claudia N; Piccoli, Patricia N

    2015-01-01

    Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth-promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress-related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col-0 and aba2-1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro-grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild-type Col-0 and on the mutant aba2-1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col-0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought. © 2014 Scandinavian Plant Physiology Society.

  13. Altering the architecture of tissue engineered hypertrophic cartilaginous grafts facilitates vascularisation and accelerates mineralisation.

    PubMed

    Sheehy, Eamon J; Vinardell, Tatiana; Toner, Mary E; Buckley, Conor T; Kelly, Daniel J

    2014-01-01

    Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) can be leveraged to generate bone in vivo by executing an endochondral program, leading to increased interest in the use of such hypertrophic grafts for the regeneration of osseous defects. During normal skeletogenesis, canals within the developing hypertrophic cartilage play a key role in facilitating endochondral ossification. Inspired by this developmental feature, the objective of this study was to promote endochondral ossification of an engineered cartilaginous construct through modification of scaffold architecture. Our hypothesis was that the introduction of channels into MSC-seeded hydrogels would firstly facilitate the in vitro development of scaled-up hypertrophic cartilaginous tissues, and secondly would accelerate vascularisation and mineralisation of the graft in vivo. MSCs were encapsulated into hydrogels containing either an array of micro-channels, or into non-channelled 'solid' controls, and maintained in culture conditions known to promote a hypertrophic cartilaginous phenotype. Solid constructs accumulated significantly more sGAG and collagen in vitro, while channelled constructs accumulated significantly more calcium. In vivo, the channels acted as conduits for vascularisation and accelerated mineralisation of the engineered graft. Cartilaginous tissue within the channels underwent endochondral ossification, producing lamellar bone surrounding a hematopoietic marrow component. This study highlights the potential of utilising engineering methodologies, inspired by developmental skeletal processes, in order to enhance endochondral bone regeneration strategies.

  14. Altering the Architecture of Tissue Engineered Hypertrophic Cartilaginous Grafts Facilitates Vascularisation and Accelerates Mineralisation

    PubMed Central

    Sheehy, Eamon J.; Vinardell, Tatiana; Toner, Mary E.; Buckley, Conor T.; Kelly, Daniel J.

    2014-01-01

    Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) can be leveraged to generate bone in vivo by executing an endochondral program, leading to increased interest in the use of such hypertrophic grafts for the regeneration of osseous defects. During normal skeletogenesis, canals within the developing hypertrophic cartilage play a key role in facilitating endochondral ossification. Inspired by this developmental feature, the objective of this study was to promote endochondral ossification of an engineered cartilaginous construct through modification of scaffold architecture. Our hypothesis was that the introduction of channels into MSC-seeded hydrogels would firstly facilitate the in vitro development of scaled-up hypertrophic cartilaginous tissues, and secondly would accelerate vascularisation and mineralisation of the graft in vivo. MSCs were encapsulated into hydrogels containing either an array of micro-channels, or into non-channelled ‘solid’ controls, and maintained in culture conditions known to promote a hypertrophic cartilaginous phenotype. Solid constructs accumulated significantly more sGAG and collagen in vitro, while channelled constructs accumulated significantly more calcium. In vivo, the channels acted as conduits for vascularisation and accelerated mineralisation of the engineered graft. Cartilaginous tissue within the channels underwent endochondral ossification, producing lamellar bone surrounding a hematopoietic marrow component. This study highlights the potential of utilising engineering methodologies, inspired by developmental skeletal processes, in order to enhance endochondral bone regeneration strategies. PMID:24595316

  15. [Seed geography: its concept and basic scientific issues].

    PubMed

    Yu, Shun-Li; Wang, Zong-Shuai; Zeren, Wangmu

    2010-01-01

    In this paper, a new concept 'seed geography' was provided, and its definition, research contents, and scientific issues were put forward. Seed geography is a newly developed interdisciplinary science from plant geography, seed ecology, and phytosociology, which studies the geographic variation patterns of seed biological traits as well as their relationships with environmental factors from macroscopic to microscopic, and the seed formation, development, and change trends. The main research contents would include geography of seed mass, geography of seed chemical components, geography of seed morphology, geography of seed cell biological characteristics, geography of seed physiological characteristics, geography of seed genetic characteristics, and geography of flower and fruit. To explore the scientific issues in seed geography would help us to better understand the long-term adaptation and evolution of seed characteristics to natural environments.

  16. Regulation of carotenoid and ABA accumulation during the development and germination of Nicotiana plumbaginifolia seeds.

    PubMed

    Frey, Anne; Boutin, Jean-Pierre; Sotta, Bruno; Mercier, Raphaël; Marion-Poll, Annie

    2006-08-01

    Abscisic acid (ABA) is derived from epoxycarotenoid cleavage and regulates seed development and maturation. A detailed carotenoid analysis was undertaken to study the contribution of epoxycarotenoid synthesis to the regulation of ABA accumulation in Nicotiana plumbaginifolia developing seeds. Maximal accumulation of xanthophylls occurred at mid-development in wild type seeds, when total ABA levels also peaked. In contrast, in ABA-deficient mutants xanthophyll synthesis was delayed, in agreement with the retardation in seed maturation. Seed dormancy was restored in mutants impaired in the conversion of zeaxanthin into violaxanthin by zeaxanthin epoxidase (ZEP), by the introduction of the Arabidopsis AtZEP gene under the control of promoters inducing expression during later stages of seed development compared to wild type NpZEP, and in dry and imbibed seeds. Alterations in the timing and level of ZEP expression did not highly affect the temporal regulation of ABA accumulation in transgenic seeds, despite notable perturbations in xanthophyll accumulation. Therefore, major regulatory control of ABA accumulation might occur downstream of epoxycarotenoid synthesis.

  17. Invasive plant species alters consumer behavior by providing refuge from predation.

    PubMed

    Dutra, Humberto P; Barnett, Kirk; Reinhardt, Jason R; Marquis, Robert J; Orrock, John L

    2011-07-01

    Understanding the effects of invasive plants on native consumers is important because consumer-mediated indirect effects have the potential to alter the dynamics of coexistence in native communities. Invasive plants may promote changes in consumer pressure due to changes in protective cover (i.e., the architectural complexity of the invaded habitat) and in food availability (i.e., subsidies of fruits and seeds). No experimental studies have evaluated the relative interplay of these two effects. In a factorial experiment, we manipulated cover and food provided by the invasive shrub Amur honeysuckle (Lonicera maackii) to evaluate whether this plant alters the foraging activity of native mammals. Using tracking plates to quantify mammalian foraging activity, we found that removal of honeysuckle cover, rather than changes in the fruit resources it provides, reduced the activity of important seed consumers, mice in the genus Peromyscus. Two mesopredators, Procyon lotor and Didelphis virginiana, were also affected. Moreover, we found rodents used L. maackii for cover only on cloudless nights, indicating that the effect of honeysuckle was weather-dependent. Our work provides experimental evidence that this invasive plant species changes habitat characteristics, and in so doing alters the behavior of small- and medium-sized mammals. Changes in seed predator behavior may lead to cascading effects on the seeds that mice consume.

  18. Seed development and maturation in early spring-flowering Galanthus nivalis and Narcissus pseudonarcissus continues post-shedding with little evidence of maturation in planta

    PubMed Central

    Newton, Rosemary J.; Hay, Fiona R.; Ellis, Richard H.

    2013-01-01

    Background and Aims Seeds of the moist temperate woodland species Galanthus nivalis and Narcissus pseudonarcissus, dispersed during spring or early summer, germinated poorly in laboratory tests. Seed development and maturation were studied to better understand the progression from developmental to germinable mode in order to improve seed collection and germination practices in these and similar species. Methods Phenology, seed mass, moisture content and ability to germinate and tolerate desiccation were monitored during seed development until shedding. Embryo elongation within seeds was investigated during seed development and under several temperature regimes after shedding. Key Results Seeds were shed at high moisture content (>59 %) with little evidence that dry mass accumulation or embryo elongation were complete. Ability to germinate developed prior to the ability of some seeds to tolerate enforced desiccation. Germination was sporadic and slow. Embryo elongation occurred post-shedding in moist environments, most rapidly at 20 °C in G. nivalis and 15 °C in N. pseudonarcissus. The greatest germination also occurred in these regimes, 78 and 48 %, respectively, after 700 d. Conclusions Seeds of G. nivalis and N. pseudonarcissus were comparatively immature at shedding and substantial embryo elongation occurred post-shedding. Seeds showed limited desiccation tolerance at dispersal. PMID:23478943

  19. Transcriptomic profiling of genes in matured dimorphic seeds of euhalophyte Suaeda salsa.

    PubMed

    Xu, Yange; Zhao, Yuanqin; Duan, Huimin; Sui, Na; Yuan, Fang; Song, Jie

    2017-09-13

    Suaeda salsa (S. salsa) is a euhalophyte with high economic value. S. salsa can produce dimorphic seeds. Brown seeds are more salt tolerant, can germinate quickly and maintain the fitness of the species under high saline conditions. Black seeds are less salt tolerant, may become part of the seed bank and germinate when soil salinity is reduced. Previous reports have mainly focused on the ecophysiological traits of seed germination and production under saline conditions in this species. However, there is no information available on the molecular characteristics of S. salsa dimorphic seeds. In the present study, a total of 5825 differentially expressed genes were obtained; and 4648 differentially expressed genes were annotated based on a sequence similarity search, utilizing five public databases by transcriptome analysis. The different expression of these genes may be associated with embryo development, fatty acid, osmotic regulation substances and plant hormones in brown and black seeds. Compared to black seeds, most genes may relate to embryo development, and various genes that encode fatty acid desaturase and are involved in osmotic regulation substance synthesis or transport are upregulated in brown seeds. A large number of differentially expressed genes related to plant hormones were found in brown and black seeds, and their possible roles in regulating seed dormancy/germination were discussed. Upregulated genes involved in seed development and osmotic regulation substance accumulation may relate to bigger seed size and rapid seed germination in brown seeds, compared to black seeds. Differentially expressed genes of hormones may relate to seed dormancy/germination and the development of brown and black seeds. The transcriptome dataset will serve as a valuable resource to further understand gene expression and functional genomics in S. salsa dimorphic seeds.

  20. Morphoagronomic characterization and genetic diversity of a common bean RIL mapping population derived from the cross Rudá x AND 277.

    PubMed

    Silva, L C; Batista, R O; Anjos, R S R; Souza, M H; Carneiro, P C S; Souza, T L P O; Barros, E G; Carneiro, J E S

    2016-07-29

    Recombinant inbred lines (RILs) are a valuable resource for building genetic linkage maps. The presence of genetic variability in the RILs is essential for detecting associations between molecular markers and loci controlling agronomic traits of interest. The main goal of this study was to quantify the genetic diversity of a common bean RIL population derived from a cross between Rudá (Mesoamerican gene pool) and AND 277 (Andean gene pool). This population was developed by the single seed descent method from 500 F2 plants until the F10 generation. Seven quantitative traits were evaluated in the field in 393 RILs, the parental lines, and five control cultivars. The plants were grown using a randomized block design with additional controls and three replicates. Significant differences were observed among the RILs for all evaluated traits (P < 0.01). A comparison of the RILs and parental lines showed significant differences (P < 0.01) for the number of days to flowering (DFL) and to harvest (DH), productivity (PROD) and mass of 100 beans (M100); however, there were no significant differences for plant architecture, degree of seed flatness, or seed shape. These results indicate the occurrence of additive x additive epistatic interactions for DFL, DH, PROD, and M100. The 393 RILs were shown to fall into 10 clusters using Tocher's method. This RIL population clearly contained genetic variability for the evaluated traits, and this variability will be crucial for future studies involving genetic mapping and quantitative trait locus identification and analysis.

  1. Programmed cell death during development of cowpea (Vigna unguiculata (L.) Walp.) seed coat.

    PubMed

    Lima, Nathália Bastos; Trindade, Fernanda Gomes; da Cunha, Maura; Oliveira, Antônia Elenir Amâncio; Topping, Jennifer; Lindsey, Keith; Fernandes, Kátia Valevski Sales

    2015-04-01

    The seed coat develops primarily from maternal tissues and comprises multiple cell layers at maturity, providing a metabolically dynamic interface between the developing embryo and the environment during embryogenesis, dormancy and germination of seeds. Seed coat development involves dramatic cellular changes, and the aim of this research was to investigate the role of programmed cell death (PCD) events during the development of seed coats of cowpea [Vigna unguiculata (L.) Walp.]. We demonstrate that cells of the developing cowpea seed coats undergo a programme of autolytic cell death, detected as cellular morphological changes in nuclei, mitochondria, chloroplasts and vacuoles, DNA fragmentation and oligonucleosome accumulation in the cytoplasm, and loss of membrane viability. We show for the first time that classes 6 and 8 caspase-like enzymes are active during seed coat development, and that these activities may be compartmentalized by translocation between vacuoles and cytoplasm during PCD events. © 2014 John Wiley & Sons Ltd.

  2. Novel Insights into the Influence of Seed Sarcotesta Photosynthesis on Accumulation of Seed Dry Matter and Oil Content in Torreya grandis cv. “Merrillii”

    PubMed Central

    Hu, Yuanyuan; Zhang, Yongling; Yu, Weiwu; Hänninen, Heikki; Song, Lili; Du, Xuhua; Zhang, Rui; Wu, Jiasheng

    2018-01-01

    Seed oil content is an important trait of nut seeds, and it is affected by the import of carbon from photosynthetic sources. Although green leaves are the main photosynthetic organs, seed sarcotesta photosynthesis also supplies assimilates to seed development. Understanding the relationship between seed photosynthesis and seed development has theoretical and practical significance in the cultivation of Torreya grandis cv. “Merrillii.” To assess the role of seed sarcotesta photosynthesis on the seed development, anatomical and physiological traits of sarcotesta were measured during two growing seasons in the field. Compared with the attached current-year leaves, the sarcotesta had higher gross photosynthetic rate at the first stage of seed development. At the late second stage of seed development, sarcotesta showed down-regulation of PSII activity, as indicated by significant decrease in the following chlorophyll fluorescence parameters: the maximum PSII efficiency (Fv/Fm), the PSII quantum yield (ΦPSII), and the photosynthetic quenching coefficient (qP). The ribulose 1, 5—bisphosphate carboxylase (Rubisco) activity, the total chlorophyll content (Chl(a+b)) and nitrogen content in the sarcotesta were also significantly decreased during that period. Treatment with DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] preventing seed photosynthesis decreased the seed dry weight and the oil content by 25.4 and 25.5%, respectively. We conclude that seed photosynthesis plays an important role in the dry matter accumulation at the first growth stage. Our results also suggest that down-regulation of seed photosynthesis is a plant response to re-balance the source-sink ratio at the second growth stage. These results suggest that seed photosynthesis is important for biomass accumulation and oil synthesis of the Torreya seeds. The results will facilitate achieving higher yields and oil contents in nut trees by selection for higher seed photosynthesis cultivars. PMID:29375592

  3. Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa).

    PubMed Central

    Gu, Xing-You; Kianian, Shahryar F; Foley, Michael E

    2004-01-01

    Weedy rice has much stronger seed dormancy than cultivated rice. A wild-like weedy strain SS18-2 was selected to investigate the genetic architecture underlying seed dormancy, a critical adaptive trait in plants. A framework genetic map covering the rice genome was constructed on the basis of 156 BC(1) [EM93-1 (nondormant breeding line)//EM93-1/SS18-2] individuals. The mapping population was replicated using a split-tiller technique to control and better estimate the environmental variation. Dormancy was determined by germination of seeds after 1, 11, and 21 days of after-ripening (DAR). Six dormancy QTL, designated as qSD(S)-4, -6, -7-1, -7-2, -8, and -12, were identified. The locus qSD(S)-7-1 was tightly linked to the red pericarp color gene Rc. A QTL x DAR interaction was detected for qSD(S)-12, the locus with the largest main effect at 1, 11, and 21 DAR (R(2) = 0.14, 0.24, and 0.20, respectively). Two, three, and four orders of epistases were detected with four, six, and six QTL, respectively. The higher-order epistases strongly suggest the presence of genetically complex networks in the regulation of variation for seed dormancy in natural populations and make it critical to select for a favorable combination of alleles at multiple loci in positional cloning of a target dormancy gene. PMID:15082564

  4. Dynamic DNA methylation reconfiguration during seed development and germination.

    PubMed

    Kawakatsu, Taiji; Nery, Joseph R; Castanon, Rosa; Ecker, Joseph R

    2017-09-15

    Unlike animals, plants can pause their life cycle as dormant seeds. In both plants and animals, DNA methylation is involved in the regulation of gene expression and genome integrity. In animals, reprogramming erases and re-establishes DNA methylation during development. However, knowledge of reprogramming or reconfiguration in plants has been limited to pollen and the central cell. To better understand epigenetic reconfiguration in the embryo, which forms the plant body, we compared time-series methylomes of dry and germinating seeds to publicly available seed development methylomes. Time-series whole genome bisulfite sequencing reveals extensive gain of CHH methylation during seed development and drastic loss of CHH methylation during germination. These dynamic changes in methylation mainly occur within transposable elements. Active DNA methylation during seed development depends on both RNA-directed DNA methylation and heterochromatin formation pathways, whereas global demethylation during germination occurs in a passive manner. However, an active DNA demethylation pathway is initiated during late seed development. This study provides new insights into dynamic DNA methylation reprogramming events during seed development and germination and suggests possible mechanisms of regulation. The observed sequential methylation/demethylation cycle suggests an important role of DNA methylation in seed dormancy.

  5. Differential proteomics reveals the hallmarks of seed development in common bean (Phaseolus vulgaris L.).

    PubMed

    Parreira, J R; Bouraada, J; Fitzpatrick, M A; Silvestre, S; Bernardes da Silva, A; Marques da Silva, J; Almeida, A M; Fevereiro, P; Altelaar, A F M; Araújo, S S

    2016-06-30

    Common bean (Phaseolus vulgaris L.) is one of the most consumed staple foods worldwide. Little is known about the molecular mechanisms controlling seed development. This study aims to comprehensively describe proteome dynamics during seed development of common bean. A high-throughput gel-free proteomics approach (LC-MS/MS) was conducted on seeds at 10, 20, 30 and 40days after anthesis, spanning from late embryogenesis until desiccation. Of the 418 differentially accumulated proteins identified, 255 were characterized, most belonging to protein metabolism. An accumulation of proteins belonging to the MapMan functional categories of "protein", "glycolysis", "TCA", "DNA", "RNA", "cell" and "stress" were found at early seed development stages, reflecting an extensive metabolic activity. In the mid stages, accumulation of storage, signaling, starch synthesis and cell wall-related proteins stood out. In the later stages, an increase in proteins related to redox, protein degradation/modification/folding and nucleic acid metabolisms reflect that seed desiccation-resistance mechanisms were activated. Our study unveils new clues to understand the regulation of seed development mediated by post-translational modifications and maintenance of genome integrity. This knowledge enhances the understanding on seed development molecular mechanisms that may be used in the design and selection of common bean seeds with desired quality traits. Common bean (P. vulgaris) is an important source of proteins and carbohydrates worldwide. Despite the agronomic and economic importance of this pulse, knowledge on common bean seed development is limited. Herein, a gel-free high throughput methodology was used to describe the proteome changes during P. vulgaris seed development. Data obtained will enhance the knowledge on the molecular mechanisms controlling this grain legume seed development and may be used in the design and selection of common bean seeds with desired quality traits. Results may be extrapolated to other pulses. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Dynamic distribution and the role of abscisic acid during seed development of a lady’s slipper orchid, Cypripedium formosanum

    PubMed Central

    Lee, Yung-I; Chung, Mei-Chu; Yeung, Edward C.; Lee, Nean

    2015-01-01

    Background and Aims Although abscisic acid (ABA) is commonly recognized as a primary cause of seed dormancy, there is a lack of information on the role of ABA during orchid seed development. In order to address this issue, the localization and quantification of ABA were determined in developing seeds of Cypripedium formosanum. Methods The endogenous ABA profile of seeds was measured by enzyme-linked immunosorbent assay (ELISA). Temporal and spatial distributions of ABA in developing seeds were visualized by immunohistochemical staining with monoclonal ABA antibodies. Fluoridone was applied to test the causal relationship between ABA content and seed germinability. Key Results ABA content was low at the proembryo stage, then increased rapidly from 120 to 150 days after pollination (DAP), accompanied by a progressive decrease in water content and seed germination. Immunofluorescence signals indicated an increase in fluorescence over time from the proembryo stage to seed maturation. From immunogold labelling, gold particles could be seen within the cytoplasm of embryo-proper cells during the early stages of seed development. As seeds approached maturity, increased localization of gold particles was observed in the periplasmic space, the plasmalemma between embryo-proper cells, the surface wall of the embryo proper, and the inner walls of inner seed-coat cells. At maturity, gold particles were found mainly in the apoplast, such as the surface wall of the embryo proper, and the shrivelled inner and outer seed coats. Injection of fluoridone into capsules resulted in enhanced germination of mature seeds. Conclusions The results indicate that ABA is the key inhibitor of germination in C. formosanum. The distinct accumulation pattern of ABA suggests that it is synthesized in the cytosol of embryo cells during the early stages of seed development, and then exported to the apoplastic region of the cells for subsequent regulatory processes as seeds approach maturity. PMID:26105185

  7. Genome-wide association mapping and agronomic impact of cowpea root architecture.

    PubMed

    Burridge, James D; Schneider, Hannah M; Huynh, Bao-Lam; Roberts, Philip A; Bucksch, Alexander; Lynch, Jonathan P

    2017-02-01

    Genetic analysis of data produced by novel root phenotyping tools was used to establish relationships between cowpea root traits and performance indicators as well between root traits and Striga tolerance. Selection and breeding for better root phenotypes can improve acquisition of soil resources and hence crop production in marginal environments. We hypothesized that biologically relevant variation is measurable in cowpea root architecture. This study implemented manual phenotyping (shovelomics) and automated image phenotyping (DIRT) on a 189-entry diversity panel of cowpea to reveal biologically important variation and genome regions affecting root architecture phenes. Significant variation in root phenes was found and relatively high heritabilities were detected for root traits assessed manually (0.4 for nodulation and 0.8 for number of larger laterals) as well as repeatability traits phenotyped via DIRT (0.5 for a measure of root width and 0.3 for a measure of root tips). Genome-wide association study identified 11 significant quantitative trait loci (QTL) from manually scored root architecture traits and 21 QTL from root architecture traits phenotyped by DIRT image analysis. Subsequent comparisons of results from this root study with other field studies revealed QTL co-localizations between root traits and performance indicators including seed weight per plant, pod number, and Striga (Striga gesnerioides) tolerance. The data suggest selection for root phenotypes could be employed by breeding programs to improve production in multiple constraint environments.

  8. Seed development and viviparous germination in one accession of a tomato rin mutant

    PubMed Central

    Wang, Xu; Zhang, Lili; Xu, Xiaochun; Qu, Wei; Li, Jingfu; Xu, Xiangyang; Wang, Aoxue

    2016-01-01

    In an experimental field, seed vivipary occurred in one accession of tomato rin mutant fruit at approximately 45–50 days after pollination (DAP). In this study, the possible contributory factors to this viviparous germination were investigated. Firstly, developing seeds were freshly excised from the fruit tissue every 5 days from 25–60 DAP. Germination occurred when isolated seeds were incubated on water, but was inhibited when they remained ex situ in fruit mucilage gel. The effect of abscisic acid (ABA) and osmoticum, separate and together, on germination of developing seeds was investigated. Additionally, ABA content in the seed and mucilage gel, as well as fruit osmolality were measured. The results showed that ABA concentrations in seeds were low during early development and increased later, peaking at about 50 DAP. ABA concentrations in rin accession were similar to those of the control cultivar and thus are not directly associated with the occurrence of vivipary. Developing seeds of rin accession are more sensitive than control seeds to all inhibitory compounds. However, osmolality in rin fruit at later developmental stages becomes less negative that is required to permit germination of developing seeds. Hence, hypo-osmolality in rin fruit may be an important factor in permitting limited viviparous germination. PMID:27436947

  9. Impact of heat stress during seed development on soybean seed metabolome

    USDA-ARS?s Scientific Manuscript database

    Seed development is a temperature-sensitive process that is much more vulnerable than vegetative tissues to abiotic stresses. Climate change is expected to increase the incidence and severity of summer heatwaves, and the impact of heat stress on seed development is expected to become more widespread...

  10. Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis

    PubMed Central

    Shakiba, Ehsan; Edwards, Jeremy D.; Jodari, Farman; Duke, Sara E.; Baldo, Angela M.; Korniliev, Pavel; McCouch, Susan R.; Eizenga, Georgia C.

    2017-01-01

    Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases seed yield. The Rice Diversity Panel 1 (RDP1) is a global collection of over 400 O. sativa accessions representing the five major subpopulations from the INDICA and JAPONICA varietal groups, with a genotypic dataset consisting of 700,000 SNP markers. The objectives of this study were to evaluate the RDP1 accessions for the complex, quantitatively inherited cold tolerance traits at the germination and reproductive stages, and to conduct genome-wide association (GWA) mapping to identify SNPs and candidate genes associated with cold stress at these stages. GWA mapping of the germination index (calculated as percent germination in cold divided by warm treatment) revealed 42 quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage, including 18 in the panel as a whole, seven in temperate japonica, six in tropical japonica, 14 in JAPONICA, and nine in INDICA, with five shared across all subpopulations. Twenty-two of these QTLs co-localized with 32 previously reported cold tolerance QTLs. GWA mapping of cold tolerance at the reproductive stage detected 29 QTLs, including seven associated with percent sterility, ten with seed weight per panicle, 14 with seed weight per plant and one region overlapping for two traits. Fifteen co-localized with previously reported QTLs for cold tolerance or yield components. Candidate gene ontology searches revealed these QTLs were associated with significant enrichment for genes related to with lipid metabolism, response to stimuli, response to biotic stimuli (suggesting cross-talk between biotic and abiotic stresses), and oxygen binding. Overall the JAPONICA accessions were more tolerant to cold stress than INDICA accessions. PMID:28282385

  11. Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds.

    PubMed

    Kanai, Masatake; Mano, Shoji; Kondo, Maki; Hayashi, Makoto; Nishimura, Mikio

    2016-05-01

    Regulation of oil biosynthesis in plant seeds has been extensively studied, and biotechnological approaches have been designed to increase seed oil content. Oil and protein synthesis is negatively correlated in seeds, but the mechanisms controlling interactions between these two pathways are unknown. Here, we identify the molecular mechanism controlling oil and protein content in seeds. We utilized transgenic Arabidopsis thaliana plants overexpressing WRINKLED1 (WRI1), a master transcription factor regulating seed oil biosynthesis, and knockout mutants of major seed storage proteins. Oil and protein biosynthesis in wild-type plants was sequentially activated during early and late seed development, respectively. The negative correlation between oil and protein contents in seeds arises from competition between the pathways. Extension of WRI1 expression during mid-phase of seed development significantly enhanced seed oil content. This study demonstrates that temporal activation of genes involved in oil or storage protein biosynthesis determines the oil/protein ratio in Arabidopsis seeds. These results provide novel insights into potential breeding strategies to generate crops with high oil contents in seeds. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Carabid larvae as predators of weed seeds: granivory in larvae of Amara eurynota (Coleoptera: Carabidae).

    PubMed

    Saska, Pavel

    2004-01-01

    Up to date we do not have much information about predation on seeds by larvae of ground beetles. One of the reasons why such knowledge is important is that granivorous larvae contribute to predation of weed seeds. In this study, the food requirements of larvae of autumn breeding carabid species Amara eurynota (Panzer) were investigated in the laboratory and a hypothesis, that they are granivorous was tested. Insect diet (Tenebrio molitor larvae), three seed diets (seeds of Artemisia vulgaris, Tripleurospermum inodorum or Urtica dioica or a mixed diet (T. molitor + A. uulgaris) were used as food. For larvae of A. eurynota, seeds are essential for successful completion of development, because all those fed pure insect diet died before pupation. However, differences in suitability were observed between pure seed diets. Larvae fed seeds of A. vulgaris had the lowest mortality and fastest development of the seed diets. Those fed seeds of T. inodorum had also low mortality, but the development was prolonged in the third instar. In contrast, development of larvae reared on seeds of U. dioica was slowest of the tested diets and could not be completed, as all individuals died before pupation. When insects were included to seed diet of A. vulgaris (mixed diet), the duration of development shortened, but mortality remained the same when compared to seed diet of A. vulgaris. According to the results it was concluded that larvae of A. eurynota are granivorous. A mixed diet and seed diets of A. uulgaris and T. inodorum were suitable and insect diet and seeds of U. dioica were unsuitable diets in this experiment.

  13. Does seed size and surface anatomy play role in combating phytotoxicity of nanoparticles?

    PubMed

    Jain, Navin; Bhargava, Arpit; Pareek, Vikram; Sayeed Akhtar, Mohd; Panwar, Jitendra

    2017-03-01

    Rapid utilization of nano-based products will inevitably release nanoparticles into the environment with unidentified consequences. Plants, being an integral part of ecosystem play a vital role in the incorporation of nanoparticles in food chain and thus, need to be critically assessed. The present study assesses the comparative phytotoxicity of nanoparticle, bulk and ionic forms of zinc at different concentrations on selected plant species with varying seed size and surface anatomy. ZnO nanoparticles were chosen in view of their wide spread use in cosmetics and health care products, which allow their direct release in the environment. The impact on germination rate, shoot & root length and vigour index were evaluated. A concentration dependent inhibition of seed germination as well as seedling length was observed in all the tested plants. Due to the presence of thick cuticle on testa and root, pearl millet (xerophytic plant) was found to be relatively less sensitive to ZnO nanoparticles as compared to wheat and tomato (mesophytic plants) with normal cuticle layer. No correlation was observed between nanoparticles toxicity and seed size. The results indicated that variations in surface anatomy of seeds play a crucial role in determining the phytotoxicity of nanoparticles. The present findings significantly contribute to assess potential consequences of nanoparticle release in environment particularly with major emphasis on plant systems. It is the first report which suggests that variations observed in phytotoxicity of nanoparticles is mainly due to the predominant differences in size and surface anatomy of tested plant seeds and root architecture. Effect of various concentrations of nano ZnO, bulk ZnO and zinc sulphate on the growth of pearl millet (A), tomato (B) and wheat (C) seedlings.

  14. Functional connectivity mapping of regions associated with self- and other-processing.

    PubMed

    Murray, Ryan J; Debbané, Martin; Fox, Peter T; Bzdok, Danilo; Eickhoff, Simon B

    2015-04-01

    Neuroscience literature increasingly suggests a conceptual self composed of interacting neural regions, rather than independent local activations, yet such claims have yet to be investigated. We, thus, combined task-dependent meta-analytic connectivity modeling (MACM) with task-independent resting-state (RS) connectivity analysis to delineate the neural network of the self, across both states. Given psychological evidence implicating the self's interdependence on social information, we also delineated the neural network underlying conceptual other-processing. To elucidate the relation between the self-/other-networks and their function, we mined the MACM metadata to generate a cognitive-behavioral profile for an empirically identified region specific to conceptual self, the pregenual anterior cingulate (pACC), and conceptual other, posterior cingulate/precuneus (PCC/PC). Mining of 7,200 published, task-dependent, neuroimaging studies, using healthy human subjects, yielded 193 studies activating the self-related seed and were conjoined with RS connectivity analysis to delineate a differentiated self-network composed of the pACC (seed) and anterior insula, relative to other functional connectivity. Additionally, 106 studies activating the other-related seed were conjoined with RS connectivity analysis to delineate a differentiated other-network of PCC/PC (seed) and angular gyrus/temporoparietal junction, relative to self-functional connectivity. The self-network seed related to emotional conflict resolution and motivational processing, whereas the other-network seed related to socially oriented processing and contextual information integration. Notably, our findings revealed shared RS connectivity between ensuing self-/other-networks within the ventromedial prefrontal cortex and medial orbitofrontal cortex, suggesting self-updating via integration of self-relevant social information. We, therefore, present initial neurobiological evidence corroborating the increasing claims of an intricate self-network, the architecture of which may promote social value processing. © 2014 Wiley Periodicals, Inc.

  15. Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy

    PubMed Central

    Martínez-Andújar, Cristina; Ordiz, M. Isabel; Huang, Zhonglian; Nonogaki, Mariko; Beachy, Roger N.; Nonogaki, Hiroyuki

    2011-01-01

    Full understanding of mechanisms that control seed dormancy and germination remains elusive. Whereas it has been proposed that translational control plays a predominant role in germination, other studies suggest the importance of specific gene expression patterns in imbibed seeds. Transgenic plants were developed to permit conditional expression of a gene encoding 9-cis-epoxycarotenoid dioxygenase 6 (NCED6), a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, using the ecdysone receptor-based plant gene switch system and the ligand methoxyfenozide. Induction of NCED6 during imbibition increased ABA levels more than 20-fold and was sufficient to prevent seed germination. Germination suppression was prevented by fluridone, an inhibitor of ABA biosynthesis. In another study, induction of the NCED6 gene in transgenic seeds of nondormant mutants tt3 and tt4 reestablished seed dormancy. Furthermore, inducing expression of NCED6 during seed development suppressed vivipary, precocious germination of developing seeds. These results indicate that expression of a hormone metabolism gene in seeds can be a sole determinant of dormancy. This study opens the possibility of developing a robust technology to suppress or promote seed germination through engineering pathways of hormone metabolism. PMID:21969557

  16. Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy.

    PubMed

    Martínez-Andújar, Cristina; Ordiz, M Isabel; Huang, Zhonglian; Nonogaki, Mariko; Beachy, Roger N; Nonogaki, Hiroyuki

    2011-10-11

    Full understanding of mechanisms that control seed dormancy and germination remains elusive. Whereas it has been proposed that translational control plays a predominant role in germination, other studies suggest the importance of specific gene expression patterns in imbibed seeds. Transgenic plants were developed to permit conditional expression of a gene encoding 9-cis-epoxycarotenoid dioxygenase 6 (NCED6), a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, using the ecdysone receptor-based plant gene switch system and the ligand methoxyfenozide. Induction of NCED6 during imbibition increased ABA levels more than 20-fold and was sufficient to prevent seed germination. Germination suppression was prevented by fluridone, an inhibitor of ABA biosynthesis. In another study, induction of the NCED6 gene in transgenic seeds of nondormant mutants tt3 and tt4 reestablished seed dormancy. Furthermore, inducing expression of NCED6 during seed development suppressed vivipary, precocious germination of developing seeds. These results indicate that expression of a hormone metabolism gene in seeds can be a sole determinant of dormancy. This study opens the possibility of developing a robust technology to suppress or promote seed germination through engineering pathways of hormone metabolism.

  17. Sulfur Assimilation in Developing Lupin Cotyledons Could Contribute Significantly to the Accumulation of Organic Sulfur Reserves in the Seed

    PubMed Central

    Tabe, Linda Marie; Droux, Michel

    2001-01-01

    It is currently assumed that the assimilation of sulfur into reduced forms occurs predominantly in the leaves of plants. However, developing seeds have a strong requirement for sulfur amino acids for storage protein synthesis. We have assessed the capacity of developing seeds of narrow-leaf lupin (Lupinus angustifolius) for sulfur assimilation. Cotyledons of developing lupin seeds were able to transfer the sulfur atom from 35S-labeled sulfate into seed proteins in vitro, demonstrating the ability of the developing cotyledons to perform all the steps of sulfur reduction and sulfur amino acid biosynthesis. Oxidized sulfur constituted approximately 30% of the sulfur in mature seeds of lupins grown in the field and almost all of the sulfur detected in phloem exuded from developing pods. The activities of three enzymes of the sulfur amino acid biosynthetic pathway were found in developing cotyledons in quantities theoretically sufficient to account for all of the sulfur amino acids that accumulate in the protein of mature lupin seeds. We conclude that sulfur assimilation by developing cotyledons is likely to be an important source of sulfur amino acids for the synthesis of storage proteins during lupin seed maturation. PMID:11351081

  18. Sulfur assimilation in developing lupin cotyledons could contribute significantly to the accumulation of organic sulfur reserves in the seed.

    PubMed

    Tabe, L M; Droux, M

    2001-05-01

    It is currently assumed that the assimilation of sulfur into reduced forms occurs predominantly in the leaves of plants. However, developing seeds have a strong requirement for sulfur amino acids for storage protein synthesis. We have assessed the capacity of developing seeds of narrow-leaf lupin (Lupinus angustifolius) for sulfur assimilation. Cotyledons of developing lupin seeds were able to transfer the sulfur atom from 35S-labeled sulfate into seed proteins in vitro, demonstrating the ability of the developing cotyledons to perform all the steps of sulfur reduction and sulfur amino acid biosynthesis. Oxidized sulfur constituted approximately 30% of the sulfur in mature seeds of lupins grown in the field and almost all of the sulfur detected in phloem exuded from developing pods. The activities of three enzymes of the sulfur amino acid biosynthetic pathway were found in developing cotyledons in quantities theoretically sufficient to account for all of the sulfur amino acids that accumulate in the protein of mature lupin seeds. We conclude that sulfur assimilation by developing cotyledons is likely to be an important source of sulfur amino acids for the synthesis of storage proteins during lupin seed maturation.

  19. Embryo development in association with asymbiotic seed germination in vitro of Paphiopedilum armeniacum S. C. Chen et F. Y. Liu

    PubMed Central

    Zhang, Yan-Yan; Wu, Kun-Lin; Zhang, Jian-Xia; Deng, Ru-Fang; Duan, Jun; Teixeira da Silva, Jaime A.; Huang, Wei-Chang; Zeng, Song-Jun

    2015-01-01

    This paper documents the key anatomical features during the development of P. armeniacum zygotic embryos and their ability to germinate asymbiotically in vitro. This study also examines the effect of media and seed pretreatments on seed germination and subsequent seedling growth. Seeds collected from pods 45 days after pollination (DAP) did not germinate while 95 DAP seeds displayed the highest seed germination percentage (96.2%). Most seedlings (50%) developed to stage 5 from 110 DAP seeds whose compact testa had not yet fully formed. Suspensor cells were vacuolated, which enabled the functional uptake of nutrients. The optimum basal medium for seed germination and subsequent protocorm development was eighth-strength Murashige and Skoog (1/8MS) for 95 DAP seeds and ¼MS for 110 DAP seeds. Poor germination was displayed by 140 DAP seeds with a compact testa. Pretreatment of dry mature seeds (180 DAP) with 1.0% sodium hypochlorite solution for 90 min or 40 kHz of ultrasound for 8 min improved germination percentage from 0 to 29.2% or to 19.7%, respectively. Plantlets that were at least 5 cm in height were transplanted to a Zhijing stone substrate for orchids, and 85.3% of plantlets survived 180 days after transplanting. PMID:26559888

  20. Control of early seed development.

    PubMed

    Chaudhury, A M; Koltunow, A; Payne, T; Luo, M; Tucker, M R; Dennis, E S; Peacock, W J

    2001-01-01

    Seed development requires coordinated expression of embryo and endosperm and has contributions from both sporophytic and male and female gametophytic genes. Genetic and molecular analyses in recent years have started to illuminate how products of these multiple genes interact to initiate seed development. Imprinting or differential expression of paternal and maternal genes seems to be involved in controlling seed development, presumably by controlling gene expression in developing endosperm. Epigenetic processes such as chromatin remodeling and DNA methylation affect imprinting of key seed-specific genes; however, the identity of many of these genes remains unknown. The discovery of FIS genes has illuminated control of autonomous endosperm development, a component of apomixis, which is an important developmental and agronomic trait. FIS genes are targets of imprinting, and the genes they control in developing endosperm are also regulated by DNA methylation and chromatin remodeling genes. These results define some exciting future areas of research in seed development.

  1. Angiosperm ovules: diversity, development, evolution

    PubMed Central

    Endress, Peter K.

    2011-01-01

    Background Ovules as developmental precursors of seeds are organs of central importance in angiosperm flowers and can be traced back in evolution to the earliest seed plants. Angiosperm ovules are diverse in their position in the ovary, nucellus thickness, number and thickness of integuments, degree and direction of curvature, and histological differentiations. There is a large body of literature on this diversity, and various views on its evolution have been proposed over the course of time. Most recently evo–devo studies have been concentrated on molecular developmental genetics in ovules of model plants. Scope The present review provides a synthetic treatment of several aspects of the sporophytic part of ovule diversity, development and evolution, based on extensive research on the vast original literature and on experience from my own comparative studies in a broad range of angiosperm clades. Conclusions In angiosperms the presence of an outer integument appears to be instrumental for ovule curvature, as indicated from studies on ovule diversity through the major clades of angiosperms, molecular developmental genetics in model species, abnormal ovules in a broad range of angiosperms, and comparison with gymnosperms with curved ovules. Lobation of integuments is not an atavism indicating evolution from telomes, but simply a morphogenetic constraint from the necessity of closure of the micropyle. Ovule shape is partly dependent on locule architecture, which is especially indicated by the occurrence of orthotropous ovules. Some ovule features are even more conservative than earlier assumed and thus of special interest in angiosperm macrosystematics. PMID:21606056

  2. Aligned poly(L-lactic-co-e-caprolactone) electrospun microfibers and knitted structure: a novel composite scaffold for ligament tissue engineering.

    PubMed

    Vaquette, Cédryck; Kahn, Cyril; Frochot, Céline; Nouvel, Cécile; Six, Jean-Luc; De Isla, Natalia; Luo, Li-Hua; Cooper-White, Justin; Rahouadj, Rachid; Wang, Xiong

    2010-09-15

    We developed a novel technique involving knitting and electrospinning to fabricate a composite scaffold for ligament tissue engineering. Knitted structures were coated with poly(L-lactic-co-e-caprolactone) (PLCL) and then placed onto a rotating cylinder and a PLCL solution was electrospun onto the structure. Highly aligned 2-microm-diameter microfibers covered the space between the stitches and adhered to the knitted scaffolds. The stress-strain tensile curves exhibited an initial toe region similar to the tensile behavior of ligaments. Composite scaffolds had an elastic modulus (150 +/- 14 MPa) similar to the modulus of human ligaments. Biological evaluation showed that cells proliferated on the composite scaffolds and they spontaneously orientated along the direction of microfiber alignment. The microfiber architecture also induced a high level of extracellular matrix secretion, which was characterized by immunostaining. We found that cells produced collagen type I and type III, two main components found in ligaments. After 14 days of culture, collagen type III started to form a fibrous network. We fabricated a composite scaffold having the mechanical properties of the knitted structure and the morphological properties of the aligned microfibers. It is difficult to seed a highly macroporous structure with cells, however the technique we developed enabled an easy cell seeding due to presence of the microfiber layer. Therefore, these scaffolds presented attractive properties for a future use in bioreactors for ligament tissue engineering. (c) 2010 Wiley Periodicals, Inc.

  3. POST-HARVEST EMBRYO DEVELOPMENT IN GINSENG SEEDS INCREASES DESICCATION SENSITIVITY AND NARROWS THE HYDRATION WINDOW FOR CRYOPRESERVATION.

    PubMed

    Han, E; Popova, E; Cho, G; Park, S; Lee, S; Pritchard, H W; Kim, H H

    Despite its self-pollinating characteristics, Korean ginseng germplasm is mainly maintained in clonal gene banks as there is no defined approach to the long-term conservation of its seed, including the most appropriate stage of embryo development for storage. The aim of this study was to reveal the effect of embryo development on desiccation tolerance and cryopreservation success in ginseng seeds. Seeds of Korean ginseng (Panax ginseng C.A. Meyer) at three post-harvest stages (immediately after harvesting and following treatments to enable internal growth of the embryo) were desiccated and cryopreserved. The hydration window for the >80% dehiscence and germination of cryopreserved ginseng seeds varied with embryo developmental stage: 3-9% moisture content (MC) for both unpulped and undehisced seeds when the embryo was 0.1 the length of the endosperm, 7-10% MC for dehisced seeds (0.5 embryo:endosperm) and 9-11% MC for seeds with fully developed embryos (0.9 embryo:endosperm). Whilst dried (4-8% moisture content) and undehisced seeds within fruits (unpulped seeds) lost more than half their viability during 1 year's storage at room temperature, cryopreservation enabled germination levels of c. 90%. Overall, 432 accessions of Korean ginseng landraces have been cryopreserved using undehisced seeds with or without fruits. Post-harvest treatment of Korean ginseng seeds to enable embryo development decreases tolerance of very low MCs, and thus narrows the hydration window for cryopreservation. Fresh-harvested and unpulped seeds that have been dried to c. 5% MC are recommended for long-term cryogenic storage.

  4. Dispersion of Cobalt Nanoparticles on Nanowires Grown on Silicon Carbide-Alumina Nanocomposites.

    PubMed

    Kim, Inho; Seo, Kyeong Won; Ahn, Byoung Sung; Moon, Dong Ju; Kim, Sang Woo

    2017-04-01

    Silicon carbide-alumina nanocomposite supports including a nanowire architecture for a high dispersion of cobalt nanocatalysts were fabricated using a modified sol–gel process and paste extrusion process to form cylindrical shape beads, followed by thermal treatment. Well-developed aluminosilicate nanowires were formed on a nanoporous support, which are grown from a catalytic metal seed at the nanowire growth tips during heat treatment at 1,100 °C for 1 h under nitrogen gas flow. Cobalt oxide precursors were highly dispersed on the nanowires grown on the surface of the nanoporous bodies through a supercritical carbon dioxide fluid-assisted wet-impregnation process. The highly-dispersed Co nanoparticles with size of less than 10 nm were finally obtained on the nanowires via phase transitions from Co₃O₄ to CoO and from CoO to Co during the thermal reduction.

  5. Seed-to-seed-to-seed growth and development of Arabidopsis in microgravity.

    PubMed

    Link, Bruce M; Busse, James S; Stankovic, Bratislav

    2014-10-01

    Arabidopsis thaliana was grown from seed to seed wholly in microgravity on the International Space Station. Arabidopsis plants were germinated, grown, and maintained inside a growth chamber prior to returning to Earth. Some of these seeds were used in a subsequent experiment to successfully produce a second (back-to-back) generation of microgravity-grown Arabidopsis. In general, plant growth and development in microgravity proceeded similarly to those of the ground controls, which were grown in an identical chamber. Morphologically, the most striking feature of space-grown Arabidopsis was that the secondary inflorescence branches and siliques formed nearly perpendicular angles to the inflorescence stems. The branches grew out perpendicularly to the main inflorescence stem, indicating that gravity was the key determinant of branch and silique angle and that light had either no role or a secondary role in Arabidopsis branch and silique orientation. Seed protein bodies were 55% smaller in space seed than in controls, but protein assays showed only a 9% reduction in seed protein content. Germination rates for space-produced seed were 92%, indicating that the seeds developed in microgravity were healthy and viable. Gravity is not necessary for seed-to-seed growth of plants, though it plays a direct role in plant form and may influence seed reserves.

  6. Analysis of Large Seeds from Three Different Medicago truncatula Ecotypes Reveals a Potential Role of Hormonal Balance in Final Size Determination of Legume Grains

    PubMed Central

    Bandyopadhyay, Kaustav; Uluçay, Orhan; Şakiroğlu, Muhammet; Udvardi, Michael K.; Verdier, Jerome

    2016-01-01

    Legume seeds are important as protein and oil source for human diet. Understanding how their final seed size is determined is crucial to improve crop yield. In this study, we analyzed seed development of three accessions of the model legume, Medicago truncatula, displaying contrasted seed size. By comparing two large seed accessions to the reference accession A17, we described mechanisms associated with large seed size determination and potential factors modulating the final seed size. We observed that early events during embryogenesis had a major impact on final seed size and a delayed heart stage embryo development resulted to large seeds. We also observed that the difference in seed growth rate was mainly due to a difference in embryo cell number, implicating a role of cell division rate. Large seed accessions could be explained by an extended period of cell division due to a longer embryogenesis phase. According to our observations and recent reports, we observed that auxin (IAA) and abscisic acid (ABA) ratio could be a key determinant of cell division regulation at the end of embryogenesis. Overall, our study highlights that timing of events occurring during early seed development play decisive role for final seed size determination. PMID:27618017

  7. Endosperm turgor pressure decreases during early Arabidopsis seed development.

    PubMed

    Beauzamy, Léna; Fourquin, Chloé; Dubrulle, Nelly; Boursiac, Yann; Boudaoud, Arezki; Ingram, Gwyneth

    2016-09-15

    In Arabidopsis, rapid expansion of the coenocytic endosperm after fertilisation has been proposed to drive early seed growth, which is in turn constrained by the seed coat. This hypothesis implies physical heterogeneity between the endosperm and seed coat compartments during early seed development, which to date has not been demonstrated. Here, we combine tissue indentation with modelling to show that the physical properties of the developing seed are consistent with the hypothesis that elevated endosperm-derived turgor pressure drives early seed expansion. We provide evidence that whole-seed turgor is generated by the endosperm at early developmental stages. Furthermore, we show that endosperm cellularisation and seed growth arrest are associated with a drop in endosperm turgor pressure. Finally, we demonstrate that this decrease is perturbed when the function of POLYCOMB REPRESSIVE COMPLEX 2 is lost, suggesting that turgor pressure changes could be a target of genomic imprinting. Our results indicate a developmental role for changes in endosperm turgor pressure in the Arabidopsis seed. © 2016. Published by The Company of Biologists Ltd.

  8. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size.

    PubMed

    Ma, Meng; Wang, Qian; Li, Zhanjie; Cheng, Huihui; Li, Zhaojie; Liu, Xiangli; Song, Weining; Appels, Rudi; Zhao, Huixian

    2015-07-01

    Several studies have described quantitative trait loci (QTL) for seed size in wheat, but the relevant genes and molecular mechanisms remain largely unknown. Here we report the functional characterization of the wheat TaCYP78A3 gene and its effect on seed size. TaCYP78A3 encoded wheat cytochrome P450 CYP78A3, and was specifically expressed in wheat reproductive organs. TaCYP78A3 activity was positively correlated with the final seed size. Its silencing caused a reduction of cell number in the seed coat, resulting in an 11% decrease in wheat seed size, whereas TaCYP78A3 over-expression induced production of more cells in the seed coat, leading to an 11-48% increase in Arabidopsis seed size. In addition, the cell number in the final seed coat was determined by the TaCYP78A3 expression level, which affected the extent of integument cell proliferation in the developing ovule and seed. Unfortunately, TaCYP78A3 over-expression in Arabidopsis caused a reduced seed set due to an ovule developmental defect. Moreover, TaCYP78A3 over-expression affected embryo development by promoting embryo integument cell proliferation during seed development, which also ultimately affected the final seed size in Arabidopsis. In summary, our results indicated that TaCYP78A3 plays critical roles in influencing seed size by affecting the extent of integument cell proliferation. The present study provides direct evidence that TaCYP78A3 affects seed size in wheat, and contributes to an understanding of the cellular basis of the gene influencing seed development. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  9. Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: a comparison of dormant and non-dormant rice cultivars.

    PubMed

    Liu, Yang; Fang, Jun; Xu, Fan; Chu, Jinfang; Yan, Cunyu; Schläppi, Michael R; Wang, Youping; Chu, Chengcai

    2014-06-20

    Seed dormancy is an important agronomic trait in cereals. Using deep dormant (N22), medium dormant (ZH11), and non-dormant (G46B) rice cultivars, we correlated seed dormancy phenotypes with abscisic acid (ABA) and gibberellin (GA) metabolism gene expression profiles and phytohormone levels during seed development and imbibition. A time course analysis of ABA and GA content during seed development showed that N22 had a high ABA level at early and middle seed developmental stages, while at late developmental stage it declined to the level of ZH11; however, its ABA/GA ratio maintained at a high level throughout seed development. By contrast, G46B had the lowest ABA content during seed development though at early developmental stage its ABA level was close to that of ZH11, and its ABA/GA ratio peaked at late developmental stage that was at the same level of ZH11. Compared with N22 and G46B, ZH11 had an even and medium ABA level during seed development and its ABA/GA ratio peaked at the middle developmental stage. Moreover, the seed development time-point having high ABA/GA ratio also had relatively high transcript levels for key genes in ABA and GA metabolism pathways across three cultivars. These indicated that the embryo-imposed dormancy has been induced before the late developmental stage and is determined by ABA/GA ratio. A similar analysis during seed imbibition showed that ABA was synthesized in different degrees for the three cultivars. In addition, water uptake assay for intact mature seeds suggested that water could permeate through husk barrier into seed embryo for all three cultivars; however, all three cultivars showed distinct colors by vanillin-staining indicative of the existence of flavans in their husks, which are dormancy inhibition compounds responsible for the husk-imposed dormancy. Copyright © 2014. Published by Elsevier Ltd.

