A reprogrammable receiver architecture for wireless signal interception
NASA Astrophysics Data System (ADS)
Yao, Timothy S.
2003-09-01
In this paper, a re-programmable receiver architecture, based on software-defined-radio concept, for wireless signal interception is presented. The radio-frequency (RF) signal that the receiver would like to intercept may come from a terrestrial cellular network or communication satellites, which their carrier frequency are in the range from 800 MHz (civilian mobile) to 15 GHz (Ku band). To intercept signals from such a wide range of frequency in these variant communication systems, the traditional way is to deploy multiple receivers to scan and detect the desired signal. This traditional approach is obviously unattractive due to the cost, efficiency, and accuracy. Instead, we propose a universal receiver, which is software-driven and re-configurable, to intercept signals of interest. The software-defined-radio based receiver first intercepts RF energy of wide spectrum (25MHz) through antenna, performs zero-IF down conversion (homodyne architecture) to baseband, and digital channelizes the baseband signal. The channelization module is a bank of high performance digital filters. The bandwidth of the filter bank is programmable according to the wireless communication protocol under watch. In the baseband processing, high-performance digital signal processors carry out the detection process and microprocessors handle the communication protocols. The baseband processing is also re-configurable for different wireless standards and protocol. The advantages of the software-defined-radio architecture over traditional RF receiver make it a favorable technology for the communication signal interception and surveillance.
Comparing architectural solutions of IPT application SDKs utilizing H.323 and SIP
NASA Astrophysics Data System (ADS)
Keskinarkaus, Anja; Korhonen, Jani; Ohtonen, Timo; Kilpelanaho, Vesa; Koskinen, Esa; Sauvola, Jaakko J.
2001-07-01
This paper presents two approaches to efficient service development for Internet Telephony. In first approach we consider services ranging from core call signaling features and media control as stated in ITU-T's H.323 to end user services that supports user interaction. The second approach supports IETF's SIP protocol. We compare these from differing architectural perspectives, economy of network and terminal development, and propose efficient architecture models for both protocols. In their design, the main criteria were component independence, lightweight operation and portability in heterogeneous end-to-end environments. In proposed architecture, the vertical division of call signaling and streaming media control logic allows for using the components either individually or combined, depending on the level of functionality required by an application.
An Architecture for SCADA Network Forensics
NASA Astrophysics Data System (ADS)
Kilpatrick, Tim; Gonzalez, Jesus; Chandia, Rodrigo; Papa, Mauricio; Shenoi, Sujeet
Supervisory control and data acquisition (SCADA) systems are widely used in industrial control and automation. Modern SCADA protocols often employ TCP/IP to transport sensor data and control signals. Meanwhile, corporate IT infrastructures are interconnecting with previously isolated SCADA networks. The use of TCP/IP as a carrier protocol and the interconnection of IT and SCADA networks raise serious security issues. This paper describes an architecture for SCADA network forensics. In addition to supporting forensic investigations of SCADA network incidents, the architecture incorporates mechanisms for monitoring process behavior, analyzing trends and optimizing plant performance.
Networks: A Review of Their Technology, Architecture, and Implementation.
ERIC Educational Resources Information Center
Learn, Larry L.
1988-01-01
This overview of network-related technologies covers network elements, analog and digital signals, transmission media and their characteristics, equipment certification, multiplexing, network types, access technologies, network architectures local-area network technologies and attributes, protocols, internetworking, fiber optics versus satellites,…
Intelligent deflection routing in buffer-less networks.
Haeri, Soroush; Trajković, Ljiljana
2015-02-01
Deflection routing is employed to ameliorate packet loss caused by contention in buffer-less architectures such as optical burst-switched networks. The main goal of deflection routing is to successfully deflect a packet based only on a limited knowledge that network nodes possess about their environment. In this paper, we present a framework that introduces intelligence to deflection routing (iDef). iDef decouples the design of the signaling infrastructure from the underlying learning algorithm. It consists of a signaling and a decision-making module. Signaling module implements a feedback management protocol while the decision-making module implements a reinforcement learning algorithm. We also propose several learning-based deflection routing protocols, implement them in iDef using the ns-3 network simulator, and compare their performance.
Motion camera based on a custom vision sensor and an FPGA architecture
NASA Astrophysics Data System (ADS)
Arias-Estrada, Miguel
1998-09-01
A digital camera for custom focal plane arrays was developed. The camera allows the test and development of analog or mixed-mode arrays for focal plane processing. The camera is used with a custom sensor for motion detection to implement a motion computation system. The custom focal plane sensor detects moving edges at the pixel level using analog VLSI techniques. The sensor communicates motion events using the event-address protocol associated to a temporal reference. In a second stage, a coprocessing architecture based on a field programmable gate array (FPGA) computes the time-of-travel between adjacent pixels. The FPGA allows rapid prototyping and flexible architecture development. Furthermore, the FPGA interfaces the sensor to a compact PC computer which is used for high level control and data communication to the local network. The camera could be used in applications such as self-guided vehicles, mobile robotics and smart surveillance systems. The programmability of the FPGA allows the exploration of further signal processing like spatial edge detection or image segmentation tasks. The article details the motion algorithm, the sensor architecture, the use of the event- address protocol for velocity vector computation and the FPGA architecture used in the motion camera system.
NASA Astrophysics Data System (ADS)
Hirono, Masahiko; Nojima, Toshio
This paper presents a new signaling architecture for radio-access control in wireless communications systems. Called THREP (for THREe-phase link set-up Process), it enables systems with low-cost configurations to provide tetherless access and wide-ranging mobility by using autonomous radio-link controls for fast cell searching and distributed call management. A signaling architecture generally consists of a radio-access part and a service-entity-access part. In THREP, the latter part is divided into two steps: preparing a communication channel, and sustaining it. Access control in THREP is thus composed of three separated parts, or protocol phases. The specifications of each phase are determined independently according to system requirements. In the proposed architecture, the first phase uses autonomous radio-link control because we want to construct low-power indoor wireless communications systems. Evaluation of channel usage efficiency and hand-over loss probability in the personal handy-phone system (PHS) shows that THREP makes the radio-access sub-system operations in a practical application model highly efficient, and the results of a field experiment show that THREP provides sufficient protection against severe fast CNR degradation in practical indoor propagation environments.
Research and realization of signal simulation on virtual instrument
NASA Astrophysics Data System (ADS)
Zhao, Qi; He, Wenting; Guan, Xiumei
2010-02-01
In the engineering project, arbitrary waveform generator controlled by software interface is needed by simulation and test. This article discussed the program using the SCPI (Standard Commands For Programmable Instruments) protocol and the VISA (Virtual Instrument System Architecture) library to control the Agilent signal generator (Agilent N5182A) by instrument communication over the LAN interface. The program can conduct several signal generations such as CW (continuous wave), AM (amplitude modulation), FM (frequency modulation), ΦM (phase modulation), Sweep. As the result, the program system has good operability and portability.
Enhanced service zone architecture for multiservices over IP
NASA Astrophysics Data System (ADS)
Michaely, Boaz; Mohan, Seshadri
2001-07-01
Recently, the field of IP Telephony has been experienced considerable evolution through the specification of new protocols and introduction of products implementing these protocols. We visualize IP Telephony evolving to soon offer multiservices encompassing not only voice, but also data, video and multimedia. While the progress has focused on refining protocols and architectures, very little attention has been given to business models for offering these services. This paper introduces the concept of a Service Zone, which from a service provider/network operator perspective fits within the operator's administrative domain, but is viewed as an independent zone with its own management and services, requiring minimal integration with the core network services. Besides its own management, the Enhanced Services Zone may also provide provisioning and maintenance features needed to provide the customer services and availability that subscribers expect from a telephony service providers. The platform must provide reliable service over time, be scalable to meet increased capacity demands, and be upgradeable to incorporate advanced services and features as they become available. Signaling flows are illustrated using SIP and H.323.
SSWAP: A Simple Semantic Web Architecture and Protocol for Semantic Web Services
USDA-ARS?s Scientific Manuscript database
SSWAP (Simple Semantic Web Architecture and Protocol) is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP is the driving technology behind the Virtual Plant Information Network, an NSF-funded semantic w...
Modeling Techniques for High Dependability Protocols and Architecture
NASA Technical Reports Server (NTRS)
LaValley, Brian; Ellis, Peter; Walter, Chris J.
2012-01-01
This report documents an investigation into modeling high dependability protocols and some specific challenges that were identified as a result of the experiments. The need for an approach was established and foundational concepts proposed for modeling different layers of a complex protocol and capturing the compositional properties that provide high dependability services for a system architecture. The approach centers around the definition of an architecture layer, its interfaces for composability with other layers and its bindings to a platform specific architecture model that implements the protocols required for the layer.
A New On-Line Diagnosis Protocol for the SPIDER Family of Byzantine Fault Tolerant Architectures
NASA Technical Reports Server (NTRS)
Geser, Alfons; Miner, Paul S.
2004-01-01
This paper presents the formal verification of a new protocol for online distributed diagnosis for the SPIDER family of architectures. An instance of the Scalable Processor-Independent Design for Electromagnetic Resilience (SPIDER) architecture consists of a collection of processing elements communicating over a Reliable Optical Bus (ROBUS). The ROBUS is a specialized fault-tolerant device that guarantees Interactive Consistency, Distributed Diagnosis (Group Membership), and Synchronization in the presence of a bounded number of physical faults. Formal verification of the original SPIDER diagnosis protocol provided a detailed understanding that led to the discovery of a significantly more efficient protocol. The original protocol was adapted from the formally verified protocol used in the MAFT architecture. It required O(N) message exchanges per defendant to correctly diagnose failures in a system with N nodes. The new protocol achieves the same diagnostic fidelity, but only requires O(1) exchanges per defendant. This paper presents this new diagnosis protocol and a formal proof of its correctness using PVS.
Protocol independent transmission method in software defined optical network
NASA Astrophysics Data System (ADS)
Liu, Yuze; Li, Hui; Hou, Yanfang; Qiu, Yajun; Ji, Yuefeng
2016-10-01
With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.i., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). Using a proprietary protocol or encoding format is a way to improve information security. However, the flow, which carried by proprietary protocol or code, cannot go through the traditional IP network. In addition, ultra- high-definition video transmission service once again become a hot spot. Traditionally, in the IP network, the Serial Digital Interface (SDI) signal must be compressed. This approach offers additional advantages but also bring some disadvantages such as signal degradation and high latency. To some extent, HD-SDI can also be regard as a proprietary protocol, which need transparent transmission such as optical channel. However, traditional optical networks cannot support flexible traffics . In response to aforementioned challenges for future network, one immediate solution would be to use NFV technology to abstract the network infrastructure and provide an all-optical switching topology graph for the SDN control plane. This paper proposes a new service-based software defined optical network architecture, including an infrastructure layer, a virtualization layer, a service abstract layer and an application layer. We then dwell on the corresponding service providing method in order to implement the protocol-independent transport. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit the HD-SDI signal in the software-defined optical network.
A Hierarchical Communication Architecture for Oceanic Surveillance Applications
Macias, Elsa; Suarez, Alvaro; Chiti, Francesco; Sacco, Andrea; Fantacci, Romano
2011-01-01
The interest in monitoring applications using underwater sensor networks has been growing in recent years. The severe communication restrictions imposed by underwater channels make that efficient monitoring be a challenging task. Though a lot of research has been conducted on underwater sensor networks, there are only few concrete applications to a real-world case study. In this work, hence, we propose a general three tier architecture leveraging low cost wireless technologies for acoustic communications between underwater sensors and standard technologies, Zigbee and Wireless Fidelity (WiFi), for water surface communications. We have selected a suitable Medium Access Control (MAC) layer, after making a comparison with some common MAC protocols. Thus the performance of the overall system in terms of Signals Discarding Rate (SDR), signalling delay at the surface gateway as well as the percentage of true detection have been evaluated by simulation, pointing out good results which give evidence in applicability’s favour. PMID:22247669
Protocol and Topology Issues for Wide-Area Satellite Interconnection of Terrestrial Optical LANs
NASA Astrophysics Data System (ADS)
Parraga, N.
2002-01-01
Apart from broadcasting, the satellite business is targeting niche markets. Wide area interconnection is considered as one of these niche markets, since it addresses operators and business LANs (B2B, business to business) in remote areas where terrestrial infrastructure is not available. These LANs - if high-speed - are typically based on optical networks such as SONET. One of the advantages of SONET is its architecture flexibility and capacity to transport all kind of applications including multimedia with a range of different transmission rates. The applications can be carried by different protocols among which the Internet Protocol (IP) or the Asynchronous Transfer Mode (ATM) are the most prominent ones. Thus, the question arises how these protocols can be interconnected via the satellite segment. The paper addresses several solutions for interworking with different protocols. For this investigation we distinguish first of all between the topology and the switching technology of the satellites. In case of a star network with transparent satellite, the satellite protocol consists of physical layer and data layer which can be directly interconnected with layer 2 interworking function to their terrestrial counterparts in the SONET backbone. For regenerative satellites the situation is more complex: here we need to distinguish the types of transport protocols being used in the terrestrial and satellite segment. Whereas IP, ATM, MPEG dominate in the terrestrial networks, satellite systems usually do not follow these standards. Some might employ minor additions (for instance, satellite specific packet headers), some might be completely proprietary. In general, interworking must be done for the data plane on top of layer 2 (data link layer), whereas for the signaling plane the interworking is on top of layer 3. In the paper we will discuss the protocol stacks for ATM, IP, and MPEG with a regenerative satellite system. As an example we will use the EuroSkyWay satellite system for multimedia services. EuroSkyWay uses a GEO satellite with onboard switching. It has its own proprietary protocol stack for data link control (DLC), logical link control (LLC) and layer 3 functions such as resource management, call admission control and authentication. Special attention is paid to the IP interworking with Layer 3 function since IP does not support connection set-up and session protocols, thus proper interworking functions with IP signaling protocols for resource reservation routing such as RSVP, BGP, and ICMP need to be developed. Whereas the EuroSkyWay system is an representative for a meshed topology, DVB-RCS systems have usually star configuration with a central hub station. Different data streams are distinguished by program identifiers (PIDs). Recent proposals aim at the evolution of DVB-RCS towards a fully meshed structure. The paper will also discuss the protocol architecture for interconnect SONET LANs over these systems. Finally, a performance comparison of the different solutions will be given in terms of cell overhead rate and signalling effort for selected scenarios.
A nonlinear circuit architecture for magnetoencephalographic signal analysis.
Bucolo, M; Fortuna, L; Frasca, M; La Rosa, M; Virzì, M C; Shannahoff-Khalsa, D
2004-01-01
The objective of this paper was to face the complex spatio-temporal dynamics shown by Magnetoencephalography (MEG) data by applying a nonlinear distributed approach for the Blind Sources Separation. The effort was to characterize and differ-entiate the phases of a yogic respiratory exercise used in the treatment of obsessive compulsive disorders. The patient performed a precise respiratory protocol, at one breath per minute for 31 minutes, with 10 minutes resting phase before and after. The two steps of classical Independent Component Approach have been performed by using a Cellular Neural Network with two sets of templates. The choice of the couple of suitable templates has been carried out using genetic algorithm optimization techniques. Performing BSS with a nonlinear distributed approach, the outputs of the CNN have been compared to the ICA ones. In all the protocol phases, the main components founded with CNN have similar trends compared with that ones obtained with ICA. Moreover, using this distributed approach, a spatial location has been associated to each component. To underline the spatio-temporal and the nonlinearly of the neural process a distributed nonlinear architecture has been proposed. This strategy has been designed in order to overcome the hypothesis of linear combination among the sources signals, that is characteristic of the ICA approach, taking advantage of the spatial information.
NASA Astrophysics Data System (ADS)
Papers are presented on ISDN, mobile radio systems and techniques for digital connectivity, centralized and distributed algorithms in computer networks, communications networks, quality assurance and impact on cost, adaptive filters in communications, the spread spectrum, signal processing, video communication techniques, and digital satellite services. Topics discussed include performance evaluation issues for integrated protocols, packet network operations, the computer network theory and multiple-access, microwave single sideband systems, switching architectures, fiber optic systems, wireless local communications, modulation, coding, and synchronization, remote switching, software quality, transmission, and expert systems in network operations. Consideration is given to wide area networks, image and speech processing, office communications application protocols, multimedia systems, customer-controlled network operations, digital radio systems, channel modeling and signal processing in digital communications, earth station/on-board modems, computer communications system performance evaluation, source encoding, compression, and quantization, and adaptive communications systems.
Rajagopal, Vijay; Bass, Gregory; Ghosh, Shouryadipta; Hunt, Hilary; Walker, Cameron; Hanssen, Eric; Crampin, Edmund; Soeller, Christian
2018-04-18
With the advent of three-dimensional (3D) imaging technologies such as electron tomography, serial-block-face scanning electron microscopy and confocal microscopy, the scientific community has unprecedented access to large datasets at sub-micrometer resolution that characterize the architectural remodeling that accompanies changes in cardiomyocyte function in health and disease. However, these datasets have been under-utilized for investigating the role of cellular architecture remodeling in cardiomyocyte function. The purpose of this protocol is to outline how to create an accurate finite element model of a cardiomyocyte using high resolution electron microscopy and confocal microscopy images. A detailed and accurate model of cellular architecture has significant potential to provide new insights into cardiomyocyte biology, more than experiments alone can garner. The power of this method lies in its ability to computationally fuse information from two disparate imaging modalities of cardiomyocyte ultrastructure to develop one unified and detailed model of the cardiomyocyte. This protocol outlines steps to integrate electron tomography and confocal microscopy images of adult male Wistar (name for a specific breed of albino rat) rat cardiomyocytes to develop a half-sarcomere finite element model of the cardiomyocyte. The procedure generates a 3D finite element model that contains an accurate, high-resolution depiction (on the order of ~35 nm) of the distribution of mitochondria, myofibrils and ryanodine receptor clusters that release the necessary calcium for cardiomyocyte contraction from the sarcoplasmic reticular network (SR) into the myofibril and cytosolic compartment. The model generated here as an illustration does not incorporate details of the transverse-tubule architecture or the sarcoplasmic reticular network and is therefore a minimal model of the cardiomyocyte. Nevertheless, the model can already be applied in simulation-based investigations into the role of cell structure in calcium signaling and mitochondrial bioenergetics, which is illustrated and discussed using two case studies that are presented following the detailed protocol.
