Study on the contract characteristics of Internet architecture
NASA Astrophysics Data System (ADS)
Fu, Chuan; Zhang, Guoqing; Yang, Jing; Liu, Xiaona
2011-11-01
The importance of Internet architecture goes beyond the technical aspects. The architecture of Internet has a profound influence on the Internet-based economy in term of how the profits are shared by different market participants (Internet Server Provider, Internet Content Provider), since it is the physical foundation upon which the profit-sharing contracts are derived. In order to facilitate the continuing growth of the Internet, it is necessary to systematically study factors that curtail the Internet-based economy including the existing Internet architecture. In this paper, we used transaction cost economics and contract economics as new tools to analyse the contracts derived from the current Internet architecture. This study sheds light on how the macro characteristics of Internet architecture effect the microeconomical decisions of market participants. Based on the existing Internet architecture, we discuss the possibility of promoting Internet-based economy by encouraging user to connect their private stub network to the Internet and giving the user more right of self-governing.
Hardware Architecture Study for NASA's Space Software Defined Radios
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Scardelletti, Maximilian C.; Mortensen, Dale J.; Kacpura, Thomas J.; Andro, Monty; Smith, Carl; Liebetreu, John
2008-01-01
This study defines a hardware architecture approach for software defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general purpose processors, digital signal processors, field programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) in addition to flexible and tunable radio frequency (RF) front-ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and and interfaces. The modules are a logical division of common radio functions that comprise a typical communication radio. This paper describes the architecture details, module definitions, and the typical functions on each module as well as the module interfaces. Trade-offs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify the internal physical implementation within each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.
Formal Foundations for the Specification of Software Architecture.
1995-03-01
Architectures For- mally: A Case-Study Using KWIC." Kestrel Institute, Palo Alto, CA 94304, April 1994. 58. Kang, Kyo C. Feature-Oriented Domain Analysis ( FODA ...6.3.5 Constraint-Based Architectures ................. 6-60 6.4 Summary ......... ............................. 6-63 VII. Analysis of Process-Based...between these architec- ture theories were investigated. A feasibility analysis on an image processing application demonstrated that architecture theories
DOT National Transportation Integrated Search
1999-09-01
This is one of seven studies exploring processes for developing Intelligent Transportation Systems (ITS) architectures for regional, statewide, or commercial vehicle applications. This study was prepared for a broad-based, non-technical audience. In ...
Modeling and Analysis of Space Based Transceivers
NASA Technical Reports Server (NTRS)
Moore, Michael S.; Price, Jeremy C.; Reinhart, Richard; Liebetreu, John; Kacpura, Tom J.
2005-01-01
This paper presents the tool chain, methodology, and results of an on-going study being performed jointly by Space Communication Experts at NASA Glenn Research Center (GRC), General Dynamics C4 Systems (GD), and Southwest Research Institute (SwRI). The team is evaluating the applicability and tradeoffs concerning the use of Software Defined Radio (SDR) technologies for Space missions. The Space Telecommunications Radio Systems (STRS) project is developing an approach toward building SDR-based transceivers for space communications applications based on an accompanying software architecture that can be used to implement transceivers for NASA space missions. The study is assessing the overall cost and benefit of employing SDR technologies in general, and of developing a software architecture standard for its space SDR transceivers. The study is considering the cost and benefit of existing architectures, such as the Joint Tactical Radio Systems (JTRS) Software Communications Architecture (SCA), as well as potential new space-specific architectures.
Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés
2015-02-25
This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.
Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés
2015-01-01
This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems. PMID:25723145
Wilk, S; Michalowski, W; O'Sullivan, D; Farion, K; Sayyad-Shirabad, J; Kuziemsky, C; Kukawka, B
2013-01-01
The purpose of this study was to create a task-based support architecture for developing clinical decision support systems (CDSSs) that assist physicians in making decisions at the point-of-care in the emergency department (ED). The backbone of the proposed architecture was established by a task-based emergency workflow model for a patient-physician encounter. The architecture was designed according to an agent-oriented paradigm. Specifically, we used the O-MaSE (Organization-based Multi-agent System Engineering) method that allows for iterative translation of functional requirements into architectural components (e.g., agents). The agent-oriented paradigm was extended with ontology-driven design to implement ontological models representing knowledge required by specific agents to operate. The task-based architecture allows for the creation of a CDSS that is aligned with the task-based emergency workflow model. It facilitates decoupling of executable components (agents) from embedded domain knowledge (ontological models), thus supporting their interoperability, sharing, and reuse. The generic architecture was implemented as a pilot system, MET3-AE--a CDSS to help with the management of pediatric asthma exacerbation in the ED. The system was evaluated in a hospital ED. The architecture allows for the creation of a CDSS that integrates support for all tasks from the task-based emergency workflow model, and interacts with hospital information systems. Proposed architecture also allows for reusing and sharing system components and knowledge across disease-specific CDSSs.
Utopian Kinetic Structures and Their Impact on the Contemporary Architecture
NASA Astrophysics Data System (ADS)
Cudzik, Jan; Nyka, Lucyna
2017-10-01
This paper delves into relationships between twentieth century utopian concepts of movable structures and the kinematic solutions implemented in contemporary architectural projects. The reason for conducting this study is to determine the impact of early architectural conceptions on today’s solutions. This paper points out close links that stem from the imagination of artists and architects working in 1960s and 70s and the solutions implemented by contemporary architects of that era. The research method of this paper is based on comparative analyses of architectural forms with adopted kinematic solutions. It is based on archive drawings’ studies and the examination of theoretical concepts. The research pertains to different forms of such mobility that evolved in 1960s and 70s. Many of them, usually based on the simple forms of movement were realized. The more complicated ones remained in the sphere of utopian visionary architecture. In this case, projects often exceed technical limitations and capabilities of design tools. Finally, after some decades, with the development of innovative architectural design tools and new building technologies many early visions materialized into architectural forms. In conclusion, this research indicates that modern kinematic design solutions are often based on conceptual designs formed from the beginning of the second half of the twentieth century.
Teaching Case: Enterprise Architecture Specification Case Study
ERIC Educational Resources Information Center
Steenkamp, Annette Lerine; Alawdah, Amal; Almasri, Osama; Gai, Keke; Khattab, Nidal; Swaby, Carval; Abaas, Ramy
2013-01-01
A graduate course in enterprise architecture had a team project component in which a real-world business case, provided by an industry sponsor, formed the basis of the project charter and the architecture statement of work. The paper aims to share the team project experience on developing the architecture specifications based on the business case…
Enterprise application architecture development based on DoDAF and TOGAF
NASA Astrophysics Data System (ADS)
Tao, Zhi-Gang; Luo, Yun-Feng; Chen, Chang-Xin; Wang, Ming-Zhe; Ni, Feng
2017-05-01
For the purpose of supporting the design and analysis of enterprise application architecture, here, we report a tailored enterprise application architecture description framework and its corresponding design method. The presented framework can effectively support service-oriented architecting and cloud computing by creating the metadata model based on architecture content framework (ACF), DoDAF metamodel (DM2) and Cloud Computing Modelling Notation (CCMN). The framework also makes an effort to extend and improve the mapping between The Open Group Architecture Framework (TOGAF) application architectural inputs/outputs, deliverables and Department of Defence Architecture Framework (DoDAF)-described models. The roadmap of 52 DoDAF-described models is constructed by creating the metamodels of these described models and analysing the constraint relationship among metamodels. By combining the tailored framework and the roadmap, this article proposes a service-oriented enterprise application architecture development process. Finally, a case study is presented to illustrate the results of implementing the tailored framework in the Southern Base Management Support and Information Platform construction project using the development process proposed by the paper.
Digital Device Architecture and the Safe Use of Flash Devices in Munitions
NASA Technical Reports Server (NTRS)
Katz, Richard B.; Flowers, David; Bergevin, Keith
2017-01-01
Flash technology is being utilized in fuzed munition applications and, based on the development of digital logic devices in the commercial world, usage of flash technology will increase. Digital devices of interest to designers include flash-based microcontrollers and field programmable gate arrays (FPGAs). Almost a decade ago, a study was undertaken to determine if flash-based microcontrollers could be safely used in fuzes and, if so, how should such devices be applied. The results were documented in the Technical Manual for the Use of Logic Devices in Safety Features. This paper will first review the Technical Manual and discuss the rationale behind the suggested architectures for microcontrollers and a brief review of the concern about data retention in flash cells. An architectural feature in the microcontroller under study will be discussed and its use will show how to screen for weak or failed cells during manufacture, storage, or immediately prior to use. As was done for microcontrollers a decade ago, architectures for a flash-based FPGA will be discussed, showing how it can be safely used in fuzes. Additionally, architectures for using non-volatile (including flash-based) storage will be discussed for SRAM-based FPGAs.
An investigation of hardwood plywood markets. Part 1. Architectural woodworkers
Craig L. Forbes; Larry G. Jahn; Philip A. Araman
2001-01-01
This is the first part of a two-part study investigating markets for hardwood plywood. North American architectural woodworkers were surveyed to better understand the structure and use ofwood-based panels in the industry. A questionnaire was mailed to a sample of U.S. and Canadian architectural woodworkers. The sample consisted of members of the Architectural Woodwork...
Brooks, R.A.; Bell, S.S.
2005-01-01
A descriptive study of the architecture of the red mangrove, Rhizophora mangle L., habitat of Tampa Bay, FL, was conducted to assess if plant architecture could be used to discriminate overwash from fringing forest type. Seven above-water (e.g., tree height, diameter at breast height, and leaf area) and 10 below-water (e.g., root density, root complexity, and maximum root order) architectural features were measured in eight mangrove stands. A multivariate technique (discriminant analysis) was used to test the ability of different models comprising above-water, below-water, or whole tree architecture to classify forest type. Root architectural features appear to be better than classical forestry measurements at discriminating between fringing and overwash forests but, regardless of the features loaded into the model, misclassification rates were high as forest type was only correctly classified in 66% of the cases. Based upon habitat architecture, the results of this study do not support a sharp distinction between overwash and fringing red mangrove forests in Tampa Bay but rather indicate that the two are architecturally undistinguishable. Therefore, within this northern portion of the geographic range of red mangroves, a more appropriate classification system based upon architecture may be one in which overwash and fringing forest types are combined into a single, "tide dominated" category. ?? 2005 Elsevier Ltd. All rights reserved.
An Agent-Based Dynamic Model for Analysis of Distributed Space Exploration Architectures
NASA Astrophysics Data System (ADS)
Sindiy, Oleg V.; DeLaurentis, Daniel A.; Stein, William B.
2009-07-01
A range of complex challenges, but also potentially unique rewards, underlie the development of exploration architectures that use a distributed, dynamic network of resources across the solar system. From a methodological perspective, the prime challenge is to systematically model the evolution (and quantify comparative performance) of such architectures, under uncertainty, to effectively direct further study of specialized trajectories, spacecraft technologies, concept of operations, and resource allocation. A process model for System-of-Systems Engineering is used to define time-varying performance measures for comparative architecture analysis and identification of distinguishing patterns among interoperating systems. Agent-based modeling serves as the means to create a discrete-time simulation that generates dynamics for the study of architecture evolution. A Solar System Mobility Network proof-of-concept problem is introduced representing a set of longer-term, distributed exploration architectures. Options within this set revolve around deployment of human and robotic exploration and infrastructure assets, their organization, interoperability, and evolution, i.e., a system-of-systems. Agent-based simulations quantify relative payoffs for a fully distributed architecture (which can be significant over the long term), the latency period before they are manifest, and the up-front investment (which can be substantial compared to alternatives). Verification and sensitivity results provide further insight on development paths and indicate that the framework and simulation modeling approach may be useful in architectural design of other space exploration mass, energy, and information exchange settings.
A Ka-Band Wide-Bandgap Solid-State Power Amplifier: Architecture Performance Estimates
NASA Technical Reports Server (NTRS)
Epp, L.; Khan, P.; Silva, A.
2005-01-01
Motivated by recent advances in wide-bandgap (WBG) gallium nitride (GaN) semiconductor technology, there is considerable interest in developing efficient solidstate power amplifiers (SSPAs) as an alternative to the traveling-wave tube amplifier (TWTA) for space applications. This article documents the results of a study to investigate power-combining technology and SSPA architectures that can enable a 120-W, 40 percent power-added efficiency (PAE) SSPA. Results of the study indicate that architectures based on at least three power combiner designs are likely to enable the target SSPA. The proposed architectures can power combine 16 to 32 individual monolithic microwave integrated circuits (MMICs) with >80 percent combining efficiency. This corresponds to MMIC requirements of 5- to 10-W output power and >48 percent PAE. For the three proposed architectures [1], detailed analysis and design of the power combiner are presented. The first architecture studied is based on a 16-way septum combiner that offers low loss and high isolation over the design band of 31 to 36 GHz. Analysis of a 2-way prototype septum combiner had an input match >25 dB, output match >30 dB, insertion loss <0.02 dB, and isolation >30 dB over the design band. A 16-way design, based on cascading this combiner in a binary fashion, is documented. The second architecture is based on a 24-way waveguide radial combiner. A prototype 24-way radial base was analyzed to have an input match >30 dB (under equal excitation of all input ports). The match of the mode transducer that forms the output of a radial combiner was found to be >27 dB. The functional bandwidth of the radial base and mode transducer, which together will form a radial combiner/divider, exceeded the design band. The third architecture employs a 32-way, parallel-plate radial combiner. Simulation results indicated an input match >24 dB, output match >22 dB, insertion loss <0.23 dB, and adjacent port isolation >20 dB over the design band. All three architectures utilize a low-loss MMIC amplifier module based on commercial MMIC packaging and a custom microstrip-to-rectangular-waveguide transition. The insertion loss of the module is expected to be 0.45 dB over the design band.
Space station needs, attributes and architectural options: Architectural options and selection
NASA Technical Reports Server (NTRS)
Nelson, W. G.
1983-01-01
The approach, study results, and recommendations for defining and selecting space station architectural options are described. Space station system architecture is defined as the arrangement of elements (manned and unmanned on-orbit facilities, shuttle vehicles, orbital transfer vehicles, etc.), the number of these elements, their location (orbital inclination and altitude, and their functional performance capability, power, volume, crew, etc.). Architectural options are evaluated based on the degree of mission capture versus cost and required funding rate. Mission capture refers to the number of missions accommodated by the particular architecture.
Collaboration pathway(s) using new tools for optimizing `operational' climate monitoring from space
NASA Astrophysics Data System (ADS)
Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.
2015-09-01
Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a long term solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the collective needs of policy makers, scientific communities and global academic users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent rule-based expert system (RBES) optimization modeling of the intended NPOESS architecture becomes a surrogate for global operational climate monitoring architecture(s). These rulebased systems tools provide valuable insight for global climate architectures, by comparison/evaluation of alternatives and the sheer range of trade space explored. Optimization of climate monitoring architecture(s) for a partial list of ECV (essential climate variables) is explored and described in detail with dialogue on appropriate rule-based valuations. These optimization tool(s) suggest global collaboration advantages and elicit responses from the audience and climate science community. This paper will focus on recent research exploring joint requirement implications of the high profile NPOESS architecture and extends the research and tools to optimization for a climate centric case study. This reflects work from SPIE RS Conferences 2013 and 2014, abridged for simplification30, 32. First, the heavily securitized NPOESS architecture; inspired the recent research question - was Complexity (as a cost/risk factor) overlooked when considering the benefits of aggregating different missions into a single platform. Now years later a complete reversal; should agencies considering Disaggregation as the answer. We'll discuss what some academic research suggests. Second, using the GCOS requirements of earth climate observations via ECV (essential climate variables) many collected from space-based sensors; and accepting their definitions of global coverages intended to ensure the needs of major global and international organizations (UNFCCC and IPCC) are met as a core objective. Consider how new optimization tools like rule-based engines (RBES) offer alternative methods of evaluating collaborative architectures and constellations? What would the trade space of optimized operational climate monitoring architectures of ECV look like? Third, using the RBES tool kit (2014) demonstrate with application to a climate centric rule-based decision engine - optimizing architectural trades of earth observation satellite systems, allowing comparison(s) to existing architectures and gaining insights for global collaborative architectures. How difficult is it to pull together an optimized climate case study - utilizing for example 12 climate based instruments on multiple existing platforms and nominal handful of orbits; for best cost and performance benefits against the collection requirements of representative set of ECV. How much effort and resources would an organization expect to invest to realize these analysis and utility benefits?
Lunar Outpost Life Support Architecture Study Based on a High-Mobility Exploration Scenario
NASA Technical Reports Server (NTRS)
Lange, Kevin E.; Anderson, Molly S.
2010-01-01
This paper presents results of a life support architecture study based on a 2009 NASA lunar surface exploration scenario known as Scenario 12. The study focuses on the assembly complete outpost configuration and includes pressurized rovers as part of a distributed outpost architecture in both stand-alone and integrated configurations. A range of life support architectures are examined reflecting different levels of closure and distributed functionality. Monte Carlo simulations are used to assess the sensitivity of results to volatile high-impact mission variables, including the quantity of residual Lander oxygen and hydrogen propellants available for scavenging, the fraction of crew time away from the outpost on excursions, total extravehicular activity hours, and habitat leakage. Surpluses or deficits of water and oxygen are reported for each architecture, along with fixed and 10-year total equivalent system mass estimates relative to a reference case. System robustness is discussed in terms of the probability of no water or oxygen resupply as determined from the Monte Carlo simulations.
Repeatability of DTI-based skeletal muscle fiber tracking
Heemskerk, Anneriet M.; Sinha, Tuhin K.; Wilson, Kevin J.; Ding, Zhaohua; Damon, Bruce M.
2015-01-01
Diffusion tensor imaging (DTI)-based muscle fiber tracking enables the measurement of muscle architectural parameters, such as pennation angle (θ) and fiber tract length (Lft), throughout the entire muscle. Little is known, however, about the repeatability of either the muscle architectural measures or the underlying diffusion measures. Therefore, the goal of this study was to investigate the repeatability of DTI fiber tracking-based measurements and θ and Lft. Four DTI acquisitions were performed on two days that allowed for between acquisition, within day, and between day analyses. The eigenvalues and fractional anisotropy were calculated at the maximum cross-sectional area of, and fiber tracking was performed in, the tibialis anterior muscle of nine healthy subjects. The between acquisitions condition had the highest repeatability for the DTI indices and the architectural parameters. The overall inter class correlation coefficients (ICC’s) were greater than 0.6 for both θ and Lft and the repeatability coefficients were θ <10.2° and Lft < 50 mm. In conclusion, under the experimental and data analysis conditions used, the repeatability of the diffusion measures is very good and repeatability of the architectural measurements is acceptable. Therefore, this study demonstrates the feasibility for longitudinal studies of alterations in muscle architecture using DTI-based fiber tracking, under similar noise conditions and with similar diffusion characteristics. PMID:20099372
Optical linear algebra processors - Architectures and algorithms
NASA Technical Reports Server (NTRS)
Casasent, David
1986-01-01
Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.
NASA Technical Reports Server (NTRS)
Moeller, Robert C.; Borden, Chester; Spilker, Thomas; Smythe, William; Lock, Robert
2011-01-01
The JPL Rapid Mission Architecture (RMA) capability is a novel collaborative team-based approach to generate new mission architectures, explore broad trade space options, and conduct architecture-level analyses. RMA studies address feasibility and identify best candidates to proceed to further detailed design studies. Development of RMA first began at JPL in 2007 and has evolved to address the need for rapid, effective early mission architectural development and trade space exploration as a precursor to traditional point design evaluations. The RMA approach integrates a small team of architecture-level experts (typically 6-10 people) to generate and explore a wide-ranging trade space of mission architectures driven by the mission science (or technology) objectives. Group brainstorming and trade space analyses are conducted at a higher level of assessment across multiple mission architectures and systems to enable rapid assessment of a set of diverse, innovative concepts. This paper describes the overall JPL RMA team, process, and high-level approach. Some illustrative results from previous JPL RMA studies are discussed.
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2003-01-01
Traditional NASA missions, both near Earth and deep space, have been stovepipe in nature and point-to-point in architecture. Recently, NASA and others have conceptualized missions that required space-based networking. The notion of networks in space is a drastic shift in thinking and requires entirely new architectures, radio systems (antennas, modems, and media access), and possibly even new protocols. A full system engineering approach for some key mission architectures will occur that considers issues such as the science being performed, stationkeeping, antenna size, contact time, data rates, radio-link power requirements, media access techniques, and appropriate networking and transport protocols. This report highlights preliminary architecture concepts and key technologies that will be investigated.
Biomimetic design processes in architecture: morphogenetic and evolutionary computational design.
Menges, Achim
2012-03-01
Design computation has profound impact on architectural design methods. This paper explains how computational design enables the development of biomimetic design processes specific to architecture, and how they need to be significantly different from established biomimetic processes in engineering disciplines. The paper first explains the fundamental difference between computer-aided and computational design in architecture, as the understanding of this distinction is of critical importance for the research presented. Thereafter, the conceptual relation and possible transfer of principles from natural morphogenesis to design computation are introduced and the related developments of generative, feature-based, constraint-based, process-based and feedback-based computational design methods are presented. This morphogenetic design research is then related to exploratory evolutionary computation, followed by the presentation of two case studies focusing on the exemplary development of spatial envelope morphologies and urban block morphologies.
Agent Architectures for Compliance
NASA Astrophysics Data System (ADS)
Burgemeestre, Brigitte; Hulstijn, Joris; Tan, Yao-Hua
A Normative Multi-Agent System consists of autonomous agents who must comply with social norms. Different kinds of norms make different assumptions about the cognitive architecture of the agents. For example, a principle-based norm assumes that agents can reflect upon the consequences of their actions; a rule-based formulation only assumes that agents can avoid violations. In this paper we present several cognitive agent architectures for self-monitoring and compliance. We show how different assumptions about the cognitive architecture lead to different information needs when assessing compliance. The approach is validated with a case study of horizontal monitoring, an approach to corporate tax auditing recently introduced by the Dutch Customs and Tax Authority.
Bilateral Learning and Teaching in Chinese-Australian Arts and Architecture
ERIC Educational Resources Information Center
Joubert, Lindy; Whitford, Steven
2006-01-01
A collaborative design-based, cross-cultural exchange between the Chinese School of Architecture, Tsinghua University of Beijing, and the Faculty of Architecture, Building, and Planning at the University of Melbourne is the case study presented in this article. Two design studios were conducted: one in the Master of Urban Design program, and the…
A Knowledge Conversion Model Based on the Cognitive Load Theory for Architectural Design Education
ERIC Educational Resources Information Center
Wu, Yun-Wu; Liao, Shin; Wen, Ming-Hui; Weng, Kuo-Hua
2017-01-01
The education of architectural design requires balanced curricular arrangements of respectively theoretical knowledge and practical skills to really help students build their knowledge structures, particularly helping them in solving the problems of cognitive load. The purpose of this study is to establish an architectural design knowledge…
A new software-based architecture for quantum computer
NASA Astrophysics Data System (ADS)
Wu, Nan; Song, FangMin; Li, Xiangdong
2010-04-01
In this paper, we study a reliable architecture of a quantum computer and a new instruction set and machine language for the architecture, which can improve the performance and reduce the cost of the quantum computing. We also try to address some key issues in detail in the software-driven universal quantum computers.
Design and construction principles in nature and architecture.
Knippers, Jan; Speck, Thomas
2012-03-01
This paper will focus on how the emerging scientific discipline of biomimetics can bring new insights into the field of architecture. An analysis of both architectural and biological methodologies will show important aspects connecting these two. The foundation of this paper is a case study of convertible structures based on elastic plant movements.
DOT National Transportation Integrated Search
1999-09-01
This is one of seven studies exploring processes for developing Intelligent Transportation Systems (ITS) architectures for regional, statewide, or commercial vehicle applications. This study was prepared for a broad-based, non-technical audience. The...
Performance study of a data flow architecture
NASA Technical Reports Server (NTRS)
Adams, George
1985-01-01
Teams of scientists studied data flow concepts, static data flow machine architecture, and the VAL language. Each team mapped its application onto the machine and coded it in VAL. The principal findings of the study were: (1) Five of the seven applications used the full power of the target machine. The galactic simulation and multigrid fluid flow teams found that a significantly smaller version of the machine (16 processing elements) would suffice. (2) A number of machine design parameters including processing element (PE) function unit numbers, array memory size and bandwidth, and routing network capability were found to be crucial for optimal machine performance. (3) The study participants readily acquired VAL programming skills. (4) Participants learned that application-based performance evaluation is a sound method of evaluating new computer architectures, even those that are not fully specified. During the course of the study, participants developed models for using computers to solve numerical problems and for evaluating new architectures. These models form the bases for future evaluation studies.
Applicability of different onboard routing and processing techniques to mobile satellite systems
NASA Technical Reports Server (NTRS)
Craig, A. D.; Marston, P. C.; Bakken, P. M.; Vernucci, A.; Benedicto, J.
1993-01-01
The paper summarizes a study contract recently undertaken for ESA. The study compared the effectiveness of several processing architectures applied to multiple beam, geostationary global and European regional missions. The paper discusses architectures based on transparent SS-FDMA analog, transparent DSP and regenerative processing. Quantitative comparisons are presented and general conclusions are given with respect to suitability of the architectures to different mission requirements.
Effects of Various Architectural Parameters on Six Room Acoustical Measures in Auditoria.
NASA Astrophysics Data System (ADS)
Chiang, Wei-Hwa
The effects of architectural parameters on six room acoustical measures were investigated by means of correlation analyses, factor analyses and multiple regression analyses based on data taken in twenty halls. Architectural parameters were used to estimate acoustical measures taken at individual locations within each room as well as the averages and standard deviations of all measured values in the rooms. The six acoustical measures were Early Decay Time (EDT10), Clarity Index (C80), Overall Level (G), Bass Ratio based on Early Decay Time (BR(EDT)), Treble Ratio based on Early Decay Time (TR(EDT)), and Early Inter-aural Cross Correlation (IACC80). A comprehensive method of quantifying various architectural characteristics of rooms was developed to define a large number of architectural parameters that were hypothesized to effect the acoustical measurements made in the rooms. This study quantitatively confirmed many of the principles used in the design of concert halls and auditoria. Three groups of room architectural parameters such as the parameters associated with the depth of diffusing surfaces were significantly correlated with the hall standard deviations of most of the acoustical measures. Significant differences of statistical relations among architectural parameters and receiver specific acoustical measures were found between a group of music halls and a group of lecture halls. For example, architectural parameters such as the relative distance from the receiver to the overhead ceiling increased the percentage of the variance of acoustical measures that was explained by Barron's revised theory from approximately 70% to 80% only when data were taken in the group of music halls. This study revealed the major architectural parameters which have strong relations with individual acoustical measures forming the basis for a more quantitative method for advancing the theoretical design of concert halls and other auditoria. The results of this study provide designers the information to predict acoustical measures in buildings at very early stages of the design process without using computer models or scale models.
Formalism Challenges of the Cougaar Model Driven Architecture
NASA Technical Reports Server (NTRS)
Bohner, Shawn A.; George, Boby; Gracanin, Denis; Hinchey, Michael G.
2004-01-01
The Cognitive Agent Architecture (Cougaar) is one of the most sophisticated distributed agent architectures developed today. As part of its research and evolution, Cougaar is being studied for application to large, logistics-based applications for the Department of Defense (DoD). Anticipiting future complex applications of Cougaar, we are investigating the Model Driven Architecture (MDA) approach to understand how effective it would be for increasing productivity in Cougar-based development efforts. Recognizing the sophistication of the Cougaar development environment and the limitations of transformation technologies for agents, we have systematically developed an approach that combines component assembly in the large and transformation in the small. This paper describes some of the key elements that went into the Cougaar Model Driven Architecture approach and the characteristics that drove the approach.
The architecture of a video image processor for the space station
NASA Technical Reports Server (NTRS)
Yalamanchili, S.; Lee, D.; Fritze, K.; Carpenter, T.; Hoyme, K.; Murray, N.
1987-01-01
The architecture of a video image processor for space station applications is described. The architecture was derived from a study of the requirements of algorithms that are necessary to produce the desired functionality of many of these applications. Architectural options were selected based on a simulation of the execution of these algorithms on various architectural organizations. A great deal of emphasis was placed on the ability of the system to evolve and grow over the lifetime of the space station. The result is a hierarchical parallel architecture that is characterized by high level language programmability, modularity, extensibility and can meet the required performance goals.
Benchmarking hardware architecture candidates for the NFIRAOS real-time controller
NASA Astrophysics Data System (ADS)
Smith, Malcolm; Kerley, Dan; Herriot, Glen; Véran, Jean-Pierre
2014-07-01
As a part of the trade study for the Narrow Field Infrared Adaptive Optics System, the adaptive optics system for the Thirty Meter Telescope, we investigated the feasibility of performing real-time control computation using a Linux operating system and Intel Xeon E5 CPUs. We also investigated a Xeon Phi based architecture which allows higher levels of parallelism. This paper summarizes both the CPU based real-time controller architecture and the Xeon Phi based RTC. The Intel Xeon E5 CPU solution meets the requirements and performs the computation for one AO cycle in an average of 767 microseconds. The Xeon Phi solution did not meet the 1200 microsecond time requirement and also suffered from unpredictable execution times. More detailed benchmark results are reported for both architectures.
Neuromorphic Computing for Very Large Test and Evaluation Data Analysis
2014-05-01
analysis and utilization of newly available hardware- based artificial neural network chips. These two aspects of the program are complementary. The...neuromorphic architectures research focused on long term disruptive technologies with high risk but revolutionary potential. The hardware- based neural...today. Overall, hardware- based neural processing research allows us to study the fundamental system and architectural issues relevant for employing
Probabilistic characterization of sleep architecture: home based study on healthy volunteers.
Garcia-Molina, Gary; Vissapragada, Sreeram; Mahadevan, Anandi; Goodpaster, Robert; Riedner, Brady; Bellesi, Michele; Tononi, Giulio
2016-08-01
The quantification of sleep architecture has high clinical value for diagnostic purposes. While the clinical standard to assess sleep architecture is in-lab based polysomnography, higher ecological validity can be obtained with multiple sleep recordings at home. In this paper, we use a dataset composed of fifty sleep EEG recordings at home (10 per study participant for five participants) to analyze the sleep stage transition dynamics using Markov chain based modeling. The statistical analysis of the duration of continuous sleep stage bouts is also analyzed to identify the speed of transition between sleep stages. This analysis identified two types of NREM states characterized by fast and slow exit rates which from the EEG analysis appear to correspond to shallow and deep sleep respectively.
An eConsent-based System Architecture Supporting Cooperation in Integrated Healthcare Networks.
Bergmann, Joachim; Bott, Oliver J; Hoffmann, Ina; Pretschner, Dietrich P
2005-01-01
The economical need for efficient healthcare leads to cooperative shared care networks. A virtual electronic health record is required, which integrates patient related information but reflects the distributed infrastructure and restricts access only to those health professionals involved into the care process. Our work aims on specification and development of a system architecture fulfilling these requirements to be used in concrete regional pilot studies. Methodical analysis and specification have been performed in a healthcare network using the formal method and modelling tool MOSAIK-M. The complexity of the application field was reduced by focusing on the scenario of thyroid disease care, which still includes various interdisciplinary cooperation. Result is an architecture for a secure distributed electronic health record for integrated care networks, specified in terms of a MOSAIK-M-based system model. The architecture proposes business processes, application services, and a sophisticated security concept, providing a platform for distributed document-based, patient-centred, and secure cooperation. A corresponding system prototype has been developed for pilot studies, using advanced application server technologies. The architecture combines a consolidated patient-centred document management with a decentralized system structure without needs for replication management. An eConsent-based approach assures, that access to the distributed health record remains under control of the patient. The proposed architecture replaces message-based communication approaches, because it implements a virtual health record providing complete and current information. Acceptance of the new communication services depends on compatibility with the clinical routine. Unique and cross-institutional identification of a patient is also a challenge, but will loose significance with establishing common patient cards.
A supportive architecture for CFD-based design optimisation
NASA Astrophysics Data System (ADS)
Li, Ni; Su, Zeya; Bi, Zhuming; Tian, Chao; Ren, Zhiming; Gong, Guanghong
2014-03-01
Multi-disciplinary design optimisation (MDO) is one of critical methodologies to the implementation of enterprise systems (ES). MDO requiring the analysis of fluid dynamics raises a special challenge due to its extremely intensive computation. The rapid development of computational fluid dynamic (CFD) technique has caused a rise of its applications in various fields. Especially for the exterior designs of vehicles, CFD has become one of the three main design tools comparable to analytical approaches and wind tunnel experiments. CFD-based design optimisation is an effective way to achieve the desired performance under the given constraints. However, due to the complexity of CFD, integrating with CFD analysis in an intelligent optimisation algorithm is not straightforward. It is a challenge to solve a CFD-based design problem, which is usually with high dimensions, and multiple objectives and constraints. It is desirable to have an integrated architecture for CFD-based design optimisation. However, our review on existing works has found that very few researchers have studied on the assistive tools to facilitate CFD-based design optimisation. In the paper, a multi-layer architecture and a general procedure are proposed to integrate different CFD toolsets with intelligent optimisation algorithms, parallel computing technique and other techniques for efficient computation. In the proposed architecture, the integration is performed either at the code level or data level to fully utilise the capabilities of different assistive tools. Two intelligent algorithms are developed and embedded with parallel computing. These algorithms, together with the supportive architecture, lay a solid foundation for various applications of CFD-based design optimisation. To illustrate the effectiveness of the proposed architecture and algorithms, the case studies on aerodynamic shape design of a hypersonic cruising vehicle are provided, and the result has shown that the proposed architecture and developed algorithms have performed successfully and efficiently in dealing with the design optimisation with over 200 design variables.
NASA Technical Reports Server (NTRS)
Bonanne, Kevin H.
2011-01-01
Model-based Systems Engineering (MBSE) is an emerging methodology that can be leveraged to enhance many system development processes. MBSE allows for the centralization of an architecture description that would otherwise be stored in various locations and formats, thus simplifying communication among the project stakeholders, inducing commonality in representation, and expediting report generation. This paper outlines the MBSE approach taken to capture the processes of two different, but related, architectures by employing the Systems Modeling Language (SysML) as a standard for architecture description and the modeling tool MagicDraw. The overarching goal of this study was to demonstrate the effectiveness of MBSE as a means of capturing and designing a mission systems architecture. The first portion of the project focused on capturing the necessary system engineering activities that occur when designing, developing, and deploying a mission systems architecture for a space mission. The second part applies activities from the first to an application problem - the system engineering of the Orion Flight Test 1 (OFT-1) End-to-End Information System (EEIS). By modeling the activities required to create a space mission architecture and then implementing those activities in an application problem, the utility of MBSE as an approach to systems engineering can be demonstrated.
Internet-enabled collaborative agent-based supply chains
NASA Astrophysics Data System (ADS)
Shen, Weiming; Kremer, Rob; Norrie, Douglas H.
2000-12-01
This paper presents some results of our recent research work related to the development of a new Collaborative Agent System Architecture (CASA) and an Infrastructure for Collaborative Agent Systems (ICAS). Initially being proposed as a general architecture for Internet based collaborative agent systems (particularly complex industrial collaborative agent systems), the proposed architecture is very suitable for managing the Internet enabled complex supply chain for a large manufacturing enterprise. The general collaborative agent system architecture with the basic communication and cooperation services, domain independent components, prototypes and mechanisms are described. Benefits of implementing Internet enabled supply chains with the proposed infrastructure are discussed. A case study on Internet enabled supply chain management is presented.
ERIC Educational Resources Information Center
Wu, Yun-Wu; Weng, Apollo; Weng, Kuo-Hua
2017-01-01
The purpose of this study is to design a knowledge conversion and management digital learning system for architecture design learning, helping students to share, extract, use and create their design knowledge through web-based interactive activities based on socialization, internalization, combination and externalization process in addition to…
Study on the E-commerce platform based on the agent
NASA Astrophysics Data System (ADS)
Fu, Ruixue; Qin, Lishuan; Gao, Yinmin
2011-10-01
To solve problem of dynamic integration in e-commerce, the Multi-Agent architecture of electronic commerce platform system based on Agent and Ontology has been introduced, which includes three major types of agent, Ontology and rule collection. In this architecture, service agent and rule are used to realize the business process reengineering, the reuse of software component, and agility of the electronic commerce platform. To illustrate the architecture, a simulation work has been done and the results imply that the architecture provides a very efficient method to design and implement the flexible, distributed, open and intelligent electronic commerce platform system to solve problem of dynamic integration in ecommerce. The objective of this paper is to illustrate the architecture of electronic commerce platform system, and the approach how Agent and Ontology support the electronic commerce platform system.
NASA Astrophysics Data System (ADS)
Tramm, John R.; Gunow, Geoffrey; He, Tim; Smith, Kord S.; Forget, Benoit; Siegel, Andrew R.
2016-05-01
In this study we present and analyze a formulation of the 3D Method of Characteristics (MOC) technique applied to the simulation of full core nuclear reactors. Key features of the algorithm include a task-based parallelism model that allows independent MOC tracks to be assigned to threads dynamically, ensuring load balancing, and a wide vectorizable inner loop that takes advantage of modern SIMD computer architectures. The algorithm is implemented in a set of highly optimized proxy applications in order to investigate its performance characteristics on CPU, GPU, and Intel Xeon Phi architectures. Speed, power, and hardware cost efficiencies are compared. Additionally, performance bottlenecks are identified for each architecture in order to determine the prospects for continued scalability of the algorithm on next generation HPC architectures.
A U.S. perspective on the human exploration and expansion on the planet Mars
NASA Technical Reports Server (NTRS)
Roberts, Barney B.; Connolly, John F.
1992-01-01
A NASA perspective on the human exploration of Mars is presented which is based on the fundamental background available from the many previous studies. A hypothetical architecture of the Mars surface system is described which represents the complete spectrum of envisioned activities. Using the Strategic Implementation Architecture it is possible to construct a thoughtful roadmap which would enable a logical and flexible evolution of missions. Based on that architecture a suite of Martian surface elements is proposed to provide increasing levels of capability to the maturing infrastructure.
Modelling of internal architecture of kinesin nanomotor as a machine language.
Khataee, H R; Ibrahim, M Y
2012-09-01
Kinesin is a protein-based natural nanomotor that transports molecular cargoes within cells by walking along microtubules. Kinesin nanomotor is considered as a bio-nanoagent which is able to sense the cell through its sensors (i.e. its heads and tail), make the decision internally and perform actions on the cell through its actuator (i.e. its motor domain). The study maps the agent-based architectural model of internal decision-making process of kinesin nanomotor to a machine language using an automata algorithm. The applied automata algorithm receives the internal agent-based architectural model of kinesin nanomotor as a deterministic finite automaton (DFA) model and generates a regular machine language. The generated regular machine language was acceptable by the architectural DFA model of the nanomotor and also in good agreement with its natural behaviour. The internal agent-based architectural model of kinesin nanomotor indicates the degree of autonomy and intelligence of the nanomotor interactions with its cell. Thus, our developed regular machine language can model the degree of autonomy and intelligence of kinesin nanomotor interactions with its cell as a language. Modelling of internal architectures of autonomous and intelligent bio-nanosystems as machine languages can lay the foundation towards the concept of bio-nanoswarms and next phases of the bio-nanorobotic systems development.
Memristor-Based Computing Architecture: Design Methodologies and Circuit Techniques
2013-03-01
MEMRISTOR-BASED COMPUTING ARCHITECTURE : DESIGN METHODOLOGIES AND CIRCUIT TECHNIQUES POLYTECHNIC INSTITUTE OF NEW YORK UNIVERSITY...TECHNICAL REPORT 3. DATES COVERED (From - To) OCT 2010 – OCT 2012 4. TITLE AND SUBTITLE MEMRISTOR-BASED COMPUTING ARCHITECTURE : DESIGN METHODOLOGIES...schemes for a memristor-based reconfigurable architecture design have not been fully explored yet. Therefore, in this project, we investigated
ERIC Educational Resources Information Center
Bregger, Yasemin Alkiser
2017-01-01
This paper presents how a blended learning pedagogic model is integrated into an architectural design studio by adapting the problem-based learning process and housing issues in Istanbul Technical University (ITU), during fall 2015 and spring 2016 semesters for fourth and sixth level students. These studios collaborated with the "Introduction…
Memristor-Based Synapse Design and Training Scheme for Neuromorphic Computing Architecture
2012-06-01
system level built upon the conventional Von Neumann computer architecture [2][3]. Developing the neuromorphic architecture at chip level by...SCHEME FOR NEUROMORPHIC COMPUTING ARCHITECTURE 5a. CONTRACT NUMBER FA8750-11-2-0046 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62788F 6...creation of memristor-based neuromorphic computing architecture. Rather than the existing crossbar-based neuron network designs, we focus on memristor
NASA Technical Reports Server (NTRS)
Abada, Christopher H.; Farley, Gary L.; Hyer, Michael W.
2006-01-01
A computer-based parametric study of the effect of reinforcement architectures on fracture response of aluminum compact-tension (CT) specimens is performed. Eleven different reinforcement architectures consisting of rectangular and triangular cross-section reinforcements were evaluated. Reinforced specimens produced between 13 and 28 percent higher fracture load than achieved with the non-reinforced case. Reinforcements with blunt leading edges (rectangular reinforcements) exhibited superior performance relative to the triangular reinforcements with sharp leading edges. Relative to the rectangular reinforcements, the most important architectural feature was reinforcement thickness. At failure, the reinforcements carried between 58 and 85 percent of the load applied to the specimen, suggesting that there is considerable load transfer between the base material and the reinforcement.
NASA Astrophysics Data System (ADS)
Bigdeli, Abbas; Biglari-Abhari, Morteza; Salcic, Zoran; Tin Lai, Yat
2006-12-01
A new pipelined systolic array-based (PSA) architecture for matrix inversion is proposed. The pipelined systolic array (PSA) architecture is suitable for FPGA implementations as it efficiently uses available resources of an FPGA. It is scalable for different matrix size and as such allows employing parameterisation that makes it suitable for customisation for application-specific needs. This new architecture has an advantage of[InlineEquation not available: see fulltext.] processing element complexity, compared to the[InlineEquation not available: see fulltext.] in other systolic array structures, where the size of the input matrix is given by[InlineEquation not available: see fulltext.]. The use of the PSA architecture for Kalman filter as an implementation example, which requires different structures for different number of states, is illustrated. The resulting precision error is analysed and shown to be negligible.
Marschollek, Michael; Wolf, Klaus-H; Bott, Oliver-J; Geisler, Mirko; Plischke, Maik; Ludwig, Wolfram; Hornberger, Andreas; Haux, Reinhold
2007-01-01
Despite the abundance of past home care projects and the maturity of the technologies used, there is no widespread dissemination as yet. The absence of accepted standards and thus interoperability and the inadequate integration into transinstitutional health information systems (tHIS) are perceived as key factors. Based on the respective literature and previous experiences in home care projects we propose an architectural model for home care as part of a transinstitutional health information system using the HL7 clinical document architecture (CDA) as well as the HL7 Arden Syntax for Medical Logic Systems. In two short case studies we describe the practical realization of the architecture as well as first experiences. Our work can be regarded as a first step towards an interoperable - and in our view sustainable - home care architecture based on a prominent document standard from the health information system domain.
NASA Astrophysics Data System (ADS)
Panjikaran, S.; Vedamuthu, R.
2013-05-01
The churches of Kerala of the sixteenth to seventeenth centuries exhibits an architectural character which is different from that of the indigenous Church Architecture of Kerala. Preliminary studies show that the spatial organization of these churches also varied from that of the indigenous churches of Kerala. Did these variations in spatial organization arise of any change in functional requirements of churches? How did the indigenous Architectural character adapt to these changes or did it give way to a new style? The objective of this study is to understand the spatial organization of the indigenous Church Architecture of Kerala and to evaluate the changes in spatial organization during the sixteenth to seventeenth centuries. This study is primarily based on field survey and documentation, evaluation is done by relying on the Rapoport's theory. It is concluded that the church architecture of this period is a fusion of the Western and Eastern ecclesiastical traditions in terms of spatial organization and planning.
National Positioning, Navigation, and Timing Architecture Study
NASA Astrophysics Data System (ADS)
van Dyke, K.; Vicario, J.; Hothem, L.
2007-12-01
The purpose of the National Positioning, Navigation and Timing (PNT) Architecture effort is to help guide future PNT system-of-systems investment and implementation decisions. The Assistant Secretary of Defense for Networks and Information Integration and the Under Secretary of Transportation for Policy sponsored a National PNT Architecture study to provide more effective and efficient PNT capabilities focused on the 2025 timeframe and an evolutionary path for government provided systems and services. U.S. Space-Based PNT Policy states that the U.S. must continue to improve and maintain GPS, augmentations to GPS, and back-up capabilities to meet growing national, homeland, and economic security needs. PNT touches almost every aspect of people´s lives today. PNT is essential for Defense and Civilian applications ranging from the Department of Defense´s Joint network centric and precision operations to the transportation and telecommunications sectors, improving efficiency, increasing safety, and being more productive. Absence of an approved PNT architecture results in uncoordinated research efforts, lack of clear developmental paths, potentially wasteful procurements and inefficient deployment of PNT resources. The national PNT architecture effort evaluated alternative future mixes of global (space and non space-based) and regional PNT solutions, PNT augmentations, and autonomous PNT capabilities to address priorities identified in the DoD PNT Joint Capabilities Document (JCD) and civil equivalents. The path to achieving the Should-Be architecture is described by the National PNT Architecture's Guiding Principles, representing an overarching Vision of the US' role in PNT, an architectural Strategy to fulfill that Vision, and four Vectors which support the Strategy. The National PNT Architecture effort has developed nineteen recommendations. Five foundational recommendations are tied directly to the Strategy while the remaining fourteen individually support one of the Vectors, as will be described in this presentation. The results of this effort will support future decisions of bodies such as the DoD PNT and Civil Pos/Nav Executive Committees, as well as the National Space-Based PNT Executive Committee (EXCOM).
Control of Macromolecular Architectures for Renewable Polymers: Case Studies
NASA Astrophysics Data System (ADS)
Tang, Chuanbing
The development of sustainable polymers from nature biomass is growing, but facing fierce competition from existing petrochemical-based counterparts. Controlling macromolecular architectures to maximize the properties of renewable polymers is a desirable approach to gain advantages. Given the complexity of biomass, there needs special consideration other than traditional design. In the presentation, I will talk about a few case studies on how macromolecular architectures could tune the properties of sustainable bioplastics and elastomers from renewable biomass such as resin acids (natural rosin) and plant oils.
Advanced Multiple In-Multiple Out (MIMO) Antenna Communications for Airborne Networks
2015-03-01
are airborne and both employ multiple antennas. On the other hand, the conventionally studied MIMO wireless communication is based on the premise that...architecture as the central idea, upon which our proposed solutions are based . Hence, to facilitate experiments, we also de- velop a GNU Radio/USRP based D...decoder. 2.2 Variable Rate MIMO In this part of the report we develop a variable rate MIMO scheme, based on D-BLAST transceiver architecture, to
NASA Astrophysics Data System (ADS)
Titov, A. G.; Okladnikov, I. G.; Gordov, E. P.
2017-11-01
The use of large geospatial datasets in climate change studies requires the development of a set of Spatial Data Infrastructure (SDI) elements, including geoprocessing and cartographical visualization web services. This paper presents the architecture of a geospatial OGC web service system as an integral part of a virtual research environment (VRE) general architecture for statistical processing and visualization of meteorological and climatic data. The architecture is a set of interconnected standalone SDI nodes with corresponding data storage systems. Each node runs a specialized software, such as a geoportal, cartographical web services (WMS/WFS), a metadata catalog, and a MySQL database of technical metadata describing geospatial datasets available for the node. It also contains geospatial data processing services (WPS) based on a modular computing backend realizing statistical processing functionality and, thus, providing analysis of large datasets with the results of visualization and export into files of standard formats (XML, binary, etc.). Some cartographical web services have been developed in a system’s prototype to provide capabilities to work with raster and vector geospatial data based on OGC web services. The distributed architecture presented allows easy addition of new nodes, computing and data storage systems, and provides a solid computational infrastructure for regional climate change studies based on modern Web and GIS technologies.
NASA Astrophysics Data System (ADS)
Zhu, LeiYe; Wang, Qi; Xu, JunHua; Wu, Qing; Jin, MeiDong; Liao, RongJun; Wang, HaiBin
2018-03-01
Architectural Psychology is an interdisciplinary subject of psychology and architecture that focuses on architectural design by using Gestalt psychology, cognitive psychology and other related psychology principles. Researchers from China have achieved fruitful achievements in the field of architectural psychology during past thirty-three years. To reveal the current situation of the field in China, 129 related papers from the China National Knowledge Infrastructure (CNKI) were analyzed by CiteSpace II software. The results show that: (1) the studies of the field in China have been started since 1984 and the annual number of the papers increased dramatically from 2008 and reached a historical peak in 2016. Shanxi Architecture tops the list of contributing publishing journals; Wuhan University, Southwest Jiaotong University and Chongqing University are the best performer among the contributing organizations. (2) “Environmental Psychology”, “Architectural Design” and “Architectural Psychology” are the most frequency keywords. The frontiers of the field in China are “architectural creation” and “environmental psychology” while the popular research topics were“residential environment”, “spatial environment”, “environmental psychology”, “architectural theory” and “architectural psychology”.
Framework for Architecture Trade Study Using MBSE and Performance Simulation
NASA Technical Reports Server (NTRS)
Ryan, Jessica; Sarkani, Shahram; Mazzuchim, Thomas
2012-01-01
Increasing complexity in modern systems as well as cost and schedule constraints require a new paradigm of system engineering to fulfill stakeholder needs. Challenges facing efficient trade studies include poor tool interoperability, lack of simulation coordination (design parameters) and requirements flowdown. A recent trend toward Model Based System Engineering (MBSE) includes flexible architecture definition, program documentation, requirements traceability and system engineering reuse. As a new domain MBSE still lacks governing standards and commonly accepted frameworks. This paper proposes a framework for efficient architecture definition using MBSE in conjunction with Domain Specific simulation to evaluate trade studies. A general framework is provided followed with a specific example including a method for designing a trade study, defining candidate architectures, planning simulations to fulfill requirements and finally a weighted decision analysis to optimize system objectives.
A Comparative Study on the Architecture Internet of Things and its’ Implementation method
NASA Astrophysics Data System (ADS)
Xiao, Zhiliang
2017-08-01
With the rapid development of science and technology, Internet-based the Internet of things was born and achieved good results. In order to further build a complete Internet of things system, to achieve the design of the Internet of things, we need to constitute the object of the network structure of the indicators of comparative study, and on this basis, the Internet of things connected to the way and do more in-depth to achieve the unity of the object network architecture and implementation methods. This paper mainly analyzes the two types of Internet of Things system, and makes a brief comparative study of the important indicators, and then introduces the connection method and realization method of Internet of Things based on the concept of Internet of Things and architecture.
ERIC Educational Resources Information Center
Lintao, Rachelle B.; Erfe, Jonathan P.
2012-01-01
This study purports to foster the understanding of profession-based academic writing in two different cultural conventions by examining the rhetorical moves employed by American and Philippine thesis introductions in Architecture using Swales' 2004 Revised CARS move-analytic model as framework. Twenty (20) Master's thesis introductions in…
The Role of Sketch in Architecture Design
NASA Astrophysics Data System (ADS)
Li, Yanjin; Ning, Wen
2017-06-01
With the continuous development of computer technology, we rely more and more on the computer and pay more and more attention to the final design results, so that we ignore the importance of the sketch. However, the sketch is the most basic and effective way of architecture design. Based on the study of the sketch of Tjibao Cultural Center of sketch, the paper explores the role of sketch in architecture design .
Developing a modular architecture for creation of rule-based clinical diagnostic criteria.
Hong, Na; Pathak, Jyotishman; Chute, Christopher G; Jiang, Guoqian
2016-01-01
With recent advances in computerized patient records system, there is an urgent need for producing computable and standards-based clinical diagnostic criteria. Notably, constructing rule-based clinical diagnosis criteria has become one of the goals in the International Classification of Diseases (ICD)-11 revision. However, few studies have been done in building a unified architecture to support the need for diagnostic criteria computerization. In this study, we present a modular architecture for enabling the creation of rule-based clinical diagnostic criteria leveraging Semantic Web technologies. The architecture consists of two modules: an authoring module that utilizes a standards-based information model and a translation module that leverages Semantic Web Rule Language (SWRL). In a prototype implementation, we created a diagnostic criteria upper ontology (DCUO) that integrates ICD-11 content model with the Quality Data Model (QDM). Using the DCUO, we developed a transformation tool that converts QDM-based diagnostic criteria into Semantic Web Rule Language (SWRL) representation. We evaluated the domain coverage of the upper ontology model using randomly selected diagnostic criteria from broad domains (n = 20). We also tested the transformation algorithms using 6 QDM templates for ontology population and 15 QDM-based criteria data for rule generation. As the results, the first draft of DCUO contains 14 root classes, 21 subclasses, 6 object properties and 1 data property. Investigation Findings, and Signs and Symptoms are the two most commonly used element types. All 6 HQMF templates are successfully parsed and populated into their corresponding domain specific ontologies and 14 rules (93.3 %) passed the rule validation. Our efforts in developing and prototyping a modular architecture provide useful insight into how to build a scalable solution to support diagnostic criteria representation and computerization.
NASA Astrophysics Data System (ADS)
Kozicki, Janek; Kozicka, Joanna
Human missions to Mars are a special kind of space missions due to their long duration. The human aspect of such missions becomes as important as the technological one. The need for a human friendly and comfortable habitat arises. Studies of human behavior in ICEs have shown that larger groups of people mean a lower occurrence of conflicts. However, for a larger crew a larger habitat has to be designed -a Martian base. The research deals with psychological, sociological and technological aspects influencing the architectural design of a Martian Base. Extreme conditions present on Mars demand a partic-ular approach to technological and architectural design. To reduce the cost of building a bigger habitat, low cost solutions have been inquired into. A series of analyses has been performed to identify the best architectural solutions for a Martian base. A review of existing technologies and extreme condition habitats (both terrestrial and extraterrestrial) has revealed solutions that are the most reliable and efficient ones. Additionally, innovative technologies have been analyzed in search of the best candidates for actual base construction. Low cost solutions have been prioritized in the process. An in-depth study of architectural problems inherent in the design of a Martian base has resulted in a number of guidelines for the architect. The main ones are introduced in this review. Based on them, several concepts have been drafted as examples of user-friendly and aesthetically pleasing habitats. They are discussed in the following order: habitats made of domes, those built around greenhouses and those situated in sloping terrain. One of them is presented in detail, including interior design.
Biomimicry as an approach for sustainable architecture case of arid regions with hot and dry climate
NASA Astrophysics Data System (ADS)
Bouabdallah, Nabila; M'sellem, Houda; Alkama, Djamel
2016-07-01
This paper aims to study the problem of thermal comfort inside buildings located in hot and arid climates. The principal idea behind this research is using concepts based on the potential of nature as an instrument that helps creating appropriate facades with the environment "building skin". The biomimetic architecture imitates nature through the study of form, function, behaviour and ecosystems of biological organisms. This research aims to clarify the possibilities that can be offered by biomimicry architecture to develop architectural bio-inspired building's design that can help to enhance indoor thermal ambiance in buildings located in hot and dry climate which helps to achieve thermal comfort for users.