  10. Dynamics of storage reserve deposition during Brassica rapa L. pollen and seed development in microgravity

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Popova, A.; McClure, G.; Musgrave, M. E.

    2005-01-01

    Pollen and seeds share a developmental sequence characterized by intense metabolic activity during reserve deposition before drying to a cryptobiotic form. Neither pollen nor seed development has been well studied in the absence of gravity, despite the importance of these structures in supporting future long-duration manned habitation away from Earth. Using immature seeds (3-15 d postpollination) of Brassica rapa L. cv. Astroplants produced on the STS-87 flight of the space shuttle Columbia, we compared the progress of storage reserve deposition in cotyledon cells during early stages of seed development. Brassica pollen development was studied in flowers produced on plants grown entirely in microgravity on the Mir space station and fixed while on orbit. Cytochemical localization of storage reserves showed differences in starch accumulation between spaceflight and ground control plants in interior layers of the developing seed coat as early as 9 d after pollination. At this age, the embryo is in the cotyledon elongation stage, and there are numerous starch grains in the cotyledon cells in both flight and ground control seeds. In the spaceflight seeds, starch was retained after this stage, while starch grains decreased in size in the ground control seeds. Large and well-developed protein bodies were observed in cotyledon cells of ground control seeds at 15 d postpollination, but their development was delayed in the seeds produced during spaceflight. Like the developing cotyledonary tissues, cells of the anther wall and filaments from the spaceflight plants contained numerous large starch grains, while these were rarely seen in the ground controls. The tapetum remained swollen and persisted to a later developmental stage in the spaceflight plants than in the ground controls, even though most pollen grains appeared normal. These developmental markers indicate that Brassica seeds and pollen produced in microgravity were physiologically younger than those produced in 1 g. We hypothesize that microgravity limits mixing of the gaseous microenvironments inside the closed tissues and that the resulting gas composition surrounding the seeds and pollen retards their development.

  11. A Cascade of Sequentially Expressed Sucrose Transporters in the Seed Coat and Endosperm Provides Nutrition for the Arabidopsis Embryo[OPEN

    PubMed Central

    Chen, Li-Qing; Lin, I Winnie; Qu, Xiao-Qing; Sosso, Davide; McFarlane, Heather E.; Londoño, Alejandra; Samuels, A. Lacey; Frommer, Wolf B.

    2015-01-01

    Developing plant embryos depend on nutrition from maternal tissues via the seed coat and endosperm, but the mechanisms that supply nutrients to plant embryos have remained elusive. Sucrose, the major transport form of carbohydrate in plants, is delivered via the phloem to the maternal seed coat and then secreted from the seed coat to feed the embryo. Here, we show that seed filling in Arabidopsis thaliana requires the three sucrose transporters SWEET11, 12, and 15. SWEET11, 12, and 15 exhibit specific spatiotemporal expression patterns in developing seeds, but only a sweet11;12;15 triple mutant showed severe seed defects, which include retarded embryo development, reduced seed weight, and reduced starch and lipid content, causing a “wrinkled” seed phenotype. In sweet11;12;15 triple mutants, starch accumulated in the seed coat but not the embryo, implicating SWEET-mediated sucrose efflux in the transfer of sugars from seed coat to embryo. This cascade of sequentially expressed SWEETs provides the feeding pathway for the plant embryo, an important feature for yield potential. PMID:25794936

  12. Immunocytolocalization of extensin in developing soybean seed coats by immunogold-silver staining and by tissue printing on nitrocellulose paper

    PubMed Central

    1987-01-01

    In soybean seed coats the accumulation of the hydroxyproline-rich glycoprotein extensin is regulated in a developmental and tissue- specific manner. The time course of appearance of extensin during seed development was studied by Western blot analysis and by immunogold- silver localization. Using these techniques extensin was first detected at 16-18 d after anthesis, increasing during development to high levels at 24 d after anthesis. Immunogold-silver localization of extensin in the seed coat showed marked deposition of the glycoprotein in the walls of palisade epidermal cells and hourglass cells. The immunolocalization of extensin in developing soybean seeds was also made by a new technique--tissue printing on nitrocellulose paper. It was found that extensin is primarily localized in the seed coat, hilum, and vascular elements of the seed. PMID:3693394

  13. CHARACTERIZATION OF THE COMPLETE FIBER NETWORK TOPOLOGY OF PLANAR FIBROUS TISSUES AND SCAFFOLDS

    PubMed Central

    D'Amore, Antonio; Stella, John A.; Wagner, William R.; Sacks, Michael S.

    2010-01-01

    Understanding how engineered tissue scaffold architecture affects cell morphology, metabolism, phenotypic expression, as well as predicting material mechanical behavior have recently received increased attention. In the present study, an image-based analysis approach that provides an automated tool to characterize engineered tissue fiber network topology is presented. Micro-architectural features that fully defined fiber network topology were detected and quantified, which include fiber orientation, connectivity, intersection spatial density, and diameter. Algorithm performance was tested using scanning electron microscopy (SEM) images of electrospun poly(ester urethane)urea (ES-PEUU) scaffolds. SEM images of rabbit mesenchymal stem cell (MSC) seeded collagen gel scaffolds and decellularized rat carotid arteries were also analyzed to further evaluate the ability of the algorithm to capture fiber network morphology regardless of scaffold type and the evaluated size scale. The image analysis procedure was validated qualitatively and quantitatively, comparing fiber network topology manually detected by human operators (n=5) with that automatically detected by the algorithm. Correlation values between manual detected and algorithm detected results for the fiber angle distribution and for the fiber connectivity distribution were 0.86 and 0.93 respectively. Algorithm detected fiber intersections and fiber diameter values were comparable (within the mean ± standard deviation) with those detected by human operators. This automated approach identifies and quantifies fiber network morphology as demonstrated for three relevant scaffold types and provides a means to: (1) guarantee objectivity, (2) significantly reduce analysis time, and (3) potentiate broader analysis of scaffold architecture effects on cell behavior and tissue development both in vitro and in vivo. PMID:20398930

  14. Secondary dispersal driven by overland flow in drylands: Review and mechanistic model development.

    PubMed

    Thompson, Sally E; Assouline, Shmuel; Chen, Li; Trahktenbrot, Ana; Svoray, Tal; Katul, Gabriel G

    2014-01-01

    Seed dispersal alters gene flow, reproduction, migration and ultimately spatial organization of dryland ecosystems. Because many seeds in drylands lack adaptations for long-distance dispersal, seed transport by secondary processes such as tumbling in the wind or mobilization in overland flow plays a dominant role in determining where seeds ultimately germinate. Here, recent developments in modeling runoff generation in spatially complex dryland ecosystems are reviewed with the aim of proposing improvements to mechanistic modeling of seed dispersal processes. The objective is to develop a physically-based yet operational framework for determining seed dispersal due to surface runoff, a process that has gained recent experimental attention. A Buoyant OBject Coupled Eulerian - Lagrangian Closure model (BOB-CELC) is proposed to represent seed movement in shallow surface flows. The BOB-CELC is then employed to investigate the sensitivity of seed transport to landscape and storm properties and to the spatial configuration of vegetation patches interspersed within bare earth. The potential to simplify seed transport outcomes by considering the limiting behavior of multiple runoff events is briefly considered, as is the potential for developing highly mechanistic, spatially explicit models that link seed transport, vegetation structure and water movement across multiple generations of dryland plants.

  15. Comparative Transcriptomic Analyses of Vegetable and Grain Pea (Pisum sativum L.) Seed Development

    PubMed Central

    Liu, Na; Zhang, Guwen; Xu, Shengchun; Mao, Weihua; Hu, Qizan; Gong, Yaming

    2015-01-01

    Understanding the molecular mechanisms regulating pea seed developmental process is extremely important for pea breeding. In this study, we used high-throughput RNA-Seq and bioinformatics analyses to examine the changes in gene expression during seed development in vegetable pea and grain pea, and compare the gene expression profiles of these two pea types. RNA-Seq generated 18.7 G of raw data, which were then de novo assembled into 77,273 unigenes with a mean length of 930 bp. Our results illustrate that transcriptional control during pea seed development is a highly coordinated process. There were 459 and 801 genes differentially expressed at early and late seed maturation stages between vegetable pea and grain pea, respectively. Soluble sugar and starch metabolism related genes were significantly activated during the development of pea seeds coinciding with the onset of accumulation of sugar and starch in the seeds. A comparative analysis of genes involved in sugar and starch biosynthesis in vegetable pea (high seed soluble sugar and low starch) and grain pea (high seed starch and low soluble sugar) revealed that differential expression of related genes at late development stages results in a negative correlation between soluble sugar and starch biosynthetic flux in vegetable and grain pea seeds. RNA-Seq data was validated by using real-time quantitative RT-PCR analysis for 30 randomly selected genes. To our knowledge, this work represents the first report of seed development transcriptomics in pea. The obtained results provide a foundation to support future efforts to unravel the underlying mechanisms that control the developmental biology of pea seeds, and serve as a valuable resource for improving pea breeding. PMID:26635856

  16. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution.

    PubMed

    Lu, Guangwen; Coneva, Viktoriya; Casaretto, José A; Ying, Shan; Mahmood, Kashif; Liu, Fang; Nambara, Eiji; Bi, Yong-Mei; Rothstein, Steven J

    2015-09-01

    Plant architecture attributes such as tillering, plant height and panicle size are important agronomic traits that determine rice (Oryza sativa) productivity. Here, we report that altered auxin content, transport and distribution affect these traits, and hence rice yield. Overexpression of the auxin efflux carrier-like gene OsPIN5b causes pleiotropic effects, mainly reducing plant height, leaf and tiller number, shoot and root biomass, seed-setting rate, panicle length and yield parameters. Conversely, reduced expression of OsPIN5b results in higher tiller number, more vigorous root system, longer panicles and increased yield. We show that OsPIN5b is an endoplasmic reticulum (ER) -localized protein that participates in auxin homeostasis, transport and distribution in vivo. This work describes an example of an auxin-related gene where modulating its expression can simultaneously improve plant architecture and yield potential in rice, and reveals an important effect of hormonal signaling on these traits. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  17. Genes and QTLs controlling inflorescence and stem branch architecture in Leymus (Poaceae: Triticeae) Wildrye.

    PubMed

    Larson, Steven R; Kellogg, Elizabeth A; Jensen, Kevin B

    2013-01-01

    Grass inflorescence and stem branches show recognizable architectural differences among species. The inflorescence branches of Triticeae cereals and grasses, including wheat, barley, and 400-500 wild species, are usually contracted into a spike formation, with the number of flowering branches (spikelets) per node conserved within species and genera. Perennial Triticeae grasses of genus Leymus are unusual in that the number of spikelets per node varies, inflorescences may have panicle branches, and vegetative stems may form subterranean rhizomes. Leymus cinereus and L. triticoides show discrete differences in inflorescence length, branching architecture, node number, and density; number of spikelets per node and florets per spikelet; culm length and width; and perimeter of rhizomatous spreading. Quantitative trait loci controlling these traits were detected in 2 pseudo-backcross populations derived from the interspecific hybrids using a linkage map with 360 expressed gene sequence markers from Leymus tiller and rhizome branch meristems. Alignments of genes, mutations, and quantitative trait loci controlling similar traits in other grass species were identified using the Brachypodium genome reference sequence. Evidence suggests that loci controlling inflorescence and stem branch architecture in Leymus are conserved among the grasses, are governed by natural selection, and can serve as possible gene targets for improving seed, forage, and grain production.

  18. Oil and Protein Accumulation in Developing Seeds Is Influenced by the Expression of a Cytosolic Pyrophosphatase in Arabidopsis[C][W][OA

    PubMed Central

    Meyer, Knut; Stecca, Kevin L.; Ewell-Hicks, Kim; Allen, Stephen M.; Everard, John D.

    2012-01-01

    This study describes a dominant low-seed-oil mutant (lo15571) of Arabidopsis (Arabidopsis thaliana) generated by enhancer tagging. Compositional analysis of developing siliques and mature seeds indicated reduced conversion of photoassimilates to oil. Immunoblot analysis revealed increased levels of At1g01050 protein in developing siliques of lo15571. At1g01050 encodes a soluble, cytosolic pyrophosphatase and is one of five closely related genes that share predicted cytosolic localization and at least 70% amino acid sequence identity. Expression of At1g01050 using a seed-preferred promoter recreated most features of the lo15571 seed phenotype, including low seed oil content and increased levels of transient starch and soluble sugars in developing siliques. Seed-preferred RNA interference-mediated silencing of At1g01050 and At3g53620, a second cytosolic pyrophosphatase gene that shows expression during seed filling, led to a heritable oil increase of 1% to 4%, mostly at the expense of seed storage protein. These results are consistent with a scenario in which the rate of mobilization of sucrose, for precursor supply of seed storage lipid biosynthesis by cytosolic glycolysis, is strongly influenced by the expression of endogenous pyrophosphatase enzymes. This emphasizes the central role of pyrophosphate-dependent reactions supporting cytosolic glycolysis during seed maturation when ATP supply is low, presumably due to hypoxic conditions. This route is the major route providing precursors for seed oil biosynthesis. ATP-dependent reactions at the entry point of glycolysis in the cytosol or plastid cannot fully compensate for the loss of oil content observed in transgenic events with increased expression of cytosolic pyrophosphatase enzyme in the cytosol. These findings shed new light on the dynamic properties of cytosolic pyrophosphate pools in developing seed and their influence on carbon partitioning during seed filling. Finally, our work uniquely demonstrates that genes encoding cytosolic pyrophosphatase enzymes provide novel targets to improve seed composition for plant biotechnology applications. PMID:22566496

  19. Communication: Programmable self-assembly of thin-shell mesostructures

    DOE PAGES

    Halverson, Jonathan D.; Tkachenko, Alexei V.

    2017-10-13

    For this article, we study numerically the possibility of programmable self-assembly of various thin-shell architectures. They include clusters isomorphic to fullerenes C 20 and C 60, finite and infinite sheets, tube-shaped and toroidal mesostructures. Our approach is based on the recently introduced directionally functionalized nanoparticle platform, for which we employ a hybrid technique of Brownian dynamics with stochastic bond formation. By combining a number of strategies, we were able to achieve a near-perfect yield of the desired structures with a reduced “alphabet” of building blocks. Among those strategies are the following: the use of bending rigidity of the interparticle bondmore » as a control parameter, programming the morphology with a seed architecture, use of chirality-preserving symmetries for reduction of the particle alphabet, and the hierarchic approach.« less

  20. Communication: Programmable self-assembly of thin-shell mesostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halverson, Jonathan D.; Tkachenko, Alexei V.

    For this article, we study numerically the possibility of programmable self-assembly of various thin-shell architectures. They include clusters isomorphic to fullerenes C 20 and C 60, finite and infinite sheets, tube-shaped and toroidal mesostructures. Our approach is based on the recently introduced directionally functionalized nanoparticle platform, for which we employ a hybrid technique of Brownian dynamics with stochastic bond formation. By combining a number of strategies, we were able to achieve a near-perfect yield of the desired structures with a reduced “alphabet” of building blocks. Among those strategies are the following: the use of bending rigidity of the interparticle bondmore » as a control parameter, programming the morphology with a seed architecture, use of chirality-preserving symmetries for reduction of the particle alphabet, and the hierarchic approach.« less

  1. A Quantitative Acetylomic Analysis of Early Seed Development in Rice (Oryza sativa L.).

    PubMed

    Wang, Yifeng; Hou, Yuxuan; Qiu, Jiehua; Li, Zhiyong; Zhao, Juan; Tong, Xiaohong; Zhang, Jian

    2017-06-27

    PKA (protein lysine acetylation) is a critical post-translational modification that regulates various developmental processes, including seed development. However, the acetylation events and dynamics on a proteomic scale in this process remain largely unknown, especially in rice early seed development. We report the first quantitative acetylproteomic study focused on rice early seed development by employing a mass spectral-based (MS-based), label-free approach. A total of 1817 acetylsites on 1688 acetylpeptides from 972 acetylproteins were identified in pistils and seeds at three and seven days after pollination, including 268 acetyproteins differentially acetylated among the three stages. Motif-X analysis revealed that six significantly enriched motifs, such as (DxkK), (kH) and (kY) around the acetylsites of the identified rice seed acetylproteins. Differentially acetylated proteins among the three stages, including adenosine diphosphate (ADP) -glucose pyrophosphorylases (AGPs), PDIL1-1 (protein disulfide isomerase like 1-1), hexokinases, pyruvate dehydrogenase complex (PDC) and numerous other regulators that are extensively involved in the starch and sucrose metabolism, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle and photosynthesis pathways during early seed development. This study greatly expanded the rice acetylome dataset, and shed novel insight into the regulatory roles of PKA in rice early seed development.

  2. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development

    PubMed Central

    Pires, Nuno D.; Bemer, Marian; Müller, Lena M.; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict. PMID:26811909

  3. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    PubMed

    Pires, Nuno D; Bemer, Marian; Müller, Lena M; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  4. An analysis of the development of cauliflower seed as a model to improve the molecular mechanism of abiotic stress tolerance in cauliflower artificial seeds.

    PubMed

    Rihan, Hail Z; Al-Issawi, Mohammed; Fuller, Michael P

    2017-07-01

    The development stages of conventional cauliflower seeds were studied and the accumulation of dehydrin proteins through the maturation stages was investigated with the aim of identifying methods to improve the viability of artificial seeds of cauliflower. While carbohydrate, ash and lipids increased throughout the development of cauliflower traditional seeds, proteins increased with the development of seed and reached the maximum level after 75 days of pollination, however, the level of protein started to decrease after that. A significant increase in the accumulation of small size dehydrin proteins (12, 17, 26 KDa) was observed during the development of cauliflower seeds. Several experiments were conducted in order to increase the accumulation of important dehydrin proteins in cauliflower microshoots (artificial seeds). Mannitol and ABA (Absisic acid) increased the accumulation of dehydrins in cauliflower microshoots while cold acclimation did not have a significant impact on the accumulation of these proteins. Molybdenum treatments had a negative impact on dehydrin accumulation. Dehydrins have an important role in the drought tolerance of seeds and, therefore, the current research helps to improve the accumulation of these proteins in cauliflower artificial seeds. This in turns improves the quality of these artificial seeds. The current results suggest that dehydrins do not play an important role in cold tolerance of cauliflower artificial seeds. This study could have an important role in improving the understanding of the molecular mechanism of abiotic stress tolerance in plants. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Performance characteristics of bio-inspired metal nanostructures as surface-enhanced Raman scattered (SERS) substrates

    DOE PAGES

    Areizaga-Martinez, Hector I.; Kravchenko, Ivan; Lavrik, Nickolay V.; ...

    2016-08-26

    The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leavesmore » and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). Here, the substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed.« less

  6. Performance characteristics of bio-inspired metal nanostructures as surface-enhanced Raman scattered (SERS) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Areizaga-Martinez, Hector I.; Kravchenko, Ivan; Lavrik, Nickolay V.

    The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leavesmore » and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). Here, the substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed.« less

  7. Performance Characteristics of Bio-Inspired Metal Nanostructures as Surface-Enhanced Raman Scattered (SERS) Substrates.

    PubMed

    Areizaga-Martinez, Hector I; Kravchenko, Ivan; Lavrik, Nickolay V; Sepaniak, Michael J; Hernández-Rivera, Samuel P; De Jesús, Marco A

    2016-09-01

    The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leaves and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). The substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed. © The Author(s) 2016.

  8. Characterization and structural analysis of wild type and a non-abscission mutant at the development funiculus (Def) locus in Pisum sativum L.

    PubMed

    Ayeh, Kwadwo Owusu; Lee, YeonKyeong; Ambrose, Mike J; Hvoslef-Eide, Anne Kathrine

    2009-06-23

    In pea seeds (Pisum sativum L.), the Def locus defines an abscission event where the seed separates from the funicle through the intervening hilum region at maturity. A spontaneous mutation at this locus results in the seed failing to abscise from the funicle as occurs in wild type peas. In this work, structural differences between wild type peas that developed a distinct abscission zone (AZ) between the funicle and the seed coat and non-abscission def mutant were characterized. A clear abscission event was observed in wild type pea seeds that were associated with a distinct double palisade layers at the junction between the seed coat and funicle. Generally, mature seeds fully developed an AZ, which was not present in young wild type seeds. The AZ was formed exactly below the counter palisade layer. In contrast, the palisade layers at the junction of the seed coat and funicle were completely absent in the def mutant pea seeds and the cells in this region were seen to be extensions of surrounding parenchymatous cells. The Def wild type developed a distinct AZ associated with palisade layer and counterpalisade layer at the junction of the seed coat and funicle while the def mutant pea seed showed non-abscission and an absence of the double palisade layers in the same region. We conclude that the presence of the double palisade layer in the hilum of the wild type pea seeds plays an important structural role in AZ formation by delimiting the specific region between the seed coat and the funicle and may play a structural role in the AZ formation and subsequent detachment of the seed from the funicle.

  9. TRANSPARENT TESTA GLABRA1 Regulates the Accumulation of Seed Storage Reserves in Arabidopsis1[OPEN

    PubMed Central

    Chen, Mingxun; Zhang, Bin; Li, Chengxiang; Kulaveerasingam, Harikrishna; Chew, Fook Tim; Yu, Hao

    2015-01-01

    Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process. PMID:26152712

  10. TRANSPARENT TESTA GLABRA1 Regulates the Accumulation of Seed Storage Reserves in Arabidopsis.

    PubMed

    Chen, Mingxun; Zhang, Bin; Li, Chengxiang; Kulaveerasingam, Harikrishna; Chew, Fook Tim; Yu, Hao

    2015-09-01

    Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Adenylate and Nicotinamide Nucleotides in Developing Soybean Seeds During Seed-Fill 1

    PubMed Central

    Quebedeaux, Bruno

    1981-01-01

    Profiles of adenylate and nicotinamide nucleotides in soybean seeds were determined during seed-fill. The ATP content per seed increased during the early seed-filling stages to a level of 10 to 12 micrograms per seed. Seed ATP decreased after 40 days of development and reached its lowest level of less than 1 microgram at maturity. The ATP:ADP ratios were relatively constant at all seed development stages. Sharp increases in AMP levels during the late seed-fill stages were paralleled with a disappearance of ATP and ADP pools resulting in a reduced seed energy charge. Energy charge varied from the highest value of 0.78 at mid-seed-fill to less than 0.10 at maturity. Of the oxidized (NAD, NADP) and reduced (NADH, NADPH) nicotinamide nucleotide forms, NAD was the most abundant. Levels as high as 17.5 micrograms per seed were observed during the mid-seed-filling stages. NADP was found almost exclusively in the reduced form with a NADP: NADPH ratio of less than 0.35, whereas the reverse was noted for NAD which was found mainly in the oxidized form with a NAD:NADH ratio in the range of 5 to 25. NADP was detected in low concentrations compared to the other adenylate and nicotinamide nucleotides. The nicotinamide redox charge defined as (NADH + NADPH)/(NAD + NADH) + (NADP + NADPH) was calculated to express the state of the energy balance between the oxidized and reduced nicotinamide nucleotide forms. The nicotinamide redox charge varied between 0.15 and 0.30 during seed development and was significantly lower than that found for the adenylate energy charge. PMID:16661875

  12. Towards a better monitoring of seed ageing under ex situ seed conservation

    PubMed Central

    Fu, Yong-Bi; Ahmed, Zaheer; Diederichsen, Axel

    2015-01-01

    Long-term conservation of 7.4 million ex situ seed accessions held in agricultural genebanks and botanic gardens worldwide is a challenging mission for human food security and ecosystem services. Recent advances in seed biology and genomics may have opened new opportunities for effective management of seed germplasm under long-term storage. Here, we review the current development of tools for assessing seed ageing and research advances in seed biology and genomics, with a focus on exploring their potential as better tools for monitoring of seed ageing. Seed ageing is found to be associated with the changes reflected in reactive oxygen species and mitochondria-triggered programmed cell deaths, expression of antioxidative genes and DNA and protein repair genes, chromosome telomere lengths, epigenetic regulation of related genes (microRNA and methylation) and altered organelle and nuclear genomes. Among these changes, the signals from mitochondrial and nuclear genomes may show the most promise for use in the development of tools to predict seed ageing. Non-destructive and non-invasive analyses of stored seeds through calorimetry or imaging techniques are also promising. It is clear that research into developing advanced tools for monitoring seed ageing to supplement traditional germination tests will be fruitful for effective conservation of ex situ seed germplasm. PMID:27293711

  13. Efficiency of seed production in southern pine seed orchards

    Treesearch

    David L. Bramlett

    1977-01-01

    Seed production in southern pine seed orchards can be evaluated by estimating the efficiency of four separate stages of cone, seed, and seedling development. Calculated values are: cone efficiency (CE), the ratio of mature cones to the initial flower crop; seed efficiency (SE), the ratio of filled seeds per cone to the seed potential; extraction efficiency (EE), the...

  14. Seed-to-Seed-to-Seed Growth and Development of Arabidopsis in Microgravity

    PubMed Central

    Link, Bruce M.; Busse, James S.

    2014-01-01

    Abstract Arabidopsis thaliana was grown from seed to seed wholly in microgravity on the International Space Station. Arabidopsis plants were germinated, grown, and maintained inside a growth chamber prior to returning to Earth. Some of these seeds were used in a subsequent experiment to successfully produce a second (back-to-back) generation of microgravity-grown Arabidopsis. In general, plant growth and development in microgravity proceeded similarly to those of the ground controls, which were grown in an identical chamber. Morphologically, the most striking feature of space-grown Arabidopsis was that the secondary inflorescence branches and siliques formed nearly perpendicular angles to the inflorescence stems. The branches grew out perpendicularly to the main inflorescence stem, indicating that gravity was the key determinant of branch and silique angle and that light had either no role or a secondary role in Arabidopsis branch and silique orientation. Seed protein bodies were 55% smaller in space seed than in controls, but protein assays showed only a 9% reduction in seed protein content. Germination rates for space-produced seed were 92%, indicating that the seeds developed in microgravity were healthy and viable. Gravity is not necessary for seed-to-seed growth of plants, though it plays a direct role in plant form and may influence seed reserves. Key Words: Arabidopsis—Branch—Inflorescence—Microgravity—Morphology—Seed—Space. Astrobiology 14, 866–875. PMID:25317938

  15. Early perception of stink bug damage in developing seeds of field-grown soybean induces chemical defences and reduces bug attack.

    PubMed

    Giacometti, Romina; Barneto, Jesica; Barriga, Lucia G; Sardoy, Pedro M; Balestrasse, Karina; Andrade, Andrea M; Pagano, Eduardo A; Alemano, Sergio G; Zavala, Jorge A

    2016-08-01

    Southern green stink bugs (Nezara viridula L.) invade field-grown soybean crops, where they feed on developing seeds and inject phytotoxic saliva, which causes yield reduction. Although leaf responses to herbivory are well studied, no information is available about the regulation of defences in seeds. This study demonstrated that mitogen-activated protein kinases MPK3, MPK4 and MPK6 are expressed and activated in developing seeds of field-grown soybean and regulate a defensive response after stink bug damage. Although 10-20 min after stink bug feeding on seeds induced the expression of MPK3, MPK6 and MPK4, only MPK6 was phosphorylated after damage. Herbivory induced an early peak of jasmonic acid (JA) accumulation and ethylene (ET) emission after 3 h in developing seeds, whereas salicylic acid (SA) was also induced early, and at increasing levels up to 72 h after damage. Damaged seeds upregulated defensive genes typically modulated by JA/ET or SA, which in turn reduced the activity of digestive enzymes in the gut of stink bugs. Induced seeds were less preferred by stink bugs. This study shows that stink bug damage induces seed defences, which is perceived early by MPKs that may activate defence metabolic pathways in developing seeds of field-grown soybean. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Abscisic acid and osmoticum prevent germination of developing alfalfa embryos, but only osmoticum maintains the synthesis of developmental proteins.

    PubMed

    Xu, N; Coulter, K M; Derek Bewley, J

    1990-10-01

    Developing seeds of alfalfa (Medicago sativa L.) acquire the ability to germinate during the latter stages of development, the maturation drying phase. Isolated embryos placed on Murashige and Skoog medium germinate well during early and late development, but poorly during mid-development; however, when placed on water they germinate well only during the latter stage of development. Germination of isolated embryos is very slow and poor when they are incubated in the presence of surrounding seed structures (the endosperm or seed coat) taken from the mid-development stages. This inhibitory effect is also achieved by incubating embryos in 10(-5) M abscisic acid (ABA). Endogenous ABA attains a high level during mid-development, especially in the endosperm. Seeds developing in pods treated with fluridone (1-methyl-3-phenyl-5[3-(trifluoromethyl)-phenyl]-4(1H)-pyridinone) contain low levels of ABA during mid-development, and the endosperm and seed coat only weakly inhibit the germination of isolated embryos. However, intact seeds from fluridone-treated pods do not germinate viviparously, which is indicative that ABA alone is not responsible for maintaining seeds in a developing state. Application of osmoticum (e.g. 0.35 M sucrose) to isolated developing embryos prevents their germination. Also, in the developing seed in situ the osmotic potential is high. Thus internal levels of osmoticum may play a role in preventing germination of the embryo and maintaining development. Abscisic acid and osmoticum impart distinctly different metabolic responses on developing embryos, as demonstrated by their protein-synthetic capacity. Only in the presence of osmoticum do embryos synthesize proteins which are distinctly recognizable as those synthesized by developing embryos in situ, i.e. when inside the pod. Abscisic acid induces the synthesis of a few unique proteins, but these arise even in mature embryos treated with ABA. Thus while both osmoticum and ABA prevent precocious germination, their effects on the synthetic capacity of the developing embryo are quite distinct. Since seeds with low endogenous ABA do not germinate, osmotic regulation may be the more important of these two factors in controlling seed development.

  17. TaCYP78A5 regulates seed size in wheat (Triticum aestivum).

    PubMed

    Ma, Meng; Zhao, Huixian; Li, Zhaojie; Hu, Shengwu; Song, Weining; Liu, Xiangli

    2016-03-01

    Seed size is an important agronomic trait and a major component of seed yield in wheat. However, little is known about the genes and mechanisms that determine the final seed size in wheat. Here, we isolated TaCYP78A5, the orthologous gene of Arabidopsis CYP78A5/KLUH in wheat, from wheat cv. Shaan 512 and demonstrated that the expression of TaCYP78A5 affects seed size. TaCYP78A5 encodes the cytochrome P450 (CYP) 78A5 protein in wheat and rescued the phenotype of the Arabidopsis deletion mutant cyp78a5. By affecting the extent of integument cell proliferation in the developing ovule and seed, TaCYP78A5 influenced the growth of the seed coat, which appears to limit seed growth. TaCYP78A5 silencing caused a 10% reduction in cell numbers in the seed coat, resulting in a 10% reduction in seed size in wheat cv. Shaan 512. By contrast, the overexpression of TaCYP78A5 increased the number of cells in the seed coat, resulting in seed enlargement of ~11-35% in Arabidopsis. TaCYP78A5 activity was positively correlated with the final seed size. However, TaCYP78A5 overexpression significantly reduced seed set in Arabidopsis, possibly due to an ovule development defect. TaCYP78A5 also influenced embryo development by promoting embryo integument cell proliferation during seed development. Accordingly, a working model of the influence of TaCYP7A5 on seed size was proposed. This study provides direct evidence that TaCYP78A5 affects seed size and is a potential target for crop improvement. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Engineering fibrin-based tissue constructs from myofibroblasts and application of constraints and strain to induce cell and collagen reorganization.

    PubMed

    de Jonge, Nicky; Baaijens, Frank P T; Bouten, Carlijn V C

    2013-10-28

    Collagen content and organization in developing collagenous tissues can be influenced by local tissue strains and tissue constraint. Tissue engineers aim to use these principles to create tissues with predefined collagen architectures. A full understanding of the exact underlying processes of collagen remodeling to control the final tissue architecture, however, is lacking. In particular, little is known about the (re)orientation of collagen fibers in response to changes in tissue mechanical loading conditions. We developed an in vitro model system, consisting of biaxially-constrained myofibroblast-seeded fibrin constructs, to further elucidate collagen (re)orientation in response to i) reverting biaxial to uniaxial static loading conditions and ii) cyclic uniaxial loading of the biaxially-constrained constructs before and after a change in loading direction, with use of the Flexcell FX4000T loading device. Time-lapse confocal imaging is used to visualize collagen (re)orientation in a nondestructive manner. Cell and collagen organization in the constructs can be visualized in real-time, and an internal reference system allows us to relocate cells and collagen structures for time-lapse analysis. Various aspects of the model system can be adjusted, like cell source or use of healthy and diseased cells. Additives can be used to further elucidate mechanisms underlying collagen remodeling, by for example adding MMPs or blocking integrins. Shape and size of the construct can be easily adapted to specific needs, resulting in a highly tunable model system to study cell and collagen (re)organization.

  19. Dynamic changes of genome-wide DNA methylation during soybean seed development

    USDA-ARS?s Scientific Manuscript database

    Seed development is programmed by expression of many genes in plants. Seed maturation is an important developmental process to soybean seed quality and yield. DNA methylation is a major epigenetic modification regulating gene expression. However, little is known about the dynamic nature of DNA me...

  20. Seeds in space experiment results

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1991-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed on the space exposed experiment developed for students (SEEDS) tray in sealed canister number six and in two small vented canisters. The tray was in the F-2 position. The seeds were germinated and the germination rates and development of the resulting plants compared to the control seed that stayed in Park Seed's seed storage facility. The initial results are presented. There was a better survival rate in the sealed canister in space than in the storage facility at Park Seed. At least some of the seeds in each of the vented canisters survived the exposure to vacuum for almost six years. The number of observed apparent mutations was very low.

  1. Activation of Arabidopsis Seed Hair Development by Cotton Fiber-Related Genes

    PubMed Central

    Pang, Mingxiong; Shi, Xiaoli; Stelly, David M.; Chen, Z. Jeffrey

    2011-01-01

    Each cotton fiber is a single-celled seed trichome or hair, and over 20,000 fibers may develop semi-synchronously on each seed. The molecular basis for seed hair development is unknown but is likely to share many similarities with leaf trichome development in Arabidopsis. Leaf trichome initiation in Arabidopsis thaliana is activated by GLABROUS1 (GL1) that is negatively regulated by TRIPTYCHON (TRY). Using laser capture microdissection and microarray analysis, we found that many putative MYB transcription factor and structural protein genes were differentially expressed in fiber and non-fiber tissues. Gossypium hirsutum MYB2 (GhMYB2), a putative GL1 homolog, and its downstream gene, GhRDL1, were highly expressed during fiber cell initiation. GhRDL1, a fiber-related gene with unknown function, was predominately localized around cell walls in stems, sepals, seed coats, and pollen grains. GFP:GhRDL1 and GhMYB2:YFP were co-localized in the nuclei of ectopic trichomes in siliques. Overexpressing GhRDL1 or GhMYB2 in A. thaliana Columbia-0 (Col-0) activated fiber-like hair production in 4–6% of seeds and had on obvious effects on trichome development in leaves or siliques. Co-overexpressing GhRDL1 and GhMYB2 in A. thaliana Col-0 plants increased hair formation in ∼8% of seeds. Overexpressing both GhRDL1 and GhMYB2 in A. thaliana Col-0 try mutant plants produced seed hair in ∼10% of seeds as well as dense trichomes inside and outside siliques, suggesting synergistic effects of GhRDL1 and GhMYB2 with try on development of trichomes inside and outside of siliques and seed hair in A. thaliana. These data suggest that a different combination of factors is required for the full development of trichomes (hairs) in leaves, siliques, and seeds. A. thaliana can be developed as a model a system for discovering additional genes that control seed hair development in general and cotton fiber in particular. PMID:21779324

  2. Deciphering Transcriptional Programming during Pod and Seed Development Using RNA-Seq in Pigeonpea (Cajanus cajan).

    PubMed

    Pazhamala, Lekha T; Agarwal, Gaurav; Bajaj, Prasad; Kumar, Vinay; Kulshreshtha, Akanksha; Saxena, Rachit K; Varshney, Rajeev K

    2016-01-01

    Seed development is an important event in plant life cycle that has interested humankind since ages, especially in crops of economic importance. Pigeonpea is an important grain legume of the semi-arid tropics, used mainly for its protein rich seeds. In order to understand the transcriptional programming during the pod and seed development, RNA-seq data was generated from embryo sac from the day of anthesis (0 DAA), seed and pod wall (5, 10, 20 and 30 DAA) of pigeonpea variety "Asha" (ICPL 87119) using Illumina HiSeq 2500. About 684 million sequencing reads have been generated from nine samples, which resulted in the identification of 27,441 expressed genes after sequence analysis. These genes have been studied for their differentially expression, co-expression, temporal and spatial gene expression. We have also used the RNA-seq data to identify important seed-specific transcription factors, biological processes and associated pathways during seed development process in pigeonpea. The comprehensive gene expression study from flowering to mature pod development in pigeonpea would be crucial in identifying candidate genes involved in seed traits directly or indirectly related to yield and quality. The dataset will serve as an important resource for gene discovery and deciphering the molecular mechanisms underlying various seed related traits.

  3. Deciphering Transcriptional Programming during Pod and Seed Development Using RNA-Seq in Pigeonpea (Cajanus cajan)

    PubMed Central

    Pazhamala, Lekha T.; Agarwal, Gaurav; Bajaj, Prasad; Kumar, Vinay; Kulshreshtha, Akanksha; Saxena, Rachit K.; Varshney, Rajeev K.

    2016-01-01

    Seed development is an important event in plant life cycle that has interested humankind since ages, especially in crops of economic importance. Pigeonpea is an important grain legume of the semi-arid tropics, used mainly for its protein rich seeds. In order to understand the transcriptional programming during the pod and seed development, RNA-seq data was generated from embryo sac from the day of anthesis (0 DAA), seed and pod wall (5, 10, 20 and 30 DAA) of pigeonpea variety “Asha” (ICPL 87119) using Illumina HiSeq 2500. About 684 million sequencing reads have been generated from nine samples, which resulted in the identification of 27,441 expressed genes after sequence analysis. These genes have been studied for their differentially expression, co-expression, temporal and spatial gene expression. We have also used the RNA-seq data to identify important seed-specific transcription factors, biological processes and associated pathways during seed development process in pigeonpea. The comprehensive gene expression study from flowering to mature pod development in pigeonpea would be crucial in identifying candidate genes involved in seed traits directly or indirectly related to yield and quality. The dataset will serve as an important resource for gene discovery and deciphering the molecular mechanisms underlying various seed related traits. PMID:27760186

  4. Grape seed and skin extract protects kidney from doxorubicin-induced oxidative injury.

    PubMed

    Mokni, Meherzia; Hamlaoui, Sonia; Kadri, Safwen; Limam, Ferid; Amri, Mohamed; Marzouki, Lamjed; Aouani, Ezzedine

    2016-05-01

    The study investigated the protective effect of grape seed and skin extract (GSSE) against doxorubicin-induced renal toxicity in healthy rats. Animals were treated with GSSE or not (control), for 8 days, administered with doxorubicin (20mg/kg) in the 4th day, and renal function as well as oxidative stress parameters were evaluated. Data showed that doxorubicin induced renal toxicity by affecting renal architecture and plasma creatinine. Doxorubicin also induced an oxidative stress characterized by an increase in malondialdehyde (MDA), calcium and H(2)O(2) and a decrease in catalase (CAT) and superoxide dismutase (SOD). Unexpectedly doxorubicin increased peroxidase (POD) and decreased carbonyl protein and plasma urea. Treatment with GSSE counteracted almost all adverse effects induced by doxorubicin. Data suggest that doxorubicin induced an oxidative stress into rat kidney and GSSE exerted antioxidant properties, which seem to be mediated by the modulation of intracellular calcium.

  5. Rice Fertilization-Independent Endosperm1 Regulates Seed Size under Heat Stress by Controlling Early Endosperm Development1[W

    PubMed Central

    Folsom, Jing J.; Begcy, Kevin; Hao, Xiaojuan; Wang, Dong; Walia, Harkamal

    2014-01-01

    Although heat stress reduces seed size in rice (Oryza sativa), little is known about the molecular mechanisms underlying the observed reduction in seed size and yield. To elucidate the mechanistic basis of heat sensitivity and reduced seed size, we imposed a moderate (34°C) and a high (42°C) heat stress treatment on developing rice seeds during the postfertilization stage. Both stress treatments reduced the final seed size. At a cellular level, the moderate heat stress resulted in precocious endosperm cellularization, whereas severe heat-stressed seeds failed to cellularize. Initiation of endosperm cellularization is a critical developmental transition required for normal seed development, and it is controlled by Polycomb Repressive Complex2 (PRC2) in Arabidopsis (Arabidopsis thaliana). We observed that a member of PRC2 called Fertilization-Independent Endosperm1 (OsFIE1) was sensitive to temperature changes, and its expression was negatively correlated with the duration of the syncytial stage during heat stress. Seeds from plants overexpressing OsFIE1 had reduced seed size and exhibited precocious cellularization. The DNA methylation status and a repressive histone modification of OsFIE1 were observed to be temperature sensitive. Our data suggested that the thermal sensitivity of seed enlargement could partly be caused by altered epigenetic regulation of endosperm development during the transition from the syncytial to the cellularized state. PMID:24590858

  6. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing.

    PubMed

    Reed, Stephanie; Lau, Grace; Delattre, Benjamin; Lopez, David Don; Tomsia, Antoni P; Wu, Benjamin M

    2016-01-07

    While many tissue-engineered constructs aim to treat cartilage defects, most involve chondrocyte or stem cell seeding on scaffolds. The clinical application of cell-based techniques is limited due to the cost of maintaining cellular constructs on the shelf, potential immune response to allogeneic cell lines, and autologous chondrocyte sources requiring biopsy from already diseased or injured, scarce tissue. An acellular scaffold that can induce endogenous influx and homogeneous distribution of native stem cells from bone marrow holds great promise for cartilage regeneration. This study aims to develop such an acellular scaffold using designed, channeled architecture that simultaneously models the native zones of articular cartilage and subchondral bone. Highly porous, hydrophilic chitosan-alginate (Ch-Al) scaffolds were fabricated in three-dimensionally printed (3DP) molds designed to create millimeter scale macro-channels. Different polymer preform casting techniques were employed to produce scaffolds from both negative and positive 3DP molds. Macro-channeled scaffolds improved cell suspension distribution and uptake overly randomly porous scaffolds, with a wicking volumetric flow rate of 445.6 ± 30.3 mm(3) s(-1) for aqueous solutions and 177 ± 16 mm(3) s(-1) for blood. Additionally, directional freezing was applied to Ch-Al scaffolds, resulting in lamellar pores measuring 300 μm and 50 μm on the long and short axes, thus creating micrometer scale micro-channels. After directionally freezing Ch-Al solution cast in 3DP molds, the combined macro- and micro-channeled scaffold architecture enhanced cell suspension uptake beyond either macro- or micro-channels alone, reaching a volumetric flow rate of 1782.1 ± 48 mm(3) s(-1) for aqueous solutions and 440.9 ± 0.5 mm(3) s(-1) for blood. By combining 3DP and directional freezing, we can control the micro- and macro-architecture of Ch-Al to drastically improve cell influx into and distribution within the scaffold, while achieving porous zones that mimic articular cartilage zonal architecture. In future applications, precisely controlled micro- and macro-channels have the potential to assist immediate endogenous bone marrow uptake, stimulate chondrogenesis, and encourage vascularization of bone in an osteochondral scaffold.

  7. Transcriptome analysis of pecan seeds at different developing stages and identification of key genes involved in lipid metabolism

    PubMed Central

    Shah, Faheem Afzal; Wang, Qiaojian; Wang, Zhaocheng; Wu, Lifang

    2018-01-01

    Pecan is an economically important nut crop tree due to its unique texture and flavor properties. The pecan seed is rich of unsaturated fatty acid and protein. However, little is known about the molecular mechanisms of the biosynthesis of fatty acids in the developing seeds. In this study, transcriptome sequencing of the developing seeds was performed using Illumina sequencing technology. Pecan seed embryos at different developmental stages were collected and sequenced. The transcriptomes of pecan seeds at two key developing stages (PA, the initial stage and PS, the fast oil accumulation stage) were also compared. A total of 82,155 unigenes, with an average length of 1,198 bp from seven independent libraries were generated. After functional annotations, we detected approximately 55,854 CDS, among which, 2,807 were Transcription Factor (TF) coding unigenes. Further, there were 13,325 unigenes that showed a 2-fold or greater expression difference between the two groups of libraries (two developmental stages). After transcriptome analysis, we identified abundant unigenes that could be involved in fatty acid biosynthesis, degradation and some other aspects of seed development in pecan. This study presents a comprehensive dataset of transcriptomic changes during the seed development of pecan. It provides insights in understanding the molecular mechanisms responsible for fatty acid biosynthesis in the seed development. The identification of functional genes will also be useful for the molecular breeding work of pecan. PMID:29694395

  8. Transcriptome analysis of pecan seeds at different developing stages and identification of key genes involved in lipid metabolism.

    PubMed

    Xu, Zheng; Ni, Jun; Shah, Faheem Afzal; Wang, Qiaojian; Wang, Zhaocheng; Wu, Lifang; Fu, Songling

    2018-01-01

    Pecan is an economically important nut crop tree due to its unique texture and flavor properties. The pecan seed is rich of unsaturated fatty acid and protein. However, little is known about the molecular mechanisms of the biosynthesis of fatty acids in the developing seeds. In this study, transcriptome sequencing of the developing seeds was performed using Illumina sequencing technology. Pecan seed embryos at different developmental stages were collected and sequenced. The transcriptomes of pecan seeds at two key developing stages (PA, the initial stage and PS, the fast oil accumulation stage) were also compared. A total of 82,155 unigenes, with an average length of 1,198 bp from seven independent libraries were generated. After functional annotations, we detected approximately 55,854 CDS, among which, 2,807 were Transcription Factor (TF) coding unigenes. Further, there were 13,325 unigenes that showed a 2-fold or greater expression difference between the two groups of libraries (two developmental stages). After transcriptome analysis, we identified abundant unigenes that could be involved in fatty acid biosynthesis, degradation and some other aspects of seed development in pecan. This study presents a comprehensive dataset of transcriptomic changes during the seed development of pecan. It provides insights in understanding the molecular mechanisms responsible for fatty acid biosynthesis in the seed development. The identification of functional genes will also be useful for the molecular breeding work of pecan.

  9. Effect of Seed Position on Parental Plant on Proportion of Seeds Produced with Nondeep and Intermediate Physiological Dormancy

    PubMed Central

    Lu, Juan J.; Tan, Dun Y.; Baskin, Carol C.; Baskin, Jerry M.

    2017-01-01

    The position in which seeds develop on the parental plant can have an effect on dormancy-break and germination. We tested the hypothesis that the proportion of seeds with intermediate physiological dormancy (PD) produced in the proximal position on a raceme of Isatis violascens plants is higher than that produced in the distal position, and further that this difference is related to temperature during seed development. Plants were watered at 3-day intervals, and silicles and seeds from the proximal (early) and distal (late) positions of racemes on the same plants were collected separately and tested for germination. After 0 and 6 months dry storage at room temperature (afterripening), silicles and seeds were cold stratified for 0–16 weeks and tested for germination. Mean daily maximum and minimum temperatures during development/maturation of the two groups of seeds did not differ. A higher proportion of seeds with the intermediate level than with the nondeep level of PD was produced by silicles in the proximal position than by those in the distal position, while the proportion of seeds with nondeep PD was higher in the distal than in the proximal position of the raceme. The differences were not due only to seed mass. Since temperature and soil moisture conditions were the same during development of the seeds in the raceme, differences in proportion of seeds with intermediate and nondeep PD are attributed to position on parental plant. The ecological consequence of this phenomenon is that it ensures diversity in dormancy-breaking and germination characteristics within a seed cohort, a probable bet-hedging strategy. This is the first demonstration of position effects on level of PD in the offspring. PMID:28232842

  10. Potential effects of arboreal and terrestrial avian dispersers on seed dormancy, seed germination and seedling establishment in Ormosia (Papilionoideae) species in Peru

    USGS Publications Warehouse

    Foster, Mercedes S.

    2008-01-01

    The relative effectiveness of arboreal or terrestrial birds at dispersing seeds of Ormosia macrocalyx and O. bopiensis (Fabaceae: Papilionoideae) were studied in south-eastern Peru. Seeds of both species were either scarified, to represent seed condition after dispersal by terrestrial birds, or left intact, to represent seed condition after dispersal by arboreal birds. Seeds were distributed along forest transects, and germination, seedling development and mortality were monitored to determine the successes of the two groups at producing seedlings. Scarified seeds germinated with the early rains of the dry-to-wet-season transition, when erratic rainfall was interspersed with long dry spells. Intact seeds germinated 30 d later when the rain was more plentiful and regular. Intact seeds of O. macrocalyx gave rise to significantly more seedlings (41.1% vs. 25.5%) than did scarified seeds, in part, because significantly more seedlings from scarified seeds (n = 20) than from intact seeds (n = 3) died from desiccation when their radicles failed to enter the dry ground present during the dry-to-wet-season transition. Also, seedlings from scarified seeds were neither larger nor more robust than those from intact seeds despite their longer growing period. Results are consistent with the hypothesis that dispersal effectiveness of arboreal birds, at least for O. macrocalyx, is greater than that of terrestrial birds. Screen-house experiments in which seedlings developed under different watering regimes supported this result. Numbers of seedlings developing from intact and scarified seeds of O. bopiensis did not differ significantly.

  11. Insights on germinability and desiccation tolerance in developing neem seeds (Azadirachta indica): Role of AOS, antioxidative enzymes and dehydrin-like protein.

    PubMed

    Sahu, Balram; Sahu, Alok Kumar; Chennareddy, Srinivasa Rao; Soni, Avinash; Naithani, Subhash Chandra

    2017-03-01

    The germinability and desiccation tolerance (DT) in developing seed are regulated by cellular metabolism involving active oxygen species (AOS) and protective proteins during maturation drying. The aim of the present investigation was to unravel the functions of AOS (superoxide, H 2 O 2 and OH-radical), antioxidative enzymes (SOD, CAT and APX) and dehydrin-like proteins in regulating the germinability and DT in undried and artificially desiccated developing neem seeds. Germination was first observed in seeds of 8 weeks after anthesis (waa) whereas DT was noticed from 9 waa. High levels of superoxide in undried and artificially desiccated seeds of 9 waa were rapidly declined up to 15 waa with simultaneous increase in levels of SOD (quantitative and isoenzymes) that dismutates superoxide with corresponding formation and accumulation of H 2 O 2 . Activities and isoenzymes of APX and CAT were promoted in seeds from 9 to 12 waa. Intensity of dehydrin-like proteins increased as development progressed in seeds with higher intensities in slow dried (SD) seeds. Desiccation modulated the metabolism for the acquisition of germinability and DT in the developing neem seeds from 8 to 15 waa by altering the levels of superoxide, H 2 O 2 and OH-radical those possibly act as signalling molecules for reprogramming protective proteins. Desiccation mediated the expression of new bands of SOD and APX in undried as well as SD seeds during 9-12 waa but the bands were more intense in SD seeds. The superoxide and H 2 O 2 -regulated intensity of dehydrin-like protein in SD seeds further validated our conclusion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Endoreduplication intensity as a marker of seed developmental stage in the Fabaceae.