Bell, Christopher; Puttick, Simon; Rose, Stephen; Smith, Jye; Thomas, Paul; Dowson, Nicholas
2017-06-21
Imaging using more than one biological process using PET could be of great utility, but despite previously proposed approaches to dual-tracer imaging, it is seldom performed. The alternative of performing multiple scans is often infeasible for clinical practice or even in research studies. Dual-tracer PET scanning allows for multiple PET radiotracers to be imaged within the same imaging session. In this paper we describe our approach to utilise the basis pursuit method to aid in the design of dual-tracer PET imaging experiments, and later in separation of the signals. The advantage of this approach is that it does not require a compartment model architecture to be specified or even that both signals are distinguishable in all cases. This means the method for separating dual-tracer signals can be used for many feasible and useful combinations of biology or radiotracer, once an appropriate scanning protocol has been decided upon. Following a demonstration in separating the signals from two consecutively injected radionuclides in a controlled experiment, phantom and list-mode mouse experiments demonstrated the ability to test the feasibility of dual-tracer imaging protocols for multiple injection delays. Increases in variances predicted for kinetic macro-parameters V D and K I in brain and tumoral tissue were obtained when separating the synthetically combined data. These experiments confirmed previous work using other approaches that injections delays of 10-20 min ensured increases in variance were kept minimal for the test tracers used. On this basis, an actual dual-tracer experiment using a 20 min delay was performed using these radio tracers, with the kinetic parameters (V D and K I ) extracted for each tracer in agreement with the literature. This study supports previous work that dual-tracer PET imaging can be accomplished provided certain constraints are adhered to. The utilisation of basis pursuit techniques, with its removed need to specify a model architecture, allows the feasibility of a range of imaging protocols to be investigated via simulation in a straight-forward manner for a wide range of possible scenarios. The hope is that the ease of utilising this approach during feasibility studies and in practice removes any perceived technical barrier to performing dual-tracer imaging.
NASA Astrophysics Data System (ADS)
Bell, Christopher; Puttick, Simon; Rose, Stephen; Smith, Jye; Thomas, Paul; Dowson, Nicholas
2017-06-01
Imaging using more than one biological process using PET could be of great utility, but despite previously proposed approaches to dual-tracer imaging, it is seldom performed. The alternative of performing multiple scans is often infeasible for clinical practice or even in research studies. Dual-tracer PET scanning allows for multiple PET radiotracers to be imaged within the same imaging session. In this paper we describe our approach to utilise the basis pursuit method to aid in the design of dual-tracer PET imaging experiments, and later in separation of the signals. The advantage of this approach is that it does not require a compartment model architecture to be specified or even that both signals are distinguishable in all cases. This means the method for separating dual-tracer signals can be used for many feasible and useful combinations of biology or radiotracer, once an appropriate scanning protocol has been decided upon. Following a demonstration in separating the signals from two consecutively injected radionuclides in a controlled experiment, phantom and list-mode mouse experiments demonstrated the ability to test the feasibility of dual-tracer imaging protocols for multiple injection delays. Increases in variances predicted for kinetic macro-parameters V D and K I in brain and tumoral tissue were obtained when separating the synthetically combined data. These experiments confirmed previous work using other approaches that injections delays of 10-20 min ensured increases in variance were kept minimal for the test tracers used. On this basis, an actual dual-tracer experiment using a 20 min delay was performed using these radio tracers, with the kinetic parameters (V D and K I) extracted for each tracer in agreement with the literature. This study supports previous work that dual-tracer PET imaging can be accomplished provided certain constraints are adhered to. The utilisation of basis pursuit techniques, with its removed need to specify a model architecture, allows the feasibility of a range of imaging protocols to be investigated via simulation in a straight-forward manner for a wide range of possible scenarios. The hope is that the ease of utilising this approach during feasibility studies and in practice removes any perceived technical barrier to performing dual-tracer imaging.
Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman
2008-08-04
Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.
A novel EPON architecture for supporting direct communication between ONUs
NASA Astrophysics Data System (ADS)
Wang, Liqian; Chen, Xue; Wang, Zhen
2008-11-01
In the traditional EPON network, optical signal from one ONU can not reach other ONUs. So ONUs can not directly transmit packets to other ONUs .The packets must be transferred by the OLT and it consumes both upstream bandwidth and downstream bandwidth. The bandwidth utilization is low and becomes lower when there are more packets among ONUs. When the EPON network carries P2P (Peer-to-Peer) applications and VPN applications, there would be a great lot of packets among ONUs and the traditional EPON network meets the problem of low bandwidth utilization. In the worst situation the bandwidth utilization of traditional EPON only is 50 percent. This paper proposed a novel EPON architecture and a novel medium access control protocol to realize direct packets transmission between ONUs. In the proposed EPON we adopt a novel circled architecture in the splitter. Due to the circled-splitter, optical signals from an ONU can reach the other ONUs and packets could be directly transmitted between two ONUs. The traffic between two ONUs only consumes upstream bandwidth and the bandwidth cost is reduced by 50 percent. Moreover, this kind of directly transmission reduces the packet's latency.
A Rate-Based Congestion Control Algorithm for the SURAP 4 Packet Radio Architecture (SRNTN-72)
1990-01-01
factor, one packet. as at connection initialization. However. these TCP enhancements do not solve the fairness problem. The slow start algorithm ma...and signal interference (including lamming) and by the delavs demanded b% the hink -layer protocols in the absence of contention for resources at the...values. This role would be redundant if bits-per-second rations used measurements of packet duration to determine how fast to decrease, at the expense of
GMPLS-based control plane for optical networks: early implementation experience
NASA Astrophysics Data System (ADS)
Liu, Hang; Pendarakis, Dimitrios; Komaee, Nooshin; Saha, Debanjan
2002-07-01
Generalized Multi-Protocol Label Switching (GMPLS) extends MPLS signaling and Internet routing protocols to provide a scalable, interoperable, distributed control plane, which is applicable to multiple network technologies such as optical cross connects (OXCs), photonic switches, IP routers, ATM switches, SONET and DWDM systems. It is intended to facilitate automatic service provisioning and dynamic neighbor and topology discovery across multi-vendor intelligent transport networks, as well as their clients. Efforts to standardize such a distributed common control plane have reached various stages in several bodies such as the IETF, ITU and OIF. This paper describes the design considerations and architecture of a GMPLS-based control plane that we have prototyped for core optical networks. Functional components of GMPLS signaling and routing are integrated in this architecture with an application layer controller module. Various requirements including bandwidth, network protection and survivability, traffic engineering, optimal utilization of network resources, and etc. are taken into consideration during path computation and provisioning. Initial experiments with our prototype demonstrate the feasibility and main benefits of GMPLS as a distributed control plane for core optical networks. In addition to such feasibility results, actual adoption and deployment of GMPLS as a common control plane for intelligent transport networks will depend on the successful completion of relevant standardization activities, extensive interoperability testing as well as the strengthening of appropriate business drivers.
The Effects of a Dynamic Spectrum Access Overlay in LTE-Advanced Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juan D. Deaton; Ryan E. Irwin; Luiz A. DaSilva
As early as 2014, mobile network operators’ spectral capacity will be overwhelmed by the demand brought on by new devices and applications. To augment capacity and meet this demand, operators may choose to deploy a Dynamic Spectrum Access (DSA) overlay. The signaling and functionality required by such an overlay have not yet been fully considered in the architecture of the planned Long Term Evolution Advanced (LTE+) networks. This paper presents a Spectrum Accountability framework to be integrated into LTE+ architectures, defining specific element functionality, protocol interfaces, and signaling flow diagrams required to enforce the rights and responsibilities of primary andmore » secondary users. We also quantify, through integer programs, the benefits of using DSA channels to augment capacity under a scenario in which LTE+ network can opportunistically use TV and GSM spectrum. The framework proposed here may serve as a guide in the development of future LTE+ network standards that account for DSA.« less
Reddy, Alavalapati Goutham; Das, Ashok Kumar; Odelu, Vanga; Yoo, Kee-Young
2016-01-01
Biometric based authentication protocols for multi-server architectures have gained momentum in recent times due to advancements in wireless technologies and associated constraints. Lu et al. recently proposed a robust biometric based authentication with key agreement protocol for a multi-server environment using smart cards. They claimed that their protocol is efficient and resistant to prominent security attacks. The careful investigation of this paper proves that Lu et al.'s protocol does not provide user anonymity, perfect forward secrecy and is susceptible to server and user impersonation attacks, man-in-middle attacks and clock synchronization problems. In addition, this paper proposes an enhanced biometric based authentication with key-agreement protocol for multi-server architecture based on elliptic curve cryptography using smartcards. We proved that the proposed protocol achieves mutual authentication using Burrows-Abadi-Needham (BAN) logic. The formal security of the proposed protocol is verified using the AVISPA (Automated Validation of Internet Security Protocols and Applications) tool to show that our protocol can withstand active and passive attacks. The formal and informal security analyses and performance analysis demonstrates that the proposed protocol is robust and efficient compared to Lu et al.'s protocol and existing similar protocols.
Performance analysis of signaling protocols on OBS switches
NASA Astrophysics Data System (ADS)
Kirci, Pinar; Zaim, A. Halim
2005-10-01
In this paper, Just-In-Time (JIT), Just-Enough-Time (JET) and Horizon signalling schemes for Optical Burst Switched Networks (OBS) are presented. These signaling schemes run over a core dWDM network and a network architecture based on Optical Burst Switches (OBS) is proposed to support IP, ATM and Burst traffic. In IP and ATM traffic several packets are assembled in a single packet called burst and the burst contention is handled by burst dropping. The burst length distribution in IP traffic is arbitrary between 0 and 1, and is fixed in ATM traffic at 0,5. Burst traffic on the other hand is arbitrary between 1 and 5. The Setup and Setup ack length distributions are arbitrary. We apply the Poisson model with rate λ and Self-Similar model with pareto distribution rate α to identify inter-arrival times in these protocols. We consider a communication between a source client node and a destination client node over an ingress and one or more multiple intermediate switches.We use buffering only in the ingress node. The communication is based on single burst connections in which, the connection is set up just before sending a burst and then closed as soon as the burst is sent. Our analysis accounts for several important parameters, including the burst setup, burst setup ack, keepalive messages and the optical switching protocol. We compare the performance of the three signalling schemes on the network under as burst dropping probability under a range of network scenarios.
Role of memory errors in quantum repeaters
NASA Astrophysics Data System (ADS)
Hartmann, L.; Kraus, B.; Briegel, H.-J.; Dür, W.
2007-03-01
We investigate the influence of memory errors in the quantum repeater scheme for long-range quantum communication. We show that the communication distance is limited in standard operation mode due to memory errors resulting from unavoidable waiting times for classical signals. We show how to overcome these limitations by (i) improving local memory and (ii) introducing two operational modes of the quantum repeater. In both operational modes, the repeater is run blindly, i.e., without waiting for classical signals to arrive. In the first scheme, entanglement purification protocols based on one-way classical communication are used allowing to communicate over arbitrary distances. However, the error thresholds for noise in local control operations are very stringent. The second scheme makes use of entanglement purification protocols with two-way classical communication and inherits the favorable error thresholds of the repeater run in standard mode. One can increase the possible communication distance by an order of magnitude with reasonable overhead in physical resources. We outline the architecture of a quantum repeater that can possibly ensure intercontinental quantum communication.
NASA Astrophysics Data System (ADS)
Lazar, Aurel A.; White, John S.
1987-07-01
Theoretical analysis of integrated local area network model of MAGNET, an integrated network testbed developed at Columbia University, shows that the bandwidth freed up during video and voice calls during periods of little movement in the images and periods of silence in the speech signals could be utilized efficiently for graphics and data transmission. Based on these investigations, an architecture supporting adaptive protocols that are dynamicaly controlled by the requirements of a fluctuating load and changing user environment has been advanced. To further analyze the behavior of the network, a real-time packetized video system has been implemented. This system is embedded in the real-time multimedia workstation EDDY, which integrates video, voice, and data traffic flows. Protocols supporting variable-bandwidth, fixed-quality packetized video transport are described in detail.
NASA Astrophysics Data System (ADS)
Lazar, Aurel A.; White, John S.
1986-11-01
Theoretical analysis of an ILAN model of MAGNET, an integrated network testbed developed at Columbia University, shows that the bandwidth freed up by video and voice calls during periods of little movement in the images and silence periods in the speech signals could be utilized efficiently for graphics and data transmission. Based on these investigations, an architecture supporting adaptive protocols that are dynamically controlled by the requirements of a fluctuating load and changing user environment has been advanced. To further analyze the behavior of the network, a real-time packetized video system has been implemented. This system is embedded in the real time multimedia workstation EDDY that integrates video, voice and data traffic flows. Protocols supporting variable bandwidth, constant quality packetized video transport are descibed in detail.
Sensor Proxy Mobile IPv6 (SPMIPv6)—A Novel Scheme for Mobility Supported IP-WSNs
Islam, Md. Motaharul; Huh, Eui-Nam
2011-01-01
IP based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health-care, home automation, environmental monitoring, industrial control, vehicle telematics and agricultural monitoring. In all these applications, mobility in the sensor network with special attention to energy efficiency is a major issue to be addressed. Host-based mobility management protocols are not suitable for IP-WSNs because of their energy inefficiency, so network based mobility management protocols can be an alternative for the mobility supported IP-WSNs. In this paper we propose a network based mobility supported IP-WSN protocol called Sensor Proxy Mobile IPv6 (SPMIPv6). We present its architecture, message formats and also evaluate its performance considering signaling cost, mobility cost and energy consumption. Our analysis shows that with respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 60% and 56%, as well as the mobility cost by 62% and 57%, compared to MIPv6 and PMIPv6, respectively. The simulation results also show that in terms of the number of hops, SPMIPv6 decreases the signaling cost by 56% and 53% as well as mobility cost by 60% and 67% as compared to MIPv6 and PMIPv6 respectively. It also indicates that proposed scheme reduces the level of energy consumption significantly. PMID:22319386
Sensor proxy mobile IPv6 (SPMIPv6)--a novel scheme for mobility supported IP-WSNs.
Islam, Md Motaharul; Huh, Eui-Nam
2011-01-01
IP based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health-care, home automation, environmental monitoring, industrial control, vehicle telematics and agricultural monitoring. In all these applications, mobility in the sensor network with special attention to energy efficiency is a major issue to be addressed. Host-based mobility management protocols are not suitable for IP-WSNs because of their energy inefficiency, so network based mobility management protocols can be an alternative for the mobility supported IP-WSNs. In this paper we propose a network based mobility supported IP-WSN protocol called Sensor Proxy Mobile IPv6 (SPMIPv6). We present its architecture, message formats and also evaluate its performance considering signaling cost, mobility cost and energy consumption. Our analysis shows that with respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 60% and 56%, as well as the mobility cost by 62% and 57%, compared to MIPv6 and PMIPv6, respectively. The simulation results also show that in terms of the number of hops, SPMIPv6 decreases the signaling cost by 56% and 53% as well as mobility cost by 60% and 67% as compared to MIPv6 and PMIPv6 respectively. It also indicates that proposed scheme reduces the level of energy consumption significantly.
National Airspace System (NAS) open system architecture and protocols
DOT National Transportation Integrated Search
2003-08-14
This standard establishes the open systems data communications architecture and authorized protocol standards for the National Airspace System (NAS). The NAS will consist of various types of processors and communications networks procured from a vari...
NASA Astrophysics Data System (ADS)
Park, Soomyung; Joo, Seong-Soon; Yae, Byung-Ho; Lee, Jong-Hyun
2002-07-01
In this paper, we present the Optical Cross-Connect (OXC) Management Control System Architecture, which has the scalability and robust maintenance and provides the distributed managing environment in the optical transport network. The OXC system we are developing, which is divided into the hardware and the internal and external software for the OXC system, is made up the OXC subsystem with the Optical Transport Network (OTN) sub layers-hardware and the optical switch control system, the signaling control protocol subsystem performing the User-to-Network Interface (UNI) and Network-to-Network Interface (NNI) signaling control, the Operation Administration Maintenance & Provisioning (OAM&P) subsystem, and the network management subsystem. And the OXC management control system has the features that can support the flexible expansion of the optical transport network, provide the connectivity to heterogeneous external network elements, be added or deleted without interrupting OAM&P services, be remotely operated, provide the global view and detail information for network planner and operator, and have Common Object Request Broker Architecture (CORBA) based the open system architecture adding and deleting the intelligent service networking functions easily in future. To meet these considerations, we adopt the object oriented development method in the whole developing steps of the system analysis, design, and implementation to build the OXC management control system with the scalability, the maintenance, and the distributed managing environment. As a consequently, the componentification for the OXC operation management functions of each subsystem makes the robust maintenance, and increases code reusability. Also, the component based OXC management control system architecture will have the flexibility and scalability in nature.
Reddy, Alavalapati Goutham; Das, Ashok Kumar; Odelu, Vanga; Yoo, Kee-Young
2016-01-01
Biometric based authentication protocols for multi-server architectures have gained momentum in recent times due to advancements in wireless technologies and associated constraints. Lu et al. recently proposed a robust biometric based authentication with key agreement protocol for a multi-server environment using smart cards. They claimed that their protocol is efficient and resistant to prominent security attacks. The careful investigation of this paper proves that Lu et al.’s protocol does not provide user anonymity, perfect forward secrecy and is susceptible to server and user impersonation attacks, man-in-middle attacks and clock synchronization problems. In addition, this paper proposes an enhanced biometric based authentication with key-agreement protocol for multi-server architecture based on elliptic curve cryptography using smartcards. We proved that the proposed protocol achieves mutual authentication using Burrows-Abadi-Needham (BAN) logic. The formal security of the proposed protocol is verified using the AVISPA (Automated Validation of Internet Security Protocols and Applications) tool to show that our protocol can withstand active and passive attacks. The formal and informal security analyses and performance analysis demonstrates that the proposed protocol is robust and efficient compared to Lu et al.’s protocol and existing similar protocols. PMID:27163786
NASA Technical Reports Server (NTRS)
Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.
1988-01-01
The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.
Automated monitoring of medical protocols: a secure and distributed architecture.