High-rise architecture in Ufa, Russia, based on crystallography canons
NASA Astrophysics Data System (ADS)
Narimanovich Sabitov, Ildar; Radikovna Kudasheva, Dilara; Yaroslavovich Vdovin, Denis
2018-03-01
The article considers fundamental steps of high-rise architecture forming stylistic tendencies, based on C. Willis and M. A. Korotich's studies. Crystallographic shaping as a direction is assigned on basis of classification by M. A. Korotich's. This direction is particularly examined and the main high-rise architecture forming aspects on basis of natural polycrystals forming principles are assigned. The article describes crystal forms transformation into an architectural composition, analyzes constructive systems within the framework of CTBUH (Council on Tall Buildings and Urban Habitat) classification, and picks out one of its types as the most optimal for using in buildings-crystals. The last stage of our research is the theoretical principles approbation into an experimental project of high-rise building in Ufa with the description of its contextual dislocation aspects.
Comparison of rotator cuff muscle architecture between humans and other selected vertebrate species
Mathewson, Margie A.; Kwan, Alan; Eng, Carolyn M.; Lieber, Richard L.; Ward, Samuel R.
2014-01-01
In this study, we compare rotator cuff muscle architecture of typically used animal models with that of humans and quantify the scaling relationships of these muscles across mammals. The four muscles that correspond to the human rotator cuff – supraspinatus, infraspinatus, subscapularis and teres minor – of 10 commonly studied animals were excised and subjected to a series of comparative measurements. When body mass among animals was regressed against physiological cross-sectional area, muscle mass and normalized fiber length, the confidence intervals suggested geometric scaling but did not exclude other scaling relationships. Based on the architectural difference index (ADI), a combined measure of fiber length-to-moment arm ratio, fiber length-to-muscle length ratio and the fraction of the total rotator cuff physiological cross-sectional area contributed by each muscle, chimpanzees were found to be the most similar to humans (ADI=2.15), followed closely by capuchins (ADI=2.16). Interestingly, of the eight non-primates studied, smaller mammals such as mice, rats and dogs were more similar to humans in architectural parameters compared with larger mammals such as sheep, pigs or cows. The force production versus velocity trade-off (indicated by fiber length-to-moment arm ratio) and the excursion ability (indicated by fiber length-to-muscle length ratio) of humans were also most similar to those of primates, followed by the small mammals. Overall, primates provide the best architectural representation of human muscle architecture. However, based on the muscle architectural parameters of non-primates, smaller rather than larger mammals may be better models for studying muscles related to the human rotator cuff. PMID:24072803
Determination of an Optimal Commercial Data Bus Architecture for a Flight Data System
NASA Technical Reports Server (NTRS)
Crawford, Kevin; Johnson, Martin; Humphries, Rick (Technical Monitor)
2001-01-01
NASA/Marshall Space Flight Center (MSFC) is continually looking for methods to reduce cost and schedule while keeping the quality of work high. MSFC is NASA's lead center for space transportation and microgravity research. When supporting NASA's programs several decisions concerning the avionics system must be made. Usually many trade studies must be conducted to determine the best ways to meet the customer's requirements. When deciding the flight data system, one of the first trade studies normally conducted is the determination of the data bus architecture. The schedule, cost, reliability, and environments are some of the factors that are reviewed in the determination of the data bus architecture. Based on the studies, the data bus architecture could result in a proprietary data bus or a commercial data bus. The cost factor usually removes the proprietary data bus from consideration. The commercial data bus's range from Versa Module Eurocard (VME) to Compact PCI to STD 32 to PC 104. If cost, schedule and size are prime factors, VME is usually not considered. If the prime factors are cost, schedule, and size then Compact PCI, STD 32 and PC104 are the choices for the data bus architecture. MSFC's center director has funded a study from his discretionary fund to determine an optimal low cost commercial data bus architecture. The goal of the study is to functionally and environmentally test Compact PCI, STD 32 and PC 104 data bus architectures. This paper will summarize the results of the data bus architecture study.
Kou, W; Pandolfino, J E; Kahrilas, P J; Patankar, N A
2017-06-01
Based on a fully coupled computational model of esophageal transport, we analyzed how varied esophageal muscle fiber architecture and/or dual contraction waves (CWs) affect bolus transport. Specifically, we studied the luminal pressure profile in those cases to better understand possible origins of the peristaltic transition zone. Two groups of studies were conducted using a computational model. The first studied esophageal transport with circumferential-longitudinal fiber architecture, helical fiber architecture and various combinations of the two. In the second group, cases with dual CWs and varied muscle fiber architecture were simulated. Overall transport characteristics were examined and the space-time profiles of luminal pressure were plotted and compared. Helical muscle fiber architecture featured reduced circumferential wall stress, greater esophageal distensibility, and greater axial shortening. Non-uniform fiber architecture featured a peristaltic pressure trough between two high-pressure segments. The distal pressure segment showed greater amplitude than the proximal segment, consistent with experimental data. Dual CWs also featured a pressure trough between two high-pressure segments. However, the minimum pressure in the region of overlap was much lower, and the amplitudes of the two high-pressure segments were similar. The efficacy of esophageal transport is greatly affected by muscle fiber architecture. The peristaltic transition zone may be attributable to non-uniform architecture of muscle fibers along the length of the esophagus and/or dual CWs. The difference in amplitude between the proximal and distal pressure segments may be attributable to non-uniform muscle fiber architecture. © 2017 John Wiley & Sons Ltd.
Marceglia, S; Fontelo, P; Rossi, E; Ackerman, M J
2015-01-01
Mobile health Applications (mHealth Apps) are opening the way to patients' responsible and active involvement with their own healthcare management. However, apart from Apps allowing patient's access to their electronic health records (EHRs), mHealth Apps are currently developed as dedicated "island systems". Although much work has been done on patient's access to EHRs, transfer of information from mHealth Apps to EHR systems is still low. This study proposes a standards-based architecture that can be adopted by mHealth Apps to exchange information with EHRs to support better quality of care. Following the definition of requirements for the EHR/mHealth App information exchange recently proposed, and after reviewing current standards, we designed the architecture for EHR/mHealth App integration. Then, as a case study, we modeled a system based on the proposed architecture aimed to support home monitoring for congestive heart failure patients. We simulated such process using, on the EHR side, OpenMRS, an open source longitudinal EHR and, on the mHealth App side, the iOS platform. The integration architecture was based on the bi-directional exchange of standard documents (clinical document architecture rel2 - CDA2). In the process, the clinician "prescribes" the home monitoring procedures by creating a CDA2 prescription in the EHR that is sent, encrypted and de-identified, to the mHealth App to create the monitoring calendar. At the scheduled time, the App alerts the patient to start the monitoring. After the measurements are done, the App generates a structured CDA2-compliant monitoring report and sends it to the EHR, thus avoiding local storage. The proposed architecture, even if validated only in a simulation environment, represents a step forward in the integration of personal mHealth Apps into the larger health-IT ecosystem, allowing the bi-directional data exchange between patients and healthcare professionals, supporting the patient's engagement in self-management and self-care.
Hydrothermal Fabrication of WO3 Hierarchical Architectures: Structure, Growth and Response
Wu, Chuan-Sheng
2015-01-01
Recently hierarchical architectures, consisting of two-dimensional (2D) nanostructures, are of great interest for potential applications in energy and environmental. Here, novel rose-like WO3 hierarchical architectures were successfully synthesized via a facile hydrothermal method. The as-prepared WO3 hierarchical architectures were in fact assembled by numerous nanosheets with an average thickness of ~30 nm. We found that the oxalic acid played a significant role in governing morphologies of WO3 during hydrothermal process. Based on comparative studies, a possible formation mechanism was also proposed in detail. Furthermore, gas-sensing measurement showed that the well-defined 3D WO3 hierarchical architectures exhibited the excellent gas sensing properties towards CO. PMID:28347062
Advanced Sea Base Enabler (ASE) Capstone Design Project
2009-09-21
Additionally, a study that examines a potential fleet architecture , which looks at a combination of sea base enabler platforms in order to close current...This change in premise spawned a post-Cold War naval intellectual renaissance , reflected in several Department of the Navy (DON) “white papers...information collected regarding the various systems is reliable. 3. Primary Areas of Focus Detailed engineering analyses, naval architecture or other
ERIC Educational Resources Information Center
Travis, James L., III
2014-01-01
This study investigated how and to what extent the development and use of the OV-5a operational architecture decomposition tree (OADT) from the Department of Defense (DoD) Architecture Framework (DoDAF) affects requirements analysis with respect to complete performance metrics for performance-based services acquisition of ICT under rigid…
2015-05-01
Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web-Based and Mobile Devices Walt Scacchi and Thomas...2015 to 00-00-2015 4. TITLE AND SUBTITLE Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web-Based and...architecture (OA) software systems Emerging challenges in achieving Better Buying Power (BBP) via OA software systems for Web- based and Mobile devices
Study of a unified hardware and software fault-tolerant architecture
NASA Technical Reports Server (NTRS)
Lala, Jaynarayan; Alger, Linda; Friend, Steven; Greeley, Gregory; Sacco, Stephen; Adams, Stuart
1989-01-01
A unified architectural concept, called the Fault Tolerant Processor Attached Processor (FTP-AP), that can tolerate hardware as well as software faults is proposed for applications requiring ultrareliable computation capability. An emulation of the FTP-AP architecture, consisting of a breadboard Motorola 68010-based quadruply redundant Fault Tolerant Processor, four VAX 750s as attached processors, and four versions of a transport aircraft yaw damper control law, is used as a testbed in the AIRLAB to examine a number of critical issues. Solutions of several basic problems associated with N-Version software are proposed and implemented on the testbed. This includes a confidence voter to resolve coincident errors in N-Version software. A reliability model of N-Version software that is based upon the recent understanding of software failure mechanisms is also developed. The basic FTP-AP architectural concept appears suitable for hosting N-Version application software while at the same time tolerating hardware failures. Architectural enhancements for greater efficiency, software reliability modeling, and N-Version issues that merit further research are identified.
Trust information-based privacy architecture for ubiquitous health.
Ruotsalainen, Pekka Sakari; Blobel, Bernd; Seppälä, Antto; Nykänen, Pirkko
2013-10-08
Ubiquitous health is defined as a dynamic network of interconnected systems that offers health services independent of time and location to a data subject (DS). The network takes place in open and unsecure information space. It is created and managed by the DS who sets rules that regulate the way personal health information is collected and used. Compared to health care, it is impossible in ubiquitous health to assume the existence of a priori trust between the DS and service providers and to produce privacy using static security services. In ubiquitous health features, business goals and regulations systems followed often remain unknown. Furthermore, health care-specific regulations do not rule the ways health data is processed and shared. To be successful, ubiquitous health requires novel privacy architecture. The goal of this study was to develop a privacy management architecture that helps the DS to create and dynamically manage the network and to maintain information privacy. The architecture should enable the DS to dynamically define service and system-specific rules that regulate the way subject data is processed. The architecture should provide to the DS reliable trust information about systems and assist in the formulation of privacy policies. Furthermore, the architecture should give feedback upon how systems follow the policies of DS and offer protection against privacy and trust threats existing in ubiquitous environments. A sequential method that combines methodologies used in system theory, systems engineering, requirement analysis, and system design was used in the study. In the first phase, principles, trust and privacy models, and viewpoints were selected. Thereafter, functional requirements and services were developed on the basis of a careful analysis of existing research published in journals and conference proceedings. Based on principles, models, and requirements, architectural components and their interconnections were developed using system analysis. The architecture mimics the way humans use trust information in decision making, and enables the DS to design system-specific privacy policies using computational trust information that is based on systems' measured features. The trust attributes that were developed describe the level systems for support awareness and transparency, and how they follow general and domain-specific regulations and laws. The monitoring component of the architecture offers dynamic feedback concerning how the system enforces the polices of DS. The privacy management architecture developed in this study enables the DS to dynamically manage information privacy in ubiquitous health and to define individual policies for all systems considering their trust value and corresponding attributes. The DS can also set policies for secondary use and reuse of health information. The architecture offers protection against privacy threats existing in ubiquitous environments. Although the architecture is targeted to ubiquitous health, it can easily be modified to other ubiquitous applications.
Trust Information-Based Privacy Architecture for Ubiquitous Health
2013-01-01
Background Ubiquitous health is defined as a dynamic network of interconnected systems that offers health services independent of time and location to a data subject (DS). The network takes place in open and unsecure information space. It is created and managed by the DS who sets rules that regulate the way personal health information is collected and used. Compared to health care, it is impossible in ubiquitous health to assume the existence of a priori trust between the DS and service providers and to produce privacy using static security services. In ubiquitous health features, business goals and regulations systems followed often remain unknown. Furthermore, health care-specific regulations do not rule the ways health data is processed and shared. To be successful, ubiquitous health requires novel privacy architecture. Objective The goal of this study was to develop a privacy management architecture that helps the DS to create and dynamically manage the network and to maintain information privacy. The architecture should enable the DS to dynamically define service and system-specific rules that regulate the way subject data is processed. The architecture should provide to the DS reliable trust information about systems and assist in the formulation of privacy policies. Furthermore, the architecture should give feedback upon how systems follow the policies of DS and offer protection against privacy and trust threats existing in ubiquitous environments. Methods A sequential method that combines methodologies used in system theory, systems engineering, requirement analysis, and system design was used in the study. In the first phase, principles, trust and privacy models, and viewpoints were selected. Thereafter, functional requirements and services were developed on the basis of a careful analysis of existing research published in journals and conference proceedings. Based on principles, models, and requirements, architectural components and their interconnections were developed using system analysis. Results The architecture mimics the way humans use trust information in decision making, and enables the DS to design system-specific privacy policies using computational trust information that is based on systems’ measured features. The trust attributes that were developed describe the level systems for support awareness and transparency, and how they follow general and domain-specific regulations and laws. The monitoring component of the architecture offers dynamic feedback concerning how the system enforces the polices of DS. Conclusions The privacy management architecture developed in this study enables the DS to dynamically manage information privacy in ubiquitous health and to define individual policies for all systems considering their trust value and corresponding attributes. The DS can also set policies for secondary use and reuse of health information. The architecture offers protection against privacy threats existing in ubiquitous environments. Although the architecture is targeted to ubiquitous health, it can easily be modified to other ubiquitous applications. PMID:25099213
Architecture Study on Telemetry Coverage for Immediate Post-Separation Phase
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Lee, Charles; Kellogg, Kent; Stocklin, Frank; Zillig, David; Fielhauer, Karl
2008-01-01
This document is the viewgraphs that accompanies a paper that presents the preliminary results of an architecture study that provides continuous telemetry coverage for NASA missions for immediate post-separation phase. After launch when the spacecraft separated from the upper stage, the spacecraft typically executes a number of mission-critical operations prior to the deployment of solar panels and the activation of the primary communication subsystem. JPL, GSFC, and APL have similar design principle statements that require continuous coverage of mission-critical telemetry during the immediate post-separation phase. To conform to these design principles, an architecture that consists of a separate spacecraft transmitter and a robust communication network capable of tracking the spacecraft signals is needed. The main results of this study are as follows: 1) At low altitude (< 10000 km) when most post-separation critical operations are executed, Earth-based network (e.g. Deep Space Network (DSN)) can only provide limited coverage, whereas space-based network (e.g. Space Network (SN)) can provide continuous coverage. 2) Commercial-off-the-shelf SN compatible transmitters are available for small satellite applications. In this paper we present the detailed coverage analysis of Earth-based and Space-based networks. We identify the key functional and performance requirements of the architecture, and describe the proposed selection criteria of the spacecraft transmitter. We conclude the paper with a proposed forward plan.
Traffic and Driving Simulator Based on Architecture of Interactive Motion.
Paz, Alexander; Veeramisti, Naveen; Khaddar, Romesh; de la Fuente-Mella, Hanns; Modorcea, Luiza
2015-01-01
This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i) motion-based driving simulation, (ii) pedestrian simulation, (iii) motorcycling and bicycling simulation, and (iv) traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination.
Traffic and Driving Simulator Based on Architecture of Interactive Motion
Paz, Alexander; Veeramisti, Naveen; Khaddar, Romesh; de la Fuente-Mella, Hanns; Modorcea, Luiza
2015-01-01
This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i) motion-based driving simulation, (ii) pedestrian simulation, (iii) motorcycling and bicycling simulation, and (iv) traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination. PMID:26491711
Heterogeneous computing architecture for fast detection of SNP-SNP interactions.
Sluga, Davor; Curk, Tomaz; Zupan, Blaz; Lotric, Uros
2014-06-25
The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems.
Heterogeneous computing architecture for fast detection of SNP-SNP interactions
2014-01-01
Background The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. Results We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. Conclusions General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems. PMID:24964802
Diversification of Processors Based on Redundancy in Instruction Set
NASA Astrophysics Data System (ADS)
Ichikawa, Shuichi; Sawada, Takashi; Hata, Hisashi
By diversifying processor architecture, computer software is expected to be more resistant to plagiarism, analysis, and attacks. This study presents a new method to diversify instruction set architecture (ISA) by utilizing the redundancy in the instruction set. Our method is particularly suited for embedded systems implemented with FPGA technology, and realizes a genuine instruction set randomization, which has not been provided by the preceding studies. The evaluation results on four typical ISAs indicate that our scheme can provide a far larger degree of freedom than the preceding studies. Diversified processors based on MIPS architecture were actually implemented and evaluated with Xilinx Spartan-3 FPGA. The increase of logic scale was modest: 5.1% in Specialized design and 3.6% in RAM-mapped design. The performance overhead was also modest: 3.4% in Specialized design and 11.6% in RAM-mapped design. From these results, our scheme is regarded as a practical and promising way to secure FPGA-based embedded systems.
Remington, David L
2015-12-01
Perspectives on the role of large-effect quantitative trait loci (QTL) in the evolution of complex traits have shifted back and forth over the past few decades. Different sets of studies have produced contradictory insights on the evolution of genetic architecture. I argue that much of the confusion results from a failure to distinguish mutational and allelic effects, a limitation of using the Fisherian model of adaptive evolution as the lens through which the evolution of adaptive variation is examined. A molecular-based perspective reveals that allelic differences can involve the cumulative effects of many mutations plus intragenic recombination, a model that is supported by extensive empirical evidence. I discuss how different selection regimes could produce very different architectures of allelic effects under a molecular-based model, which may explain conflicting insights on genetic architecture from studies of variation within populations versus between divergently selected populations. I address shortcomings of genome-wide association study (GWAS) practices in light of more suitable models of allelic evolution, and suggest alternate GWAS strategies to generate more valid inferences about genetic architecture. Finally, I discuss how adopting more suitable models of allelic evolution could help redirect research on complex trait evolution toward addressing more meaningful questions in evolutionary biology. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
39 CFR 501.7 - Postage Evidencing System requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Performance Criteria for Information-Based Indicia and Security Architecture for Open IBI Postage Evidencing Systems or Performance Criteria for Information-Based Indicia and Security Architecture for Closed IBI... Information-Based Indicia and Security Architecture for Open IBI Postage Evidencing Systems or Performance...
39 CFR 501.7 - Postage Evidencing System requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Performance Criteria for Information-Based Indicia and Security Architecture for Open IBI Postage Evidencing Systems or Performance Criteria for Information-Based Indicia and Security Architecture for Closed IBI... Information-Based Indicia and Security Architecture for Open IBI Postage Evidencing Systems or Performance...
Gadeo-Martos, Manuel Angel; Fernandez-Prieto, Jose Angel; Canada-Bago, Joaquin; Velasco, Juan Ramon
2011-01-01
Over the past few years, Intelligent Spaces (ISs) have received the attention of many Wireless Sensor Network researchers. Recently, several studies have been devoted to identify their common capacities and to set up ISs over these networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks for the purpose of implementing ISs. This work presents a distributed architecture proposal for collaborative Fuzzy Rule-Based Systems embedded in Wireless Sensor Networks, which has been designed to optimize the implementation of ISs. This architecture includes the following: (a) an optimized design for the inference engine; (b) a visual interface; (c) a module to reduce the redundancy and complexity of the knowledge bases; (d) a module to evaluate the accuracy of the new knowledge base; (e) a module to adapt the format of the rules to the structure used by the inference engine; and (f) a communications protocol. As a real-world application of this architecture and the proposed methodologies, we show an application to the problem of modeling two plagues of the olive tree: prays (olive moth, Prays oleae Bern.) and repilo (caused by the fungus Spilocaea oleagina). The results show that the architecture presented in this paper significantly decreases the consumption of resources (memory, CPU and battery) without a substantial decrease in the accuracy of the inferred values. PMID:22163687
Gangadari, Bhoopal Rao; Ahamed, Shaik Rafi
2016-12-01
In this paper, we presented a novel approach of low energy consumption architecture of S-Box used in Advanced Encryption Standard (AES) algorithm using programmable second order reversible cellular automata (RCA 2 ). The architecture entails a low power implementation with minimal delay overhead and the performance of proposed RCA 2 based S-Box in terms of security is evaluated using the cryptographic properties such as nonlinearity, correlation immunity bias, strict avalanche criteria, entropy and also found that the proposed architecture is secure enough for cryptographic applications. Moreover, the proposed AES algorithm architecture simulation studies show that energy consumption of 68.726 nJ, power dissipation of 3.856 mW for 0.18- μm at 13.69 MHz and energy consumption of 29.408 nJ, power dissipation of 1.65 mW for 0.13- μm at 13.69 MHz. The proposed AES algorithm with RCA 2 based S-Box shows a reduction power consumption by 50 % and energy consumption by 5 % compared to best classical S-Box and composite field arithmetic based AES algorithm. Apart from that, it is also shown that RCA 2 based S-Boxes are dynamic in nature, invertible, low power dissipation compared to that of LUT based S-Box and hence suitable for Wireless Body Area Network (WBAN) applications.
Gadeo-Martos, Manuel Angel; Fernandez-Prieto, Jose Angel; Canada-Bago, Joaquin; Velasco, Juan Ramon
2011-01-01
Over the past few years, Intelligent Spaces (ISs) have received the attention of many Wireless Sensor Network researchers. Recently, several studies have been devoted to identify their common capacities and to set up ISs over these networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks for the purpose of implementing ISs. This work presents a distributed architecture proposal for collaborative Fuzzy Rule-Based Systems embedded in Wireless Sensor Networks, which has been designed to optimize the implementation of ISs. This architecture includes the following: (a) an optimized design for the inference engine; (b) a visual interface; (c) a module to reduce the redundancy and complexity of the knowledge bases; (d) a module to evaluate the accuracy of the new knowledge base; (e) a module to adapt the format of the rules to the structure used by the inference engine; and (f) a communications protocol. As a real-world application of this architecture and the proposed methodologies, we show an application to the problem of modeling two plagues of the olive tree: prays (olive moth, Prays oleae Bern.) and repilo (caused by the fungus Spilocaea oleagina). The results show that the architecture presented in this paper significantly decreases the consumption of resources (memory, CPU and battery) without a substantial decrease in the accuracy of the inferred values.
Study on Global GIS architecture and its key technologies
NASA Astrophysics Data System (ADS)
Cheng, Chengqi; Guan, Li; Lv, Xuefeng
2009-09-01
Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.
Study on Global GIS architecture and its key technologies
NASA Astrophysics Data System (ADS)
Cheng, Chengqi; Guan, Li; Lv, Xuefeng
2010-11-01
Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.
Future Missions for Space Weather Specifications and Forecasts
NASA Astrophysics Data System (ADS)
Onsager, T. G.; Biesecker, D. A.; Anthes, R. A.; Maier, M. W.; Gallagher, F. W., III; St Germain, K.
2017-12-01
The progress of technology and the global integration of our economic and security infrastructures have introduced vulnerabilities to space weather that demand a more comprehensive ability to specify and to predict the dynamics of the space environment. This requires a comprehensive network of real-time space-based and ground-based observations with long-term continuity. In order to determine the most cost effective space architectures for NOAA's weather, space weather, and environmental missions, NOAA conducted the NOAA Satellite Observing System Architecture (NSOSA) study. This presentation will summarize the process used to document the future needs and the relative priorities for NOAA's operational space-based observations. This involves specifying the most important observations, defining the performance attributes at different levels of capability, and assigning priorities for achieving the higher capability levels. The highest priority observations recommended by the Space Platform Requirements Working Group (SPRWG) for improvement above a minimal capability level will be described. Finally, numerous possible satellite architectures have been explored to assess the costs and benefits of various architecture configurations.
Architectural Design for European SST System
NASA Astrophysics Data System (ADS)
Utzmann, Jens; Wagner, Axel; Blanchet, Guillaume; Assemat, Francois; Vial, Sophie; Dehecq, Bernard; Fernandez Sanchez, Jaime; Garcia Espinosa, Jose Ramon; Agueda Mate, Alberto; Bartsch, Guido; Schildknecht, Thomas; Lindman, Niklas; Fletcher, Emmet; Martin, Luis; Moulin, Serge
2013-08-01
The paper presents the results of a detailed design, evaluation and trade-off of a potential European Space Surveillance and Tracking (SST) system architecture. The results have been produced in study phase 1 of the on-going "CO-II SSA Architectural Design" project performed by the Astrium consortium as part of ESA's Space Situational Awareness Programme and are the baseline for further detailing and consolidation in study phase 2. The sensor network is comprised of both ground- and space-based assets and aims at being fully compliant with the ESA SST System Requirements. The proposed ground sensors include a surveillance radar, an optical surveillance system and a tracking network (radar and optical). A space-based telescope system provides significant performance and robustness for the surveillance and tracking of beyond-LEO target objects.
Considerations for Architecture Level Trade Studies for Environmental Sensors
NASA Technical Reports Server (NTRS)
Peterson, Craig
2010-01-01
Comparisons of key characteristics of environmental sensors such as technology readiness levels, mass, power, volume, and detection capabilities are essential for initial trade studies to determine likely candidates for further development and evaluation. However, these trade studies only provide part of the information necessary to make selection decisions. Ultimately, the sensors must be judged based on the overall system architectures and operational scenarios for which they are intended. This means that additional characteristics, such as architectural needs for redundancy, operational lifetime, ability to maintain calibration, and repair and replacement strategies, among others, must also be considered. Given that these characteristics can be extremely time-consuming and costly to obtain, careful planning is essential to minimize the effort involved. In this paper, an approach is explored for determining an effective yet comprehensive set of architecture level trades which is minimally impacted by the inevitable changes in operational (mission) scenarios. The approach will also identify and integrate the various facilities and opportunities required to obtain the desired architecture level trade information.
Data accuracy assessment using enterprise architecture
NASA Astrophysics Data System (ADS)
Närman, Per; Holm, Hannes; Johnson, Pontus; König, Johan; Chenine, Moustafa; Ekstedt, Mathias
2011-02-01
Errors in business processes result in poor data accuracy. This article proposes an architecture analysis method which utilises ArchiMate and the Probabilistic Relational Model formalism to model and analyse data accuracy. Since the resources available for architecture analysis are usually quite scarce, the method advocates interviews as the primary data collection technique. A case study demonstrates that the method yields correct data accuracy estimates and is more resource-efficient than a competing sampling-based data accuracy estimation method.
Jupiter Europa Orbiter Architecture Definition Process
NASA Technical Reports Server (NTRS)
Rasmussen, Robert; Shishko, Robert
2011-01-01
The proposed Jupiter Europa Orbiter mission, planned for launch in 2020, is using a new architectural process and framework tool to drive its model-based systems engineering effort. The process focuses on getting the architecture right before writing requirements and developing a point design. A new architecture framework tool provides for the structured entry and retrieval of architecture artifacts based on an emerging architecture meta-model. This paper describes the relationships among these artifacts and how they are used in the systems engineering effort. Some early lessons learned are discussed.
Practical Application of Model-based Programming and State-based Architecture to Space Missions
NASA Technical Reports Server (NTRS)
Horvath, Gregory; Ingham, Michel; Chung, Seung; Martin, Oliver; Williams, Brian
2006-01-01
A viewgraph presentation to develop models from systems engineers that accomplish mission objectives and manage the health of the system is shown. The topics include: 1) Overview; 2) Motivation; 3) Objective/Vision; 4) Approach; 5) Background: The Mission Data System; 6) Background: State-based Control Architecture System; 7) Background: State Analysis; 8) Overview of State Analysis; 9) Background: MDS Software Frameworks; 10) Background: Model-based Programming; 10) Background: Titan Model-based Executive; 11) Model-based Execution Architecture; 12) Compatibility Analysis of MDS and Titan Architectures; 13) Integrating Model-based Programming and Execution into the Architecture; 14) State Analysis and Modeling; 15) IMU Subsystem State Effects Diagram; 16) Titan Subsystem Model: IMU Health; 17) Integrating Model-based Programming and Execution into the Software IMU; 18) Testing Program; 19) Computationally Tractable State Estimation & Fault Diagnosis; 20) Diagnostic Algorithm Performance; 21) Integration and Test Issues; 22) Demonstrated Benefits; and 23) Next Steps
Sebaa, Abderrazak; Chikh, Fatima; Nouicer, Amina; Tari, AbdelKamel
2018-02-19
The huge increases in medical devices and clinical applications which generate enormous data have raised a big issue in managing, processing, and mining this massive amount of data. Indeed, traditional data warehousing frameworks can not be effective when managing the volume, variety, and velocity of current medical applications. As a result, several data warehouses face many issues over medical data and many challenges need to be addressed. New solutions have emerged and Hadoop is one of the best examples, it can be used to process these streams of medical data. However, without an efficient system design and architecture, these performances will not be significant and valuable for medical managers. In this paper, we provide a short review of the literature about research issues of traditional data warehouses and we present some important Hadoop-based data warehouses. In addition, a Hadoop-based architecture and a conceptual data model for designing medical Big Data warehouse are given. In our case study, we provide implementation detail of big data warehouse based on the proposed architecture and data model in the Apache Hadoop platform to ensure an optimal allocation of health resources.
A computer architecture for intelligent machines
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Saridis, G. N.
1992-01-01
The theory of intelligent machines proposes a hierarchical organization for the functions of an autonomous robot based on the principle of increasing precision with decreasing intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed. The authors present a computer architecture that implements the lower two levels of the intelligent machine. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Execution-level controllers for motion and vision systems are briefly addressed, as well as the Petri net transducer software used to implement coordination-level functions. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.
Chronological analysis of architectural and acoustical indices in music performance halls.
Kwon, Youngmin; Siebein, Gary W
2007-05-01
This study aims to identify the changes in architectural and acoustical indices in halls for music performance built in the 18th through the 20th Centuries. Seventy-one halls are classified in five specific periods from the Classical Period (1751-1820) to the Contemporary Period (1981-2000) based on chronology in music and architectural acoustics. Architectural indices such as room shape, seating capacity, room volume, balcony configuration, and the like as well as acoustical indices such as RT, EDT, G, C80, IACC, and the like for the halls found in the literature are chronologically tabulated and statistically analyzed to identify trends and relationships in architectural and acoustical design for each of the historical periods identified. Some indices appear correlated with each other.
Semantic-Web Architecture for Electronic Discharge Summary Based on OWL 2.0 Standard.
Tahmasebian, Shahram; Langarizadeh, Mostafa; Ghazisaeidi, Marjan; Safdari, Reza
2016-06-01
Patients' electronic medical record contains all information related to treatment processes during hospitalization. One of the most important documents in this record is the record summary. In this document, summary of the whole treatment process is presented which is used for subsequent treatments and other issues pertaining to the treatment. Using suitable architecture for this document, apart from the aforementioned points we can use it in other fields such as data mining or decision making based on the cases. In this study, at first, a model for patient's medical record summary has been suggested using semantic web-based architecture. Then, based on service-oriented architecture and using Java programming language, a software solution was designed and run in a way to generate medical record summary with this structure and at the end, new uses of this structure was explained. in this study a structure for medical record summaries along with corrective points within semantic web has been offered and a software running within Java along with special ontologies are provided. After discussing the project with the experts of medical/health data management and medical informatics as well as clinical experts, it became clear that suggested design for medical record summary apart from covering many issues currently faced in the medical records has also many advantages including its uses in research projects, decision making based on the cases etc.
SiC: An Agent Based Architecture for Preventing and Detecting Attacks to Ubiquitous Databases
NASA Astrophysics Data System (ADS)
Pinzón, Cristian; de Paz, Yanira; Bajo, Javier; Abraham, Ajith; Corchado, Juan M.
One of the main attacks to ubiquitous databases is the structure query language (SQL) injection attack, which causes severe damages both in the commercial aspect and in the user’s confidence. This chapter proposes the SiC architecture as a solution to the SQL injection attack problem. This is a hierarchical distributed multiagent architecture, which involves an entirely new approach with respect to existing architectures for the prevention and detection of SQL injections. SiC incorporates a kind of intelligent agent, which integrates a case-based reasoning system. This agent, which is the core of the architecture, allows the application of detection techniques based on anomalies as well as those based on patterns, providing a great degree of autonomy, flexibility, robustness and dynamic scalability. The characteristics of the multiagent system allow an architecture to detect attacks from different types of devices, regardless of the physical location. The architecture has been tested on a medical database, guaranteeing safe access from various devices such as PDAs and notebook computers.
Synthesis and supramolecular assembly of biomimetic polymers
NASA Astrophysics Data System (ADS)
Marciel, Amanda Brittany
A grand challenge in materials chemistry is the synthesis of macromolecules and polymers with precise shapes and architectures. Polymer microstructure and architecture strongly affect the resulting functionality of advanced materials, yet understanding the static and dynamic properties of these complex macromolecules in bulk has been difficult due to their inherit polydispersity. Single molecule studies have provided a wealth of information on linear flexible and semi-flexible polymers in dilute solutions. However, few investigations have focused on industrially relevant complex topologies (e.g., star, comb, hyperbranched polymers) in industrially relevant solution conditions (e.g., semi-dilute, concentrated). Therefore, from this perspective there is a strong need to synthesize precision complex architectures for bulk studies as well as complex architectures compatible with current single molecule techniques to study static and dynamic polymer properties. In this way, we developed a hybrid synthetic strategy to produce branched polymer architectures based on chemically modified DNA. Overall, this approach enables control of backbone length and flexibility, as well as branch grafting density and chemical identity. We utilized a two-step scheme based on enzymatic incorporation of non-natural nucleotides containing bioorthogonal dibenzocyclooctyne (DBCO) functional groups along the main polymer backbone, followed by copper-free "click" chemistry to graft synthetic polymer branches or oligonucleotide branches to the DNA backbone, thereby allowing for the synthesis of a variety of polymer architectures, including three-arm stars, H-polymers, graft block copolymers, and comb polymers for materials assembly and single molecule studies. Bulk materials properties are also affected by industrial processing conditions that alter polymer morphology. Therefore, in an alternative strategy we developed a microfluidic-based approach to assemble highly aligned synthetic oligopeptides nanostructures using microscale extensional flows. This strategy enabled reproducible, reliable fabrication of aligned hierarchical constructs that do not form spontaneously in solution. In this way, fluidic-directed assembly of supramolecular structures allows for unprecedented manipulation at the nano- and mesoscale, which has the potential to provide rapid and efficient control of functional materials properties.
Designing Online Learning Communities of Practice: A Democratic Perspective
ERIC Educational Resources Information Center
Sorensen, Elsebeth Korsgaard; Murchu, Daithi O.
2004-01-01
This study addresses the problem of designing an appropriate learning space or architecture for distributed online courses using net-based communication technologies. We apply Wenger's criteria to explore, identify and discuss the design architectures of two online courses from two comparable online Master's programmes, developed and delivered in…
Business process architectures: overview, comparison and framework
NASA Astrophysics Data System (ADS)
Dijkman, Remco; Vanderfeesten, Irene; Reijers, Hajo A.
2016-02-01
With the uptake of business process modelling in practice, the demand grows for guidelines that lead to consistent and integrated collections of process models. The notion of a business process architecture has been explicitly proposed to address this. This paper provides an overview of the prevailing approaches to design a business process architecture. Furthermore, it includes evaluations of the usability and use of the identified approaches. Finally, it presents a framework for business process architecture design that can be used to develop a concrete architecture. The use and usability were evaluated in two ways. First, a survey was conducted among 39 practitioners, in which the opinion of the practitioners on the use and usefulness of the approaches was evaluated. Second, four case studies were conducted, in which process architectures from practice were analysed to determine the approaches or elements of approaches that were used in their design. Both evaluations showed that practitioners have a preference for using approaches that are based on reference models and approaches that are based on the identification of business functions or business objects. At the same time, the evaluations showed that practitioners use these approaches in combination, rather than selecting a single approach.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tan, Yuanlong; Lin, Yi; Han, Jianrui; Lee, Young
2015-09-07
Data center interconnection with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate data center services. In view of this, this study extends the data center resources to user side to enhance the end-to-end quality of service. We propose a novel data center service localization (DCSL) architecture based on virtual resource migration in software defined elastic data center optical network. A migration evaluation scheme (MES) is introduced for DCSL based on the proposed architecture. The DCSL can enhance the responsiveness to the dynamic end-to-end data center demands, and effectively reduce the blocking probability to globally optimize optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of our OpenFlow-based enhanced SDN testbed. The performance of MES scheme under heavy traffic load scenario is also quantitatively evaluated based on DCSL architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning scheme.
Marshall Application Realignment System (MARS) Architecture
NASA Technical Reports Server (NTRS)
Belshe, Andrea; Sutton, Mandy
2010-01-01
The Marshall Application Realignment System (MARS) Architecture project was established to meet the certification requirements of the Department of Defense Architecture Framework (DoDAF) V2.0 Federal Enterprise Architecture Certification (FEAC) Institute program and to provide added value to the Marshall Space Flight Center (MSFC) Application Portfolio Management process. The MARS Architecture aims to: (1) address the NASA MSFC Chief Information Officer (CIO) strategic initiative to improve Application Portfolio Management (APM) by optimizing investments and improving portfolio performance, and (2) develop a decision-aiding capability by which applications registered within the MSFC application portfolio can be analyzed and considered for retirement or decommission. The MARS Architecture describes a to-be target capability that supports application portfolio analysis against scoring measures (based on value) and overall portfolio performance objectives (based on enterprise needs and policies). This scoring and decision-aiding capability supports the process by which MSFC application investments are realigned or retired from the application portfolio. The MARS Architecture is a multi-phase effort to: (1) conduct strategic architecture planning and knowledge development based on the DoDAF V2.0 six-step methodology, (2) describe one architecture through multiple viewpoints, (3) conduct portfolio analyses based on a defined operational concept, and (4) enable a new capability to support the MSFC enterprise IT management mission, vision, and goals. This report documents Phase 1 (Strategy and Design), which includes discovery, planning, and development of initial architecture viewpoints. Phase 2 will move forward the process of building the architecture, widening the scope to include application realignment (in addition to application retirement), and validating the underlying architecture logic before moving into Phase 3. The MARS Architecture key stakeholders are most interested in Phase 3 because this is where the data analysis, scoring, and recommendation capability is realized. Stakeholders want to see the benefits derived from reducing the steady-state application base and identify opportunities for portfolio performance improvement and application realignment.
Information Architecture of Web-Based Interventions to Improve Health Outcomes: Systematic Review
Grenen, Emily; Surla, Stacy; Schwarz, Mary; Cole-Lewis, Heather
2018-01-01
Background The rise in usage of and access to new technologies in recent years has led to a growth in digital health behavior change interventions. As the shift to digital platforms continues to grow, it is increasingly important to consider how the field of information architecture (IA) can inform the development of digital health interventions. IA is the way in which digital content is organized and displayed, which strongly impacts users’ ability to find and use content. While many information architecture best practices exist, there is a lack of empirical evidence on the role it plays in influencing behavior change and health outcomes. Objective Our aim was to conduct a systematic review synthesizing the existing literature on website information architecture and its effect on health outcomes, behavioral outcomes, and website engagement. Methods To identify all existing information architecture and health behavior literature, we searched articles published in English in the following databases (no date restrictions imposed): ACM Digital Library, CINAHL, Cochrane Library, Google Scholar, Ebsco, and PubMed. The search terms used included information terms (eg, information architecture, interaction design, persuasive design), behavior terms (eg, health behavior, behavioral intervention, ehealth), and health terms (eg, smoking, physical activity, diabetes). The search results were reviewed to determine if they met the inclusion and exclusion criteria created to identify empirical research that studied the effect of IA on health outcomes, behavioral outcomes, or website engagement. Articles that met inclusion criteria were assessed for study quality. Then, data from the articles were extracted using a priori categories established by 3 reviewers. However, the limited health outcome data gathered from the studies precluded a meta-analysis. Results The initial literature search yielded 685 results, which was narrowed down to three publications that examined the effect of information architecture on health outcomes, behavioral outcomes, or website engagement. One publication studied the isolated impact of information architecture on outcomes of interest (ie, website use and engagement; health-related knowledge, attitudes, and beliefs; and health behaviors), while the other two publications studied the impact of information architecture, website features (eg, interactivity, email prompts, and forums), and tailored content on these outcomes. The paper that investigated IA exclusively found that a tunnel IA improved site engagement and behavior knowledge, but it decreased users’ perceived efficiency. The first study that did not isolate IA found that the enhanced site condition improved site usage but not the amount of content viewed. The second study that did not isolate IA found that a tailored site condition improved site usage, behavior knowledge, and some behavior outcomes. Conclusions No clear conclusion can be made about the relationship between IA and health outcomes, given limited evidence in the peer-reviewed literature connecting IA to behavioral outcomes and website engagement. Only one study reviewed solely manipulated IA, and we therefore recommend improving the scientific evidence base such that additional empirical studies investigate the impact of IA in isolation. Moreover, information from the gray literature and expert opinion might be identified and added to the evidence base, in order to lay the groundwork for hypothesis generation to improve empirical evidence on information architecture and health and behavior outcomes. PMID:29563076
Data Warehouse Design from HL7 Clinical Document Architecture Schema.
Pecoraro, Fabrizio; Luzi, Daniela; Ricci, Fabrizio L
2015-01-01
This paper proposes a semi-automatic approach to extract clinical information structured in a HL7 Clinical Document Architecture (CDA) and transform it in a data warehouse dimensional model schema. It is based on a conceptual framework published in a previous work that maps the dimensional model primitives with CDA elements. Its feasibility is demonstrated providing a case study based on the analysis of vital signs gathered during laboratory tests.
NASA Astrophysics Data System (ADS)
Febriani, Listyana; Gede Wyana Lokantara, I.
2017-12-01
Ecological conditions such as landslide, flood, and the global warming issues are the disasters that should be anticipated. The value of traditional architecture resilience has a role towards a city as cultural heritage. Based on that influence, the role of architecture is needed in fostering the environment to be able to survive and sustain just as an architectural concept that considers human needs and natural balancing. The purpose of this study is to analyse the concept of traditional architecture and community participation in maintaining this condition, so it would be able to have a value of sustainability. The research method used is mix method that is start from observation and macro analysis element (main building and public facility) and micro element (house of resident) to analyse community participation in realizing traditional architectural resilience in Tenganan Village, Amlapura. The results of this study found that the traditional settlements in Amlapura, Karangasem, Bali is a form of urban architecture that can survive in a sustainable way of macro elements and micro elements oriented to environmental ecological conditions. This condition happensbecause the community has a high enough participation to maintain it in the form of custom rules.
A GaAs vector processor based on parallel RISC microprocessors
NASA Astrophysics Data System (ADS)
Misko, Tim A.; Rasset, Terry L.
A vector processor architecture based on the development of a 32-bit microprocessor using gallium arsenide (GaAs) technology has been developed. The McDonnell Douglas vector processor (MVP) will be fabricated completely from GaAs digital integrated circuits. The MVP architecture includes a vector memory of 1 megabyte, a parallel bus architecture with eight processing elements connected in parallel, and a control processor. The processing elements consist of a reduced instruction set CPU (RISC) with four floating-point coprocessor units and necessary memory interface functions. This architecture has been simulated for several benchmark programs including complex fast Fourier transform (FFT), complex inner product, trigonometric functions, and sort-merge routine. The results of this study indicate that the MVP can process a 1024-point complex FFT at a speed of 112 microsec (389 megaflops) while consuming approximately 618 W of power in a volume of approximately 0.1 ft-cubed.
Fracture Response Enhancement Of Aluminum Using In-Situ Selective Reinforcement
NASA Technical Reports Server (NTRS)
Abada, Christopher H.; Farley, Gary L.; Hyer, Michael W.
2006-01-01
A computer-based parametric study of the effect of reinforcement architectures on fracture response of aluminum compact-tension (CT) specimens is performed. Eleven different reinforcement architectures consisting of rectangular and triangular cross-section reinforcements were evaluated. Reinforced specimens produced between 13 and 28 percent higher fracture load than achieved with the unreinforced case. Reinforcements with blunt leading edges (rectangular reinforcements) exhibited superior performance relative to the triangular reinforcements with sharp leading edges. Relative to the rectangular reinforcements, the most important architectural feature was reinforcement thickness. At failure, the reinforcements carried between 58 and 85 percent of the load applied to the specimen, suggesting that there is considerable load transfer between the base material and the reinforcement.
Space-Based Information Infrastructure Architecture for Broadband Services
NASA Technical Reports Server (NTRS)
Price, Kent M.; Inukai, Tom; Razdan, Rajendev; Lazeav, Yvonne M.
1996-01-01
This study addressed four tasks: (1) identify satellite-addressable information infrastructure markets; (2) perform network analysis for space-based information infrastructure; (3) develop conceptual architectures; and (4) economic assessment of architectures. The report concludes that satellites will have a major role in the national and global information infrastructure, requiring seamless integration between terrestrial and satellite networks. The proposed LEO, MEO, and GEO satellite systems have satellite characteristics that vary widely. They include delay, delay variations, poorer link quality and beam/satellite handover. The barriers against seamless interoperability between satellite and terrestrial networks are discussed. These barriers are the lack of compatible parameters, standards and protocols, which are presently being evaluated and reduced.
NASA Astrophysics Data System (ADS)
Dave, Gaurav P.; Sureshkumar, N.; Blessy Trencia Lincy, S. S.
2017-11-01
Current trend in processor manufacturing focuses on multi-core architectures rather than increasing the clock speed for performance improvement. Graphic processors have become as commodity hardware for providing fast co-processing in computer systems. Developments in IoT, social networking web applications, big data created huge demand for data processing activities and such kind of throughput intensive applications inherently contains data level parallelism which is more suited for SIMD architecture based GPU. This paper reviews the architectural aspects of multi/many core processors and graphics processors. Different case studies are taken to compare performance of throughput computing applications using shared memory programming in OpenMP and CUDA API based programming.
Reliability analysis of multicellular system architectures for low-cost satellites
NASA Astrophysics Data System (ADS)
Erlank, A. O.; Bridges, C. P.
2018-06-01
Multicellular system architectures are proposed as a solution to the problem of low reliability currently seen amongst small, low cost satellites. In a multicellular architecture, a set of independent k-out-of-n systems mimic the cells of a biological organism. In order to be beneficial, a multicellular architecture must provide more reliability per unit of overhead than traditional forms of redundancy. The overheads include power consumption, volume and mass. This paper describes the derivation of an analytical model for predicting a multicellular system's lifetime. The performance of such architectures is compared against that of several common forms of redundancy and proven to be beneficial under certain circumstances. In addition, the problem of peripheral interfaces and cross-strapping is investigated using a purpose-developed, multicellular simulation environment. Finally, two case studies are presented based on a prototype cell implementation, which demonstrate the feasibility of the proposed architecture.
NASA Technical Reports Server (NTRS)
Shyy, Dong-Jye; Redman, Wayne
1993-01-01
For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices.
Computer-aided tissue engineering: benefiting from the control over scaffold micro-architecture.
Tarawneh, Ahmad M; Wettergreen, Matthew; Liebschner, Michael A K
2012-01-01
Minimization schema in nature affects the material arrangements of most objects, independent of scale. The field of cellular solids has focused on the generalization of these natural architectures (bone, wood, coral, cork, honeycombs) for material improvement and elucidation into natural growth mechanisms. We applied this approach for the comparison of a set of complex three-dimensional (3D) architectures containing the same material volume but dissimilar architectural arrangements. Ball and stick representations of these architectures at varied material volumes were characterized according to geometric properties, such as beam length, beam diameter, surface area, space filling efficiency, and pore volume. Modulus, deformation properties, and stress distributions as contributed solely by architectural arrangements was revealed through finite element simulations. We demonstrated that while density is the greatest factor in controlling modulus, optimal material arrangement could result in equal modulus values even with volumetric discrepancies of up to 10%. We showed that at low porosities, loss of architectural complexity allows these architectures to be modeled as closed celled solids. At these lower porosities, the smaller pores do not greatly contribute to the overall modulus of the architectures and that a stress backbone is responsible for the modulus. Our results further indicated that when considering a deposition-based growth pattern, such as occurs in nature, surface area plays a large role in the resulting strength of these architectures, specifically for systems like bone. This completed study represents the first step towards the development of mathematical algorithms to describe the mechanical properties of regular and symmetric architectures used for tissue regenerative applications. The eventual goal is to create logical set of rules that can explain the structural properties of an architecture based solely upon its geometry. The information could then be used in an automatic fashion to generate patient-specific scaffolds for the treatment of tissue defects.
Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apostol, Lian; Boudousq, Vincent; Basset, Oliver
Although the diagnosis of osteoporosis is mainly based on dual x-ray absorptiometry, it has been shown that trabecular bone micro-architecture is also an important factor in regard to fracture risk. In vivo, techniques based on high-resolution x-ray radiography associated to texture analysis have been proposed to investigate bone micro-architecture, but their relevance for giving pertinent 3D information is unclear. Thirty-three calcaneus and femoral neck bone samples including the cortical shells (diameter: 14 mm, height: 30-40 mm) were imaged using 3D-synchrotron x-ray micro-CT at the ESRF. The 3D reconstructed images with a cubic voxel size of 15 {mu}m were further usedmore » for two purposes: (1) quantification of three-dimensional trabecular bone micro-architecture (2) simulation of realistic x-ray radiographs under different acquisition conditions. The simulated x-ray radiographs were then analyzed using a large variety of texture analysis methods (co-occurrence, spectral density, fractal, morphology, etc.). The range of micro-architecture parameters was in agreement with previous studies and rather large, suggesting that the population was representative. More than 350 texture parameters were tested. A small number of them were selected based on their correlation to micro-architectural morphometric parameters. Using this subset of texture parameters, multiple regression allowed one to predict up to 93% of the variance of micro-architecture parameters using three texture features. 2D texture features predicting 3D micro-architecture parameters other than BV/TV were identified. The methodology proposed for evaluating the relationships between 3D micro-architecture and 2D texture parameters may also be used for optimizing the conditions for radiographic imaging. Further work will include the application of the method to physical radiographs. In the future, this approach could be used in combination with DXA to refine osteoporosis diagnosis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-01-11
GENI Project: Georgia Tech is developing a decentralized, autonomous, internet-like control architecture and control software system for the electric power grid. Georgia Tech’s new architecture is based on the emerging concept of electricity prosumers—economically motivated actors that can produce, consume, or store electricity. Under Georgia Tech’s architecture, all of the actors in an energy system are empowered to offer associated energy services based on their capabilities. The actors achieve their sustainability, efficiency, reliability, and economic objectives, while contributing to system-wide reliability and efficiency goals. This is in marked contrast to the current one-way, centralized control paradigm.
Architecture Study on Telemetry Coverage for Immediate Post-Separation Phase
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Lee, Charles H.; Kellogg, Kent H.; Stocklin, Frank J.; Zillig, David J.; Fielhauer, Karl B.
2008-01-01
This paper presents the preliminary results of an architecture study that provides continuous telemetry coverage for NASA missions for immediate post-separation phase. This study is a collaboration effort between Jet Propulsion Laboratory (JPL), Goddard Space Flight Center (GSFC), and Applied Physics Laboratory (APL). After launch when the spacecraft separated from the upper stage, the spacecraft typically executes a number of mission-critical operations prior to the deployment of solar panels and the activation of the primary communication subsystem. JPL, GSFC, and APL have similar design principle statements that require continuous coverage of mission-critical telemetry during the immediate post-separation phase. To conform to these design principles, an architecture that consists of a separate spacecraft transmitter and a robust communication network capable of tracking the spacecraft signals is needed.This paper presents the preliminary results of an architecture study that provides continuous telemetry coverage for NASA missions for immediate post-separation phase. This study is a collaboration effort between Jet Propulsion Laboratory (JPL), Goddard Space Flight Center (GSFC), and Applied Physics Laboratory (APL). After launch when the spacecraft separated from the upper stage, the spacecraft typically executes a number of mission-critical operations prior to the deployment of solar panels and the activation of the primary communication subsystem. JPL, GSFC, and APL have similar design principle statements that require continuous coverage of mission-critical telemetry during the immediate post-separation phase. To conform to these design principles, an architecture that consists of a separate spacecraft transmitter and a robust communication network capable of tracking the spacecraft signals is needed. The main results of this study are as follows: 1) At low altitude (< 10000 km) when most post-separation critical operations are executed, Earth-based network (e.g. Deep Space Network (DSN)) can only provide limited coverage, whereas space-based network (e.g. Space Network (SN)) can provide continuous coverage. 2) Commercial-off-the-shelf SN compatible transmitters are available for small satellite applications. In this paper we present the detailed coverage analysis of Earth-based and Space-based networks. We identify the key functional and performance requirements of the architecture, and describe the proposed selection criteria of the spacecraft transmitter. We conclude the paper with a proposed forward plan.
RASSP Benchmark 4 Technical Description.
1998-01-09
be carried out. Based on results of the study, an implementation of all, or part, of the system described in this benchmark technical description...validate interface and timing constraints. The ISA level of modeling defines the limit of detail expected in the VHDL virtual prototype. It does not...develop a set of candidate architectures and perform an architecture trade-off study. Candidate proces- sor implementations must then be examined for
NASA Astrophysics Data System (ADS)
Sun, Z.; Cao, Y. K.
2015-08-01
The paper focuses on the versatility of data processing workflows ranging from BIM-based survey to structural analysis and reverse modeling. In China nowadays, a large number of historic architecture are in need of restoration, reinforcement and renovation. But the architects are not prepared for the conversion from the booming AEC industry to architectural preservation. As surveyors working with architects in such projects, we have to develop efficient low-cost digital survey workflow robust to various types of architecture, and to process the captured data for architects. Although laser scanning yields high accuracy in architectural heritage documentation and the workflow is quite straightforward, the cost and portability hinder it from being used in projects where budget and efficiency are of prime concern. We integrate Structure from Motion techniques with UAV and total station in data acquisition. The captured data is processed for various purposes illustrated with three case studies: the first one is as-built BIM for a historic building based on registered point clouds according to Ground Control Points; The second one concerns structural analysis for a damaged bridge using Finite Element Analysis software; The last one relates to parametric automated feature extraction from captured point clouds for reverse modeling and fabrication.