    PubMed

    Rewers, Monika; Sliwinska, Elwira

    2012-12-01

    Flow cytometry (FCM) can be used to study cell cycle activity in developing, mature and germinating seeds. It provides information about a seed's physiological state and therefore can be used by seed growers for assessing optimal harvest times and presowing treatments. Because an augmented proportion of 4C nuclei usually is indicative of high mitotic activity, the 4C/2C ratio is commonly used to follow the progress of seed development and germination. However, its usefulness for polysomatic (i.e., containing cells with different DNA content) seeds is questioned. Changes in cell cycle/endoreduplication activity in developing seeds of five members of the Fabaceae were studied to determine a more suitable marker of seed developmental stages for polysomatic species based on FCM measurements. Seeds of Phaseolus vulgaris, Medicago sativa, Pisum sativum, Vicia sativa, and Vicia faba var. minor were collected 20, 30, 40, 50, and 60 days after flowering (DAF), embryos were isolated and the proportion of nuclei with different DNA contents in the embryo axis and cotyledon was established. The ratios 4C/2C and (Σ>2C)/2C were calculated. Dried seeds were subjected to laboratory germination tests following international seed testing association (ISTA) rules. Additionally, the absolute nuclear DNA content was estimated in the leaves of the studied species. During seed development nuclei with DNA contents from 2C to 128C were detected; the endopolyploidy pattern depended on the species, seed organ and developmental stage. The cell cycle/endoreduplication parameters correlated negatively with genome size. The (Σ>2C)/2C ratio in the cotyledons reflected the seed developmental stage and corresponded with seed germinability. Therefore, this ratio is recommended as a marker in polysomatic seed research and production instead of the 4C/2C ratio, which does not consider the occurrence of endopolyploid cells. Copyright © 2012 International Society for Advancement of Cytometry.

  13. Transcriptional changes during ovule development in two genotypes of litchi (Litchi chinensis Sonn.) with contrast in seed size.

    PubMed

    Pathak, Ashish K; Singh, Sudhir P; Gupta, Yogesh; Gurjar, Anoop K S; Mantri, Shrikant S; Tuli, Rakesh

    2016-11-08

    Litchi chinensis is a subtropical fruit crop, popular for its nutritional value and taste. Fruits with small seed size and thick aril are desirable in litchi. To gain molecular insight into gene expression that leads to the reduction in the size of seed in Litchi chinensis, transcriptomes of two genetically closely related genotypes, with contrasting seed size were compared in developing ovules. The cDNA library constructed from early developmental stages of ovules (0, 6, and 14 days after anthesis) of bold- and small-seeded litchi genotypes yielded 303,778,968 high quality paired-end reads. These were de-novo assembled into 1,19,939 transcripts with an average length of 865 bp. A total of 10,186 transcripts with contrast in expression were identified in developing ovules between the small- and large- seeded genotypes. A majority of these differences were present in ovules before anthesis, thus suggesting the role of maternal factors in seed development. A number of transcripts indicative of metabolic stress, expressed at higher level in the small seeded genotype. Several differentially expressed transcripts identified in such ovules showed homology with Arabidopsis genes associated with different stages of ovule development and embryogenesis.

  14. Brassinosteroid Regulates Seed Size and Shape in Arabidopsis1[W][OPEN

    PubMed Central

    Jiang, Wen-Bo; Huang, Hui-Ya; Hu, Yu-Wei; Zhu, Sheng-Wei; Wang, Zhi-Yong; Lin, Wen-Hui

    2013-01-01

    Seed development is important for agriculture productivity. We demonstrate that brassinosteroid (BR) plays crucial roles in determining the size, mass, and shape of Arabidopsis (Arabidopsis thaliana) seeds. The seeds of the BR-deficient mutant de-etiolated2 (det2) are smaller and less elongated than those of wild-type plants due to a decreased seed cavity, reduced endosperm volume, and integument cell length. The det2 mutant also showed delay in embryo development, with reduction in both the size and number of embryo cells. Pollination of det2 flowers with wild-type pollen yielded seeds of normal size but still shortened shape, indicating that the BR produced by the zygotic embryo and endosperm is sufficient for increasing seed volume but not for seed elongation, which apparently requires BR produced from maternal tissues. BR activates expression of SHORT HYPOCOTYL UNDER BLUE1, MINISEED3, and HAIKU2, which are known positive regulators of seed size, but represses APETALA2 and AUXIN RESPONSE FACTOR2, which are negative regulators of seed size. These genes are bound in vivo by the BR-activated transcription factor BRASSINAZOLE-RESISTANT1 (BZR1), and they are known to influence specific processes of integument, endosperm, and embryo development. Our results demonstrate that BR regulates seed size and seed shape by transcriptionally modulating specific seed developmental pathways. PMID:23771896

  15. Continued results of the seeds in space experiment

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1993-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seed were housed on the Space Exposed Experiment Developed for Students (SEEDS) tray in the sealed canister number 6 and in two small vented canisters. The tray was in the F-2 position. The seed were germinated and the germination rates and the development of the resulting plants were compared to the performance of the control seed that stayed in Park Seed's seed storage facility. The initial results were presented in a paper at the First LDEF Post-Retrieval Symposium. There was a better survival rate of the seed in the sealed canister in space than in the storage facility at Park Seed. At least some of the seed in each of the vented canisters survived the exposure to vacuum for almost six years. The number of observed apparent mutations was very low. In the initial testing, the small seeded crops were not grown to maturity to check for mutations and obtain second generation seed. These small seeded crops have now been grown for evaluation and second generation seed collected.

  16. Soybean Seed Development: Fatty Acid and Phytohormone Metabolism and Their Interactions

    PubMed Central

    Nguyen, Quoc Thien.; Kisiala, Anna; Andreas, Peter; Neil Emery, R.J.; Narine, Suresh

    2016-01-01

    Vegetable oil utilization is determined by its fatty acid composition. In soybean and other grain crops, during the seed development oil accumulation is important trait for value in food or industrial applications. Seed development is relatively short and sensitive to unfavorable abiotic conditions. These stresses can lead to a numerous undesirable qualitative as well as quantitative changes in fatty acid production. Fatty acid manipulation which targets a higher content of a specific single fatty acid for food or industrial application has gained more attention. Despite several successes in modifying the ratio of endogenous fatty acids in most domesticated oilseed crops, numerous obstacles in FA manipulation of seed maturation are yet to be overcome. Remarkably, connections with plant hormones have not been well studied despite their critical roles in the regulation and promotion of a plethora of processes in plant growth and development. While activities of phytohormones during the reproductive phase have been partially clarified in seed physiology, the biological role of plant hormones in oil accumulation during seed development has not been investigated. In this review seed development and numerous effects of abiotic stresses are discussed. After describing fatty acid and phytohormone metabolism and their interactions, we postulate that the endogenous plant hormones play important roles in fatty acid production in soybean seeds. PMID:27252591

  17. The MADS Box Genes ABS, SHP1, and SHP2 Are Essential for the Coordination of Cell Divisions in Ovule and Seed Coat Development and for Endosperm Formation in Arabidopsis thaliana

    PubMed Central

    Tekleyohans, Dawit G.; Wittkop, Benjamin; Snowdon, Rod J.

    2016-01-01

    Seed formation is a pivotal process in plant reproduction and dispersal. It begins with megagametophyte development in the ovule, followed by fertilization and subsequently coordinated development of embryo, endosperm, and maternal seed coat. Two closely related MADS-box genes, SHATTERPROOF 1 and 2 (SHP1 and SHP2) are involved in specifying ovule integument identity in Arabidopsis thaliana. The MADS box gene ARABIDOPSIS BSISTER (ABS or TT16) is required, together with SEEDSTICK (STK) for the formation of endothelium, part of the seed coat and innermost tissue layer formed by the maternal plant. Little is known about the genetic interaction of SHP1 and SHP2 with ABS and the coordination of endosperm and seed coat development. In this work, mutant and expression analysis shed light on this aspect of concerted development. Triple tt16 shp1 shp2 mutants produce malformed seedlings, seed coat formation defects, fewer seeds, and mucilage reduction. While shp1 shp2 mutants fail to coordinate the timely development of ovules, tt16 mutants show less peripheral endosperm after fertilization. Failure in coordinated division of the innermost integument layer in early ovule stages leads to inner seed coat defects in tt16 and tt16 shp1 shp2 triple mutant seeds. An antagonistic action of ABS and SHP1/SHP2 is observed in inner seed coat layer formation. Expression analysis also indicates that ABS represses SHP1, SHP2, and FRUITFUL expression. Our work shows that the evolutionary conserved Bsister genes are required not only for endothelium but also for endosperm development and genetically interact with SHP1 and SHP2 in a partially antagonistic manner. PMID:27776173

  18. Continued results of the seeds in space experiment

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1992-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed on the Space Exposed Experiment Developed for Students (SEEDS) tray in the sealed canister number 6 and in two small vented canisters. The seeds were germinated and the germination rates and development of the resulting plants compared to the control seed that stayed in the storage facility. There was a better survival rate in the sealed canister in space than in the storage facility. At least some of the seed in the vented canisters survived the exposure to vacuum for almost six years. The number of observed mutations was very low. In the initial testing, the small seeded crops were not grown to maturity to check for mutation and obtain a second generation seed. These small seeded crops are now being grown for evaluation.

  19. Programmed cell death in seeds of angiosperms.

    PubMed

    López-Fernández, María Paula; Maldonado, Sara

    2015-12-01

    During the diversification of angiosperms, seeds have evolved structural, chemical, molecular and physiologically developing changes that specially affect the nucellus and endosperm. All through seed evolution, programmed cell death (PCD) has played a fundamental role. However, examples of PCD during seed development are limited. The present review examines PCD in integuments, nucellus, suspensor and endosperm in those representative examples of seeds studied to date. © 2015 Institute of Botany, Chinese Academy of Sciences.

  20. 7 CFR 52.1844 - Definition of terms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of the branch or main stem. (c) Seeds refers to whole, fully developed seeds which have not been removed during the processing of seeded raisins with seeds. (d) Damaged raisins means raisins affected by... appearance, edibility, keeping quality, or shipping quality of the raisins. In seeded Raisins with Seeds...

  1. 7 CFR 52.1844 - Definition of terms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of the branch or main stem. (c) Seeds refers to whole, fully developed seeds which have not been removed during the processing of seeded raisins with seeds. (d) Damaged raisins means raisins affected by... appearance, edibility, keeping quality, or shipping quality of the raisins. In seeded Raisins with Seeds...

  2. One-dimensional Analytical Modelling of Floating Seed Dispersal in Tidal Channels

    NASA Astrophysics Data System (ADS)

    Shi, W.; Purnama, A.; Shao, D.; Cui, B.; Gao, W.

    2017-12-01

    Seed dispersal is a primary factor influencing plant community development, and thus plays a critical role in maintaining wetland ecosystem functioning. However, compared with fluvial seed dispersal of riparian plants, dispersal of saltmarsh plant seeds in tidal channels is much less studied due to its complex behavior, and relevant mathematical modelling is particularly lacking. In this study, we developed a one-dimensional advection-dispersion model to explore the patterns of tidal seed dispersal. Oscillatory tidal current and water depth were assumed to represent the tidal effects. An exponential decay coefficient λ was introduced to account for seed deposition and retention. Analytical solution in integral form was derived using Green's function and further evaluated using numerical integration. The developed model was applied to simulate Spartina densiflora seed dispersal in a tidal channel located at the Mad River Slough in North Humboldt Bay, California, USA, to demonstrate its practical applicability. Model predictions agree satisfactorily with field observation and simulation results from Delft3D numerical model. Sensitivity analyses were also conducted to evaluate the effects of varying calibrated parameters on model predictions. The range of the seed dispersion as well as the distribution of the seed concentration were further analyzed through statistical parameters such as centroid displacement and variance of the seed cloud together with seed concentration contours. Implications of the modelling results on tidal marsh restoration and protection, e.g., revegetation through seed addition, were also discussed through scenario analysis. The developed analytical model provides a useful tool for ecological management of tidal marshes.

  3. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds.

    PubMed

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29-41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production.

  4. Wind loads and competition for light sculpt trees into self-similar structures.

    PubMed

    Eloy, Christophe; Fournier, Meriem; Lacointe, André; Moulia, Bruno

    2017-10-18

    Trees are self-similar structures: their branch lengths and diameters vary allometrically within the tree architecture, with longer and thicker branches near the ground. These tree allometries are often attributed to optimisation of hydraulic sap transport and safety against elastic buckling. Here, we show that these allometries also emerge from a model that includes competition for light, wind biomechanics and no hydraulics. We have developed MECHATREE, a numerical model of trees growing and evolving on a virtual island. With this model, we identify the fittest growth strategy when trees compete for light and allocate their photosynthates to grow seeds, create new branches or reinforce existing ones in response to wind-induced loads. Strikingly, we find that selected trees species are self-similar and follow allometric scalings similar to those observed on dicots and conifers. This result suggests that resistance to wind and competition for light play an essential role in determining tree allometries.

  5. High frequency optoelectronic oscillators based on the optical feedback of semiconductor mode-locked laser diodes.

    PubMed

    Haji, Mohsin; Hou, Lianping; Kelly, Anthony E; Akbar, Jehan; Marsh, John H; Arnold, John M; Ironside, Charles N

    2012-01-30

    Optical self seeding feedback techniques can be used to improve the noise characteristics of passively mode-locked laser diodes. External cavities such as fiber optic cables can increase the memory of the phase and subsequently improve the timing jitter. In this work, an improved optical feedback architecture is proposed using an optical fiber loop delay as a cavity extension of the mode-locked laser. We investigate the effect of the noise reduction as a function of the loop length and feedback power. The well known composite cavity technique is also implemented for suppressing supermode noise artifacts presented due to harmonic mode locking effects. Using this method, we achieve a record low radio frequency linewidth of 192 Hz for any high frequency (>1 GHz) passively mode-locked laser to date (to the best of the authors' knowledge), making it promising for the development of high frequency optoelectronic oscillators.

  6. Histomorphological studies of broiler chicken fed diets supplemented with either raw or enzyme treated dandelion leaves and fenugreek seeds

    PubMed Central

    Qureshi, Saim; Banday, Mohammed Tufail; Shakeel, Irfan; Adil, Sheikh; Mir, Masood Saleem; Beigh, Yasir Afzal; Amin, Umar

    2016-01-01

    Aim: Herbal plants and their derived products are extensively used particularly in many Asian, African, and other countries of the world as they are considered as ideal feed additives because of their non-residual effect and ability to influence the ecosystem of gastrointestinal microbiota in a positive way. Further, the enzymatic treatment of these herbs helps in their efficient utilization by the host. Dandelion leaves and fenugreek seeds have been reported to have positive effect in terms of improving the performance of broiler chicken, but not much literature is available regarding their effect on gut histomorphology; therefore, the present study was conducted to explore the effect of these herbs either alone or in combination with or without enzyme treatment on histomorphology of liver and small intestine of broiler chicken. Materials and Methods: To achieve the envisaged objective, 273-day-old commercial broiler chicks were procured from a reputed source and reared together until 7 days of age. On the 7th day, the chicks were individually weighed, distributed randomly into 7 groups of 3 replicates with 13 chicks each. Birds in the control group were fed diets without additives (T1). The other six treatment groups were fed the basal diet supplemented with 0.5% dandelion leaves (T2), 1% fenugreek seeds (T3), combination of 0.5% dandelion leaves and 1% fenugreek seeds (T4), enzyme treated dandelion leaves 0.5% (T5), enzyme treated fenugreek seeds 1% (T6), and combination of enzyme treated dandelion leaves (0.5%) and (1%) fenugreek seeds (T7). The histomorphological study of liver and small intestines was conducted among different treatment groups. Results: The results revealed the hepato-protective nature of both dandelion leaves and fenugreek seeds either alone or in combination with or without enzyme treatment when compared with the control group. Moreover, the histomorphological findings of jejunum revealed the beneficial effect of dandelion leaves, fenugreek seeds and enzymes on the intestinal mucosa in terms of cellular infiltration, architecture of villi, villus height/crypt depth ratio, thereby improving the intestinal health. Conclusion: The dandelion leaves and fenugreek seeds have hepato-protective nature and beneficial effect on the intestinal morphology particularly when included along with enzymes in the diet of broiler chicken. PMID:27057110

  7. Effects of damping-off caused by Rhizoctonia solani anastomosis group 2-1 on roots of wheat and oil seed rape quantified using X-ray Computed Tomography and real-time PCR

    PubMed Central

    Sturrock, Craig J.; Woodhall, James; Brown, Matthew; Walker, Catherine; Mooney, Sacha J.; Ray, Rumiana V.

    2015-01-01

    Rhizoctonia solani is a plant pathogenic fungus that causes significant establishment and yield losses to several important food crops globally. This is the first application of high resolution X-ray micro Computed Tomography (X-ray μCT) and real-time PCR to study host–pathogen interactions in situ and elucidate the mechanism of Rhizoctonia damping-off disease over a 6-day period caused by R. solani, anastomosis group (AG) 2-1 in wheat (Triticum aestivum cv. Gallant) and oil seed rape (OSR, Brassica napus cv. Marinka). Temporal, non-destructive analysis of root system architectures was performed using RooTrak and validated by the destructive method of root washing. Disease was assessed visually and related to pathogen DNA quantification in soil using real-time PCR. R. solani AG2-1 at similar initial DNA concentrations in soil was capable of causing significant damage to the developing root systems of both wheat and OSR. Disease caused reductions in primary root number, root volume, root surface area, and convex hull which were affected less in the monocotyledonous host. Wheat was more tolerant to the pathogen, exhibited fewer symptoms and developed more complex root systems. In contrast, R. solani caused earlier damage and maceration of the taproot of the dicot, OSR. Disease severity was related to pathogen DNA accumulation in soil only for OSR, however, reductions in root traits were significantly associated with both disease and pathogen DNA. The method offers the first steps in advancing current understanding of soil-borne pathogen behavior in situ at the pore scale, which may lead to the development of mitigation measures to combat disease influence in the field. PMID:26157449

  8. Effects of damping-off caused by Rhizoctonia solani anastomosis group 2-1 on roots of wheat and oil seed rape quantified using X-ray Computed Tomography and real-time PCR.

    PubMed

    Sturrock, Craig J; Woodhall, James; Brown, Matthew; Walker, Catherine; Mooney, Sacha J; Ray, Rumiana V

    2015-01-01

    Rhizoctonia solani is a plant pathogenic fungus that causes significant establishment and yield losses to several important food crops globally. This is the first application of high resolution X-ray micro Computed Tomography (X-ray μCT) and real-time PCR to study host-pathogen interactions in situ and elucidate the mechanism of Rhizoctonia damping-off disease over a 6-day period caused by R. solani, anastomosis group (AG) 2-1 in wheat (Triticum aestivum cv. Gallant) and oil seed rape (OSR, Brassica napus cv. Marinka). Temporal, non-destructive analysis of root system architectures was performed using RooTrak and validated by the destructive method of root washing. Disease was assessed visually and related to pathogen DNA quantification in soil using real-time PCR. R. solani AG2-1 at similar initial DNA concentrations in soil was capable of causing significant damage to the developing root systems of both wheat and OSR. Disease caused reductions in primary root number, root volume, root surface area, and convex hull which were affected less in the monocotyledonous host. Wheat was more tolerant to the pathogen, exhibited fewer symptoms and developed more complex root systems. In contrast, R. solani caused earlier damage and maceration of the taproot of the dicot, OSR. Disease severity was related to pathogen DNA accumulation in soil only for OSR, however, reductions in root traits were significantly associated with both disease and pathogen DNA. The method offers the first steps in advancing current understanding of soil-borne pathogen behavior in situ at the pore scale, which may lead to the development of mitigation measures to combat disease influence in the field.

  9. QTL analysis of frost damage in pea suggests different mechanisms involved in frost tolerance.

    PubMed

    Klein, Anthony; Houtin, Hervé; Rond, Céline; Marget, Pascal; Jacquin, Françoise; Boucherot, Karen; Huart, Myriam; Rivière, Nathalie; Boutet, Gilles; Lejeune-Hénaut, Isabelle; Burstin, Judith

    2014-06-01

    Avoidance mechanisms and intrinsic resistance are complementary strategies to improve winter frost tolerance and yield potential in field pea. The development of the winter pea crop represents a major challenge to expand plant protein production in temperate areas. Breeding winter cultivars requires the combination of freezing tolerance as well as high seed productivity and quality. In this context, we investigated the genetic determinism of winter frost tolerance and assessed its genetic relationship with yield and developmental traits. Using a newly identified source of frost resistance, we developed a population of recombinant inbred lines and evaluated it in six environments in Dijon and Clermont-Ferrand between 2005 and 2010. We developed a genetic map comprising 679 markers distributed over seven linkage groups and covering 947.1 cM. One hundred sixty-one quantitative trait loci (QTL) explaining 9-71 % of the phenotypic variation were detected across the six environments for all traits measured. Two clusters of QTL mapped on the linkage groups III and one cluster on LGVI reveal the genetic links between phenology, morphology, yield-related traits and frost tolerance in winter pea. QTL clusters on LGIII highlighted major developmental gene loci (Hr and Le) and the QTL cluster on LGVI explained up to 71 % of the winter frost damage variation. This suggests that a specific architecture and flowering ideotype defines frost tolerance in winter pea. However, two consistent frost tolerance QTL on LGV were independent of phenology and morphology traits, showing that different protective mechanisms are involved in frost tolerance. Finally, these results suggest that frost tolerance can be bred independently to seed productivity and quality.

  10. Identification of microRNAs involved in lipid biosynthesis and seed size in developing sea buckthorn seeds using high-throughput sequencing.

    PubMed

    Ding, Jian; Ruan, Chengjiang; Guan, Ying; Krishna, Priti

    2018-03-05

    Sea buckthorn is a plant of medicinal and nutritional importance owing in part to the high levels of essential fatty acids, linoleic (up to 42%) and α-linolenic (up to 39%) acids in the seed oil. Sea buckthorn can produce seeds either via the sexual pathway or by apomixis. The seed development and maturation programs are critically dependent on miRNAs. To understand miRNA-mediated regulation of sea buckthorn seed development, eight small RNA libraries were constructed for deep sequencing from developing seeds of a low oil content line 'SJ1' and a high oil content line 'XE3'. High-throughput sequencing identified 137 known miRNA from 27 families and 264 novel miRNAs. The potential targets of the identified miRNAs were predicted based on sequence homology. Nineteen (four known and 15 novel) and 22 (six known and 16 novel) miRNAs were found to be involved in lipid biosynthesis and seed size, respectively. An integrated analysis of mRNA and miRNA transcriptome and qRT-PCR identified some key miRNAs and their targets (miR164d-ARF2, miR168b-Δ9D, novelmiRNA-108-ACC, novelmiRNA-23-GPD1, novelmiRNA-58-DGAT1, and novelmiRNA-191-DGAT2) potentially involved in seed size and lipid biosynthesis of sea buckthorn seed. These results indicate the potential importance of miRNAs in regulating lipid biosynthesis and seed size in sea buckthorn.

  11. Modern and prospective technologies for weather modification activities: Developing a framework for integrating autonomous unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    DeFelice, T. P.; Axisa, Duncan

    2017-09-01

    This paper builds upon the processes and framework already established for identifying, integrating and testing an unmanned aircraft system (UAS) with sensing technology for use in rainfall enhancement cloud seeding programs to carry out operational activities or to monitor and evaluate seeding operations. We describe the development and assessment methodologies of an autonomous and adaptive UAS platform that utilizes in-situ real time data to sense, target and implement seeding. The development of a UAS platform that utilizes remote and in-situ real-time data to sense, target and implement seeding deployed with a companion UAS ensures optimal, safe, secure, cost-effective seeding operations, and the dataset to quantify the results of seeding. It also sets the path for an innovative, paradigm shifting approach for enhancing precipitation independent of seeding mode. UAS technology is improving and their application in weather modification must be explored to lay the foundation for future implementation. The broader significance lies in evolving improved technology and automating cloud seeding operations that lowers the cloud seeding operational footprint and optimizes their effectiveness and efficiency, while providing the temporal and spatial sensitivities to overcome the predictability or sparseness of environmental parameters needed to identify conditions suitable for seeding, and how such might be implemented. The dataset from the featured approach will contain data from concurrent Eulerian and Lagrangian perspectives over sub-cloud scales that will facilitate the development of cloud seeding decision support tools.

  12. Biodiesel production methods of rubber seed oil: a review

    NASA Astrophysics Data System (ADS)

    Ulfah, M.; Mulyazmi; Burmawi; Praputri, E.; Sundari, E.; Firdaus

    2018-03-01

    The utilization of rubber seed as raw material of biodiesel production is seen highly potential in Indonesia. The availability of rubber seeds in Indonesia is estimated about 5 million tons per annum, which can yield rubber seed oil about 2 million tons per year. Due to the demand of edible oils as a food source is tremendous and the edible oil feedstock costs are far expensive to be used as fuel, production of biodiesel from non-edible oils such as rubber seed is an effective way to overcome all the associated problems with edible oils. Various methods for producing biodiesel from rubber seed oil have been reported. This paper introduces an optimum condition of biodiesel production methods from rubber seed oil. This article was written to be a reference in the selection of methods and the further development of biodiesel production from rubber seed oil. Biodiesel production methods for rubber seed oils has been developed by means of homogeneous catalysts, heterogeneous catalysts, supercritical method, ultrasound, in-situ and enzymatic processes. Production of biodiesel from rubber seed oil using clinker loaded sodium methoxide as catalyst is very interesting to be studied and developed further.

  13. Automated seed manipulation and planting

    NASA Technical Reports Server (NTRS)

    Garcia, Ray; Herrera, Javier; Holcomb, Scott; Kelly, Paul; Myers, Scott; Rosendo, Manny; Sivitz, Herbert; Wolsefer, Dave

    1988-01-01

    Activities for the Fall Semester, 1987 focused on investigating the mechanical/electrical properties of wheat seeds and forming various Seed Planting System (SPS) concepts based on those properties. The Electrical Division of the design group was formed to devise an SPS using electrostatic charge fields for seeding operations. Experiments concerning seed separation using electrical induction (rearranging of the charges within the seed) were conducted with promising results. The seeds, when exposed to the high voltage and low current field produced by a Van de Graff generator, were observed to move back and forth between two electrodes. An SPS concept has been developed based on this phenomena, and will be developed throughout the Spring Semester, 1988. The Mechanical Division centered on SPS concepts involving valves, pumps, and fluids to separate and deliver seeds. An SPS idea utilizing the pressure difference caused by air as it rushes out of holes drilled in the wall of a closed container has been formulated and will be considered for future development. Also, a system of seed separation and delivery employing a combination of centrifugal force, friction, and air flow was considered.

  14. Proteome profiling of flax (Linum usitatissimum) seed: characterization of functional metabolic pathways operating during seed development.

    PubMed

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Kadoo, Narendra Y; Giri, Ashok P; Gupta, Vidya S

    2012-12-07

    Flax (Linum usitatissimum L.) seeds are an important source of food and feed due to the presence of various health promoting compounds, making it a nutritionally and economically important plant. An in-depth analysis of the proteome of developing flax seed is expected to provide significant information with respect to the regulation and accumulation of such storage compounds. Therefore, a proteomic analysis of seven seed developmental stages (4, 8, 12, 16, 22, 30, and 48 days after anthesis) in a flax variety, NL-97 was carried out using a combination of 1D-SDS-PAGE and LC-MSE methods. A total 1716 proteins were identified and their functional annotation revealed that a majority of them were involved in primary metabolism, protein destination, storage and energy. Three carbon assimilatory pathways appeared to operate in flax seeds. Reverse transcription quantitative PCR of selected 19 genes was carried out to understand their roles during seed development. Besides storage proteins, methionine synthase, RuBisCO and S-adenosylmethionine synthetase were highly expressed transcripts, highlighting their importance in flax seed development. Further, the identified proteins were mapped onto developmental seed specific expressed sequence tag (EST) libraries of flax to obtain transcriptional evidence and 81% of them had detectable expression at the mRNA level. This study provides new insights into the complex seed developmental processes operating in flax.

  15. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize.

    PubMed

    Bortiri, Esteban; Chuck, George; Vollbrecht, Erik; Rocheford, Torbert; Martienssen, Rob; Hake, Sarah

    2006-03-01

    Genetic control of grass inflorescence architecture is critical given that cereal seeds provide most of the world's food. Seeds are borne on axillary branches, which arise from groups of stem cells in axils of leaves and whose branching patterns dictate most of the variation in plant form. Normal maize (Zea mays) ears are unbranched, and tassels have long branches only at their base. The ramosa2 (ra2) mutant of maize has increased branching with short branches replaced by long, indeterminate ones. ra2 was cloned by chromosome walking and shown to encode a LATERAL ORGAN BOUNDARY domain transcription factor. ra2 is transiently expressed in a group of cells that predicts the position of axillary meristem formation in inflorescences. Expression in different mutant backgrounds places ra2 upstream of other genes that regulate branch formation. The early expression of ra2 suggests that it functions in the patterning of stem cells in axillary meristems. Alignment of ra2-like sequences reveals a grass-specific domain in the C terminus that is not found in Arabidopsis thaliana. The ra2-dm allele suggests this domain is required for transcriptional activation of ra1. The ra2 expression pattern is conserved in rice (Oryza sativa), barley (Hordeum vulgare), sorghum (Sorghum bicolor), and maize, suggesting that ra2 is critical for shaping the initial steps of grass inflorescence architecture.

  16. Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.).

    PubMed

    Verma, S K; White, J F

    2018-03-01

    This study was conducted to investigate indigenous seed endophyte effects on browntop millet seedling development. We report that seed-inhabiting bacterial endophytes are responsible for promoting seedling development, including stimulation of root hair formation, increasing root and shoot length growth and increasing photosynthetic pigment content of seedlings. Bacterial endophytes also improved resistance of seedlings to disease. A total of four endophytic bacteria were isolated from surface-sterilized seeds and identified by 16S rDNA sequencing as Curtobacterium sp. (M1), Microbacterium sp. (M2), Methylobacterium sp. (M3) and Bacillus amyloliquefaciens (M4). Removal of bacteria with streptomycin treatment from the seeds compromised seedling growth and development. When endophytes were reinoculated onto seeds, seedlings recovered normal development. Strains M3 and M4 were found to be most potent in promoting growth of seedlings. Bacteria were found to produce auxin, solubilize phosphate and inhibit fungal pathogens. Significant protection of seedlings from Fusarium infection was found using strain M4 in microcosm assays. The antifungal lipopeptide genes for surfactin and iturin were detected in M4; culture extracts of M4 showed a positive drop collapse result for surfactins. This study demonstrates that browntop millet seeds vector indigenous endophytes that are responsible for modulation of seedling development and protection of seedlings from fungal disease. This study is significant and original in that it is the first report of seed-inhabiting endophytes of browntop millet that influence seedling development and function in defence against soilborne pathogens. This study suggests that conservation and management of seed-vectored endophytes may be important in development of more sustainable agricultural practices. © 2017 The Society for Applied Microbiology.

  17. Manipulation of Auxin Response Factor 19 affects seed size in the woody perennial Jatropha curcas

    PubMed Central

    Sun, Yanwei; Wang, Chunming; Wang, Ning; Jiang, Xiyuan; Mao, Huizhu; Zhu, Changxiang; Wen, Fujiang; Wang, Xianghua; Lu, Zhijun; Yue, Genhua; Xu, Zengfu; Ye, Jian

    2017-01-01

    Seed size is a major determinant of seed yield but few is known about the genetics controlling of seed size in plants. Phytohormones cytokinin and brassinosteroid were known to be involved in the regulation of herbaceous plant seed development. Here we identified a homolog of Auxin Response Factor 19 (JcARF19) from a woody plant Jatropha curcas and genetically demonstrated its functions in controlling seed size and seed yield. Through Virus Induced Gene Silencing (VIGS), we found that JcARF19 was a positive upstream modulator in auxin signaling and may control plant organ size in J. curcas. Importantly, transgenic overexpression of JcARF19 significantly increased seed size and seed yield in plants Arabidopsis thaliana and J. curcas, indicating the importance of auxin pathway in seed yield controlling in dicot plants. Transcripts analysis indicated that ectopic expression of JcARF19 in J. curcas upregulated auxin responsive genes encoding essential regulators in cell differentiation and cytoskeletal dynamics of seed development. Our data suggested the potential of improving seed traits by precisely engineering auxin signaling in woody perennial plants. PMID:28102350

  18. Tomato seeds maturity detection system based on chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Li, Cuiling; Wang, Xiu; Meng, Zhijun

    2016-10-01

    Chlorophyll fluorescence intensity can be used as seed maturity and quality evaluation indicator. Chlorophyll fluorescence intensity of seed coats is tested to judge the level of chlorophyll content in seeds, and further to judge the maturity and quality of seeds. This research developed a detection system of tomato seeds maturity based on chlorophyll fluorescence spectrum technology, the system included an excitation light source unit, a fluorescent signal acquisition unit and a data processing unit. The excitation light source unit consisted of two high power LEDs, two radiators and two constant current power supplies, and it was designed to excite chlorophyll fluorescence of tomato seeds. The fluorescent signal acquisition unit was made up of a fluorescence spectrometer, an optical fiber, an optical fiber scaffolds and a narrowband filter. The data processing unit mainly included a computer. Tomato fruits of green ripe stage, discoloration stage, firm ripe stage and full ripe stage were harvested, and their seeds were collected directly. In this research, the developed tomato seeds maturity testing system was used to collect fluorescence spectrums of tomato seeds of different maturities. Principal component analysis (PCA) method was utilized to reduce the dimension of spectral data and extract principal components, and PCA was combined with linear discriminant analysis (LDA) to establish discriminant model of tomato seeds maturity, the discriminant accuracy was greater than 90%. Research results show that using chlorophyll fluorescence spectrum technology is feasible for seeds maturity detection, and the developed tomato seeds maturity testing system has high detection accuracy.

  19. The protective effects of aqueous extract of Carica papaya seeds in paracetamol induced nephrotoxicity in male wistar rats.

    PubMed

    Naggayi, Madinah; Mukiibi, Nozmo; Iliya, Ezekiel

    2015-06-01

    Oxidative stress plays a crucial role in the development of drug induced nephrotoxicity. The study aimed to determine the nephroprotective and ameliorative effects of Carica papaya seed extract in paracetamol-induced nephrotoxicity in rats. To carry out phytochemical screening of Carica papaya, measure serum urea, creatinine and uric acid and describe the histopathological status of the kidneys in the treated and untreated groups. Phytochemical screening of the extract was done. Thirty two adult male Wistar rats were divided into four groups (n= 8 in each group). Group A (control) animals received normal saline for seven days, group B (paracetamol group) received normal saline, and paracetamol single dose on the 8th day. Group C received Carica papaya extract (CPE) 500 mg/kg, and paracetamol on the 8th day, while group D, rats were pretreated with CPE 750 mg/kg/day,and paracetamol administration on the 8th day. Samples of kidney tissue were removed for histopathological examination. Screening of Carica papaya showed presence of nephroprotective pytochemicals. Paracetamol administration resulted in significant elevation of renal function markers. CPE ameliorated the effect of paracetamol by reducing the markers as well as reversing the paracetamol-induced changes in kidney architecture. Carica papaya contains nephroprotective phytochemicals and may be useful in preventing kidney damage induced by paracetamol.

  20. Integration of 3D Printed and Micropatterned Polycaprolactone Scaffolds for Guidance of Oriented Collagenous Tissue Formation In Vivo.

    PubMed

    Pilipchuk, Sophia P; Monje, Alberto; Jiao, Yizu; Hao, Jie; Kruger, Laura; Flanagan, Colleen L; Hollister, Scott J; Giannobile, William V

    2016-03-01

    Scaffold design incorporating multiscale cues for clinically relevant, aligned tissue regeneration has potential to improve structural and functional integrity of multitissue interfaces. The objective of this preclinical study is to develop poly(ε-caprolactone) (PCL) scaffolds with mesoscale and microscale architectural cues specific to human ligament progenitor cells and assess their ability to form aligned bone-ligament-cementum complexes in vivo. PCL scaffolds are designed to integrate a 3D printed bone region with a micropatterned PCL thin film consisting of grooved pillars. The patterned film region is seeded with human ligament cells, fibroblasts transduced with bone morphogenetic protein-7 genes seeded within the bone region, and a tooth dentin segment positioned on the ligament region prior to subcutaneous implantation into a murine model. Results indicate increased tissue alignment in vivo using micropatterned PCL films, compared to random-porous PCL. At week 6, 30 μm groove depth significantly enhances oriented collagen fiber thickness, overall cell alignment, and nuclear elongation relative to 10 μm groove depth. This study demonstrates for the first time that scaffolds with combined hierarchical mesoscale and microscale features can align cells in vivo for oral tissue repair with potential for improving the regenerative response of other bone-ligament complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. 3D Non-Woven Polyvinylidene Fluoride Scaffolds: Fibre Cross Section and Texturizing Patterns Have Impact on Growth of Mesenchymal Stromal Cells

    PubMed Central

    Schellenberg, Anne; Ross, Robin; Abagnale, Giulio; Joussen, Sylvia; Schuster, Philipp; Arshi, Annahit; Pallua, Norbert; Jockenhoevel, Stefan; Gries, Thomas; Wagner, Wolfgang

    2014-01-01

    Several applications in tissue engineering require transplantation of cells embedded in appropriate biomaterial scaffolds. Such structures may consist of 3D non-woven fibrous materials whereas little is known about the impact of mesh size, pore architecture and fibre morphology on cellular behavior. In this study, we have developed polyvinylidene fluoride (PVDF) non-woven scaffolds with round, trilobal, or snowflake fibre cross section and different fibre crimp patterns (10, 16, or 28 needles per inch). Human mesenchymal stromal cells (MSCs) from adipose tissue were seeded in parallel on these scaffolds and their growth was compared. Initial cell adhesion during the seeding procedure was higher on non-wovens with round fibres than on those with snowflake or trilobal cross sections. All PVDF non-woven fabrics facilitated cell growth over a time course of 15 days. Interestingly, proliferation was significantly higher on non-wovens with round or trilobal fibres as compared to those with snowflake profile. Furthermore, proliferation increased in a wider, less dense network. Scanning electron microscopy (SEM) revealed that the MSCs aligned along the fibres and formed cellular layers spanning over the pores. 3D PVDF non-woven scaffolds support growth of MSCs, however fibre morphology and mesh size are relevant: proliferation is enhanced by round fibre cross sections and in rather wide-meshed scaffolds. PMID:24728045

  2. The Design and Development of Test Platform for Wheat Precision Seeding Based on Image Processing Techniques

    NASA Astrophysics Data System (ADS)

    Li, Qing; Lin, Haibo; Xiu, Yu-Feng; Wang, Ruixue; Yi, Chuijie

    The test platform of wheat precision seeding based on image processing techniques is designed to develop the wheat precision seed metering device with high efficiency and precision. Using image processing techniques, this platform gathers images of seeds (wheat) on the conveyer belt which are falling from seed metering device. Then these data are processed and analyzed to calculate the qualified rate, reseeding rate and leakage sowing rate, etc. This paper introduces the whole structure, design parameters of the platform and hardware & software of the image acquisition system were introduced, as well as the method of seed identification and seed-space measurement using image's threshold and counting the seed's center. By analyzing the experimental result, the measurement error is less than ± 1mm.

  3. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.).

    PubMed

    Qiu, Jiehua; Hou, Yuxuan; Tong, Xiaohong; Wang, Yifeng; Lin, Haiyan; Liu, Qing; Zhang, Wen; Li, Zhiyong; Nallamilli, Babi R; Zhang, Jian

    2016-02-01

    Rice (Oryza sativa L.) seed serves as a major food source for over half of the global population. Though it has been long recognized that phosphorylation plays an essential role in rice seed development, the phosphorylation events and dynamics in this process remain largely unknown so far. Here, we report the first large scale identification of rice seed phosphoproteins and phosphosites by using a quantitative phosphoproteomic approach. Thorough proteomic studies in pistils and seeds at 3, 7 days after pollination resulted in the successful identification of 3885, 4313 and 4135 phosphopeptides respectively. A total of 2487 proteins were differentially phosphorylated among the three stages, including Kip related protein 1, Rice basic leucine zipper factor 1, Rice prolamin box binding factor and numerous other master regulators of rice seed development. Moreover, differentially phosphorylated proteins may be extensively involved in the biosynthesis and signaling pathways of phytohormones such as auxin, gibberellin, abscisic acid and brassinosteroid. Our results strongly indicated that protein phosphorylation is a key mechanism regulating cell proliferation and enlargement, phytohormone biosynthesis and signaling, grain filling and grain quality during rice seed development. Overall, the current study enhanced our understanding of the rice phosphoproteome and shed novel insight into the regulatory mechanism of rice seed development.

  4. A Role for the Surrounding Fruit Tissues in Preventing the Germination of Tomato (Lycopersicon esculentum) Seeds 1

    PubMed Central

    Berry, Tannis; Bewley, J. Derek

    1992-01-01

    During tomato seed development the endogenous abscisic acid (ABA) concentration peaks at about 50 d after pollination (DAP) and then declines at later stages (60-70 DAP) of maturation. The ABA concentration in the sheath tissue immediately surrounding the seed increases with time of development, whereas that of the locule declines. The water contents of the seed and fruit tissues are similar during early development (20-30 DAP), but decline in the seed tissues between 30 and 40 DAP. The water potential and the osmotic potential of the embryo are lower than that of the locular tissue after 35 DAP also. Seeds removed from the fruit at 30, 35, and 60 DAP and placed ex situ on 35 and 60 DAP sheath and locular tissue are prevented from germinating. Development of 30 DAP seeds is maintained or promoted by the ex situ fruit tissue with which they are in contact. Their germination is inhibited until subsequent transfer to water, and germination is normal, i.e. by radicle protrusion, and viable seedlings are produced, compared with 30 DAP seeds transferred directly to water; more of these seeds germinate, but by hypocotyl extension, and seedling viability is very poor. Isolated seeds at 35 and 60 DAP re-placed in contact with fruit tissues only germinate when transferred to water after 7 d. At 30 DAP, isolated seeds are insensitive to ABA at physiological concentrations in that they germinate as if on water, albeit by hypocotyl extension. At higher concentrations germination occurs by radicle protrusion. Osmoticum prevents germination, but there is some recovery upon subsequent transfer to water. Seeds at 35 DAP are very sensitive to ABA and exhibit little or no germination, even upon transfer to water. The response of the isolated seeds to osmoticum more closely approximates that to incubation on the ex situ fruit tissues than does their response to ABA. This is also the case for isolated 60 DAP seeds, whose germination is not prevented by ABA, but only by the osmoticum; these seeds are inhibited when in contact with ex situ fruit tissues also. It is proposed that the osmotic environment within the tissues of the tomato fruit plays a greater role than endogenous ABA in preventing precocious germination of the developing seeds. PMID:16653081

  5. Brassica napus seed endosperm - metabolism and signaling in a dead end tissue.

    PubMed

    Lorenz, Christin; Rolletschek, Hardy; Sunderhaus, Stephanie; Braun, Hans-Peter

    2014-08-28

    Oilseeds are an important element of human nutrition and of increasing significance for the production of industrial materials. The development of the seeds is based on a coordinated interplay of the embryo and its surrounding tissue, the endosperm. This study aims to give insights into the physiological role of endosperm for seed development in the oilseed crop Brassica napus. Using protein separation by two-dimensional (2D) isoelectric focusing (IEF)/SDS polyacrylamide gel electrophoresis (PAGE) and protein identification by mass spectrometry three proteome projects were carried out: (i) establishment of an endosperm proteome reference map, (ii) proteomic characterization of endosperm development and (iii) comparison of endosperm and embryo proteomes. The endosperm proteome reference map comprises 930 distinct proteins, including enzymes involved in genetic information processing, carbohydrate metabolism, environmental information processing, energy metabolism, cellular processes and amino acid metabolism. To investigate dynamic changes in protein abundance during seed development, total soluble proteins were extracted from embryo and endosperm fractions at defined time points. Proteins involved in sugar converting and recycling processes, ascorbate metabolism, amino acid biosynthesis and redox balancing were found to be of special importance for seed development in B. napus. Implications for the seed filling process and the function of the endosperm for seed development are discussed. The endosperm is of key importance for embryo development during seed formation in plants. We present a broad study for characterizing endosperm proteins in the oilseed plant B. napus. Furthermore, a project on the biochemical interplay between the embryo and the endosperm during seed development is presented. We provide evidence that the endosperm includes a complete set of enzymes necessary for plant primary metabolism. Combination of our results with metabolome data will further improve systems-level understanding of the seed filling process and provide rational strategies for plant bioengineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Abscisic Acid Regulates Early Seed Development in Arabidopsis by ABI5-Mediated Transcription of SHORT HYPOCOTYL UNDER BLUE1[C][W][OPEN

    PubMed Central

    Cheng, Zhi Juan; Zhao, Xiang Yu; Shao, Xing Xing; Wang, Fei; Zhou, Chao; Liu, Ying Gao; Zhang, Yan; Zhang, Xian Sheng

    2014-01-01

    Seed development includes an early stage of endosperm proliferation and a late stage of embryo growth at the expense of the endosperm in Arabidopsis thaliana. Abscisic acid (ABA) has known functions during late seed development, but its roles in early seed development remain elusive. In this study, we report that ABA-deficient mutants produced seeds with increased size, mass, and embryo cell number but delayed endosperm cellularization. ABSCISIC ACID DEFICIENT2 (ABA2) encodes a unique short-chain dehydrogenase/reductase that functions in ABA biosynthesis, and its expression pattern overlaps that of SHORT HYPOCOTYL UNDER BLUE1 (SHB1) during seed development. SHB1 RNA accumulation was significantly upregulated in the aba2-1 mutant and was downregulated by the application of exogenous ABA. Furthermore, RNA accumulation of the basic/region leucine zipper transcription factor ABSCISIC ACID-INSENSITIVE5 (ABI5), involved in ABA signaling, was decreased in aba2-1. Consistent with this, seed size was also increased in abi5. We further show that ABI5 directly binds to two discrete regions in the SHB1 promoter. Our results suggest that ABA negatively regulates SHB1 expression, at least in part, through the action of its downstream signaling component ABI5. Our findings provide insights into the molecular mechanisms by which ABA regulates early seed development. PMID:24619610

  7. De-pulping and Seed Separation from Tumba ( Citrullus colocynthis) Fruit

    NASA Astrophysics Data System (ADS)

    Mudgal, Vishvambhar Dayal

    2017-09-01

    Tumba ( Citrullus colocynthis) contains spongy pulp in which seeds are embedded unevenly. Seeds contain about 26% fats and 13% protein. The process of seed separation is highly time consuming and labour intensive. Two weeks are required to separate its seeds with traditional methods. The developed prototype, for separating tumba seeds, mainly consists of chopper, de-pulping screw, barrel assembly and seed separation unit. The de-pulping screw and barrel assembly was divided in two sections i.e. conveying (feeding zone) and compression sections (de-pulping zone). The performance of developed machine was evaluated at different screw speed in the range of 40-100 rpm. Maximum pulp removal efficiency of 78.1% was achieved with screw speed of 60 rpm. Seed separation from the pulp was carried out by adding different chemicals. Use of sodium hydroxide and potassium hydroxide produced seed separation up to 99%.

  8. Timing of fire relative to seed development controls availability of non-serotinous aerial seed banks

    Treesearch

    S.T. Michaletz; E.A. Johnson; W.E. Mell; D.F. Greene

    2012-01-01

    The existence of non-serotinous, non-sprouting species in fire regimes where serotiny confers an adaptive advantage is puzzling, particularly when these species recruit poorly from soil seed banks or from burn edges. In this paper, white spruce (Picea glauca (Moench) Voss) was used to show that the timing of fire relative to seed development can...

  9. Early life stages contribute strongly to local adaptation in Arabidopsis thaliana.

    PubMed

    Postma, Froukje M; Ågren, Jon

    2016-07-05

    The magnitude and genetic basis of local adaptation is of fundamental interest in evolutionary biology. However, field experiments usually do not consider early life stages, and therefore may underestimate local adaptation and miss genetically based tradeoffs. We examined the contribution of differences in seedling establishment to adaptive differentiation and the genetic architecture of local adaptation using recombinant inbred lines (RIL) derived from a cross between two locally adapted populations (Italy and Sweden) of the annual plant Arabidopsis thaliana We planted freshly matured, dormant seeds (>180 000) representing >200 RILs at the native field sites of the parental genotypes, estimated the strength of selection during different life stages, mapped quantitative trait loci (QTL) for fitness and its components, and quantified selection on seed dormancy. We found that selection during the seedling establishment phase contributed strongly to the fitness advantage of the local genotype at both sites. With one exception, local alleles of the eight distinct establishment QTL were favored. The major QTL for establishment and total fitness showed evidence of a fitness tradeoff and was located in the same region as the major seed dormancy QTL and the dormancy gene DELAY OF GERMINATION 1 (DOG1). RIL seed dormancy could explain variation in seedling establishment and fitness across the life cycle. Our results demonstrate that genetically based differences in traits affecting performance during early life stages can contribute strongly to adaptive differentiation and genetic tradeoffs, and should be considered for a full understanding of the ecology and genetics of local adaptation.

  10. Within and between species variation in response to environmental gradients in Polygonum pensylvanicum and Polygonum virginianum.

    PubMed

    Lee, Hee Sun; Zangerl, A R; Garbutt, K; Bazzaz, F A

    1986-03-01

    The responses of Polygonum pensylvanicum L., an early successional annual, and of Polygonum virginianum L., a late successional perennial, were examined along discontinuous gradients of soil moisture, light and nutrient availability. In the case of P. virginianum both individuals grown from seed and individuals grown from rhizomes were examined. The results show that variation in the response of individuals of a species of different age to environmental variation is as great as that found between the two congeneric species of different successional habitats. In general, individuals of the two species were more similar to one another in response to the resource gradients when both were started from seed, than were individuals of P. virginianum grown from seed and from rhizomes. Potential differences in stored reserves (starting capital) between rhizomes and seeds appeared to have little effect upon responses to resource availability. A number of plant characters were found to vary along the gradients in ways that were unique to the character, the gradient, and the age of the individual. These characters included aspects of leaf size, shape, and orientation, as well as whole plant architecture. Many if not all of these characters are likely to have significant effects upon the functioning of plants. The origin of this difference in response to the gradients of individuals of P. virginianum of differing age may be ontogenetic or may reflect differences in genetic composition created by recombination.

  11. Early seedling vigour, an imperative trait for direct-seeded rice: an overview on physio-morphological parameters and molecular markers.

    PubMed

    Mahender, A; Anandan, A; Pradhan, S K

    2015-05-01

    Rapid uniform germination and accumulation of biomass during initial phase of seedling establishment is an essential phenotypic trait considered as early seedling vigour for direct seeded situation in rice irrespective of environment. Enhanced role of carbohydrate, amylase, growth hormones, antioxidant enzymes and ascorbic acid brings changes in vigour and phenotype of seedling. Early establishment and demanding life form dominate the surroundings. Crop plant that has better growth overdrives the weed plant and suppresses its growth. Seedling early vigour is the characteristic of seed quality and describes the rapid, uniform germination and the establishment of strong seedlings in any environmental condition. The phenotype of modern rice varieties has been changed into adaptable for transplanted rice with thirst toward water and selection pressure for semi-dwarf architecture resulting in reduced early vigour. Decreasing freshwater availability and rising labour cost drives the search for a suitable alternative management system to enhance grain yield productivity for the burgeoning world population. In view of these issues, much attention has been focused on dry direct-seeded rice, because it demands low input. A rice cultivar with a strong seedling vigour trait is desirable in case of direct seeding. However, seedling vigour has not been selected in crop improvement programmes in conventional breeding due to its complex nature and quantitative inheritance. Molecular markers have been proven effective in increasing selection efficiency, particularly for quantitative traits that are simply inherited. Marker-assisted selection approach has facilitated efficient and precise transfer of genes/QTL(s) into many crop species and suggests a speedy and efficient technique over conventional breeding and selection methods. In this review, we present the findings and investigations in the field of seedling vigour in rice that includes the nature of inheritance of physio-morphological and biochemical traits and QTLs to assist plant breeders who work for direct-seeded rice.