Alsinet, T; Ansótegui, C; Béjar, R; Fernández, C; Manyà, F
2003-03-01
The control of the right application of medical protocols is a key issue in hospital environments. For the automated monitoring of medical protocols, we need a domain-independent language for their representation and a fully, or semi, autonomous system that understands the protocols and supervises their application. In this paper we describe a specification language and a multi-agent system architecture for monitoring medical protocols. We model medical services in hospital environments as specialized domain agents and interpret a medical protocol as a negotiation process between agents. A medical service can be involved in multiple medical protocols, and so specialized domain agents are independent of negotiation processes and autonomous system agents perform monitoring tasks. We present the detailed architecture of the system agents and of an important domain agent, the database broker agent, that is responsible of obtaining relevant information about the clinical history of patients. We also describe how we tackle the problems of privacy, integrity and authentication during the process of exchanging information between agents.
Performance of the High Sensitivity Open Source Multi-GNSS Assisted GNSS Reference Server.
NASA Astrophysics Data System (ADS)
Sarwar, Ali; Rizos, Chris; Glennon, Eamonn
2015-06-01
The Open Source GNSS Reference Server (OSGRS) exploits the GNSS Reference Interface Protocol (GRIP) to provide assistance data to GPS receivers. Assistance can be in terms of signal acquisition and in the processing of the measurement data. The data transfer protocol is based on Extensible Mark-up Language (XML) schema. The first version of the OSGRS required a direct hardware connection to a GPS device to acquire the data necessary to generate the appropriate assistance. Scenarios of interest for the OSGRS users are weak signal strength indoors, obstructed outdoors or heavy multipath environments. This paper describes an improved version of OSGRS that provides alternative assistance support from a number of Global Navigation Satellite Systems (GNSS). The underlying protocol to transfer GNSS assistance data from global casters is the Networked Transport of RTCM (Radio Technical Commission for Maritime Services) over Internet Protocol (NTRIP), and/or the RINEX (Receiver Independent Exchange) format. This expands the assistance and support model of the OSGRS to globally available GNSS data servers connected via internet casters. A variety of formats and versions of RINEX and RTCM streams become available, which strengthens the assistance provisioning capability of the OSGRS platform. The prime motivation for this work was to enhance the system architecture of the OSGRS to take advantage of globally available GNSS data sources. Open source software architectures and assistance models provide acquisition and data processing assistance for GNSS receivers operating in weak signal environments. This paper describes test scenarios to benchmark the OSGRSv2 performance against other Assisted-GNSS solutions. Benchmarking devices include the SPOT satellite messenger, MS-Based & MS-Assisted GNSS, HSGNSS (SiRFstar-III) and Wireless Sensor Networks Assisted-GNSS. Benchmarked parameters include the number of tracked satellites, the Time to Fix First (TTFF), navigation availability and accuracy. Three different configurations of Multi-GNSS assistance servers were used, namely Cloud-Client-Server, the Demilitarized Zone (DMZ) Client-Server and PC-Client-Server; with respect to the connectivity location of client and server. The impact on the performance based on server and/or client initiation, hardware capability, network latency, processing delay and computation times with their storage, scalability, processing and load sharing capabilities, were analysed. The performance of the OSGRS is compared against commercial GNSS, Assisted-GNSS and WSN-enabled GNSS devices. The OSGRS system demonstrated lower TTFF and higher availability.
Multiple Access Schemes for Lunar Missions
NASA Technical Reports Server (NTRS)
Deutsch, Leslie; Hamkins, Jon; Stocklin, Frank J.
2010-01-01
Two years ago, the NASA Coding, Modulation, and Link Protocol (CMLP) study was completed. The study, led by the authors of this paper, recommended codes, modulation schemes, and desired attributes of link protocols for all space communication links in NASA's future space architecture. Portions of the NASA CMLP team were reassembled to resolve one open issue: the use of multiple access (MA) communication from the lunar surface. The CMLP-MA team analyzed and simulated two candidate multiple access schemes that were identified in the original CMLP study: Code Division MA (CDMA) and Frequency Division MA (FDMA) based on a bandwidth-efficient Continuous Phase Modulation (CPM) with a superimposed Pseudo-Noise (PN) ranging signal (CPM/PN). This paper summarizes the results of the analysis and simulation of the CMLP-MA study and describes the final recommendations.
NASA Astrophysics Data System (ADS)
Caratelli, A.; Bonacini, S.; Kloukinas, K.; Marchioro, A.; Moreira, P.; De Oliveira, R.; Paillard, C.
2015-03-01
The future upgrades of the LHC experiments will increase the beam luminosity leading to a corresponding growth of the amounts of data to be treated by the data acquisition systems. To address these needs, the GBT (Giga-Bit Transceiver optical link [1,2]) architecture was developed to provide the simultaneous transfer of readout data, timing and trigger signals as well as slow control and monitoring data. The GBT-SCA ASIC, part of the GBT chip-set, has the purpose to distribute control and monitoring signals to the on-detector front-end electronics and perform monitoring operations of detector environmental parameters. In order to meet the requirements of different front-end ASICs used in the experiments, it provides various user-configurable interfaces capable to perform simultaneous operations. It is designed employing radiation tolerant design techniques to ensure robustness against SEUs and TID radiation effects and is implemented in a commercial 130 nm CMOS technology. This work presents the GBT-SCA architecture, the ASIC interfaces, the data transfer protocol, and its integration with the GBT optical link.
Architectural Methodology Report
NASA Technical Reports Server (NTRS)
Dhas, Chris
2000-01-01
The establishment of conventions between two communicating entities in the end systems is essential for communications. Examples of the kind of decisions that need to be made in establishing a protocol convention include the nature of the data representation, the for-mat and the speed of the date representation over the communications path, and the sequence of control messages (if any) which are sent. One of the main functions of a protocol is to establish a standard path between the communicating entities. This is necessary to create a virtual communications medium with certain desirable characteristics. In essence, it is the function of the protocol to transform the characteristics of the physical communications environment into a more useful virtual communications model. The final function of a protocol is to establish standard data elements for communications over the path; that is, the protocol serves to create a virtual data element for exchange. Other systems may be constructed in which the transferred element is a program or a job. Finally, there are special purpose applications in which the element to be transferred may be a complex structure such as all or part of a graphic display. NASA's Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to describe the methodologies used in developing a protocol architecture for an in-space Internet node. The node would support NASA:s four mission areas: Earth Science; Space Science; Human Exploration and Development of Space (HEDS); Aerospace Technology. This report presents the methodology for developing the protocol architecture. The methodology addresses the architecture for a computer communications environment. It does not address an analog voice architecture.
The Aeronautical Data Link: Taxonomy, Architectural Analysis, and Optimization
NASA Technical Reports Server (NTRS)
Morris, A. Terry; Goode, Plesent W.
2002-01-01
The future Communication, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) System will rely on global satellite navigation, and ground-based and satellite based communications via Multi-Protocol Networks (e.g. combined Aeronautical Telecommunications Network (ATN)/Internet Protocol (IP)) to bring about needed improvements in efficiency and safety of operations to meet increasing levels of air traffic. This paper will discuss the development of an approach that completely describes optimal data link architecture configuration and behavior to meet the multiple conflicting objectives of concurrent and different operations functions. The practical application of the approach enables the design and assessment of configurations relative to airspace operations phases. The approach includes a formal taxonomic classification, an architectural analysis methodology, and optimization techniques. The formal taxonomic classification provides a multidimensional correlation of data link performance with data link service, information protocol, spectrum, and technology mode; and to flight operations phase and environment. The architectural analysis methodology assesses the impact of a specific architecture configuration and behavior on the local ATM system performance. Deterministic and stochastic optimization techniques maximize architectural design effectiveness while addressing operational, technology, and policy constraints.
NASA Technical Reports Server (NTRS)
Israel, David J.
2005-01-01
The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.
NASA Technical Reports Server (NTRS)
Lindley, Craig A.
1995-01-01
This paper presents an architecture for satellites regarded as intercommunicating agents. The architecture is based upon a postmodern paradigm of artificial intelligence in which represented knowledge is regarded as text, inference procedures are regarded as social discourse and decision making conventions and the semantics of representations are grounded in the situated behaviour and activity of agents. A particular protocol is described for agent participation in distributed search and retrieval operations conducted as joint activities.
A Mechanism for Reliable Mobility Management for Internet of Things Using CoAP
Chun, Seung-Man; Park, Jong-Tae
2017-01-01
Under unreliable constrained wireless networks for Internet of Things (IoT) environments, the loss of the signaling message may frequently occur. Mobile Internet Protocol version 6 (MIPv6) and its variants do not consider this situation. Consequently, as a constrained device moves around different wireless networks, its Internet Protocol (IP) connectivity may be frequently disrupted and power can be drained rapidly. This can result in the loss of important sensing data or a large delay for time-critical IoT services such as healthcare monitoring and disaster management. This paper presents a reliable mobility management mechanism in Internet of Things environments with lossy low-power constrained device and network characteristics. The idea is to use the Internet Engineering Task Force (IETF) Constrained Application Protocol (CoAP) retransmission mechanism to achieve both reliability and simplicity for reliable IoT mobility management. Detailed architecture, algorithms, and message extensions for reliable mobility management are presented. Finally, performance is evaluated using both mathematical analysis and simulation. PMID:28085109
A Mechanism for Reliable Mobility Management for Internet of Things Using CoAP.
Chun, Seung-Man; Park, Jong-Tae
2017-01-12
Under unreliable constrained wireless networks for Internet of Things (IoT) environments, the loss of the signaling message may frequently occur. Mobile Internet Protocol version 6 (MIPv6) and its variants do not consider this situation. Consequently, as a constrained device moves around different wireless networks, its Internet Protocol (IP) connectivity may be frequently disrupted and power can be drained rapidly. This can result in the loss of important sensing data or a large delay for time-critical IoT services such as healthcare monitoring and disaster management. This paper presents a reliable mobility management mechanism in Internet of Things environments with lossy low-power constrained device and network characteristics. The idea is to use the Internet Engineering Task Force (IETF) Constrained Application Protocol (CoAP) retransmission mechanism to achieve both reliability and simplicity for reliable IoT mobility management. Detailed architecture, algorithms, and message extensions for reliable mobility management are presented. Finally, performance is evaluated using both mathematical analysis and simulation.
Modular modelling with Physiome standards
Nickerson, David P.; Nielsen, Poul M. F.; Hunter, Peter J.
2016-01-01
Key points The complexity of computational models is increasing, supported by research in modelling tools and frameworks. But relatively little thought has gone into design principles for complex models.We propose a set of design principles for complex model construction with the Physiome standard modelling protocol CellML.By following the principles, models are generated that are extensible and are themselves suitable for reuse in larger models of increasing complexity.We illustrate these principles with examples including an architectural prototype linking, for the first time, electrophysiology, thermodynamically compliant metabolism, signal transduction, gene regulation and synthetic biology.The design principles complement other Physiome research projects, facilitating the application of virtual experiment protocols and model analysis techniques to assist the modelling community in creating libraries of composable, characterised and simulatable quantitative descriptions of physiology. Abstract The ability to produce and customise complex computational models has great potential to have a positive impact on human health. As the field develops towards whole‐cell models and linking such models in multi‐scale frameworks to encompass tissue, organ, or organism levels, reuse of previous modelling efforts will become increasingly necessary. Any modelling group wishing to reuse existing computational models as modules for their own work faces many challenges in the context of construction, storage, retrieval, documentation and analysis of such modules. Physiome standards, frameworks and tools seek to address several of these challenges, especially for models expressed in the modular protocol CellML. Aside from providing a general ability to produce modules, there has been relatively little research work on architectural principles of CellML models that will enable reuse at larger scales. To complement and support the existing tools and frameworks, we develop a set of principles to address this consideration. The principles are illustrated with examples that couple electrophysiology, signalling, metabolism, gene regulation and synthetic biology, together forming an architectural prototype for whole‐cell modelling (including human intervention) in CellML. Such models illustrate how testable units of quantitative biophysical simulation can be constructed. Finally, future relationships between modular models so constructed and Physiome frameworks and tools are discussed, with particular reference to how such frameworks and tools can in turn be extended to complement and gain more benefit from the results of applying the principles. PMID:27353233
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, Steven Y.; Spires, Shannon V.
There are currently two proposed standards for agent communication languages, namely, KQML (Finin, Lobrou, and Mayfield 1994) and the FIPA ACL. Neither standard has yet achieved primacy, and neither has been evaluated extensively in an open environment such as the Internet. It seems prudent therefore to design a general-purpose agent communications facility for new agent architectures that is flexible yet provides an architecture that accepts many different specializations. In this paper we exhibit the salient features of an agent communications architecture based on distributed metaobjects. This architecture captures design commitments at a metaobject level, leaving the base-level design and implementationmore » up to the agent developer. The scope of the metamodel is broad enough to accommodate many different communication protocols, interaction protocols, and knowledge sharing regimes through extensions to the metaobject framework. We conclude that with a powerful distributed object substrate that supports metaobject communications, a general framework can be developed that will effectively enable different approaches to agent communications in the same agent system. We have implemented a KQML-based communications protocol and have several special-purpose interaction protocols under development.« less
NASA Technical Reports Server (NTRS)
Benbenek, Daniel; Soloff, Jason; Lieb, Erica
2010-01-01
Selecting a communications and network architecture for future manned space flight requires an evaluation of the varying goals and objectives of the program, development of communications and network architecture evaluation criteria, and assessment of critical architecture trades. This paper uses Cx Program proposed exploration activities as a guideline; lunar sortie, outpost, Mars, and flexible path options are described. A set of proposed communications network architecture criteria are proposed and described. They include: interoperability, security, reliability, and ease of automating topology changes. Finally a key set of architecture options are traded including (1) multiplexing data at a common network layer vs. at the data link layer, (2) implementing multiple network layers vs. a single network layer, and (3) the use of a particular network layer protocol, primarily IPv6 vs. Delay Tolerant Networking (DTN). In summary, the protocol options are evaluated against the proposed exploration activities and their relative performance with respect to the criteria are assessed. An architectural approach which includes (a) the capability of multiplexing at both the network layer and the data link layer and (b) a single network layer for operations at each program phase, as these solutions are best suited to respond to the widest array of program needs and meet each of the evaluation criteria.
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2003-01-01
Traditional NASA missions, both near Earth and deep space, have been stovepipe in nature and point-to-point in architecture. Recently, NASA and others have conceptualized missions that required space-based networking. The notion of networks in space is a drastic shift in thinking and requires entirely new architectures, radio systems (antennas, modems, and media access), and possibly even new protocols. A full system engineering approach for some key mission architectures will occur that considers issues such as the science being performed, stationkeeping, antenna size, contact time, data rates, radio-link power requirements, media access techniques, and appropriate networking and transport protocols. This report highlights preliminary architecture concepts and key technologies that will be investigated.
NASA Astrophysics Data System (ADS)
Salathé, Yves; Kurpiers, Philipp; Karg, Thomas; Lang, Christian; Andersen, Christian Kraglund; Akin, Abdulkadir; Krinner, Sebastian; Eichler, Christopher; Wallraff, Andreas
2018-03-01
Quantum computing architectures rely on classical electronics for control and readout. Employing classical electronics in a feedback loop with the quantum system allows us to stabilize states, correct errors, and realize specific feedforward-based quantum computing and communication schemes such as deterministic quantum teleportation. These feedback and feedforward operations are required to be fast compared to the coherence time of the quantum system to minimize the probability of errors. We present a field-programmable-gate-array-based digital signal processing system capable of real-time quadrature demodulation, a determination of the qubit state, and a generation of state-dependent feedback trigger signals. The feedback trigger is generated with a latency of 110 ns with respect to the timing of the analog input signal. We characterize the performance of the system for an active qubit initialization protocol based on the dispersive readout of a superconducting qubit and discuss potential applications in feedback and feedforward algorithms.
MRI based on iron oxide nanoparticles contrast agents: effect of oxidation state and architecture
NASA Astrophysics Data System (ADS)
Javed, Yasir; Akhtar, Kanwal; Anwar, Hafeez; Jamil, Yasir
2017-11-01
Iron oxide nanoparticles (IONPs) extensively employed beyond regenerative medicines to imaging disciplines because of their great constituents for magneto-responsive nano-systems. The unique superparamagnetic behavior makes IONPs very suitable for hyperthermia and imaging applications. From the last decade, versatile functionalization with surface capabilities, efficient contrast properties and biocompatibilities make IONPs an essential imaging contrast agent for magnetic resonance imaging (MRI). IONPs have shown signals for both longitudinal relaxation and transverse relaxation; therefore, negative contrast as well as dual contrast can be used for imaging in MRI. In the current review, we have focused on different oxidation state of iron oxides, i.e., magnetite, maghemite and hematite for their T1 and T2 contrast enhancement properties. We have also discussed different factors (synthesis protocols, biocompatibility, toxicity, architecture, etc.) that can affect the contrast properties of the IONPs. [Figure not available: see fulltext.
Improving management performance of P2PSIP for mobile sensing in wireless overlays.
Sendín-Raña, Pablo; González-Castaño, Francisco Javier; Gómez-Cuba, Felipe; Asorey-Cacheda, Rafael; Pousada-Carballo, José María
2013-11-08
Future wireless communications are heading towards an all-Internet Protocol (all-IP) design, and will rely on the Session Initiation Protocol (SIP) to manage services, such as voice over IP (VoIP). The centralized architecture of traditional SIP has numerous disadvantages for mobile ad hoc services that may be possibly overcome by advanced peer-to-peer (P2P) technologies initially developed for the Internet. In the context of mobile sensing, P2PSIP protocols facilitate decentralized and fast communications with sensor-enabled terminals. Nevertheless, in order to make P2PSIP protocols feasible in mobile sensing networks, it is necessary to minimize overhead transmissions for signaling purposes, which reduces the battery lifetime. In this paper, we present a solution to improve the management of wireless overlay networks by defining an adaptive algorithm for the calculation of refresh time. The main advantage of the proposed algorithm is that it takes into account new parameters, such as the delay between nodes, and provides satisfactory performance and reliability levels at a much lower management overhead than previous approaches. The proposed solution can be applied to many structured P2P overlays or P2PSIP protocols. We evaluate it with Kademlia-based distributed hash tables (DHT) and dSIP.