NASA Integrated Network Monitor and Control Software Architecture
NASA Technical Reports Server (NTRS)
Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick
2012-01-01
The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Kacpura, Thomas J.; Smith, Carl R.; Liebetreu, John; Hill, Gary; Mortensen, Dale J.; Andro, Monty; Scardelletti, Maximilian C.; Farrington, Allen
2008-01-01
This report defines a hardware architecture approach for software-defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general-purpose processors, digital signal processors, field programmable gate arrays, and application-specific integrated circuits (ASICs) in addition to flexible and tunable radiofrequency front ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and interfaces. The modules are a logical division of common radio functions that compose a typical communication radio. This report describes the architecture details, the module definitions, the typical functions on each module, and the module interfaces. Tradeoffs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify a physical implementation internally on each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.
A reference architecture for integrated EHR in Colombia.
de la Cruz, Edgar; Lopez, Diego M; Uribe, Gustavo; Gonzalez, Carolina; Blobel, Bernd
2011-01-01
The implementation of national EHR infrastructures has to start by a detailed definition of the overall structure and behavior of the EHR system (system architecture). Architectures have to be open, scalable, flexible, user accepted and user friendly, trustworthy, based on standards including terminologies and ontologies. The GCM provides an architectural framework created with the purpose of analyzing any kind of system, including EHR system´s architectures. The objective of this paper is to propose a reference architecture for the implementation of an integrated EHR in Colombia, based on the current state of system´s architectural models, and EHR standards. The proposed EHR architecture defines a set of services (elements) and their interfaces, to support the exchange of clinical documents, offering an open, scalable, flexible and semantically interoperable infrastructure. The architecture was tested in a pilot tele-consultation project in Colombia, where dental EHR are exchanged.
Fontelo, P.; Rossi, E.; Ackerman, MJ
2015-01-01
Summary Background Mobile health Applications (mHealth Apps) are opening the way to patients’ responsible and active involvement with their own healthcare management. However, apart from Apps allowing patient’s access to their electronic health records (EHRs), mHealth Apps are currently developed as dedicated “island systems”. Objective Although much work has been done on patient’s access to EHRs, transfer of information from mHealth Apps to EHR systems is still low. This study proposes a standards-based architecture that can be adopted by mHealth Apps to exchange information with EHRs to support better quality of care. Methods Following the definition of requirements for the EHR/mHealth App information exchange recently proposed, and after reviewing current standards, we designed the architecture for EHR/mHealth App integration. Then, as a case study, we modeled a system based on the proposed architecture aimed to support home monitoring for congestive heart failure patients. We simulated such process using, on the EHR side, OpenMRS, an open source longitudinal EHR and, on the mHealth App side, the iOS platform. Results The integration architecture was based on the bi-directional exchange of standard documents (clinical document architecture rel2 – CDA2). In the process, the clinician “prescribes” the home monitoring procedures by creating a CDA2 prescription in the EHR that is sent, encrypted and de-identified, to the mHealth App to create the monitoring calendar. At the scheduled time, the App alerts the patient to start the monitoring. After the measurements are done, the App generates a structured CDA2-compliant monitoring report and sends it to the EHR, thus avoiding local storage. Conclusions The proposed architecture, even if validated only in a simulation environment, represents a step forward in the integration of personal mHealth Apps into the larger health-IT ecosystem, allowing the bi-directional data exchange between patients and healthcare professionals, supporting the patient’s engagement in self-management and self-care. PMID:26448794
Statistical estimation of femur micro-architecture using optimal shape and density predictors.
Lekadir, Karim; Hazrati-Marangalou, Javad; Hoogendoorn, Corné; Taylor, Zeike; van Rietbergen, Bert; Frangi, Alejandro F
2015-02-26
The personalization of trabecular micro-architecture has been recently shown to be important in patient-specific biomechanical models of the femur. However, high-resolution in vivo imaging of bone micro-architecture using existing modalities is still infeasible in practice due to the associated acquisition times, costs, and X-ray radiation exposure. In this study, we describe a statistical approach for the prediction of the femur micro-architecture based on the more easily extracted subject-specific bone shape and mineral density information. To this end, a training sample of ex vivo micro-CT images is used to learn the existing statistical relationships within the low and high resolution image data. More specifically, optimal bone shape and mineral density features are selected based on their predictive power and used within a partial least square regression model to estimate the unknown trabecular micro-architecture within the anatomical models of new subjects. The experimental results demonstrate the accuracy of the proposed approach, with average errors of 0.07 for both the degree of anisotropy and tensor norms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hybrid network defense model based on fuzzy evaluation.
Cho, Ying-Chiang; Pan, Jen-Yi
2014-01-01
With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.
Overview of Key Saturn Probe Mission Trades
NASA Technical Reports Server (NTRS)
Balint, Tibor S.; Kowalkowski, Theresa; Folkner, Bill
2007-01-01
Ongoing studies, performed at NASA/JPL over the past two years in support of NASA's SSE Roadmap activities, proved the feasibility of a NF class Saturn probe mission. I. This proposed mission could also provide a good opportunity for international collaboration with the proposed Cosmic Vision KRONOS mission: a) With ESA contributed probes (descent modules) on a NASA lead mission; b) Early 2017 launch could be a good programmatic option for ESA-CV/NASA-NF. II. A number of mission architectures could be suitable for this mission: a) Probe Relay based architecture with short flight time (approx. 6.3-7 years); b) DTE probe telecom based architecture with long flight time (-11 years), and low probe data rate, but with the probes decoupled from the carrier, allowing for polar trajectories I orbiter. This option may need technology development for telecom; c) Orbiter would likely impact mission cost over flyby, but would provide significantly higher science return. The Saturn probes mission is expected to be identified in NASA's New Frontiers AO. Thus, further studies are recommended to refine the most suitable architecture. International collaboration is started through the KRONOS proposal work; further collaborated studies will follow once KRONOS is selected in October under ESA's Cosmic Vision Program.
A static data flow simulation study at Ames Research Center
NASA Technical Reports Server (NTRS)
Barszcz, Eric; Howard, Lauri S.
1987-01-01
Demands in computational power, particularly in the area of computational fluid dynamics (CFD), led NASA Ames Research Center to study advanced computer architectures. One architecture being studied is the static data flow architecture based on research done by Jack B. Dennis at MIT. To improve understanding of this architecture, a static data flow simulator, written in Pascal, has been implemented for use on a Cray X-MP/48. A matrix multiply and a two-dimensional fast Fourier transform (FFT), two algorithms used in CFD work at Ames, have been run on the simulator. Execution times can vary by a factor of more than 2 depending on the partitioning method used to assign instructions to processing elements. Service time for matching tokens has proved to be a major bottleneck. Loop control and array address calculation overhead can double the execution time. The best sustained MFLOPS rates were less than 50% of the maximum capability of the machine.
Reasons for Implementing Movement in Kinetic Architecture
NASA Astrophysics Data System (ADS)
Cudzik, Jan; Nyka, Lucyna
2017-10-01
The paper gives insights into different forms of movement in contemporary architecture and examines them based on the reasons for their implementation. The main objective of the paper is to determine: the degree to which the complexity of kinematic architecture results from functional and spatial needs and what other motivations there are. The method adopted to investigate these questions involves theoretical studies and comparative analyses of architectural objects with different forms of movement imbedded in their structure. Using both methods allowed delving into reasons that lie behind the implementation of movement in contemporary kinetic architecture. As research shows, there is a constantly growing range of applications with kinematic solutions inserted in buildings’ structures. The reasons for their implementation are manifold and encompass pursuits of functional qualities, environmental performance, spatial effects, social interactions and new aesthetics. In those early projects based on simple mechanisms, the main motives were focused on functional values and in later experiments - on improving buildings’ environmental performance. Additionally, in recent proposals, a significant quest could be detected toward kinematic solutions that are focused on factors related to alternative aesthetics and innovative spatial effects. Research reveals that the more complicated form of movement, the more often the reason for its implementation goes beyond the traditionally understood “function”. However, research also shows that the effects resulting from investigations on spatial qualities of architecture and new aesthetics often appear to provide creative insights into new functionalities in architecture.
NASA Astrophysics Data System (ADS)
Mahdavinejad, M.; Bitaab, N.
2017-08-01
Search for high-performance architecture and dreams of future architecture resulted in attempts towards meeting energy efficient architecture and planning in different aspects. Recent trends as a mean to meet future legacy in architecture are based on the idea of innovative technologies for resource efficient buildings, performative design, bio-inspired technologies etc. while there are meaningful differences between architecture of developed and developing countries. Significance of issue might be understood when the emerging cities are found interested in Dubaization and other related booming development doctrines. This paper is to analyze the level of developing countries’ success to achieve smart-eco buildings’ goals and objectives. Emerging cities of West of Asia are selected as case studies of the paper. The results of the paper show that the concept of high-performance architecture and smart-eco buildings are different in developing countries in comparison with developed countries. The paper is to mention five essential issues in order to improve future architecture of developing countries: 1- Integrated Strategies for Energy Efficiency, 2- Contextual Solutions, 3- Embedded and Initial Energy Assessment, 4- Staff and Occupancy Wellbeing, 5- Life-Cycle Monitoring.
Validation of the openEHR archetype library by using OWL reasoning.
Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás
2011-01-01
Electronic Health Record architectures based on the dual model architecture use archetypes for representing clinical knowledge. Therefore, ensuring their correctness and consistency is a fundamental research goal. In this work, we explore how an approach based on OWL technologies can be used for such purpose. This method has been applied to the openEHR archetype repository, which is the largest available one nowadays. The results of this validation are also reported in this study.
NASA Enterprise Architecture and Its Use in Transition of Research Results to Operations
NASA Astrophysics Data System (ADS)
Frisbie, T. E.; Hall, C. M.
2006-12-01
Enterprise architecture describes the design of the components of an enterprise, their relationships and how they support the objectives of that enterprise. NASA Stennis Space Center leads several projects involving enterprise architecture tools used to gather information on research assets within NASA's Earth Science Division. In the near future, enterprise architecture tools will link and display the relevant requirements, parameters, observatories, models, decision systems, and benefit/impact information relationships and map to the Federal Enterprise Architecture Reference Models. Components configured within the enterprise architecture serving the NASA Applied Sciences Program include the Earth Science Components Knowledge Base, the Systems Components database, and the Earth Science Architecture Tool. The Earth Science Components Knowledge Base systematically catalogues NASA missions, sensors, models, data products, model products, and network partners appropriate for consideration in NASA Earth Science applications projects. The Systems Components database is a centralized information warehouse of NASA's Earth Science research assets and a critical first link in the implementation of enterprise architecture. The Earth Science Architecture Tool is used to analyze potential NASA candidate systems that may be beneficial to decision-making capabilities of other Federal agencies. Use of the current configuration of NASA enterprise architecture (the Earth Science Components Knowledge Base, the Systems Components database, and the Earth Science Architecture Tool) has far exceeded its original intent and has tremendous potential for the transition of research results to operational entities.
Spatiotemporal Features of the Three-Dimensional Architectural Landscape in Qingdao, China.
Zhang, Peifeng
2015-01-01
The evolution and development of the three-dimensional (3D) architectural landscape is the basis of proper urban planning, eco-environment construction and the improvement of environmental quality. This paper presents the spatiotemporal characteristics of the 3D architectural landscape of the Shinan and Shibei districts in Qingdao, China, based on buildings' 3D information extracted from Quickbird images from 2003 to 2012, supported by Barista, landscape metrics and GIS. The results demonstrated that: (1) Shinan and Shibei districts expanded vertically and urban land use intensity increased noticeably from year to year. (2) Significant differences in the 3D architectural landscape existed among the western, central and eastern regions, and among the 26 sub-districts over the study period. The differentiation was consistent with the diverse development history, function and planning of the two districts. Finally, we found that population correlates positively with the variation in the 3D architectural landscape. This research provides an important reference for related studies, urban planning and eco-city construction.
Spatiotemporal Features of the Three-Dimensional Architectural Landscape in Qingdao, China
Zhang, Peifeng
2015-01-01
The evolution and development of the three-dimensional (3D) architectural landscape is the basis of proper urban planning, eco-environment construction and the improvement of environmental quality. This paper presents the spatiotemporal characteristics of the 3D architectural landscape of the Shinan and Shibei districts in Qingdao, China, based on buildings’ 3D information extracted from Quickbird images from 2003 to 2012, supported by Barista, landscape metrics and GIS. The results demonstrated that: (1) Shinan and Shibei districts expanded vertically and urban land use intensity increased noticeably from year to year. (2) Significant differences in the 3D architectural landscape existed among the western, central and eastern regions, and among the 26 sub-districts over the study period. The differentiation was consistent with the diverse development history, function and planning of the two districts. Finally, we found that population correlates positively with the variation in the 3D architectural landscape. This research provides an important reference for related studies, urban planning and eco-city construction. PMID:26361016
Modeling Operations Costs for Human Exploration Architectures
NASA Technical Reports Server (NTRS)
Shishko, Robert
2013-01-01
Operations and support (O&S) costs for human spaceflight have not received the same attention in the cost estimating community as have development costs. This is unfortunate as O&S costs typically comprise a majority of life-cycle costs (LCC) in such programs as the International Space Station (ISS) and the now-cancelled Constellation Program. Recognizing this, the Constellation Program and NASA HQs supported the development of an O&S cost model specifically for human spaceflight. This model, known as the Exploration Architectures Operations Cost Model (ExAOCM), provided the operations cost estimates for a variety of alternative human missions to the moon, Mars, and Near-Earth Objects (NEOs) in architectural studies. ExAOCM is philosophically based on the DoD Architecture Framework (DoDAF) concepts of operational nodes, systems, operational functions, and milestones. This paper presents some of the historical background surrounding the development of the model, and discusses the underlying structure, its unusual user interface, and lastly, previous examples of its use in the aforementioned architectural studies.
Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics
Banaei, Maryam; Hatami, Javad; Yazdanfar, Abbas; Gramann, Klaus
2017-01-01
Neuroarchitecture uses neuroscientific tools to better understand architectural design and its impact on human perception and subjective experience. The form or shape of the built environment is fundamental to architectural design, but not many studies have shown the impact of different forms on the inhabitants’ emotions. This study investigated the neurophysiological correlates of different interior forms on the perceivers’ affective state and the accompanying brain activity. To understand the impact of naturalistic three-dimensional (3D) architectural forms, it is essential to perceive forms from different perspectives. We computed clusters of form features extracted from pictures of residential interiors and constructed exemplary 3D room models based on and representing different formal clusters. To investigate human brain activity during 3D perception of architectural spaces, we used a mobile brain/body imaging (MoBI) approach recording the electroencephalogram (EEG) of participants while they naturally walk through different interior forms in virtual reality (VR). The results revealed a strong impact of curvature geometries on activity in the anterior cingulate cortex (ACC). Theta band activity in ACC correlated with specific feature types (rs (14) = 0.525, p = 0.037) and geometry (rs (14) = −0.579, p = 0.019), providing evidence for a role of this structure in processing architectural features beyond their emotional impact. The posterior cingulate cortex and the occipital lobe were involved in the perception of different room perspectives during the stroll through the rooms. This study sheds new light on the use of mobile EEG and VR in architectural studies and provides the opportunity to study human brain dynamics in participants that actively explore and realistically experience architectural spaces. PMID:29033807
Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics.
Banaei, Maryam; Hatami, Javad; Yazdanfar, Abbas; Gramann, Klaus
2017-01-01
Neuroarchitecture uses neuroscientific tools to better understand architectural design and its impact on human perception and subjective experience. The form or shape of the built environment is fundamental to architectural design, but not many studies have shown the impact of different forms on the inhabitants' emotions. This study investigated the neurophysiological correlates of different interior forms on the perceivers' affective state and the accompanying brain activity. To understand the impact of naturalistic three-dimensional (3D) architectural forms, it is essential to perceive forms from different perspectives. We computed clusters of form features extracted from pictures of residential interiors and constructed exemplary 3D room models based on and representing different formal clusters. To investigate human brain activity during 3D perception of architectural spaces, we used a mobile brain/body imaging (MoBI) approach recording the electroencephalogram (EEG) of participants while they naturally walk through different interior forms in virtual reality (VR). The results revealed a strong impact of curvature geometries on activity in the anterior cingulate cortex (ACC). Theta band activity in ACC correlated with specific feature types ( r s (14) = 0.525, p = 0.037) and geometry ( r s (14) = -0.579, p = 0.019), providing evidence for a role of this structure in processing architectural features beyond their emotional impact. The posterior cingulate cortex and the occipital lobe were involved in the perception of different room perspectives during the stroll through the rooms. This study sheds new light on the use of mobile EEG and VR in architectural studies and provides the opportunity to study human brain dynamics in participants that actively explore and realistically experience architectural spaces.
Image Understanding Architecture
1991-09-01
architecture to support real-time, knowledge -based image understanding , and develop the software support environment that will be needed to utilize...NUMBER OF PAGES Image Understanding Architecture, Knowledge -Based Vision, AI Real-Time Computer Vision, Software Simulator, Parallel Processor IL PRICE... information . In addition to sensory and knowledge -based processing it is useful to introduce a level of symbolic processing. Thus, vision researchers
Maglev Train Signal Processing Architecture Based on Nonlinear Discrete Tracking Differentiator.
Wang, Zhiqiang; Li, Xiaolong; Xie, Yunde; Long, Zhiqiang
2018-05-24
In a maglev train levitation system, signal processing plays an important role for the reason that some sensor signals are prone to be corrupted by noise due to the harsh installation and operation environment of sensors and some signals cannot be acquired directly via sensors. Based on these concerns, an architecture based on a new type of nonlinear second-order discrete tracking differentiator is proposed. The function of this signal processing architecture includes filtering signal noise and acquiring needed signals for levitation purposes. The proposed tracking differentiator possesses the advantages of quick convergence, no fluttering, and simple calculation. Tracking differentiator's frequency characteristics at different parameter values are studied in this paper. The performance of this new type of tracking differentiator is tested in a MATLAB simulation and this tracking-differentiator is implemented in Very-High-Speed Integrated Circuit Hardware Description Language (VHDL). In the end, experiments are conducted separately on a test board and a maglev train model. Simulation and experiment results show that the performance of this novel signal processing architecture can fulfill the real system requirement.
A healthcare management system for Turkey based on a service-oriented architecture.
Herand, Deniz; Gürder, Filiz; Taşkin, Harun; Yuksel, Emre Nuri
2013-09-01
The current Turkish healthcare management system has a structure that is extremely inordinate, cumbersome and inflexible. Furthermore, this structure has no common point of view and thus has no interoperability and responds slowly to innovations. The purpose of this study is to show that using which methods can the Turkish healthcare management system provide a structure that could be more modern, more flexible and more quick to respond to innovations and changes taking advantage of the benefits given by a service-oriented architecture (SOA). In this paper, the Turkish healthcare management system is chosen to be examined since Turkey is considered as one of the Third World countries and the information architecture of the existing healthcare management system of Turkey has not yet been configured with SOA, which is a contemporary innovative approach and should provide the base architecture of the new solution. The innovation of this study is the symbiosis of two main integration approaches, SOA and Health Level 7 (HL7), for integrating divergent healthcare information systems. A model is developed which is based on SOA and enables obtaining a healthcare management system having the SSF standards (HSSP Service Specification Framework) developed by the framework of the HSSP (Healthcare Services Specification Project) under the leadership of HL7 and the Object Management Group.
NASA Astrophysics Data System (ADS)
Heidari, F.; Mahdavinejad, M.
2017-08-01
The rate of energy consumption in all over the world, based on reliable statistics of international institutions such as the International Energy Agency (IEA) shows significant increase in energy demand in recent years. Periodical recorded data shows a continuous increasing trend in energy consumption especially in developed countries as well as recently emerged developing economies such as China and India. While air pollution and water contamination as results of high consumption of fossil energy resources might be consider as menace to civic ideals such as livability, conviviality and people-oriented cities. In other hand, automobile dependency, cars oriented design and other noisy activities in urban spaces consider as threats to urban life. Thus contemporary urban design and planning concentrates on rethinking about ecology of sound, reorganizing the soundscape of neighborhoods, redesigning the sonic order of urban space. It seems that contemporary architecture and planning trends through soundscape mapping look for sonitopia (Sonic + Utopia) This paper is to propose some interactive hyper intelligent material-based architectural systems for acoustic energy harvesting. The proposed architectural design system may be result in high-performance architecture and planning strategies for future cities. The ultimate aim of research is to develop a comprehensive system for acoustic energy harvesting which cover the aim of noise reduction as well as being in harmony with architectural design. The research methodology is based on a literature review as well as experimental and quasi-experimental strategies according the paradigm of designedly ways of doing and knowing. While architectural design has solution-focused essence in problem-solving process, the proposed systems had better be hyper intelligent rather than predefined procedures. Therefore, the steps of the inference mechanism of the research include: 1- understanding sonic energy and noise potentials as energy resources, 2- recognition of transductor and other similar mechanisms, 3- developing an integrated, hyper intelligent and material-based system, 4- examining the productivity, performance and efficiency of proposed systems in commercial buildings and office departments of Tehran as case study. The results of the research show that high-performance Sonitopia concept might be helpful for adoption in contemporary architecture of developing countries such as Iran in order to better energy efficiency. It is intelligent energy systems (IES) enjoy electromechanical energy converters based on performance-oriented design in over-crowded architectural spaces. The results indicated significance of concentrating on smart, intelligent and recombinant materials in order to achieve higher performance and productivity.
Two-dimensional optical architectures for the receive mode of phased-array antennas.
Pastur, L; Tonda-Goldstein, S; Dolfi, D; Huignard, J P; Merlet, T; Maas, O; Chazelas, J
1999-05-10
We propose and experimentally demonstrate two optical architectures that process the receive mode of a p x p element phased-array antenna. The architectures are based on free-space propagation and switching of the channelized optical carriers of microwave signals. With the first architecture a direct transposition of the received signals in the optical domain is assumed. The second architecture is based on the optical generation and distribution of a microwave local oscillator matched in frequency and direction. Preliminary experimental results at microwave frequencies of approximately 3 GHz are presented.
Workflow as a Service in the Cloud: Architecture and Scheduling Algorithms.
Wang, Jianwu; Korambath, Prakashan; Altintas, Ilkay; Davis, Jim; Crawl, Daniel
2014-01-01
With more and more workflow systems adopting cloud as their execution environment, it becomes increasingly challenging on how to efficiently manage various workflows, virtual machines (VMs) and workflow execution on VM instances. To make the system scalable and easy-to-extend, we design a Workflow as a Service (WFaaS) architecture with independent services. A core part of the architecture is how to efficiently respond continuous workflow requests from users and schedule their executions in the cloud. Based on different targets, we propose four heuristic workflow scheduling algorithms for the WFaaS architecture, and analyze the differences and best usages of the algorithms in terms of performance, cost and the price/performance ratio via experimental studies.
Architecture for multi-technology real-time location systems.
Rodas, Javier; Barral, Valentín; Escudero, Carlos J
2013-02-07
The rising popularity of location-based services has prompted considerable research in the field of indoor location systems. Since there is no single technology to support these systems, it is necessary to consider the fusion of the information coming from heterogeneous sensors. This paper presents a software architecture designed for a hybrid location system where we can merge information from multiple sensor technologies. The architecture was designed to be used by different kinds of actors independently and with mutual transparency: hardware administrators, algorithm developers and user applications. The paper presents the architecture design, work-flow, case study examples and some results to show how different technologies can be exploited to obtain a good estimation of a target position.
ERIC Educational Resources Information Center
Pihl, Ole
2015-01-01
How do architecture students experience the contradictions between the individual and the group at the Department of Architecture and Design of Aalborg University? The Problem-Based Learning model has been extensively applied to the department's degree programs in coherence with the Integrated Design Process, but is a group-based architecture and…
NASA Astrophysics Data System (ADS)
Saponara, M.; Tramutola, A.; Creten, P.; Hardy, J.; Philippe, C.
2013-08-01
Optimization-based control techniques such as Model Predictive Control (MPC) are considered extremely attractive for space rendezvous, proximity operations and capture applications that require high level of autonomy, optimal path planning and dynamic safety margins. Such control techniques require high-performance computational needs for solving large optimization problems. The development and implementation in a flight representative avionic architecture of a MPC based Guidance, Navigation and Control system has been investigated in the ESA R&T study “On-line Reconfiguration Control System and Avionics Architecture” (ORCSAT) of the Aurora programme. The paper presents the baseline HW and SW avionic architectures, and verification test results obtained with a customised RASTA spacecraft avionics development platform from Aeroflex Gaisler.
Yang, Hui; He, Yongqi; Zhang, Jie; Ji, Yuefeng; Bai, Wei; Lee, Young
2016-04-18
Cloud radio access network (C-RAN) has become a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing using cloud BBUs. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate the services in optical networks. In view of this, this study extends to consider the multiple dimensional resources optimization of radio, optical and BBU processing in 5G age. We propose a novel multi-stratum resources optimization (MSRO) architecture with network functions virtualization for cloud-based radio over optical fiber networks (C-RoFN) using software defined control. A global evaluation scheme (GES) for MSRO in C-RoFN is introduced based on the proposed architecture. The MSRO can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical and BBU resources effectively to maximize radio coverage. The efficiency and feasibility of the proposed architecture are experimentally demonstrated on OpenFlow-based enhanced SDN testbed. The performance of GES under heavy traffic load scenario is also quantitatively evaluated based on MSRO architecture in terms of resource occupation rate and path provisioning latency, compared with other provisioning scheme.
Evolutionary dynamics of protein domain architecture in plants
2012-01-01
Background Protein domains are the structural, functional and evolutionary units of the protein. Protein domain architectures are the linear arrangements of domain(s) in individual proteins. Although the evolutionary history of protein domain architecture has been extensively studied in microorganisms, the evolutionary dynamics of domain architecture in the plant kingdom remains largely undefined. To address this question, we analyzed the lineage-based protein domain architecture content in 14 completed green plant genomes. Results Our analyses show that all 14 plant genomes maintain similar distributions of species-specific, single-domain, and multi-domain architectures. Approximately 65% of plant domain architectures are universally present in all plant lineages, while the remaining architectures are lineage-specific. Clear examples are seen of both the loss and gain of specific protein architectures in higher plants. There has been a dynamic, lineage-wise expansion of domain architectures during plant evolution. The data suggest that this expansion can be largely explained by changes in nuclear ploidy resulting from rounds of whole genome duplications. Indeed, there has been a decrease in the number of unique domain architectures when the genomes were normalized into a presumed ancestral genome that has not undergone whole genome duplications. Conclusions Our data show the conservation of universal domain architectures in all available plant genomes, indicating the presence of an evolutionarily conserved, core set of protein components. However, the occurrence of lineage-specific domain architectures indicates that domain architecture diversity has been maintained beyond these core components in plant genomes. Although several features of genome-wide domain architecture content are conserved in plants, the data clearly demonstrate lineage-wise, progressive changes and expansions of individual protein domain architectures, reinforcing the notion that plant genomes have undergone dynamic evolution. PMID:22252370
Information Architecture of Web-Based Interventions to Improve Health Outcomes: Systematic Review.
Pugatch, Jillian; Grenen, Emily; Surla, Stacy; Schwarz, Mary; Cole-Lewis, Heather
2018-03-21
The rise in usage of and access to new technologies in recent years has led to a growth in digital health behavior change interventions. As the shift to digital platforms continues to grow, it is increasingly important to consider how the field of information architecture (IA) can inform the development of digital health interventions. IA is the way in which digital content is organized and displayed, which strongly impacts users' ability to find and use content. While many information architecture best practices exist, there is a lack of empirical evidence on the role it plays in influencing behavior change and health outcomes. Our aim was to conduct a systematic review synthesizing the existing literature on website information architecture and its effect on health outcomes, behavioral outcomes, and website engagement. To identify all existing information architecture and health behavior literature, we searched articles published in English in the following databases (no date restrictions imposed): ACM Digital Library, CINAHL, Cochrane Library, Google Scholar, Ebsco, and PubMed. The search terms used included information terms (eg, information architecture, interaction design, persuasive design), behavior terms (eg, health behavior, behavioral intervention, ehealth), and health terms (eg, smoking, physical activity, diabetes). The search results were reviewed to determine if they met the inclusion and exclusion criteria created to identify empirical research that studied the effect of IA on health outcomes, behavioral outcomes, or website engagement. Articles that met inclusion criteria were assessed for study quality. Then, data from the articles were extracted using a priori categories established by 3 reviewers. However, the limited health outcome data gathered from the studies precluded a meta-analysis. The initial literature search yielded 685 results, which was narrowed down to three publications that examined the effect of information architecture on health outcomes, behavioral outcomes, or website engagement. One publication studied the isolated impact of information architecture on outcomes of interest (ie, website use and engagement; health-related knowledge, attitudes, and beliefs; and health behaviors), while the other two publications studied the impact of information architecture, website features (eg, interactivity, email prompts, and forums), and tailored content on these outcomes. The paper that investigated IA exclusively found that a tunnel IA improved site engagement and behavior knowledge, but it decreased users' perceived efficiency. The first study that did not isolate IA found that the enhanced site condition improved site usage but not the amount of content viewed. The second study that did not isolate IA found that a tailored site condition improved site usage, behavior knowledge, and some behavior outcomes. No clear conclusion can be made about the relationship between IA and health outcomes, given limited evidence in the peer-reviewed literature connecting IA to behavioral outcomes and website engagement. Only one study reviewed solely manipulated IA, and we therefore recommend improving the scientific evidence base such that additional empirical studies investigate the impact of IA in isolation. Moreover, information from the gray literature and expert opinion might be identified and added to the evidence base, in order to lay the groundwork for hypothesis generation to improve empirical evidence on information architecture and health and behavior outcomes. ©Jillian Pugatch, Emily Grenen, Stacy Surla, Mary Schwarz, Heather Cole-Lewis. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 21.03.2018.
NASA Astrophysics Data System (ADS)
Ye, Fei
2018-04-01
With the rapid increase of electric automobiles and charging piles, the elastic expansion and online rapid upgrade were required for the vehicle networking system platform (system platform for short). At present, it is difficult to meet the operation needs due to the traditional huge rock architecture used by the system platform. This paper studied the system platform technology architecture based on "cloud platform +micro-service" to obtain a new generation of vehicle networking system platform with the combination of elastic expansion and application, thus significantly improving the service operation ability of system.
NASA Technical Reports Server (NTRS)
Srinivasan, Hari; Yamanis, Jean; Welch, Rick; Tulyani, Sonia; Hardin, Larry
2006-01-01
The objective of this contract effort was to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future long range commercial aircraft, and to define the technology gaps to enable such a system. The study employed technologies commensurate with Entry into Service (EIS) in 2015. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate system concepts to a conceptual level of fidelity. The technology benefits were captured as reductions of the mission fuel burn and emissions. The baseline aircraft considered was the Boeing 777-200ER airframe with more electric subsystems, Ultra Efficient Engine Technology (UEET) engines, and an advanced APU with ceramics for increased efficiency. In addition to the baseline architecture, four architectures using an SOFC system to replace the conventional APU were investigated. The mission fuel burn savings for Architecture-A, which has minimal system integration, is 0.16 percent. Architecture-B and Architecture-C employ greater system integration and obtain fuel burn benefits of 0.44 and 0.70 percent, respectively. Architecture-D represents the highest level of integration and obtains a benefit of 0.77 percent.
Architectures of small satellite programs in developing countries
NASA Astrophysics Data System (ADS)
Wood, Danielle; Weigel, Annalisa
2014-04-01
Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are building local capability in space through technological learning. This paper analyzes implementation approaches in small satellite programs within developing countries. The study addresses diverse examples of approaches used to master, adapt, diffuse and apply satellite technology in emerging countries. The work focuses on government programs that represent the nation and deliver services that provide public goods such as environmental monitoring. An original framework developed by the authors examines implementation approaches and contextual factors using the concept of Systems Architecture. The Systems Architecture analysis defines the satellite programs as systems within a context which execute functions via forms in order to achieve stakeholder objectives. These Systems Architecture definitions are applied to case studies of six satellite projects executed by countries in Africa and Asia. The architectural models used by these countries in various projects reveal patterns in the areas of training, technical specifications and partnership style. Based on these patterns, three Archetypal Project Architectures are defined which link the contextual factors to the implementation approaches. The three Archetypal Project Architectures lead to distinct opportunities for training, capability building and end user services.
ERIC Educational Resources Information Center
Casakin, Hernan; Kreitler, Shulamith
2010-01-01
The investigation reported here dealt with the study of motivation for creativity. The goals were to assess motivation for creativity in architectural design and engineering design students based on the Cognitive Orientation theory which defines motivation as a function of a set of belief types, themes, and groupings identified as relevant for the…
A raman microprobe investigation of the molecular architecture of loblolly pine tracheids
James S. Bond; Rajai H. Atalla
1999-01-01
Our understanding of the molecular architecture of intact, native plant cell walls is very limited. Traditional methods of investigation disturb the tissue to varying degrees and conclusions based on these methods may be intimately related to the technique used. A promising new technique to study native-state organization is polarized Raman spectroscopy. In this...
A Model Based Framework for Semantic Interpretation of Architectural Construction Drawings
ERIC Educational Resources Information Center
Babalola, Olubi Oluyomi
2011-01-01
The study addresses the automated translation of architectural drawings from 2D Computer Aided Drafting (CAD) data into a Building Information Model (BIM), with emphasis on the nature, possible role, and limitations of a drafting language Knowledge Representation (KR) on the problem and process. The central idea is that CAD to BIM translation is a…
ERIC Educational Resources Information Center
Treurniet, William
A study applied artificial neural networks, trained with the back-propagation learning algorithm, to modelling phonemes extracted from the DARPA TIMIT multi-speaker, continuous speech data base. A number of proposed network architectures were applied to the phoneme classification task, ranging from the simple feedforward multilayer network to more…
NASA Astrophysics Data System (ADS)
Dewell, Larry D.; Tajdaran, Kiarash; Bell, Raymond M.; Liu, Kuo-Chia; Bolcar, Matthew R.; Sacks, Lia W.; Crooke, Julie A.; Blaurock, Carl
2017-09-01
The need for high payload dynamic stability and ultra-stable mechanical systems is an overarching technology need for large space telescopes such as the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor. Wavefront error stability of less than 10 picometers RMS of uncorrected system WFE per wavefront control step represents a drastic performance improvement over current space-based telescopes being fielded. Previous studies of similar telescope architectures have shown that passive telescope isolation approaches are hard-pressed to meet dynamic stability requirements and usually involve complex actively-controlled elements and sophisticated metrology. To meet these challenging dynamic stability requirements, an isolation architecture that involves no mechanical contact between telescope and the host spacecraft structure has the potential of delivering this needed performance improvement. One such architecture, previously developed by Lockheed Martin called Disturbance Free Payload (DFP), is applied to and analyzed for LUVOIR. In a noncontact DFP architecture, the payload and spacecraft fly in close proximity, and interact via non-contact actuators to allow precision payload pointing and isolation from spacecraft vibration. Because disturbance isolation through non-contact, vibration isolation down to zero frequency is possible, and high-frequency structural dynamics of passive isolators are not introduced into the system. In this paper, the system-level analysis of a non-contact architecture is presented for LUVOIR, based on requirements that are directly traceable to its science objectives, including astrophysics and the direct imaging of habitable exoplanets. Aspects of architecture and how they contribute to system performance are examined and tailored to the LUVOIR architecture and concept of operation.
Real-time FPGA architectures for computer vision
NASA Astrophysics Data System (ADS)
Arias-Estrada, Miguel; Torres-Huitzil, Cesar
2000-03-01
This paper presents an architecture for real-time generic convolution of a mask and an image. The architecture is intended for fast low level image processing. The FPGA-based architecture takes advantage of the availability of registers in FPGAs to implement an efficient and compact module to process the convolutions. The architecture is designed to minimize the number of accesses to the image memory and is based on parallel modules with internal pipeline operation in order to improve its performance. The architecture is prototyped in a FPGA, but it can be implemented on a dedicated VLSI to reach higher clock frequencies. Complexity issues, FPGA resources utilization, FPGA limitations, and real time performance are discussed. Some results are presented and discussed.
Updates to the NASA Space Telecommunications Radio System (STRS) Architecture
NASA Technical Reports Server (NTRS)
Kacpura, Thomas J.; Handler, Louis M.; Briones, Janette; Hall, Charles S.
2008-01-01
This paper describes an update of the Space Telecommunications Radio System (STRS) open architecture for NASA space based radios. The STRS architecture has been defined as a framework for the design, development, operation and upgrade of space based software defined radios, where processing resources are constrained. The architecture has been updated based upon reviews by NASA missions, radio providers, and component vendors. The STRS Standard prescribes the architectural relationship between the software elements used in software execution and defines the Application Programmer Interface (API) between the operating environment and the waveform application. Modeling tools have been adopted to present the architecture. The paper will present a description of the updated API, configuration files, and constraints. Minimum compliance is discussed for early implementations. The paper then closes with a summary of the changes made and discussion of the relevant alignment with the Object Management Group (OMG) SWRadio specification, and enhancements to the specialized signal processing abstraction.
A Distributed Intelligent E-Learning System
ERIC Educational Resources Information Center
Kristensen, Terje
2016-01-01
An E-learning system based on a multi-agent (MAS) architecture combined with the Dynamic Content Manager (DCM) model of E-learning, is presented. We discuss the benefits of using such a multi-agent architecture. Finally, the MAS architecture is compared with a pure service-oriented architecture (SOA). This MAS architecture may also be used within…
Extensive Evaluation of Using a Game Project in a Software Architecture Course
ERIC Educational Resources Information Center
Wang, Alf Inge
2011-01-01
This article describes an extensive evaluation of introducing a game project to a software architecture course. In this project, university students have to construct and design a type of software architecture, evaluate the architecture, implement an application based on the architecture, and test this implementation. In previous years, the domain…
Al Mamoon, Ishtiak; Muzahidul Islam, A K M; Baharun, Sabariah; Ahmed, Ashir; Komaki, Shozo
2016-08-01
Due to the rapid growth of wireless medical devices in near future, wireless healthcare services may face some inescapable issue such as medical spectrum scarcity, electromagnetic interference (EMI), bandwidth constraint, security and finally medical data communication model. To mitigate these issues, cognitive radio (CR) or opportunistic radio network enabled wireless technology is suitable for the upcoming wireless healthcare system. The up-to-date research on CR based healthcare has exposed some developments on EMI and spectrum problems. However, the investigation recommendation on system design and network model for CR enabled hospital is rare. Thus, this research designs a hierarchy based hybrid network architecture and network maintenance protocols for previously proposed CR hospital system, known as CogMed. In the previous study, the detail architecture of CogMed and its maintenance protocols were not present. The proposed architecture includes clustering concepts for cognitive base stations and non-medical devices. Two cluster head (CH selector equations are formulated based on priority of location, device, mobility rate of devices and number of accessible channels. In order to maintain the integrity of the proposed network model, node joining and node leaving protocols are also proposed. Finally, the simulation results show that the proposed network maintenance time is very low for emergency medical devices (average maintenance period 9.5 ms) and the re-clustering effects for different mobility enabled non-medical devices are also balanced.
NASA Technical Reports Server (NTRS)
Barnes, Jeffrey M.
2011-01-01
All software systems of significant size and longevity eventually undergo changes to their basic architectural structure. Such changes may be prompted by evolving requirements, changing technology, or other reasons. Whatever the cause, software architecture evolution is commonplace in real world software projects. Recently, software architecture researchers have begun to study this phenomenon in depth. However, this work has suffered from problems of validation; research in this area has tended to make heavy use of toy examples and hypothetical scenarios and has not been well supported by real world examples. To help address this problem, I describe an ongoing effort at the Jet Propulsion Laboratory to re-architect the Advanced Multimission Operations System (AMMOS), which is used to operate NASA's deep-space and astrophysics missions. Based on examination of project documents and interviews with project personnel, I describe the goals and approach of this evolution effort and then present models that capture some of the key architectural changes. Finally, I demonstrate how approaches and formal methods from my previous research in architecture evolution may be applied to this evolution, while using languages and tools already in place at the Jet Propulsion Laboratory.
Web-Based Course Management and Web Services
ERIC Educational Resources Information Center
Mandal, Chittaranjan; Sinha, Vijay Luxmi; Reade, Christopher M. P.
2004-01-01
The architecture of a web-based course management tool that has been developed at IIT [Indian Institute of Technology], Kharagpur and which manages the submission of assignments is discussed. Both the distributed architecture used for data storage and the client-server architecture supporting the web interface are described. Further developments…
Data Mining for Web-Based Support Systems: A Case Study in e-Custom Systems
NASA Astrophysics Data System (ADS)
Razmerita, Liana; Kirchner, Kathrin
This chapter provides an example of a Web-based support system (WSS) used to streamline trade procedures, prevent potential security threats, and reduce tax-related fraud in cross-border trade. The architecture is based on a service-oriented architecture that includes smart seals and Web services. We discuss the implications and suggest further enhancements to demonstrate how such systems can move toward a Web-based decision support system with the support of data mining methods. We provide a concrete example of how data mining can help to analyze the vast amount of data collected while monitoring the container movements along its supply chain.
NASA Astrophysics Data System (ADS)
Thubaasini, P.; Rusnida, R.; Rohani, S. M.
This paper describes Linux, an open source platform used to develop and run a virtual architectural walkthrough application. It proposes some qualitative reflections and observations on the nature of Linux in the concept of Virtual Reality (VR) and on the most popular and important claims associated with the open source approach. The ultimate goal of this paper is to measure and evaluate the performance of Linux used to build the virtual architectural walkthrough and develop a proof of concept based on the result obtain through this project. Besides that, this study reveals the benefits of using Linux in the field of virtual reality and reflects a basic comparison and evaluation between Windows and Linux base operating system. Windows platform is use as a baseline to evaluate the performance of Linux. The performance of Linux is measured based on three main criteria which is frame rate, image quality and also mouse motion.
Sabne, Amit J.; Sakdhnagool, Putt; Lee, Seyong; ...
2015-07-13
Accelerator-based heterogeneous computing is gaining momentum in the high-performance computing arena. However, the increased complexity of heterogeneous architectures demands more generic, high-level programming models. OpenACC is one such attempt to tackle this problem. Although the abstraction provided by OpenACC offers productivity, it raises questions concerning both functional and performance portability. In this article, the authors propose HeteroIR, a high-level, architecture-independent intermediate representation, to map high-level programming models, such as OpenACC, to heterogeneous architectures. They present a compiler approach that translates OpenACC programs into HeteroIR and accelerator kernels to obtain OpenACC functional portability. They then evaluate the performance portability obtained bymore » OpenACC with their approach on 12 OpenACC programs on Nvidia CUDA, AMD GCN, and Intel Xeon Phi architectures. They study the effects of various compiler optimizations and OpenACC program settings on these architectures to provide insights into the achieved performance portability.« less
MWAHCA: a multimedia wireless ad hoc cluster architecture.
Diaz, Juan R; Lloret, Jaime; Jimenez, Jose M; Sendra, Sandra
2014-01-01
Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node's capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss). The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal.
A Coupled Simulation Architecture for Agent-Based/Geohydrological Modelling
NASA Astrophysics Data System (ADS)
Jaxa-Rozen, M.
2016-12-01
The quantitative modelling of social-ecological systems can provide useful insights into the interplay between social and environmental processes, and their impact on emergent system dynamics. However, such models should acknowledge the complexity and uncertainty of both of the underlying subsystems. For instance, the agent-based models which are increasingly popular for groundwater management studies can be made more useful by directly accounting for the hydrological processes which drive environmental outcomes. Conversely, conventional environmental models can benefit from an agent-based depiction of the feedbacks and heuristics which influence the decisions of groundwater users. From this perspective, this work describes a Python-based software architecture which couples the popular NetLogo agent-based platform with the MODFLOW/SEAWAT geohydrological modelling environment. This approach enables users to implement agent-based models in NetLogo's user-friendly platform, while benefiting from the full capabilities of MODFLOW/SEAWAT packages or reusing existing geohydrological models. The software architecture is based on the pyNetLogo connector, which provides an interface between the NetLogo agent-based modelling software and the Python programming language. This functionality is then extended and combined with Python's object-oriented features, to design a simulation architecture which couples NetLogo with MODFLOW/SEAWAT through the FloPy library (Bakker et al., 2016). The Python programming language also provides access to a range of external packages which can be used for testing and analysing the coupled models, which is illustrated for an application of Aquifer Thermal Energy Storage (ATES).
The Study on Collaborative Manufacturing Platform Based on Agent
NASA Astrophysics Data System (ADS)
Zhang, Xiao-yan; Qu, Zheng-geng
To fulfill the trends of knowledge-intensive in collaborative manufacturing development, we have described multi agent architecture supporting knowledge-based platform of collaborative manufacturing development platform. In virtue of wrapper service and communication capacity agents provided, the proposed architecture facilitates organization and collaboration of multi-disciplinary individuals and tools. By effectively supporting the formal representation, capture, retrieval and reuse of manufacturing knowledge, the generalized knowledge repository based on ontology library enable engineers to meaningfully exchange information and pass knowledge across boundaries. Intelligent agent technology increases traditional KBE systems efficiency and interoperability and provides comprehensive design environments for engineers.
Developing Performance Based Requirements for Open Architecture Design
2006-04-30
Åèìáëáíáçå= oÉëÉ~êÅÜ=póãéçëáìã= DEVELOPING PERFORMANCE BASED REQUIREMENTS FOR OPEN ARCHITECTURE DESIGN Published: 30 April 2006 by Brad Naegle...for Open Architecture Design 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ======= = - 174 - = = Developing Performance Based Requirements for Open Architecture Design Presenter: Brad Naegle, Lieutenant
A limit-cycle self-organizing map architecture for stable arm control.
Huang, Di-Wei; Gentili, Rodolphe J; Katz, Garrett E; Reggia, James A
2017-01-01
Inspired by the oscillatory nature of cerebral cortex activity, we recently proposed and studied self-organizing maps (SOMs) based on limit cycle neural activity in an attempt to improve the information efficiency and robustness of conventional single-node, single-pattern representations. Here we explore for the first time the use of limit cycle SOMs to build a neural architecture that controls a robotic arm by solving inverse kinematics in reach-and-hold tasks. This multi-map architecture integrates open-loop and closed-loop controls that learn to self-organize oscillatory neural representations and to harness non-fixed-point neural activity even for fixed-point arm reaching tasks. We show through computer simulations that our architecture generalizes well, achieves accurate, fast, and smooth arm movements, and is robust in the face of arm perturbations, map damage, and variations of internal timing parameters controlling the flow of activity. A robotic implementation is evaluated successfully without further training, demonstrating for the first time that limit cycle maps can control a physical robot arm. We conclude that architectures based on limit cycle maps can be organized to function effectively as neural controllers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lee, Jung-Seob; Cha, Hwang Do; Shim, Jin-Hyung; Jung, Jin Woo; Kim, Jong Young; Cho, Dong-Woo
2012-07-01
Fabrication of a three-dimensional (3D) scaffold with increased mechanical strength may be an essential requirement for more advanced bone tissue engineering scaffolds. Various material- and chemical-based approaches have been explored to enhance the mechanical properties of engineered bone tissue scaffolds. In this study, the effects of pore architecture and stacking direction on the mechanical and cell proliferation properties of a scaffold were investigated. The 3D scaffold was prepared using solid freeform fabrication technology with a multihead deposition system. Various types of scaffolds with different pore architectures (lattice, stagger, and triangle types) and stacking directions (horizontal and vertical directions) were fabricated with a blend of polycaprolactone and poly lactic-co-glycolic acid. In compression tests, the triangle-type scaffold was the strongest among the experimental groups. Stacking direction affected the mechanical properties of scaffolds. An in vitro cell counting kit-8 assay showed no significant differences in optical density depending on the different pore architectures and stacking directions. In conclusion, mechanical properties of scaffolds can be enhanced by controlling pore architecture and stacking direction. Copyright © 2012 Wiley Periodicals, Inc.
Architecture for Multi-Technology Real-Time Location Systems
Rodas, Javier; Barral, Valentín; Escudero, Carlos J.
2013-01-01
The rising popularity of location-based services has prompted considerable research in the field of indoor location systems. Since there is no single technology to support these systems, it is necessary to consider the fusion of the information coming from heterogeneous sensors. This paper presents a software architecture designed for a hybrid location system where we can merge information from multiple sensor technologies. The architecture was designed to be used by different kinds of actors independently and with mutual transparency: hardware administrators, algorithm developers and user applications. The paper presents the architecture design, work-flow, case study examples and some results to show how different technologies can be exploited to obtain a good estimation of a target position. PMID:23435050
Workflow as a Service in the Cloud: Architecture and Scheduling Algorithms
Wang, Jianwu; Korambath, Prakashan; Altintas, Ilkay; Davis, Jim; Crawl, Daniel
2017-01-01
With more and more workflow systems adopting cloud as their execution environment, it becomes increasingly challenging on how to efficiently manage various workflows, virtual machines (VMs) and workflow execution on VM instances. To make the system scalable and easy-to-extend, we design a Workflow as a Service (WFaaS) architecture with independent services. A core part of the architecture is how to efficiently respond continuous workflow requests from users and schedule their executions in the cloud. Based on different targets, we propose four heuristic workflow scheduling algorithms for the WFaaS architecture, and analyze the differences and best usages of the algorithms in terms of performance, cost and the price/performance ratio via experimental studies. PMID:29399237
Andersson, Jonas E
2011-03-01
This paper focuses on an architecture competition for the silver generation, namely those aged 65 years and older. Twenty-seven Swedish informants were interviewed using an interviewing guide that included a photographic survey. The informants emphasised aesthetic dimensions in architecture for the prolongation of ageing in place and independent living in a residential home. This study highlights the individual adjustment of space, and the integrated location in existing urban settings near nature. Based on the findings, a habitational model for exploring the appropriate space for ageing is formulated. It suggests that architecture through location and spatial features needs to generate positive associations with the users. Copyright © 2010 Elsevier Ltd. All rights reserved.
Algorithm Classes for Architecture Research (ACAR)
2010-03-01
Project Engineer BRADLEY J. PAUL , Chief Advanced Sensor Components Branch Advanced Sensor Components Branch Aerospace Components Division...establish the need for and the value of innovative research on domain-specific architectures, applications, and tools based on the challenges posed by...California / Information Sciences Institute (USC/ISI) conducted exploratory studies to establish the need for and the value of innovative research on domain
ERIC Educational Resources Information Center
Wu, Yun-Wu; Lin, Yu-An; Wen, Ming-Hui; Perng, Yeng-Hong; Hsu, I-Ting
2016-01-01
The major purpose of this study is to develop an architectural design knowledge management learning system with corresponding learning activities to help the students have meaningful learning and improve their design capability in their learning process. Firstly, the system can help the students to obtain and share useful knowledge. Secondly,…
ERIC Educational Resources Information Center
Steinø, Nicolai; Khalid, Md. Saufuddin
2017-01-01
Much architecture and design teaching is based on the studio format, where the co-presence in time and space of students, instructors and physical learning artefacts form a triangle from which the learning emerges. Yet with the advent of online communication platforms and learning management systems (LMS), there is reason to study how these…
Wittman, Fried; Jee, Babette; Polcin, Douglas L.; Henderson, Diane
2014-01-01
The architecture of residential recovery settings is an important silent partner in the alcohol/drug recovery field. The settings significantly support or hinder recovery experiences of residents, and shape community reactions to the presence of sober living houses (SLH) in ordinary neighborhoods. Grounded in the principles of Alcoholics Anonymous, the SLH provides residents with settings designed to support peer based recovery; further, these settings operate in a community context that insists on sobriety and strongly encourages attendance at 12-step meetings. Little formal research has been conducted to show how architectural features of the recovery setting – building appearance, spatial layouts, furnishings and finishes, policies for use of the facilities, physical care and maintenance of the property, neighborhood features, aspects of location in the city – function to promote (or retard) recovery, and to build (or detract from) community support. This paper uses a case-study approach to analyze the architecture of a community-based residential recovery service that has demonstrated successful recovery outcomes for its residents, is popular in its community, and has achieved state-wide recognition. The Environmental Pattern Language (Alexander, Ishikawa, & Silverstein, 1977) is used to analyze its architecture in a format that can be tested, critiqued, and adapted for use by similar programs in many communities, providing a model for replication and further research. PMID:25328377
Wittman, Fried; Jee, Babette; Polcin, Douglas L; Henderson, Diane
2014-07-01
The architecture of residential recovery settings is an important silent partner in the alcohol/drug recovery field. The settings significantly support or hinder recovery experiences of residents, and shape community reactions to the presence of sober living houses (SLH) in ordinary neighborhoods. Grounded in the principles of Alcoholics Anonymous, the SLH provides residents with settings designed to support peer based recovery; further, these settings operate in a community context that insists on sobriety and strongly encourages attendance at 12-step meetings. Little formal research has been conducted to show how architectural features of the recovery setting - building appearance, spatial layouts, furnishings and finishes, policies for use of the facilities, physical care and maintenance of the property, neighborhood features, aspects of location in the city - function to promote (or retard) recovery, and to build (or detract from) community support. This paper uses a case-study approach to analyze the architecture of a community-based residential recovery service that has demonstrated successful recovery outcomes for its residents, is popular in its community, and has achieved state-wide recognition. The Environmental Pattern Language (Alexander, Ishikawa, & Silverstein, 1977) is used to analyze its architecture in a format that can be tested, critiqued, and adapted for use by similar programs in many communities, providing a model for replication and further research.
2014-01-01
Background The past decade has seen the emergence of several molecular tools that render possible modification of cellular functions through accurate and easy addition, removal, or exchange of genomic DNA sequences. Among these technologies, transcription activator-like effectors (TALE) has turned out to be one of the most versatile and incredibly robust platform for generating targeted molecular tools as demonstrated by fusion to various domains such as transcription activator, repressor and nucleases. Results In this study, we generated a novel nuclease architecture based on the transcription activator-like effector scaffold. In contrast to the existing Tail to Tail (TtT) and head to Head (HtH) nuclease architectures based on the symmetrical association of two TALE DNA binding domains fused to the C-terminal (TtT) or N-terminal (HtH) end of FokI, this novel architecture consists of the asymmetrical association of two different engineered TALE DNA binding domains fused to the N- and C-terminal ends of FokI (TALE::FokI and FokI::TALE scaffolds respectively). The characterization of this novel Tail to Head (TtH) architecture in yeast enabled us to demonstrate its nuclease activity and define its optimal target configuration. We further showed that this architecture was able to promote substantial level of targeted mutagenesis at three endogenous loci present in two different mammalian cell lines. Conclusion Our results demonstrated that this novel functional TtH architecture which requires binding to only one DNA strand of a given endogenous locus has the potential to extend the targeting possibility of FokI-based TALE nucleases. PMID:24997498
Hybrid Network Defense Model Based on Fuzzy Evaluation
2014-01-01
With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture. PMID:24574870
NASA Astrophysics Data System (ADS)
Hanson, Jeffrey A.; McLaughlin, Keith L.; Sereno, Thomas J.