  12. Directional patterns of cross frequency phase and amplitude coupling within the resting state mimic patterns of fMRI functional connectivity

    PubMed Central

    Weaver, Kurt E.; Wander, Jeremiah D.; Ko, Andrew L.; Casimo, Kaitlyn; Grabowski, Thomas J.; Ojemann, Jeffrey G.; Darvas, Felix

    2016-01-01

    Functional imaging investigations into the brain's resting state interactions have yielded a wealth of insight into the intrinsic and dynamic neural architecture supporting cognition and behavior. Electrophysiological studies however have highlighted the fact that synchrony across large-scale cortical systems is composed of spontaneous interactions occurring at timescales beyond the traditional resolution of fMRI, a feature that limits the capacity of fMRI to draw inference on the true directional relationship between network nodes. To approach the question of directionality in resting state signals, we recorded resting state functional MRI (rsfMRI) and electrocorticography (ECoG) from four human subjects undergoing invasive epilepsy monitoring. Using a seed-point based approach, we employed phase-amplitude coupling (PAC) and biPhase Locking Values (bPLV), two measures of cross-frequency coupling (CFC) to explore both outgoing and incoming connections between the seed and all non-seed, site electrodes. We observed robust PAC between a wide range of low-frequency phase and high frequency amplitude estimates. However, significant bPLV, a CFC measure of phase-phase synchrony, was only observed at specific narrow low and high frequency bandwidths. Furthermore, the spatial patterns of outgoing PAC connectivity were most closely associated with the rsfMRI connectivity maps. Our results support the hypothesis that PAC is relatively ubiquitous phenomenon serving as a mechanism for coordinating high-frequency amplitudes across distant neuronal assemblies even in absence of overt task structure. Additionally, we demonstrate that the spatial distribution of a seed-point rsfMRI sensorimotor network is strikingly similar to specific patterns of directional PAC. Specifically, the high frequency activities of distal patches of cortex owning membership in a rsfMRI sensorimotor network were most likely to be entrained to the phase of a low frequency rhythm engendered from the neural populations at the seed-point, suggestive of greater directional coupling from the seed out to the site electrodes. PMID:26747745

  13. 100J-level nanosecond pulsed Yb:YAG cryo-cooled DPSSL amplifier

    NASA Astrophysics Data System (ADS)

    Smith, J. M.; Butcher, T. J.; Mason, P. D.; Ertel, K.; Phillips, P. J.; Banerjee, S.; De Vido, M.; Chekhlov, O.; Divoky, M.; Pilar, J.; Shaikh, W.; Hooker, C.; Lucianetti, A.; Hernandez Gomez, C.; Mocek, T.; Edwards, C.; Collier, J. L.

    2018-02-01

    We report on the successful demonstration of the world's first kW average power, 100 Joule-class, high-energy, nanosecond pulsed diode-pumped solid-state laser (DPSSL), DiPOLE100. Results from the first long-term test for amplification will be presented; the system was operated for 1 hour with 10 ns duration pulses at 10 Hz pulse repetition rate and an average output energy of 105 J and RMS energy stability of approximately 1%. The laser system is based on scalable cryogenic gas-cooled multi-slab ceramic Yb:YAG amplifier technology. The DiPOLE100 system comprises three major sub-systems, a spatially and temporally shaped front end, a 10 J cryo-amplifier and a 100 J cryo-amplifier. The 10 J cryo-amplifier contain four Yb:YAG ceramic gain media slabs, which are diode pumped from both sides, while a multi-pass architecture configured for seven passes enables 10 J of energy to be extracted at 10 Hz. This seeds the 100 J cryo-amplifier, which contains six Yb:YAG ceramic gain media slabs with the multi-pass configured for four passes. Our future development plans for this architecture will be introduced including closed-loop pulse shaping, increased energy, higher repetition rates and picosecond operation. This laser architecture unlocks the potential for practical applications including new sources for industrial materials processing and high intensity laser matter studies as envisioned for ELI [1], HiLASE [2], and the European XFEL [3]. Alternatively, it can be used as a pump source for higher repetition rate PW-class amplifiers, which can themselves generate high-brightness secondary radiation and ion sources leading to new remote imaging and medical applications.

  14. Global Analysis of Gene Expression Profiles in Developing Physic Nut (Jatropha curcas L.) Seeds

    PubMed Central

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Background Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. Methodology/Principal Findings We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29–41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. Conclusions/Significance The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production. PMID:22574177

  15. Development of the seeding system used for laser velocimeter surveys of the NASA Low-Speed Centrifugal Compressor flow field

    NASA Technical Reports Server (NTRS)

    Wasserbauer, Charles A.; Hathaway, Michael D.

    1993-01-01

    An atomizer-based system for distributing high-volume rates of seed material was developed to support laser velocimeter investigations of the NASA Low-Speed Centrifugal Compressor flow field. The seeding system and the major concerns that were addressed during its development are described. Of primary importance were that the seed material be dispersed as single particles and that the liquid carrier used be completely evaporated before entering the compressor.

  16. Oviposition strategies of conifer seed chalcids in relation to host phenology.

    PubMed

    Rouault, Gaëlle; Turgeon, Jean; Candau, Jean-Noël; Roques, Alain; von Aderkas, Patrick

    2004-10-01

    Insects are considered the most important predators of seed cones, the female reproductive structures of conifers, prior to seed dispersal. Slightly more than 100 genera of insects are known to parasitize conifer seed cones. The most diverse (i.e., number of species) of these genera is Megastigmus (Hymenoptera: Torymidae), which comprises many important seed pests of native and exotic conifers. Seed chalcids, Megastigmus spp., lay eggs inside the developing ovules of host conifers and, until recently, oviposition was believed to occur only in fertilized ovules. Ovule development begins just after pollination, but stops if cells are not fertilized. The morphological stage of cone development at the time of oviposition by seed chalcids has been established for many species; however, knowledge of ovule development at that time has been documented for only one species, M. spermotrophus. Megastigmus spermotrophus oviposits in Douglas-fir ovules after pollination but before fertilization. Unlike the unfertilized ovules, those containing a M. spermotrophus larva continue to develop, whether fertilized or not, stressing the need to broaden our understanding of the insect-plant interactions for this entire genus. To achieve this task, we reviewed the scientific literature and assembled information pertaining to the timing of oviposition and to the pollination and fertilization periods of their respective host(s). More specifically, we were searching for circumstantial evidence that other species of Megastigmus associated with conifers could behave (i.e., oviposit before ovule fertilization) and impact on female gametophyte (i.e., prevent abortion) like M. spermotrophus. The evidence from our compilation suggests that seed chalcids infesting Pinaceae may also oviposit before ovule fertilization, just like M. spermotrophus, whereas those infesting Cupressaceae seemingly oviposit after ovule fertilization. Based on this evidence, we hypothesize that all species of Megastigmus associated with Pinaceae can oviposit in unfertilized ovules, whereas those exploiting Cupressaceae cannot, and thus oviposit only in already fully developed fertilized seeds. Furthermore, we predict that the presence of a larva in unfertilized ovules of all Pinaceae will influence the development of the female gametophyte by preventing its abortion. This influence on the Pinaceae can be interpreted as an ability to parasitize any of the potential seeds present in a seed cone, and as such represents a much more efficient oviposition strategy than searching and locating only fertilized seeds. Concomitantly, this ability has likely led to an overestimation of the impact of the species of seed chalcid infesting Pinaceae on seed production.

  17. Oviposition strategies of conifer seed chalcids in relation to host phenology

    NASA Astrophysics Data System (ADS)

    Rouault, Gaëlle; Turgeon, Jean; Candau, Jean-Noël; Roques, Alain; Aderkas, Patrick

    2004-10-01

    Insects are considered the most important predators of seed cones, the female reproductive structures of conifers, prior to seed dispersal. Slightly more than 100 genera of insects are known to parasitize conifer seed cones. The most diverse (i.e., number of species) of these genera is Megastigmus (Hymenoptera: Torymidae), which comprises many important seed pests of native and exotic conifers. Seed chalcids, Megastigmus spp., lay eggs inside the developing ovules of host conifers and, until recently, oviposition was believed to occur only in fertilized ovules. Ovule development begins just after pollination, but stops if cells are not fertilized. The morphological stage of cone development at the time of oviposition by seed chalcids has been established for many species; however, knowledge of ovule development at that time has been documented for only one species, M. spermotrophus. Megastigmus spermotrophus oviposits in Douglas-fir ovules after pollination but before fertilization. Unlike the unfertilized ovules, those containing a M. spermotrophus larva continue to develop, whether fertilized or not, stressing the need to broaden our understanding of the insect plant interactions for this entire genus. To achieve this task, we reviewed the scientific literature and assembled information pertaining to the timing of oviposition and to the pollination and fertilization periods of their respective host(s). More specifically, we were searching for circumstantial evidence that other species of Megastigmus associated with conifers could behave (i.e., oviposit before ovule fertilization) and impact on female gametophyte (i.e., prevent abortion) like M. spermotrophus. The evidence from our compilation suggests that seed chalcids infesting Pinaceae may also oviposit before ovule fertilization, just like M. spermotrophus, whereas those infesting Cupressaceae seemingly oviposit after ovule fertilization. Based on this evidence, we hypothesize that all species of Megastigmus associated with Pinaceae can oviposit in unfertilized ovules, whereas those exploiting Cupressaceae cannot, and thus oviposit only in already fully developed fertilized seeds. Furthermore, we predict that the presence of a larva in unfertilized ovules of all Pinaceae will influence the development of the female gametophyte by preventing its abortion. This influence on the Pinaceae can be interpreted as an ability to parasitize any of the potential seeds present in a seed cone, and as such represents a much more efficient oviposition strategy than searching and locating only fertilized seeds. Concomitantly, this ability has likely led to an overestimation of the impact of the species of seed chalcid infesting Pinaceae on seed production.

  18. Sugar Treatments Can Induce AcLEAFY COTYLEDON1 Expression and Trigger the Accumulation of Storage Products during Prothallus Development of Adiantum capillus-veneris

    PubMed Central

    Fang, Yu-Han; Li, Xia; Bai, Shu-Nong; Rao, Guang-Yuan

    2017-01-01

    A seed is an intricate structure. Of the two development processes involved in seed formation, seed maturation, or seed program includes accumulation of storage products, acquisition of desiccation tolerance, and induction of dormancy. Little is known about how these processes were originated and integrated into the life cycle of seed plants. While previous investigation on seed origin was almost exclusively through fossil comparison in paleobotany, a wealth of information about the key role of LEAFY COTYLEDON1 (LEC1) in seed formation of spermatophyte inspired a new approach to investigating the seed origin mystery. Here, we examined the expression pattern of AcLEC1 during the entire life cycle of Adiantum capillus-veneris, a non-seed plant, confirmed no AcLEC1 gene expression detectable in prothalli, demonstrated inductive expressed by both sucrose and glucose in prothalli. As expected, we found that sugar treatments delayed prothallus development, promoted differentiation of reproductive organs, and triggered accumulation of storage products. These findings demonstrated links between the sugar treatments and the induction of AcLEC1 expression, as well as the sugar treatments and the events such as accumulation of storage products, which is similar to those considered as seed maturation process in seed plants. These links support a modified hypothesis that inductive expression of LEC1 homologs during embryogenesis might be a key innovation for the origin of the seed program. PMID:28484470

  19. Transcriptional profiling by DDRT-PCR analysis reveals gene expression during seed development in Carya cathayensis Sarg.

    PubMed

    Huang, You-Jun; Zhou, Qin; Huang, Jian-Qin; Zeng, Yan-Ru; Wang, Zheng-Jia; Zhang, Qi-Xiang; Zhu, Yi-Hang; Shen, Chen; Zheng, Bing-Song

    2015-06-01

    Hickory (Carya cathayensis Sarg.) seed has one of the highest oil content and is rich in polyunsaturated fatty acids (PUFAs), which kernel is helpful to human health, particularly to human brain function. A better elucidation of lipid accumulation mechanism would help to improve hickory production and seed quality. DDRT-PCR analysis was used to examine gene expression in hickory at thirteen time points during seed development process. A total of 67 unique genes involved in seed development were obtained, and those expression patterns were further confirmed by semi-quantitative RT-PCR and real time RT-PCR analysis. Of them, the genes with known functions were involved in signal transduction, amino acid metabolism, nuclear metabolism, fatty acid metabolism, protein metabolism, carbon metabolism, secondary metabolism, oxidation of fatty acids and stress response, suggesting that hickory underwent a complex metabolism process in seed development. Furthermore, 6 genes related to fatty acid synthesis were explored, and their functions in seed development process were further discussed. The data obtained here would provide the first clues for guiding further functional studies of fatty acid synthesis in hickory. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Loss of Mitochondrial Malate Dehydrogenase Activity Alters Seed Metabolism Impairing Seed Maturation and Post-Germination Growth in Arabidopsis1[OPEN

    PubMed Central

    2016-01-01

    Mitochondrial malate dehydrogenase (mMDH; EC 1.1.1.37) has multiple roles; the most commonly described is its catalysis of the interconversion of malate and oxaloacetate in the tricarboxylic acid cycle. The roles of mMDH in Arabidopsis (Arabidopsis thaliana) seed development and germination were investigated in mMDH1 and mMDH2 double knockout plants. A significant proportion of mmdh1mmdh2 seeds were nonviable and developed only to torpedo-shaped embryos, indicative of arrested seed embryo growth during embryogenesis. The viable mmdh1mmdh2 seeds had an impaired maturation process that led to slow germination rates as well as retarded post-germination growth, shorter root length, and decreased root biomass. During seed development, mmdh1mmdh2 showed a paler green phenotype than the wild type and exhibited deficiencies in reserve accumulation and reduced final seed biomass. The respiration rate of mmdh1mmdh2 seeds was significantly elevated throughout their maturation, consistent with the previously reported higher respiration rate in mmdh1mmdh2 leaves. Mutant seeds showed a consistently higher content of free amino acids (branched-chain amino acids, alanine, serine, glycine, proline, and threonine), differences in sugar and sugar phosphate levels, and lower content of 2-oxoglutarate. Seed-aging assays showed that quiescent mmdh1mmdh2 seeds lost viability more than 3 times faster than wild-type seeds. Together, these data show the important role of mMDH in the earliest phases of the life cycle of Arabidopsis. PMID:27208265

  1. Final results of the Space Exposed Experiment Developed for Students (SEEDS) P-0004-2

    NASA Technical Reports Server (NTRS)

    Grigsby, Doris K.

    1992-01-01

    Space Exposed Experiment Developed for Students (SEEDS), resulted in the distribution of over 132,000 SEED kits in 1990. The kits contained Rutger's tomato seeds that had flown on the Long Duration Exposure Facility (LDEF) as well as seeds that had been stored in a climate controlled warehouse for the same period of time. Students compared germination and growth rate characteristics of the two seeds groups and returned data to NASA for analysis. The scientific information gained was valuable as students shared the excitement of taking part in a national project. Of greater importance was the subsequent interest generated in science education.

  2. Cytokinins and Expression of SWEET, SUT, CWINV and AAP Genes Increase as Pea Seeds Germinate

    PubMed Central

    Jameson, Paula E.; Dhandapani, Pragatheswari; Novak, Ondrej; Song, Jiancheng

    2016-01-01

    Transporter genes and cytokinins are key targets for crop improvement. These genes are active during the development of the seed and its establishment as a strong sink. However, during germination, the seed transitions to being a source for the developing root and shoot. To determine if the sucrose transporter (SUT), amino acid permease (AAP), Sugar Will Eventually be Exported Transporter (SWEET), cell wall invertase (CWINV), cytokinin biosynthesis (IPT), activation (LOG) and degradation (CKX) gene family members are involved in both the sink and source activities of seeds, we used RT-qPCR to determine the expression of multiple gene family members, and LC-MS/MS to ascertain endogenous cytokinin levels in germinating Pisum sativum L. We show that genes that are actively expressed when the seed is a strong sink during its development, are also expressed when the seed is in the reverse role of being an active source during germination and early seedling growth. Cytokinins were detected in the imbibing seeds and were actively biosynthesised during germination. We conclude that, when the above gene family members are targeted for seed yield improvement, a downstream effect on subsequent seed germination or seedling vigour must be taken into consideration. PMID:27916945

  3. The fabrication and characterization of a multi-laminate, angle-ply collagen patch for annulus fibrosus repair.

    PubMed

    McGuire, Rachel; Borem, Ryan; Mercuri, Jeremy

    2017-12-01

    One major limitation of intervertebral disc (IVD) repair is that no ideal biomaterial has been developed that effectively mimics the angle-ply collagen architecture and mechanical properties of the native annulus fibrosus (AF). Furthermore, it would be beneficial to devise a simple, scalable process by which to manufacture a biomimetic biomaterial that could function as a mechanical repair patch to be secured over a large defect in the outer AF that will support AF tissue regeneration. Such a biomaterial would: (1) enable the employment of early-stage interventional strategies to treat IVD degeneration (i.e. nucleus pulposus arthroplasty); (2) prevent IVD re-herniation in patients with large AF defects; and (3) serve as a platform to develop full-thickness AF and whole IVD tissue engineering strategies. Due to the innate collagen fibre alignment and mechanical strength of pericardium, a procedure was developed to assemble multi-laminate angle-ply AF patches derived from decellularized pericardial tissue. Patches were subsequently assessed histologically to confirm angle-ply microarchitecture, and mechanically assessed for biaxial burst strength and tensile properties. Additionally, patch cytocompatibility was evaluated following seeding with bovine AF cells. This study demonstrated the effective removal of porcine cell remnants from the pericardium, and the ability to reliably produce multi-laminate patches with angle-ply architecture using a simple assembly technique. Resultant patches demonstrated their inherent ability to resist biaxial burst pressures reminiscent of intradiscal pressures commonly borne by the AF, and exhibited tensile strength and modulus values reported for native human AF. Furthermore, the biomaterial supported AF cell viability, infiltration and proliferation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Effect of GA3 treatment on seed development and seed-related gene expression in grape.

    PubMed

    Cheng, Chenxia; Xu, Xiaozhao; Singer, Stacy D; Li, Jun; Zhang, Hongjing; Gao, Min; Wang, Li; Song, Junyang; Wang, Xiping

    2013-01-01

    The phytohormone gibberellic acid (GA3) is widely used in the table grape industry to induce seedlessness in seeded varieties. However, there is a paucity of information concerning the mechanisms by which GAs induce seedlessness in grapes. In an effort to systematically analyze the cause of this GA3-induced seed abortion, we conducted an in depth characterization of two seeded grape cultivars ('Kyoho' and 'Red Globe'), along with a seedless cultivar ('Thompson Seedless'), following treatment with GA3. In a similar fashion to the seedless control, which exhibited GA3-induced abortion of the seeds 9 days after full bloom (DAF), both 'Kyoho' and 'Red Globe' seeded varieties exhibited complete abortion of the seeds 15 DAF when treated with GA3. Morphological analyses indicated that while fertilization appeared to occur normally following GA3 treatment, as well as in the untreated seedless control cultivar, seed growth eventually ceased. In addition, we found that GA3 application had an effect on redox homeostasis, which could potentially cause cell damage and subsequent seed abortion. Furthermore, we carried out an analysis of antioxidant enzyme activities, as well as transcript levels from various genes believed to be involved in seed development, and found several differences between GA3-treated and untreated controls. Therefore, it seems that the mechanisms driving GA3-induced seedlessness are similar in both seeded and seedless cultivars, and that the observed abortion of seeds may result at least in part from a GA3-induced increase in cell damage caused by reactive oxygen species, a decrease in antioxidant enzymatic activities, and an alteration of the expression of genes related to seed development.

  5. Effect of GA3 Treatment on Seed Development and Seed-Related Gene Expression in Grape

    PubMed Central

    Cheng, Chenxia; Xu, Xiaozhao; Singer, Stacy D.; Li, Jun; Zhang, Hongjing; Gao, Min; Wang, Li; Song, Junyang; Wang, Xiping

    2013-01-01

    Background The phytohormone gibberellic acid (GA3) is widely used in the table grape industry to induce seedlessness in seeded varieties. However, there is a paucity of information concerning the mechanisms by which GAs induce seedlessness in grapes. Methodology/Principal Findings In an effort to systematically analyze the cause of this GA3-induced seed abortion, we conducted an in depth characterization of two seeded grape cultivars (‘Kyoho’ and ‘Red Globe’), along with a seedless cultivar (‘Thompson Seedless’), following treatment with GA3. In a similar fashion to the seedless control, which exhibited GA3-induced abortion of the seeds 9 days after full bloom (DAF), both ‘Kyoho’ and ‘Red Globe’ seeded varieties exhibited complete abortion of the seeds 15 DAF when treated with GA3. Morphological analyses indicated that while fertilization appeared to occur normally following GA3 treatment, as well as in the untreated seedless control cultivar, seed growth eventually ceased. In addition, we found that GA3 application had an effect on redox homeostasis, which could potentially cause cell damage and subsequent seed abortion. Furthermore, we carried out an analysis of antioxidant enzyme activities, as well as transcript levels from various genes believed to be involved in seed development, and found several differences between GA3-treated and untreated controls. Conclusion Therefore, it seems that the mechanisms driving GA3-induced seedlessness are similar in both seeded and seedless cultivars, and that the observed abortion of seeds may result at least in part from a GA3-induced increase in cell damage caused by reactive oxygen species, a decrease in antioxidant enzymatic activities, and an alteration of the expression of genes related to seed development. PMID:24224035

  6. Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b.

    PubMed

    Sun, Zhengxi; Su, Chao; Yun, Jinxia; Jiang, Qiong; Wang, Lixiang; Wang, Youning; Cao, Dong; Zhao, Fang; Zhao, Qingsong; Zhang, Mengchen; Zhou, Bin; Zhang, Lei; Kong, Fanjiang; Liu, Baohui; Tong, Yiping; Li, Xia

    2018-05-05

    The optimization of plant architecture in order to breed high-yielding soya bean cultivars is a goal of researchers. Tall plants bearing many long branches are desired, but only modest success in reaching these goals has been achieved. MicroRNA156 (miR156)-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene modules play pivotal roles in controlling shoot architecture and other traits in crops like rice and wheat. However, the effects of miR156-SPL modules on soya bean architecture and yield, and the molecular mechanisms underlying these effects, remain largely unknown. In this study, we achieved substantial improvements in soya bean architecture and yield by overexpressing GmmiR156b. Transgenic plants produced significantly increased numbers of long branches, nodes and pods, and they exhibited an increased 100-seed weight, resulting in a 46%-63% increase in yield per plant. Intriguingly, GmmiR156b overexpression had no significant impact on plant height in a growth room or under field conditions; however, it increased stem thickness significantly. Our data indicate that GmmiR156b modulates these traits mainly via the direct cleavage of SPL transcripts. Moreover, we found that GmSPL9d is expressed in the shoot apical meristem and axillary meristems (AMs) of soya bean, and that GmSPL9d may regulate axillary bud formation and branching by physically interacting with the homeobox gene WUSCHEL (WUS), a central regulator of AM formation. Together, our results identify GmmiR156b as a promising target for the improvement of soya bean plant architecture and yields, and they reveal a new and conserved regulatory cascade involving miR156-SPL-WUS that will help researchers decipher the genetic basis of plant architecture. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Separating parental environment from seed size effects on next generation growth and development in Arabidopsis.

    PubMed

    Elwell, Angela L; Gronwall, David S; Miller, Nathan D; Spalding, Edgar P; Brooks, Tessa L Durham

    2011-02-01

    Plant growth and development is profoundly influenced by environmental conditions that laboratory experimentation typically attempts to control. However, growth conditions are not uniform between or even within laboratories and the extent to which these differences influence plant growth and development is unknown. Experiments with wild-type Arabidopsis thaliana were designed to quantify the influences of parental environment and seed size on growth and development in the next generation. A single lot of seed was planted in six environmental chambers and grown to maturity. The seed produced was mechanically sieved into small and large size classes then grown in a common environment and subjected to a set of assays spanning the life cycle. Analysis of variance demonstrated that seed size effects were particularly significant early in development, affecting primary root growth and gravitropism, but also flowering time. Parental environment affected progeny germination time, flowering and weight of seed the progeny produced. In some cases, the parental environment affected the magnitude of (interacted with) the observed seed size effects. These data indicate that life history circumstances of the parental generation can affect growth and development throughout the life cycle of the next generation to an extent that should be considered when performing genetic studies. © 2010 Blackwell Publishing Ltd.

  8. Seed-feeding insects impacting globemallow seed production

    Treesearch

    Robert Hammon; Melissa Franklin

    2012-01-01

    Weevils (Anthonomus sphaeralciae Fall [Coleoptera: Curculionidae]), which attack flowers and developing seeds, can significantly impact globemallow Sphaeralcea spp. A. St.-Hil. (Malvaceae) seed production without a grower even noticing there was insect damage. This weevil damaged almost one-quarter of the flowers in a seed production field in Delta County, Colorado,...

  9. Enhanced Ultrasound Visualization of Brachytherapy Seeds by a Novel Magnetically Induced Motion Imaging Method

    DTIC Science & Technology

    2007-04-01

    We report our progress in developing Magnetically Induced Motion Imaging (MIMI) for unambiguous identification and localization brachytherapy seeds ...tail artifacts in segmented seed images. The second is a method for joining ends of seeds in segmented seed images based on the phase of the detected

  10. Cell wall invertase as a regulator in determining sequential development of endosperm and embryo through glucose signaling early in seed development.

    PubMed

    Wang, Lu; Liao, Shengjin; Ruan, Yong-Ling

    2013-01-01

    Seed development depends on coordination among embryo, endosperm and seed coat. Endosperm undergoes nuclear division soon after fertilization, whereas embryo remains quiescent for a while. Such a developmental sequence is of great importance for proper seed development. However, the underlying mechanism remains unclear. Recent results on the cellular domain- and stage-specific expression of invertase genes in cotton and Arabidopsis revealed that cell wall invertase may positively and specifically regulate nuclear division of endosperm after fertilization, thereby playing a role in determining the sequential development of endosperm and embryo, probably through glucose signaling.

  11. Impact of seed predators on the herb Baptista lanceolata (Fabales: Fabacae).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Horn; James L. Hanula.

    2004-09-01

    Leguminous seeds are a concentrated source of nutrition (Brashier 2000). In a nutrient-poor habitat, these seeds are important resources for many of the animal species residing there. Several insect predators are known to feed on Baptisia seeds. One such insect is Apion rostrum Say (Coleoptera: Curculionidae), a weevil that feeds on seeds of several wild indigo species. Females lay eggs in developing seed pods where the larvae eat the seeds.

  12. Faith in a seed: on the origins of equatorial plasma bubbles

    NASA Astrophysics Data System (ADS)

    Retterer, J. M.; Roddy, P.

    2014-05-01

    Our faith in the seeds of equatorial plasma irregularities holds that there will generally always be density perturbations sufficient to provide the seeds for irregularity development whenever the Rayleigh-Taylor instability is active. When the duration of the time of the Rayleigh-Taylor instability is short, however, the magnitude of the seed perturbations can make a difference in whether the irregularities have a chance to grow to a strength at which the nonlinear development of plumes occurs. In addition, the character of the resulting irregularities reflects the characteristics of the initial seed density perturbation, e.g., their strength, spacing, and, to some extent, their spatial scales, and it is important to know the seeds to help determine the structure of the developed irregularities. To this end, we describe the climatology of daytime and early-evening density irregularities that can serve as seeds for later development of plumes, as determined from the Planar Langmuir Probe (PLP) plasma density measurements on the C/NOFS (Communication and Navigation Outage Forecast System) satellite mission, presenting their magnitude as a function of altitude, latitude, longitude, local time, season, and phase in the solar cycle (within the C/NOFS observation era). To examine some of the consequences of these density perturbations, they are used as initial conditions for the PBMOD PBMOD (Retterer, 2010a) 3-D irregularity model to follow their potential development into larger-amplitude irregularities, plumes, and radio scintillation. "Though I do not believe that a pla[sma bubble] will spring up where no seed has been, I have great faith in a seed. Convince me that you have a seed there, and I am prepared to expect wonders." - Henry David Thoreau

  13. The Proteome of Seed Development in the Model Legume Lotus japonicus1[C][W

    PubMed Central

    Dam, Svend; Laursen, Brian S.; Ørnfelt, Jane H.; Jochimsen, Bjarne; Stærfeldt, Hans Henrik; Friis, Carsten; Nielsen, Kasper; Goffard, Nicolas; Besenbacher, Søren; Krusell, Lene; Sato, Shusei; Tabata, Satoshi; Thøgersen, Ida B.; Enghild, Jan J.; Stougaard, Jens

    2009-01-01

    We have characterized the development of seeds in the model legume Lotus japonicus. Like soybean (Glycine max) and pea (Pisum sativum), Lotus develops straight seed pods and each pod contains approximately 20 seeds that reach maturity within 40 days. Histological sections show the characteristic three developmental phases of legume seeds and the presence of embryo, endosperm, and seed coat in desiccated seeds. Furthermore, protein, oil, starch, phytic acid, and ash contents were determined, and this indicates that the composition of mature Lotus seed is more similar to soybean than to pea. In a first attempt to determine the seed proteome, both a two-dimensional polyacrylamide gel electrophoresis approach and a gel-based liquid chromatography-mass spectrometry approach were used. Globulins were analyzed by two-dimensional polyacrylamide gel electrophoresis, and five legumins, LLP1 to LLP5, and two convicilins, LCP1 and LCP2, were identified by matrix-assisted laser desorption ionization quadrupole/time-of-flight mass spectrometry. For two distinct developmental phases, seed filling and desiccation, a gel-based liquid chromatography-mass spectrometry approach was used, and 665 and 181 unique proteins corresponding to gene accession numbers were identified for the two phases, respectively. All of the proteome data, including the experimental data and mass spectrometry spectra peaks, were collected in a database that is available to the scientific community via a Web interface (http://www.cbs.dtu.dk/cgi-bin/lotus/db.cgi). This database establishes the basis for relating physiology, biochemistry, and regulation of seed development in Lotus. Together with a new Web interface (http://bioinfoserver.rsbs.anu.edu.au/utils/PathExpress4legumes/) collecting all protein identifications for Lotus, Medicago, and soybean seed proteomes, this database is a valuable resource for comparative seed proteomics and pathway analysis within and beyond the legume family. PMID:19129418

  14. Immunohistochemistry of active gibberellins and gibberellin-inducible alpha-amylase in developing seeds of morning glory.

    PubMed

    Nakayama, Akira; Park, Seijin; Zheng-Jun, Xu; Nakajima, Masatoshi; Yamaguchi, Isomaro

    2002-07-01

    Gibberellins (GAs) in developing seeds of morning glory (Pharbitis nil) were quantified and localized by immunostaining. The starch grains began to be digested after the GA contents had increased and reached a plateau. Immunohistochemical staining with the antigibberellin A(1)-methyl ester-antiserum, which has high affinity to biologically active GAs, showed that GA(1) and/or GA(3) were localized around starch grains in the integument of developing young seeds, suggesting the participation of GA-inducible alpha-amylase in this digestion. We isolated an alpha-amylase cDNA (PnAmy1) that was expressed in the immature seeds, and using an antibody raised against recombinant protein, it was shown that PnAmy1 was expressed in the immature seeds. GA responsiveness of PnAmy1 was shown by treating the young fruits 9 d after anthesis with GA(3). RNA-blot and immunoblot analyses showed that PnAmy1 emerged soon after the rapid increase of GA(1/3). An immunohistochemical analysis of PnAmy1 showed that it, like the seed GA(1/3), was also localized around starch grains in the integument of developing young seeds. The localization of GA(1/3) in the integument coincident with the expression of PnAmy1 suggests that both function as part of a process to release sugars for translocation or for the further development of the seeds.

  15. Immunohistochemistry of Active Gibberellins and Gibberellin-Inducible α-Amylase in Developing Seeds of Morning Glory1

    PubMed Central

    Nakayama, Akira; Park, Seijin; Zheng-Jun, Xu; Nakajima, Masatoshi; Yamaguchi, Isomaro

    2002-01-01

    Gibberellins (GAs) in developing seeds of morning glory (Pharbitis nil) were quantified and localized by immunostaining. The starch grains began to be digested after the GA contents had increased and reached a plateau. Immunohistochemical staining with the antigibberellin A1-methyl ester-antiserum, which has high affinity to biologically active GAs, showed that GA1 and/or GA3 were localized around starch grains in the integument of developing young seeds, suggesting the participation of GA-inducible α-amylase in this digestion. We isolated an α-amylase cDNA (PnAmy1) that was expressed in the immature seeds, and using an antibody raised against recombinant protein, it was shown that PnAmy1 was expressed in the immature seeds. GA responsiveness of PnAmy1 was shown by treating the young fruits 9 d after anthesis with GA3. RNA-blot and immunoblot analyses showed that PnAmy1 emerged soon after the rapid increase of GA1/3. An immunohistochemical analysis of PnAmy1 showed that it, like the seed GA1/3, was also localized around starch grains in the integument of developing young seeds. The localization of GA1/3 in the integument coincident with the expression of PnAmy1 suggests that both function as part of a process to release sugars for translocation or for the further development of the seeds. PMID:12114559

  16. 23 CFR 940.5 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ARCHITECTURE AND STANDARDS § 940.5 Policy. ITS projects shall conform to the National ITS Architecture and... Architecture is interpreted to mean the use of the National ITS Architecture to develop a regional ITS architecture, and the subsequent adherence of all ITS projects to that regional ITS architecture. Development...

  17. 23 CFR 940.5 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ARCHITECTURE AND STANDARDS § 940.5 Policy. ITS projects shall conform to the National ITS Architecture and... Architecture is interpreted to mean the use of the National ITS Architecture to develop a regional ITS architecture, and the subsequent adherence of all ITS projects to that regional ITS architecture. Development...

  18. 23 CFR 940.5 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ARCHITECTURE AND STANDARDS § 940.5 Policy. ITS projects shall conform to the National ITS Architecture and... Architecture is interpreted to mean the use of the National ITS Architecture to develop a regional ITS architecture, and the subsequent adherence of all ITS projects to that regional ITS architecture. Development...

  19. 23 CFR 940.5 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ARCHITECTURE AND STANDARDS § 940.5 Policy. ITS projects shall conform to the National ITS Architecture and... Architecture is interpreted to mean the use of the National ITS Architecture to develop a regional ITS architecture, and the subsequent adherence of all ITS projects to that regional ITS architecture. Development...

  20. Rapid tissue engineering of biomimetic human corneal limbal crypts with 3D niche architecture.

    PubMed

    Levis, Hannah J; Massie, Isobel; Dziasko, Marc A; Kaasi, Andreas; Daniels, Julie T

    2013-11-01

    Limbal epithelial stem cells are responsible for the maintenance of the human corneal epithelium and these cells reside in a specialised stem cell niche. They are located at the base of limbal crypts, in a physically protected microenvironment in close proximity to a variety of neighbouring niche cells. Design and recreation of elements of various stem cell niches have allowed researchers to simplify aspects of these complex microenvironments for further study in vitro. We have developed a method to rapidly and reproducibly create bioengineered limbal crypts (BLCs) in a collagen construct using a simple one-step method. Liquid is removed from collagen hydrogels using hydrophilic porous absorbers (HPAs) that have custom moulded micro-ridges on the base. The resulting topography on the surface of the thin collagen constructs resembles the dimensions of the stromal crypts of the human limbus. Human limbal epithelial cells seeded onto the surface of the constructs populate these BLCs and form numerous layers with a high proportion of the cells lining the crypts expressing putative stem cell marker, p63α. The HPAs are produced using a moulding process that is flexible and can be adapted depending on the requirements of the end user. Creation of defined topographical features using this process could be applicable to numerous tissue-engineering applications where varied 3-dimensional niche architectures are required. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Modular flow chamber for engineering bone marrow architecture and function.

    PubMed

    Di Buduo, Christian A; Soprano, Paolo M; Tozzi, Lorenzo; Marconi, Stefania; Auricchio, Ferdinando; Kaplan, David L; Balduini, Alessandra

    2017-11-01

    The bone marrow is a soft, spongy, gelatinous tissue found in the hollow cavities of flat and long bones that support hematopoiesis in order to maintain the physiologic turnover of all blood cells. Silk fibroin, derived from Bombyx mori silkworm cocoons, is a promising biomaterial for bone marrow engineering, because of its tunable architecture and mechanical properties, the capacity of incorporating labile compounds without loss of bioactivity and demonstrated ability to support blood cell formation. In this study, we developed a bone marrow scaffold consisting of a modular flow chamber made of polydimethylsiloxane, holding a silk sponge, prepared with salt leaching methods and functionalized with extracellular matrix components. The silk sponge was able to support efficient platelet formation when megakaryocytes were seeded in the system. Perfusion of the chamber allowed the recovery of functional platelets based on multiple activation tests. Further, inhibition of AKT signaling molecule, which has been shown to be crucial in regulating physiologic platelet formation, significantly reduced the number of collected platelets, suggesting the applicability of this tissue model for evaluation of the effects of bone marrow exposure to compounds that may affect platelet formation. In conclusion, we have bioengineered a novel modular system that, along with multi-porous silk sponges, can provide a useful technology for reproducing a simplified bone marrow scaffold for blood cell production ex vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice.

    PubMed

    Lo, Shuen-Fang; Yang, Show-Ya; Chen, Ku-Ting; Hsing, Yue-Ie; Zeevaart, Jan A D; Chen, Liang-Jwu; Yu, Su-May

    2008-10-01

    Gibberellin 2-oxidases (GA2oxs) regulate plant growth by inactivating endogenous bioactive gibberellins (GAs). Two classes of GA2oxs inactivate GAs through 2beta-hydroxylation: a larger class of C(19) GA2oxs and a smaller class of C(20) GA2oxs. In this study, we show that members of the rice (Oryza sativa) GA2ox family are differentially regulated and act in concert or individually to control GA levels during flowering, tillering, and seed germination. Using mutant and transgenic analysis, C(20) GA2oxs were shown to play pleiotropic roles regulating rice growth and architecture. In particular, rice overexpressing these GA2oxs exhibited early and increased tillering and adventitious root growth. GA negatively regulated expression of two transcription factors, O. sativa homeobox 1 and TEOSINTE BRANCHED1, which control meristem initiation and axillary bud outgrowth, respectively, and that in turn inhibited tillering. One of three conserved motifs unique to the C(20) GA2oxs (motif III) was found to be important for activity of these GA2oxs. Moreover, C(20) GA2oxs were found to cause less severe GA-defective phenotypes than C(19) GA2oxs. Our studies demonstrate that improvements in plant architecture, such as semidwarfism, increased root systems and higher tiller numbers, could be induced by overexpression of wild-type or modified C(20) GA2oxs.

  3. Development of SNP Genotyping Assays for Seed Composition Traits in Soybean

    PubMed Central

    Patil, Gunvant; Chaudhary, Juhi; Vuong, Tri D.; Jenkins, Brian; Qiu, Dan; Kadam, Suhas; Shannon, Grover J.

    2017-01-01

    Seed composition is one of the most important determinants of the economic values in soybean. The quality and quantity of different seed components, such as oil, protein, and carbohydrates, are crucial ingredients in food, feed, and numerous industrial products. Soybean researchers have successfully developed and utilized a diverse set of molecular markers for seed trait improvement in soybean breeding programs. It is imperative to design and develop molecular assays that are accurate, robust, high-throughput, cost-effective, and available on a common genotyping platform. In the present study, we developed and validated KASP (Kompetitive allele-specific polymerase chain reaction) genotyping assays based on previously known functional mutant alleles for the seed composition traits, including fatty acids, oligosaccharides, trypsin inhibitor, and lipoxygenase. These assays were validated on mutant sources as well as mapping populations and precisely distinguish the homozygotes and heterozygotes of the mutant genes. With the obvious advantages, newly developed KASP assays in this study can substitute the genotyping assays that were previously developed for marker-assisted selection (MAS). The functional gene-based assay resource developed using common genotyping platform will be helpful to accelerate efforts to improve soybean seed composition traits. PMID:28630621

  4. Oil body proteins sequentially accumulate throughout seed development in Brassica napus.

    PubMed

    Jolivet, Pascale; Boulard, Céline; Bellamy, Annick; Valot, Benoît; d'Andréa, Sabine; Zivy, Michel; Nesi, Nathalie; Chardot, Thierry

    2011-11-15

    Despite the importance of seed oil bodies (OBs) as enclosed compartments for oil storage, little is known about lipid and protein accumulation in OBs during seed formation. OBs from rapeseed (Brassica napus) consist of a triacylglycerol (TAG) core surrounded by a phospholipid monolayer embedded with integral proteins which confer high stability to OBs in the mature dry seed. In the present study, we investigated lipid and protein accumulation patterns throughout seed development (from 5 to 65 days after pollination [DAP]) both in the whole seed and in purified OBs. Deposition of the major proteins (oleosins, caleosins and steroleosins) into OBs was assessed through (i) gene expression pattern, (ii) proteomics analysis, and (iii) protein immunodetection. For the first time, a sequential deposition of integral OB proteins was established. Accumulation of oleosins and caleosins was observed starting from early stages of seed development (12-17 DAP), while steroleosins accumulated later (~25 DAP) onwards. Copyright © 2011 Elsevier GmbH. All rights reserved.

  5. Gm1-MMP is involved in growth and development of leaf and seed, and enhances tolerance to high temperature and humidity stress in transgenic Arabidopsis.

    PubMed

    Liu, Sushuang; Liu, Yanmin; Jia, Yanhong; Wei, Jiaping; Wang, Shuang; Liu, Xiaolin; Zhou, Yali; Zhu, Yajing; Gu, Weihong; Ma, Hao

    2017-06-01

    Matrix metalloproteinases (MMPs) are a family of zinc- and calcium-dependent endopeptidases. Gm1-MMP was found to play an important role in soybean tissue remodeling during leaf expansion. In this study, Gm1-MMP was isolated and characterized. Its encoding protein had a relatively low phylogenetic relationship with the MMPs in other plant species. Subcellular localization indicated that Gm1-MMP was a plasma membrane protein. Gm1-MMP showed higher expression levels in mature leaves, old leaves, pods, and mature seeds, as well as was involved in the development of soybean seed. Additionally, it was involved in response to high temperature and humidity (HTH) stress in R7 leaves and seeds in soybean. The analysis of promoter of Gm1-MMP suggested that the fragment from -399 to -299 was essential for its promoter activity in response to HTH stress. The overexpression of Gm1-MMP in Arabidopsis affected the growth and development of leaves, enhanced leaf and developing seed tolerance to HTH stress and improved seed vitality. The levels of hydrogen peroxide (H 2 O 2 ) and ROS in transgenic Arabidopsis seeds were lower than those in wild type seeds under HTH stress. Gm1-MMP could interact with soybean metallothionein-II (GmMT-II), which was confirmed by analysis of yeast two-hybrid assay and BiFC assays. All the results indicated that Gm1-MMP plays an important role in the growth and development of leaves and seeds as well as in tolerance to HTH stress. It will be helpful for us understanding the functions of Gm1-MMP in plant growth and development, and in response to abiotic stresses. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Increased temperatures negatively affect Juniperus communis seeds: evidence from transplant experiments along a latitudinal gradient.

    PubMed

    Gruwez, R; De Frenne, P; Vander Mijnsbrugge, K; Vangansbeke, P; Verheyen, K

    2016-05-01

    With a distribution range that covers most of the Northern hemisphere, common juniper (Juniperus communis) has one of the largest ranges of all vascular plant species. In several regions in Europe, however, populations are decreasing in size and number due to failing recruitment. One of the main causes for this failure is low seed viability. Observational evidence suggests that this is partly induced by climate warming, but our mechanistic understanding of this effect remains incomplete. Here, we experimentally assess the influence of temperature on two key developmental phases during sexual reproduction, i.e. gametogenesis and fertilisation (seed phase two, SP2) and embryo development (seed phase three, SP3). Along a latitudinal gradient from southern France to central Sweden, we installed a transplant experiment with shrubs originating from Belgium, a region with unusually low juniper seed viability. Seeds of both seed phases were sampled during three consecutive years, and seed viability assessed. Warming temperatures negatively affected the seed viability of both SP2 and SP3 seeds along the latitudinal gradient. Interestingly, the effect on embryo development (SP3) only occurred in the third year, i.e. when the gametogenesis and fertilisation also took place in warmer conditions. We found strong indications that this negative influence mostly acts via disrupting growth of the pollen tube, the development of the female gametophyte and fertilisation (SP2). This, in turn, can lead to failing embryo development, for example, due to nutritional problems. Our results confirm that climate warming can negatively affect seed viability of juniper. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Sugar - hormone crosstalk in seed development: Two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniature1 (mn1) seed mutant in maize

    USDA-ARS?s Scientific Manuscript database

    The miniature1 (mn1) seed phenotype is a loss-of-function mutation at the Mn1 locus that encodes a cell wall invertase; its deficiency leads to pleiotropic changes including altered sugar levels and decreased levels of IAA throughout seed development. To understand the molecular details of such suga...

  8. Assessing of the contributions of pod photosynthesis to carbon acquisition of seed in alfalfa (Medicago sativa L.).

    PubMed

    Zhang, Wenxu; Mao, Peisheng; Li, Yuan; Wang, Mingya; Xia, Fangshan; Wang, Hui

    2017-02-07

    The distribution of carbon from a branch setting pod in alfalfa was investigated during the seed development of seeds to determine the relative contribution of pod and leaf photoassimilates to the total C balance and to investigate the partitioning of these photoassimilates to other plant organs. A 13 Clabeling procedure was used to label C photoassimilates of pods and leaves in alfalfa, and the Δ 13 C values of a pod, leaves, a section of stem and roots were measured during seed development on day 10, 15, 20 and 25 after labeling of the pod. The results showed that the alfalfa pod had photosynthetic capacity early in the development of seeds, and that pod photosynthesis could provide carbon to alfalfa organs including seeds, pods, leaves, stems and roots, in addition to leaf photosynthesis. Photosynthesis in the pod affected the total C balance of the alfalfa branch with the redistribution of a portion of pod assimilates to other plant organs. The assimilated 13 C of the pod was used for the growth requirements of plant seeds and pods. The requirements for assimilated C came primarily from the young pod in early seed development, with later requirements provided primarily from the leaf.

  9. Functional Interface Considerations within an Exploration Life Support System Architecture

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    As notional life support system (LSS) architectures are developed and evaluated, myriad options must be considered pertaining to process technologies, components, and equipment assemblies. Each option must be evaluated relative to its impact on key functional interfaces within the LSS architecture. A leading notional architecture has been developed to guide the path toward realizing future crewed space exploration goals. This architecture includes atmosphere revitalization, water recovery and management, and environmental monitoring subsystems. Guiding requirements for developing this architecture are summarized and important interfaces within the architecture are discussed. The role of environmental monitoring within the architecture is described.

  10. An Efficient Method for the Isolation of Highly Purified RNA from Seeds for Use in Quantitative Transcriptome Analysis.

    PubMed

    Kanai, Masatake; Mano, Shoji; Nishimura, Mikio

    2017-01-11

    Plant seeds accumulate large amounts of storage reserves comprising biodegradable organic matter. Humans rely on seed storage reserves for food and as industrial materials. Gene expression profiles are powerful tools for investigating metabolic regulation in plant cells. Therefore, detailed, accurate gene expression profiles during seed development are required for crop breeding. Acquiring highly purified RNA is essential for producing these profiles. Efficient methods are needed to isolate highly purified RNA from seeds. Here, we describe a method for isolating RNA from seeds containing large amounts of oils, proteins, and polyphenols, which have inhibitory effects on high-purity RNA isolation. Our method enables highly purified RNA to be obtained from seeds without the use of phenol, chloroform, or additional processes for RNA purification. This method is applicable to Arabidopsis, rapeseed, and soybean seeds. Our method will be useful for monitoring the expression patterns of low level transcripts in developing and mature seeds.

  11. Studies on optimum harvest time for hybrid rice seed.

    PubMed

    Fu, Hong; Cao, Dong-Dong; Hu, Wei-Min; Guan, Ya-Jing; Fu, Yu-Ying; Fang, Yong-Feng; Hu, Jin

    2017-03-01

    Timely harvest is critical for hybrid rice to achieve maximum seed viability, vigor and yield. However, how to predict the optimum harvest time has been rarely reported so far. The seed vigor of Zhuliangyou 06 (ZLY06) increased and reached the highest level at 20 days after pollination (DAP), when seed moisture content had a lower value, which was maintained until final seed maturation. For Chunyou 84 (CY84), seed vigor, fresh and dry weight had relatively high values at 25 DAP, when seed moisture content reached the lowest value and changed slightly from 25 to 55 DAP. In both hybrid rice varieties, seed glume chlorophyll content declined rapidly from 10 to 30 DAP and remained at a very low level after 35 DAP. Starch content exhibited an increasing trend during seed maturation, while both soluble sugar content and amylase activity decreased significantly at the early stages of seed development. Moreover, correlation analyses showed that seed dry weight, starch content and superoxide dismutase activity were significantly positively correlated with seed vigor. In contrast, chlorophyll content, moisture content, soluble sugar, soluble protein, abscisic acid, gibberellin content, electrical conductivity, catalase and ascorbate peroxidase activities were significantly negatively correlated with seed vigor. Physiological and biochemical parameters were obviously more closely related with seed vigor than with seed germinability during seed development. Seed vigor could be better used as a comprehensive factor to predict the optimum seed harvest time. It is suggested that for ZLY06 seeds could be harvested as early as 20 DAP, whereas for CY84 the earliest optimum harvest time was 25 DAP. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Host-Parasite Interactions from the Inside: Plant Reproductive Ontogeny Drives Specialization in Parasitic Insects

    PubMed Central

    Boivin, Thomas; Gidoin, Cindy; von Aderkas, Patrick; Safrana, Jonathan; Candau, Jean-Noël; Chalon, Alain; Sondo, Marion; El Maâtaoui, Mohamed

    2015-01-01

    Host plant interactions are likely key drivers of evolutionary processes involved in the diversification of phytophagous insects. Granivory has received substantial attention for its crucial role in shaping the interaction between plants and their seed parasites, but fine-scale mechanisms explaining the role of host plant reproductive biology on specialization of seed parasites remain poorly described. In a comparative approach using plant histological techniques, we tested the hypotheses that different seed parasite species synchronize their life cycles to specific stages in seed development, and that the stage they target depends on major differences in seed development programs. In a pinaceous system, seed storage products are initiated before ovule fertilization and the wasps target the ovule’s nucellus during megagametogenesis, a stage at which larvae may benefit from the by-products derived from both secreting cells and dying nucellar cells. In a cupressaceous system, oviposition activity peaks later, during embryogenesis, and the wasps target the ovule’s megagametophyte where larvae may benefit from cell disintegration during embryogenesis. Our cytohistological approach shows for the first time how, despite divergent oviposition targets, different parasite species share a common strategy that consists of first competing for nutrients with developing plant structures, and then consuming these developed structures to complete their development. Our results support the prediction that seed developmental program is an axis for specialization in seed parasites, and that it could be an important parameter in models of their ecological and taxonomic divergence. This study provides the basis for further investigating the possibility of the link between plant ontogeny and pre-dispersal seed parasitism. PMID:26441311

  13. Host-Parasite Interactions from the Inside: Plant Reproductive Ontogeny Drives Specialization in Parasitic Insects.

    PubMed

    Boivin, Thomas; Gidoin, Cindy; von Aderkas, Patrick; Safrana, Jonathan; Candau, Jean-Noël; Chalon, Alain; Sondo, Marion; El Maâtaoui, Mohamed

    2015-01-01

    Host plant interactions are likely key drivers of evolutionary processes involved in the diversification of phytophagous insects. Granivory has received substantial attention for its crucial role in shaping the interaction between plants and their seed parasites, but fine-scale mechanisms explaining the role of host plant reproductive biology on specialization of seed parasites remain poorly described. In a comparative approach using plant histological techniques, we tested the hypotheses that different seed parasite species synchronize their life cycles to specific stages in seed development, and that the stage they target depends on major differences in seed development programs. In a pinaceous system, seed storage products are initiated before ovule fertilization and the wasps target the ovule's nucellus during megagametogenesis, a stage at which larvae may benefit from the by-products derived from both secreting cells and dying nucellar cells. In a cupressaceous system, oviposition activity peaks later, during embryogenesis, and the wasps target the ovule's megagametophyte where larvae may benefit from cell disintegration during embryogenesis. Our cytohistological approach shows for the first time how, despite divergent oviposition targets, different parasite species share a common strategy that consists of first competing for nutrients with developing plant structures, and then consuming these developed structures to complete their development. Our results support the prediction that seed developmental program is an axis for specialization in seed parasites, and that it could be an important parameter in models of their ecological and taxonomic divergence. This study provides the basis for further investigating the possibility of the link between plant ontogeny and pre-dispersal seed parasitism.

  14. An Arabidopsis thaliana embryo arrest mutant exhibiting germination potential

    USDA-ARS?s Scientific Manuscript database

    The ability to initiate radicle elongation, or germination potential, occurs in developing embryos before the completion of seed maturation. Green embryos after walking-stick stage in developing Arabidopsis thaliana seeds germinate when excised from seeds and incubated in MS media containing 1 % suc...