Improving Management Performance of P2PSIP for Mobile Sensing in Wireless Overlays
Sendín-Raña, Pablo; González-Castaño, Francisco Javier; Gómez-Cuba, Felipe; Asorey-Cacheda, Rafael; Pousada-Carballo, José María
2013-01-01
Future wireless communications are heading towards an all-Internet Protocol (all-IP) design, and will rely on the Session Initiation Protocol (SIP) to manage services, such as voice over IP (VoIP). The centralized architecture of traditional SIP has numerous disadvantages for mobile ad hoc services that may be possibly overcome by advanced peer-to-peer (P2P) technologies initially developed for the Internet. In the context of mobile sensing, P2PSIP protocols facilitate decentralized and fast communications with sensor-enabled terminals. Nevertheless, in order to make P2PSIP protocols feasible in mobile sensing networks, it is necessary to minimize overhead transmissions for signaling purposes, which reduces the battery lifetime. In this paper, we present a solution to improve the management of wireless overlay networks by defining an adaptive algorithm for the calculation of refresh time. The main advantage of the proposed algorithm is that it takes into account new parameters, such as the delay between nodes, and provides satisfactory performance and reliability levels at a much lower management overhead than previous approaches. The proposed solution can be applied to many structured P2P overlays or P2PSIP protocols. We evaluate it with Kademlia-based distributed hash tables (DHT) and dSIP PMID:24217358
Bearer channel control protocol for the dynamic VB5.2 interface in ATM access networks
NASA Astrophysics Data System (ADS)
Fragoulopoulos, Stratos K.; Mavrommatis, K. I.; Venieris, Iakovos S.
1996-12-01
In the multi-vendor systems, a customer connected to an Access network (AN) must be capable of selecting a specific Service Node (SN) according to the services the SN provides. The multiplicity of technologically varying AN calls for the definition of a standard reference point between the AN and the SN widely known as the VB interface. Two versions are currently offered. The VB5.1 is simpler to implement but is not as flexible as the VB5.2, which supports switched connections. The VB5.2 functionality is closely coupled to the Broadband Bearer Channel Connection Protocol (B-BCCP). The B-BCCP is used for conveying the necessary information for dynamic resource allocation, traffic policing and routing in the AN as well as for information exchange concerning the status of the AN before a new call is established by the SN. By relying on such a protocol for the exchange of information instead of intercepting and interpreting signalling messages in the AN, the architecture of the AN is simplified because the functionality related to processing is not duplicated. In this paper a prominent B- BCCP candidate is defined, called the Service node Access network Interaction Protocol.
Llor, Jesús; Malumbres, Manuel P
2012-01-01
Several Medium Access Control (MAC) and routing protocols have been developed in the last years for Underwater Wireless Sensor Networks (UWSNs). One of the main difficulties to compare and validate the performance of different proposals is the lack of a common standard to model the acoustic propagation in the underwater environment. In this paper we analyze the evolution of underwater acoustic prediction models from a simple approach to more detailed and accurate models. Then, different high layer network protocols are tested with different acoustic propagation models in order to determine the influence of environmental parameters on the obtained results. After several experiments, we can conclude that higher-level protocols are sensitive to both: (a) physical layer parameters related to the network scenario and (b) the acoustic propagation model. Conditions like ocean surface activity, scenario location, bathymetry or floor sediment composition, may change the signal propagation behavior. So, when designing network architectures for UWSNs, the role of the physical layer should be seriously taken into account in order to assert that the obtained simulation results will be close to the ones obtained in real network scenarios.
Llor, Jesús; Malumbres, Manuel P.
2012-01-01
Several Medium Access Control (MAC) and routing protocols have been developed in the last years for Underwater Wireless Sensor Networks (UWSNs). One of the main difficulties to compare and validate the performance of different proposals is the lack of a common standard to model the acoustic propagation in the underwater environment. In this paper we analyze the evolution of underwater acoustic prediction models from a simple approach to more detailed and accurate models. Then, different high layer network protocols are tested with different acoustic propagation models in order to determine the influence of environmental parameters on the obtained results. After several experiments, we can conclude that higher-level protocols are sensitive to both: (a) physical layer parameters related to the network scenario and (b) the acoustic propagation model. Conditions like ocean surface activity, scenario location, bathymetry or floor sediment composition, may change the signal propagation behavior. So, when designing network architectures for UWSNs, the role of the physical layer should be seriously taken into account in order to assert that the obtained simulation results will be close to the ones obtained in real network scenarios. PMID:22438712
Wireless Multimedia Sensor Networks: Current Trends and Future Directions
Almalkawi, Islam T.; Zapata, Manel Guerrero; Al-Karaki, Jamal N.; Morillo-Pozo, Julian
2010-01-01
Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. In this paper, we outline the design challenges of WMSNs, give a comprehensive discussion of the proposed architectures, algorithms and protocols for the different layers of the communication protocol stack for WMSNs, and evaluate the existing WMSN hardware and testbeds. The paper will give the reader a clear view of the state of the art at all aspects of this research area, and shed the light on its main current challenges and future trends. We also hope it will foster discussions and new research ideas among its researchers. PMID:22163571
An All-Optical Access Metro Interface for Hybrid WDM/TDM PON Based on OBS
NASA Astrophysics Data System (ADS)
Segarra, Josep; Sales, Vicent; Prat, Josep
2007-04-01
A new all-optical access metro network interface based on optical burst switching (OBS) is proposed. A hybrid wavelength-division multiplexing/time-division multiplexing (WDM/TDM) access architecture with reflective optical network units (ONUs), an arrayed-waveguide-grating outside plant, and a tunable laser stack at the optical line terminal (OLT) is presented as a solution for the passive optical network. By means of OBS and a dynamic bandwidth allocation (DBA) protocol, which polls the ONUs, the available access bandwidth is managed. All the network intelligence and costly equipment is located at the OLT, where the DBA module is centrally implemented, providing quality of service (QoS). To scale this access network, an optical cross connect (OXC) is then used to attain a large number of ONUs by the same OLT. The hybrid WDM/TDM structure is also extended toward the metropolitan area network (MAN) by introducing the concept of OBS multiplexer (OBS-M). The network element OBS-M bridges the MAN and access networks by offering all-optical cross connection, wavelength conversion, and data signaling. The proposed innovative OBS-M node yields a full optical data network, interfacing access and metro with a geographically distributed access control. The resulting novel access metro architectures are nonblocking and, with an improved signaling, provide QoS, scalability, and very low latency. Finally, numerical analysis and simulations demonstrate the traffic performance of the proposed access scheme and all-optical access metro interface and architectures.
NASA Astrophysics Data System (ADS)
Yan, Liangwen; Hu, Sijung; Alharbi, Samah; Blanos, Panagiotis
2018-02-01
To effectively capture human vital signs, a multi-wavelength optoelectronic patch sensor (MOEPS), together with a schematic architecture of electronics, was developed to overcome the drawbacks of present photoplethysmographic (PPG) sensors. To obtain a better performance of in vivo physiological measurement, the optimal illuminations, i.e., light emitting diodes (LEDs) in the MOEPS, whose wavelength is automatically adjusted to each specific subject, were selected to capture better PPG signals. A multiplexed electronic architecture has been well established to properly drive the MOEPS and effectively capture pulsatile waveforms at rest. The protocol was designed to investigate its performance with the participation of 11 healthy subjects aged between 18 and 30. The signals obtained from green (525nm) and orange (595nm) illuminations were used to extract heart rate (HR) and oxygen saturation (SpO2%). These results were compared with data, simultaneously acquired, from a commercial ECG and a pulse oximeter. Considering the difficulty for current devices to attain the SpO2%, a new computing method, to obtain the value of SpO2%, is proposed depended on the green and orange wavelength illuminations. The values of SpO2% between the MOEPS and the commercial Pulse Oximeter devics showed that the results were in good agreement. The values of HR showed close correlation between commercial devices and the MOEPS (HR: r1=0.994(Green); r2=0.992(Orange); r3=0.975(Red); r4=0.990(IR)).
Emulation of Industrial Control Field Device Protocols
2013-03-01
platforms such as the Arduino ( based on the Atmel AVR architecture) or popular PIC architecture based devices, which are programmed for specific functions...UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base , Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION...confidence intervals for the mean. Based on these results, extensive knowledge of the specific implementations of the protocols or timing profiles of the
Method for siting detectors within a facility
Gleason, Nathaniel Jeremy Meyer
2007-12-11
A method, system and article of manufacture of siting one or more detectors in a facility represented with zones are provided. Signals S.sub.i,j representing an effect in zone j in response to a release of contaminant in zone i for one or more flow conditions are provided. A candidate architecture has one or more candidate zones. A limiting case signal is determined for each flow condition for multiple candidate architectures. The limiting case signal is a smallest system signal of multiple system signals associated with a release in a zone. Each system signal is a maximum one of the signals representing the effect in the candidate zones from the release in one zone for the flow condition. For each candidate architecture, a robust limiting case signal is determined based on a minimum of the limiting case signals. One candidate architecture is selected based on the robust limiting case signals.
Developing a Complete and Effective ACT-R Architecture
2008-01-01
of computational primitives , as contrasted with the predominant “one-off” and “grab-bag” cognitive models in the field. These architectures have...transport/ semaphore protocols connected via a glue script. Both protocols rely on the fact that file rename and file remove operations are atomic...the Trial Log file until just prior to processing the next input request. Thus, to perform synchronous identifications it is necessary to run an
2009-03-01
SENSOR NETWORKS THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and...hierarchical, and Secure Lock within a wireless sensor network (WSN) under the Hubenko architecture. Using a Matlab computer simulation, the impact of the...rekeying protocol should be applied given particular network parameters, such as WSN size. 10 1.3 Experimental Approach A computer simulation in
A flexible continuous-variable QKD system using off-the-shelf components
NASA Astrophysics Data System (ADS)
Comandar, Lucian C.; Brunner, Hans H.; Bettelli, Stefano; Fung, Fred; Karinou, Fotini; Hillerkuss, David; Mikroulis, Spiros; Wang, Dawei; Kuschnerov, Maxim; Xie, Changsong; Poppe, Andreas; Peev, Momtchil
2017-10-01
We present the development of a robust and versatile CV-QKD architecture based on commercially available optical and electronic components. The system uses a pilot tone for phase synchronization with a local oscillator, as well as local feedback loops to mitigate frequency and polarization drifts. Transmit and receive-side digital signal processing is performed fully in software, allowing for rapid protocol reconfiguration. The quantum link is complemented with a software stack for secure-key processing, key storage and encrypted communication. All these features allow for the system to be at the same time a prototype for a future commercial product and a research platform.
Security Research on VoIP with Watermarking
NASA Astrophysics Data System (ADS)
Hu, Dong; Lee, Ping
2008-11-01
With the wide application of VoIP, many problems have occurred. One of the problems is security. The problems with securing VoIP systems, insufficient standardization and lack of security mechanisms emerged the need for new approaches and solutions. In this paper, we propose a new security architecture for VoIP which is based on digital watermarking which is a new, flexible and powerful technology that is increasingly gaining more and more attentions. Besides known applications e.g. to solve copyright protection problems, we propose to use digital watermarking to secure not only transmitted audio but also signaling protocol that VoIP is based on.
A network architecture for International Business Satellite communications
NASA Astrophysics Data System (ADS)
Takahata, Fumio; Nohara, Mitsuo; Takeuchi, Yoshio
Demand Assignment (DA) control is expected to be introduced in the International Business Satellte communications (IBS) network in order to cope with a growing international business traffic. The paper discusses the DA/IBS network from the viewpoints of network configuration, satellite channel configuration and DA control. The network configuration proposed here consists of one Central Station with network management function and several Network Coordination Stations with user management function. A satellite channel configuration is also presented along with a tradeoff study on transmission bit rate, high power amplifier output power requirement, and service quality. The DA control flow and protocol based on CCITT Signalling System No. 7 are also proposed.
Integration of Sensors, Controllers and Instruments Using a Novel OPC Architecture
2017-01-01
The interconnection between sensors, controllers and instruments through a communication network plays a vital role in the performance and effectiveness of a control system. Since its inception in the 90s, the Object Linking and Embedding for Process Control (OPC) protocol has provided open connectivity for monitoring and automation systems. It has been widely used in several environments such as industrial facilities, building and energy automation, engineering education and many others. This paper presents a novel OPC-based architecture to implement automation systems devoted to R&D and educational activities. The proposal is a novel conceptual framework, structured into four functional layers where the diverse components are categorized aiming to foster the systematic design and implementation of automation systems involving OPC communication. Due to the benefits of OPC, the proposed architecture provides features like open connectivity, reliability, scalability, and flexibility. Furthermore, four successful experimental applications of such an architecture, developed at the University of Extremadura (UEX), are reported. These cases are a proof of concept of the ability of this architecture to support interoperability for different domains. Namely, the automation of energy systems like a smart microgrid and photobioreactor facilities, the implementation of a network-accessible industrial laboratory and the development of an educational hardware-in-the-loop platform are described. All cases include a Programmable Logic Controller (PLC) to automate and control the plant behavior, which exchanges operative data (measurements and signals) with a multiplicity of sensors, instruments and supervisory systems under the structure of the novel OPC architecture. Finally, the main conclusions and open research directions are highlighted. PMID:28654002
Integration of Sensors, Controllers and Instruments Using a Novel OPC Architecture.
González, Isaías; Calderón, Antonio José; Barragán, Antonio Javier; Andújar, José Manuel
2017-06-27
The interconnection between sensors, controllers and instruments through a communication network plays a vital role in the performance and effectiveness of a control system. Since its inception in the 90s, the Object Linking and Embedding for Process Control (OPC) protocol has provided open connectivity for monitoring and automation systems. It has been widely used in several environments such as industrial facilities, building and energy automation, engineering education and many others. This paper presents a novel OPC-based architecture to implement automation systems devoted to R&D and educational activities. The proposal is a novel conceptual framework, structured into four functional layers where the diverse components are categorized aiming to foster the systematic design and implementation of automation systems involving OPC communication. Due to the benefits of OPC, the proposed architecture provides features like open connectivity, reliability, scalability, and flexibility. Furthermore, four successful experimental applications of such an architecture, developed at the University of Extremadura (UEX), are reported. These cases are a proof of concept of the ability of this architecture to support interoperability for different domains. Namely, the automation of energy systems like a smart microgrid and photobioreactor facilities, the implementation of a network-accessible industrial laboratory and the development of an educational hardware-in-the-loop platform are described. All cases include a Programmable Logic Controller (PLC) to automate and control the plant behavior, which exchanges operative data (measurements and signals) with a multiplicity of sensors, instruments and supervisory systems under the structure of the novel OPC architecture. Finally, the main conclusions and open research directions are highlighted.
Hybrid techniques for the digital control of mechanical and optical systems
NASA Astrophysics Data System (ADS)
Acernese, Fausto; Barone, Fabrizio; De Rosa, Rosario; Eleuteri, Antonio; Milano, Leopoldo; Pardi, Silvio; Ricciardi, Iolanda; Russo, Guido
2004-07-01
One of the main requirements of a digital system for the control of interferometric detectors of gravitational waves is the computing power, that is a direct consequence of the increasing complexity of the digital algorithms necessary for the control signals generation. For this specific task many specialised non standard real-time architectures have been developed, often very expensive and difficult to upgrade. On the other hand, such computing power is generally fully available for off-line applications on standard Pc based systems. Therefore, a possible and obvious solution may be provided by the integration of both the the real-time and off-line architecture resulting in a hybrid control system architecture based on standards available components, trying to get both the advantages of the perfect data synchronization provided by the real-time systems and by the large computing power available on Pc based systems. Such integration may be provided by the implementation of the link between the two different architectures through the standard Ethernet network, whose data transfer speed is largely increasing in these years, using the TCP/IP and UDP protocols. In this paper we describe the architecture of an hybrid Ethernet based real-time control system protoype we implemented in Napoli, discussing its characteristics and performances. Finally we discuss a possible application to the real-time control of a suspended mass of the mode cleaner of the 3m prototype optical interferometer for gravitational wave detection (IDGW-3P) operational in Napoli.
NASA Astrophysics Data System (ADS)
Acernese, Fausto; Barone, Fabrizio; De Rosa, Rosario; Eleuteri, Antonio; Milano, Leopoldo; Pardi, Silvio; Ricciardi, Iolanda; Russo, Guido
2004-09-01
One of the main requirements of a digital system for the control of interferometric detectors of gravitational waves is the computing power, that is a direct consequence of the increasing complexity of the digital algorithms necessary for the control signals generation. For this specific task many specialized non standard real-time architectures have been developed, often very expensive and difficult to upgrade. On the other hand, such computing power is generally fully available for off-line applications on standard Pc based systems. Therefore, a possible and obvious solution may be provided by the integration of both the real-time and off-line architecture resulting in a hybrid control system architecture based on standards available components, trying to get both the advantages of the perfect data synchronization provided by the real-time systems and by the large computing power available on Pc based systems. Such integration may be provided by the implementation of the link between the two different architectures through the standard Ethernet network, whose data transfer speed is largely increasing in these years, using the TCP/IP, UDP and raw Ethernet protocols. In this paper we describe the architecture of an hybrid Ethernet based real-time control system prototype we implemented in Napoli, discussing its characteristics and performances. Finally we discuss a possible application to the real-time control of a suspended mass of the mode cleaner of the 3m prototype optical interferometer for gravitational wave detection (IDGW-3P) operational in Napoli.
Command and Control of Space Assets Through Internet-Based Technologies Demonstrated
NASA Technical Reports Server (NTRS)
Foltz, David A.