2011-06-01
We have developed a flexible, target-driven, multi-modal, physics-based fusion architecture that efficiently searches sensor detections for targets and rejects clutter while controlling the combinatoric problems that commonly arise in datadriven fusion systems. The informational constraints imposed by long lifetime requirements make systems vulnerable to false alarms. We demonstrate that our data fusion system significantly reduces false alarms while maintaining high sensitivity to threats. In addition, mission goals can vary substantially in terms of targets-of-interest, required characterization, acceptable latency, and false alarm rates. Our fusion architecture provides the flexibility to match these trade-offs with mission requirements unlike many conventional systems that require significant modifications for each new mission. We illustrate our data fusion performance with case studies that span many of the potential mission scenarios including border surveillance, base security, and infrastructure protection. In these studies, we deployed multi-modal sensor nodes - including geophones, magnetometers, accelerometers and PIR sensors - with low-power processing algorithms and low-bandwidth wireless mesh networking to create networks capable of multi-year operation. The results show our data fusion architecture maintains high sensitivities while suppressing most false alarms for a variety of environments and targets.
New concept of aging care architecture landscape design based on sustainable development
NASA Astrophysics Data System (ADS)
Xu, Ying
2017-05-01
As the aging problem becoming serious in China, Aging care is now one of the top issuer in front of all of us. Lots of private and public aging care architecture and facilities have been built. At present, we only pay attention to the architecture design and interior design scientific, ecological and sustainable design on aged care architecture landscape. Based on the social economy, population resources, mutual coordination and development of the environment, taking the elderly as the special group, this paper follows the principles of the sustainable development, conducts the comprehensive design planning of aged care landscape architecture and makes a deeper understanding and exploration through changing the form of architectural space, ecological landscape planting, new materials and technology, ecological energy utilization.
A Collaborative Knowledge Plane for Autonomic Networks
NASA Astrophysics Data System (ADS)
Mbaye, Maïssa; Krief, Francine
Autonomic networking aims to give network components self-managing capabilities. Several autonomic architectures have been proposed. Each of these architectures includes sort of a knowledge plane which is very important to mimic an autonomic behavior. Knowledge plane has a central role for self-functions by providing suitable knowledge to equipment and needs to learn new strategies for more accuracy.However, defining knowledge plane's architecture is still a challenge for researchers. Specially, defining the way cognitive supports interact each other in knowledge plane and implementing them. Decision making process depends on these interactions between reasoning and learning parts of knowledge plane. In this paper we propose a knowledge plane's architecture based on machine learning (inductive logic programming) paradigm and situated view to deal with distributed environment. This architecture is focused on two self-functions that include all other self-functions: self-adaptation and self-organization. Study cases are given and implemented.
A computer architecture for intelligent machines
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Saridis, G. N.
1991-01-01
The Theory of Intelligent Machines proposes a hierarchical organization for the functions of an autonomous robot based on the Principle of Increasing Precision With Decreasing Intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed in recent years. A computer architecture that implements the lower two levels of the intelligent machine is presented. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Details of Execution Level controllers for motion and vision systems are addressed, as well as the Petri net transducer software used to implement Coordination Level functions. Extensions to UNIX and VxWorks operating systems which enable the development of a heterogeneous, distributed application are described. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.
Sedimentary architecture and depositional environment of Kudat Formation, Sabah, Malaysia
NASA Astrophysics Data System (ADS)
Ghaheri, Samira; Suhaili, Mohd; Sapari, Nasiman; Momeni, Mohammadsadegh
2017-12-01
Kudat Formation originated from deep marine environment. Three lithofacies association of deep marine turbidity channel was discovered in three Members of the Kudat Formation in Kudat Peninsula, Sabah, Malaysia. Turbidite and deep marine architecture elements was described based on detailed sedimentological studies. Four architecture elements were identified based on each facies association and their lithology properties and character: inner external levee that was formed by turbidity flows spill out from their confinement of channel belt; Lobes sheet that was formed during downslope debris flows associated with levee; Channel fill which sediments deposited from high to low density currents with different value of sediment concentration; and overbank terrace which was formed by rapid suspension sedimentation. The depositional environment of Kudat Formation is shelf to deep marine fan.
A comparative analysis of loop heat pipe based thermal architectures for spacecraft thermal control
NASA Technical Reports Server (NTRS)
Pauken, Mike; Birur, Gaj
2004-01-01
Loop Heat Pipes (LHP) have gained acceptance as a viable means of heat transport in many spacecraft in recent years. However, applications using LHP technology tend to only remove waste heat from a single component to an external radiator. Removing heat from multiple components has been done by using multiple LHPs. This paper discusses the development and implementation of a Loop Heat Pipe based thermal architecture for spacecraft. In this architecture, a Loop Heat Pipe with multiple evaporators and condensers is described in which heat load sharing and thermal control of multiple components can be achieved. A key element in using a LHP thermal architecture is defining the need for such an architecture early in the spacecraft design process. This paper describes an example in which a LHP based thermal architecture can be used and how such a system can have advantages in weight, cost and reliability over other kinds of distributed thermal control systems. The example used in this paper focuses on a Mars Rover Thermal Architecture. However, the principles described here are applicable to Earth orbiting spacecraft as well.
Distributed Computing Architecture for Image-Based Wavefront Sensing and 2 D FFTs
NASA Technical Reports Server (NTRS)
Smith, Jeffrey S.; Dean, Bruce H.; Haghani, Shadan
2006-01-01
Image-based wavefront sensing (WFS) provides significant advantages over interferometric-based wavefi-ont sensors such as optical design simplicity and stability. However, the image-based approach is computational intensive, and therefore, specialized high-performance computing architectures are required in applications utilizing the image-based approach. The development and testing of these high-performance computing architectures are essential to such missions as James Webb Space Telescope (JWST), Terrestial Planet Finder-Coronagraph (TPF-C and CorSpec), and Spherical Primary Optical Telescope (SPOT). The development of these specialized computing architectures require numerous two-dimensional Fourier Transforms, which necessitate an all-to-all communication when applied on a distributed computational architecture. Several solutions for distributed computing are presented with an emphasis on a 64 Node cluster of DSPs, multiple DSP FPGAs, and an application of low-diameter graph theory. Timing results and performance analysis will be presented. The solutions offered could be applied to other all-to-all communication and scientifically computationally complex problems.
Deep Space Network information system architecture study
NASA Technical Reports Server (NTRS)
Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.
1992-01-01
The purpose of this article is to describe an architecture for the DSN information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990's. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies--i.e., computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.
SME2EM: Smart mobile end-to-end monitoring architecture for life-long diseases.
Serhani, Mohamed Adel; Menshawy, Mohamed El; Benharref, Abdelghani
2016-01-01
Monitoring life-long diseases requires continuous measurements and recording of physical vital signs. Most of these diseases are manifested through unexpected and non-uniform occurrences and behaviors. It is impractical to keep patients in hospitals, health-care institutions, or even at home for long periods of time. Monitoring solutions based on smartphones combined with mobile sensors and wireless communication technologies are a potential candidate to support complete mobility-freedom, not only for patients, but also for physicians. However, existing monitoring architectures based on smartphones and modern communication technologies are not suitable to address some challenging issues, such as intensive and big data, resource constraints, data integration, and context awareness in an integrated framework. This manuscript provides a novel mobile-based end-to-end architecture for live monitoring and visualization of life-long diseases. The proposed architecture provides smartness features to cope with continuous monitoring, data explosion, dynamic adaptation, unlimited mobility, and constrained devices resources. The integration of the architecture׳s components provides information about diseases׳ recurrences as soon as they occur to expedite taking necessary actions, and thus prevent severe consequences. Our architecture system is formally model-checked to automatically verify its correctness against designers׳ desirable properties at design time. Its components are fully implemented as Web services with respect to the SOA architecture to be easy to deploy and integrate, and supported by Cloud infrastructure and services to allow high scalability, availability of processes and data being stored and exchanged. The architecture׳s applicability is evaluated through concrete experimental scenarios on monitoring and visualizing states of epileptic diseases. The obtained theoretical and experimental results are very promising and efficiently satisfy the proposed architecture׳s objectives, including resource awareness, smart data integration and visualization, cost reduction, and performance guarantee. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yang, Hui; Zhang, Jie; Zhao, Yongli; Ji, Yuefeng; Wu, Jialin; Lin, Yi; Han, Jianrui; Lee, Young
2015-05-18
Inter-data center interconnect with IP over elastic optical network (EON) is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented multi-stratum resources integration among IP networks, optical networks and application stratums resources that allows to accommodate data center services. In view of this, this study extends to consider the service resilience in case of edge optical node failure. We propose a novel multi-stratum resources integrated resilience (MSRIR) architecture for the services in software defined inter-data center interconnect based on IP over EON. A global resources integrated resilience (GRIR) algorithm is introduced based on the proposed architecture. The MSRIR can enable cross stratum optimization and provide resilience using the multiple stratums resources, and enhance the data center service resilience responsiveness to the dynamic end-to-end service demands. The overall feasibility and efficiency of the proposed architecture is experimentally verified on the control plane of our OpenFlow-based enhanced SDN (eSDN) testbed. The performance of GRIR algorithm under heavy traffic load scenario is also quantitatively evaluated based on MSRIR architecture in terms of path blocking probability, resilience latency and resource utilization, compared with other resilience algorithms.
Characterization of Model-Based Reasoning Strategies for Use in IVHM Architectures
NASA Technical Reports Server (NTRS)
Poll, Scott; Iverson, David; Patterson-Hine, Ann
2003-01-01
Open architectures are gaining popularity for Integrated Vehicle Health Management (IVHM) applications due to the diversity of subsystem health monitoring strategies in use and the need to integrate a variety of techniques at the system health management level. The basic concept of an open architecture suggests that whatever monitoring or reasoning strategy a subsystem wishes to deploy, the system architecture will support the needs of that subsystem and will be capable of transmitting subsystem health status across subsystem boundaries and up to the system level for system-wide fault identification and diagnosis. There is a need to understand the capabilities of various reasoning engines and how they, coupled with intelligent monitoring techniques, can support fault detection and system level fault management. Researchers in IVHM at NASA Ames Research Center are supporting the development of an IVHM system for liquefying-fuel hybrid rockets. In the initial stage of this project, a few readily available reasoning engines were studied to assess candidate technologies for application in next generation launch systems. Three tools representing the spectrum of model-based reasoning approaches, from a quantitative simulation based approach to a graph-based fault propagation technique, were applied to model the behavior of the Hybrid Combustion Facility testbed at Ames. This paper summarizes the characterization of the modeling process for each of the techniques.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tian, Rui; Han, Jianrui; Lee, Young
2015-11-30
Data center interconnect with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented multi-stratum resilience between IP and elastic optical networks that allows to accommodate data center services. In view of this, this study extends to consider the resource integration by breaking the limit of network device, which can enhance the resource utilization. We propose a novel multi-stratum resources integration (MSRI) architecture based on network function virtualization in software defined elastic data center optical interconnect. A resource integrated mapping (RIM) scheme for MSRI is introduced in the proposed architecture. The MSRI can accommodate the data center services with resources integration when the single function or resource is relatively scarce to provision the services, and enhance globally integrated optimization of optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of OpenFlow-based enhanced software defined networking (eSDN) testbed. The performance of RIM scheme under heavy traffic load scenario is also quantitatively evaluated based on MSRI architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning schemes.
Open architecture design and approach for the Integrated Sensor Architecture (ISA)
NASA Astrophysics Data System (ADS)
Moulton, Christine L.; Krzywicki, Alan T.; Hepp, Jared J.; Harrell, John; Kogut, Michael
2015-05-01
Integrated Sensor Architecture (ISA) is designed in response to stovepiped integration approaches. The design, based on the principles of Service Oriented Architectures (SOA) and Open Architectures, addresses the problem of integration, and is not designed for specific sensors or systems. The use of SOA and Open Architecture approaches has led to a flexible, extensible architecture. Using these approaches, and supported with common data formats, open protocol specifications, and Department of Defense Architecture Framework (DoDAF) system architecture documents, an integration-focused architecture has been developed. ISA can help move the Department of Defense (DoD) from costly stovepipe solutions to a more cost-effective plug-and-play design to support interoperability.
A knowledge-base generating hierarchical fuzzy-neural controller.
Kandadai, R M; Tien, J M
1997-01-01
We present an innovative fuzzy-neural architecture that is able to automatically generate a knowledge base, in an extractable form, for use in hierarchical knowledge-based controllers. The knowledge base is in the form of a linguistic rule base appropriate for a fuzzy inference system. First, we modify Berenji and Khedkar's (1992) GARIC architecture to enable it to automatically generate a knowledge base; a pseudosupervised learning scheme using reinforcement learning and error backpropagation is employed. Next, we further extend this architecture to a hierarchical controller that is able to generate its own knowledge base. Example applications are provided to underscore its viability.
Insulator function and topological domain border strength scale with architectural protein occupancy
2014-01-01
Background Chromosome conformation capture studies suggest that eukaryotic genomes are organized into structures called topologically associating domains. The borders of these domains are highly enriched for architectural proteins with characterized roles in insulator function. However, a majority of architectural protein binding sites localize within topological domains, suggesting sites associated with domain borders represent a functionally different subclass of these regulatory elements. How topologically associating domains are established and what differentiates border-associated from non-border architectural protein binding sites remain unanswered questions. Results By mapping the genome-wide target sites for several Drosophila architectural proteins, including previously uncharacterized profiles for TFIIIC and SMC-containing condensin complexes, we uncover an extensive pattern of colocalization in which architectural proteins establish dense clusters at the borders of topological domains. Reporter-based enhancer-blocking insulator activity as well as endogenous domain border strength scale with the occupancy level of architectural protein binding sites, suggesting co-binding by architectural proteins underlies the functional potential of these loci. Analyses in mouse and human stem cells suggest that clustering of architectural proteins is a general feature of genome organization, and conserved architectural protein binding sites may underlie the tissue-invariant nature of topologically associating domains observed in mammals. Conclusions We identify a spectrum of architectural protein occupancy that scales with the topological structure of chromosomes and the regulatory potential of these elements. Whereas high occupancy architectural protein binding sites associate with robust partitioning of topologically associating domains and robust insulator function, low occupancy sites appear reserved for gene-specific regulation within topological domains. PMID:24981874
Evaluation of a deep learning architecture for MR imaging prediction of ATRX in glioma patients
NASA Astrophysics Data System (ADS)
Korfiatis, Panagiotis; Kline, Timothy L.; Erickson, Bradley J.
2018-02-01
Predicting mutation/loss of alpha-thalassemia/mental retardation syndrome X-linked (ATRX) gene utilizing MR imaging is of high importance since it is a predictor of response and prognosis in brain tumors. In this study, we compare a deep neural network approach based on a residual deep neural network (ResNet) architecture and one based on a classical machine learning approach and evaluate their ability in predicting ATRX mutation status without the need for a distinct tumor segmentation step. We found that the ResNet50 (50 layers) architecture, pre trained on ImageNet data was the best performing model, achieving an accuracy of 0.91 for the test set (classification of a slice as no tumor, ATRX mutated, or mutated) in terms of f1 score in a test set of 35 cases. The SVM classifier achieved 0.63 for differentiating the Flair signal abnormality regions from the test patients based on their mutation status. We report a method that alleviates the need for extensive preprocessing and acts as a proof of concept that deep neural network architectures can be used to predict molecular biomarkers from routine medical images.
Do Performance-Based Codes Support Universal Design in Architecture?
Grangaard, Sidse; Frandsen, Anne Kathrine
2016-01-01
The research project 'An analysis of the accessibility requirements' studies how Danish architectural firms experience the accessibility requirements of the Danish Building Regulations and it examines their opinions on how future regulative models can support innovative and inclusive design - Universal Design (UD). The empirical material consists of input from six workshops to which all 700 Danish Architectural firms were invited, as well as eight group interviews. The analysis shows that the current prescriptive requirements are criticized for being too homogenous and possibilities for differentiation and zoning are required. Therefore, a majority of professionals are interested in a performance-based model because they think that such a model will support 'accessibility zoning', achieving flexibility because of different levels of accessibility in a building due to its performance. The common understanding of accessibility and UD is directly related to buildings like hospitals and care centers. When the objective is both innovative and inclusive architecture, the request of a performance-based model should be followed up by a knowledge enhancement effort in the building sector. Bloom's taxonomy of educational objectives is suggested as a tool for such a boost. The research project has been financed by the Danish Transport and Construction Agency.
NASA Astrophysics Data System (ADS)
Saha, Rony Kumer; Aswakul, Chaodit
2017-01-01
In this paper, a multi-band enabled femtocell base station (FCBS) and user equipment (UE) architecture is proposed in a multi-tier network that consists of small cells, including femtocells and picocells deployed over the coverage of a macrocell for splitting uplink and downlink (UL/DL) as well as control-plane and user-plane (C-/U-plane) for 5G mobile networks. Since splitting is performed at the same FCBS, we define this architecture as the same base station based split architecture (SBSA). For multiple bands, we consider co-channel (CC) microwave and different frequency (DF) 60 GHz millimeter wave (mmWave) bands for FCBSs and UEs with respect to the microwave band used by their over-laid macrocell base station. All femtocells are assumed to be deployed in a 3-dimensional multi-storage building. For CC microwave band, cross-tier CC interference of femtocells with macrocell is avoided using almost blank subframe based enhanced inter-cell interference coordination techniques. The co-existence of CC microwave and DF mmWave bands for SBSA on the same FCBS and UE is first studied to show their performance disparities in terms of system capacity and spectral efficiency in order to provide incentives for employing multiple bands at the same FCBS and UE and identify a suitable band for routing decoupled UL/DL or C-/U-plane traffic. We then present a number of disruptive architectural design alternatives of multi-band enabled SBSA for 5G mobile networks for UL/DL and C-/U-plane splitting, including a disruptive and complete splitting of UL/DL and C-/U-plane as well as a combined UL/DL and C-/U-plane splitting, by exploiting dual connectivity on CC microwave and DF mmWave bands. The outperformances of SBSA in terms of system level capacity, average spectral efficiency, energy efficiency, and control-plane overhead traffic capacity in comparison with different base stations based split architecture (DBSA) are shown. Finally, a number of technical and business perspectives as well as key research issues of SBSA are discussed.
Space station needs, attributes, and architectural options study
NASA Technical Reports Server (NTRS)
1983-01-01
The top level, time-phased total space program support system architecture is described including progress from the use of ground-based space shuttle, teleoperator system, extended duration orbiter, and multimission spacecraft, to an initial 4-man crew station at 29 deg inclination in 1991, to a growth station with an 8-man crew with capabilities for OTV high energy orbit payload placement and servicing, assembly, and construction of mission payloads in 1994. System Z, proposed for Earth observation missions in high inclination orbit, can be accommodated in 1993 using a space station derivative platform. Mission definition, system architecture, and benefits are discussed.
A reconfigurable multicarrier demodulator architecture
NASA Technical Reports Server (NTRS)
Kwatra, S. C.; Jamali, M. M.
1991-01-01
An architecture based on parallel and pipline design approaches has been developed for the Frequency Division Multiple Access/Time Domain Multiplexed (FDMA/TDM) conversion system. The architecture has two main modules namely the transmultiplexer and the demodulator. The transmultiplexer has two pipelined modules. These are the shared multiplexed polyphase filter and the Fast Fourier Transform (FFT). The demodulator consists of carrier, clock, and data recovery modules which are interactive. Progress on the design of the MultiCarrier Demodulator (MCD) using commercially available chips and Application Specific Integrated Circuits (ASIC) and simulation studies using Viewlogic software will be presented at the conference.
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Greenwood, Zachary W.; Kayatin, Matthew J.; Newton, Robert L.; Parrish, Keith J.; Roman, Monsi C.; Takada, Kevin C.; Miller, Lee A.;
2013-01-01
A subsystem architecture derived from the International Space Station's (ISS) Atmosphere Revitalization Subsystem (ARS) has been functionally demonstrated. This ISS-derived architecture features re-arranged unit operations for trace contaminant control and carbon dioxide removal functions, a methane purification component as a precursor to enhance resource recovery over ISS capability, operational modifications to a water electrolysis-based oxygen generation assembly, and an alternative major atmospheric constituent monitoring concept. Results from this functional demonstration are summarized and compared to the performance observed during ground-based testing conducted on an ISS-like subsystem architecture. Considerations for further subsystem architecture and process technology development are discussed.
NASA Astrophysics Data System (ADS)
Rucinski, Marek; Coates, Adam; Montano, Giuseppe; Allouis, Elie; Jameux, David
2015-09-01
The Lightweight Advanced Robotic Arm Demonstrator (LARAD) is a state-of-the-art, two-meter long robotic arm for planetary surface exploration currently being developed by a UK consortium led by Airbus Defence and Space Ltd under contract to the UK Space Agency (CREST-2 programme). LARAD has a modular design, which allows for experimentation with different electronics and control software. The control system architecture includes the on-board computer, control software and firmware, and the communication infrastructure (e.g. data links, switches) connecting on-board computer(s), sensors, actuators and the end-effector. The purpose of the control system is to operate the arm according to pre-defined performance requirements, monitoring its behaviour in real-time and performing safing/recovery actions in case of faults. This paper reports on the results of a recent study about the feasibility of the development and integration of a novel control system architecture for LARAD fully based on the SpaceWire protocol. The current control system architecture is based on the combination of two communication protocols, Ethernet and CAN. The new SpaceWire-based control system will allow for improved monitoring and telecommanding performance thanks to higher communication data rate, allowing for the adoption of advanced control schemes, potentially based on multiple vision sensors, and for the handling of sophisticated end-effectors that require fine control, such as science payloads or robotic hands.
Evolutionary Effect on the Embodied Beauty of Landscape Architectures.
Zhang, Wei; Tang, Xiaoxiang; He, Xianyou; Chen, Guangyao
2018-01-01
According to the framework of evolutionary aesthetics, a sense of beauty is related to environmental adaptation and plasticity of human beings, which has adaptive value and biological foundations. Prior studies have demonstrated that organisms derive benefits from the landscape. In this study, we investigated whether the benefits of landscape might elicit a stronger sense of beauty and what the nature of this sense of beauty is. In two experiments, when viewing classical landscape and nonlandscape architectures photographs, participants rated the aesthetic scores (Experiment 1) and had a two-alternative forced choice aesthetic judgment by pressing the reaction button located near to (15 cm) or far from (45 cm) the presenting stimuli (Experiment 2). The results showed that reaction of aesthetic ratings for classical landscape architectures was faster than those of classical nonlandscape architectures. Furthermore, only the reaction of beautiful judgment of classical landscape architecture photograph was significantly faster when the reaction button was in the near position to the presenting photograph than those in the position of far away from the presenting photograph. This finding suggests a facilitated effect for the aesthetic perception of classical landscape architectures due to their corresponding components including water and green plants with strong evolutionary implications. Furthermore, this sense of beauty for classical landscape architectures might be the embodied approach to beauty based on the viewpoint of evolutionary aesthetics and embodied cognition.
Exploring the architectural trade space of NASAs Space Communication and Navigation Program
NASA Astrophysics Data System (ADS)
Sanchez, M.; Selva, D.; Cameron, B.; Crawley, E.; Seas, A.; Seery, B.
NASAs Space Communication and Navigation (SCaN) Program is responsible for providing communication and navigation services to space missions and other users in and beyond low Earth orbit. The current SCaN architecture consists of three independent networks: the Space Network (SN), which contains the TDRS relay satellites in GEO; the Near Earth Network (NEN), which consists of several NASA owned and commercially operated ground stations; and the Deep Space Network (DSN), with three ground stations in Goldstone, Madrid, and Canberra. The first task of this study is the stakeholder analysis. The goal of the stakeholder analysis is to identify the main stakeholders of the SCaN system and their needs. Twenty-one main groups of stakeholders have been identified and put on a stakeholder map. Their needs are currently being elicited by means of interviews and an extensive literature review. The data will then be analyzed by applying Cameron and Crawley's stakeholder analysis theory, with a view to highlighting dominant needs and conflicting needs. The second task of this study is the architectural tradespace exploration of the next generation TDRSS. The space of possible architectures for SCaN is represented by a set of architectural decisions, each of which has a discrete set of options. A computational tool is used to automatically synthesize a very large number of possible architectures by enumerating different combinations of decisions and options. The same tool contains models to evaluate the architectures in terms of performance and cost. The performance model uses the stakeholder needs and requirements identified in the previous steps as inputs, and it is based in the VASSAR methodology presented in a companion paper. This paper summarizes the current status of the MIT SCaN architecture study. It starts by motivating the need to perform tradespace exploration studies in the context of relay data systems through a description of the history NASA's space communicati- n networks. It then presents the generalities of possible architectures for future space communication and navigation networks. Finally, it describes the tools and methods being developed, clearly indicating the architectural decisions that have been taken into account as well as the systematic approach followed to model them. The purpose of this study is to explore the SCaN architectural tradespace by means of a computational tool. This paper describes the tool, while the tradespace exploration is underway.
Assured Mission Support Space Architecture (AMSSA) study
NASA Technical Reports Server (NTRS)
Hamon, Rob
1993-01-01
The assured mission support space architecture (AMSSA) study was conducted with the overall goal of developing a long-term requirements-driven integrated space architecture to provide responsive and sustained space support to the combatant commands. Although derivation of an architecture was the focus of the study, there are three significant products from the effort. The first is a philosophy that defines the necessary attributes for the development and operation of space systems to ensure an integrated, interoperable architecture that, by design, provides a high degree of combat utility. The second is the architecture itself; based on an interoperable system-of-systems strategy, it reflects a long-range goal for space that will evolve as user requirements adapt to a changing world environment. The third product is the framework of a process that, when fully developed, will provide essential information to key decision makers for space systems acquisition in order to achieve the AMSSA goal. It is a categorical imperative that military space planners develop space systems that will act as true force multipliers. AMSSA provides the philosophy, process, and architecture that, when integrated with the DOD requirements and acquisition procedures, can yield an assured mission support capability from space to the combatant commanders. An important feature of the AMSSA initiative is the participation by every organization that has a role or interest in space systems development and operation. With continued community involvement, the concept of the AMSSA will become a reality. In summary, AMSSA offers a better way to think about space (philosophy) that can lead to the effective utilization of limited resources (process) with an infrastructure designed to meet the future space needs (architecture) of our combat forces.
NASA Astrophysics Data System (ADS)
Liu, Chen; Han, Runze; Zhou, Zheng; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng
2018-04-01
In this work we present a novel convolution computing architecture based on metal oxide resistive random access memory (RRAM) to process the image data stored in the RRAM arrays. The proposed image storage architecture shows performances of better speed-device consumption efficiency compared with the previous kernel storage architecture. Further we improve the architecture for a high accuracy and low power computing by utilizing the binary storage and the series resistor. For a 28 × 28 image and 10 kernels with a size of 3 × 3, compared with the previous kernel storage approach, the newly proposed architecture shows excellent performances including: 1) almost 100% accuracy within 20% LRS variation and 90% HRS variation; 2) more than 67 times speed boost; 3) 71.4% energy saving.
Real-time field programmable gate array architecture for computer vision
NASA Astrophysics Data System (ADS)
Arias-Estrada, Miguel; Torres-Huitzil, Cesar
2001-01-01
This paper presents an architecture for real-time generic convolution of a mask and an image. The architecture is intended for fast low-level image processing. The field programmable gate array (FPGA)-based architecture takes advantage of the availability of registers in FPGAs to implement an efficient and compact module to process the convolutions. The architecture is designed to minimize the number of accesses to the image memory and it is based on parallel modules with internal pipeline operation in order to improve its performance. The architecture is prototyped in a FPGA, but it can be implemented on dedicated very- large-scale-integrated devices to reach higher clock frequencies. Complexity issues, FPGA resources utilization, FPGA limitations, and real-time performance are discussed. Some results are presented and discussed.
Architecture effects on multivalent interactions by polypeptide-based multivalent ligands
NASA Astrophysics Data System (ADS)
Liu, Shuang
Multivalent interactions are characterized by the simultaneous binding between multiple ligands and multiple binding sites, either in solutions or at interfaces. In biological systems, most multivalent interactions occur between protein receptors and carbohydrate ligands through hydrogen-bonding and hydrophobic interactions. Compared with weak affinity binding between one ligand and one binding site, i.e. monovalent interaction, multivalent interactioins provide greater avidity and specificity, and therefore play unique roles in a broad range of biological activities. Moreover, the studies of multivalent interactions are also essential for producing effective inhibitors and effectors of biological processes that could have important therapeutic applications. Synthetic multivalent ligands have been designed to mimic the biological functions of natural multivalent interactions, and various types of scaffolds have been used to display multiple ligands, including small molecules, linear polymers, dendrimers, nanoparticle surfaces, monolayer surfaces and liposomes. Studies have shown that multivalent interactions can be highly affected by various architectural parameters of these multivalent ligands, including ligand identities, valencies, spacing, ligand densities, nature of linker arms, scaffold length and scaffold conformation. Most of these multivalent ligands are chemically synthesized and have limitations of controlling over sequence and conformation, which is a barrier for mimicking ordered and controlled natural biological systems. Therefore, multivalent ligands with precisely controlled architecture are required for improved structure-function relationship studies. Protein engineering methods with subsequent chemical coupling of ligands provide significant advantages of controlling over backbone conformation and functional group placement, and therefore have been used to synthesize recombinant protein-based materials with desired properties similar to natural protein materials, including structural as well as functional proteins. Therefore, polypeptide-based multivalent scaffolds are used to display ligands to assess the contribution of different architectural parameters to the multivalent binding events. In this work, a family of alanine-rich alpha-helical glycopolypeptides was designed and synthesized by a combination of protein engineering and chemical coupling, to display two types of saccharide ligands for two different multivalent binding systems. The valencies, chain length and spacing between adjacent ligands of these multivalent ligands were designed in order to study architecture effects on multivalent interactions. The polypeptides and their glycoconjugates were characterized via various methods, including SDS-PAGE, NMR, HPLC, amino acid analysis (AAA), MALDI, circular dichroism (CD) and GPC. In the first multivalent binding system, cholera toxin B pentamer (CT B5) was chosen to be the protein receptor due to its well-characterized structure, lack of significant steric interference of binding to multiple binding sites, and requirement of only simple monosaccharide as ligands. Galactopyranoside was incorporated into polypeptide scaffolds through amine-carboxylic acid coupling to the side chains of glutamic acid residues. The inhibition and binding to CT B5 of these glycopolypeptide ligands were evaluated by direct enzyme-linked assay (DELA). As a complement method, weak affinity chromatography (WAC) was also used to evaluate glycopolypeptides binding to a CT B5 immobilized column. The architecture effects on CT B 5 inhibition are discussed. In the second system, cell surface receptor L-selectin was targeted by polypeptide-based multivalent ligands containing disulfated galactopyranoside ligands, due to its important roles in various immunological activities. The effects of glycopolypeptide architectural variables L-selectin shedding were evaluated via ELISA-based assays. These polypeptide-based multivalent ligands are suggested to be useful for elucidating architecture effects on multivalent interactions, manipulating multivalent interactions and the subsequent cellular responses in different systems. These materials have great potential applications in therapeutics and could also provide guidelines for design of multivalent ligands for other protein receptors.
Nanometric summation architecture based on optical near-field interaction between quantum dots.
Naruse, Makoto; Miyazaki, Tetsuya; Kubota, Fumito; Kawazoe, Tadashi; Kobayashi, Kiyoshi; Sangu, Suguru; Ohtsu, Motoichi
2005-01-15
A nanoscale data summation architecture is proposed and experimentally demonstrated based on the optical near-field interaction between quantum dots. Based on local electromagnetic interactions between a few nanometric elements via optical near fields, we can combine multiple excitations at a certain quantum dot, which allows construction of a summation architecture. Summation plays a key role for content-addressable memory, which is one of the most important functions in optical networks.
An e-consent-based shared EHR system architecture for integrated healthcare networks.
Bergmann, Joachim; Bott, Oliver J; Pretschner, Dietrich P; Haux, Reinhold
2007-01-01
Virtual integration of distributed patient data promises advantages over a consolidated health record, but raises questions mainly about practicability and authorization concepts. Our work aims on specification and development of a virtual shared health record architecture using a patient-centred integration and authorization model. A literature survey summarizes considerations of current architectural approaches. Complemented by a methodical analysis in two regional settings, a formal architecture model was specified and implemented. Results presented in this paper are a survey of architectural approaches for shared health records and an architecture model for a virtual shared EHR, which combines a patient-centred integration policy with provider-oriented document management. An electronic consent system assures, that access to the shared record remains under control of the patient. A corresponding system prototype has been developed and is currently being introduced and evaluated in a regional setting. The proposed architecture is capable of partly replacing message-based communications. Operating highly available provider repositories for the virtual shared EHR requires advanced technology and probably means additional costs for care providers. Acceptance of the proposed architecture depends on transparently embedding document validation and digital signature into the work processes. The paradigm shift from paper-based messaging to a "pull model" needs further evaluation.
A Summary of NASA Architecture Studies Utilizing Fission Surface Power Technology
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Poston, David I.
2011-01-01
Beginning with the Exploration Systems Architecture Study in 2005, NASA has conducted various mission architecture studies to evaluate implementation options for the U.S. Space Policy. Several of the studies examined the use of Fission Surface Power (FSP) systems for human missions to the lunar and Martian surface. This paper summarizes the FSP concepts developed under four different NASA-sponsored architecture studies: Lunar Architecture Team, Mars Architecture Team, Lunar Surface Systems/Constellation Architecture Team, and International Architecture Working Group-Power Function Team.
FY04 Advanced Life Support Architecture and Technology Studies: Mid-Year Presentation
NASA Technical Reports Server (NTRS)
Lange, Kevin; Anderson, Molly; Duffield, Bruce; Hanford, Tony; Jeng, Frank
2004-01-01
Long-Term Objective: Identify optimal advanced life support system designs that meet existing and projected requirements for future human spaceflight missions. a) Include failure-tolerance, reliability, and safe-haven requirements. b) Compare designs based on multiple criteria including equivalent system mass (ESM), technology readiness level (TRL), simplicity, commonality, etc. c) Develop and evaluate new, more optimal, architecture concepts and technology applications.
ESAS-Derived Earth Departure Stage Design for Human Mars Exploration
NASA Technical Reports Server (NTRS)
Flaherty, Kevin; Grant, Michael; Korzun, Ashley; Malo-Molina, Faure; Steinfeldt, Bradley; Stahl, Benjamin; Wilhite, Alan
2007-01-01
The Vision for Space Exploration has set the nation on a course to have humans on Mars as early as 2030. To reduce the cost and risk associated with human Mars exploration, NASA is planning for the Mars architecture to leverage the lunar architecture as fully as possible. This study takes the defined launch vehicles and system capabilities from ESAS and extends their application to DRM 3.0 to design an Earth Departure Stage suitable for the cargo and crew missions to Mars. The impact of a propellant depot in LEO was assessed and sLzed for use with the EDS. To quantitatively assess and compare the effectiveness of alternative designs, an initial baseline architecture was defined using the ESAS launch vehicles and DRM 3.0. The baseline architecture uses three NTR engines, LH2 propellant, no propellant depot in LEO, and launches on the Ares I and Ares V. The Mars transfer and surface elements from DRM 3.0 were considered to be fixed payloads in the design of the EDS. Feasible architecture alternatives were identified from previous architecture studies and anticipated capabilities and compiled in a morphological matrix. ESAS FOMs were used to determine the most critical design attributes for the effectiveness of the EDS. The ESAS-derived FOMs used in this study to assess alternative designs are effectiveness and performance, affordability, reliability, and risk. The individual FOMs were prioritized using the AHP, a method for pairwise comparison. All trades performed were evaluated with respect to the weighted FOMs, creating a Pareto frontier of equivalently ideal solutions. Additionally, each design on the frontier was evaluated based on its fulfillment of the weighted FOMs using TOPSIS, a quantitative method for ordinal ranking of the alternatives. The designs were assessed in an integrated environment using physics-based models for subsystem analysis where possible. However, for certain attributes such as engine type, historical, performance-based mass estimating relations were more easily employed. The elements from the design process were integrated into a single loop, allowing for rapid iteration of subsystem analyses and compilation of resulting designs.
NASA Astrophysics Data System (ADS)
Gallagher, J. H. R.; Jelenak, A.; Potter, N.; Fulker, D. W.; Habermann, T.
2017-12-01
Providing data services based on cloud computing technology that is equivalent to those developed for traditional computing and storage systems is critical for successful migration to cloud-based architectures for data production, scientific analysis and storage. OPeNDAP Web-service capabilities (comprising the Data Access Protocol (DAP) specification plus open-source software for realizing DAP in servers and clients) are among the most widely deployed means for achieving data-as-service functionality in the Earth sciences. OPeNDAP services are especially common in traditional data center environments where servers offer access to datasets stored in (very large) file systems, and a preponderance of the source data for these services is being stored in the Hierarchical Data Format Version 5 (HDF5). Three candidate architectures for serving NASA satellite Earth Science HDF5 data via Hyrax running on Amazon Web Services (AWS) were developed and their performance examined for a set of representative use cases. The performance was based both on runtime and incurred cost. The three architectures differ in how HDF5 files are stored in the Amazon Simple Storage Service (S3) and how the Hyrax server (as an EC2 instance) retrieves their data. The results for both the serial and parallel access to HDF5 data in the S3 will be presented. While the study focused on HDF5 data, OPeNDAP and the Hyrax data server, the architectures are generic and the analysis can be extrapolated to many different data formats, web APIs, and data servers.
A mission operations architecture for the 21st century
NASA Technical Reports Server (NTRS)
Tai, W.; Sweetnam, D.
1996-01-01
An operations architecture is proposed for low cost missions beyond the year 2000. The architecture consists of three elements: a service based architecture; a demand access automata; and distributed science hubs. The service based architecture is based on a set of standard multimission services that are defined, packaged and formalized by the deep space network and the advanced multi-mission operations system. The demand access automata is a suite of technologies which reduces the need to be in contact with the spacecraft, and thus reduces operating costs. The beacon signaling, the virtual emergency room, and the high efficiency tracking automata technologies are described. The distributed science hubs provide information system capabilities to the small science oriented flight teams: individual access to all traditional mission functions and services; multimedia intra-team communications, and automated direct transparent communications between the scientists and the instrument.
Model-Drive Architecture for Agent-Based Systems
NASA Technical Reports Server (NTRS)
Gradanin, Denis; Singh, H. Lally; Bohner, Shawn A.; Hinchey, Michael G.
2004-01-01
The Model Driven Architecture (MDA) approach uses a platform-independent model to define system functionality, or requirements, using some specification language. The requirements are then translated to a platform-specific model for implementation. An agent architecture based on the human cognitive model of planning, the Cognitive Agent Architecture (Cougaar) is selected for the implementation platform. The resulting Cougaar MDA prescribes certain kinds of models to be used, how those models may be prepared and the relationships of the different kinds of models. Using the existing Cougaar architecture, the level of application composition is elevated from individual components to domain level model specifications in order to generate software artifacts. The software artifacts generation is based on a metamodel. Each component maps to a UML structured component which is then converted into multiple artifacts: Cougaar/Java code, documentation, and test cases.
Karbhari, Vistasp M; Strassler, Howard
2007-08-01
The aim of this study was to compare and elucidate the differences in damage mechanisms and response of fiber-reinforced dental resin composites based on three different brands under flexural loading. The types of reinforcement consisted of a unidirectional E-glass prepreg (Splint-It from Jeneric/Petron Inc.), an ultrahigh molecular weight polyethylene fiber based biaxial braid (Connect, Kerr) and an ultrahigh molecular weight polyethylene fiber based leno-weave (Ribbond). Three different commercially available fiber reinforcing systems were used to fabricate rectangular bars, with the fiber reinforcement close to the tensile face, which were tested in flexure with an emphasis on studying damage mechanisms and response. Eight specimens (n=8) of each type were tested. Overall energy capacity as well as flexural strength and modulus were determined and results compared in light of the different abilities of the architectures used. Under flexural loading unreinforced and unidirectional prepreg reinforced dental composites failed in a brittle fashion, whereas the braid and leno-weave reinforced materials underwent significant deformation without rupture. The braid reinforced specimens showed the highest peak load. The addition of the unidirectional to the matrix resulted in an average strain of 0.06mm/mm which is 50% greater than the capacity of the unreinforced matrix, whereas the addition of the braid and leno-weave resulted in increases of 119 and 126%, respectively, emphasizing the higher capacity of both the UHM polyethylene fibers and the architectures to hold together without rupture under flexural loading. The addition of the fiber reinforcement substantially increases the level of strain energy in the specimens with the maximum being attained in the braid reinforced specimens with a 433% increase in energy absorption capability above the unreinforced case. The minimum scatter and highest consistency in response is seen in the leno-weave reinforced specimens due to the details of the architecture which restrict fabric shearing and movement during placement. It is crucial that the appropriate selection of fiber architectures be made not just from a perspective of highest strength, but overall damage tolerance and energy absorption. Differences in weaves and architectures can result in substantially different performance and appropriate selection can mitigate premature and catastrophic failure. The study provides details of materials level response characteristics which are useful in selection of the fiber reinforcement based on specifics of application.
Regenerative Fuel Cell Power Systems for Lunar and Martian Surface Exploration
NASA Technical Reports Server (NTRS)
Guzik, Monica C.; Jakupca, Ian J.; Gilligan, Ryan P.; Bennett, William R.; Smith, Phillip J.; Fincannon, James
2017-01-01
This paper presents the preliminary results of a recent National Aeronautics and Space Administration (NASA) study funded under the Advanced Exploration Systems (AES) Modular Power Systems (AMPS) project. This study evaluated multiple surface locations on both the Moon and Mars, with the goal of establishing a common approach towards technology development and system design for surface power systems that use Regenerative Fuel Cell (RFC) energy storage methods. One RFC design may not be applicable to all surface locations; however, AMPS seeks to find a unified architecture, or series of architectures, that leverages a single development approach to answer the technology need for RFC systems. Early system trades were performed to select the most effective fuel cell and electrolyzer architectures based on current state-of-the-art technology, whereas later trades will establish a detailed system design to enable a near-term ground (non-flight) demonstration. This paper focuses on the initial trade studies, presents the selected fuel cell and electrolyzer architectures for follow-on system design studies, and suggests areas for further technology investment.
Cognitive Architectures and Human-Computer Interaction. Introduction to Special Issue.
ERIC Educational Resources Information Center
Gray, Wayne D.; Young, Richard M.; Kirschenbaum, Susan S.
1997-01-01
In this introduction to a special issue on cognitive architectures and human-computer interaction (HCI), editors and contributors provide a brief overview of cognitive architectures. The following four architectures represented by articles in this issue are: Soar; LICAI (linked model of comprehension-based action planning and instruction taking);…
Development of Design Expertise by Architecture Students
ERIC Educational Resources Information Center
Oluwatayo, Adedapo Adewunmi; Ezema, Isidore; Opoko, Akunnaya
2017-01-01
What constitutes design ability and design expertise in architecture? Which categories of design expertise can be identified amongst architecture students? And which input factors differentiate one level of expertise from another? These questions were addressed in a survey of architecture students in Nigeria. Based on the results, students were…
Analyzing Resiliency of the Smart Grid Communication Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anas AlMajali, Anas; Viswanathan, Arun; Neuman, Clifford
Smart grids are susceptible to cyber-attack as a result of new communication, control and computation techniques employed in the grid. In this paper, we characterize and analyze the resiliency of smart grid communication architecture, specifically an RF mesh based architecture, under cyber attacks. We analyze the resiliency of the communication architecture by studying the performance of high-level smart grid functions such as metering, and demand response which depend on communication. Disrupting the operation of these functions impacts the operational resiliency of the smart grid. Our analysis shows that it takes an attacker only a small fraction of meters to compromisemore » the communication resiliency of the smart grid. We discuss the implications of our result to critical smart grid functions and to the overall security of the smart grid.« less
NASA-NIAC 2001 Phase I Research Grant on Aneutronic Fusion Spacecraft Architecture
NASA Technical Reports Server (NTRS)
Tarditi, Alfonso G. (Principal Investigator); Scott, John H.; Miley, George H.
2012-01-01
This study was developed because the recognized need of defining of a new spacecraft architecture suitable for aneutronic fusion and featuring game-changing space travel capabilities. The core of this architecture is the definition of a new kind of fusion-based space propulsion system. This research is not about exploring a new fusion energy concept, it actually assumes the availability of an aneutronic fusion energy reactor. The focus is on providing the best (most efficient) utilization of fusion energy for propulsion purposes. The rationale is that without a proper architecture design even the utilization of a fusion reactor as a prime energy source for spacecraft propulsion is not going to provide the required performances for achieving a substantial change of current space travel capabilities.
Neural architecture design based on extreme learning machine.
Bueno-Crespo, Andrés; García-Laencina, Pedro J; Sancho-Gómez, José-Luis
2013-12-01
Selection of the optimal neural architecture to solve a pattern classification problem entails to choose the relevant input units, the number of hidden neurons and its corresponding interconnection weights. This problem has been widely studied in many research works but their solutions usually involve excessive computational cost in most of the problems and they do not provide a unique solution. This paper proposes a new technique to efficiently design the MultiLayer Perceptron (MLP) architecture for classification using the Extreme Learning Machine (ELM) algorithm. The proposed method provides a high generalization capability and a unique solution for the architecture design. Moreover, the selected final network only retains those input connections that are relevant for the classification task. Experimental results show these advantages. Copyright © 2013 Elsevier Ltd. All rights reserved.
eHealth integration and interoperability issues: towards a solution through enterprise architecture.
Adenuga, Olugbenga A; Kekwaletswe, Ray M; Coleman, Alfred
2015-01-01
Investments in healthcare information and communication technology (ICT) and health information systems (HIS) continue to increase. This is creating immense pressure on healthcare ICT and HIS to deliver and show significance in such investments in technology. It is discovered in this study that integration and interoperability contribute largely to this failure in ICT and HIS investment in healthcare, thus resulting in the need towards healthcare architecture for eHealth. This study proposes an eHealth architectural model that accommodates requirement based on healthcare need, system, implementer, and hardware requirements. The model is adaptable and examines the developer's and user's views that systems hold high hopes for their potential to change traditional organizational design, intelligence, and decision-making.
NASA Technical Reports Server (NTRS)
Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Floyd, S. R.
2005-01-01
Addressable Reconfigurable Technology (ART) based structures: Mission Concepts based on Addressable Reconfigurable Technology (ART), originally studied for future ANTS (Autonomous Nanotechnology Swarm) Space Architectures, are now being developed as rovers for nearer term use in lunar and planetary surface exploration. The architecture is based on the reconfigurable tetrahedron as a building block. Tetrahedra are combined to form space-filling networks, shaped for the required function. Basic structural components are highly modular, addressable arrays of robust nodes (tetrahedral apices) from which highly reconfigurable struts (tetrahedral edges), acting as supports or tethers, are efficiently reversibly deployed/stowed, transforming and reshaping the structures as required.
The Health Service Bus: an architecture and case study in achieving interoperability in healthcare.
Ryan, Amanda; Eklund, Peter
2010-01-01
Interoperability in healthcare is a requirement for effective communication between entities, to ensure timely access to up to-date patient information and medical knowledge, and thus facilitate consistent patient care. An interoperability framework called the Health Service Bus (HSB), based on the Enterprise Service Bus (ESB) middleware software architecture is presented here as a solution to all three levels of interoperability as defined by the HL7 EHR Interoperability Work group in their definitive white paper "Coming to Terms". A prototype HSB system was implemented based on the Mule Open-Source ESB and is outlined and discussed, followed by a clinically-based example.
Hospital enterprise Architecture Framework (Study of Iranian University Hospital Organization).
Haghighathoseini, Atefehsadat; Bobarshad, Hossein; Saghafi, Fatehmeh; Rezaei, Mohammad Sadegh; Bagherzadeh, Nader
2018-06-01
Nowadays developing smart and fast services for patients and transforming hospitals to modern hospitals is considered a necessity. Living in the world inundated with information systems, designing services based on information technology entails a suitable architecture framework. This paper aims to present a localized enterprise architecture framework for the Iranian university hospital. Using two dimensions of implementation and having appropriate characteristics, the best 17 enterprises frameworks were chosen. As part of this effort, five criteria were selected according to experts' inputs. According to these criteria, five frameworks which had the highest rank were chosen. Then 44 general characteristics were extracted from the existing 17 frameworks after careful studying. Then a questionnaire was written accordingly to distinguish the necessity of those characteristics using expert's opinions and Delphi method. The result showed eight important criteria. In the next step, using AHP method, TOGAF was chosen regarding having appropriate characteristics and the ability to be implemented among reference formats. In the next step, enterprise architecture framework was designed by TOGAF in a conceptual model and its layers. For determining architecture framework parts, a questionnaire with 145 questions was written based on literature review and expert's opinions. The results showed during localization of TOGAF for Iran, 111 of 145 parts were chosen and certified to be used in the hospital. The results showed that TOGAF could be suitable for use in the hospital. So, a localized Hospital Enterprise Architecture Modelling is developed by customizing TOGAF for an Iranian hospital at eight levels and 11 parts. This new model could be used to be performed in other Iranian hospitals. Copyright © 2018 Elsevier B.V. All rights reserved.
Information Quality Evaluation of C2 Systems at Architecture Level
2014-06-01
based on architecture models of C2 systems, which can help to identify key factors impacting information quality and improve the system capability at the stage of architecture design of C2 system....capability evaluation of C2 systems at architecture level becomes necessary and important for improving the system capability at the stage of architecture ... design . This paper proposes a method for information quality evaluation of C2 system at architecture level. First, the information quality model is
Middleware Trade Study for NASA Domain
NASA Technical Reports Server (NTRS)
Bowman, Dan
2007-01-01
This presentation presents preliminary results of a trade study designed to assess three distributed simulation middleware technologies for support of the NASA Constellation Distributed Space Exploration Simulation (DSES) project and Test and Verification Distributed System Integration Laboratory (DSIL). The technologies are: the High Level Architecture (HLA), the Test and Training Enabling Architecture (TENA), and an XML-based variant of Distributed Interactive Simulation (DIS-XML) coupled with the Extensible Messaging and Presence Protocol (XMPP). According to the criteria and weights determined in this study, HLA scores better than the other two for DSES as well as the DSIL
2007-12-01
model. Finally, we build a small agent-based model using the component architecture to demonstrate the library’s functionality. 15. NUMBER OF...and a Behavioral model. Finally, we build a small agent-based model using the component architecture to demonstrate the library’s functionality...prototypes an architectural design which is generalizable, reusable, and extensible. We have created an initial set of model elements that demonstrate
Transmission control unit drive based on the AUTOSAR standard
NASA Astrophysics Data System (ADS)
Guo, Xiucai; Qin, Zhen
2018-03-01
It is a trend of automotive electronics industry in the future that automotive electronics embedded system development based on the AUTOSAR standard. AUTOSAR automotive architecture standard has proposed the transmission control unit (TCU) development architecture and designed its interfaces and configurations in detail. This essay has discussed that how to drive the TCU based on AUTOSAR standard architecture. The results show that driving the TCU with the AUTOSAR system improves reliability and shortens development cycles.
Unified web-based network management based on distributed object orientated software agents
NASA Astrophysics Data System (ADS)
Djalalian, Amir; Mukhtar, Rami; Zukerman, Moshe
2002-09-01
This paper presents an architecture that provides a unified web interface to managed network devices that support CORBA, OSI or Internet-based network management protocols. A client gains access to managed devices through a web browser, which is used to issue management operations and receive event notifications. The proposed architecture is compatible with both the OSI Management reference Model and CORBA. The steps required for designing the building blocks of such architecture are identified.
MWAHCA: A Multimedia Wireless Ad Hoc Cluster Architecture
Diaz, Juan R.; Jimenez, Jose M.; Sendra, Sandra
2014-01-01
Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node's capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss). The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal. PMID:24737996
Modern Church Construction in Urals. Problems and Prospects
NASA Astrophysics Data System (ADS)
Surin, D. N.; Tereshina, O. B.
2017-11-01
The article analyzes the problems of the modern Orthodox church architecture in Russia, special attention is paid to the problems of the Ural region. It justifies the importance of addressing to this issue connected with the Orthodox traditions revival in Russia over the last decades and the need to compensate for tens of thousands of the churches destroyed in the Soviet period. The works on the theory and history of the Russian architecture and art, studies of the architectural heritage and the art of building of the Ural craftsmen are used as a scientific and methodological base for the church architecture development. The article discloses the historically formed architectural features of the Russian Orthodox churches the artistic image of which is designed to create a certain religious and aesthetic experience. It is stated that the restoration of the Russian church construction tradition is possible on the background of architectural heritage. It sets the tendencies and vital tasks in church construction and outlines a complex of measures to solve these tasks at the public and regional levels.
Distributed information system architecture for Primary Health Care.
Grammatikou, M; Stamatelopoulos, F; Maglaris, B
2000-01-01
We present a distributed architectural framework for Primary Health Care (PHC) Centres. Distribution is handled through the introduction of the Roaming Electronic Health Care Record (R-EHCR) and the use of local caching and incremental update of a global index. The proposed architecture is designed to accommodate a specific PHC workflow model. Finally, we discuss a pilot implementation in progress, which is based on CORBA and web-based user interfaces. However, the conceptual architecture is generic and open to other middleware approaches like the DHE or HL7.
Fuzzy-Neural Controller in Service Requests Distribution Broker for SOA-Based Systems
NASA Astrophysics Data System (ADS)
Fras, Mariusz; Zatwarnicka, Anna; Zatwarnicki, Krzysztof
The evolution of software architectures led to the rising importance of the Service Oriented Architecture (SOA) concept. This architecture paradigm support building flexible distributed service systems. In the paper the architecture of service request distribution broker designed for use in SOA-based systems is proposed. The broker is built with idea of fuzzy control. The functional and non-functional request requirements in conjunction with monitoring of execution and communication links are used to distribute requests. Decisions are made with use of fuzzy-neural network.
Observation of beta and X rays with 3-D-architecture silicon microstrip sensors
NASA Astrophysics Data System (ADS)
Kenney, C. J.; Parker, S. I.; Krieger, B.; Ludewigt, B.; Dubbs, T. P.; Sadrozinski, H.
2001-04-01
The first silicon radiation sensors based on the three-dimensional (3-D) architecture have been successfully fabricated. X-ray spectra from iron-55 and americium-241 have been recorded by reading out a 3-D architecture detector via wire bonds to a low-noise, charge-sensitive preamplifier. Using a beta source, coincidences between a 3-D sensor and a plastic scintillator were observed. This is the first observation of ionizing radiation using a silicon sensor based on the 3-D architecture. Details of the apparatus and measurements are described.
NASA Technical Reports Server (NTRS)
LaValley, Brian W.; Little, Phillip D.; Walter, Chris J.
2011-01-01
This report documents the capabilities of the EDICT tools for error modeling and error propagation analysis when operating with models defined in the Architecture Analysis & Design Language (AADL). We discuss our experience using the EDICT error analysis capabilities on a model of the Scalable Processor-Independent Design for Enhanced Reliability (SPIDER) architecture that uses the Reliable Optical Bus (ROBUS). Based on these experiences we draw some initial conclusions about model based design techniques for error modeling and analysis of highly reliable computing architectures.