  15. Dynamic Subcellular Localization of Iron during Embryo Development in Brassicaceae Seeds

    PubMed Central

    Ibeas, Miguel A.; Grant-Grant, Susana; Navarro, Nathalia; Perez, M. F.; Roschzttardtz, Hannetz

    2017-01-01

    Iron is an essential micronutrient for plants. Little is know about how iron is loaded in embryo during seed development. In this article we used Perls/DAB staining in order to reveal iron localization at the cellular and subcellular levels in different Brassicaceae seed species. In dry seeds of Brassica napus, Nasturtium officinale, Lepidium sativum, Camelina sativa, and Brassica oleracea iron localizes in vacuoles of cells surrounding provasculature in cotyledons and hypocotyl. Using B. napus and N. officinale as model plants we determined where iron localizes during seed development. Our results indicate that iron is not detectable by Perls/DAB staining in heart stage embryo cells. Interestingly, at torpedo development stage iron localizes in nuclei of different cells type, including integument, free cell endosperm and almost all embryo cells. Later, iron is detected in cytoplasmic structures in different embryo cell types. Our results indicate that iron accumulates in nuclei in specific stages of embryo maturation before to be localized in vacuoles of cells surrounding provasculature in mature seeds. PMID:29312417

  16. Development and efficacy assessments of tea seed oil makeup remover.

    PubMed

    Parnsamut, N; Kanlayavattanakul, M; Lourith, N

    2017-05-01

    The efficacy of tea seed oil to clean foundation and eyeliner was evaluated. The safe and efficient tea seed oil makeup remover was developed. In vitro cleansing efficacy of makeup remover was UV-spectrophotometric validated. The stability evaluation by means of accelerated stability test was conducted. In vitro and in vivo cleansing efficacy of the removers was conducted in a comparison with benchmark majorly containing olive oil. Tea seed oil cleaned 90.64±4.56% of foundation and 87.62±8.35% of eyeliner. The stable with most appropriate textures base was incorporated with tea seed oil. Three tea seed oil removers (50, 55 and 60%) were stabled. The 60% tea seed oil remover significantly removed foundation better than others (94.48±3.37%; P<0.001) and the benchmark (92.32±1.33%), but insignificant removed eyeliner (87.50±5.15%; P=0.059). Tea seed oil remover caused none of skin irritation as examined in 20 human volunteers. A single-blind, randomized control exhibited that the tea seed oil remover gained a better preference over the benchmark (75.42±8.10 and 70.00±7.78%; P=0.974). The safe and efficient tea seed oil makeup removers had been developed. The consumers' choices towards the makeup remover containing the bio-oils are widen. In vitro cleansing efficacy during the course of makeup remover development using UV-spectrophotometric method feasible for pharmaceutic industries is encouraged. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  17. Influence of microgravity on ultrastructure and storage reserves in seeds of Brassica rapa L

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Xiao, Y.; McClure, G.; Musgrave, M. E.

    2000-01-01

    Successful plant reproduction under spaceflight conditions has been problematic in the past. During a 122 d opportunity on the Mir space station, full life cycles of Brassica rapa L. were completed in microgravity in a series of three experiments in the Svet greenhouse. Ultrastructural and cytochemical analyses of storage reserves in mature dry seeds produced in these experiments were compared with those of seeds produced during a high-fidelity ground control. Additional analyses were performed on developing Brassica embryos, 15 d post pollination, which were produced during a separate experiment on the Shuttle (STS-87). Seeds produced on Mir had less than 20% of the cotyledon cell number found in seeds harvested from the ground control. Cytochemical localization of storage reserves in mature cotyledons showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in ground control seeds. Protein bodies in mature cotyledons produced in space were 44% smaller than those in the ground control seeds. Fifteen days after pollination, cotyledon cells from mature embryos formed in space had large numbers of starch grains, and protein bodies were absent, while in developing ground control seeds at the same stage, protein bodies had already formed and fewer starch grains were evident. These data suggest that both the late stage of seed development and maturation are changed in Brassica by growth in a microgravity environment. While gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity.

  18. A Survey of MIKC Type MADS-Box Genes in Non-seed Plants: Algae, Bryophytes, Lycophytes and Ferns

    PubMed Central

    Thangavel, Gokilavani; Nayar, Saraswati

    2018-01-01

    MADS box transcription factors have been studied extensively in flowering plants but remain less studied in non-seed plants. MADS box is one such example of a gene which is prevalent across many classes of plants ranging from chlorophyta to embryophyta as well as fungi and animals. MADS box transcription factors are of two types, Type I and Type II. Type II transcription factors (TF) that consist of a MADS domain, I region, K domain, and C terminal domain are discussed in this review. The Type II/ MIKC class is widespread across charophytes and all major lineages of land plants but unknown in green and red algae. These transcription factors have been implicated in floral development in seed plants and thus the question arises, “What is their role in non-seed plants?” From the studies reviewed here it can be gathered that unlike seed plants, MIKCC genes in non-seed plants have roles in both gametophytic and sporophytic generations and contribute to the development of both vegetative and reproductive structures. On the other hand as previously observed in seed plants, MIKC* genes of non-seed plants have a conserved role during gametophyte development. With respect to evolution of MIKC genes in non-seed plants, the number of common ancestors is probably very few at each branch. The expansion of this gene family in seed plants and increased plant complexity seem to be correlated. As gradually the genomes of non-seed plants are becoming available it is worthwhile to gather the existing information about MADS box genes in non-seed plants. This review highlights various MIKC MADS box genes discovered so far in non-seed plants, their possible roles and an insight into their evolution. PMID:29720991

  19. A Survey of MIKC Type MADS-Box Genes in Non-seed Plants: Algae, Bryophytes, Lycophytes and Ferns.

    PubMed

    Thangavel, Gokilavani; Nayar, Saraswati

    2018-01-01

    MADS box transcription factors have been studied extensively in flowering plants but remain less studied in non-seed plants. MADS box is one such example of a gene which is prevalent across many classes of plants ranging from chlorophyta to embryophyta as well as fungi and animals. MADS box transcription factors are of two types, Type I and Type II. Type II transcription factors (TF) that consist of a MADS domain, I region, K domain, and C terminal domain are discussed in this review. The Type II/ MIKC class is widespread across charophytes and all major lineages of land plants but unknown in green and red algae. These transcription factors have been implicated in floral development in seed plants and thus the question arises, "What is their role in non-seed plants?" From the studies reviewed here it can be gathered that unlike seed plants, MIKC C genes in non-seed plants have roles in both gametophytic and sporophytic generations and contribute to the development of both vegetative and reproductive structures. On the other hand as previously observed in seed plants, MIKC * genes of non-seed plants have a conserved role during gametophyte development. With respect to evolution of MIKC genes in non-seed plants, the number of common ancestors is probably very few at each branch. The expansion of this gene family in seed plants and increased plant complexity seem to be correlated. As gradually the genomes of non-seed plants are becoming available it is worthwhile to gather the existing information about MADS box genes in non-seed plants. This review highlights various MIKC MADS box genes discovered so far in non-seed plants, their possible roles and an insight into their evolution.

  20. Targeted Enhancement of Glutamate-to-γ-Aminobutyrate Conversion in Arabidopsis Seeds Affects Carbon-Nitrogen Balance and Storage Reserves in a Development-Dependent Manner1[W][OA

    PubMed Central

    Fait, Aaron; Nesi, Adriano Nunes; Angelovici, Ruthie; Lehmann, Martin; Pham, Phuong Anh; Song, Luhua; Haslam, Richard P.; Napier, Johnathan A.; Galili, Gad; Fernie, Alisdair R.

    2011-01-01

    In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca2+-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation. PMID:21921115

  1. Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner.

    PubMed

    Fait, Aaron; Nesi, Adriano Nunes; Angelovici, Ruthie; Lehmann, Martin; Pham, Phuong Anh; Song, Luhua; Haslam, Richard P; Napier, Johnathan A; Galili, Gad; Fernie, Alisdair R

    2011-11-01

    In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca(2+)-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation.

  2. Acquisition of physical dormancy and ontogeny of the micropyle--water-gap complex in developing seeds of Geranium carolinianum (Geraniaceae).

    PubMed

    Gama-Arachchige, N S; Baskin, J M; Geneve, R L; Baskin, C C

    2011-07-01

    The 'hinged valve gap' has been previously identified as the initial site of water entry (i.e. water gap) in physically dormant (PY) seeds of Geranium carolinianum (Geraniaceae). However, neither the ontogeny of the hinged valve gap nor acquisition of PY by seeds of Geraniaceae has been studied previously. The aims of the present study were to investigate the physiological events related to acquisition of PY and the ontogeny of the hinged valve gap and seed coat of G. carolinianum. Seeds of G. carolinianum were studied from the ovule stage until dispersal. The developmental stages of acquisition of germinability, physiological maturity and PY were determined by seed measurement, germination and imbibition experiments using intact seeds and isolated embryos of both fresh and slow-dried seeds. Ontogeny of the seed coat and water gap was studied using light microscopy. Developing seeds achieved germinability, physiological maturity and PY on days 9, 14 and 20 after pollination (DAP), respectively. The critical moisture content of seeds on acquisition of PY was 11 %. Slow-drying caused the stage of acquisition of PY to shift from 20 to 13 DAP. Greater extent of cell division and differentiation at the micropyle, water gap and chalaza than at the rest of the seed coat resulted in particular anatomical features. Palisade and subpalisade cells of varying forms developed in these sites. A clear demarcation between the water gap and micropyle is not evident due to their close proximity. Acquisition of PY in seeds of G. carolinianum occurs after physiological maturity and is triggered by maturation drying. The micropyle and water gap cannot be considered as two separate entities, and thus it is more appropriate to consider them together as a 'micropyle--water-gap complex'.

  3. Towards better metrics and policymaking for seed system development: Insights from Asia's seed industry.

    PubMed

    Spielman, David J; Kennedy, Adam

    2016-09-01

    Since the 1980s, many developing countries have introduced policies to promote seed industry growth and improve the delivery of modern science to farmers, often with a long-term goal of increasing agricultural productivity in smallholder farming systems. Public, private, and civil society actors involved in shaping policy designs have, in turn, developed competing narratives around how best to build an innovative and sustainable seed system, each with varying goals, values, and levels of influence. Efforts to strike a balance between these narratives have often played out in passionate discourses surrounding seed rules and regulations. As a result, however, policymakers in many countries have expressed impatience with the slow progress on enhancing the contribution of a modern seed industry to the overarching goal of increasing agricultural productivity growth. One reason for this slow progress may be that policymakers are insufficiently cognizant of the trade-offs associated with rules and regulations required to effectively govern a modern seed industry. This suggests the need for new data and analysis to improve the understanding of how seed systems function. This paper explores these issues in the context of Asia's rapidly growing seed industry, with illustrations from seed markets for maize and several other crops, to highlight current gaps in the metrics used to analyze performance, competition, and innovation. The paper provides a finite set of indicators to inform policymaking on seed system design and monitoring, and explores how these indicators can be used to inform current policy debates in the region.

  4. Sticking to cellulose: exploiting Arabidopsis seed coat mucilage to understand cellulose biosynthesis and cell wall polysaccharide interactions.

    PubMed

    Griffiths, Jonathan S; North, Helen M

    2017-05-01

    The cell wall defines the shape of cells and ultimately plant architecture. It provides mechanical resistance to osmotic pressure while still being malleable and allowing cells to grow and divide. These properties are determined by the different components of the wall and the interactions between them. The major components of the cell wall are the polysaccharides cellulose, hemicellulose and pectin. Cellulose biosynthesis has been extensively studied in Arabidopsis hypocotyls, and more recently in the mucilage-producing epidermal cells of the seed coat. The latter has emerged as an excellent system to study cellulose biosynthesis and the interactions between cellulose and other cell wall polymers. Here we review some of the major advances in our understanding of cellulose biosynthesis in the seed coat, and how mucilage has aided our understanding of the interactions between cellulose and other cell wall components required for wall cohesion. Recently, 10 genes involved in cellulose or hemicellulose biosynthesis in mucilage have been identified. These discoveries have helped to demonstrate that xylan side-chains on rhamnogalacturonan I act to link this pectin directly to cellulose. We also examine other factors that, either directly or indirectly, influence cellulose organization or crystallization in mucilage. © 2017 INRA. New Phytologist © 2017 New Phytologist Trust.

  5. Transcriptome Analysis Comparison of Lipid Biosynthesis in the Leaves and Developing Seeds of Brassica napus

    PubMed Central

    Chen, Jie; Tan, Ren-Ke; Guo, Xiao-Juan; Fu, Zheng-Li; Wang, Zheng; Zhang, Zhi-Yan; Tan, Xiao-Li

    2015-01-01

    Brassica napus seed is a lipid storage organ containing approximately 40% oil, while its leaves contain many kinds of lipids for many biological roles, but the overall amounts are less than in seeds. Thus, lipid biosynthesis in the developing seeds and the leaves is strictly regulated which results the final difference of lipids. However, there are few reports about the molecular mechanism controlling the difference in lipid biosynthesis between developing seeds and leaves. In this study, we tried to uncover this mechanism by analyzing the transcriptome data for lipid biosynthesis. The transcriptome data were de novo assembled and a total of 47216 unigenes were obtained, which had an N50 length and median of 1271 and 755 bp, respectively. Among these unigenes, 36368 (about 77.02%) were annotated and there were 109 up-regulated unigenes and 72 down-regulated unigenes in the developing seeds lipid synthetic pathway after comparing with leaves. In the oleic acid pathway, 23 unigenes were up-regulated and four unigenes were down-regulated. During triacylglycerol (TAG) synthesis, the key unigenes were all up-regulated, such as phosphatidate phosphatase and diacylglycerol O-acyltransferase. During palmitic acid, palmitoleic acid, stearic acid, linoleic acid and linolenic acid synthesis in leaves, the unigenes were nearly all up-regulated, which indicated that the biosynthesis of these particular fatty acids were more important in leaves. In the developing seeds, almost all the unigenes in the ABI3VP1, RKD, CPP, E2F-DP, GRF, JUMONJI, MYB-related, PHD and REM transcript factorfamilies were up-regulated, which helped us to discern the regulation mechanism underlying lipid biosynthesis. The differential up/down-regulation of the genes and TFs involved in lipid biosynthesis in developing seeds and leaves provided direct evidence that allowed us to map the network that regulates lipid biosynthesis, and the identification of new TFs that are up-regulated in developing seeds will help us to further elucidate the lipids biosynthesis pathway in developing seeds and leaves. PMID:25965272

  6. Validation of reference genes for real-time quantitative PCR normalization in soybean developmental and germinating seeds.

    PubMed

    Li, Qing; Fan, Cheng-Ming; Zhang, Xiao-Mei; Fu, Yong-Fu

    2012-10-01

    Most of traditional reference genes chosen for real-time quantitative PCR normalization were assumed to be ubiquitously and constitutively expressed in vegetative tissues. However, seeds show distinct transcriptomes compared with the vegetative tissues. Therefore, there is a need for re-validation of reference genes in samples of seed development and germination, especially for soybean seeds. In this study, we aimed at identifying reference genes suitable for the quantification of gene expression level in soybean seeds. In order to identify the best reference genes for soybean seeds, 18 putative reference genes were tested with various methods in different seed samples. We combined the outputs of both geNorm and NormFinder to assess the expression stability of these genes. The reference genes identified as optimums for seed development were TUA5 and UKN2, whereas for seed germination they were novel reference genes Glyma05g37470 and Glyma08g28550. Furthermore, for total seed samples it was necessary to combine four genes of Glyma05g37470, Glyma08g28550, Glyma18g04130 and UKN2 [corrected] for normalization. Key message We identified several reference genes that stably expressed in soybean seed developmental and germinating processes.

  7. Elevated temperature during reproductive development affects cone traits and progeny performance in Picea glauca x engelmannii complex.

    PubMed

    Webber, Joe; Ott, Peter; Owens, John; Binder, Wolfgang

    2005-10-01

    Two temperature regimes were applied during reproductive development of seed and pollen cones of interior spruce (Picea glauca (Moench) Voss and Picea engelmannii (Parry) complex) to determine temperature effects on the adaptive traits of progeny. In Experiment 1, identical crosses were made on potted interior spruce using untreated pollen followed by exposure to a day/night temperature of 22/8 or 14/8 degrees C with a 12-h photoperiod during the stages of reproductive development from post-pollination to early embryo development. Frost hardiness and growth of progeny from seed produced in the two temperature treatments were measured over a 4-year period. Elevated temperature significantly affected both seed-cone development and the adaptive properties of the progeny. Seed cones exposed to the 22/8 degrees C treatment reached the early embryo stage in 53 days versus 92 days in the 14/8 degrees C treatment. Seed yields, cotyledon emergence and percent germination were also significantly enhanced by the 22/8 degrees C treatment. Progeny from seed produced in the higher temperature treatment showed significantly reduced spring and fall frost hardiness, but the elevated temperature treatment had no significant effects on time of bud burst, growth patterns or final heights. In Experiment 2, single ramets of the same clone were subjected to a day/night temperature of 20/8 or 10/8 degrees C during pollen cone development, starting from meiosis and ending at pollen shedding. The two populations of pollen were then crossed with untreated seed cones. Compared with pollen cones exposed to the 10/8 degrees C treatment, pollen cones exposed to the 20/8 degrees C treatment during development reached the shedding stage 2-4 weeks earlier, whereas pollen yields, in vitro viability and fertility (seed set) were significantly lower; however, the resulting progeny displayed no treatment differences in frost hardiness or growth after 1 year. Results suggest that seed orchard after-effects could be caused by temperature differences between orchard site and parent tree origin and that this effect acts on maternal development. Gametophytic (pollen or megagametophyte or both) and early embryo (sporophytic) selection are possible mechanisms that may explain the observed results. Although the effects are biologically significant, they are relatively small and do not justify changes in current deployment strategies for seed orchard seed.

  8. Mutational effects of space flight on Zea mays seeds

    NASA Technical Reports Server (NTRS)

    Mei, M.; Qiu, Y.; He, Y.; Bucker, H.; Yang, C. H.

    1994-01-01

    The growth and development of more than 500 Zea mays seeds flown on Long Duration Exposure Facility (LDEF) were studied. Somatic mutations, including white-yellow stripes on leaves, dwarfing, change of leaf sheath color or seedling color were observed in plants developed from these seeds. When the frequency of white-yellow formation was used as the endpoint and compared with data from ground based studies, the dose to which maize seeds might be exposed during the flight was estimated to be equivalent to 635 cGy of gamma rays. Seeds from one particular holder gave a high mutation frequency and a wide mutation spectrum. White-yellow stripes on leaves were also found in some of the inbred progenies from plants displayed somatic mutation. Electron microscopy studies showed that the damage of chloroplast development in the white-yellow stripe on leaves was similar between seeds flown on LDEF and that irradiated by accelerated heavy ions on ground.

  9. (Hydroxyproline-rich glycoprotein of the plant cell wall): Report on work from June 1987 to June 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    In soybean seed costs the accumulation of the hydroxproline-rich glycoprotein extensin is regulated in a developmental and tissue-specific manner. The time course of appearance of extensin during seed development was studied by Western blot analysis and by immunogold-silver localization. Using these techniques extensin was first detected at 16 to 18 d after anthesis, increasing during development to high levels at 24 d after anthesis. Immunogold-silver localization of extensin in the seed coat showed marked depostion of the glycoprotein in the walls of palisade epidermal cells and hourglass cells. The immunolocalization of extensin in developing soybean seeds was also made bymore » a new technique - tissue printing on nitrocellulose paper. This technique shows that extensin is primarily localized in the seed coal, hilum, and vascular elements of the seed.« less

  10. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds.

    PubMed

    Tan, Helin; Yang, Xiaohui; Zhang, Fengxia; Zheng, Xiu; Qu, Cunmin; Mu, Jinye; Fu, Fuyou; Li, Jiana; Guan, Rongzhan; Zhang, Hongsheng; Wang, Guodong; Zuo, Jianru

    2011-07-01

    The seed oil content in oilseed crops is a major selection trait to breeders. In Arabidopsis (Arabidopsis thaliana), LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) are key regulators of fatty acid biosynthesis. Overexpression of AtLEC1 and its orthologs in canola (Brassica napus), BnLEC1 and BnL1L, causes an increased fatty acid level in transgenic Arabidopsis plants, which, however, also show severe developmental abnormalities. Here, we use truncated napin A promoters, which retain the seed-specific expression pattern but with a reduced expression level, to drive the expression of BnLEC1 and BnL1L in transgenic canola. Conditional expression of BnLEC1 and BnL1L increases the seed oil content by 2% to 20% and has no detrimental effects on major agronomic traits. In the transgenic canola, expression of a subset of genes involved in fatty acid biosynthesis and glycolysis is up-regulated in developing seeds. Moreover, the BnLEC1 transgene enhances the expression of several genes involved in Suc synthesis and transport in developing seeds and the silique wall. Consistently, the accumulation of Suc and Fru is increased in developing seeds of the transgenic rapeseed, suggesting the increased carbon flux to fatty acid biosynthesis. These results demonstrate that BnLEC1 and BnL1L are reliable targets for genetic improvement of rapeseed in seed oil production.

  11. Wheat seed weight and quality differ temporally in sensitivity to warm or cool conditions during seed development and maturation

    PubMed Central

    Nasehzadeh, M

    2017-01-01

    Abstract Background and aims Short periods of extreme temperature may affect wheat (Triticum aestivum) seed weight, but also quality. Temporal sensitivity to extreme temperature during seed development and maturation was investigated. Methods Plants of ‘Tybalt’ grown at ambient temperature were moved to growth cabinets at 29/20°C or 34/20°C (2010), or 15/10°C or 34/20°C (2011), for successive 7-d periods from 7 DAA (days after anthesis) onwards, and also 7–65 DAA in 2011. Seed samples were harvested serially and moisture content, weight, ability to germinate, subsequent longevity in air-dry storage and bread-making quality were determined. Key Results High temperature (34/20°C) reduced final seed weight, with greatest temporal sensitivity at 7–14 or 14–21 DAA. Several aspects of bread-making quality were also most sensitive to high temperature then, but whereas protein quality decreased protein and sulphur concentrations improved. Early exposure to high temperature provided earlier development of ability to germinate and tolerate desiccation, but had little effect on maximum germination capacity. All treatments at 15/10°C resulted in ability to germinate declining between 58 and 65 DAA. Early exposure to high temperature hastened improvement in seed storage longevity, but the subsequent decline in late maturation preceded that in the control. Long (7–65 DAA) exposure to 15/10°C disrupted the development of seed longevity, with no improvement after seed filling ended. Longevity improved during maturation drying in other treatments. Early (7–14 DAA) exposure to high temperature reduced and low temperature increased subsequent longevity at harvest maturity, whereas late (35 or 42–49 DAA) exposure to high temperature increased and low temperature reduced it. Conclusions Temporal sensitivity to extreme temperature was detected. It varied considerably amongst the contrasting seed variables investigated. Subsequent seed longevity at harvest maturity responded negatively to temperature early in development, but positively later in development and throughout maturation. PMID:28637252

  12. From Smart-Eco Building to High-Performance Architecture: Optimization of Energy Consumption in Architecture of Developing Countries

    NASA Astrophysics Data System (ADS)

    Mahdavinejad, M.; Bitaab, N.

    2017-08-01

    Search for high-performance architecture and dreams of future architecture resulted in attempts towards meeting energy efficient architecture and planning in different aspects. Recent trends as a mean to meet future legacy in architecture are based on the idea of innovative technologies for resource efficient buildings, performative design, bio-inspired technologies etc. while there are meaningful differences between architecture of developed and developing countries. Significance of issue might be understood when the emerging cities are found interested in Dubaization and other related booming development doctrines. This paper is to analyze the level of developing countries’ success to achieve smart-eco buildings’ goals and objectives. Emerging cities of West of Asia are selected as case studies of the paper. The results of the paper show that the concept of high-performance architecture and smart-eco buildings are different in developing countries in comparison with developed countries. The paper is to mention five essential issues in order to improve future architecture of developing countries: 1- Integrated Strategies for Energy Efficiency, 2- Contextual Solutions, 3- Embedded and Initial Energy Assessment, 4- Staff and Occupancy Wellbeing, 5- Life-Cycle Monitoring.

  13. Mineral accumulation in vegetative and reproductive tissues during seed development in Medicago truncatula

    PubMed Central

    Garcia, Christina B.; Grusak, Michael A.

    2015-01-01

    Enhancing nutrient density in legume seeds is one of several strategies being explored to improve the nutritional quality of the food supply. In order to develop crop varieties with increased seed mineral concentration, a more detailed understanding of mineral translocation within the plant is required. By studying mineral accumulation in different organs within genetically diverse members of the same species, it may be possible to identify variable traits that modulate seed mineral concentration. We utilized two ecotypes (A17 and DZA315.16) of the model legume, Medicago truncatula, to study dry mass and mineral accumulation in the leaves, pod walls, and seeds during reproductive development. The pod wall dry mass was significantly different between the two ecotypes beginning at 12 days after pollination, whereas there was no significant difference in the average dry mass of individual seeds between the two ecotypes at any time point. There were also no significant differences in leaf dry mass between ecotypes; however, we observed expansion of A17 leaves during the first 21 days of pod development, while DZA315.16 leaves did not display a significant increase in leaf area. Mineral profiling of the leaves, pod walls, and seeds highlighted differences in accumulation patterns among minerals within each tissue as well as genotypic differences with respect to individual minerals. Because there were differences in the average seed number per pod, the total seed mineral content per pod was generally higher in A17 than DZA315.16. In addition, mineral partitioning to the seeds tended to be higher in A17 pods. These data revealed that mineral retention within leaves and/or pod walls might attenuate mineral accumulation within the seeds. As a result, strategies to increase seed mineral content should include approaches that will enhance export from these tissues. PMID:26322063

  14. An Information Technology Architecture for Pharmaceutical Research and Development

    PubMed Central

    Klingler, Daniel E.; Jaffe, Marvin E.

    1990-01-01

    Rationale for and development of an information technology architecture are presented. The architectural approach described produces a technology environment that is integrating, flexible, robust, productive, and future-oriented. Issues accompanying architecture development and potential impediments to success are discussed.

  15. Separating live from dead longleaf pine seeds: good and bad news

    Treesearch

    James P. Barnett; R. Kasten Dumroese

    2006-01-01

    Of all southern pine seeds, longleaf pine (Pinus palutris Mill.) are the most difficult to collect, process, treat, and store while maintaining good seed quality. As a result, interest in techniques for separating filled dead from live longleaf pine seeds has developed. The good news is that new technologies are becoming available to evaluate seed...

  16. Analysis of soybean leaf metabolism and seed coat transcriptome reveal sink strength is maintained under abiotic stress conditions

    USDA-ARS?s Scientific Manuscript database

    The seed coat is a vital tissue for directing the flow of photosynthate from source leaves to the embryo and cotyledons during seed development. By forming a sucrose gradient, the seed coat promotes transport of sugars from source leaves to seeds, thereby establishing sink strength. Understanding th...

  17. Non-Destructive Quality Evaluation of Pepper (Capsicum annuum L.) Seeds Using LED-Induced Hyperspectral Reflectance Imaging

    PubMed Central

    Mo, Changyeun; Kim, Giyoung; Lee, Kangjin; Kim, Moon S.; Cho, Byoung-Kwan; Lim, Jongguk; Kang, Sukwon

    2014-01-01

    In this study, we developed a viability evaluation method for pepper (Capsicum annuum L.) seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares–discriminant analysis (PLS-DA) model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB), which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400–700 nm) yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600–700 nm) yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting. PMID:24763251

  18. Gibberellin induces alpha-amylase gene in seed coat of Ipomoea nil immature seeds.

    PubMed

    Nakajima, Masatoshi; Nakayama, Akira; Xu, Zheng-Jun; Yamaguchi, Isomaro

    2004-03-01

    Two full-length cDNAs encoding gibberellin 3-oxidases, InGA3ox1 and InGA3ox2, were cloned from developing seeds of morning glory (Ipomoea nil (Pharbitis nil) Choisy cv. Violet) with degenerate-PCR and RACEs. The RNA-blot analysis for these clones revealed that the InGA3ox2 gene was organ-specifically expressed in the developing seeds at 6-18 days after anthesis. In situ hybridization showed the signals of InGA3ox2 mRNA in the seed coat, suggesting that active gibberellins (GAs) were synthesized in the tissue, although no active GA was detected there by immunohistochemistry. In situ hybridization analysis for InAmy1 (former PnAmy1) mRNA showed that InAmy1 was also synthesized in the seed coat. Both InGA3ox2 and InAmy1 genes were expressed spatially overlapped without a clear time lag, suggesting that both active GAs and InAmy1 were synthesized almost simultaneously in seed coat and secreted to the integument. These observations support the idea that GAs play an important role in seed development by inducing alpha-amylase.

  19. Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging.

    PubMed

    Mo, Changyeun; Kim, Giyoung; Lee, Kangjin; Kim, Moon S; Cho, Byoung-Kwan; Lim, Jongguk; Kang, Sukwon

    2014-04-24

    In this study, we developed a viability evaluation method for pepper (Capsicum annuum L.) seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400-700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares-discriminant analysis (PLS-DA) model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB), which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400-700 nm) yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600-700 nm) yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting.

  20. 23 CFR 940.5 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Architecture is interpreted to mean the use of the National ITS Architecture to develop a regional ITS architecture, and the subsequent adherence of all ITS projects to that regional ITS architecture. Development of the regional ITS architecture should be consistent with the transportation planning process for...

  1. Overexpression of serine acetlytransferase produced large increases in O-acetylserine and free cysteine in developing seeds of a grain legume

    PubMed Central

    Tabe, Linda; Wirtz, Markus; Molvig, Lisa; Droux, Michel; Hell, Ruediger

    2010-01-01

    There have been many attempts to increase concentrations of the nutritionally essential sulphur amino acids by modifying their biosynthetic pathway in leaves of transgenic plants. This report describes the first modification of cysteine biosyntheis in developing seeds; those of the grain legume, narrow leaf lupin (Lupinus angustifolius, L.). Expression in developing lupin embryos of a serine acetyltransferase (SAT) from Arabidopsis thaliana (AtSAT1 or AtSerat 2;1) was associated with increases of up to 5-fold in the concentrations of O-acetylserine (OAS), the immediate product of SAT, and up to 26-fold in free cysteine, resulting in some of the highest in vivo concentrations of these metabolites yet reported. Despite the dramatic changes in free cysteine in developing embryos of SAT overexpressers, concentrations of free methionine in developing embryos, and the total cysteine and methionine concentrations in mature seeds were not significantly altered. Pooled F2 seeds segregating for the SAT transgene and for a transgene encoding a methionine- and cysteine-rich sunflower seed storage protein also had increased OAS and free cysteine, but not free methionine, during development, and no increase in mature seed total sulphur amino acids compared with controls lacking SAT overexpression. The data support the view that the cysteine biosynthetic pathway is active in developing seeds, and indicate that SAT activity limits cysteine biosynthesis, but that cysteine supply is not limiting for methionine biosynthesis or for storage protein synthesis in maturing lupin embryos in conditions of adequate sulphur nutrition. OAS and free methionine, but not free cysteine, were implicated as signalling metabolites controlling expression of a gene for a cysteine-rich seed storage protein. PMID:19939888

  2. Overexpression of serine acetlytransferase produced large increases in O-acetylserine and free cysteine in developing seeds of a grain legume.

    PubMed

    Tabe, Linda; Wirtz, Markus; Molvig, Lisa; Droux, Michel; Hell, Ruediger

    2010-03-01

    There have been many attempts to increase concentrations of the nutritionally essential sulphur amino acids by modifying their biosynthetic pathway in leaves of transgenic plants. This report describes the first modification of cysteine biosynthesis in developing seeds; those of the grain legume, narrow leaf lupin (Lupinus angustifolius, L.). Expression in developing lupin embryos of a serine acetyltransferase (SAT) from Arabidopsis thaliana (AtSAT1 or AtSerat 2;1) was associated with increases of up to 5-fold in the concentrations of O-acetylserine (OAS), the immediate product of SAT, and up to 26-fold in free cysteine, resulting in some of the highest in vivo concentrations of these metabolites yet reported. Despite the dramatic changes in free cysteine in developing embryos of SAT overexpressers, concentrations of free methionine in developing embryos, and the total cysteine and methionine concentrations in mature seeds were not significantly altered. Pooled F(2) seeds segregating for the SAT transgene and for a transgene encoding a methionine- and cysteine-rich sunflower seed storage protein also had increased OAS and free cysteine, but not free methionine, during development, and no increase in mature seed total sulphur amino acids compared with controls lacking SAT overexpression. The data support the view that the cysteine biosynthetic pathway is active in developing seeds, and indicate that SAT activity limits cysteine biosynthesis, but that cysteine supply is not limiting for methionine biosynthesis or for storage protein synthesis in maturing lupin embryos in conditions of adequate sulphur nutrition. OAS and free methionine, but not free cysteine, were implicated as signalling metabolites controlling expression of a gene for a cysteine-rich seed storage protein.

  3. Brachypodium seed - a potential model for studying grain development of cereal crops

    USDA-ARS?s Scientific Manuscript database

    Seeds of small grains are important resources for human and animal food. The understanding of seed biology is essential for crop improvement by increasing grain yields and nutritional value. In the last decade, Brachypodium distachyon has been developed as a model plant for temperate cereal grasses...

  4. Seed development and hydroxy fatty acid biosynthesis in physaria lindheimeri

    USDA-ARS?s Scientific Manuscript database

    Hydroxy fatty acids (HFAs) are valuable industrial raw materials used in many industries. Physaria lindheimeri (Pl) accumulates over 80% HFA, in the form of lesquerolic acid (20:1OH), in its seed oil. Understanding the seed development of Pl is an important step to utilizing this unique wild specie...

  5. Monitoring viability of seeds in gene banks: developing software tools to increase efficiency

    USDA-ARS?s Scientific Manuscript database

    Monitoring the decline of seed viability is essential for effective long term seed storage in ex situ collections. Recent FAO Genebank Standards recommend monitoring intervals at one-third the time predicted for viability to fall to 85% of initial viability. This poster outlines the development of ...

  6. Development of near-infrared spectroscopy calibrations to measure quality characteristics in intact Brassicaceae germplasm

    USDA-ARS?s Scientific Manuscript database

    Determining seed quality parameters is an integral part of cultivar improvement and germplasm screening. However, quality tests are often time cnsuming, seed destructive, and can require large seed samples. This study describes the development of near-infrared spectroscopy (NIRS) calibrations to mea...

  7. Seed Cotton Mass Flow Measurement in the Gin

    USDA-ARS?s Scientific Manuscript database

    Seed cotton mass flow measurement is necessary for the development of improved gin process control systems that can increase gin efficiency and improve fiber quality. Previous studies led to the development of a seed cotton mass flow rate sensor based on the static pressure drop across the blowbox, ...

  8. New seed-cotton reclaimer for high speed roller gins

    USDA-ARS?s Scientific Manuscript database

    An experimental laboratory prototype reclaimer is being developed by the USDA-ARS in cooperation with Lummus Corporation. The objective of the project is to develop a seed-cotton reclaimer for high speed roller ginning that has a higher operational capacity and reduced seed loss in comparison to cur...

  9. A Systems Engineering Approach to Architecture Development

    NASA Technical Reports Server (NTRS)

    Di Pietro, David A.

    2014-01-01

    Architecture development is conducted prior to system concept design when there is a need to determine the best-value mix of systems that works collectively in specific scenarios and time frames to accomplish a set of mission area objectives. While multiple architecture frameworks exist, they often require use of unique taxonomies and data structures. In contrast, this presentation characterizes architecture development using terminology widely understood within the systems engineering community. Using a notional civil space architecture example, it employs a multi-tier framework to describe the enterprise level architecture and illustrates how results of lower tier, mission area architectures integrate into the enterprise architecture. It also presents practices for conducting effective mission area architecture studies, including establishing the trade space, developing functions and metrics, evaluating the ability of potential design solutions to meet the required functions, and expediting study execution through the use of iterative design cycles.

  10. A Systems Engineering Approach to Architecture Development

    NASA Technical Reports Server (NTRS)

    Di Pietro, David A.

    2015-01-01

    Architecture development is often conducted prior to system concept design when there is a need to determine the best-value mix of systems that works collectively in specific scenarios and time frames to accomplish a set of mission area objectives. While multiple architecture frameworks exist, they often require use of unique taxonomies and data structures. In contrast, this paper characterizes architecture development using terminology widely understood within the systems engineering community. Using a notional civil space architecture example, it employs a multi-tier framework to describe the enterprise level architecture and illustrates how results of lower tier, mission area architectures integrate into the enterprise architecture. It also presents practices for conducting effective mission area architecture studies, including establishing the trade space, developing functions and metrics, evaluating the ability of potential design solutions to meet the required functions, and expediting study execution through the use of iterative design cycles.

  11. A Systems Engineering Approach to Architecture Development

    NASA Technical Reports Server (NTRS)

    Di Pietro, David A.

    2015-01-01

    Architecture development is often conducted prior to system concept design when there is a need to determine the best-value mix of systems that works collectively in specific scenarios and time frames to accomplish a set of mission area objectives. While multiple architecture frameworks exist, they often require use of unique taxonomies and data structures. In contrast, this paper characterizes architecture development using terminology widely understood within the systems engineering community. Using a notional civil space architecture example, it employs a multi-tier framework to describe the enterprise level architecture and illustrates how results of lower tier, mission area architectures integrate into the enterprise architecture. It also presents practices for conducting effective mission area architecture studies, including establishing the trade space, developing functions and metrics, evaluating the ability of potential design solutions to meet the required functions, and expediting study execution through the use of iterative design cycles

  12. Validating Farmers' Indigenous Social Networks for Local Seed Supply in Central Rift Valley of Ethiopia.

    ERIC Educational Resources Information Center

    Seboka, B.; Deressa, A.

    2000-01-01

    Indigenous social networks of Ethiopian farmers participate in seed exchange based on mutual interdependence and trust. A government-imposed extension program must validate the role of local seed systems in developing a national seed industry. (SK)

  13. A high-throughput seed germination assay for root parasitic plants

    PubMed Central

    2013-01-01

    Background Some root-parasitic plants belonging to the Orobanche, Phelipanche or Striga genus represent one of the most destructive and intractable weed problems to agricultural production in both developed and developing countries. Compared with most of the other weeds, parasitic weeds are difficult to control by conventional methods because of their life style. The main difficulties that currently limit the development of successful control methods are the ability of the parasite to produce a tremendous number of tiny seeds that may remain viable in the soil for more than 15 years. Seed germination requires induction by stimulants present in root exudates of host plants. Researches performed on these minute seeds are until now tedious and time-consuming because germination rate is usually evaluated in Petri-dish by counting germinated seeds under a binocular microscope. Results We developed an easy and fast method for germination rate determination based on a standardized 96-well plate test coupled with spectrophotometric reading of tetrazolium salt (MTT) reduction. We adapted the Mosmann’s protocol for cell cultures to germinating seeds and determined the conditions of seed stimulation and germination, MTT staining and formazan salt solubilization required to obtain a linear relationship between absorbance and germination rate. Dose–response analyses were presented as applications of interest for assessing half maximal effective or inhibitory concentrations of germination stimulants (strigolactones) or inhibitors (ABA), respectively, using four parameter logistic curves. Conclusion The developed MTT system is simple and accurate. It yields reproducible results for germination bioassays of parasitic plant seeds. This method is adapted to high-throughput screenings of allelochemicals (stimulants, inhibitors) or biological extracts on parasitic plant seed germination, and strengthens the investigations of distinctive features of parasitic plant germination. PMID:23915294

  14. Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid Crambe abyssinica

    PubMed Central

    Guan, Rui; Lager, Ida; Li, Xueyuan; Stymne, Sten; Zhu, Li-Hua

    2014-01-01

    Erucic acid is a valuable industrial fatty acid with many applications. The main producers of this acid are today high erucic rapeseed (Brassica napus) and mustard (Brassica juncea), which have 45%–50% of erucic acid in their seed oils. Crambe abyssinica is an alternative promising producer of this acid as it has 55%–60% of erucic acid in its oil. Through genetic modification (GM) of three genes, we have previously increased the level of erucic acid to 71% (68 mol%) in Crambe seed oil. In this study, we further investigated different aspects of oil biosynthesis in the developing GM Crambe seeds in comparison with wild-type (Wt) Crambe, rapeseed and safflower (Carthamus tinctorius). We show that Crambe seeds have very low phosphatidylcholine-diacylglycerol interconversion, suggesting it to be the main reason why erucic acid is limited in the membrane lipids during oil biosynthesis. We further show that GM Crambe seeds have slower seed development than Wt, accompanied by slower oil accumulation during the first 20 days after flowering (DAF). Despite low accumulation of erucic acid during early stages of GM seed development, nearly 86 mol% of all fatty acids accumulated between 27 and 50 DAF was erucic acid, when 40% of the total oil is laid down. Likely bottlenecks in the accumulation of erucic acid during early stages of GM Crambe seed development are discussed. PMID:24119222

  15. Expression of the Arabidopsis thaliana BBX32 gene in soybean increases grain yield.

    PubMed

    Preuss, Sasha B; Meister, Robert; Xu, Qingzhang; Urwin, Carl P; Tripodi, Federico A; Screen, Steven E; Anil, Veena S; Zhu, Shuquan; Morrell, James A; Liu, Grace; Ratcliffe, Oliver J; Reuber, T Lynne; Khanna, Rajnish; Goldman, Barry S; Bell, Erin; Ziegler, Todd E; McClerren, Amanda L; Ruff, Thomas G; Petracek, Marie E

    2012-01-01

    Crop yield is a highly complex quantitative trait. Historically, successful breeding for improved grain yield has led to crop plants with improved source capacity, altered plant architecture, and increased resistance to abiotic and biotic stresses. To date, transgenic approaches towards improving crop grain yield have primarily focused on protecting plants from herbicide, insects, or disease. In contrast, we have focused on identifying genes that, when expressed in soybean, improve the intrinsic ability of the plant to yield more. Through the large scale screening of candidate genes in transgenic soybean, we identified an Arabidopsis thaliana B-box domain gene (AtBBX32) that significantly increases soybean grain yield year after year in multiple transgenic events in multi-location field trials. In order to understand the underlying physiological changes that are associated with increased yield in transgenic soybean, we examined phenotypic differences in two AtBBX32-expressing lines and found increases in plant height and node, flower, pod, and seed number. We propose that these phenotypic changes are likely the result of changes in the timing of reproductive development in transgenic soybean that lead to the increased duration of the pod and seed development period. Consistent with the role of BBX32 in A. thaliana in regulating light signaling, we show that the constitutive expression of AtBBX32 in soybean alters the abundance of a subset of gene transcripts in the early morning hours. In particular, AtBBX32 alters transcript levels of the soybean clock genes GmTOC1 and LHY-CCA1-like2 (GmLCL2). We propose that through the expression of AtBBX32 and modulation of the abundance of circadian clock genes during the transition from dark to light, the timing of critical phases of reproductive development are altered. These findings demonstrate a specific role for AtBBX32 in modulating soybean development, and demonstrate the validity of expressing single genes in crops to deliver increased agricultural productivity.

  16. 36 CFR 910.31 - High architectural quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false High architectural quality... PENNSYLVANIA AVENUE DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.31 High architectural quality. Development must maintain a uniformly high standard of architecture, representative of...

  17. 36 CFR 910.31 - High architectural quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false High architectural quality... PENNSYLVANIA AVENUE DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.31 High architectural quality. Development must maintain a uniformly high standard of architecture, representative of...

  18. The effects of smoke derivatives on in vitro seed germination and development of the leopard orchid Ansellia africana.

    PubMed

    Papenfus, H B; Naidoo, D; Pošta, M; Finnie, J F; Van Staden, J

    2016-03-01

    Plant-derived smoke and smoke-isolated compounds stimulate germination in seeds from over 80 genera. It has also been reported that smoke affects overall plant vigour and has a stimulatory effect on pollen growth. The effect of smoke on orchid seeds, however, has not been assessed. In South Africa, orchid seeds from several genera may be exposed to smoke when they are released from their seedpods. It is therefore possible that smoke may affect their germination and growth. Therefore, the effects of smoke [applied as smoke-water (SW)] and two smoke-derived compounds, karrikinolide (KAR1 ) and trimethylbutenolide (TMB), were investigated on the germination and growth of orchid seeds in vitro. The effect of SW, KAR1 and TMB were investigated on the endangered epiphytic orchid, Ansellia africana, which is indigenous to tropical areas of Africa. Smoke-water, KAR1 and TMB were infused in half-strength MS medium. The number of germinated seeds and number of seeds and protocorm bodies to reach predetermined developmental stages were recorded on a weekly basis using a dissecting microscope for a 13-week period. Infusing SW 1:250 (v:v) into half-strength MS medium significantly increased the germination rate index (GRI) and the development rate index (DRI) of the A. africana seeds. All the SW treatments significantly increased the number of large protocorm bodies at the final stage of development. Infusing KAR1 into the growing medium had no significant effect on germination or development of the seeds. The TMB treatment, however, significantly reduced the GRI and DRI of A. africana seeds. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines.

    PubMed

    Redekar, Neelam R; Biyashev, Ruslan M; Jensen, Roderick V; Helm, Richard F; Grabau, Elizabeth A; Maroof, M A Saghai

    2015-12-18

    Low phytic acid (lpa) crops are potentially eco-friendly alternative to conventional normal phytic acid (PA) crops, improving mineral bioavailability in monogastric animals as well as decreasing phosphate pollution. The lpa crops developed to date carry mutations that are directly or indirectly associated with PA biosynthesis and accumulation during seed development. These lpa crops typically exhibit altered carbohydrate profiles, increased free phosphate, and lower seedling emergence, the latter of which reduces overall crop yield, hence limiting their large-scale cultivation. Improving lpa crop yield requires an understanding of the downstream effects of the lpa genotype on seed development. Towards that end, we present a comprehensive comparison of gene-expression profiles between lpa and normal PA soybean lines (Glycine max) at five stages of seed development using RNA-Seq approaches. The lpa line used in this study carries single point mutations in a myo-inositol phosphate synthase gene along with two multidrug-resistance protein ABC transporter genes. RNA sequencing data of lpa and normal PA soybean lines from five seed-developmental stages (total of 30 libraries) were used for differential expression and functional enrichment analyses. A total of 4235 differentially expressed genes, including 512-transcription factor genes were identified. Eighteen biological processes such as apoptosis, glucan metabolism, cellular transport, photosynthesis and 9 transcription factor families including WRKY, CAMTA3 and SNF2 were enriched during seed development. Genes associated with apoptosis, glucan metabolism, and cellular transport showed enhanced expression in early stages of lpa seed development, while those associated with photosynthesis showed decreased expression in late developmental stages. The results suggest that lpa-causing mutations play a role in inducing and suppressing plant defense responses during early and late stages of seed development, respectively. This study provides a global perspective of transcriptomal changes during soybean seed development in an lpa mutant. The mutants are characterized by earlier expression of genes associated with cell wall biosynthesis and a decrease in photosynthetic genes in late stages. The biological processes and transcription factors identified in this study are signatures of lpa-causing mutations.

  20. Separation and purification of both tea seed polysaccharide and saponin from camellia cake extract using macroporous resin.

    PubMed

    Yang, Pengjie; Zhou, Mingda; Zhou, Chengyun; Wang, Qian; Zhang, Fangfang; Chen, Jian

    2015-02-01

    A novel method to separate and purify tea seed polysaccharide and tea seed saponin from camellia cake extract by macroporous resin was developed. Among four kinds of resins (AB-8, NKA-9, XDA-6, and D4020) tested, AB-8 macroporous resin possessed optimal separating capacity for the two substances and thus was selected for the separation, in which deionized water was used to elute tea seed polysaccharide, 0.25% NaOH solution to remove the undesired pigments, and 90% ethanol to elute tea seed saponin. Further dynamic adsorption/desorption experiments on AB-8 resin-based column chromatography were conducted to obtain the optimal parameters. Under optimal dynamic adsorption and desorption conditions, 18.7 and 11.8% yield of tea seed polysaccharide and tea seed saponin were obtained with purities of 89.2 and 96.0%, respectively. The developed method provides a potential approach for the large-scale production of tea seed polysaccharide and tea seed saponin from camellia cake. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Pacific Northwest forest tree seed zones: a template for native plants?

    Treesearch

    GR Johnson; Frank C Sorensen; J Bradley St Clair; Richard C. Cronn

    2004-01-01

    Seed movement guidelines for restoration activities are lacking for most native grasses, forbs, and shrubs. The forestry community has decades of experience in establishing seed zones and seed movement guidelines that may be of value to restoration managers. We review the history of seed zone development in forest trees, with emphasis on the Pacific Northwest, and make...

  2. Space Exposed Experiment Developed for Students (SEEDS) P-0004-2

    NASA Technical Reports Server (NTRS)

    Grigsby, Doris K.

    1991-01-01

    This cooperative endeavor of NASA Headquarters, the NASA Langley Research Center, and the George W. Park Seed Company, resulted in the distribution, by the end of March, 1990, of approximately 132,000 space exposed experiment developed for students (SEEDS) kits to 64,000 teachers representing 40,000 classrooms and 3.3 million kindergarden through university students. Kits were sent to every state, as well as to 30 foreign countries. Preliminary radiation data indicates that layer A received 725 rads, while layer D received 350 rads. Germination rate was reported to be 73.8 percent for space exposed seeds and 70.3 percent for earth based control seeds. Tests conducted within the first six months after retrieval indicated space exposed seeds germinated in an average of 8.0 days, while earth based control seeds' average germination rate was 8.3 days. Some mutations (assumed to be radiation induced) reported by students and Park Seed include plants that added a leaf instead of the usual flower at the end of the flower front and fruit produced from a flower with a variegated calyx bore seeds producing albino plants, while fruit from a flower with a green calyx from the same plant bore seeds produced green plants.

  3. CvADH1, a member of short-chain alcohol dehydrogenase family, is inducible by gibberellin and sucrose in developing watermelon seeds.

    PubMed

    Kim, Joonyul; Kang, Hong-Gyu; Jun, Sung-Hoon; Lee, Jinwon; Yim, Jieun; An, Gynheung

    2003-01-01

    To understand the molecular mechanisms that control seed formation, we selected a seed-preferential gene (CvADH1) from the ESTs of developing watermelon seeds. RNA blot analysis and in situ localization showed that CvADH1 was preferentially expressed in the nucellar tissue. The CvADH1 protein shared about 50% homology with short-chain alcohol dehydrogenase including ABA2 in Arabidopsis thaliana, stem secoisolariciresinol dehydrogenase in Forsythia intermedia, and 3beta-hydroxysterol dehydrogenase in Digitalis lanata. We investigated gene-expression levels in seeds from both normally pollinated fruits and those made parthenocarpic via N-(2-chloro-4-pyridyl)-N'-phenylurea treatment, the latter of which lack zygotic tissues. Whereas the transcripts of CvADH1 rapidly started to accumulate from about the pre-heart stage in normal seeds, they were not detectable in the parthenocarpic seeds. Treating the parthenogenic fruit with GA(3) strongly induced gene expression, up to the level accumulated in pollinated seeds. These results suggest that the CvADH1 gene is induced in maternal tissues by signals made in the zygotic tissues, and that gibberellin might be one of those signals. We also observed that CvADH1 expression was induced by sucrose in the parthenocarpic seeds. Therefore, we propose that the CvADH1 gene is inducible by gibberellin, and that sucrose plays an important role in the maternal tissues of watermelon during early seed development.

  4. Disasters and development in agricultural input markets: bean seed markets in Honduras after Hurricane Mitch.

    PubMed

    Mainville, Denise Y

    2003-06-01

    The bulk of developing countries' populations and poor depend on agriculture for food and income. While rural economies and people are generally the most severely affected by natural disasters, little is known about how disasters and subsequent relief activities affect agricultural markets with differing levels of development. The article addresses this gap, drawing evidence from bean seed markets in Honduras after Hurricane Mitch. Case studies are used to address hypotheses about a disaster's effects on supply and demand in seed markets, farmers' responses and the performance of relief interventions in markets showing differing levels of development. The results show the importance of tailoring relief interventions to the markets that they will affect and to the specific effects of a disaster; the potential to use local and emerging seed distribution channels in a relief intervention; and opportunities for relief activities to strengthen community seed systems.