2002-01-01
The NASA Glenn Research Center successfully demonstrated a transmission-control-protocol/ Internet-protocol- (TCP/IP) based approach to the command and control of onorbit assets over a secure network. This is a significant accomplishment because future NASA missions will benefit by using Internet-standards-based protocols. Benefits of this Internet-based space command and control system architecture include reduced mission costs and increased mission efficiency. The demonstration proved that this communications architecture is viable for future NASA missions. This demonstration was a significant feat involving multiple NASA organizations and industry. Phillip Paulsen, from Glenn's Project Development and Integration Office, served as the overall project lead, and David Foltz, from Glenn's Satellite Networks and Architectures Branch, provided the hybrid networking support for the required Internet connections. The goal was to build a network that would emulate a connection between a space experiment on the International Space Station and a researcher accessing the experiment from anywhere on the Internet, as shown. The experiment was interfaced to a wireless 802.11 network inside the demonstration area. The wireless link provided connectivity to the Tracking and Data Relay Satellite System (TDRSS) Internet Link Terminal (TILT) satellite uplink terminal located 300 ft away in a parking lot on top of a panel van. TILT provided a crucial link in this demonstration. Leslie Ambrose, NASA Goddard Space Flight Center, provided the TILT/TDRSS support. The TILT unit transmitted the signal to TDRS 6 and was received at the White Sands Second TDRSS Ground Station. This station provided the gateway to the Internet. Coordination also took place at the White Sands station to install a Veridian Firewall and automated security incident measurement (ASIM) system to the Second TDRSS Ground Station Internet gateway. The firewall provides a trusted network for the simulated space experiment. A second Internet connection at the demonstration area was implemented to provide Internet connectivity to a group of workstations to serve as platforms for controlling the simulated space experiment. Installation of this Internet connection was coordinated with an Internet service provider (ISP) and local NASA Johnson Space Center personnel. Not only did this TCP/IP-based architecture prove that a principal investigator on the Internet can securely command and control on-orbit assets, it also demonstrated that valuable virtual testing of planned on-orbit activities can be conducted over the Internet prior to actual deployment in space.
Internet Architecture: Lessons Learned and Looking Forward
2006-12-01
Internet Architecture: Lessons Learned and Looking Forward Geoffrey G. Xie Department of Computer Science Naval Postgraduate School April 2006... Internet architecture. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is...readers are referred there for more information about a specific protocol or concept. 2. Origin of Internet Architecture The Internet is easily
Networks for Autonomous Formation Flying Satellite Systems
NASA Technical Reports Server (NTRS)
Knoblock, Eric J.; Konangi, Vijay K.; Wallett, Thomas M.; Bhasin, Kul B.
2001-01-01
The performance of three communications networks to support autonomous multi-spacecraft formation flying systems is presented. All systems are comprised of a ten-satellite formation arranged in a star topology, with one of the satellites designated as the central or "mother ship." All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/lP over ATM protocol architecture within the formation the second system uses the IEEE 802.11 protocol architecture within the formation and the last system uses both of the previous architectures with a constellation of geosynchronous satellites serving as an intermediate point-of-contact between the formation and the terrestrial network. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IF queuing delay, and IP processing delay at the mother ship as well as application-level round-trip time for both systems, In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.
The Level 0 Pixel Trigger system for the ALICE experiment
NASA Astrophysics Data System (ADS)
Aglieri Rinella, G.; Kluge, A.; Krivda, M.; ALICE Silicon Pixel Detector project
2007-01-01
The ALICE Silicon Pixel Detector contains 1200 readout chips. Fast-OR signals indicate the presence of at least one hit in the 8192 pixel matrix of each chip. The 1200 bits are transmitted every 100 ns on 120 data readout optical links using the G-Link protocol. The Pixel Trigger System extracts and processes them to deliver an input signal to the Level 0 trigger processor targeting a latency of 800 ns. The system is compact, modular and based on FPGA devices. The architecture allows the user to define and implement various trigger algorithms. The system uses advanced 12-channel parallel optical fiber modules operating at 1310 nm as optical receivers and 12 deserializer chips closely packed in small area receiver boards. Alternative solutions with multi-channel G-Link deserializers implemented directly in programmable hardware devices were investigated. The design of the system and the progress of the ALICE Pixel Trigger project are described in this paper.
Space Internet-Embedded Web Technologies Demonstration
NASA Technical Reports Server (NTRS)
Foltz, David A.
2001-01-01
The NASA Glenn Research Center recently demonstrated the ability to securely command and control space-based assets by using the Internet and standard Internet Protocols (IP). This is a significant accomplishment because future NASA missions will benefit by using Internet standards-based protocols. The benefits include reduced mission costs and increased mission efficiency. The Internet-Based Space Command and Control System Architecture demonstrated at the NASA Inspection 2000 event proved that this communications architecture is viable for future NASA missions.
Al Mamoon, Ishtiak; Muzahidul Islam, A K M; Baharun, Sabariah; Ahmed, Ashir; Komaki, Shozo
2016-08-01
Due to the rapid growth of wireless medical devices in near future, wireless healthcare services may face some inescapable issue such as medical spectrum scarcity, electromagnetic interference (EMI), bandwidth constraint, security and finally medical data communication model. To mitigate these issues, cognitive radio (CR) or opportunistic radio network enabled wireless technology is suitable for the upcoming wireless healthcare system. The up-to-date research on CR based healthcare has exposed some developments on EMI and spectrum problems. However, the investigation recommendation on system design and network model for CR enabled hospital is rare. Thus, this research designs a hierarchy based hybrid network architecture and network maintenance protocols for previously proposed CR hospital system, known as CogMed. In the previous study, the detail architecture of CogMed and its maintenance protocols were not present. The proposed architecture includes clustering concepts for cognitive base stations and non-medical devices. Two cluster head (CH selector equations are formulated based on priority of location, device, mobility rate of devices and number of accessible channels. In order to maintain the integrity of the proposed network model, node joining and node leaving protocols are also proposed. Finally, the simulation results show that the proposed network maintenance time is very low for emergency medical devices (average maintenance period 9.5 ms) and the re-clustering effects for different mobility enabled non-medical devices are also balanced.
NASA Astrophysics Data System (ADS)
Pleros, N.; Kalfas, G.; Mitsolidou, C.; Vagionas, C.; Tsiokos, D.; Miliou, A.
2017-01-01
Future broadband access networks in the 5G framework will need to be bilateral, exploiting both optical and wireless technologies. This paper deals with new approaches and synergies on radio-over-fiber (RoF) technologies and how those can be leveraged to seamlessly converge wireless technology for agility and mobility with passive optical networks (PON)-based backhauling. The proposed convergence paradigm is based upon a holistic network architecture mixing mm-wave wireless access with photonic integration, dynamic capacity allocation and network coding schemes to enable high bandwidth and low-latency fixed and 60GHz wireless personal area communications for gigabit rate per user, proposing and deploying on top a Medium-Transparent MAC (MT-MAC) protocol as a low-latency bandwidth allocation mechanism. We have evaluated alternative network topologies between the central office (CO) and the access point module (APM) for data rates up to 2.5 Gb/s and SC frequencies up to 60 GHz. Optical network coding is demonstrated for SCM-based signaling to enhance bandwidth utilization and facilitate optical-wireless convergence in 5G applications, reporting medium-transparent network coding directly at the physical layer between end-users communicating over a RoF infrastructure. Towards equipping the physical layer with the appropriate agility to support MT-MAC protocols, a monolithic InP-based Remote Antenna Unit optoelectronic PIC interface is shown that ensures control over the optical resource allocation assisting at the same time broadband wireless service. Finally, the MT-MAC protocol is analysed and simulation and analytical theoretical results are presented that are found to be in good agreement confirming latency values lower than 1msec for small- to mid-load conditions.
Evaluation of hardware costs of implementing PSK signal detection circuit based on "system on chip"
NASA Astrophysics Data System (ADS)
Sokolovskiy, A. V.; Dmitriev, D. D.; Veisov, E. A.; Gladyshev, A. B.
2018-05-01
The article deals with the choice of the architecture of digital signal processing units for implementing the PSK signal detection scheme. As an assessment of the effectiveness of architectures, the required number of shift registers and computational processes are used when implementing the "system on a chip" on the chip. A statistical estimation of the normalized code sequence offset in the signal synchronization scheme for various hardware block architectures is used.
SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services
Gessler, Damian DG; Schiltz, Gary S; May, Greg D; Avraham, Shulamit; Town, Christopher D; Grant, David; Nelson, Rex T
2009-01-01
Background SSWAP (Simple Semantic Web Architecture and Protocol; pronounced "swap") is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP was developed as a hybrid semantic web services technology to overcome limitations found in both pure web service technologies and pure semantic web technologies. Results There are currently over 2400 resources published in SSWAP. Approximately two dozen are custom-written services for QTL (Quantitative Trait Loci) and mapping data for legumes and grasses (grains). The remaining are wrappers to Nucleic Acids Research Database and Web Server entries. As an architecture, SSWAP establishes how clients (users of data, services, and ontologies), providers (suppliers of data, services, and ontologies), and discovery servers (semantic search engines) interact to allow for the description, querying, discovery, invocation, and response of semantic web services. As a protocol, SSWAP provides the vocabulary and semantics to allow clients, providers, and discovery servers to engage in semantic web services. The protocol is based on the W3C-sanctioned first-order description logic language OWL DL. As an open source platform, a discovery server running at (as in to "swap info") uses the description logic reasoner Pellet to integrate semantic resources. The platform hosts an interactive guide to the protocol at , developer tools at , and a portal to third-party ontologies at (a "swap meet"). Conclusion SSWAP addresses the three basic requirements of a semantic web services architecture (i.e., a common syntax, shared semantic, and semantic discovery) while addressing three technology limitations common in distributed service systems: i.e., i) the fatal mutability of traditional interfaces, ii) the rigidity and fragility of static subsumption hierarchies, and iii) the confounding of content, structure, and presentation. SSWAP is novel by establishing the concept of a canonical yet mutable OWL DL graph that allows data and service providers to describe their resources, to allow discovery servers to offer semantically rich search engines, to allow clients to discover and invoke those resources, and to allow providers to respond with semantically tagged data. SSWAP allows for a mix-and-match of terms from both new and legacy third-party ontologies in these graphs. PMID:19775460
SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services.
Gessler, Damian D G; Schiltz, Gary S; May, Greg D; Avraham, Shulamit; Town, Christopher D; Grant, David; Nelson, Rex T
2009-09-23
SSWAP (Simple Semantic Web Architecture and Protocol; pronounced "swap") is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP was developed as a hybrid semantic web services technology to overcome limitations found in both pure web service technologies and pure semantic web technologies. There are currently over 2400 resources published in SSWAP. Approximately two dozen are custom-written services for QTL (Quantitative Trait Loci) and mapping data for legumes and grasses (grains). The remaining are wrappers to Nucleic Acids Research Database and Web Server entries. As an architecture, SSWAP establishes how clients (users of data, services, and ontologies), providers (suppliers of data, services, and ontologies), and discovery servers (semantic search engines) interact to allow for the description, querying, discovery, invocation, and response of semantic web services. As a protocol, SSWAP provides the vocabulary and semantics to allow clients, providers, and discovery servers to engage in semantic web services. The protocol is based on the W3C-sanctioned first-order description logic language OWL DL. As an open source platform, a discovery server running at http://sswap.info (as in to "swap info") uses the description logic reasoner Pellet to integrate semantic resources. The platform hosts an interactive guide to the protocol at http://sswap.info/protocol.jsp, developer tools at http://sswap.info/developer.jsp, and a portal to third-party ontologies at http://sswapmeet.sswap.info (a "swap meet"). SSWAP addresses the three basic requirements of a semantic web services architecture (i.e., a common syntax, shared semantic, and semantic discovery) while addressing three technology limitations common in distributed service systems: i.e., i) the fatal mutability of traditional interfaces, ii) the rigidity and fragility of static subsumption hierarchies, and iii) the confounding of content, structure, and presentation. SSWAP is novel by establishing the concept of a canonical yet mutable OWL DL graph that allows data and service providers to describe their resources, to allow discovery servers to offer semantically rich search engines, to allow clients to discover and invoke those resources, and to allow providers to respond with semantically tagged data. SSWAP allows for a mix-and-match of terms from both new and legacy third-party ontologies in these graphs.
Open architecture design and approach for the Integrated Sensor Architecture (ISA)
NASA Astrophysics Data System (ADS)
Moulton, Christine L.; Krzywicki, Alan T.; Hepp, Jared J.; Harrell, John; Kogut, Michael
2015-05-01
Integrated Sensor Architecture (ISA) is designed in response to stovepiped integration approaches. The design, based on the principles of Service Oriented Architectures (SOA) and Open Architectures, addresses the problem of integration, and is not designed for specific sensors or systems. The use of SOA and Open Architecture approaches has led to a flexible, extensible architecture. Using these approaches, and supported with common data formats, open protocol specifications, and Department of Defense Architecture Framework (DoDAF) system architecture documents, an integration-focused architecture has been developed. ISA can help move the Department of Defense (DoD) from costly stovepipe solutions to a more cost-effective plug-and-play design to support interoperability.
Wireless optical network for a home network
NASA Astrophysics Data System (ADS)
Bouchet, Olivier; Porcon, Pascal; Walewski, Joachim W.; Nerreter, Stefan; Langer, Klaus-Dieter; Fernández, Luz; Vucic, Jelena; Kamalakis, Thomas; Ntogari, Georgia; Neokosmidis, Ioannis; Gueutier, Eric
2010-08-01
During the European collaborative project OMEGA, two optical-wireless prototypes have been developed. The first prototype operates in the near-infrared spectral region and features Giga Ethernet connectivity, a simple transceiver architecture due to the use of on-off keying, a multi-sector transceiver, and an ultra-fast switch for sector-to-sector hand over. This full-duplex system, composed by one base station and one module, transmits data on three meters. The second prototype is a visible-light-communications system based on DMT signal processing and an adapted MAC sublayer. Data rates around to 100 Mb/s at the physical layer are achieved. This broadcast system, composed also by one base station and one module, transmits data up to two meters. In this paper we present the adapted optical wireless media-access-control sublayer protocol for visible-light communications. This protocol accommodates link adaptation from 128 Mb/s to 1024 Mb/s with multi-sector coverage, and half-duplex or full-duplex transmission.
MTP: An atomic multicast transport protocol
NASA Technical Reports Server (NTRS)
Freier, Alan O.; Marzullo, Keith
1990-01-01
Multicast transport protocol (MTP); a reliable transport protocol that utilizes the multicast strategy of applicable lower layer network architectures is described. In addition to transporting data reliably and efficiently, MTP provides the client synchronization necessary for agreement on the receipt of data and the joining of the group of communicants.
Hwang, Bosun; You, Jiwoo; Vaessen, Thomas; Myin-Germeys, Inez; Park, Cheolsoo; Zhang, Byoung-Tak
2018-02-08
Stress recognition using electrocardiogram (ECG) signals requires the intractable long-term heart rate variability (HRV) parameter extraction process. This study proposes a novel deep learning framework to recognize the stressful states, the Deep ECGNet, using ultra short-term raw ECG signals without any feature engineering methods. The Deep ECGNet was developed through various experiments and analysis of ECG waveforms. We proposed the optimal recurrent and convolutional neural networks architecture, and also the optimal convolution filter length (related to the P, Q, R, S, and T wave durations of ECG) and pooling length (related to the heart beat period) based on the optimization experiments and analysis on the waveform characteristics of ECG signals. The experiments were also conducted with conventional methods using HRV parameters and frequency features as a benchmark test. The data used in this study were obtained from Kwangwoon University in Korea (13 subjects, Case 1) and KU Leuven University in Belgium (9 subjects, Case 2). Experiments were designed according to various experimental protocols to elicit stressful conditions. The proposed framework to recognize stress conditions, the Deep ECGNet, outperformed the conventional approaches with the highest accuracy of 87.39% for Case 1 and 73.96% for Case 2, respectively, that is, 16.22% and 10.98% improvements compared with those of the conventional HRV method. We proposed an optimal deep learning architecture and its parameters for stress recognition, and the theoretical consideration on how to design the deep learning structure based on the periodic patterns of the raw ECG data. Experimental results in this study have proved that the proposed deep learning model, the Deep ECGNet, is an optimal structure to recognize the stress conditions using ultra short-term ECG data.
Signaling Architectures that Transmit Unidirectional Information Despite Retroactivity.
Shah, Rushina; Del Vecchio, Domitilla
2017-08-08
A signaling pathway transmits information from an upstream system to downstream systems, ideally in a unidirectional fashion. A key obstacle to unidirectional transmission is retroactivity, the additional reaction flux that affects a system once its species interact with those of downstream systems. This raises the fundamental question of whether signaling pathways have developed specialized architectures that overcome retroactivity and transmit unidirectional signals. Here, we propose a general procedure based on mathematical analysis that provides an answer to this question. Using this procedure, we analyze the ability of a variety of signaling architectures to transmit one-way (from upstream to downstream) signals, as key biological parameters are tuned. We find that single stage phosphorylation and phosphotransfer systems that transmit signals from a kinase show a stringent design tradeoff that hampers their ability to overcome retroactivity. Interestingly, cascades of these architectures, which are highly represented in nature, can overcome this tradeoff and thus enable unidirectional transmission. By contrast, phosphotransfer systems, and single and double phosphorylation cycles that transmit signals from a substrate, are unable to mitigate retroactivity effects, even when cascaded, and hence are not well suited for unidirectional information transmission. These results are largely independent of the specific reaction-rate constant values, and depend on the topology of the architectures. Our results therefore identify signaling architectures that, allowing unidirectional transmission of signals, embody modular processes that conserve their input/output behavior across multiple contexts. These findings can be used to decompose natural signal transduction networks into modules, and at the same time, they establish a library of devices that can be used in synthetic biology to facilitate modular circuit design. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
A network architecture for precision formation flying using the IEEE 802.11 MAC Protocol
NASA Technical Reports Server (NTRS)
Clare, Loren P.; Gao, Jay L.; Jennings, Esther H.; Okino, Clayton
2005-01-01
Precision Formation Flying missions involve the tracking and maintenance of spacecraft in a desired geometric formation. The strong coupling of spacecraft in formation flying control requires inter-spacecraft communication to exchange information. In this paper, we present a network architecture that supports PFF control, from the initial random deployment phase to the final formation. We show that a suitable MAC layer for the application protocol is IEEE's 802.11 MAC protocol. IEEE 802.11 MAC has two modes of operations: DCF and PCF. We show that DCF is suitable for the initial deployment phase while switching to PCF when the spacecraft are in formation improves jitter and throughput. We also consider the effect of routing on protocol performance and suggest when it is profitable to turn off route discovery to achieve better network performance.
NASA Technical Reports Server (NTRS)
Roberts, Christopher J.; Morgenstern, Robert M.; Israel, David J.; Borky, John M.; Bradley, Thomas H.