An architecture for intelligent task interruption
NASA Technical Reports Server (NTRS)
Sharma, D. D.; Narayan, Srini
1990-01-01
In the design of real time systems the capability for task interruption is often considered essential. The problem of task interruption in knowledge-based domains is examined. It is proposed that task interruption can be often avoided by using appropriate functional architectures and knowledge engineering principles. Situations for which task interruption is indispensable, a preliminary architecture based on priority hierarchies is described.
A Model for Communications Satellite System Architecture Assessment
2011-09-01
This is shown in Equation 4. The total system cost includes all development, acquisition, fielding, operations, maintenance and upgrades, and system...protection. A mathematical model was implemented to enable the analysis of communications satellite system architectures based on multiple system... implemented to enable the analysis of communications satellite system architectures based on multiple system attributes. Utilization of the model in
ERIC Educational Resources Information Center
Bin Hassan, Isham Shah; Ismail, Mohd Arif; Mustafa, Ramlee
2011-01-01
The purpose of this research is to examine the effect of integrating the mobile and CAD technology on teaching architectural design process for Malaysian polytechnic architectural students in producing a creative product. The website is set up based on Caroll's minimal theory, while mobile and CAD technology integration is based on Brown and…
CisLunar Habitat Internal Architecture Design Criteria
NASA Technical Reports Server (NTRS)
Jones, R.; Kennedy, K.; Howard, R.; Whitmore, M.; Martin, C.; Garate, J.
2017-01-01
BACKGROUND: In preparation for human exploration to Mars, there is a need to define the development and test program that will validate deep space operations and systems. In that context, a Proving Grounds CisLunar habitat spacecraft is being defined as the next step towards this goal. This spacecraft will operate differently from the ISS or other spacecraft in human history. The performance envelope of this spacecraft (mass, volume, power, specifications, etc.) is being defined by the Future Capabilities Study Team. This team has recognized the need for a human-centered approach for the internal architecture of this spacecraft and has commissioned a CisLunar Phase-1 Habitat Internal Architecture Study Team to develop a NASA reference configuration, providing the Agency with a "smart buyer" approach for future acquisition. THE CISLUNAR HABITAT INTERNAL ARCHITECTURE STUDY: Overall, the CisLunar Habitat Internal Architecture study will address the most significant questions and risks in the current CisLunar architecture, habitation, and operations concept development. This effort is achieved through definition of design criteria, evaluation criteria and process, design of the CisLunar Habitat Phase-1 internal architecture, and the development and fabrication of internal architecture concepts combined with rigorous and methodical Human-in-the-Loop (HITL) evaluations and testing of the conceptual innovations in a controlled test environment. The vision of the CisLunar Habitat Internal Architecture Study is to design, build, and test a CisLunar Phase-1 Habitat Internal Architecture that will be used for habitation (e.g. habitability and human factors) evaluations. The evaluations will mature CisLunar habitat evaluation tools, guidelines, and standards, and will interface with other projects such as the Advanced Exploration Systems (AES) Program integrated Power, Avionics, Software (iPAS), and Logistics for integrated human-in-the-loop testing. The mission of the CisLunar Habitat Internal Architecture Study is to become a forcing function to establish a common understanding of CisLunar Phase-1 Habitation Internal Architecture design criteria, processes, and tools. The scope of the CisLunar Habitat Internal Architecture study is to design, develop, demonstrate, and evaluate a Phase-1 CisLunar Habitat common module internal architecture based on design criteria agreed to by NASA, the International Partners, and Commercial Exploration teams. This task is to define the CisLunar Phase-1 Internal Architecture Government Reference Design, assist NASA in becoming a "smart buyer" for Phase-1 Habitat Concepts, and ultimately to derive standards and requirements from the Internal Architecture Design Process. The first step was to define a Habitat Internal Architecture Design Criteria and create a structured philosophy to be used by design teams as a filter by which critical aspects of consideration would be identified for the purpose of organizing and utilizing interior spaces. With design criteria in place, the team will develop a series of iterative internal architecture concept designs which will be assessed by means of an evaluation criteria and process. These assessments will successively drive and refine the design, leading to the combination and down-selection of design concepts. A single refined reference design configuration will be developed into in a medium-to-high fidelity mockup. A multi-day human-in-the-loop mission test will fully evaluate the reference design and validate its configuration. Lessons learned from the design and evaluation will enable the team to identify appropriate standards for Phase-1 CisLunar Habitat Internal Architecture and will enable NASA to develop derived requirements in support of maturing CisLunar Habitation capabilities. This paper will describe the criteria definition process, workshop event, and resulting CisLunar Phase-1 Habitat Internal Architecture Design Criteria.
Network-centric decision architecture for financial or 1/f data models
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.; Massey, Stoney; Case, Carl T.; Songy, Claude G.
2002-12-01
This paper presents a decision architecture algorithm for training neural equation based networks to make autonomous multi-goal oriented, multi-class decisions. These architectures make decisions based on their individual goals and draw from the same network centric feature set. Traditionally, these architectures are comprised of neural networks that offer marginal performance due to lack of convergence of the training set. We present an approach for autonomously extracting sample points as I/O exemplars for generation of multi-branch, multi-node decision architectures populated by adaptively derived neural equations. To test the robustness of this architecture, open source data sets in the form of financial time series were used, requiring a three-class decision space analogous to the lethal, non-lethal, and clutter discrimination problem. This algorithm and the results of its application are presented here.
Le Marié, Chantal; Kirchgessner, Norbert; Marschall, Daniela; Walter, Achim; Hund, Andreas
2014-01-01
A quantitative characterization of root system architecture is currently being attempted for various reasons. Non-destructive, rapid analyses of root system architecture are difficult to perform due to the hidden nature of the root. Hence, improved methods to measure root architecture are necessary to support knowledge-based plant breeding and to analyse root growth responses to environmental changes. Here, we report on the development of a novel method to reveal growth and architecture of maize root systems. The method is based on the cultivation of different root types within several layers of two-dimensional, large (50 × 60 cm) plates (rhizoslides). A central plexiglass screen stabilizes the system and is covered on both sides with germination paper providing water and nutrients for the developing root, followed by a transparent cover foil to prevent the roots from falling dry and to stabilize the system. The embryonic roots grow hidden between a Plexiglas surface and paper, whereas crown roots grow visible between paper and the transparent cover. Long cultivation with good image quality up to 20 days (four fully developed leaves) was enhanced by suppressing fungi with a fungicide. Based on hyperspectral microscopy imaging, the quality of different germination papers was tested and three provided sufficient contrast to distinguish between roots and background (segmentation). Illumination, image acquisition and segmentation were optimised to facilitate efficient root image analysis. Several software packages were evaluated with regard to their precision and the time investment needed to measure root system architecture. The software 'Smart Root' allowed precise evaluation of root development but needed substantial user interference. 'GiaRoots' provided the best segmentation method for batch processing in combination with a good analysis of global root characteristics but overestimated root length due to thinning artefacts. 'WhinRhizo' offered the most rapid and precise evaluation of root lengths in diameter classes, but had weaknesses with respect to image segmentation and analysis of root system architecture. A new technique has been established for non-destructive root growth studies and quantification of architectural traits beyond seedlings stages. However, automation of the scanning process and appropriate software remains the bottleneck for high throughput analysis.
System design in an evolving system-of-systems architecture and concept of operations
NASA Astrophysics Data System (ADS)
Rovekamp, Roger N., Jr.
Proposals for space exploration architectures have increased in complexity and scope. Constituent systems (e.g., rovers, habitats, in-situ resource utilization facilities, transfer vehicles, etc) must meet the needs of these architectures by performing in multiple operational environments and across multiple phases of the architecture's evolution. This thesis proposes an approach for using system-of-systems engineering principles in conjunction with system design methods (e.g., Multi-objective optimization, genetic algorithms, etc) to create system design options that perform effectively at both the system and system-of-systems levels, across multiple concepts of operations, and over multiple architectural phases. The framework is presented by way of an application problem that investigates the design of power systems within a power sharing architecture for use in a human Lunar Surface Exploration Campaign. A computer model has been developed that uses candidate power grid distribution solutions for a notional lunar base. The agent-based model utilizes virtual control agents to manage the interactions of various exploration and infrastructure agents. The philosophy behind the model is based both on lunar power supply strategies proposed in literature, as well as on the author's own approaches for power distribution strategies of future lunar bases. In addition to proposing a framework for system design, further implications of system-of-systems engineering principles are briefly explored, specifically as they relate to producing more robust cross-cultural system-of-systems architecture solutions.
39 CFR 501.7 - Postage Evidencing System requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Information-Based Indicia and Security Architecture for Open IBI Postage Evidencing Systems or Performance Criteria for Information-Based Indicia and Security Architecture for Closed IBI Postage Metering Systems...
Space Communications Capability Roadmap Interim Review
NASA Technical Reports Server (NTRS)
Spearing, Robert; Regan, Michael
2005-01-01
Contents include the following: Identify the need for a robust communications and navigation architecture for the success of exploration and science missions. Describe an approach for specifying architecture alternatives and analyzing them. Establish a top level architecture based on a network of networks. Identify key enabling technologies. Synthesize capability, architecture and technology into an initial capability roadmap.
Design of an integrated airframe/propulsion control system architecture
NASA Technical Reports Server (NTRS)
Cohen, Gerald C.; Lee, C. William; Strickland, Michael J.; Torkelson, Thomas C.
1990-01-01
The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that uses both reliability and performance. A detailed account is given for the testing associated with a subset of the architecture and concludes with general observations of applying the methodology to the architecture.
Using Multimedia for Teaching Analysis in History of Modern Architecture.
ERIC Educational Resources Information Center
Perryman, Garry
This paper presents a case for the development and support of a computer-based interactive multimedia program for teaching analysis in community college architecture design programs. Analysis in architecture design is an extremely important strategy for the teaching of higher-order thinking skills, which senior schools of architecture look for in…
NASA Astrophysics Data System (ADS)
Hodijah, A.; Sundari, S.; Nugraha, A. C.
2018-05-01
As a Local Government Agencies who perform public services, General Government Office already has utilized Reporting Information System of Local Government Implementation (E-LPPD). However, E-LPPD has upgrade limitation for the integration processes that cannot accommodate General Government Offices’ needs in order to achieve Good Government Governance (GGG), while success stories of the ultimate goal of e-government implementation requires good governance practices. Currently, citizen demand public services as private sector do, which needs service innovation by utilizing the legacy system as a service based e-government implementation, while Service Oriented Architecture (SOA) to redefine a business processes as a set of IT enabled services and Enterprise Architecture from the Open Group Architecture Framework (TOGAF) as a comprehensive approach in redefining business processes as service innovation towards GGG. This paper takes a case study on Performance Evaluation of Local Government Implementation (EKPPD) system on General Government Office. The results show that TOGAF will guide the development of integrated business processes of EKPPD system that fits good governance practices to attain GGG with SOA methodology as technical approach.
Di Lucente, S; Luo, J; Centelles, R Pueyo; Rohit, A; Zou, S; Williams, K A; Dorren, H J S; Calabretta, N
2013-01-14
Data centers have to sustain the rapid growth of data traffic due to the increasing demand of bandwidth-hungry internet services. The current intra-data center fat tree topology causes communication bottlenecks in the server interaction process, power-hungry O-E-O conversions that limit the minimum latency and the power efficiency of these systems. In this paper we numerically and experimentally investigate an optical packet switch architecture with modular structure and highly distributed control that allow configuration times in the order of nanoseconds. Numerical results indicate that the candidate architecture scaled over 4000 ports, provides an overall throughput over 50 Tb/s and a packet loss rate below 10(-6) while assuring sub-microsecond latency. We present experimental results that demonstrate the feasibility of a 16x16 optical packet switch based on parallel 1x4 integrated optical cross-connect modules. Error-free operations can be achieved with 4 dB penalty while the overall energy consumption is of 66 pJ/b. Based on those results, we discuss feasibility to scale the architecture to a much larger port count.
A top-down manner-based DCNN architecture for semantic image segmentation.
Qiao, Kai; Chen, Jian; Wang, Linyuan; Zeng, Lei; Yan, Bin
2017-01-01
Given their powerful feature representation for recognition, deep convolutional neural networks (DCNNs) have been driving rapid advances in high-level computer vision tasks. However, their performance in semantic image segmentation is still not satisfactory. Based on the analysis of visual mechanism, we conclude that DCNNs in a bottom-up manner are not enough, because semantic image segmentation task requires not only recognition but also visual attention capability. In the study, superpixels containing visual attention information are introduced in a top-down manner, and an extensible architecture is proposed to improve the segmentation results of current DCNN-based methods. We employ the current state-of-the-art fully convolutional network (FCN) and FCN with conditional random field (DeepLab-CRF) as baselines to validate our architecture. Experimental results of the PASCAL VOC segmentation task qualitatively show that coarse edges and error segmentation results are well improved. We also quantitatively obtain about 2%-3% intersection over union (IOU) accuracy improvement on the PASCAL VOC 2011 and 2012 test sets.
Barczi, Jean-François; Rey, Hervé; Griffon, Sébastien; Jourdan, Christophe
2018-04-18
Many studies exist in the literature dealing with mathematical representations of root systems, categorized, for example, as pure structure description, partial derivative equations or functional-structural plant models. However, in these studies, root architecture modelling has seldom been carried out at the organ level with the inclusion of environmental influences that can be integrated into a whole plant characterization. We have conducted a multidisciplinary study on root systems including field observations, architectural analysis, and formal and mathematical modelling. This integrative and coherent approach leads to a generic model (DigR) and its software simulator. Architecture analysis applied to root systems helps at root type classification and architectural unit design for each species. Roots belonging to a particular type share dynamic and morphological characteristics which consist of topological and geometric features. The DigR simulator is integrated into the Xplo environment, with a user interface to input parameter values and make output ready for dynamic 3-D visualization, statistical analysis and saving to standard formats. DigR is simulated in a quasi-parallel computing algorithm and may be used either as a standalone tool or integrated into other simulation platforms. The software is open-source and free to download at http://amapstudio.cirad.fr/soft/xplo/download. DigR is based on three key points: (1) a root-system architectural analysis, (2) root type classification and modelling and (3) a restricted set of 23 root type parameters with flexible values indexed in terms of root position. Genericity and botanical accuracy of the model is demonstrated for growth, branching, mortality and reiteration processes, and for different root architectures. Plugin examples demonstrate the model's versatility at simulating plastic responses to environmental constraints. Outputs of the model include diverse root system structures such as tap-root, fasciculate, tuberous, nodulated and clustered root systems. DigR is based on plant architecture analysis which leads to specific root type classification and organization that are directly linked to field measurements. The open source simulator of the model has been included within a friendly user environment. DigR accuracy and versatility are demonstrated for growth simulations of complex root systems for both annual and perennial plants.
Control architecture for an adaptive electronically steerable flash lidar and associated instruments
NASA Astrophysics Data System (ADS)
Ruppert, Lyle; Craner, Jeremy; Harris, Timothy
2014-09-01
An Electronically Steerable Flash Lidar (ESFL), developed by Ball Aerospace & Technologies Corporation, allows realtime adaptive control of configuration and data-collection strategy based on recent or concurrent observations and changing situations. This paper reviews, at a high level, some of the algorithms and control architecture built into ESFL. Using ESFL as an example, it also discusses the merits and utility such adaptable instruments in Earth-system studies.
Low-Power Architectures for Large Radio Astronomy Correlators
NASA Technical Reports Server (NTRS)
D'Addario, Larry R.
2011-01-01
The architecture of a cross-correlator for a synthesis radio telescope with N greater than 1000 antennas is studied with the objective of minimizing power consumption. It is found that the optimum architecture minimizes memory operations, and this implies preference for a matrix structure over a pipeline structure and avoiding the use of memory banks as accumulation registers when sharing multiply-accumulators among baselines. A straw-man design for N = 2000 and bandwidth of 1 GHz, based on ASICs fabricated in a 90 nm CMOS process, is presented. The cross-correlator proper (excluding per-antenna processing) is estimated to consume less than 35 kW.
Simulator for concurrent processing data flow architectures
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.; Stoughton, John W.; Mielke, Roland R.
1992-01-01
A software simulator capability of simulating execution of an algorithm graph on a given system under the Algorithm to Architecture Mapping Model (ATAMM) rules is presented. ATAMM is capable of modeling the execution of large-grained algorithms on distributed data flow architectures. Investigating the behavior and determining the performance of an ATAMM based system requires the aid of software tools. The ATAMM Simulator presented is capable of determining the performance of a system without having to build a hardware prototype. Case studies are performed on four algorithms to demonstrate the capabilities of the ATAMM Simulator. Simulated results are shown to be comparable to the experimental results of the Advanced Development Model System.
An architecture for a brain-image database
NASA Technical Reports Server (NTRS)
Herskovits, E. H.
2000-01-01
The widespread availability of methods for noninvasive assessment of brain structure has enabled researchers to investigate neuroimaging correlates of normal aging, cerebrovascular disease, and other processes; we designate such studies as image-based clinical trials (IBCTs). We propose an architecture for a brain-image database, which integrates image processing and statistical operators, and thus supports the implementation and analysis of IBCTs. The implementation of this architecture is described and results from the analysis of image and clinical data from two IBCTs are presented. We expect that systems such as this will play a central role in the management and analysis of complex research data sets.
Flexible architecture of data acquisition firmware based on multi-behaviors finite state machine
NASA Astrophysics Data System (ADS)
Arpaia, Pasquale; Cimmino, Pasquale
2016-11-01
A flexible firmware architecture for different kinds of data acquisition systems, ranging from high-precision bench instruments to low-cost wireless transducers networks, is presented. The key component is a multi-behaviors finite state machine, easily configurable to both low- and high-performance requirements, to diverse operating systems, as well as to on-line and batch measurement algorithms. The proposed solution was validated experimentally on three case studies with data acquisition architectures: (i) concentrated, in a high-precision instrument for magnetic measurements at CERN, (ii) decentralized, for telemedicine remote monitoring of patients at home, and (iii) distributed, for remote monitoring of building's energy loss.
Status, Vision, and Challenges of an Intelligent Distributed Engine Control Architecture
NASA Technical Reports Server (NTRS)
Behbahani, Alireza; Culley, Dennis; Garg, Sanjay; Millar, Richard; Smith, Bert; Wood, Jim; Mahoney, Tim; Quinn, Ronald; Carpenter, Sheldon; Mailander, Bill;
2007-01-01
A Distributed Engine Control Working Group (DECWG) consisting of the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) and industry has been formed to examine the current and future requirements of propulsion engine systems. The scope of this study will include an assessment of the paradigm shift from centralized engine control architecture to an architecture based on distributed control utilizing open system standards. Included will be a description of the work begun in the 1990's, which continues today, followed by the identification of the remaining technical challenges which present barriers to on-engine distributed control.
Collaboration pathway(s) using new tools for optimizing operational climate monitoring from space
NASA Astrophysics Data System (ADS)
Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.
2014-10-01
Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the needs of decision makers, scientific investigators and global users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent (2014) rulebased decision engine modeling runs that targeted optimizing the intended NPOESS architecture, becomes a surrogate for global operational climate monitoring architecture(s). This rule-based systems tools provide valuable insight for Global climate architectures, through the comparison and evaluation of alternatives considered and the exhaustive range of trade space explored. A representative optimization of Global ECV's (essential climate variables) climate monitoring architecture(s) is explored and described in some detail with thoughts on appropriate rule-based valuations. The optimization tools(s) suggest and support global collaboration pathways and hopefully elicit responses from the audience and climate science shareholders.
An Architecture for Autonomous Rovers on Future Planetary Missions
NASA Astrophysics Data System (ADS)
Ocon, J.; Avilés, M.; Graziano, M.
2018-04-01
This paper proposes an architecture for autonomous planetary rovers. This architecture combines a set of characteristics required in this type of system: high level of abstraction, reactive event-based activity execution, and automous navigation.
Achille, Cristiana; Adami, Andrea; Chiarini, Silvia; Cremonesi, Stefano; Fassi, Francesco; Fregonese, Luigi; Taffurelli, Laura
2015-01-01
This paper examines the survey of tall buildings in an emergency context like in the case of post-seismic events. The after-earthquake survey has to guarantee time-savings, high precision and security during the operational stages. The main goal is to optimize the application of methodologies based on acquisition and automatic elaborations of photogrammetric data even with the use of Unmanned Aerial Vehicle (UAV) systems in order to provide fast and low cost operations. The suggested methods integrate new technologies with commonly used technologies like TLS and topographic acquisition. The value of the photogrammetric application is demonstrated by a test case, based on the comparison of acquisition, calibration and 3D modeling results in case of use of a laser scanner, metric camera and amateur reflex camera. The test would help us to demonstrate the efficiency of image based methods in the acquisition of complex architecture. The case study is Santa Barbara Bell tower in Mantua. The applied survey solution allows a complete 3D database of the complex architectural structure to be obtained for the extraction of all the information needed for significant intervention. This demonstrates the applicability of the photogrammetry using UAV for the survey of vertical structures, complex buildings and difficult accessible architectural parts, providing high precision results. PMID:26134108
Achille, Cristiana; Adami, Andrea; Chiarini, Silvia; Cremonesi, Stefano; Fassi, Francesco; Fregonese, Luigi; Taffurelli, Laura
2015-06-30
This paper examines the survey of tall buildings in an emergency context like in the case of post-seismic events. The after-earthquake survey has to guarantee time-savings, high precision and security during the operational stages. The main goal is to optimize the application of methodologies based on acquisition and automatic elaborations of photogrammetric data even with the use of Unmanned Aerial Vehicle (UAV) systems in order to provide fast and low cost operations. The suggested methods integrate new technologies with commonly used technologies like TLS and topographic acquisition. The value of the photogrammetric application is demonstrated by a test case, based on the comparison of acquisition, calibration and 3D modeling results in case of use of a laser scanner, metric camera and amateur reflex camera. The test would help us to demonstrate the efficiency of image based methods in the acquisition of complex architecture. The case study is Santa Barbara Bell tower in Mantua. The applied survey solution allows a complete 3D database of the complex architectural structure to be obtained for the extraction of all the information needed for significant intervention. This demonstrates the applicability of the photogrammetry using UAV for the survey of vertical structures, complex buildings and difficult accessible architectural parts, providing high precision results.
NASA Technical Reports Server (NTRS)
Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.
1999-01-01
In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.
Dai, Zhaohe; Liu, Luqi; Qi, Xiaoying; Kuang, Jun; Wei, Yueguang; Zhu, Hongwei; Zhang, Zhong
2016-01-01
Efficient assembly of carbon nanotube (CNT) based cellular solids with appropriate structure is the key to fully realize the potential of individual nanotubes in macroscopic architecture. In this work, the macroscopic CNT sponge consisting of randomly interconnected individual carbon nanotubes was grown by CVD, exhibiting a combination of super-elasticity, high strength to weight ratio, fatigue resistance, thermo-mechanical stability and electro-mechanical stability. To deeply understand such extraordinary mechanical performance compared to that of conventional cellular materials and other nanostructured cellular architectures, a thorough study on the response of this CNT-based spongy structure to compression is conducted based on classic elastic theory. The strong inter-tube bonding between neighboring nanotubes is examined, believed to play a critical role in the reversible deformation such as bending and buckling without structural collapse under compression. Based on in-situ scanning electron microscopy observation and nanotube deformation analysis, structural evolution (completely elastic bending-buckling transition) of the carbon nanotubes sponges to deformation is proposed to clarify their mechanical properties and nonlinear electromechanical coupling behavior. PMID:26732143
Code of Federal Regulations, 2012 CFR
2012-10-01
...: The preceding rules of § 25.254 are based on cdma2000 and IS-95 system architecture. To the extent that a Big LEO MSS licensee is able to demonstrate that the use of different system architectures would... section, an MSS licensee is permitted to apply for ATC authorization based on another system architecture...
Code of Federal Regulations, 2011 CFR
2011-10-01
...: The preceding rules of § 25.254 are based on cdma2000 and IS-95 system architecture. To the extent that a Big LEO MSS licensee is able to demonstrate that the use of different system architectures would... section, an MSS licensee is permitted to apply for ATC authorization based on another system architecture...
NASA Astrophysics Data System (ADS)
Dewi, Cut; Nopera Rauzi, Era
2018-05-01
This paper discusses the role of architectural heritage as a tool for resilience in a community after a surpassing disaster. It argues that architectural heritage is not merely a passive victim needing to be rescued; rather it is also an active agent in providing resilience for survivors. It is evidence in the ways it acts as a signifier of collective memories and place identities, and a place to seek refuge in emergency time and to decide central decision during the reconstruction process. This paper explores several theories related to architectural heritage in post-disaster context and juxtaposes them in a case study of Banda Aceh after the 2004 Tsunami Disaster. The paper is based on a six-month anthropological fieldwork in 2012 in Banda Aceh after the Tsunami Disaster. During the fieldwork, 166 respondents were interviewed to gain extensive insight into the ways architecture might play a role in post-disaster reconstruction.
Weighted Components of i-Government Enterprise Architecture
NASA Astrophysics Data System (ADS)
Budiardjo, E. K.; Firmansyah, G.; Hasibuan, Z. A.
2017-01-01
Lack of government performance, among others due to the lack of coordination and communication among government agencies. Whilst, Enterprise Architecture (EA) in the government can be use as a strategic planning tool to improve productivity, efficiency, and effectivity. However, the existence components of Government Enterprise Architecture (GEA) do not show level of importance, that cause difficulty in implementing good e-government for good governance. This study is to explore the weight of GEA components using Principal Component Analysis (PCA) in order to discovered an inherent structure of e-government. The results show that IT governance component of GEA play a major role in the GEA. The rest of components that consist of e-government system, e-government regulation, e-government management, and application key operational, contributed more or less the same. Beside that GEA from other countries analyzes using comparative base on comon enterprise architecture component. These weighted components use to construct i-Government enterprise architecture. and show the relative importance of component in order to established priorities in developing e-government.
Reconfigurable firmware-defined radios synthesized from standard digital logic cells
NASA Astrophysics Data System (ADS)
Faisal, Muhammad; Park, Youngmin; Wentzloff, David D.
2011-06-01
This paper presents recent work on reconfigurable all-digital radio architectures. We leverage the flexibility and scalability of synthesized digital cells to construct reconfigurable radio architectures that consume significantly less power than a software defined radio implementing similar architectures. We present two prototypes of such architectures that can receive and demodulate FM and FRS band signals. Moreover, a radio architecture based on a reconfigurable alldigital phase-locked loop for coherent demodulation is presented.
Deep Space Network information system architecture study
NASA Technical Reports Server (NTRS)
Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.
1992-01-01
The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.
NASA Astrophysics Data System (ADS)
Ward, Eric D.; Webb, Ryan R.; deWeck, Olivier L.
2016-11-01
There is a general consensus that Mars is the next high priority destination for human space exploration. There has been no lack of analysis and recommendations for human missions to Mars, including, for example, the NASA Design Reference Architectures and the Mars Direct proposal. These studies and others usually employ the traditional approach of selecting a baseline mission architecture and running individual trade studies. However, this can cause blind spots, as not all combinations are explored. An alternative approach is to holistically analyze the entire architectural trade-space such that all of the possible system interactions are identified and measured. In such a framework, an optimal design is sought by minimizing cost for maximal value. While cost is relatively easy to model for manned spaceflight, value is more difficult to define. In our efforts to develop a surface base architecture for the MIT Mars 2040 project, we explored several methods for quantifying value, including technology development benefits, challenge, and various metrics for measuring scientific return. We developed a science multi-score method that combines astrobiology and geologic research goals, which is weighted by the crew-member hours that can be used for scientific research rather than other activities.
NASA Astrophysics Data System (ADS)
Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young
2016-07-01
Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young
2016-07-28
Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young
2016-01-01
Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes. PMID:27465296
An architecture for real-time vision processing
NASA Technical Reports Server (NTRS)
Chien, Chiun-Hong
1994-01-01
To study the feasibility of developing an architecture for real time vision processing, a task queue server and parallel algorithms for two vision operations were designed and implemented on an i860-based Mercury Computing System 860VS array processor. The proposed architecture treats each vision function as a task or set of tasks which may be recursively divided into subtasks and processed by multiple processors coordinated by a task queue server accessible by all processors. Each idle processor subsequently fetches a task and associated data from the task queue server for processing and posts the result to shared memory for later use. Load balancing can be carried out within the processing system without the requirement for a centralized controller. The author concludes that real time vision processing cannot be achieved without both sequential and parallel vision algorithms and a good parallel vision architecture.
ERIC Educational Resources Information Center
Yuping, Cai; Shuang, Liang
2017-01-01
The traditional undergraduate education mode of architecture has been unable to adapt to the rapid development of society. Taking the junior professional course of architecture--the preliminary course of architectural design as an example, this paper analyzes the problems existing in the current professional courses of lower grades, puts forward…
NASA Astrophysics Data System (ADS)
Hegde, Ganapathi; Vaya, Pukhraj
2013-10-01
This article presents a parallel architecture for 3-D discrete wavelet transform (3-DDWT). The proposed design is based on the 1-D pipelined lifting scheme. The architecture is fully scalable beyond the present coherent Daubechies filter bank (9, 7). This 3-DDWT architecture has advantages such as no group of pictures restriction and reduced memory referencing. It offers low power consumption, low latency and high throughput. The computing technique is based on the concept that lifting scheme minimises the storage requirement. The application specific integrated circuit implementation of the proposed architecture is done by synthesising it using 65 nm Taiwan Semiconductor Manufacturing Company standard cell library. It offers a speed of 486 MHz with a power consumption of 2.56 mW. This architecture is suitable for real-time video compression even with large frame dimensions.
Automatic control of a negative ion source
NASA Astrophysics Data System (ADS)
Saadatmand, K.; Sredniawski, J.; Solensten, L.
1989-04-01
A CAMAC based control architecture is devised for a Berkeley-type H - volume ion source [1]. The architecture employs three 80386 TM PCs. One PC is dedicated to control and monitoring of source operation. The other PC functions with digitizers to provide data acquisition of waveforms. The third PC is used for off-line analysis. Initially, operation of the source was put under remote computer control (supervisory). This was followed by development of an automated startup procedure. Finally, a study of the physics of operation is now underway to establish a data base from which automatic beam optimization can be derived.
Updated Mars Mission Architectures Featuring Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Rodriguez, Mitchell A.; Percy, Thomas K.
2017-01-01
Nuclear thermal propulsion (NTP) can potentially enable routine human exploration of Mars and the solar system. By using nuclear fission instead of a chemical combustion process, and using hydrogen as the propellant, NTP systems promise rocket efficiencies roughly twice that of the best chemical rocket engines currently available. The most recent major Mars architecture study featuring NTP was the Design Reference Architecture 5.0 (DRA 5.0), performed in 2009. Currently, the predominant transportation options being considered are solar electric propulsion (SEP) and chemical propulsion; however, given NTP's capabilities, an updated architectural analysis is needed. This paper provides a top-level overview of several different architectures featuring updated NTP performance data. New architectures presented include a proposed update to the DRA 5.0 as well as an investigation of architectures based on the current Evolvable Mars Campaign, which is the focus of NASA's current analyses for the Journey to Mars. Architectures investigated leverage the latest information relating to NTP performance and design considerations and address new support elements not available at the time of DRA 5.0, most notably the Orion crew module and the Space Launch System (SLS). The paper provides a top level quantitative comparison of key performance metrics as well as a qualitative discussion of improvements and key challenges still to be addressed. Preliminary results indicate that the updated NTP architectures can significantly reduce the campaign mass and subsequently the costs for assembly and number of launches.
NASA Astrophysics Data System (ADS)
Rashid, Md. M.; Rahaman, H.
2013-07-01
This study embarked upon a premise that considers architecture of building as a dynamic phenomenon. A building from its conception is susceptible to change due to various reasons. An historical building that is several hundred years old must have undergone through changes due to political, social, religious and most importantly functional reasons. Hence capturing building and its dynamic evolution is necessary to appreciate its architecture as well as its heritage value. Whereas the conventional method of fact based historiography only captures the building in particular moment. It makes architectural historians to become perplexed over to which particular moment to be documented. It is a great challenge for the architectural historians to bring back these dynamic characters of the building that are mostly inconspicuous in nature from this point of time. In this situation the historical discourse also remains elusive and blurred. The idea of 4d capturing comes in front in this scenario. Current research would venture into this emerging idea to record the architecture of the early period. This paper highlights the need for a flexible tool to capture this dynamic character of the building. By citing the case study of the 7th century Buddhist Monastery in Bengal, this paper thus argues for the need of capturing the narrative of a historical building than the facts to get a complete picture of its architecture. This study aims at capturing the narrative of Sompur Mahavihara, the UNESCO World Heritage site in Bangladesh, which is currently in ruinous condition. However, it's few hundred years life suggests that as architecture it was subject to change due to different reasons, mainly political, religious and rituals. Being a monument that belongs to the flourishing phase of a society, traditionally this monastery architecture certainly played a role as a stage for religious and political pageantry as well as different religious performances. As architecture it works as complex process of interaction of different layers of ideas, agendas and authorship through time. This paper would further explore different tools for historians to capturing this process of interaction and preserving/ conserving the narrative of this building using virtual modelling.
Rainer, Alberto; Giannitelli, Sara M; Accoto, Dino; De Porcellinis, Stefano; Guglielmelli, Eugenio; Trombetta, Marcella
2012-04-01
Computer-Aided Tissue Engineering (CATE) is based on a set of additive manufacturing techniques for the fabrication of patient-specific scaffolds, with geometries obtained from medical imaging. One of the main issues regarding the application of CATE concerns the definition of the internal architecture of the fabricated scaffolds, which, in turn, influences their porosity and mechanical strength. The present study envisages an innovative strategy for the fabrication of highly optimized structures, based on the a priori finite element analysis (FEA) of the physiological load set at the implant site. The resulting scaffold micro-architecture does not follow a regular geometrical pattern; on the contrary, it is based on the results of a numerical study. The algorithm was applied to a solid free-form fabrication process, using poly(ε-caprolactone) as the starting material for the processing of additive manufactured structures. A simple and intuitive geometry was chosen as a proof-of-principle application, on which finite element simulations and mechanical testing were performed. Then, to demonstrate the capability in creating mechanically biomimetic structures, the proximal femur subjected to physiological loading conditions was considered and a construct fitting a femur head portion was designed and manufactured.
A multi-agent architecture for geosimulation of moving agents
NASA Astrophysics Data System (ADS)
Vahidnia, Mohammad H.; Alesheikh, Ali A.; Alavipanah, Seyed Kazem
2015-10-01
In this paper, a novel architecture is proposed in which an axiomatic derivation system in the form of first-order logic facilitates declarative explanation and spatial reasoning. Simulation of environmental perception and interaction between autonomous agents is designed with a geographic belief-desire-intention and a request-inform-query model. The architecture has a complementary quantitative component that supports collaborative planning based on the concept of equilibrium and game theory. This new architecture presents a departure from current best practices geographic agent-based modelling. Implementation tasks are discussed in some detail, as well as scenarios for fleet management and disaster management.
Evaluation of an Outer Loop Retrofit Architecture for Intelligent Turbofan Engine Thrust Control
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Sowers, T. Shane
2006-01-01
The thrust control capability of a retrofit architecture for intelligent turbofan engine control and diagnostics is evaluated. The focus of the study is on the portion of the hierarchical architecture that performs thrust estimation and outer loop thrust control. The inner loop controls fan speed so the outer loop automatically adjusts the engine's fan speed command to maintain thrust at the desired level, based on pilot input, even as the engine deteriorates with use. The thrust estimation accuracy is assessed under nominal and deteriorated conditions at multiple operating points, and the closed loop thrust control performance is studied, all in a complex real-time nonlinear turbofan engine simulation test bed. The estimation capability, thrust response, and robustness to uncertainty in the form of engine degradation are evaluated.
Finite element study of scaffold architecture design and culture conditions for tissue engineering.
Olivares, Andy L; Marsal, Elia; Planell, Josep A; Lacroix, Damien
2009-10-01
Tissue engineering scaffolds provide temporary mechanical support for tissue regeneration and transfer global mechanical load to mechanical stimuli to cells through its architecture. In this study the interactions between scaffold pore morphology, mechanical stimuli developed at the cell microscopic level, and culture conditions applied at the macroscopic scale are studied on two regular scaffold structures. Gyroid and hexagonal scaffolds of 55% and 70% porosity were modeled in a finite element analysis and were submitted to an inlet fluid flow or compressive strain. A mechanoregulation theory based on scaffold shear strain and fluid shear stress was applied for determining the influence of each structures on the mechanical stimuli on initial conditions. Results indicate that the distribution of shear stress induced by fluid perfusion is very dependent on pore distribution within the scaffold. Gyroid architectures provide a better accessibility of the fluid than hexagonal structures. Based on the mechanoregulation theory, the differentiation process in these structures was more sensitive to inlet fluid flow than axial strain of the scaffold. This study provides a computational approach to determine the mechanical stimuli at the cellular level when cells are cultured in a bioreactor and to relate mechanical stimuli with cell differentiation.
Tile-based rigidization surface parametric design study
NASA Astrophysics Data System (ADS)
Giner Munoz, Laura; Luntz, Jonathan; Brei, Diann; Kim, Wonhee
2018-03-01
Inflatable technologies have proven useful in consumer goods as well as in more recent applications including civil structures, aerospace, medical, and robotics. However, inflatable technologies are typically lacking in their ability to provide rigid structural support. Particle jamming improves upon this by providing structures which are normally flexible and moldable but become rigid when air is removed. Because these are based on an airtight bladder filled with loose particles, they always occupy the full volume of its rigid state, even when not rigidized. More recent developments in layer jamming have created thin, compact rigidizing surfaces replacing the loose volume of particles with thinly layered surface materials. Work in this area has been applied to several specific applications with positive results but have not generally provided the broader understanding of the rigidization performance as a function of design parameters required for directly adapting layer rigidization technology to other applications. This paper presents a parametric design study of a new layer jamming vacuum rigidization architecture: tile-based vacuum rigidization. This form of rigidization is based on layers of tiles contained within a thin vacuum bladder which can be bent, rolled, or otherwise compactly stowed, but when deployed flat, can be vacuumed and form a large, flat, rigid plate capable of supporting large forces both localized and distributed over the surface. The general architecture and operation detailing rigidization and compliance mechanisms is introduced. To quantitatively characterize the rigidization behavior, prototypes rigidization surfaces are fabricated and an experimental technique is developed based on a 3-point bending test. Performance evaluation metrics are developed to describe the stiffness, load-bearing capacity, and internal slippage of tested prototypes. A set of experimental parametric studies are performed to better understand the impact of variations in geometric design parameters, operating parameters, and architectural variations on the performance evaluation metrics. The results of this study bring insight into the rigidization behavior of this architecture, and provide design guidelines and expose tradeoffs to form the basis for the design of tile-based rigidization surfaces for a wide range of applications.
Detailed Primitive-Based 3d Modeling of Architectural Elements
NASA Astrophysics Data System (ADS)
Remondino, F.; Lo Buglio, D.; Nony, N.; De Luca, L.
2012-07-01
The article describes a pipeline, based on image-data, for the 3D reconstruction of building façades or architectural elements and the successive modeling using geometric primitives. The approach overcome some existing problems in modeling architectural elements and deliver efficient-in-size reality-based textured 3D models useful for metric applications. For the 3D reconstruction, an opensource pipeline developed within the TAPENADE project is employed. In the successive modeling steps, the user manually selects an area containing an architectural element (capital, column, bas-relief, window tympanum, etc.) and then the procedure fits geometric primitives and computes disparity and displacement maps in order to tie visual and geometric information together in a light but detailed 3D model. Examples are reported and commented.
Controllable 3D architectures of aligned carbon nanotube arrays by multi-step processes
NASA Astrophysics Data System (ADS)
Huang, Shaoming
2003-06-01
An effective way to fabricate large area three-dimensional (3D) aligned CNTs pattern based on pyrolysis of iron(II) phthalocyanine (FePc) by two-step processes is reported. The controllable generation of different lengths and selective growth of the aligned CNT arrays on metal-patterned (e.g., Ag and Au) substrate are the bases for generating such 3D aligned CNTs architectures. By controlling experimental conditions 3D aligned CNT arrays with different lengths/densities and morphologies/structures as well as multi-layered architectures can be fabricated in large scale by multi-step pyrolysis of FePc. These 3D architectures could have interesting properties and be applied for developing novel nanotube-based devices.
Coordinating teams of autonomous vehicles: an architectural perspective
NASA Astrophysics Data System (ADS)
Czichon, Cary; Peterson, Robert W.; Mettala, Erik G.; Vondrak, Ivo
2005-05-01
In defense-related robotics research, a mission level integration gap exists between mission tasks (tactical) performed by ground, sea, or air applications and elementary behaviors enacted by processing, communications, sensors, and weaponry resources (platform specific). The gap spans ensemble (heterogeneous team) behaviors, automatic MOE/MOP tracking, and tactical task modeling/simulation for virtual and mixed teams comprised of robotic and human combatants. This study surveys robotic system architectures, compares approaches for navigating problem/state spaces by autonomous systems, describes an architecture for an integrated, repository-based modeling, simulation, and execution environment, and outlines a multi-tiered scheme for robotic behavior components that is agent-based, platform-independent, and extendable via plug-ins. Tools for this integrated environment, along with a distributed agent framework for collaborative task performance are being developed by a U.S. Army funded SBIR project (RDECOM Contract N61339-04-C-0005).
A Low Cost VLSI Architecture for Spike Sorting Based on Feature Extraction with Peak Search.
Chang, Yuan-Jyun; Hwang, Wen-Jyi; Chen, Chih-Chang
2016-12-07
The goal of this paper is to present a novel VLSI architecture for spike sorting with high classification accuracy, low area costs and low power consumption. A novel feature extraction algorithm with low computational complexities is proposed for the design of the architecture. In the feature extraction algorithm, a spike is separated into two portions based on its peak value. The area of each portion is then used as a feature. The algorithm is simple to implement and less susceptible to noise interference. Based on the algorithm, a novel architecture capable of identifying peak values and computing spike areas concurrently is proposed. To further accelerate the computation, a spike can be divided into a number of segments for the local feature computation. The local features are subsequently merged with the global ones by a simple hardware circuit. The architecture can also be easily operated in conjunction with the circuits for commonly-used spike detection algorithms, such as the Non-linear Energy Operator (NEO). The architecture has been implemented by an Application-Specific Integrated Circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture is well suited for real-time multi-channel spike detection and feature extraction requiring low hardware area costs, low power consumption and high classification accuracy.
An architecture for rule based system explanation
NASA Technical Reports Server (NTRS)
Fennel, T. R.; Johannes, James D.
1990-01-01
A system architecture is presented which incorporate both graphics and text into explanations provided by rule based expert systems. This architecture facilitates explanation of the knowledge base content, the control strategies employed by the system, and the conclusions made by the system. The suggested approach combines hypermedia and inference engine capabilities. Advantages include: closer integration of user interface, explanation system, and knowledge base; the ability to embed links to deeper knowledge underlying the compiled knowledge used in the knowledge base; and allowing for more direct control of explanation depth and duration by the user. User models are suggested to control the type, amount, and order of information presented.
DOT National Transportation Integrated Search
1999-09-01
This is one of seven studies exploring processes for developing Intelligent Transportation Systems (ITS) architectures for regional, statewide, or commercial vehicle applications. This study was prepared for a broad-based, non-technical audience. The...
Design of Distributed Engine Control Systems with Uncertain Delay.
Liu, Xiaofeng; Li, Yanxi; Sun, Xu
Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.
Design of Distributed Engine Control Systems with Uncertain Delay
Li, Yanxi; Sun, Xu
2016-01-01
Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method. PMID:27669005
An activity-based methodology for operations cost analysis
NASA Technical Reports Server (NTRS)
Korsmeyer, David; Bilby, Curt; Frizzell, R. A.
1991-01-01
This report describes an activity-based cost estimation method, proposed for the Space Exploration Initiative (SEI), as an alternative to NASA's traditional mass-based cost estimation method. A case study demonstrates how the activity-based cost estimation technique can be used to identify the operations that have a significant impact on costs over the life cycle of the SEI. The case study yielded an operations cost of $101 billion for the 20-year span of the lunar surface operations for the Option 5a program architecture. In addition, the results indicated that the support and training costs for the missions were the greatest contributors to the annual cost estimates. A cost-sensitivity analysis of the cultural and architectural drivers determined that the length of training and the amount of support associated with the ground support personnel for mission activities are the most significant cost contributors.
Wang, Ming; Cribb, Bronwen; Clarke, Anthony R.; Hanan, Jim
2016-01-01
Computational modelling of mechanisms underlying processes in the real world can be of great value in understanding complex biological behaviours. Uptake in general biology and ecology has been rapid. However, it often requires specific data sets that are overly costly in time and resources to collect. The aim of the current study was to test whether a generic behavioural ecology model constructed using published data could give realistic outputs for individual species. An individual-based model was developed using the Pattern-Oriented Modelling (POM) strategy and protocol, based on behavioural rules associated with insect movement choices. Frugivorous Tephritidae (fruit flies) were chosen because of economic significance in global agriculture and the multiple published data sets available for a range of species. The Queensland fruit fly (Qfly), Bactrocera tryoni, was identified as a suitable individual species for testing. Plant canopies with modified architecture were used to run predictive simulations. A field study was then conducted to validate our model predictions on how plant architecture affects fruit flies’ behaviours. Characteristics of plant architecture such as different shapes, e.g., closed-canopy and vase-shaped, affected fly movement patterns and time spent on host fruit. The number of visits to host fruit also differed between the edge and centre in closed-canopy plants. Compared to plant architecture, host fruit has less contribution to effects on flies’ movement patterns. The results from this model, combined with our field study and published empirical data suggest that placing fly traps in the upper canopy at the edge should work best. Such a modelling approach allows rapid testing of ideas about organismal interactions with environmental substrates in silico rather than in vivo, to generate new perspectives. Using published data provides a saving in time and resources. Adjustments for specific questions can be achieved by refinement of parameters based on targeted experiments. PMID:26999285
Handsfield, Geoffrey G; Bolsterlee, Bart; Inouye, Joshua M; Herbert, Robert D; Besier, Thor F; Fernandez, Justin W
2017-12-01
Determination of skeletal muscle architecture is important for accurately modeling muscle behavior. Current methods for 3D muscle architecture determination can be costly and time-consuming, making them prohibitive for clinical or modeling applications. Computational approaches such as Laplacian flow simulations can estimate muscle fascicle orientation based on muscle shape and aponeurosis location. The accuracy of this approach is unknown, however, since it has not been validated against other standards for muscle architecture determination. In this study, muscle architectures from the Laplacian approach were compared to those determined from diffusion tensor imaging in eight adult medial gastrocnemius muscles. The datasets were subdivided into training and validation sets, and computational fluid dynamics software was used to conduct Laplacian simulations. In training sets, inputs of muscle geometry, aponeurosis location, and geometric flow guides resulted in good agreement between methods. Application of the method to validation sets showed no significant differences in pennation angle (mean difference [Formula: see text] or fascicle length (mean difference 0.9 mm). Laplacian simulation was thus effective at predicting gastrocnemius muscle architectures in healthy volunteers using imaging-derived muscle shape and aponeurosis locations. This method may serve as a tool for determining muscle architecture in silico and as a complement to other approaches.
Li, Cai; Lowe, Robert; Ziemke, Tom
2014-01-01
In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modeling objective is split into two: baseline motion modeling and dynamics adaptation. Baseline motion modeling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a "reshaping" function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the baseline motion) and dynamic motor primitives (DMPs, a model with universal "reshaping" functions). In this article, we use this architecture with the actor-critic algorithms for finding a good "reshaping" function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: (1) learning to crawl on a humanoid and, (2) learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient) are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion.
Li, Cai; Lowe, Robert; Ziemke, Tom
2014-01-01
In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modeling objective is split into two: baseline motion modeling and dynamics adaptation. Baseline motion modeling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a “reshaping” function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the baseline motion) and dynamic motor primitives (DMPs, a model with universal “reshaping” functions). In this article, we use this architecture with the actor-critic algorithms for finding a good “reshaping” function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: (1) learning to crawl on a humanoid and, (2) learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient) are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion. PMID:25324773
Multi-Disciplinary Techniques for Understanding Time-Varying Space-Based Imagery.
1985-05-10
problem, and I V WY" 3 discuss the impgrtage of this work to Air Force technology and to related Air Force programs. Section 1.5 provides a summary of...development of new algorithms and their realization in a hybrid optical/digital architecture. However, devices and architectures being developed in related ...and relate these representntions to object and surface contour properties of the scene. The techniques studied included Probabilistic Graph Matching
An Architecture for Case-Based Learning
ERIC Educational Resources Information Center
Cifuentes, Laurent; Mercer, Rene; Alverez, Omar; Bettati, Riccardo
2010-01-01
We report on the design, development, implementation, and evaluation of a case-based instructional environment designed for learning network engineering skills for cybersecurity. We describe the societal problem addressed, the theory-based solution, and the preliminary testing and evaluation of that solution. We identify an architecture for…
A CSP-Based Agent Modeling Framework for the Cougaar Agent-Based Architecture
NASA Technical Reports Server (NTRS)
Gracanin, Denis; Singh, H. Lally; Eltoweissy, Mohamed; Hinchey, Michael G.; Bohner, Shawn A.
2005-01-01
Cognitive Agent Architecture (Cougaar) is a Java-based architecture for large-scale distributed agent-based applications. A Cougaar agent is an autonomous software entity with behaviors that represent a real-world entity (e.g., a business process). A Cougaar-based Model Driven Architecture approach, currently under development, uses a description of system's functionality (requirements) to automatically implement the system in Cougaar. The Communicating Sequential Processes (CSP) formalism is used for the formal validation of the generated system. Two main agent components, a blackboard and a plugin, are modeled as CSP processes. A set of channels represents communications between the blackboard and individual plugins. The blackboard is represented as a CSP process that communicates with every agent in the collection. The developed CSP-based Cougaar modeling framework provides a starting point for a more complete formal verification of the automatically generated Cougaar code. Currently it is used to verify the behavior of an individual agent in terms of CSP properties and to analyze the corresponding Cougaar society.
Software architecture of INO340 telescope control system
NASA Astrophysics Data System (ADS)
Ravanmehr, Reza; Khosroshahi, Habib
2016-08-01
The software architecture plays an important role in distributed control system of astronomical projects because many subsystems and components must work together in a consistent and reliable way. We have utilized a customized architecture design approach based on "4+1 view model" in order to design INOCS software architecture. In this paper, after reviewing the top level INOCS architecture, we present the software architecture model of INOCS inspired by "4+1 model", for this purpose we provide logical, process, development, physical, and scenario views of our architecture using different UML diagrams and other illustrative visual charts. Each view presents INOCS software architecture from a different perspective. We finish the paper by science data operation of INO340 and the concluding remarks.
Robotic Form-Finding and Construction Based on the Architectural Projection Logic
NASA Astrophysics Data System (ADS)
Zexin, Sun; Mei, Hongyuan
2017-06-01
In this article we analyze the relationship between the architectural drawings and form-finding, indicate that architects should reuse and redefine the traditional architectural drawings as a from-finding tool. Explain the projection systems and analyze how these systems affected the architectural design. Use robotic arm to do the experiment and establish a cylindrical projection form-finding system.
2012-06-01
MISP) COMPLIANT ARCHITECTURE WHITE SANDS MISSILE RANGE REAGAN TEST SITE YUMA PROVING GROUND DUGWAY PROVING GROUND ABERDEEN TEST CENTER...DIGITAL MOTION IMAGERY COMPRESSION BEST PRACTICES GUIDE – A MOTION IMAGERY STANDARDS PROFILE (MISP) COMPLIANT ARCHITECTURE ...delivery, and archival purposes. These practices are based on a Motion Imagery Standards Profile (MISP) compliant architecture , which has been defined
Defense Against National Vulnerabilities in Public Data
2017-02-28
ingestion of subscription based precision data sources ( Business Intelligence Databases, Monster, others). Flexible data architecture that allows for... Architecture Objective: Develop a data acquisition architecture that can successfully ingest 1,000,000 records per hour from up to 100 different open...data sources. Developed and operate a data acquisition architecture comprised of the four following major components: Robust website
The System of Systems Architecture Feasibility Assessment Model
2016-06-01
OF SYSTEMS ARCHITECTURE FEASIBILITY ASSESSMENT MODEL by Stephen E. Gillespie June 2016 Dissertation Supervisor Eugene Paulo THIS PAGE...Dissertation 4. TITLE AND SUBTITLE THE SYSTEM OF SYSTEMS ARCHITECTURE FEASIBILITY ASSESSMENT MODEL 5. FUNDING NUMBERS 6. AUTHOR(S) Stephen E...SoS architecture feasibility assessment model (SoS-AFAM). Together, these extend current model- based systems engineering (MBSE) and SoS engineering
NASA Constellation Distributed Simulation Middleware Trade Study
NASA Technical Reports Server (NTRS)
Hasan, David; Bowman, James D.; Fisher, Nancy; Cutts, Dannie; Cures, Edwin Z.
2008-01-01
This paper presents the results of a trade study designed to assess three distributed simulation middleware technologies for support of the NASA Constellation Distributed Space Exploration Simulation (DSES) project and Test and Verification Distributed System Integration Laboratory (DSIL). The technologies are the High Level Architecture (HLA), the Test and Training Enabling Architecture (TENA), and an XML-based variant of Distributed Interactive Simulation (DIS-XML) coupled with the Extensible Messaging and Presence Protocol (XMPP). According to the criteria and weights determined in this study, HLA scores better than the other two for DSES as well as the DSIL.
ERIC Educational Resources Information Center
Howe, Richard D.; And Others
This volume provides comparative data for faculty salaries in public and private colleges, based on an annual survey of over 700 colleges and universities. Data cover the following 15 disciplines: accounting, agribusiness and agricultural production, anthropology, architecture and environmental design, area and ethnic studies, audiology and speech…
Wang, Zhihui; Kiryu, Tohru
2006-04-01
Since machine-based exercise still uses local facilities, it is affected by time and place. We designed a web-based system architecture based on the Java 2 Enterprise Edition that can accomplish continuously supported machine-based exercise. In this system, exercise programs and machines are loosely coupled and dynamically integrated on the site of exercise via the Internet. We then extended the conventional health promotion model, which contains three types of players (users, exercise trainers, and manufacturers), by adding a new player: exercise program creators. Moreover, we developed a self-describing strategy to accommodate a variety of exercise programs and provide ease of use to users on the web. We illustrate our novel design with examples taken from our feasibility study on a web-based cycle ergometer exercise system. A biosignal-based workload control approach was introduced to ensure that users performed appropriate exercise alone.