  5. 36 CFR § 910.31 - High architectural quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true High architectural quality. Â... PENNSYLVANIA AVENUE DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.31 High architectural quality. Development must maintain a uniformly high standard of architecture, representative of...

  6. Advances in seed conservation of wild plant species: a review of recent research

    PubMed Central

    Hay, Fiona R.; Probert, Robin J.

    2013-01-01

    Seed banking is now widely used for the ex situ conservation of wild plant species. Many seed banks that conserve wild species broadly follow international genebank guidelines for seed collection, processing, storage, and management. However, over the last 10–20 years, problems and knowledge gaps have been identified, which have led to more focused seed conservation research on diverse species. For example, there is now greater ecogeographic understanding of seed storage behaviour and of the relative longevity of orthodox seeds, and we are therefore able to predict which species should be conserved using cryostorage techniques; seed development studies have identified when seeds should be harvested for maximal tolerance of desiccation and longevity in storage, as well as highlighting how seed development can vary between species; and there is now a wealth of literature on the dormancy-breaking and germination requirements of wild species which, as well as enabling better management of accessions, will also mean that their use in restoration, species reintroduction, or for evaluation for other applications is possible. Future research may be focused, for example, on nursery and plant production systems for wild plant species that maximize genetic diversity, so that introduced seeds and plant materials have the resilience to cope with future environmental stresses. PMID:27293614

  7. Phenotypic plasticity in a complex world: interactive effects of food and temperature on fitness components of a seed beetle.

    PubMed

    Stillwell, R Craig; Wallin, William G; Hitchcock, Lisa J; Fox, Charles W

    2007-08-01

    Most studies of phenotypic plasticity investigate the effects of an individual environmental factor on organism phenotypes. However, organisms exist in an ecologically complex world where multiple environmental factors can interact to affect growth, development and life histories. Here, using a multifactorial experimental design, we examine the separate and interactive effects of two environmental factors, rearing host species (Vigna radiata, Vigna angularis and Vigna unguiculata) and temperature (20, 25, 30 and 35 degrees C), on growth and life history traits in two populations [Burkina Faso (BF) and South India (SI)] of the seed beetle, Callosobruchus maculatus. The two study populations of beetles responded differently to both rearing host and temperature. We also found a significant interaction between rearing host and temperature for body size, growth rate and female lifetime fecundity but not larval development time or larval survivorship. The interaction was most apparent for growth rate; the variance in growth rate among hosts increased with increasing temperature. However, the details of host differences differed between our two study populations; the degree to which V. unguiculata was a better host than V. angularis or V. radiata increased at higher temperatures for BF beetles, whereas the degree to which V. unguiculata was the worst host increased at higher temperatures for SI beetles. We also found that the heritabilities of body mass, growth rate and fecundity were similar among rearing hosts and temperatures, and that the cross-temperature genetic correlation was not affected by rearing host, suggesting that genetic architecture is generally stable across rearing conditions. The most important finding of our study is that multiple environmental factors can interact to affect organism growth, but the degree of interaction, and thus the degree of complexity of phenotypic plasticity, varies among traits and between populations.

  8. Bioengineering Human Myocardium on Native Extracellular Matrix

    PubMed Central

    Guyette, Jacques P.; Charest, Jonathan M; Mills, Robert W; Jank, Bernhard J.; Moser, Philipp T.; Gilpin, Sarah E.; Gershlak, Joshua R.; Okamoto, Tatsuya; Gonzalez, Gabriel; Milan, David J.; Gaudette, Glenn R.; Ott, Harald C.

    2015-01-01

    Rationale More than 25 million individuals suffer from heart failure worldwide, with nearly 4,000 patients currently awaiting heart transplantation in the United States. Donor organ shortage and allograft rejection remain major limitations with only about 2,500 hearts transplanted each year. As a theoretical alternative to allotransplantation, patient-derived bioartificial myocardium could provide functional support and ultimately impact the treatment of heart failure. Objective The objective of this study is to translate previous work to human scale and clinically relevant cells, for the bioengineering of functional myocardial tissue based on the combination of human cardiac matrix and human iPS-derived cardiac myocytes. Methods and Results To provide a clinically relevant tissue scaffold, we translated perfusion-decellularization to human scale and obtained biocompatible human acellular cardiac scaffolds with preserved extracellular matrix composition, architecture, and perfusable coronary vasculature. We then repopulated this native human cardiac matrix with cardiac myocytes derived from non-transgenic human induced pluripotent stem cells (iPSCs) and generated tissues of increasing three-dimensional complexity. We maintained such cardiac tissue constructs in culture for 120 days to demonstrate definitive sarcomeric structure, cell and matrix deformation, contractile force, and electrical conduction. To show that functional myocardial tissue of human scale can be built on this platform, we then partially recellularized human whole heart scaffolds with human iPSC-derived cardiac myocytes. Under biomimetic culture, the seeded constructs developed force-generating human myocardial tissue, showed electrical conductivity, left ventricular pressure development, and metabolic function. Conclusions Native cardiac extracellular matrix scaffolds maintain matrix components and structure to support the seeding and engraftment of human iPS-derived cardiac myocytes, and enable the bioengineering of functional human myocardial-like tissue of multiple complexities. PMID:26503464

  9. Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis.

    PubMed

    He, Hanzi; de Souza Vidigal, Deborah; Snoek, L Basten; Schnabel, Sabine; Nijveen, Harm; Hilhorst, Henk; Bentsink, Leónie

    2014-12-01

    Seed performance after dispersal is highly dependent on parental environmental cues, especially during seed formation and maturation. Here we examine which environmental factors are the most dominant in this respect and whether their effects are dependent on the genotypes under investigation. We studied the influence of light intensity, photoperiod, temperature, nitrate, and phosphate during seed development on five plant attributes and thirteen seed attributes, using 12 Arabidopsis genotypes that have been reported to be affected in seed traits. As expected, the various environments during seed development resulted in changed plant and/or seed performances. Comparative analysis clearly indicated that, overall, temperature plays the most dominant role in both plant and seed performance, whereas light has a prominent impact on plant traits. In comparison to temperature and light, nitrate mildly affected some of the plant and seed traits while phosphate had even less influence on those traits. Moreover, clear genotype-by-environment interactions were identified. This was shown by the fact that individual genotypes responded differentially to the environmental conditions. Low temperature significantly increased seed dormancy and decreased seed longevity of NILDOG1 and cyp707a1-1, whereas low light intensity increased seed dormancy and decreased seed longevity of NILDOG3 and NILDOG6. This also indicates that different genetic and molecular pathways are involved in the plant and seed responses. By identifying environmental conditions that affect the dormancy vs longevity correlation in the same way as previously identified naturally occurring loci, we have identified selective forces that probably shaped evolution for these important seed traits. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Standardized Method for High-throughput Sterilization of Arabidopsis Seeds.

    PubMed

    Lindsey, Benson E; Rivero, Luz; Calhoun, Chistopher S; Grotewold, Erich; Brkljacic, Jelena

    2017-10-17

    Arabidopsis thaliana (Arabidopsis) seedlings often need to be grown on sterile media. This requires prior seed sterilization to prevent the growth of microbial contaminants present on the seed surface. Currently, Arabidopsis seeds are sterilized using two distinct sterilization techniques in conditions that differ slightly between labs and have not been standardized, often resulting in only partially effective sterilization or in excessive seed mortality. Most of these methods are also not easily scalable to a large number of seed lines of diverse genotypes. As technologies for high-throughput analysis of Arabidopsis continue to proliferate, standardized techniques for sterilizing large numbers of seeds of different genotypes are becoming essential for conducting these types of experiments. The response of a number of Arabidopsis lines to two different sterilization techniques was evaluated based on seed germination rate and the level of seed contamination with microbes and other pathogens. The treatments included different concentrations of sterilizing agents and times of exposure, combined to determine optimal conditions for Arabidopsis seed sterilization. Optimized protocols have been developed for two different sterilization methods: bleach (liquid-phase) and chlorine (Cl2) gas (vapor-phase), both resulting in high seed germination rates and minimal microbial contamination. The utility of these protocols was illustrated through the testing of both wild type and mutant seeds with a range of germination potentials. Our results show that seeds can be effectively sterilized using either method without excessive seed mortality, although detrimental effects of sterilization were observed for seeds with lower than optimal germination potential. In addition, an equation was developed to enable researchers to apply the standardized chlorine gas sterilization conditions to airtight containers of different sizes. The protocols described here allow easy, efficient, and inexpensive seed sterilization for a large number of Arabidopsis lines.

  11. Standardized Method for High-throughput Sterilization of Arabidopsis Seeds

    PubMed Central

    Calhoun, Chistopher S.; Grotewold, Erich; Brkljacic, Jelena

    2017-01-01

    Arabidopsis thaliana (Arabidopsis) seedlings often need to be grown on sterile media. This requires prior seed sterilization to prevent the growth of microbial contaminants present on the seed surface. Currently, Arabidopsis seeds are sterilized using two distinct sterilization techniques in conditions that differ slightly between labs and have not been standardized, often resulting in only partially effective sterilization or in excessive seed mortality. Most of these methods are also not easily scalable to a large number of seed lines of diverse genotypes. As technologies for high-throughput analysis of Arabidopsis continue to proliferate, standardized techniques for sterilizing large numbers of seeds of different genotypes are becoming essential for conducting these types of experiments. The response of a number of Arabidopsis lines to two different sterilization techniques was evaluated based on seed germination rate and the level of seed contamination with microbes and other pathogens. The treatments included different concentrations of sterilizing agents and times of exposure, combined to determine optimal conditions for Arabidopsis seed sterilization. Optimized protocols have been developed for two different sterilization methods: bleach (liquid-phase) and chlorine (Cl2) gas (vapor-phase), both resulting in high seed germination rates and minimal microbial contamination. The utility of these protocols was illustrated through the testing of both wild type and mutant seeds with a range of germination potentials. Our results show that seeds can be effectively sterilized using either method without excessive seed mortality, although detrimental effects of sterilization were observed for seeds with lower than optimal germination potential. In addition, an equation was developed to enable researchers to apply the standardized chlorine gas sterilization conditions to airtight containers of different sizes. The protocols described here allow easy, efficient, and inexpensive seed sterilization for a large number of Arabidopsis lines. PMID:29155739

  12. Preservation of micro-architecture and angiogenic potential in a pulmonary acellular matrix obtained using intermittent intra-tracheal flow of detergent enzymatic treatment.

    PubMed

    Maghsoudlou, Panagiotis; Georgiades, Fanourios; Tyraskis, Athanasios; Totonelli, Giorgia; Loukogeorgakis, Stavros P; Orlando, Giuseppe; Shangaris, Panicos; Lange, Peggy; Delalande, Jean-Marie; Burns, Alan J; Cenedese, Angelo; Sebire, Neil J; Turmaine, Mark; Guest, Brogan N; Alcorn, John F; Atala, Anthony; Birchall, Martin A; Elliott, Martin J; Eaton, Simon; Pierro, Agostino; Gilbert, Thomas W; De Coppi, Paolo

    2013-09-01

    Tissue engineering of autologous lung tissue aims to become a therapeutic alternative to transplantation. Efforts published so far in creating scaffolds have used harsh decellularization techniques that damage the extracellular matrix (ECM), deplete its components and take up to 5 weeks to perform. The aim of this study was to create a lung natural acellular scaffold using a method that will reduce the time of production and better preserve scaffold architecture and ECM components. Decellularization of rat lungs via the intratracheal route removed most of the nuclear material when compared to the other entry points. An intermittent inflation approach that mimics lung respiration yielded an acellular scaffold in a shorter time with an improved preservation of pulmonary micro-architecture. Electron microscopy demonstrated the maintenance of an intact alveolar network, with no evidence of collapse or tearing. Pulsatile dye injection via the vasculature indicated an intact capillary network in the scaffold. Morphometry analysis demonstrated a significant increase in alveolar fractional volume, with alveolar size analysis confirming that alveolar dimensions were maintained. Biomechanical testing of the scaffolds indicated an increase in resistance and elastance when compared to fresh lungs. Staining and quantification for ECM components showed a presence of collagen, elastin, GAG and laminin. The intratracheal intermittent decellularization methodology could be translated to sheep lungs, demonstrating a preservation of ECM components, alveolar and vascular architecture. Decellularization treatment and methodology preserves lung architecture and ECM whilst reducing the production time to 3 h. Cell seeding and in vivo experiments are necessary to proceed towards clinical translation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Evaluating soybean breeding lines developed from differenct sources of resistance to phomopsis seed decay

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) causes poor soybean seed quality worldwide. The primary causal agent of PSD is Phomopsis longicolla (syn. Diaporthe longicolla). Breeding for PSD-resistance is the most effective long-term strategy to control this disease. To develop soybean lines with resistance to PSD, m...

  14. Role of nano-range amphiphilic polymers in seed quality enhancement of soybean and imidacloprid retention capacity on seed coatings.

    PubMed

    Adak, Totan; Kumar, Jitendra; Shakil, Najam A; Pandey, Sushil

    2016-10-01

    Nano-size and wide-range solubility of amphiphilic polymers (having both hydrophilic and hydrophobic blocks) can improve uniformity in seed coatings. An investigation was carried out to assess the positive effect of amphiphilic polymers over hydrophilic or hydrophobic polymers as seed coating agents and pesticide carriers. Amphiphilic polymers with 127.5-354 nm micelle size were synthesized in the laboratory using polyethylene glycols and aliphatic di-acids. After 6 months of storage, germination of uncoated soybean seeds decreased drastically from 97.80 to 81.55%, while polymer-coated seeds showed 89.44-95.92% germination. Similarly, vigour index-1 was reduced from 3841.10 to 2813.06 for control seeds but ranged from 3375.59 to 3844.60 for polymer-coated seeds after 6 months. The developed imidacloprid formulations retained more pesticide on soybean seed coatings than did a commercial formulation (Gaucho(®) 600 FS). The time taken for 50% release of imidacloprid from seed coatings in water was 7.12-9.11 h for the developed formulations and 0.41 h for the commercial formulation. Nano-range amphiphilic polymers can be used to protect soybean seeds from ageing. Formulations as seed treatments may produce improved and sustained efficacy with minimum environmental contamination. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. 23 CFR 940.9 - Regional ITS architecture.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Regional ITS architecture. 940.9 Section 940.9 Highways... INTELLIGENT TRANSPORTATION SYSTEM ARCHITECTURE AND STANDARDS § 940.9 Regional ITS architecture. (a) A regional ITS architecture shall be developed to guide the development of ITS projects and programs and be...

  16. Colloidal strategies for controlling the morphology, composition, and crystal structure of inorganic nanoparticles

    NASA Astrophysics Data System (ADS)

    Hodges, James M.

    Emerging applications and fundamental studies require nanomaterials with increasingly sophisticated architectures that have precise composition, morphology, and crystal structure. Colloidal nanochemistry has emerged as one of the most effective methods for generating high quality, monodisperse nanoparticles with diverse structural features and highly complex geometries. These wet-chemical approaches offer an array of synthetic levers that can be used to tailor nanoparticles for targeted applications, and deliver solution-dispersible solids that are easily integrated onto device architectures. Additionally, colloidal nanoparticles can be used as building blocks for constructing periodic superlattices and multicomponent hybrid nanoparticles, which offer unique properties that can support next-generation technologies. As the applications for colloidal nanoparticles continue to expand, the architectural and compositional requirements for these materials are becoming increasingly rigid. Conventional colloidal methods are effective for generating diverse nanoparticle systems, but rely on complex nucleation and growth processes, which are often poorly understood and difficult to control in dynamic reaction environments. For these reasons, there are a number of high profile nanoparticle targets that remain out of reach. Accordingly, new approaches are needed that can circumvent these synthetic bottlenecks and narrow the growing disconnect between nano-design and synthetic capability. In this dissertation, I present several colloidal strategies for engineering synthetically challenging nanomaterials using multistep reaction sequences that, in many ways, parallel the total-synthesis framework that organic chemists use to access complex molecules. A variety of approaches are discussed, including nanoscale ion exchange transformations and seeded-growth protocol for constructing multicomponent hybrid nanoparticles. First, I demonstrate that solution-mediated anion and cation exchange can be integrated into one multistep reaction sequence, which leads to a complete material transformation of a pre-synthesized nanotemplate. Importantly, although the final product does not contain any of the original elements, the morphology is retained, effectively decoupling morphology and composition control. Next, I demonstrate that both anion and cation sublattice features of preformed Cu2-xS nanocrystals can be retained during cation exchange with Co2+ and Mn2+, yielding wurtzite-type CoS and MnS polymorphs that are metastable in bulk systems. This study was enabled by new cation exchange chemistry with previously unexplored 3d transition metal systems, and offers new guidelines for predictably targeting sublattice features in colloidal nanomaterials. To conclude the dissertation, I offer two studies investigating the seeded-growth synthesis of three-component Ag-Pt-Fe3O4 heterotrimer nanoparticles, which are generated by adding a Ag domain to preformed Pt-Fe 3O4 heterodimers. First, to gain access to the alternate Pt-Fe3O4-Ag configuration, I demonstrate that a thin iron oxide shell can be applied to the Pt surface of the Pt-Fe3O 4 seeds, which acts as a solid-state protecting group that can direct Ag growth onto the Fe3O4 domain, producing the otherwise inaccessible Pt-Fe3O4-Ag architecture. This strategy is inspired by similar techniques used in organic synthesis, and represents an important addition to the 'total synthesis toolbox' used to construct colloidal hybrid nanoparticles. Finally, I offer an in-depth microscopic investigation that probes the chemoselective addition of Ag to Pt-Fe 3O4 to form the Ag-Pt-Fe3O4 heterotrimer product. This study reveals that Ag indiscriminately nucleates on both the Pt and Fe3O4 domains of the Pt-Fe3O 4 seeds during the early stages of the reaction, followed by a surface-mediated coalescence of Ag onto the Pt domain to yield the Ag-Pt-Fe3O 4 configuration. The mechanistic insights gained in this work provide new design criteria for synthesizing multicomponent hybrid nanoparticle systems with targeted configurations.

  17. 7 CFR 201.68 - Eligibility requirements for certification of varieties.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Certified Seed § 201.68 Eligibility requirements... breeding procedure used in its development. (c) A detailed description of the morphological, physiological, and other characteristics of the plants and seed that distinguish it from other varieties. (d...

  18. [Procedure of seed quality testing and seed grading standard of Prunus humilis].

    PubMed

    Wen, Hao; Ren, Guang-Xi; Gao, Ya; Luo, Jun; Liu, Chun-Sheng; Li, Wei-Dong

    2014-11-01

    So far there exists no corresponding quality test procedures and grading standards for the seed of Prunus humilis, which is one of the important source of base of semen pruni. Therefor we set up test procedures that are adapt to characteristics of the P. humilis seed through the study of the test of sampling, seed purity, thousand-grain weight, seed moisture, seed viability and germination percentage. 50 cases of seed specimens of P. humilis tested. The related data were analyzed by cluster analysis. Through this research, the seed quality test procedure was developed, and the seed quality grading standard was formulated. The seed quality of each grade should meet the following requirements: for first grade seeds, germination percentage ≥ 68%, thousand-grain weight 383 g, purity ≥ 93%, seed moisture ≤ 5%; for second grade seeds, germination percentage ≥ 26%, thousand-grain weight ≥ 266 g, purity ≥ 73%, seed moisture ≤9%; for third grade seeds, germination percentage ≥ 10%, purity ≥ 50%, thousand-grain weight ≥ 08 g, seed moisture ≤ 13%.

  19. Gene expression analysis of flax seed development

    PubMed Central

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise even low-expressed genes such as those encoding transcription factors. This has allowed us to delineate the spatio-temporal aspects of gene expression underlying the biosynthesis of a number of important seed constituents in flax. Flax belongs to a taxonomic group of diverse plants and the large sequence database will allow for evolutionary studies as well. PMID:21529361

  20. Space station needs, attributes and architectural options. Volume 4, attachment 1: Task 2 and 3 mission implementation and cost

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Mission scenario analysis and architectural concepts, alternative systems concepts, mission operations and architectural development, architectural analysis trades, evolution, configuration, and technology development are assessed.

  1. Disruption of endosperm development is a major cause of hybrid seed inviability between Mimulus guttatus and Mimulus nudatus.

    PubMed

    Oneal, Elen; Willis, John H; Franks, Robert G

    2016-05-01

    Divergence of developmental mechanisms within populations could lead to hybrid developmental failure, and might be a factor driving speciation in angiosperms. We investigate patterns of endosperm and embryo development in Mimulus guttatus and the closely related, serpentine endemic Mimulus nudatus, and compare them to those of reciprocal hybrid seed. We address whether disruption in hybrid seed development is the primary source of reproductive isolation between these sympatric taxa. M. guttatus and M. nudatus differ in the pattern and timing of endosperm and embryo development. Some hybrid seeds exhibit early disruption of endosperm development and are completely inviable, while others develop relatively normally at first, but later exhibit impaired endosperm proliferation and low germination success. These developmental patterns are reflected in mature hybrid seeds, which are either small and flat (indicating little to no endosperm) or shriveled (indicating reduced endosperm volume). Hybrid seed inviability forms a potent reproductive barrier between M. guttatus and M. nudatus. We shed light on the extent of developmental variation between closely related species within the M. guttatus species complex, an important ecological model system, and provide a partial mechanism for the hybrid barrier between M. guttatus and M. nudatus. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Yan; Liu, Chunying; Lu, Wenwen

    The plant seeds formation are crucial parts in reproductive process in seed plants as well as food source for humans. Proper embryo development ensure viable seed formation. Here, we showed an Arabidopsis T-DNA insertion mutant slow embryo development1 (sed1) which exhibited retarded embryogenesis, led to aborted seeds. Embryo without SED1 developed slower compared to normal one and could be recognized at early globular stage by its white appearance. In later development stage, storage accumulated poorly with less protein and lipid body production. In vitro culture did not rescue albino embryo. SED1 encoded a protein targeted to mitochondria. Transmission electron microscopic analysismore » revealed that mitochondria developed abnormally, and more strikingly plastid failed to construct grana in time in sed1/sed1 embryo. These data indicated that SED1 is indispensable for embryogenesis in Arabidopsis, and the mitochondria may be involved in the regulation of many aspects of seed development. -- Highlights: •Arabidopsis SED1 is essential for embryo development. •The sed1 embryo accumulates less storage and has abnormal ultrastructure. •SED1 localizes to the mitochondrion.« less

  3. ASAC Executive Assistant Architecture Description Summary

    NASA Technical Reports Server (NTRS)

    Roberts, Eileen; Villani, James A.

    1997-01-01

    In this technical document, we describe the system architecture developed for the Aviation System Analysis Capability (ASAC) Executive Assistant (EA). We describe the genesis and role of the ASAC system, discuss the objectives of the ASAC system and provide an overview of components and models within the ASAC system, discuss our choice for an architecture methodology, the Domain Specific Software Architecture (DSSA), and the DSSA approach to developing a system architecture, and describe the development process and the results of the ASAC EA system architecture. The document has six appendices.

  4. Acquisition of physical dormancy and ontogeny of the micropyle–water-gap complex in developing seeds of Geranium carolinianum (Geraniaceae)

    PubMed Central

    Gama-Arachchige, N. S.; Baskin, J. M.; Geneve, R. L.; Baskin, C. C.

    2011-01-01

    Background and Aims The ‘hinged valve gap’ has been previously identified as the initial site of water entry (i.e. water gap) in physically dormant (PY) seeds of Geranium carolinianum (Geraniaceae). However, neither the ontogeny of the hinged valve gap nor acquisition of PY by seeds of Geraniaceae has been studied previously. The aims of the present study were to investigate the physiological events related to acquisition of PY and the ontogeny of the hinged valve gap and seed coat of G. carolinianum. Methods Seeds of G. carolinianum were studied from the ovule stage until dispersal. The developmental stages of acquisition of germinability, physiological maturity and PY were determined by seed measurement, germination and imbibition experiments using intact seeds and isolated embryos of both fresh and slow-dried seeds. Ontogeny of the seed coat and water gap was studied using light microscopy. Key Results Developing seeds achieved germinability, physiological maturity and PY on days 9, 14 and 20 after pollination (DAP), respectively. The critical moisture content of seeds on acquisition of PY was 11 %. Slow-drying caused the stage of acquisition of PY to shift from 20 to 13 DAP. Greater extent of cell division and differentiation at the micropyle, water gap and chalaza than at the rest of the seed coat resulted in particular anatomical features. Palisade and subpalisade cells of varying forms developed in these sites. A clear demarcation between the water gap and micropyle is not evident due to their close proximity. Conclusions Acquisition of PY in seeds of G. carolinianum occurs after physiological maturity and is triggered by maturation drying. The micropyle and water gap cannot be considered as two separate entities, and thus it is more appropriate to consider them together as a ‘micropyle–water-gap complex’. PMID:21546433

  5. Seed-vectored endophytic bacteria modulate development of rice seedlings.

    PubMed

    Verma, S K; Kingsley, K; Irizarry, I; Bergen, M; Kharwar, R N; White, J F

    2017-06-01

    The aim of the present study was to evaluate the effects of the removal of indigenous bacteria from rice seeds on seedling growth and development. Here we report the presence of three indigenous endophytic bacteria in rice seeds that play important roles in modulating seedling development (shoot and root lengths, and formation of root hairs and secondary roots) and defence against pathogens. Seed-associated bacteria were removed using surface sterilization with NaOCl (bleach) followed by antibiotic treatment. When bacteria were absent, growth of seedlings in terms of root hair development and overall seedling size was less than that of seedlings that contained bacteria. Reactive oxygen staining of seedlings showed that endophytic bacteria became intracellular in root parenchyma cells and root hairs. Roots containing endophytic bacteria were seen to stain densely for reactive oxygen, while roots free of bacteria stained lightly for reactive oxygen. Bacteria were isolated and identified as Enterobacter asburiae (VWB1), Pantoea dispersa (VWB2) and Pseudomonas putida (VWB3) by 16S rDNA sequencing. Bacteria were found to produce indole acetic acid (auxins), inhibited the pathogen Fusarium oxysporum and solubilized phosphate. Reinoculation of bacteria onto seedlings derived from surface-disinfected rice and Bermuda grass seeds significantly restored seedling growth and development. Rice seeds harbour indigenous bacterial endophytes that greatly influence seedling growth and development, including root and shoot lengths, root hair formation and disease susceptibility of rice seedlings. This study shows that seeds of rice naturally harbour bacterial endophytes that play key roles in modulation of seedling development. © 2017 The Society for Applied Microbiology.

  6. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution.

    PubMed

    Karlgren, Anna; Gyllenstrand, Niclas; Källman, Thomas; Sundström, Jens F; Moore, David; Lascoux, Martin; Lagercrantz, Ulf

    2011-08-01

    The phosphatidyl ethanolamine-binding protein (PEBP) gene family is present in all eukaryote kingdoms, with three subfamilies identified in angiosperms (FLOWERING LOCUS T [FT], MOTHER OF FT AND TFL1 [MFT], and TERMINAL FLOWER1 [TFL1] like). In angiosperms, PEBP genes have been shown to function both as promoters and suppressors of flowering and to control plant architecture. In this study, we focus on previously uncharacterized PEBP genes from gymnosperms. Extensive database searches suggest that gymnosperms possess only two types of PEBP genes, MFT-like and a group that occupies an intermediate phylogenetic position between the FT-like and TFL1-like (FT/TFL1-like). Overexpression of Picea abies PEBP genes in Arabidopsis (Arabidopsis thaliana) suggests that the FT/TFL1-like genes (PaFTL1 and PaFTL2) code for proteins with a TFL1-like function. However, PaFTL1 and PaFTL2 also show highly divergent expression patterns. While the expression of PaFTL2 is correlated with annual growth rhythm and mainly confined to needles and vegetative and reproductive buds, the expression of PaFTL1 is largely restricted to microsporophylls of male cones. The P. abies MFT-like genes (PaMFT1 and PaMFT2) show a predominant expression during embryo development, a pattern that is also found for many MFT-like genes from angiosperms. P. abies PEBP gene expression is primarily detected in tissues undergoing physiological changes related to growth arrest and dormancy. A first duplication event resulting in two families of plant PEBP genes (MFT-like and FT/TFL1-like) seems to coincide with the evolution of seed plants, in which independent control of bud and seed dormancy was required, and the second duplication resulting in the FT-like and TFL1-like clades probably coincided with the evolution of angiosperms.

  7. Web Services and Data Enhancements at the Northern California Earthquake Data Center

    NASA Astrophysics Data System (ADS)

    Neuhauser, D. S.; Zuzlewski, S.; Lombard, P. N.; Allen, R. M.

    2013-12-01

    The Northern California Earthquake Data Center (NCEDC) provides data archive and distribution services for seismological and geophysical data sets that encompass northern California. The NCEDC is enhancing its ability to deliver rapid information through Web Services. NCEDC Web Services use well-established web server and client protocols and REST software architecture to allow users to easily make queries using web browsers or simple program interfaces and to receive the requested data in real-time rather than through batch or email-based requests. Data are returned to the user in the appropriate format such as XML, RESP, simple text, or MiniSEED depending on the service and selected output format. The NCEDC offers the following web services that are compliant with the International Federation of Digital Seismograph Networks (FDSN) web services specifications: (1) fdsn-dataselect: time series data delivered in MiniSEED format, (2) fdsn-station: station and channel metadata and time series availability delivered in StationXML format, (3) fdsn-event: earthquake event information delivered in QuakeML format. In addition, the NCEDC offers the the following IRIS-compatible web services: (1) sacpz: provide channel gains, poles, and zeros in SAC format, (2) resp: provide channel response information in RESP format, (3) dataless: provide station and channel metadata in Dataless SEED format. The NCEDC is also developing a web service to deliver timeseries from pre-assembled event waveform gathers. The NCEDC has waveform gathers for ~750,000 northern and central California events from 1984 to the present, many of which were created by the USGS NCSN prior to the establishment of the joint NCSS (Northern California Seismic System). We are currently adding waveforms to these older event gathers with time series from the UCB networks and other networks with waveforms archived at the NCEDC, and ensuring that the waveform for each channel in the event gathers have the highest quality waveform from the archive.

  8. 7 CFR 52.1844 - Definition of terms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... branches of the bunch. (b) A piece of stem means a portion of the branch or main stem. (c) Seeds refers to whole, fully developed seeds which have not been removed during the processing of seeded raisins with seeds. (d) Damaged raisins means raisins affected by sunburn, scars, insect injury, mechanical injury...

  9. 7 CFR 52.1844 - Definition of terms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... branches of the bunch. (b) A piece of stem means a portion of the branch or main stem. (c) Seeds refers to whole, fully developed seeds which have not been removed during the processing of seeded raisins with seeds. (d) Damaged raisins means raisins affected by sunburn, scars, insect injury, mechanical injury...

  10. Seeds: A Celebration of Science.

    ERIC Educational Resources Information Center

    Melton, Bob

    The Space Exposed Experiment Developed for Students (SEEDS) Project offered science classes at the 5-12 and college levels the opportunity to conduct experiments involving tomato seeds that had been space-exposed over long periods of time. SEEDS kits were complete packages obtained from the National Aeronautics and Space Administration (NASA) for…

  11. Proangiogenic scaffolds as functional templates for cardiac tissue engineering.

    PubMed

    Madden, Lauran R; Mortisen, Derek J; Sussman, Eric M; Dupras, Sarah K; Fugate, James A; Cuy, Janet L; Hauch, Kip D; Laflamme, Michael A; Murry, Charles E; Ratner, Buddy D

    2010-08-24

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30-40 microm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response.

  12. Proangiogenic scaffolds as functional templates for cardiac tissue engineering

    PubMed Central

    Madden, Lauran R.; Mortisen, Derek J.; Sussman, Eric M.; Dupras, Sarah K.; Fugate, James A.; Cuy, Janet L.; Hauch, Kip D.; Laflamme, Michael A.; Murry, Charles E.; Ratner, Buddy D.

    2010-01-01

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30–40 μm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response. PMID:20696917

  13. Image-processing algorithms for inspecting characteristics of hybrid rice seed

    NASA Astrophysics Data System (ADS)

    Cheng, Fang; Ying, Yibin

    2004-03-01

    Incompletely closed glumes, germ and disease are three characteristics of hybrid rice seed. Image-processing algorithms developed to detect these seed characteristics were presented in this paper. The rice seed used for this study involved five varieties of Jinyou402, Shanyou10, Zhongyou207, Jiayou and IIyou. The algorithms were implemented with a 5*600 images set, a 4*400 images set and the other 5*600 images set respectively. The image sets included black background images, white background images and both sides images of rice seed. Results show that the algorithm for inspecting seeds with incompletely closed glumes based on Radon Transform achieved an accuracy of 96% for normal seeds, 92% for seeds with fine fissure and 87% for seeds with unclosed glumes, the algorithm for inspecting germinated seeds on panicle based on PCA and ANN achieved n average accuracy of 98% for normal seeds, 88% for germinated seeds on panicle and the algorithm for inspecting diseased seeds based on color features achieved an accuracy of 92% for normal and healthy seeds, 95% for spot diseased seeds and 83% for severe diseased seeds.

  14. Selection for low dormancy in annual ryegrass (Lolium rigidum) seeds results in high constitutive expression of a glucose-responsive α-amylase isoform

    PubMed Central

    Goggin, Danica E.; Powles, Stephen B.

    2012-01-01

    Background and Aims α-Amylase in grass caryopses (seeds) is usually expressed upon commencement of germination and is rarely seen in dry, mature seeds. A heat-stable α-amylase activity was unexpectedly selected for expression in dry annual ryegrass (Lolium rigidum) seeds during targeted selection for low primary dormancy. The aim of this study was to characterize this constitutive activity biochemically and determine if its presence conferred insensitivity to the germination inhibitors abscisic acid and benzoxazolinone. Methods α-Amylase activity in developing, mature and germinating seeds from the selected (low-dormancy) and a field-collected (dormant) population was characterized by native activity PAGE. The response of seed germination and α-amylase activity to abscisic acid and benzoxazolinone was assessed. Using an alginate affinity matrix, α-amylase was purified from dry and germinating seeds for analysis of its enzymatic properties. Key Results The constitutive α-amylase activity appeared late during seed development and was mainly localized in the aleurone; in germinating seeds, this activity was responsive to both glucose and gibberellin. It migrated differently on native PAGE compared with the major activities in germinating seeds of the dormant population, but the enzymatic properties of α-amylase purified from the low-dormancy and dormant seeds were largely indistinguishable. Seed imbibition on benzoxazolinone had little effect on the low-dormancy seeds but greatly inhibited germination and α-amylase activity in the dormant population. Conclusions The constitutive α-amylase activity in annual ryegrass seeds selected for low dormancy is electrophoretically different from that in germinating seeds and its presence confers insensitivity to benzoxazolinone. The concurrent selection of low dormancy and constitutive α-amylase activity may help to enhance seedling establishment under competitive conditions. PMID:23002268

  15. Biogenesis of protein bodies during legumin accumulation in developing olive (Olea europaea L.) seed.

    PubMed

    Jimenez-Lopez, Jose C; Zienkiewicz, Agnieszka; Zienkiewicz, Krzysztof; Alché, Juan D; Rodríguez-García, Maria I

    2016-03-01

    Much of our current knowledge about seed development and differentiation regarding reserves synthesis and accumulation come from monocot (cereals) plants. Studies in dicotyledonous seeds differentiation are limited to a few species and in oleaginous species are even scarcer despite their agronomic and economic importance. We examined the changes accompanying the differentiation of olive endosperm and cotyledon with a focus on protein bodies (PBs) biogenesis during legumin protein synthesis and accumulation, with the aim of getting insights and a better understanding of the PBs' formation process. Cotyledon and endosperm undergo differentiation during seed development, where an asynchronous time-course of protein synthesis, accumulation, and differential PB formation patterns was found in both tissues. At the end of seed maturation, a broad population of PBs, particularly in cotyledon cells, was distinguishable in terms of number per cell and morphometric and cytochemical features. Olive seed development is a tissue-dependent process characterized by differential rates of legumin accumulation and PB formation in the main tissues integrating seed. One of the main features of the impressive differentiation process is the specific formation of a broad group of PBs, particularly in cotyledon cells, which might depend on selective accumulation and packaging of proteins and specific polypeptides into PBs. The nature and availability of the major components detected in the PBs of olive seed are key parameters in order to consider the potential use of this material as a suitable source of carbon and nitrogen for animal or even human use.

  16. Fantasy Seed Company: A Role Playing Game for Plant Breeding Courses

    ERIC Educational Resources Information Center

    Hague, Steve S.

    2011-01-01

    Understanding plant breeding as well as procedures and issues of seed companies are skills students studying agronomy need to acquire. Simulation games can be effective teaching tools in developing higher-order thinking skills of students. The "Fantasy Seed Company" game was developed to create motivated learners by allowing students to run a mock…

  17. Something Special for Teachers. A Schoolhouse Energy Teaching Program. SEED: Schoolhouse Energy Efficiency Demonstration.

    ERIC Educational Resources Information Center

    Anderson, Calvin E.; Bottinelli, Charles A.

    The Schoolhouse Energy Efficiency Demonstration (SEED) program was developed to assist schools in reducing the impact of rising energy costs. Developed as part of the SEED program, this publication was designed to provide background information on the energy issue and to briefly describe what future energy sources may be. It includes: (1)…

  18. Economic Intervention and Parenting: A Randomized Experiment of Statewide Child Development Accounts

    ERIC Educational Resources Information Center

    Nam, Yunju; Wikoff, Nora; Sherraden, Michael

    2016-01-01

    Objective: We examine the effects of Child Development Accounts (CDAs) on parenting stress and practices. Methods: We use data from the SEED for Oklahoma Kids (SEED OK) experiment. SEED OK selected caregivers of infants from Oklahoma birth certificates using a probability sampling method, randomly assigned caregivers to the treatment (n = 1,132)…

  19. Uptake of Seeds Secondary Metabolites by Virola surinamensis Seedlings

    PubMed Central

    Kato, Massuo Jorge; Yoshida, Massayoshi; Lopes, Norberto Peporine; da Silva, Denise Brentan; Cavalheiro, Alberto José

    2012-01-01

    The major secondary metabolites and fatty acids occurring in the seeds of Virola surinamensis were monitored by GC-MS during germination and seedling development. The role as carbon source for seedling development was indicated considering that both classes of compounds were similarly consumed in the seeds and that no selective consumption of compounds could be detected. PMID:22505921

  20. Development of Single-Seed Near-Infrared Spectroscopic Predictions of Corn and Soybeans Constituents Using Bulk Teference Values and Mean Spectra

    USDA-ARS?s Scientific Manuscript database

    Near-Infrared reflectance spectroscopic prediction models were developed for common constituents of corn and soybeans using bulk reference values and mean spectra from single-seeds. The bulk reference model and a true single-seed model for soybean protein were compared to determine how well the bul...

  1. Seed treatments enhance photosynthesis in maize seedlings by reducing infection with Fusarium spp. and consequent disease development in maize

    USDA-ARS?s Scientific Manuscript database

    The effects of a seed treatment on early season growth, seedling disease development, incidence Fusarium spp. infection, and photosynthetic performance of maize were evaluated at two locations in Iowa in 2007. Maize seed was either treated with Cruiser 2Extreme 250 ® (fludioxonil + azoxystrobin + me...

  2. Are seed and cone pathogens causing significant losses in Pacific Northwest seed orchards?

    Treesearch

    E.E. Nelson; W.G. Thies; C.Y. Li

    1986-01-01

    Cones systematically collected in 1983 from eight Douglas-fir seed orchards in western Washington and Oregon yielded large numbers of common molds. Fungi isolated from apparently healthy, developing cones were similar to those from necrotic cones. Necrosis in cones aborted in early stages of development was apparently not associated with pathogenic fungi or bacteria....

  3. Distribution and Properties of a Potassium-dependent Asparaginase Isolated from Developing Seeds of Pisum sativum and Other Plants 1

    PubMed Central

    Sodek, Ladaslav; Lea, Peter J.; Miflin, Benjamin J.

    1980-01-01

    Asparaginase (EC 3.5.1.1) was isolated from the developing seed of Pisum sativum. The enzyme is dependent upon the presence of K+ for activity, although Na+ and Rb+ may substitute to a lesser extent. Maximum activity was obtained at K+ concentrations above 20 millimolar. Potassium ions protected the enzyme against heat denaturation. The enzyme has a molecular weight of 68,300. Asparaginase activity developed initially in the testa, with maximum activity (3.6 micromoles per hour per seed) being present 13 days after flowering. Maximum activity (1.2 micromoles per hour per seed) did not develop in the cotyledon until 21 days after flowering. Glutamine synthetase and glutamate dehydrogenase were also present in the testae and cotyledons but maximum activity developed later than that of asparaginase. Potassium-dependent asparaginase activity was also detected in the developing seeds of Vicia faba, Phaseolus multiflorus, Zea mays, Hordeum vulgare, and two Lupinus varieties. No stimulation of activity was detected with the enzyme isolated from Lupinus polyphyllus, which has previously been shown to contain a K+-independent enzyme. PMID:16661136

  4. Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds.

    PubMed

    Renouard, Sullivan; Corbin, Cyrielle; Lopez, Tatiana; Montguillon, Josiane; Gutierrez, Laurent; Lamblin, Frédéric; Lainé, Eric; Hano, Christophe

    2012-01-01

    Secoisolariciresinol diglucoside (SDG), the main phytoestrogenic lignan of Linum usitatissimum, is accumulated in the seed coat of flax during its development and pinoresinol-lariciresinol reductase (PLR) is a key enzyme in flax for its synthesis. The promoter of LuPLR1, a flax gene encoding a pinoresinol lariciresinol reductase, contains putative regulatory boxes related to transcription activation by abscisic acid (ABA). Gel mobility shift experiments evidenced an interaction of nuclear proteins extracted from immature flax seed coat with a putative cis-acting element involved in ABA response. As ABA regulates a number of physiological events during seed development and maturation we have investigated its involvement in the regulation of this lignan synthesis by different means. ABA and SDG accumulation time courses in the seed as well as LuPLR1 expression were first determined in natural conditions. These results showed that ABA timing and localization of accumulation in the flax seed coat could be correlated with the LuPLR1 gene expression and SDG biosynthesis. Experimental modulations of ABA levels were performed by exogenous application of ABA or fluridone, an inhibitor of ABA synthesis. When submitted to exogenous ABA, immature seeds synthesized 3-times more SDG, whereas synthesis of SDG was reduced in immature seeds treated with fluridone. Similarly, the expression of LuPLR1 gene in the seed coat was up-regulated by exogenous ABA and down-regulated when fluridone was applied. These results demonstrate that SDG biosynthesis in the flax seed coat is positively controlled by ABA through the transcriptional regulation of LuPLR1 gene.

  5. Seeds in space experiment. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1992-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed in one sealed canister and in two small vented canisters. After being returned to earth, the seeds were germinated and the germination rates and development of the resulting plants were compared to the performance of the control seeds that stayed in the Park Seed's seed storage facility. There was a better survival rate in the sealed canister in space than at the storage facility at Park Seed. At least some of the seeds in each of the vented canisters survived the exposure to vacuum for almost six years. The number of observed apparent mutations was very low.

  6. Evolution of the Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.; Heller, Stuart

    2003-01-01

    The Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center develops systems engineers from existing discipline engineers. The program has evolved significantly since the report to INCOSE in 2003. This paper describes the SEED Program as it is now, outlines the changes over the last year, discusses current status and results, and shows the value of human systems and leadership skills for practicing systems engineers.

  7. [Effect of high intensity magnetic field on the processes of early growth in plant seeds and development of honeybees].

    PubMed

    Es'kov, E K; Darkov, A V

    2003-01-01

    The influence of magnetic field on the early growth processes in plant seeds and the postembryonic development of honeybees was studied. Some general trends in the effects of magnetic field and differences in the tolerance of plant seeds and developing honeybees to its action were revealed. Some factors that may be responsible for a low reproducibility of magneto-biological effects are discussed.

  8. A genome-wide association study of seed composition traits in wild soybean (Glycine soja).

    PubMed

    Leamy, Larry J; Zhang, Hengyou; Li, Changbao; Chen, Charles Y; Song, Bao-Hua

    2017-01-05

    Cultivated soybean (Glycine max) is a major agricultural crop that provides a crucial source of edible protein and oil. Decreased amounts of saturated palmitic acid and increased amounts of unsaturated oleic acid in soybean oil are considered optimal for human cardiovascular health and therefore there has considerable interest by breeders in discovering genes affecting the relative concentrations of these fatty acids. Using a genome-wide association (GWA) approach with nearly 30,000 single nucleotide polymorphisms (SNPs), we investigated the genetic basis of protein, oil and all five fatty acid levels in seeds from a sample of 570 wild soybeans (Glycine soja), the progenitor of domesticated soybean, to identify quantitative trait loci (QTLs) affecting these seed composition traits. We discovered 29 SNPs located on ten different chromosomes that are significantly associated with the seven seed composition traits in our wild soybean sample. Eight SNPs co-localized with QTLs previously uncovered in linkage or association mapping studies conducted with cultivated soybean samples, while the remaining SNPs appeared to be in novel locations. Twenty-four of the SNPs significantly associated with fatty acid variation, with the majority located on chromosomes 14 (6 SNPs) and seven (8 SNPs). Two SNPs were common for two or more fatty acids, suggesting loci with pleiotropic effects. We also identified some candidate genes that are involved in fatty acid metabolism and regulation. For each of the seven traits, most of the SNPs produced differences between the average phenotypic values of the two homozygotes of about one-half standard deviation and contributed over 3% of their total variability. This is the first GWA study conducted on seed composition traits solely in wild soybean populations, and a number of QTLs were found that have not been previously discovered. Some of these may be useful to breeders who select for increased protein/oil content or altered fatty acid ratios in the seeds. The results also provide additional insight into the genetic architecture of these traits in a large sample of wild soybean, and suggest some new candidate genes whose molecular effects on these traits need to be further studied.

  9. Seed storage and testing at Pennsylvania Department of Conservation and Natural Resources Penn Nursery and Wood Shop

    Treesearch

    Jeffrey J. Kozar

    2008-01-01

    Planting tree seeds at the Pennsylvania Department of Conservation and Natural Resources Penn Nursery, Spring Mills, Pennsylvania occurs in spring and fall. Seeds acquired for these plantings come from 3 sources. The first source is our own orchards, which were developed to provide “improved” seeds. Improved seeds are produced from scion material collected from trees...

  10. Creation and testing of an artificial neural network based carbonate detector for Mars rovers

    NASA Technical Reports Server (NTRS)

    Bornstein, Benjamin; Castano, Rebecca; Gilmore, Martha S.; Merrill, Matthew; Greenwood, James P.

    2005-01-01

    We have developed an artificial neural network (ANN) based carbonate detector capable of running on current and future rover hardware. The detector can identify calcite in visible/NIR (350-2500 nm) spectra of both laboratory specimens covered by ferric dust and rocks in Mars analogue field environments. The ANN was trained using the Backpropagation algorithm with sigmoid activation neurons. For the training dataset, we chose nine carbonate and eight non-carbonate representative mineral spectra from the USGS spectral library. Using these spectra as seeds, we generated 10,000 variants with up to 2% Gaussian noise in each reflectance measurement. We cross-validated several ANN architectures, training on 9,900 spectra and testing on the remaining 100. The best performing ANN correctly detected, with perfect accuracy, the presence (or absence) of carbonate in spectral data taken on field samples from the Mojave desert and clean, pure marbles from CT. Sensitivity experiments with JSC Mars-1 simulant dust suggest the carbonate detector would perform well in aeolian Martian environments.

  11. Tailored Systems Architecture for Design of Space Science and Technology Missions Using DoDAF V2.0

    DTIC Science & Technology

    2009-12-01

    programs do exist. Given the focus on rapid development and transition, if a system architecture framework could be developed and used to increase ...and scope are still being developed and refined at all levels within the DoD. As organizations have attempted to develop system architectures that...to produce architecture descriptions during the early-stages of system development. (3 p. 19) conformance, organizations ultimately using the

  12. Functional relevance of “seed” and “non-seed” sequences in microRNA-mediated promotion of C. elegans developmental progression

    PubMed Central

    Zhang, Huibin; Artiles, Karen L.; Fire, Andrew Z.

    2015-01-01

    The founding heterochronic microRNAs, lin-4 and let-7, together with their validated targets and well-characterized phenotypes in C. elegans, offer an opportunity to test functionality of microRNAs in a developmental context. In this study, we defined sequence requirements at the microRNA level for these two microRNAs, evaluating lin-4 and let-7 mutant microRNAs for their ability to support temporal development under conditions where the wild-type lin-4 and let-7 gene products are absent. For lin-4, we found a strong requirement for seed sequences, with function drastically affected by several central mutations in the seed sequence, while rescue was retained by a set of mutations peripheral to the seed. let-7 rescuing activity was retained to a surprising degree by a variety of central seed mutations, while several non-seed mutant effects support potential noncanonical contributions to let-7 function. Taken together, this work illustrates both the functional partnership between seed and non-seed sequences in mediating C. elegans temporal development and a diversity among microRNA effectors in the contributions of seed and non-seed regions to activity. PMID:26385508

  13. A development framework for semantically interoperable health information systems.

    PubMed

    Lopez, Diego M; Blobel, Bernd G M E

    2009-02-01

    Semantic interoperability is a basic challenge to be met for new generations of distributed, communicating and co-operating health information systems (HIS) enabling shared care and e-Health. Analysis, design, implementation and maintenance of such systems and intrinsic architectures have to follow a unified development methodology. The Generic Component Model (GCM) is used as a framework for modeling any system to evaluate and harmonize state of the art architecture development approaches and standards for health information systems as well as to derive a coherent architecture development framework for sustainable, semantically interoperable HIS and their components. The proposed methodology is based on the Rational Unified Process (RUP), taking advantage of its flexibility to be configured for integrating other architectural approaches such as Service-Oriented Architecture (SOA), Model-Driven Architecture (MDA), ISO 10746, and HL7 Development Framework (HDF). Existing architectural approaches have been analyzed, compared and finally harmonized towards an architecture development framework for advanced health information systems. Starting with the requirements for semantic interoperability derived from paradigm changes for health information systems, and supported in formal software process engineering methods, an appropriate development framework for semantically interoperable HIS has been provided. The usability of the framework has been exemplified in a public health scenario.

  14. Stabilized diode seed laser for flight and space-based remote lidar sensing applications

    NASA Astrophysics Data System (ADS)

    McNeil, Shirley; Pandit, Pushkar; Battle, Philip; Rudd, Joe; Hovis, Floyd

    2017-08-01

    AdvR, through support of the NASA SBIR program, has developed fiber-based components and sub-systems that are routinely used on NASA's airborne missions, and is now developing an environmentally hardened, diode-based, locked wavelength, seed laser for future space-based high spectral resolution lidar applications. The seed laser source utilizes a fiber-coupled diode laser, a fiber-coupled, calibrated iodine reference module to provide an absolute wavelength reference, and an integrated, dual-element, nonlinear optical waveguide component for second harmonic generation, spectral formatting and wavelength locking. The diode laser operates over a range close to 1064.5 nm, provides for stabilization of the seed to the desired iodine transition and allows for a highly-efficient, fully-integrated seed source that is well-suited for use in airborne and space-based environments. A summary of component level environmental testing and spectral purity measurements with a seeded Nd:YAG laser will be presented. A direct-diode, wavelength-locked seed laser will reduce the overall size weight and power (SWaP) requirements of the laser transmitter, thus directly addressing the need for developing compact, efficient, lidar component technologies for use in airborne and space-based environments.

  15. Carbohydrate Content and Enzyme Metabolism in Developing Canola Siliques.

    PubMed

    King, S. P.; Lunn, J. E.; Furbank, R. T.