2017-01-01
NASA's next generation space communications network will involve dynamic and autonomous services analogous to services provided by current terrestrial wireless networks. This architecture concept, known as the Space Mobile Network (SMN), is enabled by several technologies now in development. A pillar of the SMN architecture is the establishment and utilization of a continuous bidirectional control plane space link channel and a new User Initiated Service (UIS) protocol to enable more dynamic and autonomous mission operations concepts, reduced user space communications planning burden, and more efficient and effective provider network resource utilization. This paper provides preliminary results from the application of model driven architecture methodology to develop UIS. Such an approach is necessary to ensure systematic investigation of several open questions concerning the efficiency, robustness, interoperability, scalability and security of the control plane space link and UIS protocol.
Space Flight Middleware: Remote AMS over DTN for Delay-Tolerant Messaging
NASA Technical Reports Server (NTRS)
Burleigh, Scott
2011-01-01
This paper describes a technique for implementing scalable, reliable, multi-source multipoint data distribution in space flight communications -- Delay-Tolerant Reliable Multicast (DTRM) -- that is fully supported by the "Remote AMS" (RAMS) protocol of the Asynchronous Message Service (AMS) proposed for standardization within the Consultative Committee for Space Data Systems (CCSDS). The DTRM architecture enables applications to easily "publish" messages that will be reliably and efficiently delivered to an arbitrary number of "subscribing" applications residing anywhere in the space network, whether in the same subnet or in a subnet on a remote planet or vehicle separated by many light minutes of interplanetary space. The architecture comprises multiple levels of protocol, each included for a specific purpose and allocated specific responsibilities: "application AMS" traffic performs end-system data introduction and delivery subject to access control; underlying "remote AMS" directs this application traffic to populations of recipients at remote locations in a multicast distribution tree, enabling the architecture to scale up to large networks; further underlying Delay-Tolerant Networking (DTN) Bundle Protocol (BP) advances RAMS protocol data units through the distribution tree using delay-tolerant storeand- forward methods; and further underlying reliable "convergence-layer" protocols ensure successful data transfer over each segment of the end-to-end route. The result is scalable, reliable, delay-tolerant multi-source multicast that is largely self-configuring.
Architecture of a mixed-mode electrophysiological signal acquisition interface.
Shen, Ding-Lan; Chen, Jyun-Min
2012-01-01
This paper proposes mixed-mode architecture for the acquisition interface of electrophysiological signals. The architecture advances the analog-to-digital converter (ADC) from the second chopper signal in the conventional approach and performs the second chopper operation in the digital domain. The demanded low-pass filter (LPF) is realized with a digital type. The analog LPF in feedback path is substituted with a digital one accompanying with a digital-to-analog converter (DAC). The analog variation is decreased due to the digitization of these operations. The entire architecture is simulated with the ECG input in a behavior model of Simulink.
National ITS Architecture and Standards Resource Guide
DOT National Transportation Integrated Search
1998-09-01
The Transportation Equity Act for the 21st Century (TEA-21) encourages the use of the National ITS Architecture and the adoption of ITS standards and protocols. This guide provides field personnel with guidance and resources necessary for implementin...
2004-12-01
handling using the X10 home automation protocol. Each 3D graphics client renders its scene according to an assigned virtual camera position. By having...control protocol. DMX is a versatile and robust framework which overcomes limitations of the X10 home automation protocol which we are currently using
An Overview and Analysis of Mobile Internet Protocols in Cellular Environments.
ERIC Educational Resources Information Center
Chao, Han-Chieh
2001-01-01
Notes that cellular is the inevitable future architecture for the personal communication service system. Discusses the current cellular support based on Mobile Internet Protocol version 6 (Ipv6) and points out the shortfalls of using Mobile IP. Highlights protocols especially for mobile management schemes which can optimize a high-speed mobile…
A universal data access and protocol integration mechanism for smart home
NASA Astrophysics Data System (ADS)
Shao, Pengfei; Yang, Qi; Zhang, Xuan
2013-03-01
With the lack of standardized or completely missing communication interfaces in home electronics, there is no perfect solution to address every aspect in smart homes based on existing protocols and technologies. In addition, the central control unit (CCU) of smart home system working point-to-point between the multiple application interfaces and the underlying hardware interfaces leads to its complicated architecture and unpleasant performance. A flexible data access and protocol integration mechanism is required. The current paper offers a universal, comprehensive data access and protocol integration mechanism for a smart home. The universal mechanism works as a middleware adapter with unified agreements of the communication interfaces and protocols, offers an abstraction of the application level from the hardware specific and decoupling the hardware interface modules from the application level. Further abstraction for the application interfaces and the underlying hardware interfaces are executed based on adaption layer to provide unified interfaces for more flexible user applications and hardware protocol integration. This new universal mechanism fundamentally changes the architecture of the smart home and in some way meets the practical requirement of smart homes more flexible and desirable.
NASA Astrophysics Data System (ADS)
The present conference on global telecommunications discusses topics in the fields of Integrated Services Digital Network (ISDN) technology field trial planning and results to date, motion video coding, ISDN networking, future network communications security, flexible and intelligent voice/data networks, Asian and Pacific lightwave and radio systems, subscriber radio systems, the performance of distributed systems, signal processing theory, satellite communications modulation and coding, and terminals for the handicapped. Also discussed are knowledge-based technologies for communications systems, future satellite transmissions, high quality image services, novel digital signal processors, broadband network access interface, traffic engineering for ISDN design and planning, telecommunications software, coherent optical communications, multimedia terminal systems, advanced speed coding, portable and mobile radio communications, multi-Gbit/second lightwave transmission systems, enhanced capability digital terminals, communications network reliability, advanced antimultipath fading techniques, undersea lightwave transmission, image coding, modulation and synchronization, adaptive signal processing, integrated optical devices, VLSI technologies for ISDN, field performance of packet switching, CSMA protocols, optical transport system architectures for broadband ISDN, mobile satellite communications, indoor wireless communication, echo cancellation in communications, and distributed network algorithms.
Maglev Train Signal Processing Architecture Based on Nonlinear Discrete Tracking Differentiator.
Wang, Zhiqiang; Li, Xiaolong; Xie, Yunde; Long, Zhiqiang
2018-05-24
In a maglev train levitation system, signal processing plays an important role for the reason that some sensor signals are prone to be corrupted by noise due to the harsh installation and operation environment of sensors and some signals cannot be acquired directly via sensors. Based on these concerns, an architecture based on a new type of nonlinear second-order discrete tracking differentiator is proposed. The function of this signal processing architecture includes filtering signal noise and acquiring needed signals for levitation purposes. The proposed tracking differentiator possesses the advantages of quick convergence, no fluttering, and simple calculation. Tracking differentiator's frequency characteristics at different parameter values are studied in this paper. The performance of this new type of tracking differentiator is tested in a MATLAB simulation and this tracking-differentiator is implemented in Very-High-Speed Integrated Circuit Hardware Description Language (VHDL). In the end, experiments are conducted separately on a test board and a maglev train model. Simulation and experiment results show that the performance of this novel signal processing architecture can fulfill the real system requirement.
FPGA implementation of digital down converter using CORDIC algorithm
NASA Astrophysics Data System (ADS)
Agarwal, Ashok; Lakshmi, Boppana
2013-01-01
In radio receivers, Digital Down Converters (DDC) are used to translate the signal from Intermediate Frequency level to baseband. It also decimates the oversampled signal to a lower sample rate, eliminating the need of a high end digital signal processors. In this paper we have implemented architecture for DDC employing CORDIC algorithm, which down converts an IF signal of 70MHz (3G) to 200 KHz baseband GSM signal, with an SFDR greater than 100dB. The implemented architecture reduces the hardware resource requirements by 15 percent when compared with other architecture available in the literature due to elimination of explicit multipliers and a quadrature phase shifter for mixing.
Ultra-Dense Quantum Communication Using Integrated Photonic Architecture: First Annual Report
2011-08-24
REPORT Ultra-Dense Quantum Communication Using Integrated Photonic Architecture: First Annual Report 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The...goal of this program is to establish a fundamental information-theoretic understand of quantum secure communication and to devise a practical...scalable implementation of quantum key distribution protocols in an integrated photonic architecture. We report our progress on experimental and
Network Configuration Analysis for Formation Flying Satellites
NASA Technical Reports Server (NTRS)
Knoblock, Eric J.; Wallett, Thomas M.; Konangi, Vijay K.; Bhasin, Kul B.
2001-01-01
The performance of two networks to support autonomous multi-spacecraft formation flying systems is presented. Both systems are comprised of a ten-satellite formation, with one of the satellites designated as the central or 'mother ship.' All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/EP over ATM protocol architecture within the formation, and the second system uses the IEEE 802.11 protocol architecture within the formation. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IP queuing delay, IP queue size and IP processing delay at the mother ship as well as end-to-end delay for both systems. In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.
Scalable Lunar Surface Networks and Adaptive Orbit Access
NASA Technical Reports Server (NTRS)
Wang, Xudong
2015-01-01
Teranovi Technologies, Inc., has developed innovative network architecture, protocols, and algorithms for both lunar surface and orbit access networks. A key component of the overall architecture is a medium access control (MAC) protocol that includes a novel mechanism of overlaying time division multiple access (TDMA) and carrier sense multiple access with collision avoidance (CSMA/CA), ensuring scalable throughput and quality of service. The new MAC protocol is compatible with legacy Institute of Electrical and Electronics Engineers (IEEE) 802.11 networks. Advanced features include efficiency power management, adaptive channel width adjustment, and error control capability. A hybrid routing protocol combines the advantages of ad hoc on-demand distance vector (AODV) routing and disruption/delay-tolerant network (DTN) routing. Performance is significantly better than AODV or DTN and will be particularly effective for wireless networks with intermittent links, such as lunar and planetary surface networks and orbit access networks.
Services, architectures, and protocols for space data systems
NASA Technical Reports Server (NTRS)
Helgert, Hermann J.
1991-01-01
The author presents a comprehensive discussion of three major aspects of the work of the Consultative Committee for Space Data Systems (CCSDS), a worldwide cooperative effort of national space agencies. The author examines the CCSDS space data communications network concept on which the data communications facilities of future advanced orbiting systems will be based. He derives the specifications of an open communications architecture as a reference model for the development of services and protocols that support the transfer of information over space data communications networks. Detailed specifications of the communication services and information transfer protocols that have reached a high degree of maturity and stability are offered. The author also includes a complete list of currently available CCSDS standards and supporting documentation.
2017-01-01
The continuous technological advances in favor of mHealth represent a key factor in the improvement of medical emergency services. This systematic review presents the identification, study, and classification of the most up-to-date approaches surrounding the deployment of architectures for mHealth. Our review includes 25 articles obtained from databases such as IEEE Xplore, Scopus, SpringerLink, ScienceDirect, and SAGE. This review focused on studies addressing mHealth systems for outdoor emergency situations. In 60% of the articles, the deployment architecture relied in the connective infrastructure associated with emergent technologies such as cloud services, distributed services, Internet-of-things, machine-to-machine, vehicular ad hoc network, and service-oriented architecture. In 40% of the literature review, the deployment architecture for mHealth considered traditional connective infrastructure. Only 20% of the studies implemented an energy consumption protocol to extend system lifetime. We concluded that there is a need for more integrated solutions specifically for outdoor scenarios. Energy consumption protocols are needed to be implemented and evaluated. Emergent connective technologies are redefining the information management and overcome traditional technologies. PMID:29075430
Gonzalez, Enrique; Peña, Raul; Avila, Alfonso; Vargas-Rosales, Cesar; Munoz-Rodriguez, David
2017-01-01
The continuous technological advances in favor of mHealth represent a key factor in the improvement of medical emergency services. This systematic review presents the identification, study, and classification of the most up-to-date approaches surrounding the deployment of architectures for mHealth. Our review includes 25 articles obtained from databases such as IEEE Xplore, Scopus, SpringerLink, ScienceDirect, and SAGE. This review focused on studies addressing mHealth systems for outdoor emergency situations. In 60% of the articles, the deployment architecture relied in the connective infrastructure associated with emergent technologies such as cloud services, distributed services, Internet-of-things, machine-to-machine, vehicular ad hoc network, and service-oriented architecture. In 40% of the literature review, the deployment architecture for mHealth considered traditional connective infrastructure. Only 20% of the studies implemented an energy consumption protocol to extend system lifetime. We concluded that there is a need for more integrated solutions specifically for outdoor scenarios. Energy consumption protocols are needed to be implemented and evaluated. Emergent connective technologies are redefining the information management and overcome traditional technologies.
NASA Technical Reports Server (NTRS)
Pang, Jackson; Pingree, Paula J.; Torgerson, J. Leigh
2006-01-01
We present the Telecommunications protocol processing subsystem using Reconfigurable Interoperable Gate Arrays (TRIGA), a novel approach that unifies fault tolerance, error correction coding and interplanetary communication protocol off-loading to implement CCSDS File Delivery Protocol and Datalink layers. The new reconfigurable architecture offers more than one order of magnitude throughput increase while reducing footprint requirements in memory, command and data handling processor utilization, communication system interconnects and power consumption.
Pinheiro, Alexandre; Dias Canedo, Edna; de Sousa Junior, Rafael Timoteo; de Oliveira Albuquerque, Robson; García Villalba, Luis Javier; Kim, Tai-Hoon
2018-03-02
Cloud computing is considered an interesting paradigm due to its scalability, availability and virtually unlimited storage capacity. However, it is challenging to organize a cloud storage service (CSS) that is safe from the client point-of-view and to implement this CSS in public clouds since it is not advisable to blindly consider this configuration as fully trustworthy. Ideally, owners of large amounts of data should trust their data to be in the cloud for a long period of time, without the burden of keeping copies of the original data, nor of accessing the whole content for verifications regarding data preservation. Due to these requirements, integrity, availability, privacy and trust are still challenging issues for the adoption of cloud storage services, especially when losing or leaking information can bring significant damage, be it legal or business-related. With such concerns in mind, this paper proposes an architecture for periodically monitoring both the information stored in the cloud and the service provider behavior. The architecture operates with a proposed protocol based on trust and encryption concepts to ensure cloud data integrity without compromising confidentiality and without overloading storage services. Extensive tests and simulations of the proposed architecture and protocol validate their functional behavior and performance.
2018-01-01
Cloud computing is considered an interesting paradigm due to its scalability, availability and virtually unlimited storage capacity. However, it is challenging to organize a cloud storage service (CSS) that is safe from the client point-of-view and to implement this CSS in public clouds since it is not advisable to blindly consider this configuration as fully trustworthy. Ideally, owners of large amounts of data should trust their data to be in the cloud for a long period of time, without the burden of keeping copies of the original data, nor of accessing the whole content for verifications regarding data preservation. Due to these requirements, integrity, availability, privacy and trust are still challenging issues for the adoption of cloud storage services, especially when losing or leaking information can bring significant damage, be it legal or business-related. With such concerns in mind, this paper proposes an architecture for periodically monitoring both the information stored in the cloud and the service provider behavior. The architecture operates with a proposed protocol based on trust and encryption concepts to ensure cloud data integrity without compromising confidentiality and without overloading storage services. Extensive tests and simulations of the proposed architecture and protocol validate their functional behavior and performance. PMID:29498641
A Mobility-Aware QoS Signaling Protocol for Ambient Networks
NASA Astrophysics Data System (ADS)
Jeong, Seong-Ho; Lee, Sung-Hyuck; Bang, Jongho
Mobility-aware quality of service (QoS) signaling is crucial to provide seamless multimedia services in the ambient environment where mobile nodes may move frequently between different wireless access networks. The mobility of an IP-based node in ambient networks affects routing paths, and as a result, can have a significant impact on the operation and state management of QoS signaling protocols. In this paper, we first analyze the impact of mobility on QoS signaling protocols and how the protocols operate in mobility scenarios. We then propose an efficient mobility-aware QoS signaling protocol which can operate adaptively in ambient networks. The key features of the protocol include the fast discovery of a crossover node where the old and new paths converge or diverge due to handover and the localized state management for seamless services. Our analytical and simulation/experimental results show that the proposed/implemented protocol works better than existing protocols in the IP-based mobile environment.
Two-dimensional optical architectures for the receive mode of phased-array antennas.
Pastur, L; Tonda-Goldstein, S; Dolfi, D; Huignard, J P; Merlet, T; Maas, O; Chazelas, J
1999-05-10
We propose and experimentally demonstrate two optical architectures that process the receive mode of a p x p element phased-array antenna. The architectures are based on free-space propagation and switching of the channelized optical carriers of microwave signals. With the first architecture a direct transposition of the received signals in the optical domain is assumed. The second architecture is based on the optical generation and distribution of a microwave local oscillator matched in frequency and direction. Preliminary experimental results at microwave frequencies of approximately 3 GHz are presented.
Inventing an Energy Internet: Concepts, Architectures and Protocols for Smart Energy Utilization
Tsoukalas, Lefteri
2018-01-24
In recent years, the Internet is revolutionizing information availability much like the Power Grid revolutionized energy availability a century earlier. We will explore the differences and similarities of these two critical infrastructures and identify ways for convergence which may lead to an energy internet. Pricing signals, nodal forecasting, and short-term elasticities are key concepts in smart energy flows respecting the delicate equilibrium involved in generation-demand and aiming at higher efficiencies. We will discuss how intelligent forecasting approaches operating at multiple levels (including device or nodal levels) can ameliorate the challenges of power storage. In addition to higher efficiencies, an energy internet may achieve significant reliability and security improvements and offer greater flexibility and transparency in the overall energy-environmental relation.
A design protocol for tailoring ice-templated scaffold structure
Pawelec, K. M.; Husmann, A.; Best, S. M.; Cameron, R. E.