Use of Daylight and Aesthetic Image of Glass Facades in Contemporary Buildings
NASA Astrophysics Data System (ADS)
Roginska-Niesluchowska, Malgorzata
2017-10-01
The paper deals with the architecture of contemporary buildings in respect to their aesthetic image created by the use of natural light. Sustainability is regarded as a governing principle of contemporary architecture, where daylighting is an important factor as it affects energy consumption and environmental quality of the space inside a building. Environmental awareness of architecture, however, involves a much wider and more holistic view of design. The quality of sustainable architecture can be considered in its aesthetic and cultural context with regard to landscape, local tradition, and connection to the surrounding world. This approach is associated with the social mission of architecture, i.e. providing appropriate space for living, facilitating social relations and having positive impact on people. The purpose of the research is to study the use of daylight in creating an aesthetic image of contemporary buildings. The author focuses mainly on public buildings largely dedicated to art and culture which satisfy high functional and aesthetic requirements. The paper examines the genesis and current trends in the aesthetic image of modern buildings which use daylight as the main design strategy, focusing on the issues of glass facades. The main attention is given to the shaping of representative public areas which feature the glass facades. The research has been based on a case study, critical review of literature review, observation and synthesis. The study identifies and classifies different approaches to using daylight in these areas and highlights changes in the aesthetics of architecture made of glass, which uses daylight as the main design strategy. These changes are primarily caused by the development and spreading of new glazing materials and the use of digital method of design. The influence of light and its mode depends on glass materials but also on the local conditions of the site, and has a significant impact on the relationship between architecture and its natural and cultural environment. The subordination of architectural concept to the idea of natural lighting builds the relationship between form, function and the context of architecture, and is expressed in its structural, material and spatial properties, and in the resulting aesthetic order. Search for new architectural solutions is defined by local topographical, climatic, biological and cultural conditions. The architecture subordinate to the conception of contribution of light corresponds to the aesthetic aspirations of sustainability.
An Introduction to Message-Bus Architectures for Space Systems
NASA Technical Reports Server (NTRS)
Smith, Danford; Gregory, Brian
2005-01-01
This course presents technical and programmatic information on the development of message-based architectures for space mission ground and flight software systems. Message-based architecture approaches provide many significant advantages over the more traditional socket-based one-of-a-kind integrated system development approaches. The course provides an overview of publish/subscribe concepts, the use of common isolation layer API's, approaches to message standardization, and other technical topics. Several examples of currently operational systems are discussed and possible changes to the system discussed and time for questions and answers will be provided.
Evolutionary Local Search of Fuzzy Rules through a novel Neuro-Fuzzy encoding method.
Carrascal, A; Manrique, D; Ríos, J; Rossi, C
2003-01-01
This paper proposes a new approach for constructing fuzzy knowledge bases using evolutionary methods. We have designed a genetic algorithm that automatically builds neuro-fuzzy architectures based on a new indirect encoding method. The neuro-fuzzy architecture represents the fuzzy knowledge base that solves a given problem; the search for this architecture takes advantage of a local search procedure that improves the chromosomes at each generation. Experiments conducted both on artificially generated and real world problems confirm the effectiveness of the proposed approach.
Architectures for wrist-worn energy harvesting
NASA Astrophysics Data System (ADS)
Rantz, R.; Halim, M. A.; Xue, T.; Zhang, Q.; Gu, L.; Yang, K.; Roundy, S.
2018-04-01
This paper reports the simulation-based analysis of six dynamical structures with respect to their wrist-worn vibration energy harvesting capability. This work approaches the problem of maximizing energy harvesting potential at the wrist by considering multiple mechanical substructures; rotational and linear motion-based architectures are examined. Mathematical models are developed and experimentally corroborated. An optimization routine is applied to the proposed architectures to maximize average power output and allow for comparison. The addition of a linear spring element to the structures has the potential to improve power output; for example, in the case of rotational structures, a 211% improvement in power output was estimated under real walking excitation. The analysis concludes that a sprung rotational harvester architecture outperforms a sprung linear architecture by 66% when real walking data is used as input to the simulations.
FPGA Implementation of Generalized Hebbian Algorithm for Texture Classification
Lin, Shiow-Jyu; Hwang, Wen-Jyi; Lee, Wei-Hao
2012-01-01
This paper presents a novel hardware architecture for principal component analysis. The architecture is based on the Generalized Hebbian Algorithm (GHA) because of its simplicity and effectiveness. The architecture is separated into three portions: the weight vector updating unit, the principal computation unit and the memory unit. In the weight vector updating unit, the computation of different synaptic weight vectors shares the same circuit for reducing the area costs. To show the effectiveness of the circuit, a texture classification system based on the proposed architecture is physically implemented by Field Programmable Gate Array (FPGA). It is embedded in a System-On-Programmable-Chip (SOPC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient design for attaining both high speed performance and low area costs. PMID:22778640
Critical zone architecture and processes: a geophysical perspective
NASA Astrophysics Data System (ADS)
Holbrook, W. S.
2016-12-01
The "critical zone (CZ)," Earth's near-surface layer that reaches from treetop to bedrock, sustains terrestrial life by storing water and producing nutrients. Despite is central importance, however, the CZ remains poorly understood, due in part to the complexity of interacting biogeochemical and physical processes that take place there, and in part due to the difficulty of measuring CZ properties and processes at depth. Major outstanding questions include: What is the architecture of the CZ? How does that architecture vary across scales and across gradients in climate, lithology, topography, biology and regional states of stress? What processes control the architecture of the CZ? At what depth does weathering initiate, and what controls the rates at which it proceeds? Based on recent geophysical campaigns at seven Critical Zone Observatory (CZO) sites and several other locations, a geophysical perspective on CZ architecture and processes is emerging. CZ architecture can be usefully divided into four layers, each of which has distinct geophysical properties: soil, saprolite, weathered bedrock and protolith. The distribution of those layers across landscapes varies depending on protolith composition and internal structure, topography, climate (P/T) and the regional state of stress. Combined observations from deep CZ drilling, geophysics and geochemistry demonstrate that chemical weathering initiates deep in the CZ, in concert with mechanical weathering (fracturing), as chemical weathering appears concentrated along fractures in borehole walls. At the Calhoun CZO, the plagioclase weathering front occurs at nearly 40 m depth, at the base of a 25-m-thick layer of weathered bedrock. The principal boundary in porosity, however, occurs at the saprolite/weathered bedrock boundary: porosity decreases over an order of magnitude, from 50% to 5% over an 8-m-thick zone at the base of saprolite. Porosity in weathered bedrock is between 2-5%. Future progress will depend on (1) more tightly linked geophysical, geochemical, hydrological and drilling studies, (2) 3D and 4D studies of deep CZ structure, and (3) measurements at multiple scales in the CZ, from pores to plots to hillslopes to catchments.
SLAE–CPS: Smart Lean Automation Engine Enabled by Cyber-Physical Systems Technologies
Ma, Jing; Wang, Qiang; Zhao, Zhibiao
2017-01-01
In the context of Industry 4.0, the demand for the mass production of highly customized products will lead to complex products and an increasing demand for production system flexibility. Simply implementing lean production-based human-centered production or high automation to improve system flexibility is insufficient. Currently, lean automation (Jidoka) that utilizes cyber-physical systems (CPS) is considered a cost-efficient and effective approach for improving system flexibility under shrinking global economic conditions. Therefore, a smart lean automation engine enabled by CPS technologies (SLAE–CPS), which is based on an analysis of Jidoka functions and the smart capacity of CPS technologies, is proposed in this study to provide an integrated and standardized approach to design and implement a CPS-based smart Jidoka system. A set of comprehensive architecture and standardized key technologies should be presented to achieve the above-mentioned goal. Therefore, a distributed architecture that joins service-oriented architecture, agent, function block (FB), cloud, and Internet of things is proposed to support the flexible configuration, deployment, and performance of SLAE–CPS. Then, several standardized key techniques are proposed under this architecture. The first one is for converting heterogeneous physical data into uniform services for subsequent abnormality analysis and detection. The second one is a set of Jidoka scene rules, which is abstracted based on the analysis of the operator, machine, material, quality, and other factors in different time dimensions. These Jidoka rules can support executive FBs in performing different Jidoka functions. Finally, supported by the integrated and standardized approach of our proposed engine, a case study is conducted to verify the current research results. The proposed SLAE–CPS can serve as an important reference value for combining the benefits of innovative technology and proper methodology. PMID:28657577
SLAE-CPS: Smart Lean Automation Engine Enabled by Cyber-Physical Systems Technologies.
Ma, Jing; Wang, Qiang; Zhao, Zhibiao
2017-06-28
In the context of Industry 4.0, the demand for the mass production of highly customized products will lead to complex products and an increasing demand for production system flexibility. Simply implementing lean production-based human-centered production or high automation to improve system flexibility is insufficient. Currently, lean automation (Jidoka) that utilizes cyber-physical systems (CPS) is considered a cost-efficient and effective approach for improving system flexibility under shrinking global economic conditions. Therefore, a smart lean automation engine enabled by CPS technologies (SLAE-CPS), which is based on an analysis of Jidoka functions and the smart capacity of CPS technologies, is proposed in this study to provide an integrated and standardized approach to design and implement a CPS-based smart Jidoka system. A set of comprehensive architecture and standardized key technologies should be presented to achieve the above-mentioned goal. Therefore, a distributed architecture that joins service-oriented architecture, agent, function block (FB), cloud, and Internet of things is proposed to support the flexible configuration, deployment, and performance of SLAE-CPS. Then, several standardized key techniques are proposed under this architecture. The first one is for converting heterogeneous physical data into uniform services for subsequent abnormality analysis and detection. The second one is a set of Jidoka scene rules, which is abstracted based on the analysis of the operator, machine, material, quality, and other factors in different time dimensions. These Jidoka rules can support executive FBs in performing different Jidoka functions. Finally, supported by the integrated and standardized approach of our proposed engine, a case study is conducted to verify the current research results. The proposed SLAE-CPS can serve as an important reference value for combining the benefits of innovative technology and proper methodology.
NASA Technical Reports Server (NTRS)
1985-01-01
The second task in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This volume identifies the preferred options in the technology category and characterizes these options with respect to performance attributes, constraints, cost, and risk. The technology category includes advanced materials, processes, and techniques that can be used to enhance the implementation of SSDS design structures. The specific areas discussed are mass storage, including space and round on-line storage and off-line storage; man/machine interface; data processing hardware, including flight computers and advanced/fault tolerant computer architectures; and software, including data compression algorithms, on-board high level languages, and software tools. Also discussed are artificial intelligence applications and hard-wire communications.
Pax permanent Martian base: Space architecture for the first human habitation on Mars, volume 5
NASA Technical Reports Server (NTRS)
Huebner-Moths, Janis; Fieber, Joseph P.; Rebholz, Patrick J.; Paruleski, Kerry L.; Moore, Gary T. (Editor)
1992-01-01
America at the Threshold: Report of the Synthesis Group on America's Space Exploration Initiative (the 'Synthesis Report,' sometimes called the Stafford Report after its astronaut chair, published in 1991) recommended that NASA explore what it called four 'architectures,' i.e., four different scenarios for habitation on Mars. The Advanced Design Program in Space Architecture at the University of Wisconsin-Milwaukee supported this report and two of its scenarios--'Architecture 1' and 'Architecture 4'--during the spring of 1992. This report investigates the implications of different mission scenarios, the Martian environment, supporting technologies, and especially human factors and environment-behavior considerations for the design of the first permanent Martian base. The report is comprised of sections on mission analysis, implications of the Martian atmosphere and geologic environment, development of habitability design requirements based on environment-behavior and human factors research, and a full design proposed (concept design and design development) for the first permanent Martian base and habitat. The design is presented in terms of a base site plan, master plan based on a Mars direct scenario phased through IOC, and design development details of a complete Martian habitat for 18 crew members including all laboratory, mission control, and crew support spaces.
Component-Based Approach in Learning Management System Development
ERIC Educational Resources Information Center
Zaitseva, Larisa; Bule, Jekaterina; Makarov, Sergey
2013-01-01
The paper describes component-based approach (CBA) for learning management system development. Learning object as components of e-learning courses and their metadata is considered. The architecture of learning management system based on CBA being developed in Riga Technical University, namely its architecture, elements and possibilities are…
Advanced computer architecture specification for automated weld systems
NASA Technical Reports Server (NTRS)
Katsinis, Constantine
1994-01-01
This report describes the requirements for an advanced automated weld system and the associated computer architecture, and defines the overall system specification from a broad perspective. According to the requirements of welding procedures as they relate to an integrated multiaxis motion control and sensor architecture, the computer system requirements are developed based on a proven multiple-processor architecture with an expandable, distributed-memory, single global bus architecture, containing individual processors which are assigned to specific tasks that support sensor or control processes. The specified architecture is sufficiently flexible to integrate previously developed equipment, be upgradable and allow on-site modifications.
Barillot, Romain; Combes, Didier; Chevalier, Valérie; Fournier, Christian; Escobar-Gutiérrez, Abraham J.
2012-01-01
Background and aims Light interception is a key factor driving the functioning of wheat–pea intercrops. The sharing of light is related to the canopy structure, which results from the architectural parameters of the mixed species. In the present study, we characterized six contrasting pea genotypes and identified architectural parameters whose range of variability leads to various levels of light sharing within virtual wheat–pea mixtures. Methodology Virtual plants were derived from magnetic digitizations performed during the growing cycle in a greenhouse experiment. Plant mock-ups were used as inputs of a radiative transfer model in order to estimate light interception in virtual wheat–pea mixtures. The turbid medium approach, extended to well-mixed canopies, was used as a framework for assessing the effects of leaf area index (LAI) and mean leaf inclination on light sharing. Principal results Three groups of pea genotypes were distinguished: (i) early and leafy cultivars, (ii) late semi-leafless cultivars and (iii) low-development semi-leafless cultivars. Within open canopies, light sharing was well described by the turbid medium approach and was therefore determined by the architectural parameters that composed LAI and foliage inclination. When canopy closure started, the turbid medium approach was unable to properly infer light partitioning because of the vertical structure of the canopy. This was related to the architectural parameters that determine the height of pea genotypes. Light capture was therefore affected by the development of leaflets, number of branches and phytomers, as well as internode length. Conclusions This study provides information on pea architecture and identifies parameters whose variability can be used to drive light sharing within wheat–pea mixtures. These results could be used to build up the architecture of pea ideotypes adapted to multi-specific stands towards light competition. PMID:23240074
Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity
Zhou, Yuan; Wang, Yun; Rao, Li-Lin; Liang, Zhu-Yuan; Chen, Xiao-Ping; Zheng, Dang; Tan, Cheng; Tian, Zhi-Qiang; Wang, Chun-Hui; Bai, Yan-Qiang; Chen, Shan-Guang; Li, Shu
2014-01-01
Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI) to study whether the functional architecture of the brain is altered after 45 days of −6° head-down tilt (HDT) bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of −6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC), to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC) analysis. We found decreased DC in two regions, the left anterior insula (aINS) and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies), in the male volunteers after 45 days of −6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function, and central neural activity. PMID:24926242
Transforming medical imaging applications into collaborative PACS-based telemedical systems
NASA Astrophysics Data System (ADS)
Maani, Rouzbeh; Camorlinga, Sergio; Arnason, Neil
2011-03-01
Telemedical systems are not practical for use in a clinical workflow unless they are able to communicate with the Picture Archiving and Communications System (PACS). On the other hand, there are many medical imaging applications that are not developed as telemedical systems. Some medical imaging applications do not support collaboration and some do not communicate with the PACS and therefore limit their usability in clinical workflows. This paper presents a general architecture based on a three-tier architecture model. The architecture and the components developed within it, transform medical imaging applications into collaborative PACS-based telemedical systems. As a result, current medical imaging applications that are not telemedical, not supporting collaboration, and not communicating with PACS, can be enhanced to support collaboration among a group of physicians, be accessed remotely, and be clinically useful. The main advantage of the proposed architecture is that it does not impose any modification to the current medical imaging applications and does not make any assumptions about the underlying architecture or operating system.
NASA Astrophysics Data System (ADS)
Jiang, Yuning; Kang, Jinfeng; Wang, Xinan
2017-03-01
Resistive switching memory (RRAM) is considered as one of the most promising devices for parallel computing solutions that may overcome the von Neumann bottleneck of today’s electronic systems. However, the existing RRAM-based parallel computing architectures suffer from practical problems such as device variations and extra computing circuits. In this work, we propose a novel parallel computing architecture for pattern recognition by implementing k-nearest neighbor classification on metal-oxide RRAM crossbar arrays. Metal-oxide RRAM with gradual RESET behaviors is chosen as both the storage and computing components. The proposed architecture is tested by the MNIST database. High speed (~100 ns per example) and high recognition accuracy (97.05%) are obtained. The influence of several non-ideal device properties is also discussed, and it turns out that the proposed architecture shows great tolerance to device variations. This work paves a new way to achieve RRAM-based parallel computing hardware systems with high performance.
NASA Technical Reports Server (NTRS)
Ashworth, Barry R.
1989-01-01
A description is given of the SSM/PMAD power system automation testbed, which was developed using a systems engineering approach. The architecture includes a knowledge-based system and has been successfully used in power system management and fault diagnosis. Architectural issues which effect overall system activities and performance are examined. The knowledge-based system is discussed along with its associated automation implications, and interfaces throughout the system are presented.
NASA Astrophysics Data System (ADS)
Mehta, Neville; Kompalli, Suryaprakash; Chaudhary, Vipin
Teleradiology is the electronic transmission of radiological patient images, such as x-rays, CT, or MR across multiple locations. The goal could be interpretation, consultation, or medical records keeping. Information technology solutions have enabled electronic records and their associated benefits are evident in health care today. However, salient aspects of collaborative interfaces, and computer assisted diagnostic (CAD) tools are yet to be integrated into workflow designs. The Computer Assisted Diagnostics and Interventions (CADI) group at the University at Buffalo has developed an architecture that facilitates web-enabled use of CAD tools, along with the novel concept of synchronized collaboration. The architecture can support multiple teleradiology applications and case studies are presented here.
A highly efficient 3D level-set grain growth algorithm tailored for ccNUMA architecture
NASA Astrophysics Data System (ADS)
Mießen, C.; Velinov, N.; Gottstein, G.; Barrales-Mora, L. A.
2017-12-01
A highly efficient simulation model for 2D and 3D grain growth was developed based on the level-set method. The model introduces modern computational concepts to achieve excellent performance on parallel computer architectures. Strong scalability was measured on cache-coherent non-uniform memory access (ccNUMA) architectures. To achieve this, the proposed approach considers the application of local level-set functions at the grain level. Ideal and non-ideal grain growth was simulated in 3D with the objective to study the evolution of statistical representative volume elements in polycrystals. In addition, microstructure evolution in an anisotropic magnetic material affected by an external magnetic field was simulated.
Piromalis, Dimitrios; Arvanitis, Konstantinos
2016-08-04
Wireless Sensor and Actuators Networks (WSANs) constitute one of the most challenging technologies with tremendous socio-economic impact for the next decade. Functionally and energy optimized hardware systems and development tools maybe is the most critical facet of this technology for the achievement of such prospects. Especially, in the area of agriculture, where the hostile operating environment comes to add to the general technological and technical issues, reliable and robust WSAN systems are mandatory. This paper focuses on the hardware design architectures of the WSANs for real-world agricultural applications. It presents the available alternatives in hardware design and identifies their difficulties and problems for real-life implementations. The paper introduces SensoTube, a new WSAN hardware architecture, which is proposed as a solution to the various existing design constraints of WSANs. The establishment of the proposed architecture is based, firstly on an abstraction approach in the functional requirements context, and secondly, on the standardization of the subsystems connectivity, in order to allow for an open, expandable, flexible, reconfigurable, energy optimized, reliable and robust hardware system. The SensoTube implementation reference model together with its encapsulation design and installation are analyzed and presented in details. Furthermore, as a proof of concept, certain use cases have been studied in order to demonstrate the benefits of migrating existing designs based on the available open-source hardware platforms to SensoTube architecture.
ERIC Educational Resources Information Center
Wallace, Guy W.
2001-01-01
Explains lean instructional systems design/development (ISD) as it relates to curriculum architecture design, based on Japan's lean production system. Discusses performance-based systems; ISD models; processes for organizational training and development; curriculum architecture to support job performance; and modular curriculum development. (LRW)
A neural network architecture for implementation of expert systems for real time monitoring
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.
1991-01-01
Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered.
NASA Astrophysics Data System (ADS)
Xiao, Jian; Zhang, Mingqiang; Tian, Haiping; Huang, Bo; Fu, Wenlong
2018-02-01
In this paper, a novel prognostics and health management system architecture for hydropower plant equipment was proposed based on fog computing and Docker container. We employed the fog node to improve the real-time processing ability of improving the cloud architecture-based prognostics and health management system and overcome the problems of long delay time, network congestion and so on. Then Storm-based stream processing of fog node was present and could calculate the health index in the edge of network. Moreover, the distributed micros-service and Docker container architecture of hydropower plants equipment prognostics and health management was also proposed. Using the micro service architecture proposed in this paper, the hydropower unit can achieve the goal of the business intercommunication and seamless integration of different equipment and different manufacturers. Finally a real application case is given in this paper.
Low Power LDPC Code Decoder Architecture Based on Intermediate Message Compression Technique
NASA Astrophysics Data System (ADS)
Shimizu, Kazunori; Togawa, Nozomu; Ikenaga, Takeshi; Goto, Satoshi
Reducing the power dissipation for LDPC code decoder is a major challenging task to apply it to the practical digital communication systems. In this paper, we propose a low power LDPC code decoder architecture based on an intermediate message-compression technique which features as follows: (i) An intermediate message compression technique enables the decoder to reduce the required memory capacity and write power dissipation. (ii) A clock gated shift register based intermediate message memory architecture enables the decoder to decompress the compressed messages in a single clock cycle while reducing the read power dissipation. The combination of the above two techniques enables the decoder to reduce the power dissipation while keeping the decoding throughput. The simulation results show that the proposed architecture improves the power efficiency up to 52% and 18% compared to that of the decoder based on the overlapped schedule and the rapid convergence schedule without the proposed techniques respectively.
SAMS--a systems architecture for developing intelligent health information systems.
Yılmaz, Özgün; Erdur, Rıza Cenk; Türksever, Mustafa
2013-12-01
In this paper, SAMS, a novel health information system architecture for developing intelligent health information systems is proposed and also some strategies for developing such systems are discussed. The systems fulfilling this architecture will be able to store electronic health records of the patients using OWL ontologies, share patient records among different hospitals and provide physicians expertise to assist them in making decisions. The system is intelligent because it is rule-based, makes use of rule-based reasoning and has the ability to learn and evolve itself. The learning capability is provided by extracting rules from previously given decisions by the physicians and then adding the extracted rules to the system. The proposed system is novel and original in all of these aspects. As a case study, a system is implemented conforming to SAMS architecture for use by dentists in the dental domain. The use of the developed system is described with a scenario. For evaluation, the developed dental information system will be used and tried by a group of dentists. The development of this system proves the applicability of SAMS architecture. By getting decision support from a system derived from this architecture, the cognitive gap between experienced and inexperienced physicians can be compensated. Thus, patient satisfaction can be achieved, inexperienced physicians are supported in decision making and the personnel can improve their knowledge. A physician can diagnose a case, which he/she has never diagnosed before, using this system. With the help of this system, it will be possible to store general domain knowledge in this system and the personnel's need to medical guideline documents will be reduced.
Modeling and Optimization of Multiple Unmanned Aerial Vehicles System Architecture Alternatives
Wang, Weiping; He, Lei
2014-01-01
Unmanned aerial vehicle (UAV) systems have already been used in civilian activities, although very limitedly. Confronted different types of tasks, multi UAVs usually need to be coordinated. This can be extracted as a multi UAVs system architecture problem. Based on the general system architecture problem, a specific description of the multi UAVs system architecture problem is presented. Then the corresponding optimization problem and an efficient genetic algorithm with a refined crossover operator (GA-RX) is proposed to accomplish the architecting process iteratively in the rest of this paper. The availability and effectiveness of overall method is validated using 2 simulations based on 2 different scenarios. PMID:25140328
Selective randomized load balancing and mesh networks with changing demands
NASA Astrophysics Data System (ADS)
Shepherd, F. B.; Winzer, P. J.
2006-05-01
We consider the problem of building cost-effective networks that are robust to dynamic changes in demand patterns. We compare several architectures using demand-oblivious routing strategies. Traditional approaches include single-hop architectures based on a (static or dynamic) circuit-switched core infrastructure and multihop (packet-switched) architectures based on point-to-point circuits in the core. To address demand uncertainty, we seek minimum cost networks that can carry the class of hose demand matrices. Apart from shortest-path routing, Valiant's randomized load balancing (RLB), and virtual private network (VPN) tree routing, we propose a third, highly attractive approach: selective randomized load balancing (SRLB). This is a blend of dual-hop hub routing and randomized load balancing that combines the advantages of both architectures in terms of network cost, delay, and delay jitter. In particular, we give empirical analyses for the cost (in terms of transport and switching equipment) for the discussed architectures, based on three representative carrier networks. Of these three networks, SRLB maintains the resilience properties of RLB while achieving significant cost reduction over all other architectures, including RLB and multihop Internet protocol/multiprotocol label switching (IP/MPLS) networks using VPN-tree routing.
REUSABLE PROPULSION ARCHITECTURE FOR SUSTAINABLE LOW-COST ACCESS TO SPACE
NASA Technical Reports Server (NTRS)
Bonometti, J. A.; Dankanich, J. W.; Frame, K. L.
2005-01-01
The primary obstacle to any space-based mission is, and has always been, the cost of access to space. Even with impressive efforts toward reusability, no system has come close to lowering the cost a significant amount. It is postulated here, that architectural innovation is necessary to make reusability feasible, not incremental subsystem changes. This paper shows two architectural approaches of reusability that merit further study investments. Both #inherently# have performance increases and cost advantages to make affordable access to space a near term reality. A rocket launched from a subsonic aircraft (specifically the Crossbow methodology) and a momentum exchange tether, reboosted by electrodynamics, offer possibilities of substantial reductions in the total transportation architecture mass - making access-to-space cost-effective. They also offer intangible benefits that reduce risk or offer large growth potential. The cost analysis indicates that approximately a 50% savings is obtained using today#s aerospace materials and practices.
Investigation of an advanced fault tolerant integrated avionics system
NASA Technical Reports Server (NTRS)
Dunn, W. R.; Cottrell, D.; Flanders, J.; Javornik, A.; Rusovick, M.
1986-01-01
Presented is an advanced, fault-tolerant multiprocessor avionics architecture as could be employed in an advanced rotorcraft such as LHX. The processor structure is designed to interface with existing digital avionics systems and concepts including the Army Digital Avionics System (ADAS) cockpit/display system, navaid and communications suites, integrated sensing suite, and the Advanced Digital Optical Control System (ADOCS). The report defines mission, maintenance and safety-of-flight reliability goals as might be expected for an operational LHX aircraft. Based on use of a modular, compact (16-bit) microprocessor card family, results of a preliminary study examining simplex, dual and standby-sparing architectures is presented. Given the stated constraints, it is shown that the dual architecture is best suited to meet reliability goals with minimum hardware and software overhead. The report presents hardware and software design considerations for realizing the architecture including redundancy management requirements and techniques as well as verification and validation needs and methods.
Developing Information Power Grid Based Algorithms and Software
NASA Technical Reports Server (NTRS)
Dongarra, Jack
1998-01-01
This exploratory study initiated our effort to understand performance modeling on parallel systems. The basic goal of performance modeling is to understand and predict the performance of a computer program or set of programs on a computer system. Performance modeling has numerous applications, including evaluation of algorithms, optimization of code implementations, parallel library development, comparison of system architectures, parallel system design, and procurement of new systems. Our work lays the basis for the construction of parallel libraries that allow for the reconstruction of application codes on several distinct architectures so as to assure performance portability. Following our strategy, once the requirements of applications are well understood, one can then construct a library in a layered fashion. The top level of this library will consist of architecture-independent geometric, numerical, and symbolic algorithms that are needed by the sample of applications. These routines should be written in a language that is portable across the targeted architectures.
A Summary of NASA Architecture Studies Utilizing Fission Surface Power Technology
NASA Technical Reports Server (NTRS)
Mason, Lee; Poston, Dave
2010-01-01
Beginning with the Exploration Systems Architecture Study in 2005, NASA has conducted various mission architecture studies to evaluate implementation options for the U.S. Space Policy (formerly the Vision for Space Exploration). Several of the studies examined the use of Fission Surface Power (FSP) systems for human missions to the lunar and Martian surface. This paper summarizes the FSP concepts developed under four different NASA-sponsored architecture studies: Lunar Architecture Team, Mars Architecture Team, Lunar Surface Systems/Constellation Architecture team, and International Architecture Working Group-Power Function team. The results include a summary of FSP design characteristics, a compilation of mission-compatible FSP configuration options, and an FSP concept-of-operations that is consistent with the overall mission objectives.
A Review of Lightweight Thread Approaches for High Performance Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castello, Adrian; Pena, Antonio J.; Seo, Sangmin
High-level, directive-based solutions are becoming the programming models (PMs) of the multi/many-core architectures. Several solutions relying on operating system (OS) threads perfectly work with a moderate number of cores. However, exascale systems will spawn hundreds of thousands of threads in order to exploit their massive parallel architectures and thus conventional OS threads are too heavy for that purpose. Several lightweight thread (LWT) libraries have recently appeared offering lighter mechanisms to tackle massive concurrency. In order to examine the suitability of LWTs in high-level runtimes, we develop a set of microbenchmarks consisting of commonlyfound patterns in current parallel codes. Moreover, wemore » study the semantics offered by some LWT libraries in order to expose the similarities between different LWT application programming interfaces. This study reveals that a reduced set of LWT functions can be sufficient to cover the common parallel code patterns and that those LWT libraries perform better than OS threads-based solutions in cases where task and nested parallelism are becoming more popular with new architectures.« less
24 CFR 905.314 - Cost and other limitations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... excluding any costs related to lead-based paint or asbestos testing, in-house architectural and engineering... lead-based paint or asbestos testing, in-house Architectural and Engineering work, or other special... completion of the project, the actual project cost is determined based upon the amount of public housing...
Architectural Large Constructed Environment. Modeling and Interaction Using Dynamic Simulations
NASA Astrophysics Data System (ADS)
Fiamma, P.
2011-09-01
How to use for the architectural design, the simulation coming from a large size data model? The topic is related to the phase coming usually after the acquisition of the data, during the construction of the model and especially after, when designers must have an interaction with the simulation, in order to develop and verify their idea. In the case of study, the concept of interaction includes the concept of real time "flows". The work develops contents and results that can be part of the large debate about the current connection between "architecture" and "movement". The focus of the work, is to realize a collaborative and participative virtual environment on which different specialist actors, client and final users can share knowledge, targets and constraints to better gain the aimed result. The goal is to have used a dynamic micro simulation digital resource that allows all the actors to explore the model in powerful and realistic way and to have a new type of interaction in a complex architectural scenario. On the one hand, the work represents a base of knowledge that can be implemented more and more; on the other hand the work represents a dealt to understand the large constructed architecture simulation as a way of life, a way of being in time and space. The architectural design before, and the architectural fact after, both happen in a sort of "Spatial Analysis System". The way is open to offer to this "system", knowledge and theories, that can support architectural design work for every application and scale. We think that the presented work represents a dealt to understand the large constructed architecture simulation as a way of life, a way of being in time and space. Architecture like a spatial configuration, that can be reconfigurable too through designing.
Options for a lunar base surface architecture
NASA Technical Reports Server (NTRS)
Roberts, Barney B.
1992-01-01
The Planet Surface Systems Office at the NASA Johnson Space Center has participated in an analysis of the Space Exploration Initiative architectures described in the Synthesis Group report. This effort involves a Systems Engineering and Integration effort to define point designs for evolving lunar and Mars bases that support substantial science, exploration, and resource production objectives. The analysis addresses systems-level designs; element requirements and conceptual designs; assessments of precursor and technology needs; and overall programmatics and schedules. This paper focuses on the results of the study of the Space Resource Utilization Architecture. This architecture develops the capability to extract useful materials from the indigenous resources of the Moon and Mars. On the Moon, a substantial infrastructure is emplaced which can support a crew of up to twelve. Two major process lines are developed: one produces oxygen, ceramics, and metals; the other produces hydrogen, helium, and other volatiles. The Moon is also used for a simulation of a Mars mission. Significant science capabilities are established in conjunction with resource development. Exploration includes remote global surveys and piloted sorties of local and regional areas. Science accommodations include planetary science, astronomy, and biomedical research. Greenhouses are established to provide a substantial amount of food needs.
Analysis of low-offset CTIA amplifier for small-size-pixel infrared focal plane array
NASA Astrophysics Data System (ADS)
Zhang, Xue; Huang, Zhangcheng; Shao, Xiumei
2014-11-01
The design of input stage amplifier becomes more and more difficult as the expansion of format arrays and reduction of pixel size. A design method of low-offset amplifier based on 0.18-μm process used in small-size pixel is analyzed in order to decrease the dark signal of extended wavelength InGaAs infrared focal plane arrays (IRFPA). Based on an example of a cascode operational amplifier (op-amp), the relationship between input offset voltage and size of each transistor is discussed through theoretical analysis and Monte Carlo simulation. The results indicate that input transistors and load transistors have great influence on the input offset voltage while common-gate transistors are negligible. Furthermore, the offset voltage begins to increase slightly when the width and length of transistors decrease along with the diminution of pixel size, and raises rapidly when the size is smaller than a proximate threshold value. The offset voltage of preamplifiers with differential architecture and single-shared architecture in small pitch pixel are studied. After optimization under same conditions, simulation results show that single-shared architecture has smaller offset voltage than differential architecture.
Deep learning based classification of breast tumors with shear-wave elastography.
Zhang, Qi; Xiao, Yang; Dai, Wei; Suo, Jingfeng; Wang, Congzhi; Shi, Jun; Zheng, Hairong
2016-12-01
This study aims to build a deep learning (DL) architecture for automated extraction of learned-from-data image features from the shear-wave elastography (SWE), and to evaluate the DL architecture in differentiation between benign and malignant breast tumors. We construct a two-layer DL architecture for SWE feature extraction, comprised of the point-wise gated Boltzmann machine (PGBM) and the restricted Boltzmann machine (RBM). The PGBM contains task-relevant and task-irrelevant hidden units, and the task-relevant units are connected to the RBM. Experimental evaluation was performed with five-fold cross validation on a set of 227 SWE images, 135 of benign tumors and 92 of malignant tumors, from 121 patients. The features learned with our DL architecture were compared with the statistical features quantifying image intensity and texture. Results showed that the DL features achieved better classification performance with an accuracy of 93.4%, a sensitivity of 88.6%, a specificity of 97.1%, and an area under the receiver operating characteristic curve of 0.947. The DL-based method integrates feature learning with feature selection on SWE. It may be potentially used in clinical computer-aided diagnosis of breast cancer. Copyright © 2016 Elsevier B.V. All rights reserved.
From Architectural Photogrammetry Toward Digital Architectural Heritage Education
NASA Astrophysics Data System (ADS)
Baik, A.; Alitany, A.
2018-05-01
This paper considers the potential of using the documentation approach proposed for the heritage buildings in Historic Jeddah, Saudi Arabia (as a case study) by using the close-range photogrammetry / the Architectural Photogrammetry techniques as a new academic experiment in digital architectural heritage education. Moreover, different than most of engineering educational techniques related to architecture education, this paper will be focusing on the 3-D data acquisition technology as a tool to document and to learn the principals of the digital architectural heritage documentation. The objective of this research is to integrate the 3-D modelling and visualisation knowledge for the purposes of identifying, designing and evaluating an effective engineering educational experiment. Furthermore, the students will learn and understand the characteristics of the historical building while learning more advanced 3-D modelling and visualisation techniques. It can be argued that many of these technologies alone are difficult to improve the education; therefore, it is important to integrate them in an educational framework. This should be in line with the educational ethos of the academic discipline. Recently, a number of these technologies and methods have been effectively used in education sectors and other purposes; such as in the virtual museum. However, these methods are not directly coincided with the traditional education and teaching architecture. This research will be introduced the proposed approach as a new academic experiment in the architecture education sector. The new teaching approach will be based on the Architectural Photogrammetry to provide semantically rich models. The academic experiment will require students to have suitable knowledge in both Photogrammetry applications to engage with the process.
An Investigation of State-Space Model Fidelity for SSME Data
NASA Technical Reports Server (NTRS)
Martin, Rodney Alexander
2008-01-01
In previous studies, a variety of unsupervised anomaly detection techniques for anomaly detection were applied to SSME (Space Shuttle Main Engine) data. The observed results indicated that the identification of certain anomalies were specific to the algorithmic method under consideration. This is the reason why one of the follow-on goals of these previous investigations was to build an architecture to support the best capabilities of all algorithms. We appeal to that goal here by investigating a cascade, serial architecture for the best performing and most suitable candidates from previous studies. As a precursor to a formal ROC (Receiver Operating Characteristic) curve analysis for validation of resulting anomaly detection algorithms, our primary focus here is to investigate the model fidelity as measured by variants of the AIC (Akaike Information Criterion) for state-space based models. We show that placing constraints on a state-space model during or after the training of the model introduces a modest level of suboptimality. Furthermore, we compare the fidelity of all candidate models including those embodying the cascade, serial architecture. We make recommendations on the most suitable candidates for application to subsequent anomaly detection studies as measured by AIC-based criteria.
NASA Technical Reports Server (NTRS)
Munoz Fernandez, Michela Miche
2014-01-01
The potential of Model Model Systems Engineering (MBSE) using the Architecture Analysis and Design Language (AADL) applied to space systems will be described. AADL modeling is applicable to real-time embedded systems- the types of systems NASA builds. A case study with the Juno mission to Jupiter showcases how this work would enable future missions to benefit from using these models throughout their life cycle from design to flight operations.
Neural architectures for robot intelligence.
Ritter, H; Steil, J J; Nölker, C; Röthling, F; McGuire, P
2003-01-01
We argue that direct experimental approaches to elucidate the architecture of higher brains may benefit from insights gained from exploring the possibilities and limits of artificial control architectures for robot systems. We present some of our recent work that has been motivated by that view and that is centered around the study of various aspects of hand actions since these are intimately linked with many higher cognitive abilities. As examples, we report on the development of a modular system for the recognition of continuous hand postures based on neural nets, the use of vision and tactile sensing for guiding prehensile movements of a multifingered hand, and the recognition and use of hand gestures for robot teaching. Regarding the issue of learning, we propose to view real-world learning from the perspective of data-mining and to focus more strongly on the imitation of observed actions instead of purely reinforcement-based exploration. As a concrete example of such an effort we report on the status of an ongoing project in our laboratory in which a robot equipped with an attention system with a neurally inspired architecture is taught actions by using hand gestures in conjunction with speech commands. We point out some of the lessons learnt from this system, and discuss how systems of this kind can contribute to the study of issues at the junction between natural and artificial cognitive systems.
Hendrikson, Wim J; Deegan, Anthony J; Yang, Ying; van Blitterswijk, Clemens A; Verdonschot, Nico; Moroni, Lorenzo; Rouwkema, Jeroen
2017-01-01
Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical stability. Since both scaffold strength and stress-strain distributions throughout the scaffold depend on the scaffold's internal architecture, it is important to understand how changes in architecture influence these parameters. In this study, four scaffold designs with different architectures were produced using additive manufacturing. The designs varied in fiber orientation, while fiber diameter, spacing, and layer height remained constant. Based on micro-CT (μCT) scans, finite element models (FEMs) were derived for finite element analysis (FEA) and computational fluid dynamics (CFD). FEA of scaffold compression was validated using μCT scan data of compressed scaffolds. Results of the FEA and CFD showed a significant impact of scaffold architecture on fluid shear stress and mechanical strain distribution. The average fluid shear stress ranged from 3.6 mPa for a 0/90 architecture to 6.8 mPa for a 0/90 offset architecture, and the surface shear strain from 0.0096 for a 0/90 offset architecture to 0.0214 for a 0/90 architecture. This subsequently resulted in variations of the predicted cell differentiation stimulus values on the scaffold surface. Fluid shear stress was mainly influenced by pore shape and size, while mechanical strain distribution depended mainly on the presence or absence of supportive columns in the scaffold architecture. Together, these results corroborate that scaffold architecture can be exploited to design scaffolds with regions that guide specific tissue development under compression and perfusion. In conjunction with optimization of stimulation regimes during bioreactor cultures, scaffold architecture optimization can be used to improve scaffold design for tissue engineering purposes.
Hendrikson, Wim J.; Deegan, Anthony J.; Yang, Ying; van Blitterswijk, Clemens A.; Verdonschot, Nico; Moroni, Lorenzo; Rouwkema, Jeroen
2017-01-01
Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical stability. Since both scaffold strength and stress–strain distributions throughout the scaffold depend on the scaffold’s internal architecture, it is important to understand how changes in architecture influence these parameters. In this study, four scaffold designs with different architectures were produced using additive manufacturing. The designs varied in fiber orientation, while fiber diameter, spacing, and layer height remained constant. Based on micro-CT (μCT) scans, finite element models (FEMs) were derived for finite element analysis (FEA) and computational fluid dynamics (CFD). FEA of scaffold compression was validated using μCT scan data of compressed scaffolds. Results of the FEA and CFD showed a significant impact of scaffold architecture on fluid shear stress and mechanical strain distribution. The average fluid shear stress ranged from 3.6 mPa for a 0/90 architecture to 6.8 mPa for a 0/90 offset architecture, and the surface shear strain from 0.0096 for a 0/90 offset architecture to 0.0214 for a 0/90 architecture. This subsequently resulted in variations of the predicted cell differentiation stimulus values on the scaffold surface. Fluid shear stress was mainly influenced by pore shape and size, while mechanical strain distribution depended mainly on the presence or absence of supportive columns in the scaffold architecture. Together, these results corroborate that scaffold architecture can be exploited to design scaffolds with regions that guide specific tissue development under compression and perfusion. In conjunction with optimization of stimulation regimes during bioreactor cultures, scaffold architecture optimization can be used to improve scaffold design for tissue engineering purposes. PMID:28239606
The architectural form of Qikou Cave dwellings in Chinese "Earth" culture
NASA Astrophysics Data System (ADS)
Chen, Xuanchen; Feng, Xinqun
2018-03-01
Cave building is not only a kind of architecture with unique style, but also a manifestation of Chinese traditional culture. Cave culture is an important part of Chinese traditional culture. The main purpose of this thesis which studies the architectural form of Qikou Cave, is to analyze how the cave building plays a positive role in promoting the development and application of modern resources and in cultural transmission. Based on a large amount of literature material, and taking Qikou Cave as an example, by studying the morphological characteristics of cave building, the paper takes an optimistic outlook on its future development and the sustainable development of the resources. It is expected that the cave culture can be further explored to promote the traditional Chinese culture and to drive the development of modern construction industry and resource conservation.
Study of oil palm root architecture with variation of crop stage and soil type vulnerable to drought
NASA Astrophysics Data System (ADS)
Safitri, Lisma; Suryanti, Sri; Kautsar, Valensi; Kurniawan, Agung; Santiabudi, Fajar
2018-03-01
Root arhitecture is affected by watertable level, characteristic of soil, organic matter and also the crop stages. Root architecture spread horizontally and vertically which each consist of primary, secondary, tertiary and quaternary downward root. The oil palm root observation with variation of crop stage and soil type showed that the root of oil palm plant year 2008 on spodosols soil spread along 650 cm horizontally from the trunk and penetrate downward in range of 9-28 cm vertically. Planted in the same type of soil, the root of oil palm plant year 2004 spread along 650 cm horizontally and reached to downward in a larger range from 3 to 57 cm vertically. As a comparison, the root architecture of oil palm on inceptisols soil established the range much greater vertically than the previous. The root of oil palm plant year 2008 spread along 640 cm horizontally and penetrate downward in range of 52-90 cm vertically. With the variation of crop age, the root of oil palm plant year 2003 spread along 650 cm horizontally and reached to downward in a larger range from 150 to 200 cm vertically. Based on this study, root architecture of oil palm was varied and need to be detailed. The precise root architecture of oil palm allows a better understanding on hydrological properties of oil palm root particularly which is cultivated on soil type vulnerable to drought. Referring to this root architecture, it was enable to develop the study on early drought detection of oil palm to optimise production and towards oil palm sustainability.
The Need for Software Architecture Evaluation in the Acquisition of Software-Intensive Sysetms
2014-01-01
Function and Performance Specification GIG Global Information Grid ISO International Standard Organisation MDA Model Driven Architecture...architecture and design, which is a key part of knowledge-based economy UNCLASSIFIED DSTO-TR-2936 UNCLASSIFIED 24 Allow Australian SMEs to
The future of computing--new architectures and new technologies.
Warren, P
2004-02-01
All modern computers are designed using the 'von Neumann' architecture and built using silicon transistor technology. Both architecture and technology have been remarkably successful. Yet there are a range of problems for which this conventional architecture is not particularly well adapted, and new architectures are being proposed to solve these problems, in particular based on insight from nature. Transistor technology has enjoyed 50 years of continuing progress. However, the laws of physics dictate that within a relatively short time period this progress will come to an end. New technologies, based on molecular and biological sciences as well as quantum physics, are vying to replace silicon, or at least coexist with it and extend its capability. The paper describes these novel architectures and technologies, places them in the context of the kinds of problems they might help to solve, and predicts their possible manner and time of adoption. Finally it describes some key questions and research problems associated with their use.
López, Diego M; Blobel, Bernd; Gonzalez, Carolina
2010-01-01
Requirement analysis, design, implementation, evaluation, use, and maintenance of semantically interoperable Health Information Systems (HIS) have to be based on eHealth standards. HIS-DF is a comprehensive approach for HIS architectural development based on standard information models and vocabulary. The empirical validity of HIS-DF has not been demonstrated so far. Through an empirical experiment, the paper demonstrates that using HIS-DF and HL7 information models, semantic quality of HIS architecture can be improved, compared to architectures developed using traditional RUP process. Semantic quality of the architecture has been measured in terms of model's completeness and validity metrics. The experimental results demonstrated an increased completeness of 14.38% and an increased validity of 16.63% when using the HIS-DF and HL7 information models in a sample HIS development project. Quality assurance of the system architecture in earlier stages of HIS development presumes an increased quality of final HIS systems, which supposes an indirect impact on patient care.
Lunar Navigation Architecture Design Considerations
NASA Technical Reports Server (NTRS)
D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael
2009-01-01
The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).
Entanglement distribution in star network based on spin chain in diamond
NASA Astrophysics Data System (ADS)
Zhu, Yuan-Ming; Ma, Lei
2018-06-01
After star network of spins was proposed, generating entanglement directly through spin interactions between distant parties became possible. We propose an architecture which involves coupled spin chains based on nitrogen-vacancy centers and nitrogen defect spins to expand star network. The numerical analysis shows that the maximally achievable entanglement Em exponentially decays with the length of spin chains M and spin noise. The entanglement capability of this configuration under the effect of disorder and spin loss is also studied. Moreover, it is shown that with this kind of architecture, star network of spins is feasible in measurement of magnetic-field gradient.
Space Station needs, attributes and architectural options: Summary briefing
NASA Technical Reports Server (NTRS)
1983-01-01
Computerized data sorting and analysis techniques were used with a data base accumulated in over 20 years of space station studies to evaluate candidate missions and select a final model of 88 missions. The social, cultural, scientific, technical, and commercial benefits to be accrued from each mission were identified. Requirements were determined for satellite servicing; payload placement and retrieval; refueling; repair; testing; assembly; and construction. Missions drivers determined include crew, remote manipulating system, external parts, instrumentation, extravehicular activity/manned maneuvering unit, and voice/video equipment. User interest for commercial applications were determined. Variable architecture based on a modular concept with multi-use elements is proposed.
Integrated Operations Architecture Technology Assessment Study
NASA Technical Reports Server (NTRS)
2001-01-01
As part of NASA's Integrated Operations Architecture (IOA) Baseline, NASA will consolidate all communications operations. including ground-based, near-earth, and deep-space communications, into a single integrated network. This network will make maximum use of commercial equipment, services and standards. It will be an Internet Protocol (IP) based network. This study supports technology development planning for the IOA. The technical problems that may arise when LEO mission spacecraft interoperate with commercial satellite services were investigated. Commercial technology and services that could support the IOA were surveyed, and gaps in the capability of existing technology and techniques were identified. Recommendations were made on which gaps should be closed by means of NASA research and development funding. Several findings emerged from the interoperability assessment: in the NASA mission set, there is a preponderance of small. inexpensive, low data rate science missions; proposed commercial satellite communications services could potentially provide TDRSS-like data relay functions; and. IP and related protocols, such as TCP, require augmentation to operate in the mobile networking environment required by the space-to-ground portion of the IOA. Five case studies were performed in the technology assessment. Each case represented a realistic implementation of the near-earth portion of the IOA. The cases included the use of frequencies at L-band, Ka-band and the optical spectrum. The cases also represented both space relay architectures and direct-to-ground architectures. Some of the main recommendations resulting from the case studies are: select an architecture for the LEO/MEO communications network; pursue the development of a Ka-band space-qualified transmitter (and possibly a receiver), and a low-cost Ka-band ground terminal for a direct-to-ground network, pursue the development of an Inmarsat (L-band) space-qualified transceiver to implement a global, low data rate network for LEO/MEO, mission spacecraft; and, pursue developmental research for a miniaturized, high data rate optical transceiver.
A semantically-aided architecture for a web-based monitoring system for carotid atherosclerosis.
Kolias, Vassileios D; Stamou, Giorgos; Golemati, Spyretta; Stoitsis, Giannis; Gkekas, Christos D; Liapis, Christos D; Nikita, Konstantina S
2015-08-01
Carotid atherosclerosis is a multifactorial disease and its clinical diagnosis depends on the evaluation of heterogeneous clinical data, such as imaging exams, biochemical tests and the patient's clinical history. The lack of interoperability between Health Information Systems (HIS) does not allow the physicians to acquire all the necessary data for the diagnostic process. In this paper, a semantically-aided architecture is proposed for a web-based monitoring system for carotid atherosclerosis that is able to gather and unify heterogeneous data with the use of an ontology and to create a common interface for data access enhancing the interoperability of HIS. The architecture is based on an application ontology of carotid atherosclerosis that is used to (a) integrate heterogeneous data sources on the basis of semantic representation and ontological reasoning and (b) access the critical information using SPARQL query rewriting and ontology-based data access services. The architecture was tested over a carotid atherosclerosis dataset consisting of the imaging exams and the clinical profile of 233 patients, using a set of complex queries, constructed by the physicians. The proposed architecture was evaluated with respect to the complexity of the queries that the physicians could make and the retrieval speed. The proposed architecture gave promising results in terms of interoperability, data integration of heterogeneous sources with an ontological way and expanded capabilities of query and retrieval in HIS.
Zhang, Jianguo; Zhang, Kai; Yang, Yuanyuan; Sun, Jianyong; Ling, Tonghui; Wang, Mingqing; Bak, Peter
2015-01-01
Abstract. IHE XDS-I profile proposes an architecture model for cross-enterprise medical image sharing, but there are only a few clinical implementations reported. Here, we investigate three pilot studies based on the IHE XDS-I profile to see whether we can use this architecture as a foundation for image sharing solutions in a variety of health-care settings. The first pilot study was image sharing for cross-enterprise health care with federated integration, which was implemented in Huadong Hospital and Shanghai Sixth People’s Hospital within the Shanghai Shen-Kang Hospital Management Center; the second pilot study was XDS-I–based patient-controlled image sharing solution, which was implemented by the Radiological Society of North America (RSNA) team in the USA; and the third pilot study was collaborative imaging diagnosis with electronic health-care record integration in regional health care, which was implemented in two districts in Shanghai. In order to support these pilot studies, we designed and developed new image access methods, components, and data models such as RAD-69/WADO hybrid image retrieval, RSNA clearinghouse, and extension of metadata definitions in both the submission set and the cross-enterprise document sharing (XDS) registry. We identified several key issues that impact the implementation of XDS-I in practical applications, and conclude that the IHE XDS-I profile is a theoretically good architecture and a useful foundation for medical image sharing solutions across multiple regional health-care providers. PMID:26835497
Zhang, Jianguo; Zhang, Kai; Yang, Yuanyuan; Sun, Jianyong; Ling, Tonghui; Wang, Mingqing; Bak, Peter
2015-10-01
IHE XDS-I profile proposes an architecture model for cross-enterprise medical image sharing, but there are only a few clinical implementations reported. Here, we investigate three pilot studies based on the IHE XDS-I profile to see whether we can use this architecture as a foundation for image sharing solutions in a variety of health-care settings. The first pilot study was image sharing for cross-enterprise health care with federated integration, which was implemented in Huadong Hospital and Shanghai Sixth People's Hospital within the Shanghai Shen-Kang Hospital Management Center; the second pilot study was XDS-I-based patient-controlled image sharing solution, which was implemented by the Radiological Society of North America (RSNA) team in the USA; and the third pilot study was collaborative imaging diagnosis with electronic health-care record integration in regional health care, which was implemented in two districts in Shanghai. In order to support these pilot studies, we designed and developed new image access methods, components, and data models such as RAD-69/WADO hybrid image retrieval, RSNA clearinghouse, and extension of metadata definitions in both the submission set and the cross-enterprise document sharing (XDS) registry. We identified several key issues that impact the implementation of XDS-I in practical applications, and conclude that the IHE XDS-I profile is a theoretically good architecture and a useful foundation for medical image sharing solutions across multiple regional health-care providers.
National Launch System comparative economic analysis
NASA Technical Reports Server (NTRS)
Prince, A.
1992-01-01
Results are presented from an analysis of economic benefits (or losses), in the form of the life cycle cost savings, resulting from the development of the National Launch System (NLS) family of launch vehicles. The analysis was carried out by comparing various NLS-based architectures with the current Shuttle/Titan IV fleet. The basic methodology behind this NLS analysis was to develop a set of annual payload requirements for the Space Station Freedom and LEO, to design launch vehicle architectures around these requirements, and to perform life-cycle cost analyses on all of the architectures. A SEI requirement was included. Launch failure costs were estimated and combined with the relative reliability assumptions to measure the effects of losses. Based on the analysis, a Shuttle/NLS architecture evolving into a pressurized-logistics-carrier/NLS architecture appears to offer the best long-term cost benefit.
A practical approach for active camera coordination based on a fusion-driven multi-agent system
NASA Astrophysics Data System (ADS)
Bustamante, Alvaro Luis; Molina, José M.; Patricio, Miguel A.
2014-04-01
In this paper, we propose a multi-agent system architecture to manage spatially distributed active (or pan-tilt-zoom) cameras. Traditional video surveillance algorithms are of no use for active cameras, and we have to look at different approaches. Such multi-sensor surveillance systems have to be designed to solve two related problems: data fusion and coordinated sensor-task management. Generally, architectures proposed for the coordinated operation of multiple cameras are based on the centralisation of management decisions at the fusion centre. However, the existence of intelligent sensors capable of decision making brings with it the possibility of conceiving alternative decentralised architectures. This problem is approached by means of a MAS, integrating data fusion as an integral part of the architecture for distributed coordination purposes. This paper presents the MAS architecture and system agents.