    1997-05-01

    Little biochemical information is available on carbohydrate metabolism in developing canola (Brassica napus L.) silique (pod) wall and seed tissues. This research examines the carbohydrate contents and sucrose (Suc) metabolic enzyme activities in different aged silique wall and seed tissues during oil filling. The silique wall partitioned photosynthate into Suc over starch and predominantly accumulated hexose. The silique wall hexose content and soluble acid invertase activity rapidly fell as embryos progressed from the early- to late-cotyledon developmental stages. A similar trend was not evident for alkaline invertase, Suc synthase (SuSy), and Suc-phosphate synthase. Silique wall SuSy activities were much higher than source leaves at all times and may serve to supply the substrate for secondary cell wall thickening. In young seeds starch was the predominant accumulated carbohydrate over the sampled developmental range. Seed hexose levels dropped as embryos developed from the early- to midcotyledon stage. Hexose and starch were localized to the testa or liquid endosperm, whereas Suc was evenly distributed among seed components. With the switch to oil accumulation, seed SuSy activity increased by 3.6-fold and soluble acid invertase activity decreased by 76%. These data provide valuable baseline knowledge for the genetic manipulation of canola seed carbon partitioning.

  16. Pre- and Post-harvest Influences on Seed Dormancy Status of an Australian Goodeniaceae species, Goodenia fascicularis

    PubMed Central

    Hoyle, Gemma L.; Steadman, Kathryn J.; Daws, Matthew I.; Adkins, Steve W.

    2008-01-01

    Background and Aims The period during which seeds develop on the parent plant has been found to affect many seed characteristics, including dormancy, through interactions with the environment. Goodenia fascicularis (Goodeniaceae) seeds were used to investigate whether seeds of an Australian native forb, harvested from different environments and produced at different stages of the reproductive period, differ in dormancy status. Methods During the reproductive phase, plants were grown ex situ in warm (39/21 °C) or cool (26/13 °C) conditions, with adequate or limited water availability. The physiological dormancy of resulting seeds was measured in terms of the germination response to warm stratification (34/20 °C, 100 % RH, darkness). Key Results Plants in the cool environment were tall and had high above-ground biomass, yet yielded fewer seeds over a shorter, later harvest period when compared with plants in the warm environment. Seeds from the cool environment also had higher viability and greater mass, despite a significant proportion (7 % from the cool-wet environment) containing no obvious embryo. In the warm environment, the reproductive phase was accelerated and plants produced more seeds despite being shorter and having lower above-ground biomass than those in the cool environment. Ten weeks of warm stratification alleviated physiological dormancy in seeds from all treatments resulting in 80–100 % germination. Seeds that developed at warm temperatures were less dormant (i.e. germination percentages were higher) than seeds from the cool environment. Water availability had less effect on plant and seed traits than air temperature, although plants with reduced soil moisture were shorter, had lower biomass and produced fewer, less dormant seeds than plants watered regularly. Conclusions Goodenia fascicularis seeds are likely to exhibit physiological dormancy regardless of the maternal environment. However, seeds collected from warm, dry environments are likely to be more responsive to warm stratification than seeds from cooler, wetter environments. PMID:18430743

  17. The perspective effects of various seed coating substances on rice seed variety Khao DAWK Mali 105 storability I: the case study of physiological properties.

    PubMed

    Thobunluepop, P; Pawelzik, E; Vearasilp, S

    2008-10-01

    This study aimed to evaluate the perspective changes of several physiological performances of rice seeds cv. KDML 105 which were coated with various seed coating substances [chemical fungicide, captan (CA) and biological coating polymers; chitosan-lignosulphonate polymer (CL) and eugenol incorporated into chitosan-lignosulphonate polymer (E + CL)] during storage (12 months). CA significantly increased seed moisture content and seed water activity through out the storage period. The qualities and viability of the seeds were seriously declined by this treatment. Moreover, CA inhibited the shoot and root development, seedling dry weight accumulation, delayed the seed germination and seedling growth rate. CA treated seeds were susceptible to stress conditions that declined the seed germination potential under cold, high moisture and temperature stress conditions. Nevertheless, CL and E + CL coating polymer could maintain seed storability, which significantly improved seed germination and seedling performances. These improvements were attributed to maintain the nutritive reserve and dehydrogenase activity in seeds. Moreover, the biological seed treatment stimulated the embryo growth and so speeding up the seedling emergence when compared untreated seeds.

  18. Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Amaranth and Quinoa Seeds Grown in Ontario and Their Overall Contribution to Nutritional Quality.

    PubMed

    Tang, Yao; Li, Xihong; Chen, Peter X; Zhang, Bing; Liu, Ronghua; Hernandez, Marta; Draves, Jamie; Marcone, Massimo F; Tsao, Rong

    2016-02-10

    Various fatty acids, tocopherols, carotenoids, and their respective antioxidant contributions in 7 amaranth seed and 11 quinoa seed samples along with a new evaluation method are reported. The lipid yield was 6.98-7.22% in amaranth seeds and 6.03-6.74% in quinoa seeds, with unsaturated fatty acids (UFAs) being the predominant fatty acids, 71.58-72.44% in amaranth seeds and 81.44-84.49% in quinoa seeds, respectively. Carotenoids, mainly lutein and zeaxanthin, are confirmed for the first time in amaranth seeds, while β-carotene is reported first in quinoa seeds. The predominant tocopherols in amaranth seeds are δ- and α-tocopherol, whereas γ- and α-tocopherol are the primary tocopherols in quinoa seeds. UFAs, carotenoids, and tocopherols showed good correlation with antioxidant activity. All of the amaranth seeds demonstrated lower overall lipophilic quality than quinoa seeds, with the AS1 and QS10 cultivars providing the highest scores for amaranth and quinoa seeds, respectively. Results from this study will contribute to developing quinoa seeds and related functional foods with increased benefits.

  19. Generalized provisional seed zones for native plants

    Treesearch

    Andrew D. Bower; J. Bradley St.Clair; Vicky Erickson

    2014-01-01

    Deploying well-adapted and ecologically appropriate plant materials is a core component of successful restoration projects. We have developed generalized provisional seed zones that can be applied to any plant species in the United States to help guide seed movement. These seed zones are based on the intersection of high-resolution climatic data for winter minimum...

  20. We're Having a Seed Sale.

    ERIC Educational Resources Information Center

    Riss, Pam Helfers

    1994-01-01

    Botany meets computer science in this activity, which challenges students to create a computerized seed catalog. Class members work together to develop a database of plants, much like the major seed companies do. (PR)

  1. Asymbiotic in vitro seed propagation of Dendrobium.

    PubMed

    Teixeira da Silva, Jaime A; Tsavkelova, Elena A; Ng, Tzi Bun; Parthibhan, S; Dobránszki, Judit; Cardoso, Jean Carlos; Rao, M V; Zeng, Songjun

    2015-10-01

    The ability to germinate orchids from seeds in vitro presents a useful and viable method for the propagation of valuable germplasm, maintaining the genetic heterogeneity inherent in seeds. Given the ornamental and medicinal importance of many species within the genus Dendrobium, this review explores in vitro techniques for their asymbiotic seed germination. The influence of abiotic factors (such as temperature and light), methods of sterilization, composition of basal media, and supplementation with organic additives and plant growth regulators are discussed in context to achieve successful seed germination, protocorm formation, and further seedling growth and development. This review provides both a basis for the selection of optimal conditions, and a platform for the discovery of better ones, that would allow the development of new protocols and the exploration of new hypotheses for germination and conservation of Dendrobium seeds and seedlings.

  2. HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development.

    PubMed

    Levesque-Tremblay, Gabriel; Müller, Kerstin; Mansfield, Shawn D; Haughn, George W

    2015-03-01

    Homogalacturonan pectin domains are synthesized in a highly methyl-esterified form that later can be differentially demethyl esterified by pectin methyl esterase (PME) to strengthen or loosen plant cell walls that contain pectin, including seed coat mucilage, a specialized secondary cell wall of seed coat epidermal cells. As a means to identify the active PMEs in seed coat mucilage, we identified seven PMEs expressed during seed coat development. One of these, HIGHLY METHYL ESTERIFIED SEEDS (HMS), is abundant during mucilage secretion, peaking at 7 d postanthesis in both the seed coat and the embryo. We have determined that this gene is required for normal levels of PME activity and homogalacturonan methyl esterification in the seed. The hms-1 mutant displays altered embryo morphology and mucilage extrusion, both of which are a consequence of defects in embryo development. A significant decrease in the size of cells in the embryo suggests that the changes in embryo morphology are a consequence of lack of cell expansion. Progeny from a cross between hms-1 and the previously characterized PME inhibitor5 overexpression line suggest that HMS acts independently from other cell wall-modifying enzymes in the embryo. We propose that HMS is required for cell wall loosening in the embryo to facilitate cell expansion during the accumulation of storage reserves and that its role in the seed coat is masked by redundancy. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Expression of 9-cis-EPOXYCAROTENOID DIOXYGENASE4 Is Essential for Thermoinhibition of Lettuce Seed Germination but Not for Seed Development or Stress Tolerance[C][W

    PubMed Central

    Huo, Heqiang; Dahal, Peetambar; Kunusoth, Keshavulu; McCallum, Claire M.; Bradford, Kent J.

    2013-01-01

    Thermoinhibition, or failure of seeds to germinate at warm temperatures, is common in lettuce (Lactuca sativa) cultivars. Using a recombinant inbred line population developed from a lettuce cultivar (Salinas) and thermotolerant Lactuca serriola accession UC96US23 (UC), we previously mapped a quantitative trait locus associated with thermoinhibition of germination to a genomic region containing a gene encoding a key regulated enzyme in abscisic acid (ABA) biosynthesis, 9-cis-EPOXYCAROTENOID DIOXYGENASE4 (NCED4). NCED4 from either Salinas or UC complements seeds of the Arabidopsis thaliana nced6-1 nced9-1 double mutant by restoring germination thermosensitivity, indicating that both NCED4 genes encode functional proteins. Transgenic expression of Salinas NCED4 in UC seeds resulted in thermoinhibition, whereas silencing of NCED4 in Salinas seeds led to loss of thermoinhibition. Mutations in NCED4 also alleviated thermoinhibition. NCED4 expression was elevated during late seed development but was not required for seed maturation. Heat but not water stress elevated NCED4 expression in leaves, while NCED2 and NCED3 exhibited the opposite responses. Silencing of NCED4 altered the expression of genes involved in ABA, gibberellin, and ethylene biosynthesis and signaling pathways. Together, these data demonstrate that NCED4 expression is required for thermoinhibition of lettuce seeds and that it may play additional roles in plant responses to elevated temperature. PMID:23503626

  4. Rapid Development of Adaptive, Climate-Driven Clinal Variation in Seed Mass in the Invasive Annual Forb Echium plantagineum L.

    PubMed Central

    Konarzewski, Tara K.; Murray, Brad R.; Godfree, Robert C.

    2012-01-01

    We examined adaptive clinal variation in seed mass among populations of an invasive annual species, Echium plantagineum, in response to climatic selection. We collected seeds from 34 field populations from a 1,000 km long temperature and rainfall gradient across the species' introduced range in south-eastern Australia. Seeds were germinated, grown to reproductive age under common glasshouse conditions, and progeny seeds were harvested and weighed. Analyses showed that seed mass was significantly related to climatic factors, with populations sourced from hotter, more arid sites producing heavier seeds than populations from cooler and wetter sites. Seed mass was not related to edaphic factors. We also found that seed mass was significantly related to both longitude and latitude with each degree of longitude west and latitude north increasing seed mass by around 2.5% and 4% on average. There was little evidence that within-population or between-population variation in seed mass varied in a systematic manner across the study region. Our findings provide compelling evidence for development of a strong cline in seed mass across the geographic range of a widespread and highly successful invasive annual forb. Since large seed mass is known to provide reproductive assurance for plants in arid environments, our results support the hypothesis that the fitness and range potential of invasive species can increase as a result of genetic divergence of populations along broad climatic gradients. In E. plantagineum population-level differentiation has occurred in 150 years or less, indicating that the adaptation process can be rapid. PMID:23284621

  5. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-06-01

    Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular markers associated with oil-related QTL in this study, which also have positive effects on other important traits such as seed yield and protein concentration, could be used in the soybean marker breeding programs aimed at developing either higher seed yield and oil concentration or higher seed protein and oil concentration per hectare. Alternatively, selecting complementary parents with greater breeding values due to positive epistatic interactions could lead to the development of higher oil soybean cultivars.

  6. A Fiberless Seed Mutation in Cotton Is Associated with Lack of Fiber Cell Initiation in Ovule Epidermis and Alterations in Sucrose Synthase Expression and Carbon Partitioning in Developing Seeds1

    PubMed Central

    Ruan, Yong-Ling; Chourey, Prem S.

    1998-01-01

    Fiber cell initiation in the epidermal cells of cotton (Gossypium hirsutum L.) ovules represents a unique example of trichome development in higher plants. Little is known about the molecular and metabolic mechanisms controlling this process. Here we report a comparative analysis of a fiberless seed (fls) mutant (lacking fibers) and a normal (FLS) mutant to better understand the initial cytological events in fiber development and to analyze the metabolic changes that are associated with the loss of a major sink for sucrose during cellulose biosynthesis in the mutant seeds. On the day of anthesis (0 DAA), the mutant ovular epidermal cells lacked the typical bud-like projections that are seen in FLS ovules and are required for commitment to the fiber development pathway. Cell-specific gene expression analyses at 0 DAA showed that sucrose synthase (SuSy) RNA and protein were undetectable in fls ovules but were in abundant, steady-state levels in initiating fiber cells of the FLS ovules. Tissue-level analyses of developing seeds 15 to 35 DAA revealed an altered temporal pattern of SuSy expression in the mutant relative to the normal genotype. Whether the altered programming of SuSy expression is the cause or the result of the mutation is unknown. The developing seeds of the fls mutant have also shown several correlated changes that represent altered carbon partitioning in seed coats and cotyledons as compared with the FLS genotype. PMID:9765525

  7. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds

    PubMed

    Ruan; Chourey

    1998-10-01

    Fiber cell initiation in the epidermal cells of cotton (Gossypium hirsutum L.) ovules represents a unique example of trichome development in higher plants. Little is known about the molecular and metabolic mechanisms controlling this process. Here we report a comparative analysis of a fiberless seed (fls) mutant (lacking fibers) and a normal (FLS) mutant to better understand the initial cytological events in fiber development and to analyze the metabolic changes that are associated with the loss of a major sink for sucrose during cellulose biosynthesis in the mutant seeds. On the day of anthesis (0 DAA), the mutant ovular epidermal cells lacked the typical bud-like projections that are seen in FLS ovules and are required for commitment to the fiber development pathway. Cell-specific gene expression analyses at 0 DAA showed that sucrose synthase (SuSy) RNA and protein were undetectable in fls ovules but were in abundant, steady-state levels in initiating fiber cells of the FLS ovules. Tissue-level analyses of developing seeds 15 to 35 DAA revealed an altered temporal pattern of SuSy expression in the mutant relative to the normal genotype. Whether the altered programming of SuSy expression is the cause or the result of the mutation is unknown. The developing seeds of the fls mutant have also shown several correlated changes that represent altered carbon partitioning in seed coats and cotyledons as compared with the FLS genotype.

  8. New insights into the post-translational modification of multiple phosphoenolpyruvate carboxylase isoenzymes by phosphorylation and monoubiquitination during sorghum seed development and germination.

    PubMed

    Ruiz-Ballesta, Isabel; Baena, Guillermo; Gandullo, Jacinto; Wang, Liqun; She, Yi-Min; Plaxton, William Charles; Echevarría, Cristina

    2016-05-01

    Phosphoenolpyruvate carboxylase (PEPC; E.C. 4.1.1.31) was characterized in developing and germinating sorghum seeds, focusing on the transcript and polypeptide abundance of multiple plant-type phosphoenolpyruvate carboxylase (PTPC) genes, and the post-translational modification of each isoenzyme by phosphorylation versus monoubiquitination during germination. We observed high levels of SbPPC4 (Sb07g014960) transcripts during early development (stage I), and extensive transcript abundance of SbPPC2 (Sb02g021090) and SbPPC3 (Sb04g008720) throughout the entire life cycle of the seed. Although tandem mass spectrometry (MS) analysis of immunopurified PTPC indicated that four different PTPC isoenzymes were expressed in the developing and germinating seeds, SbPPC3 was the most abundant isozyme of the developing seed, and of the embryo and the aleurone layer of germinating seeds. In vivo phosphorylation of the different PTPC isoenzymes at their conserved N-terminal seryl phosphorylation site during germination was also established by MS/MS analysis. Furthermore, three of the four isoenzymes were partially monoubiquitinated, with MS/MS pinpointing SbPPC2 and SbPPC3 monoubiquitination at the conserved Lys-630 and Lys-624 residues, respectively. Our results demonstrate that monoubiquitination and phosphorylation simultaneously occur in vivo with different PTPC isozymes during seed germination. In addition, we show that PTPC monoubiquitination in germinating sorghum seeds always increases at stage II (emergence of the radicle), is maintained during the aerobic period of rapid cell division and reserve mobilization, and remains relatively constant until stage IV-V when coleoptiles initiate the formation of the photosynthetic tissues. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Canopy architectural and physiological characterization of near-isogenic wheat lines differing in the tiller inhibition gene tin.

    PubMed

    Moeller, Carina; Evers, Jochem B; Rebetzke, Greg

    2014-01-01

    Tillering is a core constituent of plant architecture, and influences light interception to affect plant and crop performance. Near-isogenic lines (NILs) varying for a tiller inhibition (tin) gene and representing two genetic backgrounds were investigated for tillering dynamics, organ size distribution, leaf area, light interception, red: far-red ratio, and chlorophyll content. Tillering ceased earlier in the tin lines to reduce the frequencies of later primary and secondary tillers compared to the free-tillering NILs, and demonstrated the genetically lower tillering plasticity of tin-containing lines. The distribution of organ sizes along shoots varied between NILs contrasting for tin. Internode elongation commenced at a lower phytomer, and the peduncle was shorter in the tin lines. The flag leaves of tin lines were larger, and the longest leaf blades were observed at higher phytomers in the tin than in free-tillering lines. Total leaf area was reduced in tin lines, and non-tin lines invested more leaf area at mid-canopy height. The tiller economy (ratio of seed-bearing shoots to numbers of shoots produced) was 10% greater in the tin lines (0.73-0.76) compared to the free-tillering sisters (0.62-0.63). At maximum tiller number, the red: far-red ratio (light quality stimulus that is thought to induce the cessation of tillering) at the plant-base was 0.18-0.22 in tin lines and 0.09-0.11 in free-tillering lines at levels of photosynthetic active radiation of 49-53% and 30-33%, respectively. The tin lines intercepted less radiation compared to their free-tillering sisters once genotypic differences in tiller numbers had established, and maintained green leaf area in the lower canopy later into the season. Greater light extinction coefficients (k) in tin lines prior to, but reduced k after, spike emergence indicated that differences in light interception between NILs contrasting in tin cannot be explained by leaf area alone but that geometric and optical canopy properties contributed. The careful characterization of specifically-developed NILs is refining the development of a physiology-based model for tillering to improve understanding of the value of architectural traits for use in cereal improvement.

  10. Expression of a GALACTINOL SYNTHASE Gene in Tomato Seeds Is Up-Regulated before Maturation Desiccation and Again after Imbibition whenever Radicle Protrusion Is Prevented1

    PubMed Central

    Downie, Bruce; Gurusinghe, Sunitha; Dahal, Petambar; Thacker, Richard R.; Snyder, John C.; Nonogaki, Hiroyuki; Yim, Kyuock; Fukanaga, Keith; Alvarado, Veria; Bradford, Kent J.

    2003-01-01

    Raffinose family oligosaccharides (RFOs) have been implicated in mitigating the effects of environmental stresses on plants. In seeds, proposed roles for RFOs include protecting cellular integrity during desiccation and/or imbibition, extending longevity in the dehydrated state, and providing substrates for energy generation during germination. A gene encoding galactinol synthase (GOLS), the first committed enzyme in the biosynthesis of RFOs, was cloned from tomato (Lycopersicon esculentum Mill. cv Moneymaker) seeds, and its expression was characterized in tomato seeds and seedlings. GOLS (LeGOLS-1) mRNA accumulated in developing tomato seeds concomitant with maximum dry weight deposition and the acquisition of desiccation tolerance. LeGOLS-1 mRNA was present in mature, desiccated seeds but declined within 8 h of imbibition in wild-type seeds. However, LeGOLS-1 mRNA accumulated again in imbibed seeds prevented from completing germination by dormancy or water deficit. Gibberellin-deficient (gib-1) seeds maintained LeGOLS-1 mRNA amounts after imbibition unless supplied with gibberellin, whereas abscisic acid (ABA) did not prevent the loss of LeGOLS-1 mRNA from wild-type seeds. The presence of LeGOLS-1 mRNA in ABA-deficient (sitiens) tomato seeds indicated that wild-type amounts of ABA are not necessary for its accumulation during seed development. In all cases, LeGOLS-1 mRNA was most prevalent in the radicle tip. LeGOLS-1 mRNA accumulation was induced by dehydration but not by cold in germinating seeds, whereas both stresses induced LeGOLS-1 mRNA accumulation in seedling leaves. The physiological implications of LeGOLS-1 expression patterns in seeds and leaves are discussed in light of the hypothesized role of RFOs in plant stress tolerance. PMID:12644684

  11. Small Heat Shock Proteins Can Release Light Dependence of Tobacco Seed during Germination1[OPEN

    PubMed Central

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia

    2015-01-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. PMID:25604531

  12. Seed development in Malpighiaceae species with an emphasis on the relationships between nutritive tissues.

    PubMed

    Souto, Letícia Silva; Oliveira, Denise Maria Trombert

    2014-01-01

    Malpighiaceae ovules have a well-developed nucellus; previous observations indicate that during seed development, the endosperm does not proliferate, thus, remaining scarce. This study aimed at identifying the nutritive tissues during seed development in Malpighiaceae, focusing especially on the endosperm. We analysed the seed development of Janusia mediterranea, J. occhionii, Mascagnia cordifolia, and Tetrapterys chamaecerasifolia, which were collected and processed by traditional methods for light microscopy. Ovules are subcampylotropous, crassinucellate and unitegmic in Janusia and bitegmic in M. cordifolia and T. chamaecerasifolia. The nucellus is well developed and protrudes through the micropyle, touching the funicular obturator. During development, a pachychalaza is formed, and the integuments coalesce in bitegmic species. Through a series of nucellar cell divisions, the perisperm is formed. In Janusia species, the endosperm is not produced. In M. cordifolia and T. chamaecerasifolia, the endosperm is nuclear, but it is scarce and ephemeral. The mature seed is exalbuminous, and the perisperm is consumed, and thus, the mature embryo is total. The absence of endosperm in Janusia is newly observed for the family and indicates functional transfer for the abundant perisperm. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  13. Bidirectional iterative parcellation of diffusion weighted imaging data: Separating cortical regions connected by the arcuate fasciculus and extreme capsule

    PubMed Central

    Patterson, Dianne K.; Van Petten, Cyma; Beeson, Pélagie M.; Rapcsak, Steven Z.; Plante, Elena

    2014-01-01

    This paper introduces a Bidirectional Iterative Parcellation (BIP) procedure designed to identify the location and size of connected cortical regions (parcellations) at both ends of a white matter tract in diffusion weighted images. The procedure applies the FSL option “probabilistic tracking with classification targets” in a bidirectional and iterative manner. To assess the utility of BIP, we applied the procedure to the problem of parcellating a limited set of well-established gray matter seed regions associated with the dorsal (arcuate fasciculus/superior longitudinal fasciculus) and ventral (extreme capsule fiber system) white matter tracts in the language networks of 97 participants. These left hemisphere seed regions and the two white matter tracts, along with their right hemisphere homologues, provided an excellent test case for BIP because the resulting parcellations overlap and their connectivity via the arcuate fasciculi and extreme capsule fiber systems are well studied. The procedure yielded both confirmatory and novel findings. Specifically, BIP confirmed that each tract connects within the seed regions in unique, but expected ways. Novel findings included increasingly left-lateralized parcellations associated with the arcuate fasciculus/superior longitudinal fasciculus as a function of age and education. These results demonstrate that BIP is an easily implemented technique that successfully confirmed cortical connectivity patterns predicted in the literature, and has the potential to provide new insights regarding the architecture of the brain. PMID:25173414

  14. Disruptions in valine degradation affect seed development and germination in Arabidopsis.

    PubMed

    Gipson, Andrew B; Morton, Kyla J; Rhee, Rachel J; Simo, Szabolcs; Clayton, Jack A; Perrett, Morgan E; Binkley, Christiana G; Jensen, Erika L; Oakes, Dana L; Rouhier, Matthew F; Rouhier, Kerry A

    2017-06-01

    We have functionally characterized the role of two putative mitochondrial enzymes in valine degradation using insertional mutants. Prior to this study, the relationship between branched-chain amino acid degradation (named for leucine, valine and isoleucine) and seed development was limited to leucine catabolism. Using a reverse genetics approach, we show that disruptions in the mitochondrial valine degradation pathway affect seed development and germination in Arabidopsis thaliana. A null mutant of 3-hydroxyisobutyryl-CoA hydrolase (CHY4, At4g31810) resulted in an embryo lethal phenotype, while a null mutant of methylmalonate semialdehyde dehydrogenase (MMSD, At2g14170) resulted in seeds with wrinkled coats, decreased storage reserves, elevated valine and leucine, and reduced germination rates. These data highlight the unique contributions CHY4 and MMSD make to the overall growth and viability of plants. It also increases our knowledge of the role branched-chain amino acid catabolism plays in seed development and amino acid homeostasis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  15. Computational approaches for the classification of seed storage proteins.

    PubMed

    Radhika, V; Rao, V Sree Hari

    2015-07-01

    Seed storage proteins comprise a major part of the protein content of the seed and have an important role on the quality of the seed. These storage proteins are important because they determine the total protein content and have an effect on the nutritional quality and functional properties for food processing. Transgenic plants are being used to develop improved lines for incorporation into plant breeding programs and the nutrient composition of seeds is a major target of molecular breeding programs. Hence, classification of these proteins is crucial for the development of superior varieties with improved nutritional quality. In this study we have applied machine learning algorithms for classification of seed storage proteins. We have presented an algorithm based on nearest neighbor approach for classification of seed storage proteins and compared its performance with decision tree J48, multilayer perceptron neural (MLP) network and support vector machine (SVM) libSVM. The model based on our algorithm has been able to give higher classification accuracy in comparison to the other methods.

  16. The effect of temperature on reproduction in the summer and winter annual Arabidopsis thaliana ecotypes Bur and Cvi

    PubMed Central

    Huang, Ziyue; Footitt, Steven; Finch-Savage, William E.

    2014-01-01

    Background and Aims Seed yield and dormancy status are key components of species fitness that are influenced by the maternal environment, in particular temperature. Responses to environmental conditions can differ between ecotypes of the same species. Therefore, to investigate the effect of maternal environment on seed production, this study compared two contrasting Arabidopsis thaliana ecotypes, Cape Verdi Isle (Cvi) and Burren (Bur). Cvi is adapted to a hot dry climate and Bur to a cool damp climate, and they exhibit winter and summer annual phenotypes, respectively. Methods Bur and Cvi plants were grown in reciprocal controlled environments that simulated their native environments. Reproductive development, seed production and subsequent germination behaviour were investigated. Measurements included: pollen viability, the development of floral structure, and germination at 10 and 25 °C in the light to determine dormancy status. Floral development was further investigated by applying gibberellins (GAs) to alter the pistil:stamen ratio. Key Results Temperature during seed development determined seed dormancy status. In addition, seed yield was greatly reduced by higher temperature, especially in Bur (>90 %) compared with Cvi (approx. 50 %). The reproductive organs (i.e. stamens) of Bur plants were very sensitive to high temperature during early flowering. Viability of pollen was unaffected, but limited filament extension relative to that of the pistils resulted in failure to pollinate. Thus GA applied to flowers to enhance filament extension largely overcame the effect of high temperature on yield. Conclusions High temperature in the maternal environment reduced dormancy and negatively affected the final seed yield of both ecotypes; however, the extent of these responses differed, demonstrating natural variation. Reduced seed yield in Bur resulted from altered floral development not reduced pollen viability. Future higher temperatures will impact on seed performance, but the consequences may differ significantly between ecotypes of the same species. PMID:24573642

  17. A bioscaffolding strategy for hierarchical zeolites with a nanotube-trimodal network.

    PubMed

    Li, Guannan; Huang, Haibo; Yu, Bowen; Wang, Yun; Tao, Jiawei; Wei, Yingxu; Li, Shougui; Liu, Zhongmin; Xu, Yan; Xu, Ruren

    2016-02-01

    Hierarchical zeolite monoliths with multimodal porosity are of paramount importance as they open up new horizons for advanced applications. So far, hierarchical zeolites based on nanotube scaffolds have never been reported. Inspired by the organization of biominerals, we have developed a novel precursor scaffolding-solid phase crystallization strategy for hierarchical zeolites with a unique nanotube scaffolding architecture and nanotube-trimodal network, where biomolecular self-assembly (BSA) provides a scaffolding blueprint. By vapor-treating Sil-1 seeded precursor scaffolds, zeolite MFI nanotube scaffolds are self-generated, during which evolution phenomena such as segmented voids and solid bridges are observed, in agreement with the Kirkendall effect in a solid-phase crystallization system. The nanotube walls are made of intergrown single crystals rendering good mechanical stability. The inner diameter of the nanotube is tunable between 30 and 90 nm by varying the thickness of the precursor layers. Macropores enclosed by cross-linked nanotubes can be modulated by the choice of BSA. Narrow mesopores are formed by intergrown nanocrystals. Hierarchical ZSM-5 monoliths with nanotube (90 nm), micropore (0.55 nm), mesopore (2 nm) and macropore (700 nm) exhibit superior catalytic performance in the methanol-to-hydrocarbon (MTH) conversion compared to conventional ZSM-5. BSA remains intact after crystallization, allowing a higher level of organization and functionalization of the zeolite nanotube scaffolds. The current work may afford a versatile strategy for hierarchical zeolite monoliths with nanotube scaffolding architectures and a nanotube-multimodal network leading to self-supporting and active zeolite catalysts, and for applications beyond.

  18. A Novel Class of Gibberellin 2-Oxidases Control Semidwarfism, Tillering, and Root Development in Rice[W

    PubMed Central

    Lo, Shuen-Fang; Yang, Show-Ya; Chen, Ku-Ting; Hsing, Yue-Ie; Zeevaart, Jan A.D.; Chen, Liang-Jwu; Yu, Su-May

    2008-01-01

    Gibberellin 2-oxidases (GA2oxs) regulate plant growth by inactivating endogenous bioactive gibberellins (GAs). Two classes of GA2oxs inactivate GAs through 2β-hydroxylation: a larger class of C19 GA2oxs and a smaller class of C20 GA2oxs. In this study, we show that members of the rice (Oryza sativa) GA2ox family are differentially regulated and act in concert or individually to control GA levels during flowering, tillering, and seed germination. Using mutant and transgenic analysis, C20 GA2oxs were shown to play pleiotropic roles regulating rice growth and architecture. In particular, rice overexpressing these GA2oxs exhibited early and increased tillering and adventitious root growth. GA negatively regulated expression of two transcription factors, O. sativa homeobox 1 and TEOSINTE BRANCHED1, which control meristem initiation and axillary bud outgrowth, respectively, and that in turn inhibited tillering. One of three conserved motifs unique to the C20 GA2oxs (motif III) was found to be important for activity of these GA2oxs. Moreover, C20 GA2oxs were found to cause less severe GA-defective phenotypes than C19 GA2oxs. Our studies demonstrate that improvements in plant architecture, such as semidwarfism, increased root systems and higher tiller numbers, could be induced by overexpression of wild-type or modified C20 GA2oxs. PMID:18952778

  19. Research on tomato seed vigor based on X-ray digital image

    NASA Astrophysics Data System (ADS)

    Zhao, Xueguan; Gao, Yuanyuan; Wang, Xiu; Li, Cuiling; Wang, Songlin; Feng, Qinghun

    2016-10-01

    Seed size, interior abnormal and damage of the tomato seeds will affect the germination. The purpose of this paper was to study the relationship between the internal morphology, seed size and seed germination of tomato. The preprocessing algorithm of X-ray image of tomato seeds was studied, and the internal structure characteristics of tomato seeds were extracted by image processing algorithm. By developing the image processing software, the cavity area between embryo and endosperm and the whole seed zone were determined. According to the difference of area of embryo and endosperm and Internal structural condition, seeds were divided into six categories, Respectively for three kinds of tomato seed germination test, the relationship between seed vigor and seed size , internal free cavity was explored through germination experiment. Through seedling evaluation test found that X-ray image analysis provide a perfect view of the inside part of the seed and seed morphology research methods. The larger the area of the endosperm and the embryo, the greater the probability of healthy seedlings sprout from the same size seeds. Mechanical damage adversely effects on seed germination, deterioration of tissue prone to produce week seedlings and abnormal seedlings.

  20. Sensory and instrumental texture measurements for assessing grape seed parameters during fruit development.

    PubMed

    Letaief, Hend; Maury, Chantal; Symoneaux, Ronan; Siret, René

    2013-08-15

    The evolution of the sensory and instrumental properties of grape seeds was investigated during berry development, with a focus on the effects of the harvest season and growing location. The sensory and instrumental texture analyses gave a consistent description of the ripening process. Moreover, the effect of maturation on the seed sensory descriptors was clearly influenced by the harvest season, and astringency was the most appropriate sensory attribute for the assessment of grape seed ripening. Except for seed cracking, which was positively correlated with fracturability (R = 0.69) and toughness (R = 0.68) in 2006, the compression parameters were generally not correlated with the sensory textural attributes but were more likely correlated with other sensory attributes such as astringency and vegetal aroma. The compression indices showed a logarithmic behaviour pattern during grape development, and seed stiffness was shown to be the most valuable textural index for parcel discrimination and identification of the optimal grape harvesting date. This research showed that both seed sensory attributes and instrumental texture properties are indicators of grape ripening. However, these properties could be affected by the harvest season and growing location. As no clear correlation was found between the seed sensory attributes and instrumental texture parameters, a revision of the sensory method available in the literature could be suggested. © 2013 Society of Chemical Industry.

  1. Methylation of Gibberellins by Arabidopsis GAMT1 and GAMT2[W

    PubMed Central

    Varbanova, Marina; Yamaguchi, Shinjiro; Yang, Yue; McKelvey, Katherine; Hanada, Atsushi; Borochov, Roy; Yu, Fei; Jikumaru, Yusuke; Ross, Jeannine; Cortes, Diego; Ma, Choong Je; Noel, Joseph P.; Mander, Lew; Shulaev, Vladimir; Kamiya, Yuji; Rodermel, Steve; Weiss, David; Pichersky, Eran

    2007-01-01

    Arabidopsis thaliana GAMT1 and GAMT2 encode enzymes that catalyze formation of the methyl esters of gibberellins (GAs). Ectopic expression of GAMT1 or GAMT2 in Arabidopsis, tobacco (Nicotiana tabacum), and petunia (Petunia hybrida) resulted in plants with GA deficiency and typical GA deficiency phenotypes, such as dwarfism and reduced fertility. GAMT1 and GAMT2 are both expressed mainly in whole siliques (including seeds), with peak transcript levels from the middle until the end of silique development. Within whole siliques, GAMT2 was previously shown to be expressed mostly in developing seeds, and we show here that GAMT1 expression is also localized mostly to seed, suggesting a role in seed development. Siliques of null single GAMT1 and GAMT2 mutants accumulated high levels of various GAs, with particularly high levels of GA1 in the double mutant. Methylated GAs were not detected in wild-type siliques, suggesting that methylation of GAs by GAMT1 and GAMT2 serves to deactivate GAs and initiate their degradation as the seeds mature. Seeds of homozygous GAMT1 and GAMT2 null mutants showed reduced inhibition of germination, compared with the wild type, when placed on plates containing the GA biosynthesis inhibitor ancymidol, with the double mutant showing the least inhibition. These results suggest that the mature mutant seeds contained higher levels of active GAs than wild-type seeds. PMID:17220201

  2. Interspecific variation in persistence of buried weed seeds follows trade-offs among physiological, chemical, and physical seed defenses.

    PubMed

    Davis, Adam S; Fu, Xianhui; Schutte, Brian J; Berhow, Mark A; Dalling, James W

    2016-10-01

    Soil seedbanks drive infestations of annual weeds, yet weed management focuses largely on seedling mortality. As weed seedbanks increasingly become reservoirs of herbicide resistance, species-specific seedbank management approaches will be essential to weed control. However, the development of seedbank management strategies can only develop from an understanding of how seed traits affect persistence.We quantified interspecific trade-offs among physiological, chemical, and physical traits of weed seeds and their persistence in the soil seedbank in a common garden study. Seeds of 11 annual weed species were buried in Savoy, IL, from 2007 through 2012. Seedling recruitment was measured weekly and seed viability measured annually. Seed physiological (dormancy), chemical (phenolic compound diversity and concentration; invertebrate toxicity), and physical traits (seed coat mass, thickness, and rupture resistance) were measured.Seed half-life in the soil ( t 0.5 ) showed strong interspecific variation ( F 10,30  = 15, p  < .0001), ranging from 0.25 years ( Bassia scoparia ) to 2.22 years ( Abutilon theophrasti ). Modeling covariances among seed traits and seedbank persistence quantified support for two putative defense syndromes (physiological-chemical and physical-chemical) and highlighted the central role of seed dormancy in controlling seed persistence.A quantitative comparison between our results and other published work indicated that weed seed dormancy and seedbank persistence are linked across diverse environments and agroecosystems. Moreover, among seedbank-forming early successional plant species, relative investment in chemical and physical seed defense varies with seedbank persistence. Synthesis and applications . Strong covariance among weed seed traits and persistence in the soil seedbank indicates potential for seedbank management practices tailored to specific weed species. In particular, species with high t 0.5 values tend to invest less in chemical defenses. This makes them highly vulnerable to physical harvest weed seed control strategies, with small amounts of damage resulting in their full decay.

  3. Physiological changes and sHSPs genes relative transcription in relation to the acquisition of seed germination during maturation of hybrid rice seed.

    PubMed

    Zhu, Li-Wei; Cao, Dong-Dong; Hu, Qi-Juan; Guan, Ya-Jing; Hu, Wei-Min; Nawaz, Aamir; Hu, Jin

    2016-03-30

    During the production of early hybrid rice seed, the seeds dehydrated slowly and retained high moisture levels when rainy weather lasted for a couple of days, and the rice seeds easily occurred pre-harvest sprouting (PHS) along with high temperature. Therefore it is necessary to harvest the seeds before the PHS occurred. The seeds of hybrid rice (Oryza sativa L. subsp. indica) cv. Qianyou No1 that harvests from 19 to 28 days after pollination (DAP) all had high seed vigour. The seed moisture content at 10 DAP was 36.1%, and declined to 28.6% at 19 DAP; the contents of soluble sugar and total starch increased significantly with the development of seeds. The soluble protein content, the level of abscisic acid (ABA) and gibberellin (GA3 ), and ascorbate peroxidase (APX) activity continued to decrease from 10 DAP to 19 DAP. The seeds at 19 DAP had the highest peroxidase (POD) activity and lowest catalase (CAT) activity while the superoxide dismutase (SOD) activity had no significant difference among the different developing periods. The relative expressions of genes 64S Hsp18.0 and Os03g0267200 transcripts increased significantly from 10 to 19 DAP, and then decreased. However, no significant change was recorded in soluble protein, sugar and GA3 after 16 DAP, and they all significantly correlated with seed viability and vigour during the process of seed maturity. The seeds of hybrid rice Qianyou No1 had a higher viability and vigour when harvested from 19 DAP to 28 DAP, the transcription levels of 64S Hsp18.0 and Os03g0267200 increased significantly from 10 DAP to 19 DAP and the highest value was recorded at 19 DAP. The seeds could be harvested as early as 19 DAP without negative influence on seed vigour and viability. © 2015 Society of Chemical Industry.

  4. Development and Practical Use of RT-PCR for Seed-transmitted Prune dwarf virus in Quarantine

    PubMed Central

    Lee, Siwon; Shin, Yong-Gil

    2014-01-01

    Among imported plants, seeds are the items that have many latent pathogens and are difficult to inspect. Also, they are the import and export items whose market is expected to expand. The biggest problem with seeds is viruses. Prune dwarf virus (PDV) is the virus that is commonly inspected in Prunus cerasifera, P. persica, P. armeniaca, P. mandshurica, P. cerasus, P. avium or P. serotina seeds. In this study, two RT-PCR primer sets, which can promptly and specifically diagnose plant quarantine seed-transmitted PDV, were developed; and nested PCR primers, where products amplify 739 and 673 nucleotides (nt), and an nested PCR-product, 305 nt, can be obtained as these products are amplified again, were developed. Also, a modified-positive control plasmid was developed, where the restriction enzyme XhoI, which can identify the contamination of samples from the control, was inserted. The method developed in this study has detected PDV in 18 cases since 2007, and is expected to continuously contribute to the plant quarantine in Korea. PMID:25289000

  5. Impact of accelerated plant growth on seed variety development

    NASA Astrophysics Data System (ADS)

    Christophersen, Eric

    1998-01-01

    The commercial lives of agricultural seed products have steadily declined in recent years. The introduction of genetically engineered crop seeds in 1966 has accentuated that trend. Widespread grower demand for genetically engineered seed requires competitive response by industry followers in order to avert market share losses to the industry leaders. Limitations on plant transformation technology, regulatory requirements and patent impediments require companies to rapidly convert transformed lines into elite commercial products. Massive multigenerational backcrossing efforts are required to distribute genetically engineered traits into a broad product mix. Significant incidents of expression failures, or ``gene silencing,'' have occurred unexpectedly, requiring product substitution strategies. First-to-market strategies, competitive response, broad germplasm conversion and rescue of product failures all share the element of urgency. Technologies which reliably accelerate product development rates can expect favorable reception by commercial seed developers. A growth chamber which dramatically accelerates the rate of plant growth is described.

  6. [Status of traditional Chinese medicine materials seed and seedling breeding bases].

    PubMed

    Li, Ying; Huang, Lu-Qi; Zhang, Xiao-Bo; Wang, Hui; Cheng, Meng; Zhang, Tian; Yang, Guang

    2017-11-01

    Seeds and seedlings are the material basis of traditional Chinese medicine materials production, and the construction of traditional Chinese medicine materials seed and seedling breeding bases is beneficial to the production of high-quality traditional Chinese medicine materials. The construction of traditional Chinese medicine materials seed and seedling breeding bases is one of the major topics of Chinese medica resources census pilot. Targets, tasks of traditional Chinese medicine materials seed and seedling breeding bases based on Chinese medica resources census pilot were expounded.Construction progress including hardware construction, germplasm conservation and breeding, procedures and standardsestablishment, social servicesare presented. Development counter measures were proposed for the next step: perfect the standard and system, maintain and strengthen the breeding function, strengthen the cultivation of multi-level talents, explore market development model, joint efforts to deepen services and development. Copyright© by the Chinese Pharmaceutical Association.

  7. Final results of space exposed experiment developed for students

    NASA Technical Reports Server (NTRS)

    Grigsby, Doris K.

    1993-01-01

    SEEDS was a cooperative endeavor of NASA Headquarters, the NASA Langley Research Center, and the George W. Park Seed Company. Approximately 132,000 SEEDS kits containing Rutger's tomato seeds that had flown on LDEF, as well as similar seeds that had been stored in a climate-controlled warehouse for the same time period, were sent to schools in every state and 30 foreign countries. Student researchers from kindergarten through university compared germination and growth characteristics of the space-exposed and Earth-based seeds and returned data to NASA for analysis. Important scientific information was gained as students reported very little difference between the two seed groups.

  8. Developing a Distributed Computing Architecture at Arizona State University.

    ERIC Educational Resources Information Center

    Armann, Neil; And Others

    1994-01-01

    Development of Arizona State University's computing architecture, designed to ensure that all new distributed computing pieces will work together, is described. Aspects discussed include the business rationale, the general architectural approach, characteristics and objectives of the architecture, specific services, and impact on the university…

  9. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development.

    PubMed

    Iwai, Toru; Takahashi, Michiko; Oda, Koshiro; Terada, Yasuko; Yoshida, Kaoru T

    2012-12-01

    Phytic acid (inositol hexakisphosphate [InsP(6)]) is the storage compound of phosphorus in seeds. As phytic acid binds strongly to metallic cations, it also acts as a storage compound of metals. To understand the mechanisms underlying metal accumulation and localization in relation to phytic acid storage, we applied synchrotron-based x-ray microfluorescence imaging analysis to characterize the simultaneous subcellular distribution of some mineral elements (phosphorus, calcium, potassium, iron, zinc, and copper) in immature and mature rice (Oryza sativa) seeds. This fine-imaging method can reveal whether these elements colocalize. We also determined their accumulation patterns and the changes in phosphate and InsP(6) contents during seed development. While the InsP(6) content in the outer parts of seeds rapidly increased during seed development, the phosphate contents of both the outer and inner parts of seeds remained low. Phosphorus, calcium, potassium, and iron were most abundant in the aleurone layer, and they colocalized throughout seed development. Zinc was broadly distributed from the aleurone layer to the inner endosperm. Copper localized outside the aleurone layer and did not colocalize with phosphorus. From these results, we suggest that phosphorus translocated from source organs was immediately converted to InsP(6) and accumulated in aleurone layer cells and that calcium, potassium, and iron accumulated as phytic acid salt (phytate) in the aleurone layer, whereas zinc bound loosely to InsP(6) and accumulated not only in phytate but also in another storage form. Copper accumulated in the endosperm and may exhibit a storage form other than phytate.

  10. Mapping genetic variation and seed zones for Bromus carinatus in the Blue Mountains of eastern Oregon, USA

    Treesearch

    R.C. Johnson; Vicky J. Erickson; Nancy L. Mandel; J. Bradley St. Clair; Kenneth W. Vance-Borland

    2010-01-01

    Seed transfer zones ensure that germplasm selected for restoration is suitable and sustainable in diverse environments. In this study, seed zones were developed for mountain brome (Bromus carinatus Hook. & Arn.) in the Blue Mountains of northeastern Oregon and adjoining Washington. Plants from 148 Blue Mountain seed source locations were...

  11. Biochemical Assay Detects Feeding Damage to Loblolly Pine Seeds Caused by the Leaffooted Pine Seed Bug (Hemiptera: Coreidae)

    Treesearch

    Cameron G. Lait; Daniel R. Miller; Sarah L. Bates; John H. Borden; Allison R. Kermode

    2003-01-01

    A large number of proteins in salivary gland extracts of the leaffooted pine seed bug, Leptoglossus corculus Say, were strongly recognized by a polyclonal antibody-based assay developed for detecting saliva of the western conifer seed bug, Lepfoglossus occidentalis Heidemann, in lodgepole pine, Pinus contorta var...

  12. Computer-Assisted Recovery of Threatened Plants: Keys for Breaking Seed Dormancy of Eryngium viviparum

    PubMed Central

    Ayuso, Manuel; Ramil-Rego, Pablo; Landin, Mariana; Gallego, Pedro P.; Barreal, M. Esther

    2017-01-01

    Many endangered plants such as Eryngium viviparum (Apiaceae) present a poor germination rate. This fact could be due to intrinsic and extrinsic seed variability influencing germination and dormancy of seeds. The objective of this study is to better understand the physiological mechanism of seed latency and, through artificial intelligence models, to determine the factors that stimulate germination rates of E. viviparum seeds. This description could be essential to prevent the disappearance of endangered plants. Germination in vitro was carried out under different dormancy breaking and incubation procedures. Percentages of germination, viability and E:S ratio were calculated and seeds were dissected at the end of each assay to describe embryo development. The database obtained was modeled using neurofuzzy logic technology. We have found that the most of Eryngium seeds (62.6%) were non-viable seeds (fully empty or without embryos). Excluding those, we have established the germination conditions to break seed dormancy that allow obtaining a real germination rate of 100%. Advantageously, the best conditions pointed out by neurofuzzy logic model for embryo growth were the combination of 1 mg L−1 GA3 (Gibberellic Acid) and high incubation temperature and for germination the combination of long incubation and short warm stratification periods. Our results suggest that E. viviparum seeds present morphophysiological dormancy, which reduce the rate of germination. The knowledge provided by the neurofuzzy logic model makes possible not just break the physiological component of dormancy, but stimulate the embryo development increasing the rate of germination. Undoubtedly, the strategy developed in this work can be useful to recover other endangered plants by improving their germination rate and uniformity favoring their ex vitro conservation. PMID:29312370

  13. Control of seed development in Arabidopsis thaliana by atmospheric oxygen

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Crispi, M.; Musgrave, M. E.

    1998-01-01

    Seed development is known to be inhibited completely when plants are grown in oxygen concentrations below 5.1 kPa, but apart from reports of decreased seed weight little is known about embryogenesis at subambient oxygen concentrations above this critical level. Arabidopsis thaliana (L.) Heynh. plants were grown full term under continuous light in premixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2 and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen. Seeds were harvested for germination tests and microscopy when siliques had yellowed. Seed germination was depressed in O2 treatments below 16.2 kPa, and seeds from plants grown in 2.5 kPa O2 did not germinate at all. Fewer than 25% of the seeds from plants grown in 5.1 kPa oxygen germinated and most of the seedlings appeared abnormal. Light and scanning electron microscopic observation of non-germinated seeds showed that these embryos had stopped growing at different developmental stages depending upon the prevailing oxygen level. Embryos stopped growing at the heart-shaped to linear cotyledon stage in 5.1 kPa O2, at around the curled cotyledon stage in 10.1 kPa O2, and at the premature stage in 16.2 kPa O2. Globular and heart-shaped embryos were observed in sectioned seeds from plants grown in 2.5 kPa O2. Tissue degeneration caused by cell autolysis and changes in cell structure were observed in cotyledons and radicles. Transmission electron microscopy of mature seeds showed that storage substances, such as protein bodies, were reduced in subambient oxygen treatments. The results demonstrate control of embryo development by oxygen in Arabidopsis.

  14. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana

    PubMed Central

    Abreu, Maria Elizabeth; Munné-Bosch, Sergi

    2009-01-01

    Salicylic acid-deficient NahG transgenic lines and sid2 mutants were used to evaluate the role of this compound in the development of the short-lived, annual plant Arabidopsis thaliana, with a particular focus on the interplay between salicylic acid and other phytohormones. Low salicylic acid levels led to increased growth, as well as to smaller abscisic acid levels and reduced damage to PSII (as indicated by Fv/Fm ratios) during the reproductive stages in rosette leaves of NahG transgenic lines and sid2 mutants, compared with wild-type plants. Furthermore, salicylic acid deficiency highly influenced seed yield and composition. Seed production increased by 4.4-fold and 3.5-fold in NahG transgenic lines and sid2 mutants, respectively, compared to the wild type. Salicylic acid deficiency also improved seed composition in terms of antioxidant vitamin concentrations, seeds of salicylic acid-deficient plants showing higher levels of α- and γ-tocopherol (vitamin E) and β-carotene (pro-vitamin A) than seeds of wild-type plants. Seeds of salicylic acid-deficient plants also showed higher nitrogen concentrations than seeds of wild-type plants. It is concluded that (i) the sid2 gene, which encodes for isochorismate synthase, plays a central role in salicylic acid biosynthesis during plant development in A. thaliana, (ii) salicylic acid plays a role in the regulation of growth, senescence, and seed production, (iii) there is a cross-talk between salicylic acid and other phytohormones during plant development, and (iv) the concentrations of antioxidant vitamins in seeds may be influenced by the endogenous levels of salicylic acid in plants. PMID:19188277

  15. Arabidopsis Fructokinases Are Important for Seed Oil Accumulation and Vascular Development.

    PubMed

    Stein, Ofer; Avin-Wittenberg, Tamar; Krahnert, Ina; Zemach, Hanita; Bogol, Vlada; Daron, Oksana; Aloni, Roni; Fernie, Alisdair R; Granot, David

    2016-01-01

    Sucrose (a disaccharide made of glucose and fructose) is the primary carbon source transported to sink organs in many plants. Since fructose accounts for half of the hexoses used for metabolism in sink tissues, plant fructokinases (FRKs), the main fructose-phosphorylating enzymes, are likely to play a central role in plant development. However, to date, their specific functions have been the subject of only limited study. The Arabidopsis genome contains seven genes encoding six cytosolic FRKs and a single plastidic FRK. T-DNA knockout mutants for five of the seven FRKs were identified and used in this study. Single knockouts of the FRK mutants did not exhibit any unusual phenotype. Double-mutants of AtFRK6 (plastidic) and AtFRK7 showed normal growth in soil, but yielded dark, distorted seeds. The seed distortion could be complemented by expression of the well-characterized tomato SlFRK1 , confirming that a lack of FRK activity was the primary cause of the seed phenotype. Seeds of the double-mutant germinated, but failed to establish on 1/2 MS plates. Seed establishment was made possible by the addition of glucose or sucrose, indicating reduced seed storage reserves. Metabolic profiling of the double-mutant seeds revealed decreased TCA cycle metabolites and reduced fatty acid metabolism. Examination of the mutant embryo cells revealed smaller oil bodies, the primary storage reserve in Arabidopsis seeds. Quadruple and penta FRK mutants showed growth inhibition and leaf wilting. Anatomical analysis revealed smaller trachea elements and smaller xylem area, accompanied by necrosis around the cambium and the phloem. These results demonstrate overlapping and complementary roles of the plastidic AtFRK6 and the cytosolic AtFRK7 in seed storage accumulation, and the importance of AtFRKs for vascular development.