2014-01-01
In this paper, we show, for the first time, the key link between scaffold architecture and latent heat evolution during the production of porous biomedical collagen structures using freeze-drying. Collagen scaffolds are used widely in the biomedical industry for the repair and reconstruction of skeletal tissues and organs. Freeze-drying of collagen slurries is a standard industrial process, and, until now, the literature has sought to characterize the influence of set processing parameters including the freezing protocol and weight percentage of collagen. However, we are able to demonstrate, by monitoring the local thermal events within the slurry during solidification, that nucleation, growth and annealing processes can be controlled, and therefore we are able to control the resulting scaffold architecture. Based on our correlation of thermal profile measurements with scaffold architecture, we hypothesize that there is a link between the fundamental freezing of ice and the structure of scaffolds, which suggests that this concept is applicable not only for collagen but also for ceramics and pharmaceuticals. We present a design protocol of strategies for tailoring the ice-templated scaffold structure. PMID:24402916
Protocol Architecture Model Report
NASA Technical Reports Server (NTRS)
Dhas, Chris
2000-01-01
NASA's Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASA's four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. This report applies the methodology to three space Internet-based communications scenarios for future missions. CNS has conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. The scenarios are: Scenario 1: Unicast communications between a Low-Earth-Orbit (LEO) spacecraft inspace Internet node and a ground terminal Internet node via a Tracking and Data Rela Satellite (TDRS) transfer; Scenario 2: Unicast communications between a Low-Earth-Orbit (LEO) International Space Station and a ground terminal Internet node via a TDRS transfer; Scenario 3: Multicast Communications (or "Multicasting"), 1 Spacecraft to N Ground Receivers, N Ground Transmitters to 1 Ground Receiver via a Spacecraft.
NASA Technical Reports Server (NTRS)
Dhas, Chris
2000-01-01
NASAs Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASAs four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. CNS previously developed a report which applied the methodology, to three space Internet-based communications scenarios for future missions. CNS conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. GRC selected for further analysis the scenario that involved unicast communications between a Low-Earth-Orbit (LEO) International Space Station (ISS) and a ground terminal Internet node via a Tracking and Data Relay Satellite (TDRS) transfer. This report contains a tradeoff analysis on the selected scenario. The analysis examines the performance characteristics of the various protocols and architectures. The tradeoff analysis incorporates the results of a CNS developed analytical model that examined performance parameters.
PNNI Performance Validation Test Report
NASA Technical Reports Server (NTRS)
Dimond, Robert P.
1999-01-01
Two Private Network-Network Interface (PNNI) neighboring peers were monitored with a protocol analyzer to understand and document how PNNI works with regards to initialization and recovery processes. With the processes documented, pertinent events were found and measured to determine the protocols behavior in several environments, which consisted of congestion and/or delay. Subsequent testing of the protocol in these environments was conducted to determine the protocol's suitability for use in satellite-terrestrial network architectures.
The VREST learning environment.
Kunst, E E; Geelkerken, R H; Sanders, A J B
2005-01-01
The VREST learning environment is an integrated architecture to improve the education of health care professionals. It is a combination of a learning, content and assessment management system based on virtual reality. The generic architecture is now being build and tested around the Lichtenstein protocol for hernia inguinalis repair.
NASA Astrophysics Data System (ADS)
Lahinta, A.; Haris, I.; Abdillah, T.
2017-03-01
The aim of this paper is to describe a developed application of Simple Object Access Protocol (SOAP) as a model for improving libraries’ digital content findability on the library web. The study applies XML text-based protocol tools in the collection of data about libraries’ visibility performance in the search results of the book. Model from the integrated Web Service Document Language (WSDL) and Universal Description, Discovery and Integration (UDDI) are applied to analyse SOAP as element within the system. The results showed that the developed application of SOAP with multi-tier architecture can help people simply access the website in the library server Gorontalo Province and support access to digital collections, subscription databases, and library catalogs in each library in Regency or City in Gorontalo Province.
Novel Concrete Temperature Monitoring Method Based on an Embedded Passive RFID Sensor Tag.
Liu, Yongsheng; Deng, Fangming; He, Yigang; Li, Bing; Liang, Zhen; Zhou, Shuangxi
2017-06-22
This paper firstly introduces the importance of temperature control in concrete measurement, then a passive radio frequency identification (RFID) sensor tag embedded for concrete temperature monitoring is presented. In order to reduce the influences of concrete electromagnetic parameters during the drying process, a T-type antenna is proposed to measure the concrete temperature at the required depth. The proposed RFID sensor tag is based on the EPC generation-2 ultra-high frequency (UHF) communication protocol and operates in passive mode. The temperature sensor can convert the sensor signals to corresponding digital signals without an external reference clock due to the adoption of phase-locked loop (PLL)-based architecture. Laboratory experimentation and on-site testing demonstrate that our sensor tag embedded in concrete can provide reliable communication performance in passive mode. The maximum communicating distance between reader and tag is 7 m at the operating frequency of 915 MHz and the tested results show high consistency with the results tested by a thermocouple.
Novel Concrete Temperature Monitoring Method Based on an Embedded Passive RFID Sensor Tag
Liu, Yongsheng; Deng, Fangming; He, Yigang; Li, Bing; Liang, Zhen; Zhou, Shuangxi
2017-01-01
This paper firstly introduces the importance of temperature control in concrete measurement, then a passive radio frequency identification (RFID) sensor tag embedded for concrete temperature monitoring is presented. In order to reduce the influences of concrete electromagnetic parameters during the drying process, a T-type antenna is proposed to measure the concrete temperature at the required depth. The proposed RFID sensor tag is based on the EPC generation-2 ultra-high frequency (UHF) communication protocol and operates in passive mode. The temperature sensor can convert the sensor signals to corresponding digital signals without an external reference clock due to the adoption of phase-locked loop (PLL)-based architecture. Laboratory experimentation and on-site testing demonstrate that our sensor tag embedded in concrete can provide reliable communication performance in passive mode. The maximum communicating distance between reader and tag is 7 m at the operating frequency of 915 MHz and the tested results show high consistency with the results tested by a thermocouple. PMID:28640188
All-digital radar architecture
NASA Astrophysics Data System (ADS)
Molchanov, Pavlo A.
2014-10-01
All digital radar architecture requires exclude mechanical scan system. The phase antenna array is necessarily large because the array elements must be co-located with very precise dimensions and will need high accuracy phase processing system for aggregate and distribute T/R modules data to/from antenna elements. Even phase array cannot provide wide field of view. New nature inspired all digital radar architecture proposed. The fly's eye consists of multiple angularly spaced sensors giving the fly simultaneously thee wide-area visual coverage it needs to detect and avoid the threats around him. Fly eye radar antenna array consist multiple directional antennas loose distributed along perimeter of ground vehicle or aircraft and coupled with receiving/transmitting front end modules connected by digital interface to central processor. Non-steering antenna array allows creating all-digital radar with extreme flexible architecture. Fly eye radar architecture provides wide possibility of digital modulation and different waveform generation. Simultaneous correlation and integration of thousands signals per second from each point of surveillance area allows not only detecting of low level signals ((low profile targets), but help to recognize and classify signals (targets) by using diversity signals, polarization modulation and intelligent processing. Proposed all digital radar architecture with distributed directional antenna array can provide a 3D space vector to the jammer by verification direction of arrival for signals sources and as result jam/spoof protection not only for radar systems, but for communication systems and any navigation constellation system, for both encrypted or unencrypted signals, for not limited number or close positioned jammers.
Securing Real-Time Sessions in an IMS-Based Architecture
NASA Astrophysics Data System (ADS)
Cennamo, Paolo; Fresa, Antonio; Longo, Maurizio; Postiglione, Fabio; Robustelli, Anton Luca; Toro, Francesco
The emerging all-IP mobile network infrastructures based on 3rd Generation IP Multimedia Subsystem philosophy are characterised by radio access technology independence and ubiquitous connectivity for mobile users. Currently, great focus is being devoted to security issues since most of the security threats presently affecting the public Internet domain, and the upcoming ones as well, are going to be suffered by mobile users in the years to come. While a great deal of research activity, together with standardisation efforts and experimentations, is carried out on mechanisms for signalling protection, very few integrated frameworks for real-time multimedia data protection have been proposed in a context of IP Multimedia Subsystem, and even fewer experimental results based on testbeds are available. In this paper, after a general overview of the security issues arising in an advanced IP Multimedia Subsystem scenario, a comprehensive infrastructure for real-time multimedia data protection, based on the adoption of the Secure Real-Time Protocol, is proposed; then, the development of a testbed incorporating such functionalities, including mechanisms for key management and cryptographic context transfer, and allowing the setup of Secure Real-Time Protocol sessions is presented; finally, experimental results are provided together with quantitative assessments and comparisons of system performances for audio sessions with and without the adoption of the Secure Real-Time Protocol framework.
A Wearable Home BCI system: preliminary results with SSVEP protocol.
Piccini, Luca; Parini, Sergio; Maggi, Luca; Andreoni, Giuseppe
2005-01-01
This paper presents and discusses the realization and the performances of a wearable system for EEG-based BCI applications. The system (called Kimera) consists of a two-layer hardware architecture (the wireless acquisition and transmission board based on a Bluetooth ® ARM chip, and a low power miniaturized biosignal acquisition analog front end) together with a software suite (called Bellerophonte) for the Graphic User Interface management, protocol execution, data recording, transmission and processing. The implemented BCI system was based on the SSVEP protocol, applied to a two state selection by using standards display/monitor with a couple of high efficiency LEDs. The frequency features of the signal were computed and used in the intention detection. The BCI algorithm is based on a supervised classifier implemented through a multi-class Canonical Discriminant Analysis (CDA) with a continuous realtime feedback based on the mahalanobis distance parameter. Five healthy subjects participated in the first phase for a preliminary device validation. The obtained results are very interesting and promising, being lined out to the most recent performance reported in literature with a significant improvement both in system and in classification capabilities. The user-friendliness and low cost of the Kimera& Bellerophonte platform make it suitable for the development of home BCI applications.
NASA Astrophysics Data System (ADS)
Sasaki, Toshihiko; Koashi, Masato
2017-06-01
The round-robin differential phase shift (RRDPS) quantum key distribution (QKD) protocol is a unique QKD protocol whose security has not been understood through an information-disturbance trade-off relation, and a sufficient amount of privacy amplification was given independently of signal disturbance. Here, we discuss the security of the RRDPS protocol in the asymptotic regime when a good estimate of the bit error rate is available as a measure of signal disturbance. The uniqueness of the RRDPS protocol shows up as a peculiar form of information-disturbance trade-off curve. When the length of a block of pulses used for encoding and the signal disturbance are both small, it provides a significantly better key rate than that from the original security proof. On the other hand, when the block length is large, the use of the signal disturbance makes little improvement in the key rate. Our analysis will bridge a gap between the RRDPS protocol and the conventional QKD protocols.
On implementation of DCTCP on three-tier and fat-tree data center network topologies.
Zafar, Saima; Bashir, Abeer; Chaudhry, Shafique Ahmad
2016-01-01
A data center is a facility for housing computational and storage systems interconnected through a communication network called data center network (DCN). Due to a tremendous growth in the computational power, storage capacity and the number of inter-connected servers, the DCN faces challenges concerning efficiency, reliability and scalability. Although transmission control protocol (TCP) is a time-tested transport protocol in the Internet, DCN challenges such as inadequate buffer space in switches and bandwidth limitations have prompted the researchers to propose techniques to improve TCP performance or design new transport protocols for DCN. Data center TCP (DCTCP) emerge as one of the most promising solutions in this domain which employs the explicit congestion notification feature of TCP to enhance the TCP congestion control algorithm. While DCTCP has been analyzed for two-tier tree-based DCN topology for traffic between servers in the same rack which is common in cloud applications, it remains oblivious to the traffic patterns common in university and private enterprise networks which traverse the complete network interconnect spanning upper tier layers. We also recognize that DCTCP performance cannot remain unaffected by the underlying DCN architecture hence there is a need to test and compare DCTCP performance when implemented over diverse DCN architectures. Some of the most notable DCN architectures are the legacy three-tier, fat-tree, BCube, DCell, VL2, and CamCube. In this research, we simulate the two switch-centric DCN architectures; the widely deployed legacy three-tier architecture and the promising fat-tree architecture using network simulator and analyze the performance of DCTCP in terms of throughput and delay for realistic traffic patterns. We also examine how DCTCP prevents incast and outcast congestion when realistic DCN traffic patterns are employed in above mentioned topologies. Our results show that the underlying DCN architecture significantly impacts DCTCP performance. We find that DCTCP gives optimal performance in fat-tree topology and is most suitable for large networks.
The deployment of routing protocols in distributed control plane of SDN.
Jingjing, Zhou; Di, Cheng; Weiming, Wang; Rong, Jin; Xiaochun, Wu
2014-01-01
Software defined network (SDN) provides a programmable network through decoupling the data plane, control plane, and application plane from the original closed system, thus revolutionizing the existing network architecture to improve the performance and scalability. In this paper, we learned about the distributed characteristics of Kandoo architecture and, meanwhile, improved and optimized Kandoo's two levels of controllers based on ideological inspiration of RCP (routing control platform). Finally, we analyzed the deployment strategies of BGP and OSPF protocol in a distributed control plane of SDN. The simulation results show that our deployment strategies are superior to the traditional routing strategies.
An optimized immunohistochemistry protocol for detecting the guidance cue Netrin-1 in neural tissue.
Salameh, Samer; Nouel, Dominique; Flores, Cecilia; Hoops, Daniel
2018-01-01
Netrin-1, an axon guidance protein, is difficult to detect using immunohistochemistry. We performed a multi-step, blinded, and controlled protocol optimization procedure to establish an efficient and effective fluorescent immunohistochemistry protocol for characterizing Netrin-1 expression. Coronal mouse brain sections were used to test numerous antigen retrieval methods and combinations thereof in order to optimize the stain quality of a commercially available Netrin-1 antibody. Stain quality was evaluated by experienced neuroanatomists for two criteria: signal intensity and signal-to-noise ratio. After five rounds of testing protocol variants, we established a modified immunohistochemistry protocol that produced a Netrin-1 signal with good signal intensity and a high signal-to-noise ratio. The key protocol modifications are as follows: •Use phosphate buffer (PB) as the blocking solution solvent.•Use 1% sodium dodecyl sulfate (SDS) treatment for antigen retrieval. The original protocol was optimized for use with the Netrin-1 antibody produced by Novus Biologicals. However, we subsequently further modified the protocol to work with the antibody produced by Abcam. The Abcam protocol uses PBS as the blocking solution solvent and adds a citrate buffer antigen retrieval step.
Data Strategies to Support Automated Multi-Sensor Data Fusion in a Service Oriented Architecture
2008-06-01
and employ vast quantities of content. This dissertation provides two software architectural patterns and an auto-fusion process that guide the...UDDI), Simple Order Access Protocol (SOAP), Java, Maritime Domain Awareness (MDA), Business Process Execution Language for Web Service (BPEL4WS) 16...content. This dissertation provides two software architectural patterns and an auto-fusion process that guide the development of a distributed
2007-11-01
available architecture for time and synchronization information distribution was at that time implemented with a single Master Clock. The signal of...a hierarchical approach. Moreover, analyzing this architecture , it is clear that there is signal performance degradation due to the distribution...applications. Figure 2 depicts the time distribution architecture implemented via GNSS. The main difference with respect to the previous one is that all the
Re-modulated technology of WDM-PON employing different DQPSK downstream signals
NASA Astrophysics Data System (ADS)
Gao, Chao; Xin, Xiang-jun; Yu, Chong-xiu
2012-11-01
This paper proposes a kind of modulation architecture for wavelength-division-multiplexing passive optical network (WDMPON) employing optical differential quadrature phase shift keying (DQPSK) downstream signals and two different modulation formats of re-modulated upstream signals. At the optical line terminal (OLT), 10 Gbit/s signal is modulated with DQPSK. At the optical network unit (ONU), part of the downstream signal is re-modulated with on-off keying (OOK) or inverse-return-to-zero (IRZ). Simulation results show the impact on the system employing NRZ, RZ and carrier-suppressed return-to-zero (CSRZ). The analyses also reflect that the architecture can restrain chromatic dispersion and channel crosstalk, which makes it the best architecture of access network in the future.
Towards a Standard Mixed-Signal Parallel Processing Architecture for Miniature and Microrobotics.
Sadler, Brian M; Hoyos, Sebastian
2014-01-01
The conventional analog-to-digital conversion (ADC) and digital signal processing (DSP) architecture has led to major advances in miniature and micro-systems technology over the past several decades. The outlook for these systems is significantly enhanced by advances in sensing, signal processing, communications and control, and the combination of these technologies enables autonomous robotics on the miniature to micro scales. In this article we look at trends in the combination of analog and digital (mixed-signal) processing, and consider a generalized sampling architecture. Employing a parallel analog basis expansion of the input signal, this scalable approach is adaptable and reconfigurable, and is suitable for a large variety of current and future applications in networking, perception, cognition, and control.
Towards a Standard Mixed-Signal Parallel Processing Architecture for Miniature and Microrobotics
Sadler, Brian M; Hoyos, Sebastian
2014-01-01
The conventional analog-to-digital conversion (ADC) and digital signal processing (DSP) architecture has led to major advances in miniature and micro-systems technology over the past several decades. The outlook for these systems is significantly enhanced by advances in sensing, signal processing, communications and control, and the combination of these technologies enables autonomous robotics on the miniature to micro scales. In this article we look at trends in the combination of analog and digital (mixed-signal) processing, and consider a generalized sampling architecture. Employing a parallel analog basis expansion of the input signal, this scalable approach is adaptable and reconfigurable, and is suitable for a large variety of current and future applications in networking, perception, cognition, and control. PMID:26601042
Satellite-Friendly Protocols and Standards
NASA Astrophysics Data System (ADS)
Koudelka, O.; Schmidt, M.; Ebert, J.; Schlemmer, H.; Kastner, S.; Riedler, W.