Jeiter, Julius; Hilger, Hartmut H; Smets, Erik F; Weigend, Maximilian
2017-11-10
Flowers of Geraniaceae and Hypseocharitaceae are generally considered as morphologically simple. However, previous studies indicated complex diversity in floral architecture including tendencies towards synorganization. Most of the species have nectar-rewarding flowers which makes the nectaries a key component of floral organization and architecture. Here, the development of the floral nectaries is studied and placed into the context of floral architecture. Seven species from Geraniaceae and one from Hypseocharitaceae were investigated using scanning electron microscopy and light microscopy. Samples were prepared and processed using standard protocols. The development of the nectary glands follows the same trajectory in all species studied. Minor differences occur in the onset of nectarostomata development. The most striking finding is the discovery that a short anthophore develops via intercalary growth at the level of the nectary glands. This anthophore lifts up the entire flower apart from the nectary gland itself and thus plays an important role in floral architecture, especially in the flowers of Pelargonium. Here, the zygomorphic flowers show a particularly extensive receptacular growth, resulting in the formation of a spur-like receptacular cavity ('inner spur'). The nectary gland is hidden at the base of the cavity. Various forms of compartmentalization, culminating in the 'revolver flower' of Geranium maderense, are described. Despite the superficial similarity of the flowers in Geraniaceae and Hypseocharitaceae, there is broad diversity in floral organization and floral architecture. While the receptacular origin of the spur-like cavity in Pelargonium had already been described, anthophore formation via intercalary growth of the receptacle in the other genera had not been previously documented. In the context of the most recent phylogenies of the families, an evolutionary series for the floral architecture is proposed, underscoring the importance of synorganization in these seemingly simple flowers. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
An intersubject variable regional anesthesia simulator with a virtual patient architecture.
Ullrich, Sebastian; Grottke, Oliver; Fried, Eduard; Frommen, Thorsten; Liao, Wei; Rossaint, Rolf; Kuhlen, Torsten; Deserno, Thomas M
2009-11-01
The main purpose is to provide an intuitive VR-based training environment for regional anesthesia (RA). The research question is how to process subject-specific datasets, organize them in a meaningful way and how to perform the simulation for peripheral regions. We propose a flexible virtual patient architecture and methods to process datasets. Image acquisition, image processing (especially segmentation), interactive nerve modeling and permutations (nerve instantiation) are described in detail. The simulation of electric impulse stimulation and according responses are essential for the training of peripheral RA and solved by an approach based on the electric distance. We have created an XML-based virtual patient database with several subjects. Prototypes of the simulation are implemented and run on multimodal VR hardware (e.g., stereoscopic display and haptic device). A first user pilot study has confirmed our approach. The virtual patient architecture enables support for arbitrary scenarios on different subjects. This concept can also be used for other simulators. In future work, we plan to extend the simulation and conduct further evaluations in order to provide a tool for routine training for RA.
Evaluation of Cache-based Superscalar and Cacheless Vector Architectures for Scientific Computations
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Carter, Jonathan; Shalf, John; Skinner, David; Ethier, Stephane; Biswas, Rupak; Djomehri, Jahed; VanderWijngaart, Rob
2003-01-01
The growing gap between sustained and peak performance for scientific applications has become a well-known problem in high performance computing. The recent development of parallel vector systems offers the potential to bridge this gap for a significant number of computational science codes and deliver a substantial increase in computing capabilities. This paper examines the intranode performance of the NEC SX6 vector processor and the cache-based IBM Power3/4 superscalar architectures across a number of key scientific computing areas. First, we present the performance of a microbenchmark suite that examines a full spectrum of low-level machine characteristics. Next, we study the behavior of the NAS Parallel Benchmarks using some simple optimizations. Finally, we evaluate the perfor- mance of several numerical codes from key scientific computing domains. Overall results demonstrate that the SX6 achieves high performance on a large fraction of our application suite and in many cases significantly outperforms the RISC-based architectures. However, certain classes of applications are not easily amenable to vectorization and would likely require extensive reengineering of both algorithm and implementation to utilize the SX6 effectively.
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Kacpura, Thomas J.
2004-01-01
The NASA Glenn Research Center is investigating the development and suitability of a software-based open-architecture for space-based reconfigurable transceivers (RTs) and software-defined radios (SDRs). The main objectives of this project are to enable advanced operations and reduce mission costs. SDRs are becoming more common because of the capabilities of reconfigurable digital signal processing technologies such as field programmable gate arrays and digital signal processors, which place radio functions in firmware and software that were traditionally performed with analog hardware components. Features of interest of this communications architecture include nonproprietary open standards and application programming interfaces to enable software reuse and portability, independent hardware and software development, and hardware and software functional separation. The goals for RT and SDR technologies for NASA space missions include prelaunch and on-orbit frequency and waveform reconfigurability and programmability, high data rate capability, and overall communications and processing flexibility. These operational advances over current state-of-art transceivers will be provided to reduce the power, mass, and cost of RTs and SDRs for space communications. The open architecture for NASA communications will support existing (legacy) communications needs and capabilities while providing a path to more capable, advanced waveform development and mission concepts (e.g., ad hoc constellations with self-healing networks and high-rate science data return). A study was completed to assess the state of the art in RT architectures, implementations, and technologies. In-house researchers conducted literature searches and analysis, interviewed Government and industry contacts, and solicited information and white papers from industry on space-qualifiable RTs and SDRs and their associated technologies for space-based NASA applications. The white papers were evaluated, compiled, and used to assess RT and SDR system architectures and core technology elements to determine an appropriate investment strategy to advance these technologies to meet future mission needs. The use of these radios in the space environment represents a challenge because of the space radiation suitability of the components, which drastically reduces the processing capability. The radios available for space are considered to be RTs (as opposed to SDRs), which are digitally programmable radios with selectable changes from an architecture combining analog and digital components. The limited flexibility of this design contrasts against the desire to have a power-efficient solution and open architecture.
NASA Astrophysics Data System (ADS)
Liu, Jianping; Xian, Benzhong; Wang, Junhui; Ji, Youliang; Lu, Zhiyong; Liu, Saijun
2017-12-01
The sedimentary architectures of submarine/sublacustrine fans are controlled by sedimentary processes, geomorphology and sediment composition in sediment gravity flows. To advance understanding of sedimentary architecture of debris fans formed predominantly by debris flows in deep-water environments, a sub-lacustrine fan (Y11 fan) within a lacustrine succession has been identified and studied through the integration of core data, well logging data and 3D seismic data in the Eocene Dongying Depression, Bohai Bay Basin, east China. Six types of resedimented lithofacies can be recognized, which are further grouped into five broad lithofacies associations. Quantification of gravity flow processes on the Y11 fan is suggested by quantitative lithofacies analysis, which demonstrates that the fan is dominated by debris flows, while turbidity currents and sandy slumps are less important. The distribution, geometry and sedimentary architecture are documented using well data and 3D seismic data. A well-developed depositional lobe with a high aspect ratio is identified based on a sandstone isopach map. Canyons and/or channels are absent, which is probably due to the unsteady sediment supply from delta-front collapse. Distributary tongue-shaped debris flow deposits can be observed at different stages of fan growth, suggesting a lobe constructed by debrite tongue complexes. Within each stage of the tongue complexes, architectural elements are interpreted by wireline log motifs showing amalgamated debrite tongues, which constitute the primary fan elements. Based on lateral lithofacies distribution and vertical sequence analysis, it is proposed that lakefloor erosion, entrainment and dilution in the flow direction lead to an organized distribution of sandy debrites, muddy debrites and turbidites on individual debrite tongues. Plastic rheology of debris flows combined with fault-related topography are considered the major factors that control sediment distribution and fan architecture. An important implication of this study is that a deep-water depositional model for debrite-dominated systems was proposed, which may be applicable to other similar deep-water environments.
Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan Rt
2017-01-01
Data about a muscle's fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function.
Bentsen, Thomas; May, Tobias; Kressner, Abigail A; Dau, Torsten
2018-01-01
Computational speech segregation attempts to automatically separate speech from noise. This is challenging in conditions with interfering talkers and low signal-to-noise ratios. Recent approaches have adopted deep neural networks and successfully demonstrated speech intelligibility improvements. A selection of components may be responsible for the success with these state-of-the-art approaches: the system architecture, a time frame concatenation technique and the learning objective. The aim of this study was to explore the roles and the relative contributions of these components by measuring speech intelligibility in normal-hearing listeners. A substantial improvement of 25.4 percentage points in speech intelligibility scores was found going from a subband-based architecture, in which a Gaussian Mixture Model-based classifier predicts the distributions of speech and noise for each frequency channel, to a state-of-the-art deep neural network-based architecture. Another improvement of 13.9 percentage points was obtained by changing the learning objective from the ideal binary mask, in which individual time-frequency units are labeled as either speech- or noise-dominated, to the ideal ratio mask, where the units are assigned a continuous value between zero and one. Therefore, both components play significant roles and by combining them, speech intelligibility improvements were obtained in a six-talker condition at a low signal-to-noise ratio.
Cao, Peng-Fei; Naguib, Michael; Du, Zhijia; ...
2018-01-04
Although significant progress has been made in improving cycling performance of silicon-based electrodes, few studies have been performed on the architecture effect on polymer binder performance for lithium-ion batteries. A systematic study on the relationship between polymer architectures and binder performance is especially useful in designing synthetic polymer binders. In this paper, a graft block copolymer with readily tunable architecture parameters is synthesized and tested as the polymer binder for the high-mass loading silicon (15 wt %)/graphite (73 wt %) composite electrode (active materials >2.5 mg/cm 2). With the same chemical composition and functional group ratio, the graft block copolymermore » reveals improved cycling performance in both capacity retention (495 mAh/g vs 356 mAh/g at 100th cycle) and Coulombic efficiency (90.3% vs 88.1% at first cycle) than the physical mixing of glycol chitosan (GC) and lithium polyacrylate (LiPAA). Galvanostatic results also demonstrate the significant impacts of different architecture parameters of graft copolymers, including grafting density and side chain length, on their ultimate binder performance. Finally, by simply changing the side chain length of GC-g-LiPAA, the retaining delithiation capacity after 100 cycles varies from 347 mAh/g to 495 mAh/g.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Peng-Fei; Naguib, Michael; Du, Zhijia
Although significant progress has been made in improving cycling performance of silicon-based electrodes, few studies have been performed on the architecture effect on polymer binder performance for lithium-ion batteries. A systematic study on the relationship between polymer architectures and binder performance is especially useful in designing synthetic polymer binders. In this paper, a graft block copolymer with readily tunable architecture parameters is synthesized and tested as the polymer binder for the high-mass loading silicon (15 wt %)/graphite (73 wt %) composite electrode (active materials >2.5 mg/cm 2). With the same chemical composition and functional group ratio, the graft block copolymermore » reveals improved cycling performance in both capacity retention (495 mAh/g vs 356 mAh/g at 100th cycle) and Coulombic efficiency (90.3% vs 88.1% at first cycle) than the physical mixing of glycol chitosan (GC) and lithium polyacrylate (LiPAA). Galvanostatic results also demonstrate the significant impacts of different architecture parameters of graft copolymers, including grafting density and side chain length, on their ultimate binder performance. Finally, by simply changing the side chain length of GC-g-LiPAA, the retaining delithiation capacity after 100 cycles varies from 347 mAh/g to 495 mAh/g.« less
NASA Astrophysics Data System (ADS)
Al-Ziayyir, Haitham; Hodgetts, David
2015-04-01
The main reservoir in Rumaila /West Qurna oilfields is the Zubair Formation of Hautervian and Barremian age. This silicilastic formation extends over the regions of central and southern Iraq. This study attempts to improve the understanding of the architectural elements and their control on fluid flow paths within the Zubair Formation. A significant source of uncertainty in the zubair formation is the control on hydrodynamic pressure distribution. The reasons for pressure variation in the Zubair are not well understood. This work aims to reduce this uncertainty by providing a more detailed knowledge of reservoir architecture, distribution of barriers and baffles, and reservoir compartmentalization. To characterize the stratigraphic architecture of the Zubair formation,high resolution reservoir models that incorporate dynamic and static data were built. Facies modelling is accomplished by means of stochastic modelling techniques.The work is based on a large data set collected from the Rumaila oilfields. These data, comprising conventional logs of varying vintages, NMR logs, cores from six wells, and pressure data, were used for performing geological and petrophysical analyses.Flow simulation studies have also been applied to examine the impact of architecture on recovery. Understanding of geology and reservoir performance can be greatly improved by using an efficient, quick and viable integrated analysis, interpretation, and modelling.
Readout architecture based on the use of Silicon PhotoMultiplier (SiPM, or MMPC)
NASA Astrophysics Data System (ADS)
Marteau, J.; Carlus, B.; Gardien, S.; Girerd, C.; Ianigro, J.-C.; Montorio, J.-L.; Gibert, D.; Nicollin, F.
2012-04-01
The DIAPHANE project is pluri-disciplinary collaboration between particle physicists and geophysicists to perform the tomography of large geological structure mainly devoted to the study of active volcanoes. The detector used for this tomography, hereafter referred to as telescope, uses a standard, robust, cost-effective and well-known technology based on solid plastic scintillator readout by photomultiplier(s). The first generation of those telescopes, presently running in the Mont-Terri underground laboratory (St-Ursanne, Switzerland) and on the active volcano of La Soufrière (Guadeloupe, Lesser Antilles, France), uses Hamamatsu H8804-200mod photomultipliers. We present an upgrade of the readout architecture based on the use of Silicon PhotoMultiplier (SiPM, or MMPC) which allows to simplify the optical connections w.r.t. the present design and to benefit from the high photo-dectection efficiency of the SiPM. To ensure an effective increase in the muon detection efficiency one has to optimize the first trigger level and find the best compromise between photostatistics and the tails of the dark noise contributions. Several readout architectures, based or not on dedicated ASICs, are discussed and compared in this article.
Designing Next Generation Massively Multithreaded Architectures for Irregular Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumeo, Antonino; Secchi, Simone; Villa, Oreste
Irregular applications, such as data mining or graph-based computations, show unpredictable memory/network access patterns and control structures. Massively multi-threaded architectures with large node count, like the Cray XMT, have been shown to address their requirements better than commodity clusters. In this paper we present the approaches that we are currently pursuing to design future generations of these architectures. First, we introduce the Cray XMT and compare it to other multithreaded architectures. We then propose an evolution of the architecture, integrating multiple cores per node and next generation network interconnect. We advocate the use of hardware support for remote memory referencemore » aggregation to optimize network utilization. For this evaluation we developed a highly parallel, custom simulation infrastructure for multi-threaded systems. Our simulator executes unmodified XMT binaries with very large datasets, capturing effects due to contention and hot-spotting, while predicting execution times with greater than 90% accuracy. We also discuss the FPGA prototyping approach that we are employing to study efficient support for irregular applications in next generation manycore processors.« less
Bio-inspired adaptive feedback error learning architecture for motor control.
Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo
2012-10-01
This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).
Embedding the shapes of regions of interest into a Clinical Document Architecture document.
Minh, Nguyen Hai; Yi, Byoung-Kee; Kim, Il Kon; Song, Joon Hyun; Binh, Pham Viet
2015-03-01
Sharing a medical image visually annotated by a region of interest with a remotely located specialist for consultation is a good practice. It may, however, require a special-purpose (and most likely expensive) system to send and view them, which is an unfeasible solution in developing countries such as Vietnam. In this study, we design and implement interoperable methods based on the HL7 Clinical Document Architecture and the eXtensible Markup Language Stylesheet Language for Transformation standards to seamlessly exchange and visually present the shapes of regions of interest using web browsers. We also propose a new integration architecture for a Clinical Document Architecture generator that enables embedding of regions of interest and simultaneous auto-generation of corresponding style sheets. Using the Clinical Document Architecture document and style sheet, a sender can transmit clinical documents and medical images together with coordinate values of regions of interest to recipients. Recipients can easily view the documents and display embedded regions of interest by rendering them in their web browser of choice. © The Author(s) 2014.
Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing
Kudithipudi, Dhireesha; Saleh, Qutaiba; Merkel, Cory; Thesing, James; Wysocki, Bryant
2016-01-01
Reservoir computing (RC) is gaining traction in several signal processing domains, owing to its non-linear stateful computation, spatiotemporal encoding, and reduced training complexity over recurrent neural networks (RNNs). Previous studies have shown the effectiveness of software-based RCs for a wide spectrum of applications. A parallel body of work indicates that realizing RNN architectures using custom integrated circuits and reconfigurable hardware platforms yields significant improvements in power and latency. In this research, we propose a neuromemristive RC architecture, with doubly twisted toroidal structure, that is validated for biosignal processing applications. We exploit the device mismatch to implement the random weight distributions within the reservoir and propose mixed-signal subthreshold circuits for energy efficiency. A comprehensive analysis is performed to compare the efficiency of the neuromemristive RC architecture in both digital(reconfigurable) and subthreshold mixed-signal realizations. Both Electroencephalogram (EEG) and Electromyogram (EMG) biosignal benchmarks are used for validating the RC designs. The proposed RC architecture demonstrated an accuracy of 90 and 84% for epileptic seizure detection and EMG prosthetic finger control, respectively. PMID:26869876
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yao; Balaprakash, Prasanna; Meng, Jiayuan
We present Raexplore, a performance modeling framework for architecture exploration. Raexplore enables rapid, automated, and systematic search of architecture design space by combining hardware counter-based performance characterization and analytical performance modeling. We demonstrate Raexplore for two recent manycore processors IBM Blue- Gene/Q compute chip and Intel Xeon Phi, targeting a set of scientific applications. Our framework is able to capture complex interactions between architectural components including instruction pipeline, cache, and memory, and to achieve a 3–22% error for same-architecture and cross-architecture performance predictions. Furthermore, we apply our framework to assess the two processors, and discover and evaluate a list ofmore » architectural scaling options for future processor designs.« less
A Notional Example of Understanding Human Exploration Traverses on the Lunar Surface
NASA Technical Reports Server (NTRS)
Gruener, John
2012-01-01
Mr. Gruener received an M.S. in physical science, with an emphasis in planetary geology, from the University of Houston-Clear Lake in 1994. He then began working with NASA JSC.s Solar System Exploration Division on the development of prototype planetary science instruments, the development of a mineral-based substrate for nutrient delivery to plant growth systems in bio-regenerative life support systems, and in support of the Mars Exploration Rover missions in rock and mineral identification. In 2004, Mr. Gruener again participated in a renewed effort to plan and design missions to the Moon, Mars, and beyond. He participated in many exploration planning activities, including NASA.s Exploration Systems Architecture Study (ESAS), Global Exploration Strategy Workshop, Lunar Architecture Team 1 and 2, Constellation Lunar Architecture Team, the Global Point of Departure Lunar Exploration Team, and the NASA Advisory Council (NAC) Workshop on Science Associated with the Lunar Exploration Architecture. Mr. Gruener has also been an active member of the science team supporting NASA.s Desert Research and Technology Studies (RATS).
NASA Astrophysics Data System (ADS)
Ferrari, F.; Medici, M.
2017-02-01
Since 2005, DIAPReM Centre of the Department of Architecture of the University of Ferrara, in collaboration with the "Centro Studi Leon Battista Alberti" Foundation and the Consorzio Futuro in Ricerca, is carrying out a research project for the creation of 3D databases that could allow the development of a critical interpretation of Alberti's architectural work. The project is primarily based on a common three-dimensional integrated survey methodology for the creation of a navigable multilayered database. The research allows the possibility of reiterative metrical analysis, thanks to the use of a coherent data in order to check and validate hypothesis by researchers, art historians and scholars on Alberti's architectural work. Coherently with this methodological framework, indeed, two case studies are explained in this paper: the church of San Sebastiano in Matua and The Church of the Santissima Annunziata in Florence. Furthermore, thanks to a brief introduction of further developments of the project, a short graphical analysis of preliminary results on Tempio Malatestiano in Rimini opens new perspectives of research.
Bajaj, Deepti; Allerton, Brianne M; Kirby, Joshua T; Miller, Freeman; Rowe, David A; Pohlig, Ryan T; Modlesky, Christopher M
2015-12-01
Muscle is strongly related to cortical bone architecture in children; however, the relationship between muscle volume and trabecular bone architecture is poorly studied. The aim of this study was to determine if muscle volume is related to trabecular bone architecture in children and if the relationship is different than the relationship between muscle volume and cortical bone architecture. Forty typically developing children (20 boys and 20 girls; 6 to 12y) were included in the study. Measures of trabecular bone architecture [i.e., apparent trabecular bone volume to total volume (appBV/TV), trabecular number (appTb.N), trabecular thickness (appTb.Th) and trabecular separation (appTb.Sp)] in the distal femur, cortical bone architecture [cortical volume, total volume, section modulus (Z) and polar moment of inertia (J)] in the midfemur, muscle volume in the midthigh and femur length were assessed using magnetic resonance imaging. Total physical activity and moderate-to-vigorous physical activity were assessed using an accelerometer-based activity monitor worn around the waist for four days. Calcium intake was assessed using diet records. Relationships among the measures were tested using multiple linear regression analysis. Muscle volume was moderately-to-strongly related to measures of trabecular bone architecture [appBV/TV (r=0.81), appTb.N (r=0.53), appTb.Th (r=0.67), appTb.Sp (r=-0.71); all p<0.001] but more strongly related to measures of cortical bone architecture [cortical volume (r=0.96), total volume (r=0.94), Z (r=0.94) and J (r=0.92; all p<0.001)]. Similar relationships were observed between femur length and measures of trabecular (p<0.01) and cortical (p<0.001) bone architecture. Sex, physical activity and calcium intake were not related to any measure of bone architecture (p>0.05). Because muscle volume and femur length were strongly related (r=0.91, p<0.001), muscle volume was scaled for femur length (muscle volume/femur length(2.77)). When muscle volume/femur length(2.77) was included in a regression model with femur length, sex, physical activity and calcium intake, muscle volume/femur length(2.77) was a significant predictor of appBV/TV, appTb.Th and appTb.Sp (partial r=0.44 to 0.49, p<0.05) and all measures of cortical bone architecture (partial r=0.47 to 0.54; p<0.01). The findings suggest that muscle volume in the midthigh is related to trabecular bone architecture in the distal femur of typically developing children. The relationship is weaker than the relationship between muscle volume in the midthigh and cortical bone architecture in the midfemur, but the discrepancy is driven, in large part, by the greater dependence of cortical bone architecture measures on femur length. Copyright © 2015. Published by Elsevier Inc.
Bajaj, Deepti; Allerton, Brianne M.; Kirby, Joshua T.; Miller, Freeman; Rowe, David A.; Pohlig, Ryan T.; Modlesky, Christopher M.
2016-01-01
Introduction Muscle is strongly related to cortical bone architecture in children; however, the relationship between muscle volume and trabecular bone architecture is poorly studied. The aim of this study was to determine if muscle volume is related to trabecular bone architecture in children and if the relationship is different than the relationship between muscle volume and cortical bone architecture. Materials and methods Forty typically developing children (20 boys and 20 girls; 6 to 12 y) were included in the study. Measures of trabecular bone architecture [apparent trabecular bone volume to total volume (appBV/TV), trabecular number (appTb.N), trabecular thickness (appTb.Th), and trabecular separation (appTb.Sp)] in the distal femur, cortical bone architecture [(cortical volume, medullary volume, total volume, polar moment of inertia (J) and section modulus (Z)] in the midfemur, muscle volume in the midthigh and femur length were assessed using magnetic resonance imaging. Total and moderate-to-vigorous physical activity were assessed using an accelerometer-based activity monitor worn around the waist for four days. Calcium intake was assessed using diet records. Relationships among the measures were tested using multiple linear regression analysis. Results Muscle volume was moderately-to-strongly related to measures of trabecular bone architecture [appBV/TV (r = 0.81, appTb.N (r = 0.53), appTb.Th (r = 0.67), appTb.Sp (r = −0.71; all p < 0.001] but more strongly related to measures of cortical bone architecture [cortical volume (r = 0.96), total volume (r = 0.94), Z (r = 0.94) and J (r = 0.92; all p < 0.001)]. Similar relationships were observed between femur length and measures of trabecular (p < 0.01) and cortical (p < 0.001) bone architecture. Sex, physical activity and calcium intake were not related to any measure of bone architecture (p > 0.05). Because muscle volume and femur length were strongly related (r = 0.91, p < 0.001), muscle volume was scaled for femur length (muscle volume/femur length2.77). When muscle volume/femur length2.77 was included in a regression model with femur length, sex, physical activity and calcium intake, muscle volume/femur length2.77 was a significant predictor of appBV/TV, appTb.Th and appTb.Sp (partial r = 0.44 to 049, p < 0.05) and all measures of cortical bone architecture (partial r = 0.47 to 054; p < 0.01). Conclusions The findings suggest that muscle volume in the midthigh is related to trabecular bone architecture in the distal femur of children. The relationship is weaker than the relationship between muscle volume in the midthigh and cortical bone architecture in the midfemur, but the discrepancy is driven, in large part, by the greater dependence of cortical bone architecture measures on femur length. PMID:26187197
Thermostructural Properties Of Sic/Sic Panels With 2.5d And 3d Fiber Architectures
NASA Technical Reports Server (NTRS)
Yun, H. M.; DeCarlo, J. A.; Bhatt, R. H.; Jaskowiak, M. H.
2005-01-01
CMC hot-section components in advanced engines for power and propulsion will typically require high cracking strength, high ultimate strength and strain, high creep- rupture resistance, and high thermal conductivity in all directions. In the past, NASA has demonstrated fabrication of a variety of SiC/SiC flat panels and round tubes with various 2D fiber architectures using the high-modulus high-performance Sylramic-iBN Sic fiber and Sic-based matrices derived by CVI, MI, and/or PIP processes. The thermo- mechanical properties of these CMC have shown state-of-the-art performance, but primarily in the in-plane directions. Currently NASA is extending the thermostructural capability of these SiC/SiC systems in the thru-thickness direction by using various 2.5D and 3D fiber architectures. NASA is also using specially designed fabrication steps to optimize the properties of the BN-based interphase and Sic-based matrices. In this study, Sylramic-iBN/SiC panels with 2D plain weave, 2.5D satin weave, 2.5D ply-to-ply interlock weave, and 3D angle interlock fiber architectures, all woven at AITI, were fabricated using matrix densification routes previously established between NASA and GEPSC for CVI-MI processes and between NASA and Starfire-Systems for PIP processes. Introduction of the 2.5 D fiber architecture along with an improved matrix process was found to increase inter-laminar tensile strength from 1.5 -2 to 3 - 4 ksi and thru-thickness thermal conductivity from 15-20 to 30-35 BTU/ft.hr.F with minimal reduction in in-plane strength and creep-rupture properties. Such improvements should reduce thermal stresses and increase the thermostructural operating envelope for SiC/SiC engine components. These results are analyzed to offer general guidelines for selecting fiber architectures and constituent processes for high-performance SiC/SiC engine components.
An Enterprise Architecture Perspective to Electronic Health Record Based Care Governance.
Motoc, Bogdan
2017-01-01
This paper proposes an Enterprise Architecture viewpoint of Electronic Health Record (EHR) based care governance. The improvements expected are derived from the collaboration framework and the clinical health model proposed as foundation for the concept of EHR.
The research of service provision based on service-oriented architecture for NGN
NASA Astrophysics Data System (ADS)
Jie, Yin; Nian, Zhou; Qian, Mao
2007-11-01
Service convergence is an important characteristic of NGN(Next Generation Networking). How to integrate the service capabilities of telecommunication network and Internet. At first, this article puts forward the concepts and characteristics of SOA (Service-Oriented Architecture) and Web Service, then discusses relationship between them. Secondly, combined with five kinds of Service Provision in NGN, A service platform architecture design of NGN and a service development mode based on SOA are brought up. At last, a specific example is analyzed with BPEL (Business Process Execution Language) in order to describe service development flow based on SOA for NGN.
Ryan, Amanda; Eklund, Peter
2008-01-01
Healthcare information is composed of many types of varying and heterogeneous data. Semantic interoperability in healthcare is especially important when all these different types of data need to interact. Presented in this paper is a solution to interoperability in healthcare based on a standards-based middleware software architecture used in enterprise solutions. This architecture has been translated into the healthcare domain using a messaging and modeling standard which upholds the ideals of the Semantic Web (HL7 V3) combined with a well-known standard terminology of clinical terms (SNOMED CT).
Introduction to Message-Bus Architectures for Space Systems
NASA Technical Reports Server (NTRS)
Smith, Dan; Gregory, Brian
2005-01-01
This course presents technical and programmatic information on the development of message-based architectures for space mission ground and flight software systems. Message-based architecture approaches provide many significant advantages over the more traditional socket-based one-of-a-kind integrated system development approaches. The course provides an overview of publish/subscribe concepts, the use of common isolation layer API's, approaches to message standardization, and other technical topics. Several examples of currently operational systems are discussed and possible changes to the system development process are presented. Benefits and lessons learned will be discussed and time for questions and answers will be provided.
Weather Information Communications (WINCOMM) Overview and Status
NASA Technical Reports Server (NTRS)
Martzaklis, K.
2003-01-01
The second annual project review of Weather Information Communications (WINCOMM) is presented. The topics of discussion include: 1) In-Flight Weather Information; 2) System Elements; 3) Technology Investment Areas; 4) NAS Information Exchange; 5) FIS Datalink Architecture Analyses; 6) Hybrid FIS Datalink Architecture; 7) FIS Datalink Architecture Analyses; 8) Air Transport: Ground and Satellite-based Datalinks; 9) General Aviation: Ground and Satellite-based Datalinks; 10) Low Altitude AutoMET Reporting; 11) AutoMET: Airborne-based Datalinks; 12) Network Protocols Development; and 13) FAA/NASA Collaboration. A summary of WINCOMM is also included. This paper is in viewgraph form.
Atkinson, Jonathan A; Lobet, Guillaume; Noll, Manuel; Meyer, Patrick E; Griffiths, Marcus; Wells, Darren M
2017-10-01
Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping. © The Authors 2017. Published by Oxford University Press.
Atkinson, Jonathan A.; Lobet, Guillaume; Noll, Manuel; Meyer, Patrick E.; Griffiths, Marcus
2017-01-01
Abstract Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping. PMID:29020748
Becoming and Disappearing: Between Art, Architecture and Research
ERIC Educational Resources Information Center
Beinart, Katy
2014-01-01
This paper examines some parallels and differences in pursuing practice-based research in art or architecture. Using a series of different headlines and examples, I examine the potential of working "between" art and architecture, which I argue could generate new, hybridised methodologies of practice through interrogating the…
Hybridization of Architectural Styles for Integrated Enterprise Information Systems
NASA Astrophysics Data System (ADS)
Bagusyte, Lina; Lupeikiene, Audrone
Current enterprise systems engineering theory does not provide adequate support for the development of information systems on demand. To say more precisely, it is forming. This chapter proposes the main architectural decisions that underlie the design of integrated enterprise information systems. This chapter argues for the extending service-oriented architecture - for merging it with component-based paradigm at the design stage and using connectors of different architectural styles. The suitability of general-purpose language SysML for the modeling of integrated enterprise information systems architectures is described and arguments pros are presented.
Papale, Paolo; Chiesi, Leonardo; Rampinini, Alessandra C; Pietrini, Pietro; Ricciardi, Emiliano
2016-01-01
In the last decades, the rapid growth of functional brain imaging methodologies allowed cognitive neuroscience to address open questions in philosophy and social sciences. At the same time, novel insights from cognitive neuroscience research have begun to influence various disciplines, leading to a turn to cognition and emotion in the fields of planning and architectural design. Since 2003, the Academy of Neuroscience for Architecture has been supporting 'neuro-architecture' as a way to connect neuroscience and the study of behavioral responses to the built environment. Among the many topics related to multisensory perceptual integration and embodiment, the concept of hapticity was recently introduced, suggesting a pivotal role of tactile perception and haptic imagery in architectural appraisal. Arguments have thus risen in favor of the existence of shared cognitive foundations between hapticity and the supramodal functional architecture of the human brain. Precisely, supramodality refers to the functional feature of defined brain regions to process and represent specific information content in a more abstract way, independently of the sensory modality conveying such information to the brain. Here, we highlight some commonalities and differences between the concepts of hapticity and supramodality according to the distinctive perspectives of architecture and cognitive neuroscience. This comparison and connection between these two different approaches may lead to novel observations in regard to people-environment relationships, and even provide empirical foundations for a renewed evidence-based design theory.
Hardware architecture design of image restoration based on time-frequency domain computation
NASA Astrophysics Data System (ADS)
Wen, Bo; Zhang, Jing; Jiao, Zipeng
2013-10-01
The image restoration algorithms based on time-frequency domain computation is high maturity and applied widely in engineering. To solve the high-speed implementation of these algorithms, the TFDC hardware architecture is proposed. Firstly, the main module is designed, by analyzing the common processing and numerical calculation. Then, to improve the commonality, the iteration control module is planed for iterative algorithms. In addition, to reduce the computational cost and memory requirements, the necessary optimizations are suggested for the time-consuming module, which include two-dimensional FFT/IFFT and the plural calculation. Eventually, the TFDC hardware architecture is adopted for hardware design of real-time image restoration system. The result proves that, the TFDC hardware architecture and its optimizations can be applied to image restoration algorithms based on TFDC, with good algorithm commonality, hardware realizability and high efficiency.
Integrating hospital information systems in healthcare institutions: a mediation architecture.
El Azami, Ikram; Cherkaoui Malki, Mohammed Ouçamah; Tahon, Christian
2012-10-01
Many studies have examined the integration of information systems into healthcare institutions, leading to several standards in the healthcare domain (CORBAmed: Common Object Request Broker Architecture in Medicine; HL7: Health Level Seven International; DICOM: Digital Imaging and Communications in Medicine; and IHE: Integrating the Healthcare Enterprise). Due to the existence of a wide diversity of heterogeneous systems, three essential factors are necessary to fully integrate a system: data, functions and workflow. However, most of the previous studies have dealt with only one or two of these factors and this makes the system integration unsatisfactory. In this paper, we propose a flexible, scalable architecture for Hospital Information Systems (HIS). Our main purpose is to provide a practical solution to insure HIS interoperability so that healthcare institutions can communicate without being obliged to change their local information systems and without altering the tasks of the healthcare professionals. Our architecture is a mediation architecture with 3 levels: 1) a database level, 2) a middleware level and 3) a user interface level. The mediation is based on two central components: the Mediator and the Adapter. Using the XML format allows us to establish a structured, secured exchange of healthcare data. The notion of medical ontology is introduced to solve semantic conflicts and to unify the language used for the exchange. Our mediation architecture provides an effective, promising model that promotes the integration of hospital information systems that are autonomous, heterogeneous, semantically interoperable and platform-independent.
New Trends in Robotics for Agriculture: Integration and Assessment of a Real Fleet of Robots
Gonzalez-de-Soto, Mariano; Pajares, Gonzalo
2014-01-01
Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis. PMID:25143976
NASA Astrophysics Data System (ADS)
Nirfalini Aulia, Dwira; Zahara, Aina
2018-03-01
Public spaces in a planned housing is a place of social interaction for every visitor of public space. The research on public space image uses four public spaces that meet the criteria of public space such as pedestrian sidewalks, public park, water front and worship place. Research on the perception of public space is interesting to investigate because housing development is part of the forming of a society that should design with proper architectural considerations. The purpose of this research is to know the image of public space on the planned housing in Medan City based on the mapping of environmental and behavior cognition and to know the difference between the image that happened to four group respondent. The research method of architecture used in this research is a descriptive qualitative method with case study approach (most similar case). Analysis of data used using mental maps and questionnaires. Then the image of public space is formed based on the elements of public space, wayfinding, route choice, and movement. The image difference that occurs to the housing residents and architecture students, design and planning are outstanding, visitors to the public housing space is good, people who have never visited the public space is inadequate.
New trends in robotics for agriculture: integration and assessment of a real fleet of robots.
Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo
2014-01-01
Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis.
Ensaff, Hannah; Homer, Matt; Sahota, Pinki; Braybrook, Debbie; Coan, Susan; McLeod, Helen
2015-06-02
With growing evidence for the positive health outcomes associated with a plant-based diet, the study's purpose was to examine the potential of shifting adolescents' food choices towards plant-based foods. Using a real world setting of a school canteen, a set of small changes to the choice architecture was designed and deployed in a secondary school in Yorkshire, England. Focussing on designated food items (whole fruit, fruit salad, vegetarian daily specials, and sandwiches containing salad) the changes were implemented for six weeks. Data collected on students' food choice (218,796 transactions) enabled students' (980 students) selections to be examined. Students' food choice was compared for three periods: baseline (29 weeks); intervention (six weeks); and post-intervention (three weeks). Selection of designated food items significantly increased during the intervention and post-intervention periods, compared to baseline (baseline, 1.4%; intervention 3.0%; post-intervention, 2.2%) χ(2)(2) = 68.1, p < 0.001. Logistic regression modelling also revealed the independent effect of the intervention, with students 2.5 times as likely (p < 0.001) to select the designated food items during the intervention period, compared to baseline. The study's results point to the influence of choice architecture within secondary school settings, and its potential role in improving adolescents' daily food choices.
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo
2014-01-01
This report presents an example of the application of multi-criteria decision analysis to the selection of an architecture for a safety-critical distributed computer system. The design problem includes constraints on minimum system availability and integrity, and the decision is based on the optimal balance of power, weight and cost. The analysis process includes the generation of alternative architectures, evaluation of individual decision criteria, and the selection of an alternative based on overall value. In this example presented here, iterative application of the quantitative evaluation process made it possible to deliberately generate an alternative architecture that is superior to all others regardless of the relative importance of cost.
A Systolic Array-Based FPGA Parallel Architecture for the BLAST Algorithm
Guo, Xinyu; Wang, Hong; Devabhaktuni, Vijay
2012-01-01
A design of systolic array-based Field Programmable Gate Array (FPGA) parallel architecture for Basic Local Alignment Search Tool (BLAST) Algorithm is proposed. BLAST is a heuristic biological sequence alignment algorithm which has been used by bioinformatics experts. In contrast to other designs that detect at most one hit in one-clock-cycle, our design applies a Multiple Hits Detection Module which is a pipelining systolic array to search multiple hits in a single-clock-cycle. Further, we designed a Hits Combination Block which combines overlapping hits from systolic array into one hit. These implementations completed the first and second step of BLAST architecture and achieved significant speedup comparing with previously published architectures. PMID:25969747
NASA Astrophysics Data System (ADS)
Liu, Lei; Hong, Xiaobin; Wu, Jian; Lin, Jintong
As Grid computing continues to gain popularity in the industry and research community, it also attracts more attention from the customer level. The large number of users and high frequency of job requests in the consumer market make it challenging. Clearly, all the current Client/Server(C/S)-based architecture will become unfeasible for supporting large-scale Grid applications due to its poor scalability and poor fault-tolerance. In this paper, based on our previous works [1, 2], a novel self-organized architecture to realize a highly scalable and flexible platform for Grids is proposed. Experimental results show that this architecture is suitable and efficient for consumer-oriented Grids.
Hervás, Marcos; Alsina-Pagès, Rosa Ma; Alías, Francesc; Salvador, Martí
2017-06-08
Fast environmental variations due to climate change can cause mass decline or even extinctions of species, having a dramatic impact on the future of biodiversity. During the last decade, different approaches have been proposed to track and monitor endangered species, generally based on costly semi-automatic systems that require human supervision adding limitations in coverage and time. However, the recent emergence of Wireless Acoustic Sensor Networks (WASN) has allowed non-intrusive remote monitoring of endangered species in real time through the automatic identification of the sound they emit. In this work, an FPGA-based WASN centralized architecture is proposed and validated on a simulated operation environment. The feasibility of the architecture is evaluated in a case study designed to detect the threatened Botaurus stellaris among other 19 cohabiting birds species in The Parc Natural dels Aiguamolls de l'Empord.
Vertically Aligned Carbon Nanofiber based Biosensor Platform for Glucose Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Mamun, Khandaker A.; Tulip, Fahmida S.; MacArthur, Kimberly
2014-03-01
Vertically aligned carbon nanofibers (VACNFs) have recently become an important tool for biosensor design. Carbon nanofibers (CNF) have excellent conductive and structural properties with many irregularities and defect sites in addition to exposed carboxyl groups throughout their surfaces. These properties allow a better immobilization matrix compared to carbon nanotubes and offer better resolution when compared with the FET-based biosensors. VACNFs can be deterministically grown on silicon substrates allowing optimization of the structures for various biosensor applications. Two VACNF electrode architectures have been employed in this study and a comparison of their performances has been made in terms of sensitivity, sensingmore » limitations, dynamic range, and response time. The usage of VACNF platform as a glucose sensor has been verified in this study by selecting an optimum architecture based on the VACNF forest density. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129156414500062« less
Godino-Llorente, J I; Gómez-Vilda, P
2004-02-01
It is well known that vocal and voice diseases do not necessarily cause perceptible changes in the acoustic voice signal. Acoustic analysis is a useful tool to diagnose voice diseases being a complementary technique to other methods based on direct observation of the vocal folds by laryngoscopy. Through the present paper two neural-network based classification approaches applied to the automatic detection of voice disorders will be studied. Structures studied are multilayer perceptron and learning vector quantization fed using short-term vectors calculated accordingly to the well-known Mel Frequency Coefficient cepstral parameterization. The paper shows that these architectures allow the detection of voice disorders--including glottic cancer--under highly reliable conditions. Within this context, the Learning Vector quantization methodology demonstrated to be more reliable than the multilayer perceptron architecture yielding 96% frame accuracy under similar working conditions.
NASA Astrophysics Data System (ADS)
Martinez, Vera
2007-02-01
The paper discusses concepts about the role of architecture in the design of space habitats and the development of a general evaluation criteria of architectural design contribution. Besides the existing feasibility studies, the general requisites, the development studies, and the critical design review which are mainly based on the experience of human space missions and the standards of the NASA-STD-3000 manual and which analyze and evaluate the relation between man and environment and between man and machine mainly in its functionality, there is very few material about design of comfort and wellbeing of man in space habitat. Architecture for space habitat means the design of an artificial environment with much comfort in an "atmosphere" of wellbeing. These are mainly psychological effects of human factors which are very important in the case of a long time space mission. How can the degree of comfort and "wellbeing atmosphere" in an artificial environment be measured? How can the quality of the architectural contribution in space design be quantified? Definition of a criteria catalogue to reach a larger objectivity in architectural design evaluation. Definition of constant parameters as a result of project necessities to quantify the quality of the design. Architectural design analysis due the application and verification within the parameters and consequently overlapping and evaluating results. Interdisciplinary work between architects, astronautics, engineers, psychologists, etc. All the disciplines needed for planning a high quality habitat for humans in space. Analysis of the principles of well designed artificial environment. Good quality design for space architecture is the result of the interaction and interrelation between many different project necessities (technological, environmental, human factors, transportation, costs, etc.). Each of this necessities is interrelated in the design project and cannot be evaluated on its own. Therefore, the design process needs constant check ups to choose each time the best solution in relation to the whole. As well as for the main disciplines around human factors, architectural design for space has to be largely tested to produce scientific improvement.
Practical Application of Model-based Programming and State-based Architecture to Space Missions
NASA Technical Reports Server (NTRS)
Horvath, Gregory A.; Ingham, Michel D.; Chung, Seung; Martin, Oliver; Williams, Brian
2006-01-01
Innovative systems and software engineering solutions are required to meet the increasingly challenging demands of deep-space robotic missions. While recent advances in the development of an integrated systems and software engineering approach have begun to address some of these issues, they are still at the core highly manual and, therefore, error-prone. This paper describes a task aimed at infusing MIT's model-based executive, Titan, into JPL's Mission Data System (MDS), a unified state-based architecture, systems engineering process, and supporting software framework. Results of the task are presented, including a discussion of the benefits and challenges associated with integrating mature model-based programming techniques and technologies into a rigorously-defined domain specific architecture.
Database architecture and query structures for probe data processing.
DOT National Transportation Integrated Search
2012-03-01
This report summarizes findings and implementations of probe vehicle data collection based on Bluetooth MAC address matching technology. Probe vehicle travel time data are studied in the following field deployment case studies: analysis of traffic ch...
NASA Technical Reports Server (NTRS)
1985-01-01
Task 2 in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make design/programmatic decisions. This volume identifies the preferred options in the programmatic category and characterizes these options with respect to performance attributes, constraints, costs, and risks. The programmatic category includes methods used to administrate/manage the development, operation and maintenance of the SSDS. The specific areas discussed include standardization/commonality; systems management; and systems development, including hardware procurement, software development and system integration, test and verification.
ERIC Educational Resources Information Center
Smith, Carl A.; Boyer, Mark E.
2015-01-01
In light of concerns with architectural students' emotional jeopardy during traditional desk and final-jury critiques, the authors pursue alternative approaches intended to provide more supportive and mentoring verbal assessment in landscape architecture studios. In addition to traditional studio-based critiques throughout a semester, we provide…
Dynamic Weather Routes Architecture Overview
NASA Technical Reports Server (NTRS)
Eslami, Hassan; Eshow, Michelle
2014-01-01
Dynamic Weather Routes Architecture Overview, presents the high level software architecture of DWR, based on the CTAS software framework and the Direct-To automation tool. The document also covers external and internal data flows, required dataset, changes to the Direct-To software for DWR, collection of software statistics, and the code structure.
78 FR 7820 - Notice of Intelligent Mail Indicia Performance Criteria
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
... FURTHER INFORMATION CONTACT: Marlo Kay Ivey, Business Programs Specialist, Payment Technology, U.S. Postal... Performance Criteria and Security Architecture for Open Information Based Indicia (IBI) Postage Evidencing Systems and the Performance Criteria and Security Architecture for Closed Information Based Indicia (IBI...
Architecture for Survivable System Processing (ASSP)
NASA Astrophysics Data System (ADS)
Wood, Richard J.
1991-11-01
The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.
Architecture for Survivable System Processing (ASSP)
NASA Technical Reports Server (NTRS)
Wood, Richard J.
1991-01-01
The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.
Shalom, Erez; Shahar, Yuval; Lunenfeld, Eitan
2016-02-01
Design, implement, and evaluate a new architecture for realistic continuous guideline (GL)-based decision support, based on a series of requirements that we have identified, such as support for continuous care, for multiple task types, and for data-driven and user-driven modes. We designed and implemented a new continuous GL-based support architecture, PICARD, which accesses a temporal reasoning engine, and provides several different types of application interfaces. We present the new architecture in detail in the current paper. To evaluate the architecture, we first performed a technical evaluation of the PICARD architecture, using 19 simulated scenarios in the preeclampsia/toxemia domain. We then performed a functional evaluation with the help of two domain experts, by generating patient records that simulate 60 decision points from six clinical guideline-based scenarios, lasting from two days to four weeks. Finally, 36 clinicians made manual decisions in half of the scenarios, and had access to the automated GL-based support in the other half. The measures used in all three experiments were correctness and completeness of the decisions relative to the GL. Mean correctness and completeness in the technical evaluation were 1±0.0 and 0.96±0.03 respectively. The functional evaluation produced only several minor comments from the two experts, mostly regarding the output's style; otherwise the system's recommendations were validated. In the clinically oriented evaluation, the 36 clinicians applied manually approximately 41% of the GL's recommended actions. Completeness increased to approximately 93% when using PICARD. Manual correctness was approximately 94.5%, and remained similar when using PICARD; but while 68% of the manual decisions included correct but redundant actions, only 3% of the actions included in decisions made when using PICARD were redundant. The PICARD architecture is technically feasible and is functionally valid, and addresses the realistic continuous GL-based application requirements that we have defined; in particular, the requirement for care over significant time frames. The use of the PICARD architecture in the domain we examined resulted in enhanced completeness and in reduction of redundancies, and is potentially beneficial for general GL-based management of chronic patients. Copyright © 2015 Elsevier Inc. All rights reserved.
Space Station Needs, Attributes and Architectural Options. Contractor orientation briefings
NASA Technical Reports Server (NTRS)
1983-01-01
Requirements are considered for user missions involving life sciences; astrophysics, environmental observation; Earth and planetary exploration; materials processing; Spacelab payloads; technology development; and communications are analyzed. Plans to exchange data with potential cooperating nations and ESA are reviewed. The capability of the space shuttle to support space station activities are discussed. The status of the OAST space station technology study, conceptual architectures for a space station, elements of the space-based infrastructure, and the use of the shuttle external tank are also considered.
Uncoupling File System Components for Bridging Legacy and Modern Storage Architectures
NASA Astrophysics Data System (ADS)
Golpayegani, N.; Halem, M.; Tilmes, C.; Prathapan, S.; Earp, D. N.; Ashkar, J. S.
2016-12-01
Long running Earth Science projects can span decades of architectural changes in both processing and storage environments. As storage architecture designs change over decades such projects need to adjust their tools, systems, and expertise to properly integrate such new technologies with their legacy systems. Traditional file systems lack the necessary support to accommodate such hybrid storage infrastructure resulting in more complex tool development to encompass all possible storage architectures used for the project. The MODIS Adaptive Processing System (MODAPS) and the Level 1 and Atmospheres Archive and Distribution System (LAADS) is an example of a project spanning several decades which has evolved into a hybrid storage architecture. MODAPS/LAADS has developed the Lightweight Virtual File System (LVFS) which ensures a seamless integration of all the different storage architectures, including standard block based POSIX compliant storage disks, to object based architectures such as the S3 compliant HGST Active Archive System, and the Seagate Kinetic disks utilizing the Kinetic Protocol. With LVFS, all analysis and processing tools used for the project continue to function unmodified regardless of the underlying storage architecture enabling MODAPS/LAADS to easily integrate any new storage architecture without the costly need to modify existing tools to utilize such new systems. Most file systems are designed as a single application responsible for using metadata to organizing the data into a tree, determine the location for data storage, and a method of data retrieval. We will show how LVFS' unique approach of treating these components in a loosely coupled fashion enables it to merge different storage architectures into a single uniform storage system which bridges the underlying hybrid architecture.
Advanced digital SAR processing study
NASA Technical Reports Server (NTRS)
Martinson, L. W.; Gaffney, B. P.; Liu, B.; Perry, R. P.; Ruvin, A.
1982-01-01
A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented.
Field Tested Service Oriented Robotic Architecture: Case Study
NASA Technical Reports Server (NTRS)
Flueckiger, Lorenzo; Utz, Hanz
2012-01-01
This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at NASA Ames Research Center. SORA relies on proven software methods and technologies applied to the robotic world. Based on a Service Oriented Architecture and robust middleware, SORA extends its reach beyond the on-board robot controller and supports the full suite of software tools used during mission scenarios from ground control to remote robotic sites. SORA has been field tested in numerous scenarios of robotic lunar and planetary exploration. The results of these high fidelity experiments are illustrated through concrete examples that have shown the benefits of using SORA as well as its limitations.
NASA Astrophysics Data System (ADS)
Kretschmer, E.; Bachner, M.; Blank, J.; Dapp, R.; Ebersoldt, A.; Friedl-Vallon, F.; Guggenmoser, T.; Gulde, T.; Hartmann, V.; Lutz, R.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Schardt, G.; Schmitt, C.; Schönfeld, A.; Tan, V.
2015-06-01
The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), a Fourier-transform-spectrometer-based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.
NASA Astrophysics Data System (ADS)
Kretschmer, E.; Bachner, M.; Blank, J.; Dapp, R.; Ebersoldt, A.; Friedl-Vallon, F.; Guggenmoser, T.; Gulde, T.; Hartmann, V.; Lutz, R.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Schardt, G.; Schmitt, C.; Schönfeld, A.; Tan, V.
2015-02-01
The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), a Fourier transform spectrometer based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Smart grids are susceptible to cyber-attack as a result of new communication, control and computation techniques employed in the grid. In this paper, we characterize and analyze the resiliency of smart grid communication architecture, specifically an RF mesh based architecture, under cyber attacks. We analyze the resiliency of the communication architecture by studying the performance of high-level smart grid functions such as metering, and demand response which depend on communication. Disrupting the operation of these functions impacts the operational resiliency of the smart grid. Our analysis shows that it takes an attacker only a small fraction of meters to compromisemore » the communication resiliency of the smart grid. We discuss the implications of our result to critical smart grid functions and to the overall security of the smart grid.« less
Applying an MVC Framework for The System Development Life Cycle with Waterfall Model Extended
NASA Astrophysics Data System (ADS)
Hardyanto, W.; Purwinarko, A.; Sujito, F.; Masturi; Alighiri, D.
2017-04-01
This paper describes the extension of the waterfall model using MVC architectural pattern for software development. The waterfall model is the based model of the most widely used in software development, yet there are still many problems in it. The general issue usually happens on data changes that cause the delays on the process itself. On the other hand, the security factor on the software as well as one of the major problems. This study uses PHP programming language for implementation. Although this model can be implemented in several programming languages with the same concept. This study is based on MVC architecture so that it can improve the performance of both software development and maintenance, especially concerning security, validation, database access, and routing.
3D printing of robotic soft actuators with programmable bioinspired architectures.
Schaffner, Manuel; Faber, Jakob A; Pianegonda, Lucas; Rühs, Patrick A; Coulter, Fergal; Studart, André R
2018-02-28
Soft actuation allows robots to interact safely with humans, other machines, and their surroundings. Full exploitation of the potential of soft actuators has, however, been hindered by the lack of simple manufacturing routes to generate multimaterial parts with intricate shapes and architectures. Here, we report a 3D printing platform for the seamless digital fabrication of pneumatic silicone actuators exhibiting programmable bioinspired architectures and motions. The actuators comprise an elastomeric body whose surface is decorated with reinforcing stripes at a well-defined lead angle. Similar to the fibrous architectures found in muscular hydrostats, the lead angle can be altered to achieve elongation, contraction, or twisting motions. Using a quantitative model based on lamination theory, we establish design principles for the digital fabrication of silicone-based soft actuators whose functional response is programmed within the material's properties and architecture. Exploring such programmability enables 3D printing of a broad range of soft morphing structures.
Koutelakis, George V.; Anastassopoulos, George K.; Lymberopoulos, Dimitrios K.
2012-01-01
Multiprotocol medical imaging communication through the Internet is more flexible than the tight DICOM transfers. This paper introduces a modular multiprotocol teleradiology architecture that integrates DICOM and common Internet services (based on web, FTP, and E-mail) into a unique operational domain. The extended WADO service (a web extension of DICOM) and the other proposed services allow access to all levels of the DICOM information hierarchy as opposed to solely Object level. A lightweight client site is considered adequate, because the server site of the architecture provides clients with service interfaces through the web as well as invulnerable space for temporary storage, called as User Domains, so that users fulfill their applications' tasks. The proposed teleradiology architecture is pilot implemented using mainly Java-based technologies and is evaluated by engineers in collaboration with doctors. The new architecture ensures flexibility in access, user mobility, and enhanced data security. PMID:22489237
An OSI architecture for the deep space network
NASA Technical Reports Server (NTRS)
Heuser, W. Randy; Cooper, Lynne P.
1993-01-01
The flexibility and robustness of a monitor and control system are a direct result of the underlying inter-processor communications architecture. A new architecture for monitor & Control at the Deep Space Network Communications Complexes has been developed based on the Open System Interconnection (OSI) standards. The suitability of OSI standards for DSN M&C has been proven in the laboratory. The laboratory success has resulted in choosing an OSI-based architecture for DSS-13 M&C. DSS-13 is the DSN experimental station and is not part of the 'operational' DSN; it's role is to provide an environment to test new communications concepts can be tested and conduct unique science experiments. Therefore, DSS-13 must be robust enough to support operational activities, while also being flexible enough to enable experimentation. This paper describes the M&C architecture developed for DSS-13 and the results from system and operational testing.