  16. The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature.

    PubMed

    Chiu, Rex S; Nahal, Hardeep; Provart, Nicholas J; Gazzarrini, Sonia

    2012-01-27

    Imbibed seeds integrate environmental and endogenous signals to break dormancy and initiate growth under optimal conditions. Seed maturation plays an important role in determining the survival of germinating seeds, for example one of the roles of dormancy is to stagger germination to prevent mass growth under suboptimal conditions. The B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed development and an important node in hormonal interaction networks in Arabidopsis thaliana. Its function has been mainly characterized during embryonic development, where FUS3 is highly expressed to promote seed maturation and dormancy by regulating ABA/GA levels. In this study, we present evidence for a role of FUS3 in delaying seed germination at supraoptimal temperatures that would be lethal for the developing seedlings. During seed imbibition at supraoptimal temperature, the FUS3 promoter is reactivated and induces de novo synthesis of FUS3 mRNA, followed by FUS3 protein accumulation. Genetic analysis shows that FUS3 contributes to the delay of seed germination at high temperature. Unlike WT, seeds overexpressing FUS3 (ML1:FUS3-GFP) during imbibition are hypersensitive to high temperature and do not germinate, however, they can fully germinate after recovery at control temperature reaching 90% seedling survival. ML1:FUS3-GFP hypersensitivity to high temperature can be partly recovered in the presence of fluridone, an inhibitor of ABA biosynthesis, suggesting this hypersensitivity is due in part to higher ABA level in this mutant. Transcriptomic analysis shows that WT seeds imbibed at supraoptimal temperature activate seed-specific genes and ABA biosynthetic and signaling genes, while inhibiting genes that promote germination and growth, such as GA biosynthetic and signaling genes. In this study, we have uncovered a novel function for the master regulator of seed maturation, FUS3, in delaying germination at supraoptimal temperature. Physiologically, this is important since delaying germination has a protective role at high temperature. Transcriptomic analysis of seeds imbibed at supraoptimal temperature reveal that a complex program is in place, which involves not only the regulation of heat and dehydration response genes to adjust cellular functions, but also the activation of seed-specific programs and the inhibition of germination-promoting programs to delay germination. © 2011 Chiu et al; licensee BioMed Central Ltd.

  17. The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature

    PubMed Central

    2012-01-01

    Background Imbibed seeds integrate environmental and endogenous signals to break dormancy and initiate growth under optimal conditions. Seed maturation plays an important role in determining the survival of germinating seeds, for example one of the roles of dormancy is to stagger germination to prevent mass growth under suboptimal conditions. The B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed development and an important node in hormonal interaction networks in Arabidopsis thaliana. Its function has been mainly characterized during embryonic development, where FUS3 is highly expressed to promote seed maturation and dormancy by regulating ABA/GA levels. Results In this study, we present evidence for a role of FUS3 in delaying seed germination at supraoptimal temperatures that would be lethal for the developing seedlings. During seed imbibition at supraoptimal temperature, the FUS3 promoter is reactivated and induces de novo synthesis of FUS3 mRNA, followed by FUS3 protein accumulation. Genetic analysis shows that FUS3 contributes to the delay of seed germination at high temperature. Unlike WT, seeds overexpressing FUS3 (ML1:FUS3-GFP) during imbibition are hypersensitive to high temperature and do not germinate, however, they can fully germinate after recovery at control temperature reaching 90% seedling survival. ML1:FUS3-GFP hypersensitivity to high temperature can be partly recovered in the presence of fluridone, an inhibitor of ABA biosynthesis, suggesting this hypersensitivity is due in part to higher ABA level in this mutant. Transcriptomic analysis shows that WT seeds imbibed at supraoptimal temperature activate seed-specific genes and ABA biosynthetic and signaling genes, while inhibiting genes that promote germination and growth, such as GA biosynthetic and signaling genes. Conclusion In this study, we have uncovered a novel function for the master regulator of seed maturation, FUS3, in delaying germination at supraoptimal temperature. Physiologically, this is important since delaying germination has a protective role at high temperature. Transcriptomic analysis of seeds imbibed at supraoptimal temperature reveal that a complex program is in place, which involves not only the regulation of heat and dehydration response genes to adjust cellular functions, but also the activation of seed-specific programs and the inhibition of germination-promoting programs to delay germination. PMID:22279962

  18. Computed tomography-guided tissue engineering of upper airway cartilage.

    PubMed

    Brown, Bryan N; Siebenlist, Nicholas J; Cheetham, Jonathan; Ducharme, Norm G; Rawlinson, Jeremy J; Bonassar, Lawrence J

    2014-06-01

    Normal laryngeal function has a large impact on quality of life, and dysfunction can be life threatening. In general, airway obstructions arise from a reduction in neuromuscular function or a decrease in mechanical stiffness of the structures of the upper airway. These reductions decrease the ability of the airway to resist inspiratory or expiratory pressures, causing laryngeal collapse. We propose to restore airway patency through methods that replace damaged tissue and improve the stiffness of airway structures. A number of recent studies have utilized image-guided approaches to create cell-seeded constructs that reproduce the shape and size of the tissue of interest with high geometric fidelity. The objective of the present study was to establish a tissue engineering approach to the creation of viable constructs that approximate the shape and size of equine airway structures, in particular the epiglottis. Computed tomography images were used to create three-dimensional computer models of the cartilaginous structures of the larynx. Anatomically shaped injection molds were created from the three-dimensional models and were seeded with bovine auricular chondrocytes that were suspended within alginate before static culture. Constructs were then cultured for approximately 4 weeks post-seeding and evaluated for biochemical content, biomechanical properties, and histologic architecture. Results showed that the three-dimensional molded constructs had the approximate size and shape of the equine epiglottis and that it is possible to seed such constructs while maintaining 75%+ cell viability. Extracellular matrix content was observed to increase with time in culture and was accompanied by an increase in the mechanical stiffness of the construct. If successful, such an approach may represent a significant improvement on the currently available treatments for damaged airway cartilage and may provide clinical options for replacement of damaged tissue during treatment of obstructive airway disease.

  19. Association mapping of seed quality traits using the Canadian flax (Linum usitatissimum L.) core collection.

    PubMed

    Soto-Cerda, Braulio J; Duguid, Scott; Booker, Helen; Rowland, Gordon; Diederichsen, Axel; Cloutier, Sylvie

    2014-04-01

    The identification of stable QTL for seed quality traits by association mapping of a diverse panel of linseed accessions establishes the foundation for assisted breeding and future fine mapping in linseed. Linseed oil is valued for its food and non-food applications. Modifying its oil content and fatty acid (FA) profiles to meet market needs in a timely manner requires clear understanding of their quantitative trait loci (QTL) architectures, which have received little attention to date. Association mapping is an efficient approach to identify QTL in germplasm collections. In this study, we explored the quantitative nature of seed quality traits including oil content (OIL), palmitic acid, stearic acid, oleic acid, linoleic acid (LIO) linolenic acid (LIN) and iodine value in a flax core collection of 390 accessions assayed with 460 microsatellite markers. The core collection was grown in a modified augmented design at two locations over 3 years and phenotypic data for all seven traits were obtained from all six environments. Significant phenotypic diversity and moderate to high heritability for each trait (0.73-0.99) were observed. Most of the candidate QTL were stable as revealed by multivariate analyses. Nine candidate QTL were identified, varying from one for OIL to three for LIO and LIN. Candidate QTL for LIO and LIN co-localized with QTL previously identified in bi-parental populations and some mapped nearby genes known to be involved in the FA biosynthesis pathway. Fifty-eight percent of the QTL alleles were absent (private) in the Canadian cultivars suggesting that the core collection possesses QTL alleles potentially useful to improve seed quality traits. The candidate QTL identified herein will establish the foundation for future marker-assisted breeding in linseed.

  20. Hepatoprotective Effect and Chemical Assessment of a Selected Egyptian Chickpea Cultivar

    PubMed Central

    Mekky, Reham H.; Fayed, Mostafa R.; El-Gindi, Mohamed R.; Abdel-Monem, Azza R.; Contreras, María del Mar; Segura-Carretero, Antonio; Abdel-Sattar, Essam

    2016-01-01

    Chickpea (Cicer arietinum) is a legume of the family Fabaceae, subfamily Faboideae. In Egypt, chickpea seeds are usually consumed at raw green and tender stage, or in the form of mature dry seeds. In our previous study, ‘Giza 1’ seeds exhibited stronger antioxidant activity and higher total phenol content than those from other Egyptian cultivars. In order to assess the biological potential of ‘Giza 1’ seeds in vivo, the extraction procedure was reproduced here. The extract was standardized using liquid chromatography coupled to diode array detector and tandem mass spectrometry (MS/MS) to evaluate their hepatoprotective effect on carbon tetrachloride (CCl4)-induced hepatotoxicity in rats and acute toxicity. Administration of the extract to rats in doses up to 2 g/Kg) did not cause any mortalities or observable signs of toxicity. Further, the plant extract showed a strong hepatoprotective activity based on assessing serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase and levels of albumen, globulin, total protein, total cholesterol, high density lipoprotein, triglycerides, and low density lipoprotein. The antioxidative activity was evaluated by assessing hepatic catalase and superoxide dismutase activity as well as reduced glutathione, and malondialdehyde levels. Additionally, anti-inflammatory activity was observed as the extract significantly lowered the hepatic tumor necrosis factor α content. Histopathological examination of liver tissues indicated that the extract-treated animals showed almost normal hepatic architecture with fewer pathological changes. In conclusion, the current results suggest that the chickpea extract possesses an excellent safety profile with very low acute toxicity. Also, it exhibits a significant hepatoprotective effect against CCl4-induced liver injury in rats. This can be attributed, at least partly, to the antioxidant and anti-inflammatory activity of the isoflavones and phenolic acids content of the extract. PMID:27733831

  1. Hepatoprotective Effect and Chemical Assessment of a Selected Egyptian Chickpea Cultivar.

    PubMed

    Mekky, Reham H; Fayed, Mostafa R; El-Gindi, Mohamed R; Abdel-Monem, Azza R; Contreras, María Del Mar; Segura-Carretero, Antonio; Abdel-Sattar, Essam

    2016-01-01

    Chickpea ( Cicer arietinum ) is a legume of the family Fabaceae, subfamily Faboideae. In Egypt, chickpea seeds are usually consumed at raw green and tender stage, or in the form of mature dry seeds. In our previous study, 'Giza 1' seeds exhibited stronger antioxidant activity and higher total phenol content than those from other Egyptian cultivars. In order to assess the biological potential of 'Giza 1' seeds in vivo , the extraction procedure was reproduced here. The extract was standardized using liquid chromatography coupled to diode array detector and tandem mass spectrometry (MS/MS) to evaluate their hepatoprotective effect on carbon tetrachloride (CCl 4 )-induced hepatotoxicity in rats and acute toxicity. Administration of the extract to rats in doses up to 2 g/Kg) did not cause any mortalities or observable signs of toxicity. Further, the plant extract showed a strong hepatoprotective activity based on assessing serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase and levels of albumen, globulin, total protein, total cholesterol, high density lipoprotein, triglycerides, and low density lipoprotein. The antioxidative activity was evaluated by assessing hepatic catalase and superoxide dismutase activity as well as reduced glutathione, and malondialdehyde levels. Additionally, anti-inflammatory activity was observed as the extract significantly lowered the hepatic tumor necrosis factor α content. Histopathological examination of liver tissues indicated that the extract-treated animals showed almost normal hepatic architecture with fewer pathological changes. In conclusion, the current results suggest that the chickpea extract possesses an excellent safety profile with very low acute toxicity. Also, it exhibits a significant hepatoprotective effect against CCl 4 -induced liver injury in rats. This can be attributed, at least partly, to the antioxidant and anti-inflammatory activity of the isoflavones and phenolic acids content of the extract.

  2. A searchable database for the genome of Phomopsis longicolla (isolate MSPL 10-6).

    PubMed

    Darwish, Omar; Li, Shuxian; May, Zane; Matthews, Benjamin; Alkharouf, Nadim W

    2016-01-01

    Phomopsis longicolla (syn. Diaporthe longicolla) is an important seed-borne fungal pathogen that primarily causes Phomopsis seed decay (PSD) in most soybean production areas worldwide. This disease severely decreases soybean seed quality by reducing seed viability and oil quality, altering seed composition, and increasing frequencies of moldy and/or split beans. To facilitate investigation of the genetic base of fungal virulence factors and understand the mechanism of disease development, we designed and developed a database for P. longicolla isolate MSPL 10-6 that contains information about the genome assemblies (contigs), gene models, gene descriptions and GO functional ontologies. A web-based front end to the database was built using ASP.NET, which allows researchers to search and mine the genome of this important fungus. This database represents the first reported genome database for a seed borne fungal pathogen in the Diaporthe- Phomopsis complex. The database will also be a valuable resource for research and agricultural communities. It will aid in the development of new control strategies for this pathogen. http://bioinformatics.towson.edu/Phomopsis_longicolla/HomePage.aspx.

  3. A searchable database for the genome of Phomopsis longicolla (isolate MSPL 10-6)

    PubMed Central

    May, Zane; Matthews, Benjamin; Alkharouf, Nadim W.

    2016-01-01

    Phomopsis longicolla (syn. Diaporthe longicolla) is an important seed-borne fungal pathogen that primarily causes Phomopsis seed decay (PSD) in most soybean production areas worldwide. This disease severely decreases soybean seed quality by reducing seed viability and oil quality, altering seed composition, and increasing frequencies of moldy and/or split beans. To facilitate investigation of the genetic base of fungal virulence factors and understand the mechanism of disease development, we designed and developed a database for P. longicolla isolate MSPL 10-6 that contains information about the genome assemblies (contigs), gene models, gene descriptions and GO functional ontologies. A web-based front end to the database was built using ASP.NET, which allows researchers to search and mine the genome of this important fungus. This database represents the first reported genome database for a seed borne fungal pathogen in the Diaporthe– Phomopsis complex. The database will also be a valuable resource for research and agricultural communities. It will aid in the development of new control strategies for this pathogen. Availability: http://bioinformatics.towson.edu/Phomopsis_longicolla/HomePage.aspx PMID:28197060

  4. Seed-to-seed growth of Arabidopsis thaliana on the International Space Station

    NASA Technical Reports Server (NTRS)

    Link, B. M.; Durst, S. J.; Zhou, W.; Stankovic, B.

    2003-01-01

    The assembly of the International Space Station (ISS) as a permanent experimental outpost has provided the opportunity for quality plant research in space. To take advantage of this orbital laboratory, engineers and scientists at the Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison, developed a plant growth facility capable of supporting plant growth in the microgravity environment. Utilizing this Advanced Astroculture (ADVASC) plant growth facility, an experiment was conducted with the objective to grow Arabidopsis thaliana plants from seed-to-seed on the ISS. Dry Arabidopsis seeds were anchored in the root tray of the ADVASC growth chamber. These seeds were successfully germinated from May 10 until the end of June 2001. Arabidopsis plants grew and completed a full life cycle in microgravity. This experiment demonstrated that ADVASC is capable of providing environment conditions suitable for plant growth and development in microgravity. The normal progression through the life cycle, as well as the postflight morphometric analyses, demonstrate that Arabidopsis thaliana does not require the presence of gravity for growth and development. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  5. Suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.).

    PubMed

    Kelly, Amélie A; Shaw, Eve; Powers, Stephen J; Kurup, Smita; Eastmond, Peter J

    2013-04-01

    Increasing the productivity of oilseed crops is an important challenge for plant breeders and biotechnologists. To date, attempts to increase oil production in seeds via metabolic pathway engineering have focused on boosting synthetic capacity. However, in the tissues of many organisms, it is well established that oil levels are determined by both anabolism and catabolism. Indeed, the oil content of rapeseed (Brassica napus L.) has been reported to decline by approximately 10% in the final stage of development, as the seeds desiccate. Here, we show that RNAi suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase gene family during seed development results in up to an 8% gain in oil yield on either a seed, plant or unit area basis in the greenhouse, with very little adverse impact on seed vigour. Suppression of lipolysis could therefore constitute a new method for enhancing oil yield in oilseed crops. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  6. Bio-ecological consequences of crop seeds treatment with metal nano-powders

    NASA Astrophysics Data System (ADS)

    Churilov, G.

    2015-11-01

    As a result of our investigations we have determined the optimal concentrations of ferrum, cobalt and cuprum nano-powders recommended to be used as micro-fertilizers increasing the yield and feed value of crops at the expense of accumulating biologically active combinations by 25-35%. In unfavorable climate conditions, for example in a case of excess moisture or heat and drought, the plants development and ripening suffer. Our investigations have shown that the stimulating effect of nano-powders has lowered the effect of stress situations on plants development and simultaneously increased the rape seeds yield and quality. Treating the seeds with the drugs being studied has provided the high crop protection. If consider that the maximum efficiency of protectants Chinuk, SK (20 kg/t of seeds) and Cruiser, KS (10 kg/t of seeds) then for the same effect one needs nano-powders 0.1 g per hectare norm of seeds planting.

  7. Endo-β-mannanase and β-tubulin gene expression during the final phases of coffee seed maturation.

    PubMed

    Santos, F C; Clemente, A C S; Caixeta, F; Rosa, S D V F

    2015-10-02

    Coffee seeds begin to develop shortly after fertilization and can take 6 to 8 months to complete their formation, a period during which all the characteristics of the mature seed are determined, directly influencing physiological quality. However, little is known about the molecular mechanisms that act during coffee seed maturation. The objective of the current study was to analyze expression of the β-tubulin (TUB) and endo-β-mannanase (MAN) genes during different phases at the end of development and in different tissues of Coffea arabica seeds. The transcription levels of the TUB and MAN genes were quantified in a relative manner using qRT-PCR in whole seeds, and dissected into embryos and endosperms at different developmental stages. Greater expression of MAN was observed in whole seeds and in endosperms during the green stage, and in the embryo during the over-ripe stage. High TUB gene expression was observed in whole seeds during the green stage and, in the embryos, there were peaks in expression during the over-ripe stage. In endosperms, the peak of expression occurred in both the green stage and in the cherry stage. These results suggest participation of endo-β-mannanase during the initial seed developmental stages, and in the stages of physiological maturity in the embryo tissues. TUB gene expression varied depending on the developmental stage and section of seed analyzed, indicating the participation of β-tubulin during organogenesis and coffee seed maturation.

  8. Do Child Development Accounts Promote Account Holding, Saving, and Asset Accumulation for Children's Future? Evidence from a Statewide Randomized Experiment

    ERIC Educational Resources Information Center

    Nam, Yunju; Kim, Youngmi; Clancy, Margaret; Zager, Robert; Sherraden, Michael

    2013-01-01

    This study examines the impacts of Child Development Accounts (CDAs) on account holding, saving, and asset accumulation for children, using data from the SEED for Oklahoma Kids experiment (SEED OK). SEED OK, a policy test of universal and progressive CDAs, provides a 529 college savings plan account to every infant in the treatment group with…

  9. Agricultural Urbanism in the Context of Landscape Ecological Architecture

    NASA Astrophysics Data System (ADS)

    Maltseva, I. N.; Kaganovich, N. N.; Mindiyrova, T. N.

    2017-11-01

    The article analyzes some of the fundamental aspects of cities sustainable development connected in many respects with the concept of ecological architecture. One of the main concepts of sustainability is considered in detail: the city as an eco-sustainable and balanced system, architectural objects as a full-fledged part of this system, which, most likely, will be determined by one of the directions of this development - the development of landscape architecture as an tool for integration of nature into the urban environment. At the same time, the variety of its functional forms and architectural methods in the system of organization of internal and external space is outlined as well as its interrelation with energy-saving architecture defining them as the two most important components of eco-sustainable development. The development forms of landscape architecture are considered in the review of analogs, as an example (agricultural urbanism object) a thesis on the topic “Vertical Farm Agroindustrial Complex” is presented.

  10. Molecular composition and surface properties of storage lipid particles in wax bean (Phaseolus vulgaris).

    PubMed

    Froese, Carol D; Nowack, Linda; Cholewa, Ewa; Thompson, John E

    2003-03-01

    Lipid particles have been isolated from seeds of wax bean (Phaseolus vulgaris), a species in which starch and protein rather than lipid are the major seed storage reserves. These lipid particles resemble oil bodies present in oil-rich seeds in that > 90% of their lipid is triacylglycerol. Moreover, this triacylglycerol is rapidly metabolized during seed germination indicating that it is a storage reserve. The phospholipid surfaces of oil bodies are known to be completely coated with oleosin which prevents their coalescence, particularly during desiccation of the developing seed. This would appear to be necessary since lipid is the major storage reserve in oil seeds, and there are very few alternate types of storage particles in the cytoplasm of oil seed endosperm to provide a buffer against coalescence of oil bodies by isolating them from one another. The present study indicates that the surfaces of lipid particles from wax bean are not completely coated with oleosin and feature regions of naked phospholipid. This finding has been interpreted as reflecting the fact that lipid particles in wax been seeds are less prone to coalescence than oil bodies of oil-rich seeds. This arises because the individual lipid particles are interspersed in situ among highly abundant protein bodies and starch grains and hence less likely to come in contact with one another, even during desiccation of the developing seed.

  11. Concept of Operations for the ESC Product Line Approach.

    DTIC Science & Technology

    1996-08-30

    production of the application. Product Line Engineering Center ( PLEC ) defines and evolves product line architectures with the SAG. The PLEC is also tasked... PLEC , SAG, and PLAS and offers scenarios for asset and system development. • Section 4 outlines the ESC Product Line transition strategy. • Section...Line or System Needs User Select PLEC ; Assess PL architecture Product Line Architecture Development ments; architecture selection Architecture

  12. Negative effects of temperature and atmospheric depositions on the seed viability of common juniper (Juniperus communis).

    PubMed

    Gruwez, R; De Frenne, P; De Schrijver, A; Leroux, O; Vangansbeke, P; Verheyen, K

    2014-02-01

    Environmental change is increasingly impacting ecosystems worldwide. However, our knowledge about the interacting effects of various drivers of global change on sexual reproduction of plants, one of their key mechanisms to cope with change, is limited. This study examines populations of poorly regenerating and threatened common juniper (Juniperus communis) to determine the influence of four drivers of global change (rising temperatures, nitrogen deposition, potentially acidifying deposition and altering precipitation patterns) on two key developmental phases during sexual reproduction, gametogenesis and fertilization (seed phase two, SP2) and embryo development (seed phase three, SP3), and on the ripening time of seeds. In 42 populations throughout the distribution range of common juniper in Europe, 11,943 seeds of two developmental phases were sampled. Seed viability was determined using seed dissection and related to accumulated temperature (expressed as growing degree-days), nitrogen and potentially acidifying deposition (nitrogen plus sulfur), and precipitation data. Precipitation had no influence on the viability of the seeds or on the ripening time. Increasing temperatures had a negative impact on the viability of SP2 and SP3 seeds and decreased the ripening time. Potentially acidifying depositions negatively influenced SP3 seed viability, while enhanced nitrogen deposition led to lower ripening times. Higher temperatures and atmospheric deposition affected SP3 seeds more than SP2 seeds. However, this is possibly a delayed effect as juniper seeds develop practically independently, due to the absence of vascular communication with the parent plant from shortly after fertilization. It is proposed that the failure of natural regeneration in many European juniper populations might be attributed to climate warming as well as enhanced atmospheric deposition of nitrogen and sulfur.

  13. Negative effects of temperature and atmospheric depositions on the seed viability of common juniper (Juniperus communis)

    PubMed Central

    Gruwez, R.; De Frenne, P.; De Schrijver, A.; Leroux, O.; Vangansbeke, P.; Verheyen, K.

    2014-01-01

    Background and Aims Environmental change is increasingly impacting ecosystems worldwide. However, our knowledge about the interacting effects of various drivers of global change on sexual reproduction of plants, one of their key mechanisms to cope with change, is limited. This study examines populations of poorly regenerating and threatened common juniper (Juniperus communis) to determine the influence of four drivers of global change (rising temperatures, nitrogen deposition, potentially acidifying deposition and altering precipitation patterns) on two key developmental phases during sexual reproduction, gametogenesis and fertilization (seed phase two, SP2) and embryo development (seed phase three, SP3), and on the ripening time of seeds. Methods In 42 populations throughout the distribution range of common juniper in Europe, 11 943 seeds of two developmental phases were sampled. Seed viability was determined using seed dissection and related to accumulated temperature (expressed as growing degree-days), nitrogen and potentially acidifying deposition (nitrogen plus sulfur), and precipitation data. Key Results Precipitation had no influence on the viability of the seeds or on the ripening time. Increasing temperatures had a negative impact on the viability of SP2 and SP3 seeds and decreased the ripening time. Potentially acidifying depositions negatively influenced SP3 seed viability, while enhanced nitrogen deposition led to lower ripening times. Conclusions Higher temperatures and atmospheric deposition affected SP3 seeds more than SP2 seeds. However, this is possibly a delayed effect as juniper seeds develop practically independently, due to the absence of vascular communication with the parent plant from shortly after fertilization. It is proposed that the failure of natural regeneration in many European juniper populations might be attributed to climate warming as well as enhanced atmospheric deposition of nitrogen and sulfur. PMID:24284814

  14. Transcriptomic basis of functional difference and coordination between seeds and the silique wall of Brassica napus during the seed-filling stage.

    PubMed

    Liu, Han; Yang, Qingyong; Fan, Chuchuan; Zhao, Xiaoqin; Wang, Xuemin; Zhou, Yongming

    2015-04-01

    The silique of oilseed rape (Brassica napus) is a composite organ including seeds and the silique wall (SW) that possesses distinctly physiological, biochemical and functional differentiations. Yet, the molecular events controlling such differences between the SW and seeds, as well as their coordination during silique development at transcriptional level are largely unknown. Here, we identified large sets of differentially expressed genes in the SW and seeds of siliques at 21-22 days after flowering with a Brassica 95K EST microarray. At this particular stage, there were 3278 SW preferentially expressed genes and 2425 seed preferentially expressed genes. Using the MapMan visualization software, genes differentially regulated in various metabolic pathways and sub-pathways between the SW and seeds were revealed. Photosynthesis and transport-related genes were more actively transcripted in the SW, while those involved in lipid metabolism were more active in seeds during the seed filling stage. On the other hand, genes involved in secondary metabolisms were selectively regulated in the SW and seeds. Large numbers of transcription factors were identified to be differentially expressed between the SW and seeds, suggesting a complex pattern of transcriptional control in these two organs. Furthermore, most genes discussed in categories or pathways showed a similar expression pattern through 21 DAF to 42 DAF. Our results thus provide insights into the coordination of seeds and the SW in the developing silique at the transcriptional levels, which will facilitate the functional studies of important genes for improving B. napus seed productivity and quality. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Developing an intelligent transportation systems (ITS) architecture for the KIPDA region : final report.

    DOT National Transportation Integrated Search

    2004-08-01

    This report describes the development of a regional Intelligent Transportation Systems (ITS) Architecture for the five-county urban area under the auspices of the Kentuckiana Regional Planning and Development Agency (KIPDA). The architecture developm...

  16. Effects of Phaseolus vulgaris (Fabaceae) seed coat on the embryonic and larval development of the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae).

    PubMed

    de Sá, Leonardo Figueira Reis; Wermelinger, Tierry Torres; Ribeiro, Elane da Silva; Gravina, Geraldo de Amaral; Fernandes, Kátia Valevski Sales; Xavier-Filho, José; Venancio, Thiago Motta; Rezende, Gustavo Lazzaro; Oliveira, Antonia Elenir Amancio

    2014-01-01

    Bruchid beetles infest various seeds. The seed coat is the first protective barrier against bruchid infestation. Although non-host seed coats often impair the oviposition, eclosion and survival of the bruchid Callosobruchus maculatus larvae, morphological and biochemical aspects of this phenomenon remain unclear. Here we show that Phaseolus vulgaris (non-host) seed coat reduced C. maculatus female oviposition about 48%, increased 83% the seed penetration time, reduced larval mass and survival about 62 % and 40 % respectively. Interestingly, we found no visible effect on the major events of insect embryogenesis, namely the formation of the cellular blastoderm, germ band extension/retraction, embryo segmentation, appendage formation and dorsal closure. Larvae fed on P. vulgaris seed coat have greater FITC fluorescence signal in the midgut than in the feces, as opposed to what is observed in control larvae fed on Vigna unguiculata. Cysteine protease, α-amylase and α-glucosidase activities were reduced in larvae fed on P. vulgaris natural seed coat. Taken together, our results suggest that although P. vulgaris seed coat does not interfere with C. maculatus embryonic development, food digestion was clearly compromised, impacting larval fitness (e.g. body mass and survivability). Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Helical structure of the cardiac ventricular anatomy assessed by diffusion tensor magnetic resonance imaging with multiresolution tractography.

    PubMed

    Poveda, Ferran; Gil, Debora; Martí, Enric; Andaluz, Albert; Ballester, Manel; Carreras, Francesc

    2013-10-01

    Deeper understanding of the myocardial structure linking the morphology and function of the heart would unravel crucial knowledge for medical and surgical clinical procedures and studies. Several conceptual models of myocardial fiber organization have been proposed but the lack of an automatic and objective methodology prevented an agreement. We sought to deepen this knowledge through advanced computer graphical representations of the myocardial fiber architecture by diffusion tensor magnetic resonance imaging. We performed automatic tractography reconstruction of unsegmented diffusion tensor magnetic resonance imaging datasets of canine heart from the public database of the Johns Hopkins University. Full-scale tractographies have been built with 200 seeds and are composed by streamlines computed on the vector field of primary eigenvectors at the diffusion tensor volumes. We also introduced a novel multiscale visualization technique in order to obtain a simplified tractography. This methodology retains the main geometric features of the fiber tracts, making it easier to decipher the main properties of the architectural organization of the heart. Output analysis of our tractographic representations showed exact correlation with low-level details of myocardial architecture, but also with the more abstract conceptualization of a continuous helical ventricular myocardial fiber array. Objective analysis of myocardial architecture by an automated method, including the entire myocardium and using several 3-dimensional levels of complexity, reveals a continuous helical myocardial fiber arrangement of both right and left ventricles, supporting the anatomical model of the helical ventricular myocardial band described by F. Torrent-Guasp. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  18. Altered Fruit and Seed Development of Transgenic Rapeseed (Brassica napus) Over-Expressing MicroRNA394

    PubMed Central

    Song, Jian Bo; Shu, Xia Xia; Shen, Qi; Li, Bo Wen; Song, Jun; Yang, Zhi Min

    2015-01-01

    Fruit and seed development in plants is a complex biological process mainly involved in input and biosynthesis of many storage compounds such as proteins and oils. Although the basic biochemical pathways for production of the storage metabolites in plants are well characterized, their regulatory mechanisms are not fully understood. In this study, we functionally identified rapeseed (Brassica napus) miR394 with its target gene Brassica napus LEAF CURLING RESPONSIVENESS (BnLCR) to dissect a role of miR394 during the fruit and seed development. Transgenic rapeseed plants over-expressing miR394 under the control of the cauliflower mosaic virus 35S promoter were generated. miR394 over-expression plants exhibited a delayed flowering time and enlarged size of plants, leaf blade, pods and seed body, but developed seeds with higher contents of protein and glucosinolates (GLS) and lower levels of oil accumulation as compared to wild-type. Over-expression of miR394 altered the fatty acid (FA) composition by increasing several FA species such as C16:0 and C18:0 and unsaturated species of C20:1 and C22:1 but lowering C18:3. This change was accompanied by induction of genes coding for transcription factors of FA synthesis including LEAFY COTYLEDON1 (BnLEC1), BnLEC2, and FUSCA3 (FUS3). Because the phytohormone auxin plays a crucial role in fruit development and seed patterning, the DR5-GUS reporter was used for monitoring the auxin response in Arabidopsis siliques and demonstrated that the DR5 gene was strongly expressed. These results suggest that BnmiR394 is involved in rapeseed fruit and seed development. PMID:25978066

  19. Space station needs, attributes and architectural options. Volume 1, attachment 1: Executive summary NASA

    NASA Technical Reports Server (NTRS)

    1983-01-01

    User alignment plan, physical and life sciences and applications, commercial requirements national security, space operations, user needs, foreign contacts, mission scenario analysis and architectural concepts, alternative systems concepts, mission operations architectural development, architectural analysis trades, evolution, configuration, and technology development are discussed.

  20. Carbohydrate Content and Enzyme Metabolism in Developing Canola Siliques.

    PubMed Central

    King, S. P.; Lunn, J. E.; Furbank, R. T.

    1997-01-01

    Little biochemical information is available on carbohydrate metabolism in developing canola (Brassica napus L.) silique (pod) wall and seed tissues. This research examines the carbohydrate contents and sucrose (Suc) metabolic enzyme activities in different aged silique wall and seed tissues during oil filling. The silique wall partitioned photosynthate into Suc over starch and predominantly accumulated hexose. The silique wall hexose content and soluble acid invertase activity rapidly fell as embryos progressed from the early- to late-cotyledon developmental stages. A similar trend was not evident for alkaline invertase, Suc synthase (SuSy), and Suc-phosphate synthase. Silique wall SuSy activities were much higher than source leaves at all times and may serve to supply the substrate for secondary cell wall thickening. In young seeds starch was the predominant accumulated carbohydrate over the sampled developmental range. Seed hexose levels dropped as embryos developed from the early- to midcotyledon stage. Hexose and starch were localized to the testa or liquid endosperm, whereas Suc was evenly distributed among seed components. With the switch to oil accumulation, seed SuSy activity increased by 3.6-fold and soluble acid invertase activity decreased by 76%. These data provide valuable baseline knowledge for the genetic manipulation of canola seed carbon partitioning. PMID:12223695

  1. Development of genic cleavage markers in association with seed glucosinolate content in canola.

    PubMed

    Fu, Ying; Lu, Kun; Qian, Lunwen; Mei, Jiaqin; Wei, Dayong; Peng, Xuhui; Xu, Xinfu; Li, Jiana; Frauen, Martin; Dreyer, Felix; Snowdon, Rod J; Qian, Wei

    2015-06-01

    The orthologues of Arabidopsis involved in seed glucosinolates metabolism within QTL confidence intervals were identified, and functional markers were developed to facilitate breeding for ultra-low glucosinolates in canola. Further reducing the content of seed glucosinolates will have a positive impact on the seed quality of canola (Brassica napus). In this study 43 quantitative trait loci (QTL) for seed glucosinolate (GSL) content in a low-GSL genetic background were mapped over seven environments in Germany and China in a doubled haploid population from a cross between two low-GSL oilseed rape parents with transgressive segregation. By anchoring these QTL to the reference genomes of B. rapa and B. oleracea, we identified 23 orthologues of Arabidopsis involved in GSL metabolism within the QTL confidence intervals. Sequence polymorphisms between the corresponding coding regions of the parental lines were used to develop cleaved amplified polymorphic site markers for two QTL-linked genes, ISOPROPYLMALATE DEHYDROGENASE1 and ADENOSINE 5'-PHOSPHOSULFATE REDUCTASE 3. The genic cleavage markers were mapped in the DH population into the corresponding intervals of QTL explaining 3.36-6.88 and 4.55-8.67 % of the phenotypic variation for seed GSL, respectively. The markers will facilitate breeding for ultra-low seed GSL content in canola.

  2. BIIDXI, the At4g32460 DUF642 gene, is involved in pectin methyl esterase regulation during Arabidopsis thaliana seed germination and plant development.

    PubMed

    Zúñiga-Sánchez, Esther; Soriano, Diana; Martínez-Barajas, Eleazar; Orozco-Segovia, Alma; Gamboa-deBuen, Alicia

    2014-12-02

    DUF642 proteins constitute a highly conserved family of proteins that are associated with the cell wall and are specific to spermatophytes. Transcriptome studies have suggested that members of this family are involved in seed development and germination processes. Previous in vitro studies have revealed that At4g32460- and At5g11420-encoded proteins interact with the catalytic domain of pectin methyl esterase 3 (AtPME3, which is encoded by At3g14310). PMEs play an important role in plant development, including seed germination. The aim of this study was to evaluate the function of the DUF642 gene At4g32460 during seed germination and plant development and to determine its relation to PME activity regulation. Our results indicated that the DUF642 proteins encoded by At4g32460 and At5g11420 could be positive regulators of PME activity during several developmental processes. Transgenic lines overexpressing these proteins showed increased PME activity during seed germination, and improved seed germination performance. In plants expressing At4g32460 antisense RNA, PME activity was decreased in the leaves, and the siliques were very short and contained no seeds. This phenotype was also present in the SALK_142260 and SALK_054867 lines for At4g32460. Our results suggested that the DUF642 family contributes to the complexity of the methylesterification process by participating in the fine regulation of pectin status during plant development.

  3. Lipid and protein accumulation in developing seeds of three lupine species: Lupinus luteus L., Lupinus albus L., and Lupinus mutabilis Sweet.

    PubMed

    Borek, Slawomir; Pukacka, Stanisława; Michalski, Krzysztof; Ratajczak, Lech

    2009-01-01

    A comparative study was carried out on the dynamics of lipid accumulation in developing seeds of three lupine species. Lupine seeds differ in lipid content; yellow lupine (Lupinus luteus L.) seeds contain about 6%, white lupine (Lupinus albus L.) 7-14%, and Andean lupine (Lupinus mutabilis Sweet) about 20% of lipids by dry mass. Cotyledons from developing seeds were isolated and cultured in vitro for 96 h on Heller medium with 60 mM sucrose (+S) or without sucrose (-S). Each medium was additionally enriched with 35 mM asparagine or 35 mM NaNO3. Asparagine caused an increase in protein accumulation and simultaneously decreased the lipid content, but nitrate increased accumulation of both protein and lipid. Experiments with [1-14C]acetate and [2-14C]acetate showed that the decrease in lipid accumulation in developing lupine seeds resulted from exhaustion of lipid precursors rather than from degradation or modification of the enzymatic apparatus. The carbon atom from the C-1 position of acetate was liberated mainly as CO2, whereas the carbon atom from the C-2 position was preferentially used in anabolic pathways. The dominant phospholipid in the investigated lupine seed storage organs was phosphatidylcholine. The main fatty acid in yellow lupine cotyledons was linoleic acid, in white lupine it was oleic acid, and in Andean lupine it was both linoleic and oleic acids. The relationship between stimulation of lipid and protein accumulation by nitrate in developing lupine cotyledons and enhanced carbon flux through glycolysis caused by the inorganic nitrogen form is discussed.

  4. Users guide for seeds of western trees and shrubs.

    Treesearch

    William I. Stein; Rodger Danielson; Nancy Shaw; Scott Wolff; David Gerdes

    1986-01-01

    Because the role of tree and shrub seed is indispensable in the renewal of forests and ranges, their identity and quality are critically important. This guide briefly covers recommended practices for maintaining the identity of seeds, for sampling them, and for testing them for quality. Practices associated with the testing and use of tree seed have developed over many...

  5. Seed predation and climate impacts on reproductive variation in temperate forests of the southeastern USA

    Treesearch

    David M. Bell; James S. Clark

    2016-01-01

    Climatic effects on tree recruitment will be determined by the interactive effects of fecundity and seed predation. Evaluating how insect and vertebrate seed predators mediate tree reproductive responses to climate depends on long-term studies of seed production, development, and predation. In this study, our objectives were to (1) assess the effects of...

  6. A life history study of the ash seed weevils, Thysanocnemis bischoffi Blatchley and T. Helvola leconte (Coleoptera: curculionidae)

    Treesearch

    Jack H. Barger; Ralph H. Davidson

    1967-01-01

    A life history study was made of the ash seed weevils, Thysanocnemis bischoffi Blatchley and T. helvola LeConte. Over-wintering occurs as larvae in ash seeds or in soil, with adults appearing in July and August. Adults soon deposit eggs within ash seeds, where larval development occurs. Only one generation...

  7. Fatty acid profiling of four different peanut Fatty Acid Desaturase (FAD) 2 genotypes at five seed development stages

    USDA-ARS?s Scientific Manuscript database

    Peanut is one of the most important edible oilseed crops. The level of oleic acid in peanut seeds can significantly affect the oil quality. Consuming peanut product from high oleic acid seeds may positively contribute to improving human health. The level of oleic acid in peanut seeds is mainly contr...

  8. An index of ripeness for sugar pine seed

    Treesearch

    H.A. Fowells

    1949-01-01

    Immature or unripe seed may be one cause of the poor germination of sugar pine occasionally experienced in nursery practice or direct seeding projects. Ripeness of pine seed, or the time to harvest cones, is usually judged by a change from green to brown in the color of cones or by the development of a firm consistency in the endosperm. However accurately these...

  9. Maturity Effects on Contamination of High-Oleic Peanut Lots with Normal-Oleic Seeds of a Large Seeded Virginia Type Peanut Variety.

    USDA-ARS?s Scientific Manuscript database

    The need to segregate high- and normal-oleic peanut seeds has lead to investigations into potential sources of mixing. Previous work in our lab examined the development of in two lines of virginia type seeds, Bailey (normal-oleic) and Spain (high-oleic) for changes in the oleic to linoleic ratios (...

  10. Potential carry-over of seeds from 11 common shrub and vine competitors of loblolly and shortleaf pines

    Treesearch

    Michael G. Shelton; Michael D. Cain

    2002-01-01

    Many of the competitors of the regeneration of loblolly and shortleaf pines (Pinus taeda, L. and Pinus echinata Mill., respectively) develop from seed disseminated on the site after reproduction cutting or from the seed bank. To evaluate the potential carry-over of the seeds from 11 shrub and vine competitors of these two...

  11. The auxin-deficient defective kernel18 (dek18) mutation alters the expression of seed-specific biosynthethic genes in maize

    USDA-ARS?s Scientific Manuscript database

    The dek18 mutant of maize has decreased auxin content in kernels. Molecular and functional characterization of this mutant line offers the possibility to better understand auxin biology in maize seed development. Seeds of the dek18 mutants are smaller compared to wild type seeds and the vegetative d...

  12. Development of seed zones for the Eastern United States: Request for input and collaboration!

    Treesearch

    Carrie C. Pike; George Hernandez; Barbara Crane; Paul Berrang

    2017-01-01

    Artificial regeneration is necessary for meeting a variety of management objectives following timber harvests and other disturbances. While foresters use ecological classification to identify the most appropriate species to plant on a particular site, they generally use seed zones to identify the most suitable seed source of that species to plant. Seed zones have been...

  13. Temporal changes in fungal communities from buckwheat seeds and their effects on seed germination and seedling secondary metabolism.

    PubMed

    Kovačec, Eva; Likar, Matevž; Regvar, Marjana

    2016-05-01

    Seed-associated fungal communities affect multiple parameters of seed quality at all stages of production, from seed development to post-harvest storage and germination. We therefore investigated the diversity and dynamics of fungal communities in the seeds of common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (F. tataricum) from harvest to 1 y of storage. Fungal populations in seeds were relatively stable, comprised mainly of field fungi. Incidence of fungi was most likely determined by fungal interspecies direct interactions, as well as by their synthesis of volatile organic compounds. Most prominent antagonistic interactions were seen for two plant pathogens, Alternaria alternata on Botrytis cinerea. Detrimental effects of the fungi on seed germination and seedling development were related to fungal extracellular enzyme activity, and in particular to amylase, cellulase and, polyphenol oxidase. Polyphenol and tannin concentrations in buckwheat seedlings were related to fungal growth rate and intensity of fungal cellulase activity, respectively, which suggests that physical penetration of the fungi through the host tissues is probably the stimulus for the activation of plant defence reactions in these seedlings. Copyright © 2016 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. The last step of the ethylene biosynthesis pathway in turnip tops (Brassica rapa) seeds: Alterations related to development and germination and its inhibition during desiccation.

    PubMed

    Rodriguez-Gacio Md, María del Carmen; Matilla, Angel Jesús

    2001-06-01

    The involvement of ethylene in zygotic embryogenesis is a little known aspect of the growth and development in higher plants. In the present work, we study the alterations of the last step of the ethylene biosynthesis pathway during the formation period of turnip tops (Brassica rapa cv. Rapa) seeds and its repercussions in the germination process and post-germinative growth. For this, we chose 11 different phases of silique development, the first being the recently fertilized pistil and the last being the silique just prior to its dehiscence (ca. 2 months post-anthesis). In the 11 phases, ethylene production was detected in both whole silique (with or without seeds) and in the seeds enclosed by the silique wall. The levels of ACC, ACO and ethylene production proved high in seeds belonging to: (1) the pod in the very early phases, when the seeds were growing but without photosynthetic competence; (2) the silique at maximum growth, in which the seeds will initiate desiccation and loss of photosynthetic activity. During the phases prior to dehiscence, there was a marked inhibition in the last step of the ethylene biosynthesis pathway. In viable dry seeds, no ACO activity was detected and the ACC levels were 4-fold lower than at the onset of the silique senescence. Germination brings about a net synthesis of ACC with respect of the stores dry seed. This fact, together with other results presented in this work, point towards, as in other seeds, a dependence of ethylene synthesis for radicle emergence. The possible role played by the silique wall in the control of ethylene biosynthesis during zygotic embryogenesis, as well as the participation of ethylene as a hormonal signal in the triggering of seed desiccation in Brassica rapa cv. Rapa, are discussed in depth.

  15. 7 CFR 51.1865 - Mature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... stage of development which will insure a proper completion of the ripening process, and that the contents of two or more seed cavities have developed a jelly-like consistency and the seeds are well...

  16. 7 CFR 51.1865 - Mature.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... stage of development which will insure a proper completion of the ripening process, and that the contents of two or more seed cavities have developed a jelly-like consistency and the seeds are well...

  17. Direct Evidence of Significant Cation Intermixing in Upconverting Core@Shell Nanocrystals: Toward a New Crystallochemical Model

    DOE PAGES

    Hudry, Damien; Busko, Dmitry; Popescu, Radian; ...

    2017-11-02

    Core@shell design represents an important class of architectures because of its capability to dramatically increase the absolute upconversion quantum yield (UCQY) of upconverting nanocrystals (UCNCs) but also to tune energy migration pathways. A relatively new trend towards the use of very thick optically inert shells affording significantly higher absolute UCQYs raises the question of the crystallographic and chemical characteristics of such nanocrystals (NCs). In this article, local chemical analyses performed by scanning transmission electron microscopy (STEM) combined with energy dispersive x-ray spectroscopy (EDXS) and x-ray total scattering experiments together with pair distribution function (PDF) analyses were used to probe themore » local chemical and structural characteristics of hexagonal β-NaGd0.78Yb0.2Er0.02F4@NaYF4 core@shell UCNCs. The investigations lead to a new crystallochemical model to describe core@shell UCNCs that considerably digresses from the commonly accepted epitaxial growth concept with sharp interfaces. The results obtained on ultra-small (4.8 ± 0.5 nm) optically active cores (β-NaGd0.78Yb0.2Er0.02F4) surrounded by an optically inert shell (NaYF4) of tunable thickness (roughly 0, 1, 2, and 3.5 nm) clearly indicate the massive dissolution of the starting seeds and the inter-diffusion of the shell element (such as Y) into the Gd/Yb/Er-containing core giving rise to the formation of a non-homogeneous solid solution characterized by concentration gradients and the lack of sharp interfaces. Independently of the inert shell thickness, core/interface/shell architectures were observed for all synthesized UCNCs. The presented results constitute a significant step towards the comprehensive understanding of the “structure - property” relationship of upconverting core@shell architectures, which is of prime interest not only in the development of more efficient structures but also to provide new physical insights at the nanoscale to better explain upconversion (UC) properties alterations.« less

  18. Direct Evidence of Significant Cation Intermixing in Upconverting Core@Shell Nanocrystals: Toward a New Crystallochemical Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudry, Damien; Busko, Dmitry; Popescu, Radian

    Core@shell design represents an important class of architectures because of its capability to dramatically increase the absolute upconversion quantum yield (UCQY) of upconverting nanocrystals (UCNCs) but also to tune energy migration pathways. A relatively new trend towards the use of very thick optically inert shells affording significantly higher absolute UCQYs raises the question of the crystallographic and chemical characteristics of such nanocrystals (NCs). In this article, local chemical analyses performed by scanning transmission electron microscopy (STEM) combined with energy dispersive x-ray spectroscopy (EDXS) and x-ray total scattering experiments together with pair distribution function (PDF) analyses were used to probe themore » local chemical and structural characteristics of hexagonal β-NaGd0.78Yb0.2Er0.02F4@NaYF4 core@shell UCNCs. The investigations lead to a new crystallochemical model to describe core@shell UCNCs that considerably digresses from the commonly accepted epitaxial growth concept with sharp interfaces. The results obtained on ultra-small (4.8 ± 0.5 nm) optically active cores (β-NaGd0.78Yb0.2Er0.02F4) surrounded by an optically inert shell (NaYF4) of tunable thickness (roughly 0, 1, 2, and 3.5 nm) clearly indicate the massive dissolution of the starting seeds and the inter-diffusion of the shell element (such as Y) into the Gd/Yb/Er-containing core giving rise to the formation of a non-homogeneous solid solution characterized by concentration gradients and the lack of sharp interfaces. Independently of the inert shell thickness, core/interface/shell architectures were observed for all synthesized UCNCs. The presented results constitute a significant step towards the comprehensive understanding of the “structure - property” relationship of upconverting core@shell architectures, which is of prime interest not only in the development of more efficient structures but also to provide new physical insights at the nanoscale to better explain upconversion (UC) properties alterations.« less

  19. Preparation of Caco-2 cell sheets using plasma polymerised acrylic acid as a weak boundary layer.

    PubMed

    Majani, Ruby; Zelzer, Mischa; Gadegaard, Nikolaj; Rose, Felicity R; Alexander, Morgan R

    2010-09-01

    The use of cell sheets for tissue engineering applications has considerable advantages over single cell seeding techniques. So far, only thermoresponsive surfaces have been used to manufacture cell sheets without chemically disrupting the cell-surface interactions. Here, we present a new and facile technique to prepare sheets of epithelial cells using plasma polymerised acrylic acid films. The cell sheets are harvested by gentle agitation of the media without the need of any additional external stimulus. We demonstrate that the plasma polymer deposition conditions affect the viability and metabolic activity of the cells in the sheet and relate these effects to the different surface properties of the plasma polymerised acrylic acid films. Based on surface analysis data, a first attempt is made to explain the mechanism behind the cell sheet formation. The advantage of the epithelial cell sheets generated here over single cell suspensions to seed a PLGA scaffold is presented. The scaffold itself, prepared using a mould fabricated via photolithography, exhibits a unique architecture that mimics closely the dimensions of the native tissue (mouse intestine). Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Pattern of Variations in Abscisic Acid Content in Suspensors, Embryos, and Integuments of Developing Phaseolus coccineus Seeds 1

    PubMed Central

    Perata, Pierdomenico; Picciarelli, Piero; Alpi, Amedeo

    1990-01-01

    Free abscisic acid (ABA) content in suspensors, embryos, and integuments was determined during seed development of Phaseolus coccineus. A highly specific and sensitive solid-phase radioimmunoassay based on a monocional antibody raised against free (S)-ABA was used for ABA quantification. Very small amounts of ABA were detected in the suspensor during initial stages of development; later two peaks of ABA occurred. Levels of ABA in the embryo and integument show a coincident triphasic distribution: two maxima in ABA content occurred when the embryo was 11 to 12 and 15 to 16 millimeters in length; later, when the embryo was 19 to 20 millimeters long, a further increase was observed. The role of ABA in runner bean seeds is discussed in relation to the development of the different seed tissues. PMID:16667915

Top