Colloidal-based additive manufacturing of bio-inspired composites
NASA Astrophysics Data System (ADS)
Studart, Andre R.
Composite materials in nature exhibit heterogeneous architectures that are tuned to fulfill the functional demands of the surrounding environment. Examples range from the cellulose-based organic structure of plants to highly mineralized collagen-based skeletal parts like bone and teeth. Because they are often utilized to combine opposing properties such as strength and low-density or stiffness and wear resistance, the heterogeneous architecture of natural materials can potentially address several of the technical limitations of artificial homogeneous composites. However, current man-made manufacturing technologies do not allow for the level of composition and fiber orientation control found in natural heterogeneous systems. In this talk, I will present two additive manufacturing technologies recently developed in our group to build composites with exquisite architectures only rivaled by structures made by living organisms in nature. Since the proposed techniques utilize colloidal suspensions as feedstock, understanding the physics underlying the stability, assembly and rheology of the printing inks is key to predict and control the architecture of manufactured parts. Our results will show that additive manufacturing routes offer a new exciting pathway for the fabrication of biologically-inspired composite materials with unprecedented architectures and functionalities.
A modeling process to understand complex system architectures
NASA Astrophysics Data System (ADS)
Robinson, Santiago Balestrini
2009-12-01
In recent decades, several tools have been developed by the armed forces, and their contractors, to test the capability of a force. These campaign level analysis tools, often times characterized as constructive simulations are generally expensive to create and execute, and at best they are extremely difficult to verify and validate. This central observation, that the analysts are relying more and more on constructive simulations to predict the performance of future networks of systems, leads to the two central objectives of this thesis: (1) to enable the quantitative comparison of architectures in terms of their ability to satisfy a capability without resorting to constructive simulations, and (2) when constructive simulations must be created, to quantitatively determine how to spend the modeling effort amongst the different system classes. The first objective led to Hypothesis A, the first main hypotheses, which states that by studying the relationships between the entities that compose an architecture, one can infer how well it will perform a given capability. The method used to test the hypothesis is based on two assumptions: (1) the capability can be defined as a cycle of functions, and that it (2) must be possible to estimate the probability that a function-based relationship occurs between any two types of entities. If these two requirements are met, then by creating random functional networks, different architectures can be compared in terms of their ability to satisfy a capability. In order to test this hypothesis, a novel process for creating representative functional networks of large-scale system architectures was developed. The process, named the Digraph Modeling for Architectures (DiMA), was tested by comparing its results to those of complex constructive simulations. Results indicate that if the inputs assigned to DiMA are correct (in the tests they were based on time-averaged data obtained from the ABM), DiMA is able to identify which of any two architectures is better more than 98% of the time. The second objective led to Hypothesis B, the second of the main hypotheses. This hypothesis stated that by studying the functional relations, the most critical entities composing the architecture could be identified. The critical entities are those that when their behavior varies slightly, the behavior of the overall architecture varies greatly. These are the entities that must be modeled more carefully and where modeling effort should be expended. This hypothesis was tested by simplifying agent-based models to the non-trivial minimum, and executing a large number of different simulations in order to obtain statistically significant results. The tests were conducted by evolving the complex model without any error induced, and then evolving the model once again for each ranking and assigning error to any of the nodes with a probability inversely proportional to the ranking. The results from this hypothesis test indicate that depending on the structural characteristics of the functional relations, it is useful to use one of two of the intelligent rankings tested, or it is best to expend effort equally amongst all the entities. Random ranking always performed worse than uniform ranking, indicating that if modeling effort is to be prioritized amongst the entities composing the large-scale system architecture, it should be prioritized intelligently. The benefit threshold between intelligent prioritization and no prioritization lays on the large-scale system's chaotic boundary. If the large-scale system behaves chaotically, small variations in any of the entities tends to have a great impact on the behavior of the entire system. Therefore, even low ranking entities can still affect the behavior of the model greatly, and error should not be concentrated in any one entity. It was discovered that the threshold can be identified from studying the structure of the networks, in particular the cyclicity, the Off-diagonal Complexity, and the Digraph Algebraic Connectivity. (Abstract shortened by UMI.)
Getting to the roots of it: Genetic and hormonal control of root architecture
Jung, Janelle K. H.; McCouch, Susan
2013-01-01
Root system architecture (RSA) – the spatial configuration of a root system – is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants. PMID:23785372
Development of Network-based Communications Architectures for Future NASA Missions
NASA Technical Reports Server (NTRS)
Slywczak, Richard A.
2007-01-01
Since the Vision for Space Exploration (VSE) announcement, NASA has been developing a communications infrastructure that combines existing terrestrial techniques with newer concepts and capabilities. The overall goal is to develop a flexible, modular, and extensible architecture that leverages and enhances terrestrial networking technologies that can either be directly applied or modified for the space regime. In addition, where existing technologies leaves gaps, new technologies must be developed. An example includes dynamic routing that accounts for constrained power and bandwidth environments. Using these enhanced technologies, NASA can develop nodes that provide characteristics, such as routing, store and forward, and access-on-demand capabilities. But with the development of the new infrastructure, challenges and obstacles will arise. The current communications infrastructure has been developed on a mission-by-mission basis rather than an end-to-end approach; this has led to a greater ground infrastructure, but has not encouraged communications between space-based assets. This alone provides one of the key challenges that NASA must encounter. With the development of the new Crew Exploration Vehicle (CEV), NASA has the opportunity to provide an integration path for the new vehicles and provide standards for their development. Some of the newer capabilities these vehicles could include are routing, security, and Software Defined Radios (SDRs). To meet these needs, the NASA/Glenn Research Center s (GRC) Network Emulation Laboratory (NEL) has been using both simulation and emulation to study and evaluate these architectures. These techniques provide options to NASA that directly impact architecture development. This paper identifies components of the infrastructure that play a pivotal role in the new NASA architecture, develops a scheme using simulation and emulation for testing these architectures and demonstrates how NASA can strengthen the new infrastructure by implementing these concepts.
Design of Si0.5Ge0.5 based tunnel field effect transistor and its performance evaluation
NASA Astrophysics Data System (ADS)
Singh, Gurmeet; Amin, S. Intekhab; Anand, Sunny; Sarin, R. K.
2016-04-01
In this work, the performance comparison of two heterojunction PIN TFETs having Si channel and Si0.5Ge0.5 source with high-k (SiGe DGTFET HK) and hetero-gate dielectric (SiGe DGTFET HG) respectively with those of two homojunction Si based PIN (DGTFET HK and DGTFET HG) TFETs is performed. Similarly, by employing the technique of pocketing at source junction in above four PIN TFETs, the performances of resultant four PNPN TFETs (SiGe PNPN DGTFET HK, SiGe PNPN DGTFET HG, PNPN DGTFET HK and PNPN DGTFET HG) are also compared with each other. Due to lower tunnel resistance of SiGe based heterojunction PIN and PNPN TFETs, the DC parameters such as ON current, ON-OFF current ratio, average subthreshold slope are improved significantly as compared to Si based PIN and PNPN TFETs respectively. The output characteristics of HG architectures in Si based homojunction PIN and PNPN TFETs is observed to be identical to with respective Si based HK PIN and PNPN TFET architectures. However, the output characteristics of HG architectures in SiGe based heterojunction PIN and PNPN TFETs degrade as compared to their respective SiGe based HK PIN and PNPN TFET architectures. In ON state, SiGe based HK and HG PIN and PNPN TFETs have lower gate capacitance (Cgg) as compared to their respective Si based HK and HG PIN and PNPN TFETs. Moreover, HG architecture suppresses gate to drain capacitance (Cgd) and ambipolar conduction. Transconductance (gm) and cut off frequency (fT) is also observed to be higher for SiGe based PIN and PNPN TFETs.
Designing flexible engineering systems utilizing embedded architecture options
NASA Astrophysics Data System (ADS)
Pierce, Jeff G.
This dissertation develops and applies an integrated framework for embedding flexibility in an engineered system architecture. Systems are constantly faced with unpredictability in the operational environment, threats from competing systems, obsolescence of technology, and general uncertainty in future system demands. Current systems engineering and risk management practices have focused almost exclusively on mitigating or preventing the negative consequences of uncertainty. This research recognizes that high uncertainty also presents an opportunity to design systems that can flexibly respond to changing requirements and capture additional value throughout the design life. There does not exist however a formalized approach to designing appropriately flexible systems. This research develops a three stage integrated flexibility framework based on the concept of architecture options embedded in the system design. Stage One defines an eight step systems engineering process to identify candidate architecture options. This process encapsulates the operational uncertainty though scenario development, traces new functional requirements to the affected design variables, and clusters the variables most sensitive to change. The resulting clusters can generate insight into the most promising regions in the architecture to embed flexibility in the form of architecture options. Stage Two develops a quantitative option valuation technique, grounded in real options theory, which is able to value embedded architecture options that exhibit variable expiration behavior. Stage Three proposes a portfolio optimization algorithm, for both discrete and continuous options, to select the optimal subset of architecture options, subject to budget and risk constraints. Finally, the feasibility, extensibility and limitations of the framework are assessed by its application to a reconnaissance satellite system development problem. Detailed technical data, performance models, and cost estimates were compiled for the Tactical Imaging Constellation Architecture Study and leveraged to complete a realistic proof-of-concept.
Wang, Zhanhua; Zuilhof, Han
2016-07-05
Fluoropolymer brushes are widely used to prevent nonspecific adsorption of commercial polymeric or biological materials due to their strongly hydrophobic character. Herein, a series of fluoropolymer brushes with different compositions, thicknesses and molecular architectures was prepared via surface-initiated atom transfer radical polymerization (ATRP). Subsequently, the antifouling properties of these fluoropolymer brushes against organic polymers were studied in detail using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) measurements and polystyrene as a representative fouling polymer. Among all of the molecular architectures studied, homopolymerized methacrylate-based fluoropolymer brushes (PMAF17) show the best antifouling properties. Annealing the fluoropolymer brushes improves the antifouling property dramatically due to the reregulated surface composition. These fluoropolymer brushes can be combined with, e.g., micro- and nanostructuring and other advanced materials properties to yield even better long-term antifouling behavior under harsh environments.
Learning Outcomes in Affective Domain within Contemporary Architectural Curricula
ERIC Educational Resources Information Center
Savic, Marko; Kashef, Mohamad
2013-01-01
Contemporary architectural education has shifted from the traditional focus on providing students with specific knowledge and skill sets or "inputs" to outcome based, student-centred educational approach. Within the outcome based model, students' performance is assessed against measureable objectives that relate acquired knowledge…
ESPA-Based Multiple Satellite Architecture for Mars Science and Exploration
NASA Astrophysics Data System (ADS)
Lo, A. S.; Griffin, K.; Hanson, M.; Lee, G.
2012-06-01
We propose a LCROSS-based approach, enabled by ts innovative use of the ESPA ring. Exploiting this architecture for Mars mission can use the upcoming Mars launch opportunities to inject multiple satellites that can support the wide range of NASA’s goals.
NASA Astrophysics Data System (ADS)
Tramutola, A.; Paltro, D.; Cabalo Perucha, M. P.; Paar, G.; Steiner, J.; Barrio, A. M.
2015-09-01
Vision Based Navigation (VBNAV) has been identified as a valid technology to support space exploration because it can improve autonomy and safety of space missions. Several mission scenarios can benefit from the VBNAV: Rendezvous & Docking, Fly-Bys, Interplanetary cruise, Entry Descent and Landing (EDL) and Planetary Surface exploration. For some of them VBNAV can improve the accuracy in state estimation as additional relative navigation sensor or as absolute navigation sensor. For some others, like surface mobility and terrain exploration for path identification and planning, VBNAV is mandatory. This paper presents the general avionic architecture of a Vision Based System as defined in the frame of the ESA R&T study “Multi-purpose Vision-based Navigation System Engineering Model - part 1 (VisNav-EM-1)” with special focus on the surface mobility application.
Wright, Adam; Sittig, Dean F
2008-12-01
In this paper, we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. The SANDS architecture for decision support has several significant advantages over other architectures for clinical decision support. The most salient of these are:
Space Telecommunications Radio Architecture (STRS)
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
Space Telecommunications Radio Architecture (STRS): Technical Overview
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG s SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA's current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
A component-based, distributed object services architecture for a clinical workstation.
Chueh, H C; Raila, W F; Pappas, J J; Ford, M; Zatsman, P; Tu, J; Barnett, G O
1996-01-01
Attention to an architectural framework in the development of clinical applications can promote reusability of both legacy systems as well as newly designed software. We describe one approach to an architecture for a clinical workstation application which is based on a critical middle tier of distributed object-oriented services. This tier of network-based services provides flexibility in the creation of both the user interface and the database tiers. We developed a clinical workstation for ambulatory care using this architecture, defining a number of core services including those for vocabulary, patient index, documents, charting, security, and encounter management. These services can be implemented through proprietary or more standard distributed object interfaces such as CORBA and OLE. Services are accessed over the network by a collection of user interface components which can be mixed and matched to form a variety of interface styles. These services have also been reused with several applications based on World Wide Web browser interfaces.
A component-based, distributed object services architecture for a clinical workstation.
Chueh, H. C.; Raila, W. F.; Pappas, J. J.; Ford, M.; Zatsman, P.; Tu, J.; Barnett, G. O.
1996-01-01
Attention to an architectural framework in the development of clinical applications can promote reusability of both legacy systems as well as newly designed software. We describe one approach to an architecture for a clinical workstation application which is based on a critical middle tier of distributed object-oriented services. This tier of network-based services provides flexibility in the creation of both the user interface and the database tiers. We developed a clinical workstation for ambulatory care using this architecture, defining a number of core services including those for vocabulary, patient index, documents, charting, security, and encounter management. These services can be implemented through proprietary or more standard distributed object interfaces such as CORBA and OLE. Services are accessed over the network by a collection of user interface components which can be mixed and matched to form a variety of interface styles. These services have also been reused with several applications based on World Wide Web browser interfaces. PMID:8947744
Comparing a Japanese and a German hospital information system.
Jahn, F; Issler, L; Winter, A; Takabayashi, K
2009-01-01
To examine the architectural differences and similarities of a Japanese and German hospital information system (HIS) in a case study. This cross-cultural comparison, which focuses on structural quality characteristics, offers the chance to get new insights into different HIS architectures, which possibly cannot be obtained by inner-country comparisons. A reference model for the domain layer of hospital information systems containing the typical enterprise functions of a hospital provides the basis of comparison for the two different hospital information systems. 3LGM(2) models, which describe the two HISs and which are based on that reference model, are used to assess several structural quality criteria. Four of these criteria are introduced in detail. The two examined HISs are different in terms of the four structural quality criteria examined. Whereas the centralized architecture of the hospital information system at Chiba University Hospital causes only few functional redundancies and leads to a low implementation of communication standards, the hospital information system at the University Hospital of Leipzig, having a decentralized architecture, exhibits more functional redundancies and a higher use of communication standards. Using a model-based comparison, it was possible to detect remarkable differences between the observed hospital information systems of completely different cultural areas. However, the usability of 3LGM(2) models for comparisons has to be improved in order to apply key figures and to assess or benchmark the structural quality of health information systems architectures more thoroughly.
Piromalis, Dimitrios; Arvanitis, Konstantinos
2016-01-01
Wireless Sensor and Actuators Networks (WSANs) constitute one of the most challenging technologies with tremendous socio-economic impact for the next decade. Functionally and energy optimized hardware systems and development tools maybe is the most critical facet of this technology for the achievement of such prospects. Especially, in the area of agriculture, where the hostile operating environment comes to add to the general technological and technical issues, reliable and robust WSAN systems are mandatory. This paper focuses on the hardware design architectures of the WSANs for real-world agricultural applications. It presents the available alternatives in hardware design and identifies their difficulties and problems for real-life implementations. The paper introduces SensoTube, a new WSAN hardware architecture, which is proposed as a solution to the various existing design constraints of WSANs. The establishment of the proposed architecture is based, firstly on an abstraction approach in the functional requirements context, and secondly, on the standardization of the subsystems connectivity, in order to allow for an open, expandable, flexible, reconfigurable, energy optimized, reliable and robust hardware system. The SensoTube implementation reference model together with its encapsulation design and installation are analyzed and presented in details. Furthermore, as a proof of concept, certain use cases have been studied in order to demonstrate the benefits of migrating existing designs based on the available open-source hardware platforms to SensoTube architecture. PMID:27527180
Space Telecommunications Radio System (STRS) Architecture. Part 1; Tutorial - Overview
NASA Technical Reports Server (NTRS)
Handler, Louis M.; Briones, Janette C.; Mortensen, Dale J.; Reinhart, Richard C.
2012-01-01
Space Telecommunications Radio System (STRS) Architecture Standard provides a NASA standard for software-defined radio. STRS is being demonstrated in the Space Communications and Navigation (SCaN) Testbed formerly known as Communications, Navigation and Networking Configurable Testbed (CoNNeCT). Ground station radios communicating the SCaN testbed are also being written to comply with the STRS architecture. The STRS Architecture Tutorial Overview presents a general introduction to the STRS architecture standard developed at the NASA Glenn Research Center (GRC), addresses frequently asked questions, and clarifies methods of implementing the standard. The STRS architecture should be used as a base for many of NASA s future telecommunications technologies. The presentation will provide a basic understanding of STRS.
Emulation of Industrial Control Field Device Protocols
2013-03-01
platforms such as the Arduino ( based on the Atmel AVR architecture) or popular PIC architecture based devices, which are programmed for specific functions...UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base , Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION...confidence intervals for the mean. Based on these results, extensive knowledge of the specific implementations of the protocols or timing profiles of the
Fast underdetermined BSS architecture design methodology for real time applications.
Mopuri, Suresh; Reddy, P Sreenivasa; Acharyya, Amit; Naik, Ganesh R
2015-01-01
In this paper, we propose a high speed architecture design methodology for the Under-determined Blind Source Separation (UBSS) algorithm using our recently proposed high speed Discrete Hilbert Transform (DHT) targeting real time applications. In UBSS algorithm, unlike the typical BSS, the number of sensors are less than the number of the sources, which is of more interest in the real time applications. The DHT architecture has been implemented based on sub matrix multiplication method to compute M point DHT, which uses N point architecture recursively and where M is an integer multiples of N. The DHT architecture and state of the art architecture are coded in VHDL for 16 bit word length and ASIC implementation is carried out using UMC 90 - nm technology @V DD = 1V and @ 1MHZ clock frequency. The proposed architecture implementation and experimental comparison results show that the DHT design is two times faster than state of the art architecture.
Data Aggregation Issues in the Application of the MOBILE Emissions Factor Model
DOT National Transportation Integrated Search
1999-09-01
This is one of seven studies exploring processes for developing Intelligent Transportation Systems (ITS) architectures for regional, statewide, or commercial vehicle applications. This study was prepared for a broad-based, non-technical audience. The...
An IT Architecture for Systems Medicine.
Ganzinger, Matthias; Gietzelt, Matthias; Karmen, Christian; Firnkorn, Daniel; Knaup, Petra
2015-01-01
Systems medicine aims to support treatment of complex diseases like cancer by integrating all available data for the disease. To provide such a decision support in clinical practice, a suitable IT architecture is necessary. We suggest a generic architecture comprised of the following three layers: data representation, decision support, and user interface. For the systems medicine research project "Clinically-applicable, omics-based assessment of survival, side effects, and targets in multiple myeloma" (CLIOMMICS) we developed a concrete instance of the generic architecture. We use i2b2 for representing the harmonized data. Since no deterministic model exists for multiple myeloma we use case-based reasoning for decision support. For clinical practice, visualizations of the results must be intuitive and clear. At the same time, they must communicate the uncertainty immanent in stochastic processes. Thus, we develop a specific user interface for systems medicine based on the web portal software Liferay.
Collaborative Working Architecture for IoT-Based Applications.
Mora, Higinio; Signes-Pont, María Teresa; Gil, David; Johnsson, Magnus
2018-05-23
The new sensing applications need enhanced computing capabilities to handle the requirements of complex and huge data processing. The Internet of Things (IoT) concept brings processing and communication features to devices. In addition, the Cloud Computing paradigm provides resources and infrastructures for performing the computations and outsourcing the work from the IoT devices. This scenario opens new opportunities for designing advanced IoT-based applications, however, there is still much research to be done to properly gear all the systems for working together. This work proposes a collaborative model and an architecture to take advantage of the available computing resources. The resulting architecture involves a novel network design with different levels which combines sensing and processing capabilities based on the Mobile Cloud Computing (MCC) paradigm. An experiment is included to demonstrate that this approach can be used in diverse real applications. The results show the flexibility of the architecture to perform complex computational tasks of advanced applications.
NASA Astrophysics Data System (ADS)
Bada, Adedayo; Wang, Qi; Alcaraz-Calero, Jose M.; Grecos, Christos
2016-04-01
This paper proposes a new approach to improving the application of 3D video rendering and streaming by jointly exploring and optimizing both cloud-based virtualization and web-based delivery. The proposed web service architecture firstly establishes a software virtualization layer based on QEMU (Quick Emulator), an open-source virtualization software that has been able to virtualize system components except for 3D rendering, which is still in its infancy. The architecture then explores the cloud environment to boost the speed of the rendering at the QEMU software virtualization layer. The capabilities and inherent limitations of Virgil 3D, which is one of the most advanced 3D virtual Graphics Processing Unit (GPU) available, are analyzed through benchmarking experiments and integrated into the architecture to further speed up the rendering. Experimental results are reported and analyzed to demonstrate the benefits of the proposed approach.
Chen, Chi-Huang; Hsieh, Sung-Huai; Su, Yu-Shuan; Hsu, Kai-Ping; Lee, Hsiu-Hui; Lai, Feipei
2012-02-01
Discharge summary note is one of the essential clinical data in medical records, and it concisely capsules a patient's status during hospitalization. In the article, we adopt web-based architecture in developing a new discharge summary system for the Healthcare Information System of National Taiwan University Hospital, to improve the traditional client/sever architecture. The article elaborates the design approaches and implementation illustrations in detail, including patients' summary query and searching, model and phrase quoted, summary check list, major editing blocks as well as other functionalities. The system has been on-line and achieves successfully since October 2009.
Brain architecture: a design for natural computation.
Kaiser, Marcus
2007-12-15
Fifty years ago, John von Neumann compared the architecture of the brain with that of the computers he invented and which are still in use today. In those days, the organization of computers was based on concepts of brain organization. Here, we give an update on current results on the global organization of neural systems. For neural systems, we outline how the spatial and topological architecture of neuronal and cortical networks facilitates robustness against failures, fast processing and balanced network activation. Finally, we discuss mechanisms of self-organization for such architectures. After all, the organization of the brain might again inspire computer architecture.
A Survey on Next-generation Power Grid Data Architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Shutang; Zhu, Dr. Lin; Liu, Yong
2015-01-01
The operation and control of power grids will increasingly rely on data. A high-speed, reliable, flexible and secure data architecture is the prerequisite of the next-generation power grid. This paper summarizes the challenges in collecting and utilizing power grid data, and then provides reference data architecture for future power grids. Based on the data architecture deployment, related research on data architecture is reviewed and summarized in several categories including data measurement/actuation, data transmission, data service layer, data utilization, as well as two cross-cutting issues, interoperability and cyber security. Research gaps and future work are also presented.
The Exploration of Green Architecture Design Integration Teaching Mode
ERIC Educational Resources Information Center
Shuang, Liang; Yibin, Han
2016-01-01
With the deepening of the concept of green building design, the course of university education gradually exposed many problems in the teaching of architectural design theory; based on the existing mode of teaching and combined with the needs of architectural design practice it proposed the "integrated" method of green building design. It…
Stochastic architecture for Hopfield neural nets
NASA Technical Reports Server (NTRS)
Pavel, Sandy
1992-01-01
An expandable stochastic digital architecture for recurrent (Hopfield like) neural networks is proposed. The main features and basic principles of stochastic processing are presented. The stochastic digital architecture is based on a chip with n full interconnected neurons with a pipeline, bit processing structure. For large applications, a flexible way to interconnect many such chips is provided.
A Novel Architecture for E-Learning Knowledge Assessment Systems
ERIC Educational Resources Information Center
Gierlowski, Krzysztof; Nowicki, Krzysztof
2009-01-01
In this article we propose a novel e-learning system, dedicated strictly to knowledge assessment tasks. In its functioning it utilizes web-based technologies, but its design differs radically from currently popular e-learning solutions which rely mostly on thin-client architecture. Our research proved that such architecture, while well suited for…
ERIC Educational Resources Information Center
Arumi, Francisco N.
Computer programs capable of describing the thermal behavior of buildings are used to help architectural students understand environmental systems. The Numerical Simulation Laboratory at the Architectural School of the University of Texas at Austin was developed to provide the necessary software capable of simulating the energy transactions…
Logs Analysis of Adapted Pedagogical Scenarios Generated by a Simulation Serious Game Architecture
ERIC Educational Resources Information Center
Callies, Sophie; Gravel, Mathieu; Beaudry, Eric; Basque, Josianne
2017-01-01
This paper presents an architecture designed for simulation serious games, which automatically generates game-based scenarios adapted to learner's learning progression. We present three central modules of the architecture: (1) the learner model, (2) the adaptation module and (3) the logs module. The learner model estimates the progression of the…
Performance and Challenges of Service-Oriented Architecture for Wireless Sensor Networks.
Alshinina, Remah; Elleithy, Khaled
2017-03-08
Wireless Sensor Networks (WSNs) have become essential components for a variety of environmental, surveillance, military, traffic control, and healthcare applications. These applications face critical challenges such as communication, security, power consumption, data aggregation, heterogeneities of sensor hardware, and Quality of Service (QoS) issues. Service-Oriented Architecture (SOA) is a software architecture that can be integrated with WSN applications to address those challenges. The SOA middleware bridges the gap between the high-level requirements of different applications and the hardware constraints of WSNs. This survey explores state-of-the-art approaches based on SOA and Service-Oriented Middleware (SOM) architecture that provide solutions for WSN challenges. The categories of this paper are based on approaches of SOA with and without middleware for WSNs. Additionally, features of SOA and middleware architectures for WSNs are compared to achieve more robust and efficient network performance. Design issues of SOA middleware for WSNs and its characteristics are also highlighted. The paper concludes with future research directions in SOM architecture to meet all requirements of emerging application of WSNs.
The Aeronautical Data Link: Taxonomy, Architectural Analysis, and Optimization
NASA Technical Reports Server (NTRS)
Morris, A. Terry; Goode, Plesent W.
2002-01-01
The future Communication, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) System will rely on global satellite navigation, and ground-based and satellite based communications via Multi-Protocol Networks (e.g. combined Aeronautical Telecommunications Network (ATN)/Internet Protocol (IP)) to bring about needed improvements in efficiency and safety of operations to meet increasing levels of air traffic. This paper will discuss the development of an approach that completely describes optimal data link architecture configuration and behavior to meet the multiple conflicting objectives of concurrent and different operations functions. The practical application of the approach enables the design and assessment of configurations relative to airspace operations phases. The approach includes a formal taxonomic classification, an architectural analysis methodology, and optimization techniques. The formal taxonomic classification provides a multidimensional correlation of data link performance with data link service, information protocol, spectrum, and technology mode; and to flight operations phase and environment. The architectural analysis methodology assesses the impact of a specific architecture configuration and behavior on the local ATM system performance. Deterministic and stochastic optimization techniques maximize architectural design effectiveness while addressing operational, technology, and policy constraints.
Context Aware Middleware Architectures: Survey and Challenges
Li, Xin; Eckert, Martina; Martinez, José-Fernán; Rubio, Gregorio
2015-01-01
Context aware applications, which can adapt their behaviors to changing environments, are attracting more and more attention. To simplify the complexity of developing applications, context aware middleware, which introduces context awareness into the traditional middleware, is highlighted to provide a homogeneous interface involving generic context management solutions. This paper provides a survey of state-of-the-art context aware middleware architectures proposed during the period from 2009 through 2015. First, a preliminary background, such as the principles of context, context awareness, context modelling, and context reasoning, is provided for a comprehensive understanding of context aware middleware. On this basis, an overview of eleven carefully selected middleware architectures is presented and their main features explained. Then, thorough comparisons and analysis of the presented middleware architectures are performed based on technical parameters including architectural style, context abstraction, context reasoning, scalability, fault tolerance, interoperability, service discovery, storage, security & privacy, context awareness level, and cloud-based big data analytics. The analysis shows that there is actually no context aware middleware architecture that complies with all requirements. Finally, challenges are pointed out as open issues for future work. PMID:26307988
Performance and Challenges of Service-Oriented Architecture for Wireless Sensor Networks
Alshinina, Remah; Elleithy, Khaled
2017-01-01
Wireless Sensor Networks (WSNs) have become essential components for a variety of environmental, surveillance, military, traffic control, and healthcare applications. These applications face critical challenges such as communication, security, power consumption, data aggregation, heterogeneities of sensor hardware, and Quality of Service (QoS) issues. Service-Oriented Architecture (SOA) is a software architecture that can be integrated with WSN applications to address those challenges. The SOA middleware bridges the gap between the high-level requirements of different applications and the hardware constraints of WSNs. This survey explores state-of-the-art approaches based on SOA and Service-Oriented Middleware (SOM) architecture that provide solutions for WSN challenges. The categories of this paper are based on approaches of SOA with and without middleware for WSNs. Additionally, features of SOA and middleware architectures for WSNs are compared to achieve more robust and efficient network performance. Design issues of SOA middleware for WSNs and its characteristics are also highlighted. The paper concludes with future research directions in SOM architecture to meet all requirements of emerging application of WSNs. PMID:28282896
French Influence on Portuguese Architects in the Age of Enlightenment
NASA Astrophysics Data System (ADS)
Sampayo, Mafalda
2017-10-01
This investigation shows the European influence on the work of Portuguese architects of the Enlightenment period. Based on previous studies we focus our attention on the design of “Praça do Comércio” square and on a hypothesis, that it was based on the French Royal Square. We demonstrate that the design of Lisbon from the second half of the eighteenth-century was influenced by the theories and best practices of the time. We also confirm that the architect Eugénio dos Santos e Carvalho, a member of the reconstruction team for the Baixa, had in his personal library several reference books of French architectural practice that certainly influenced his architecture. The plans for the main square of Lisbon’s lower city, “Praça do Comércio”, can be compared to the “Place de Nos Conquêtes”, predecessor of the “Place Vêndome”, in its design, architecture and dimensions. This research analysed the cartography and iconography of Lisbon’s reconstruction. In particular, the drawings of “Praça do Comércio” and “Place de nos Conquêtes” were exhaustively studied. The comparative study of the elements for both squares lead to the conclusion that the Portuguese square presents many aspects of the French Age of Enlightenment, and in particular those featured in the “Place de nos Conquêtes”. This paper concludes that the Portuguese urban design and architectural projects of the 18th century are the result of previous knowledge where it was always possible to articulate the vernacular with academic design, and where many different influences left their mark on the culture of the period. The plans for the lower part of Lisbon display a mixture of references that relate to architectural and urban planning traditions of the Portuguese military engineering and contemporary French urban planning.
NASA Technical Reports Server (NTRS)
Handley, Thomas H., Jr.; Collins, Donald J.; Doyle, Richard J.; Jacobson, Allan S.
1991-01-01
Viewgraphs on DataHub knowledge based assistance for science visualization and analysis using large distributed databases. Topics covered include: DataHub functional architecture; data representation; logical access methods; preliminary software architecture; LinkWinds; data knowledge issues; expert systems; and data management.
Bohannon, Kevin Patrick; Jun, Yonggun; Gross, Steven P.; Smith, Gregory Allan
2013-01-01
The herpesvirus virion is a multilayered structure consisting of a DNA-filled capsid, tegument, and envelope. Detailed reconstructions of the capsid are possible based on its icosahedral symmetry, but the surrounding tegument and envelope layers lack regular architecture. To circumvent limitations of symmetry-based ultrastructural reconstruction methods, a fluorescence approach was developed using single-particle imaging combined with displacement measurements at nanoscale resolution. An analysis of 11 tegument and envelope proteins defined the composition and plasticity of symmetric and asymmetric elements of the virion architecture. The resulting virion protein map ascribes molecular composition to density profiles previously acquired by traditional ultrastructural methods, and provides a way forward to examine the dynamics of the virion architecture during infection. PMID:23569236
Bohannon, Kevin Patrick; Jun, Yonggun; Gross, Steven P; Smith, Gregory Allan
2013-04-23
The herpesvirus virion is a multilayered structure consisting of a DNA-filled capsid, tegument, and envelope. Detailed reconstructions of the capsid are possible based on its icosahedral symmetry, but the surrounding tegument and envelope layers lack regular architecture. To circumvent limitations of symmetry-based ultrastructural reconstruction methods, a fluorescence approach was developed using single-particle imaging combined with displacement measurements at nanoscale resolution. An analysis of 11 tegument and envelope proteins defined the composition and plasticity of symmetric and asymmetric elements of the virion architecture. The resulting virion protein map ascribes molecular composition to density profiles previously acquired by traditional ultrastructural methods, and provides a way forward to examine the dynamics of the virion architecture during infection.
Xu, Shangjie; Luo, Ying; Haag, Rainer
2007-08-07
A simple general synthetic concept to build dendritic core-shell architectures with pH-labile linkers based on hyperbranched PEI cores and biocompatible PEG shells is presented. Using these dendritic core-shell architectures as nanocarriers, the encapsulation and transport of polar dyes of different sizes is studied. The results show that the acid-labile nanocarriers exhibit much higher transport capacities for dyes than unfunctionalized hyperbranched PEI. The cleavage of imine bonds and controlled release of the polar dyes revealed that weak acidic condition (pH approximately 5.0) could cleave the imine bonds linker and release the dyes up to five times faster than neutral conditions (pH = 7.4).
Application of Risk within Net Present Value Calculations for Government Projects
NASA Technical Reports Server (NTRS)
Grandl, Paul R.; Youngblood, Alisha D.; Componation, Paul; Gholston, Sampson
2007-01-01
In January 2004, President Bush announced a new vision for space exploration. This included retirement of the current Space Shuttle fleet by 2010 and the development of new set of launch vehicles. The President's vision did not include significant increases in the NASA budget, so these development programs need to be cost conscious. Current trade study procedures address factors such as performance, reliability, safety, manufacturing, maintainability, operations, and costs. It would be desirable, however, to have increased insight into the cost factors behind each of the proposed system architectures. This paper reports on a set of component trade studies completed on the upper stage engine for the new launch vehicles. Increased insight into architecture costs was developed by including a Net Present Value (NPV) method and applying a set of associated risks to the base parametric cost data. The use of the NPV method along with the risks was found to add fidelity to the trade study and provide additional information to support the selection of a more robust design architecture.
NASA Astrophysics Data System (ADS)
Kouimtzoglou, T.; Stathopoulou, E. K.; Agrafiotis, P.; Georgopoulos, A.
2017-02-01
Μodern advances in the field of image-based 3D reconstruction of complex architectures are valuable tools that may offer the researchers great possibilities integrating the use of such procedures in their studies. In the same way that photogrammetry was a well-known useful tool among the cultural heritage community for years, the state of the art reconstruction techniques generate complete and easy to use 3D data, thus enabling engineers, architects and other cultural heritage experts to approach their case studies in an exhaustive and efficient way. The generated data can be a valuable and accurate basis upon which further plans and studies will be drafted. These and other aspects of the use of image-based 3D data for architectural studies are to be presented and analysed in this paper, based on the experience gained from a specific case study, the Plaka Bridge. This historic structure is of particular interest, as it was recently lost due to extreme weather conditions and serves as a strong proof that preventive actions are of utmost importance in order to preserve our common past.
Utilizing IHE-based Electronic Health Record systems for secondary use.
Holzer, K; Gall, W
2011-01-01
Due to the increasing adoption of Electronic Health Records (EHRs) for primary use, the number of electronic documents stored in such systems will soar in the near future. In order to benefit from this development in secondary fields such as medical research, it is important to define requirements for the secondary use of EHR data. Furthermore, analyses of the extent to which an IHE (Integrating the Healthcare Enterprise)-based architecture would fulfill these requirements could provide further information on upcoming obstacles for the secondary use of EHRs. A catalog of eight core requirements for secondary use of EHR data was deduced from the published literature, the risk analysis of the IHE profile MPQ (Multi-Patient Queries) and the analysis of relevant questions. The IHE-based architecture for cross-domain, patient-centered document sharing was extended to a cross-patient architecture. We propose an IHE-based architecture for cross-patient and cross-domain secondary use of EHR data. Evaluation of this architecture concerning the eight core requirements revealed positive fulfillment of six and the partial fulfillment of two requirements. Although not regarded as a primary goal in modern electronic healthcare, the re-use of existing electronic medical documents in EHRs for research and other fields of secondary application holds enormous potential for the future. Further research in this respect is necessary.
Front end design of smartphone-based mobile health
NASA Astrophysics Data System (ADS)
Zhang, Changfan; He, Lingsong; Gao, Zhiqiang; Ling, Cong; Du, Jianhao
2015-02-01
Mobile health has been a new trend all over the world with the rapid development of intelligent terminals and mobile internet. It can help patients monitor health in-house and is convenient for doctors to diagnose remotely. Smart-phone-based mobile health has big advantages in cost and data sharing. Front end design of it mainly focuses on two points: one is implementation of medical sensors aimed at measuring kinds of medical signal; another is acquisition of medical signal from sensors to smart phone. In this paper, the above two aspects were both discussed. First, medical sensor implementation was proposed to refer to mature measurement solutions with ECG (electrocardiograph) sensor design taken for example. And integrated chip using can simplify design. Then second, typical data acquisition architecture of smart phones, namely Bluetooth and MIC (microphone)-based architecture, were compared. Bluetooth architecture should be equipped with an acquisition card; MIC design uses sound card of smart phone instead. Smartphone-based virtual instrument app design corresponding to above acquisition architecture was discussed. In experiments, Bluetooth and MIC architecture were used to acquire blood pressure and ECG data respectively. The results showed that Bluetooth design can guarantee high accuracy during the acquisition and transmission process, and MIC design is competitive because of low cost and convenience.
A mixed acid based vanadium-cerium redox flow battery with a zero-gap serpentine architecture
NASA Astrophysics Data System (ADS)
Leung, P. K.; Mohamed, M. R.; Shah, A. A.; Xu, Q.; Conde-Duran, M. B.
2015-01-01
This paper presents the performance of a vanadium-cerium redox flow battery using conventional and zero-gap serpentine architectures. Mixed-acid solutions based on methanesulfonate-sulfate anions (molar ratio 3:1) are used to enhance the solubilities of the vanadium (>2.0 mol dm-3) and cerium species (>0.8 mol dm-3), thus achieving an energy density (c.a. 28 Wh dm-3) comparable to that of conventional all-vanadium redox flow batteries (20-30 Wh dm-3). Electrochemical studies, including cyclic voltammetry and galvanostatic cycling, show that both vanadium and cerium active species are suitable for energy storage applications in these electrolytes. To take advantage of the high open-circuit voltage (1.78 V), improved mass transport and reduced internal resistance are facilitated by the use of zero-gap flow field architecture, which yields a power density output of the battery of up to 370 mW cm-2 at a state-of-charge of 50%. In a charge-discharge cycle at 200 mA cm-2, the vanadium-cerium redox flow battery with the zero-gap architecture is observed to discharge at a cell voltage of c.a. 1.35 V with a coulombic efficiency of up to 78%.
NASA Astrophysics Data System (ADS)
Murillo-Gutiérrez, N. V.; Ansart, F.; Bonino, J.-P.; Kunst, S. R.; Malfatti, C. F.
2014-08-01
An epoxy-based hybrid sol-gel coating was prepared in various architectural configurations has been studied for the corrosion protection of a cast Elektron21 magnesium alloy. The creation of a single layer of this coating presents defects consisting of macro-pores and protuberances, which opens access for corrosive species to reach the metallic substrate. These defects are suspected to result from the high reactivity of the substrate, as well as to the irregular topography of the substrate disrupted by the microstructure of the own magnesium alloy. Hence, a sol-gel coating in bilayer architecture is proposed, where the first layer would “inert” the surface of the magnesium substrate, and the second layer would cover the defects of the first layer and also thickening the coating. The morphological characteristics of the sol-gel coatings were analyzed by scanning electron microscopy (SEM), and their corrosion behavior was evaluated by OCP (open circuit potential) monitoring and electrochemical impedance spectroscopy (EIS) in chloride media. It is shown that both the architectural arrangement and the individual thickness of the first and second layers have an important influence on the anticorrosion performances of the protective system, just as much as its global thickness.
Hutchison, Kimberly N; Song, Yanna; Wang, Lily; Malow, Beth A
2008-04-15
Polysomnography is associated with changes in sleep architecture called the first-night effect. This effect is believed to result from sleeping in an unusual environment and the technical equipment used to study sleep. Sleep experts hope to decrease this variable by providing a more familiar, comfortable atmosphere for sleep testing through hotel-based sleep centers. In this study, we compared the sleep parameters of patients studied in our hotel-based and hospital-based sleep laboratories. We retrospectively reviewed polysomnograms completed in our hotel-based and hospital-based sleep laboratories from August 2003 to July 2005. All patients were undergoing evaluation for obstructive sleep apnea. Hospital-based patients were matched for age and apnea-hypopnea index with hotel-based patients. We compared the sleep architecture changes associated with the first-night effect in the two groups. The associated conditions and symptoms listed on the polysomnography referral forms are also compared. No significant differences were detected between the two groups in sleep onset latency, sleep efficiency, REM sleep latency, total amount of slow wave sleep (NREM stages 3 and 4), arousal index, and total stage 1 sleep. This pilot study failed to show a difference in sleep parameters associated with the first-night effect in patients undergoing sleep studies in our hotel and hospital-based sleep laboratories. Future studies need to compare the first-night effect in different sleep disorders, preferably in multi-night recordings.
Controlling Styrene Maleic Acid Lipid Particles through RAFT.
Smith, Anton A A; Autzen, Henriette E; Laursen, Tomas; Wu, Vincent; Yen, Max; Hall, Aaron; Hansen, Scott D; Cheng, Yifan; Xu, Ting
2017-11-13
The ability of styrene maleic acid copolymers to dissolve lipid membranes into nanosized lipid particles is a facile method of obtaining membrane proteins in solubilized lipid discs while conserving part of their native lipid environment. While the currently used copolymers can readily extract membrane proteins in native nanodiscs, their highly disperse composition is likely to influence the dispersity of the discs as well as the extraction efficiency. In this study, reversible addition-fragmentation chain transfer was used to control the polymer architecture and dispersity of molecular weights with a high-precision. Based on Monte Carlo simulations of the polymerizations, the monomer composition was predicted and allowed a structure-function analysis of the polymer architecture, in relation to their ability to assemble into lipid nanoparticles. We show that a higher degree of control of the polymer architecture generates more homogeneous samples. We hypothesize that low dispersity copolymers, with control of polymer architecture are an ideal framework for the rational design of polymers for customized isolation and characterization of integral membrane proteins in native lipid bilayer systems.
A Web Centric Architecture for Deploying Multi-Disciplinary Engineering Design Processes
NASA Technical Reports Server (NTRS)
Woyak, Scott; Kim, Hongman; Mullins, James; Sobieszczanski-Sobieski, Jaroslaw
2004-01-01
There are continuous needs for engineering organizations to improve their design process. Current state of the art techniques use computational simulations to predict design performance, and optimize it through advanced design methods. These tools have been used mostly by individual engineers. This paper presents an architecture for achieving results at an organization level beyond individual level. The next set of gains in process improvement will come from improving the effective use of computers and software within a whole organization, not just for an individual. The architecture takes advantage of state of the art capabilities to produce a Web based system to carry engineering design into the future. To illustrate deployment of the architecture, a case study for implementing advanced multidisciplinary design optimization processes such as Bi-Level Integrated System Synthesis is discussed. Another example for rolling-out a design process for Design for Six Sigma is also described. Each example explains how an organization can effectively infuse engineering practice with new design methods and retain the knowledge over time.
Finding idle machines in a workstation-based distributed system
NASA Technical Reports Server (NTRS)
Theimer, Marvin M.; Lantz, Keith A.
1989-01-01
The authors describe the design and performance of scheduling facilities for finding idle hosts in a workstation-based distributed system. They focus on the tradeoffs between centralized and decentralized architectures with respect to scalability, fault tolerance, and simplicity of design, as well as several implementation issues of interest when multicast communication is used. They conclude that the principal tradeoff between the two approaches is that a centralized architecture can be scaled to a significantly greater degree and can more easily monitor global system statistics, whereas a decentralized architecture is simpler to implement.
Contextual cloud-based service oriented architecture for clinical workflow.
Moreno-Conde, Jesús; Moreno-Conde, Alberto; Núñez-Benjumea, Francisco J; Parra-Calderón, Carlos
2015-01-01
Given that acceptance of systems within the healthcare domain multiple papers highlighted the importance of integrating tools with the clinical workflow. This paper analyse how clinical context management could be deployed in order to promote the adoption of cloud advanced services and within the clinical workflow. This deployment will be able to be integrated with the eHealth European Interoperability Framework promoted specifications. Throughout this paper, it is proposed a cloud-based service-oriented architecture. This architecture will implement a context management system aligned with the HL7 standard known as CCOW.
Thermal Control System Automation Project (TCSAP)
NASA Technical Reports Server (NTRS)
Boyer, Roger L.
1991-01-01
Information is given in viewgraph form on the Space Station Freedom (SSF) Thermal Control System Automation Project (TCSAP). Topics covered include the assembly of the External Thermal Control System (ETCS); the ETCS functional schematic; the baseline Fault Detection, Isolation, and Recovery (FDIR), including the development of a knowledge based system (KBS) for application of rule based reasoning to the SSF ETCS; TCSAP software architecture; the High Fidelity Simulator architecture; the TCSAP Runtime Object Database (RODB) data flow; KBS functional architecture and logic flow; TCSAP growth and evolution; and TCSAP relationships.
Field studies in architectural acoustics using Tablet PCs
NASA Astrophysics Data System (ADS)
Boye, Daniel
2005-04-01
Core requirements for the sciences within the liberal arts curriculum challenge students to become directly involved in scientific study. These requirements seek to develop scientifically literate leaders and members of society. Formal laboratory periods are not usually associated with these courses. Thus, conceptual discovery and quantitative experimentation must take place outside of the classroom. Physics 115: Musical Technology at Davidson College is such a course and contains a section dealing with architectural acoustics. Field studies in the past have been an awkward and cumbersome activity, especially for non-science majors. The emerging technology of Tablet PCs overcomes many of the problems of mobile data acquisition and analysis, and allows the students to determine the locations of the rooms to be studied. The impulse method for determining reverberation time is used and compared with calculations based on room size and absorption media. The use of Tablet PCs and the publicly available freeware Audacity in field studies investigating architectural acoustics will be discussed. [Work supported in part by the Associated Colleges of the South through their Technology Fellowship program.
Study on the standard architecture for geoinformation common services
NASA Astrophysics Data System (ADS)
Zha, Z.; Zhang, L.; Wang, C.; Jiang, J.; Huang, W.
2014-04-01
The construction of platform for geoinformation common services was completed or on going in in most provinces and cities in these years in China, and the platforms plays an important role in the economic and social activities. Geoinfromation and geoinfromation based services are the key issues in the platform. The standards on geoinormation common services play as bridges among the users, systems and designers of the platform. The standard architecture for geoinformation common services is the guideline for designing and using the standard system in which the standards integrated to each other to promote the development, sharing and services of geoinformation resources. To establish the standard architecture for geoinformation common services is one of the tasks of "Study on important standards for geonformation common services and management of public facilities in city". The scope of the standard architecture is defined, such as data or information model, interoperability interface or service, information management. Some Research work on the status of international standards of geoinormation common services in organization and countries, like ISO/TC 211, OGC and other countries or unions like USA, EU, Japan have done. Some principles are set up to evaluate the standard, such as availability, suitability and extensible ability. Then the development requirement and practical situation are analyzed, and a framework of the standard architecture for geoinformation common services are proposed. Finally, a summary and prospects of the geoinformation standards are made.
a New Protocol for Texture Mapping Process and 2d Representation of Rupestrian Architecture
NASA Astrophysics Data System (ADS)
Carnevali, L.; Carpiceci, M.; Angelini, A.
2018-05-01
The development of the survey techniques for architecture and archaeology requires a general review in the methods used for the representation of numerical data. The possibilities offered by data processing allow to find new paths for studying issues connected to the drawing discipline. The research project aimed at experimenting different approaches for the representation of the rupestrian architecture and the texture mapping process. The nature of the rupestrian architecture does not allow a traditional representation of sections and projections of edges and outlines. The paper presents a method, the Equidistant Multiple Sections (EMS), inspired by cartography and based on the use of isohipses generated from different geometric plane. A specific paragraph is dedicated to the texture mapping process for unstructured surface models. One of the main difficulty in the image projection consists in the recognition of homologous points between image and point cloud, above all in the areas with most deformations. With the aid of the "virtual scan" tool a different procedure was developed for improving the correspondences of the image. The result show a sensible improvement of the entire process above all for the architectural vaults. A detailed study concerned the unfolding of the straight line surfaces; the barrel vault of the analyzed chapel has been unfolded for observing the paintings in the real shapes out of the morphological context.
NASA Astrophysics Data System (ADS)
Źróbek-Różańska, Alina; Zysk, Elżbieta; Źróbek, Sabina
2017-10-01
Poland has a turbulent and rich history. Partitions, wars, a centrally planned economy of the socialist era and the rapid transition to a market economy left visible marks on the Polish landscape. The changes that took place in the 20th century and the early 21st century have vastly influenced the country’s architecture. Residential buildings in rural suburbs bear witness to turbulent historical events and change processes. This study analyzed residential buildings in two villages situated in the historical district of Warmia (north-eastern Poland) which is now a part of the Region of Warmia and Mazury. The results of the observations were used to review the social, economic, legal and planning factors that influenced residential architecture between 1900 and 2017. The traditional layout of Warmian villages is well preserved in the analyzed locations where pre-war architectural design mingles with buildings erected in the socialist era when construction materials were scarce. Many buildings in the surveyed villages are reminiscent of collective farms, the prescribed architectural style of the 1970s as well as the stylistic diversity of the early transformation period when customized building plans and construction materials became available. The local landscape also features buildings erected in successive decades which brought a significant increase in the price of land and maintenance costs.
Parallel computing of physical maps--a comparative study in SIMD and MIMD parallelism.
Bhandarkar, S M; Chirravuri, S; Arnold, J
1996-01-01
Ordering clones from a genomic library into physical maps of whole chromosomes presents a central computational problem in genetics. Chromosome reconstruction via clone ordering is usually isomorphic to the NP-complete Optimal Linear Arrangement problem. Parallel SIMD and MIMD algorithms for simulated annealing based on Markov chain distribution are proposed and applied to the problem of chromosome reconstruction via clone ordering. Perturbation methods and problem-specific annealing heuristics are proposed and described. The SIMD algorithms are implemented on a 2048 processor MasPar MP-2 system which is an SIMD 2-D toroidal mesh architecture whereas the MIMD algorithms are implemented on an 8 processor Intel iPSC/860 which is an MIMD hypercube architecture. A comparative analysis of the various SIMD and MIMD algorithms is presented in which the convergence, speedup, and scalability characteristics of the various algorithms are analyzed and discussed. On a fine-grained, massively parallel SIMD architecture with a low synchronization overhead such as the MasPar MP-2, a parallel simulated annealing algorithm based on multiple periodically interacting searches performs the best. For a coarse-grained MIMD architecture with high synchronization overhead such as the Intel iPSC/860, a parallel simulated annealing algorithm based on multiple independent searches yields the best results. In either case, distribution of clonal data across multiple processors is shown to exacerbate the tendency of the parallel simulated annealing algorithm to get trapped in a local optimum.
Security Policy for a Generic Space Exploration Communication Network Architecture
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Sheehe, Charles J.; Vaden, Karl R.
2016-01-01
This document is one of three. It describes various security mechanisms and a security policy profile for a generic space-based communication architecture. Two other documents accompany this document- an Operations Concept (OpsCon) and a communication architecture document. The OpsCon should be read first followed by the security policy profile described by this document and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.
Architecture-Adaptive Computing Environment: A Tool for Teaching Parallel Programming
NASA Technical Reports Server (NTRS)
Dorband, John E.; Aburdene, Maurice F.
2002-01-01
Recently, networked and cluster computation have become very popular. This paper is an introduction to a new C based parallel language for architecture-adaptive programming, aCe C. The primary purpose of aCe (Architecture-adaptive Computing Environment) is to encourage programmers to implement applications on parallel architectures by providing them the assurance that future architectures will be able to run their applications with a minimum of modification. A secondary purpose is to encourage computer architects to develop new types of architectures by providing an easily implemented software development environment and a library of test applications. This new language should be an ideal tool to teach parallel programming. In this paper, we will focus on some fundamental features of aCe C.
Invocation oriented architecture for agile code and agile data
NASA Astrophysics Data System (ADS)
Verma, Dinesh; Chan, Kevin; Leung, Kin; Gkelias, Athanasios
2017-05-01
In order to address the unique requirements of sensor information fusion in a tactical coalition environment, we are proposing a new architecture - one based on the concept of invocations. An invocation is a combination of a software code and a piece of data, both managed using techniques from Information Centric networking. This paper will discuss limitations of current approaches, present the architecture for an invocation oriented architecture, illustrate how it works with an example scenario, and provide reasons for its suitability in a coalition environment.
1983-12-30
AD-Ri46 57? ARCHITECTURE DESIGN AND SYSTEM; PERFORMANCE ASSESSMENT i/i AND DEVELOPMENT ME..(U) NAVAL SURFACE WEAPONS CENTER SILYER SPRING MD J...AD-A 146 577 NSIWC TR 83-324 ARCHITECTURE , DESIGN , AND SYSTEM; PERFORMANCE ASSESSMENT AND DEVELOPMENT METHODOLOGY...REPORT NUMBER 12. GOVT ACCESSION NO.3. RECIPIENT’S CATALOG NUMBER NSWC TR 83-324 10- 1 1 51’ 4. ?ITLE (and subtitle) ARCHITECTURE , DESIGN , AND SYSTEM; S
Design of Power System Architectures for Small Spacecraft Systems
NASA Technical Reports Server (NTRS)
Momoh, James A.; Subramonian, Rama; Dias, Lakshman G.
1996-01-01
The objective of this research is to perform a trade study on several candidate power system architectures for small spacecrafts to be used in NASA's new millennium program. Three initial candidate architectures have been proposed by NASA and two other candidate architectures have been proposed by Howard University. Howard University is currently conducting the necessary analysis, synthesis, and simulation needed to perform the trade studies and arrive at the optimal power system architecture. Statistical, sensitivity and tolerant studies has been performed on the systems. It is concluded from present studies that certain components such as the series regulators, buck-boost converters and power converters can be minimized while retaining the desired functionality of the overall architecture. This in conjunction with battery scalability studies and system efficiency studies have enabled us to develop more economic architectures. Future studies will include artificial neural networks and fuzzy logic to analyze the performance of the systems. Fault simulation studies and fault diagnosis studies using EMTP and artificial neural networks will also be conducted.