2002-01-01
We are currently observing a development unprecedented with other services, the enormous growth of the Internet. Video, voice and data applications can be supported via this network in high quality. Multi-media applications require high bandwidth which may not be available in many areas. When making proper use of the broadcast feature of a communications satellite, the performance of the satellite-based system can compare favourably to terrestrial solutions. Internet applications are in many cases highly asymmetric, making them very well suited to applications using small and inexpensive terminals. Data from one source may be used simultaneously by a large number of users. The Internet protocol suite has become the de-facto standard. But this protocol family in its original form has not been designed to support guaranteed quality of service, a prerequisite for real-time, high quality traffic. The Internet Protocol has to be adapted for the satellite environment, because long roundtrip delays and the error behaviour of the channel could make it inefficient over a GEO satellite. Another requirement is to utilise the satellite bandwidth as efficiently as possible. This can be achieved by adapting the access system to the nature of IP frames, which are variable in length. In the framework of ESA's ARTES project a novel satellite multimedia system was developed which utilises Multi-Frequency TDMA in a meshed network topology. The system supports Quality of Service (QoS) by reserving capacity with different QoS requirements. The system is centrally controlled by a master station with the implementation of a demand assignment (DAMA) system. A lean internal signalling system has been adopted. Network management is based on the SNMP protocol and industry-standard network management platforms, making interfaces to standard accounting and billing systems easy. Modern communication systems will have to be compliant to different standards in a very flexible manner. The developed system is based on a hardware architecture using FPGAs (Field-Programmable Gate Arrays). This provides means to configure the satellite gateway for different standards and to optimise the transmission parameters for varying user traffic, thus increasing the efficiency significantly. The paper describes the flexible system architecture and focuses particularly on the DAMA access scheme and the chosen quality-of-service implementation. Emphasis has been put on the support of IP Version 6. Different standards (e.g. RCS and possible follow-ups) and the possibility to support them are discussed.
NASA Technical Reports Server (NTRS)
Defeo, P.; Chen, M.
1987-01-01
Means for evaluating data bus architectures and protocols for highly integrated flight control system applications are needed. Described are the criteria and plans to do this by using the NASA/Ames Intelligent Redundant Actuation System (IRAS) experimental set-up. Candidate bus architectures differ from one another in terms of: topology, access control, message transfer schemes, message characteristics, initialization. data flow control, transmission rates, fault tolerance, and time synchronization. The evaluation criteria are developed relative to these features. A preliminary, analytical evaluation of four candidate busses (MIL-STD-1553B, DATAC, Ethernet, and HSIS) is described. A bus must be exercised in a real-time environment to evaluate its dynamic characteristics. A plan for real-time evaluation of these four busses using a combination of hardware and simulation techniques is presented.
Delay-tolerant mobile network protocol for rice field monitoring using wireless sensor networks
NASA Astrophysics Data System (ADS)
Guitton, Alexandre; Andres, Frédéric; Cardoso, Jarbas Lopes; Kawtrakul, Asanee; Barbin, Silvio E.
2015-10-01
The monitoring of rice fields can improve productivity by helping farmers throughout the rice cultivation cycle, on various issues: when to harvest, when to treat the crops against disease, when to increase the water level, how to share observations and decisions made in a collaborative way, etc. In this paper, we propose an architecture to monitor a rice field by a wireless sensor network. Our architecture is based on static sensor nodes forming a disconnected network, and mobile nodes communicating with the sensor nodes in a delay-tolerant manner. The data collected by the static sensor nodes are transmitted to mobile nodes, which in turn transmit them to a gateway, connected to a database, for further analysis. We focus on the related architecture, as well as on the energy-efficient protocols intended to perform the data collection.
Rosetta3: An Object-Oriented Software Suite for the Simulation and Design of Macromolecules
Leaver-Fay, Andrew; Tyka, Michael; Lewis, Steven M.; Lange, Oliver F.; Thompson, James; Jacak, Ron; Kaufman, Kristian; Renfrew, P. Douglas; Smith, Colin A.; Sheffler, Will; Davis, Ian W.; Cooper, Seth; Treuille, Adrien; Mandell, Daniel J.; Richter, Florian; Ban, Yih-En Andrew; Fleishman, Sarel J.; Corn, Jacob E.; Kim, David E.; Lyskov, Sergey; Berrondo, Monica; Mentzer, Stuart; Popović, Zoran; Havranek, James J.; Karanicolas, John; Das, Rhiju; Meiler, Jens; Kortemme, Tanja; Gray, Jeffrey J.; Kuhlman, Brian; Baker, David; Bradley, Philip
2013-01-01
We have recently completed a full re-architecturing of the Rosetta molecular modeling program, generalizing and expanding its existing functionality. The new architecture enables the rapid prototyping of novel protocols by providing easy to use interfaces to powerful tools for molecular modeling. The source code of this rearchitecturing has been released as Rosetta3 and is freely available for academic use. At the time of its release, it contained 470,000 lines of code. Counting currently unpublished protocols at the time of this writing, the source includes 1,285,000 lines. Its rapid growth is a testament to its ease of use. This document describes the requirements for our new architecture, justifies the design decisions, sketches out central classes, and highlights a few of the common tasks that the new software can perform. PMID:21187238
An Experiment of GMPLS-Based Dispersion Compensation Control over In-Field Fibers
NASA Astrophysics Data System (ADS)
Seno, Shoichiro; Horiuchi, Eiichi; Yoshida, Sota; Sugihara, Takashi; Onohara, Kiyoshi; Kamei, Misato; Baba, Yoshimasa; Kubo, Kazuo; Mizuochi, Takashi
As ROADMs (Reconfigurable Optical Add/Drop Multiplexers) are becoming widely used in metro/core networks, distributed control of wavelength paths by extended GMPLS (Generalized MultiProtocol Label Switching) protocols has attracted much attention. For the automatic establishment of an arbitrary wavelength path satisfying dynamic traffic demands over a ROADM or WXC (Wavelength Cross Connect)-based network, precise determination of chromatic dispersion over the path and optimized assignment of dispersion compensation capabilities at related nodes are essential. This paper reports an experiment over in-field fibers where GMPLS-based control was applied for the automatic discovery of chromatic dispersion, path computation, and wavelength path establishment with dynamic adjustment of variable dispersion compensation. The GMPLS-based control scheme, which the authors called GMPLS-Plus, extended GMPLS's distributed control architecture with attributes for automatic discovery, advertisement, and signaling of chromatic dispersion. In this experiment, wavelength paths with distances of 24km and 360km were successfully established and error-free data transmission was verified. The experiment also confirmed path restoration with dynamic compensation adjustment upon fiber failure.
Location Management in a Transport Layer Mobility Architecture
NASA Technical Reports Server (NTRS)
Eddy, Wesley M.; Ishac, Joseph
2005-01-01
Mobility architectures that place complexity in end nodes rather than in the network interior have many advantageous properties and are becoming popular research topics. Such architectures typically push mobility support into higher layers of the protocol stack than network layer approaches like Mobile IP. The literature is ripe with proposals to provide mobility services in the transport, session, and application layers. In this paper, we focus on a mobility architecture that makes the most significant changes to the transport layer. A common problem amongst all mobility protocols at various layers is location management, which entails translating some form of static identifier into a mobile node's dynamic location. Location management is required for mobile nodes to be able to provide globally-reachable services on-demand to other hosts. In this paper, we describe the challenges of location management in a transport layer mobility architecture, and discuss the advantages and disadvantages of various solutions proposed in the literature. Our conclusion is that, in principle, secure dynamic DNS is most desirable, although it may have current operational limitations. We note that this topic has room for further exploration, and we present this paper largely as a starting point for comparing possible solutions.
Adaptive Code Division Multiple Access Protocol for Wireless Network-on-Chip Architectures
NASA Astrophysics Data System (ADS)
Vijayakumaran, Vineeth
Massive levels of integration following Moore's Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn't need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol outperformed the wired counterparts and several other wireless architectures proposed in literature in terms of bandwidth and packet energy dissipation. Significant gains were observed in packet energy dissipation and bandwidth even with scaling the system to higher number of cores. Non-uniform traffic simulations showed that the proposed CDMA-WiNoC was consistent in bandwidth across all traffic patterns. It is also shown that the CDMA based MAC scheme does not introduce additional reliability concerns in data transfer over the on-chip wireless interconnects.
Standby Power Management Architecture for Deep-Submicron Systems
2006-05-19
Driver 61 5.1 Quark PicoNode System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2 Power Domain Architecture... Quark system protocol stack. . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Quark system block diagram...the implementation of the chip using an industry-standard place and route design flow. Lastly some measurements from the chip are presented. 5.1 Quark
A multi-tiered architecture for content retrieval in mobile peer-to-peer networks.
DOT National Transportation Integrated Search
2012-01-01
In this paper, we address content retrieval in Mobile Peer-to-Peer (P2P) Networks. We design a multi-tiered architecture for content : retrieval, where at Tier 1, we design a protocol for content similarity governed by a parameter that trades accu...
Service-Oriented Architecture--What Is It, and How Do We Get One?
ERIC Educational Resources Information Center
Phelps, Jim; Busby, Brian
2007-01-01
Everyone involved in information technology (IT) at higher education institutions around the world have likely heard of service-oriented architecture (SOA). Simply put, SOA presents well-defined business functions as services, which are made available to multiple applications through standard protocols. Using SOA, institutions can integrate…
Architecture for a 1-GHz Digital RADAR
NASA Technical Reports Server (NTRS)
Mallik, Udayan
2011-01-01
An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.
Architectures and protocols for an integrated satellite-terrestrial mobile system
NASA Technical Reports Server (NTRS)
Delre, E.; Dellipriscoli, F.; Iannucci, P.; Menolascino, R.; Settimo, F.
1993-01-01
This paper aims to depict some basic concepts related to the definition of an integrated system for mobile communications, consisting of a satellite network and a terrestrial cellular network. In particular three aspects are discussed: (1) architecture definition for the satellite network; (2) assignment strategy of the satellite channels; and (3) definition of 'internetworking procedures' between cellular and satellite network, according to the selected architecture and the satellite channel assignment strategy.
Parallel Signal Processing and System Simulation using aCe
NASA Technical Reports Server (NTRS)
Dorband, John E.; Aburdene, Maurice F.
2003-01-01
Recently, networked and cluster computation have become very popular for both signal processing and system simulation. A new language is ideally suited for parallel signal processing applications and system simulation since it allows the programmer to explicitly express the computations that can be performed concurrently. In addition, the new C based parallel language (ace C) for architecture-adaptive programming allows programmers to implement algorithms and system simulation applications on parallel architectures by providing them with the assurance that future parallel architectures will be able to run their applications with a minimum of modification. In this paper, we will focus on some fundamental features of ace C and present a signal processing application (FFT).
Running TCP/IP over ATM Networks.
ERIC Educational Resources Information Center
Witt, Michael
1995-01-01
Discusses Internet protocol (IP) and subnets and describes how IP may operate over asynchronous transfer mode (ATM). Topics include TCP (transmission control protocol), ATM cells and adaptation layers, a basic architectural model for IP over ATM, address resolution, mapping IP to a subnet technology, and connection management strategy. (LRW)
A communication protocol for mobile satellite systems affected by rain attenuation
NASA Technical Reports Server (NTRS)
Lay, Norman; Dessouky, Khaled
1992-01-01
A communication protocol is described that has been developed as part of a K/Ka-band mobile terminal breadboard system to be demonstrated through NASA's Advanced Communications Technology Satellite (ACTS) in 1993. The protocol is aimed at providing the means for enhancing link availability and continuity by supporting real-time data rate selection and changes during rain events. Particular attention is given to the system architecture; types of links, connections, and packets; the protocol procedures; and design rationales.
The Deployment of Routing Protocols in Distributed Control Plane of SDN
Jingjing, Zhou; Di, Cheng; Weiming, Wang; Rong, Jin; Xiaochun, Wu
2014-01-01
Software defined network (SDN) provides a programmable network through decoupling the data plane, control plane, and application plane from the original closed system, thus revolutionizing the existing network architecture to improve the performance and scalability. In this paper, we learned about the distributed characteristics of Kandoo architecture and, meanwhile, improved and optimized Kandoo's two levels of controllers based on ideological inspiration of RCP (routing control platform). Finally, we analyzed the deployment strategies of BGP and OSPF protocol in a distributed control plane of SDN. The simulation results show that our deployment strategies are superior to the traditional routing strategies. PMID:25250395
NASA Astrophysics Data System (ADS)
Marukame, Takao; Nishi, Yoshifumi; Yasuda, Shin-ichi; Tanamoto, Tetsufumi
2018-04-01
The use of memristive devices for creating artificial neurons is promising for brain-inspired computing from the viewpoints of computation architecture and learning protocol. We present an energy-efficient multiplier accumulator based on a memristive array architecture incorporating both analog and digital circuitries. The analog circuitry is used to full advantage for neural networks, as demonstrated by the spike-timing-dependent plasticity (STDP) in fabricated AlO x /TiO x -based metal-oxide memristive devices. STDP protocols for controlling periodic analog resistance with long-range stability were experimentally verified using a variety of voltage amplitudes and spike timings.
UPM: unified policy-based network management
NASA Astrophysics Data System (ADS)
Law, Eddie; Saxena, Achint
2001-07-01
Besides providing network management to the Internet, it has become essential to offer different Quality of Service (QoS) to users. Policy-based management provides control on network routers to achieve this goal. The Internet Engineering Task Force (IETF) has proposed a two-tier architecture whose implementation is based on the Common Open Policy Service (COPS) protocol and Lightweight Directory Access Protocol (LDAP). However, there are several limitations to this design such as scalability and cross-vendor hardware compatibility. To address these issues, we present a functionally enhanced multi-tier policy management architecture design in this paper. Several extensions are introduced thereby adding flexibility and scalability. In particular, an intermediate entity between the policy server and policy rule database called the Policy Enforcement Agent (PEA) is introduced. By keeping internal data in a common format, using a standard protocol, and by interpreting and translating request and decision messages from multi-vendor hardware, this agent allows a dynamic Unified Information Model throughout the architecture. We have tailor-made this unique information system to save policy rules in the directory server and allow executions of policy rules with dynamic addition of new equipment during run-time.
Hierarchical Address Event Routing for Reconfigurable Large-Scale Neuromorphic Systems.
Park, Jongkil; Yu, Theodore; Joshi, Siddharth; Maier, Christoph; Cauwenberghs, Gert
2017-10-01
We present a hierarchical address-event routing (HiAER) architecture for scalable communication of neural and synaptic spike events between neuromorphic processors, implemented with five Xilinx Spartan-6 field-programmable gate arrays and four custom analog neuromophic integrated circuits serving 262k neurons and 262M synapses. The architecture extends the single-bus address-event representation protocol to a hierarchy of multiple nested buses, routing events across increasing scales of spatial distance. The HiAER protocol provides individually programmable axonal delay in addition to strength for each synapse, lending itself toward biologically plausible neural network architectures, and scales across a range of hierarchies suitable for multichip and multiboard systems in reconfigurable large-scale neuromorphic systems. We show approximately linear scaling of net global synaptic event throughput with number of routing nodes in the network, at 3.6×10 7 synaptic events per second per 16k-neuron node in the hierarchy.
A New Cloud Architecture of Virtual Trusted Platform Modules
NASA Astrophysics Data System (ADS)
Liu, Dongxi; Lee, Jack; Jang, Julian; Nepal, Surya; Zic, John
We propose and implement a cloud architecture of virtual Trusted Platform Modules (TPMs) to improve the usability of TPMs. In this architecture, virtual TPMs can be obtained from the TPM cloud on demand. Hence, the TPM functionality is available for applications that do not have physical TPMs in their local platforms. Moreover, the TPM cloud allows users to access their keys and data in the same virtual TPM even if they move to untrusted platforms. The TPM cloud is easy to access for applications in different languages since cloud computing delivers services in standard protocols. The functionality of the TPM cloud is demonstrated by applying it to implement the Needham-Schroeder public-key protocol for web authentications, such that the strong security provided by TPMs is integrated into high level applications. The chain of trust based on the TPM cloud is discussed and the security properties of the virtual TPMs in the cloud is analyzed.
Inventing an Energy Internet: Concepts, Architectures and Protocols for Smart Energy Utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsoukalas, Lefteri
2009-04-29
In recent years, the Internet is revolutionizing information availability much like the Power Grid revolutionized energy availability a century earlier. We will explore the differences and similarities of these two critical infrastructures and identify ways for convergence which may lead to an energy internet. Pricing signals, nodal forecasting, and short-term elasticities are key concepts in smart energy flows respecting the delicate equilibrium involved in generation-demand and aiming at higher efficiencies. We will discuss how intelligent forecasting approaches operating at multiple levels (including device or nodal levels) can ameliorate the challenges of power storage. In addition to higher efficiencies, an energymore » internet may achieve significant reliability and security improvements and offer greater flexibility and transparency in the overall energy-environmental relation.« less
Application of Wireless Sensor Networks to Automobiles
NASA Astrophysics Data System (ADS)
Tavares, Jorge; Velez, Fernando J.; Ferro, João M.
2008-01-01
Some applications of Wireless Sensor Networks (WSNs) to the automobile are identified, and the use of Crossbow MICAz motes operating at 2.4 GHz is considered together with TinyOS support. These WSNs are conceived in order to measure, process and supply to the user diverse types of information during an automobile journey. Examples are acceleration and fuel consumption, identification of incorrect tire pressure, verification of illumination, and evaluation of the vital signals of the driver. A brief survey on WSNs concepts is presented, as well as the way the wireless sensor network itself was developed. Calibration curves were produced which allowed for obtaining luminous intensity and temperature values in the appropriate units. Aspects of the definition of the architecture and the choice/implementation of the protocols are identified. Security aspects are also addressed.
Geo-Based Inter-Domain Routing (GIDR) Protocol for MANETS
2009-10-01
routing, and support for node mobility. Crowcroft et al. proposed Plutarch as architecture to translate address spaces and transport protocols among...Warfield, “ Plutarch : an argument for network pluralism,” ACM Computer Communication Review, vol. 33, no. 4, pp. 258–266, 2003. [6] S. Schmid, L
NASA STI Program Coordinating Council Twelfth Meeting: Standards
NASA Technical Reports Server (NTRS)
1994-01-01
The theme of this NASA Scientific and Technical Information Program Coordinating Council Meeting was standards and their formation and application. Topics covered included scientific and technical information architecture, the Open Systems Interconnection Transmission Control Protocol/Internet Protocol, Machine-Readable Cataloging (MARC) open system environment procurement, and the Government Information Locator Service.
NCSTRL: Design and Deployment of a Globally Distributed Digital Library.
ERIC Educational Resources Information Center
Davies, James R.; Lagoze, Carl
2000-01-01
Discusses the development of a digital library architecture that allows the creation of digital libraries within the World Wide Web. Describes a digital library, NCSTRL (Networked Computer Science Technical Research Library), within which the work has taken place and explains Dienst, a protocol and architecture for distributed digital libraries.…
Integrating medical devices in the operating room using service-oriented architectures.
Ibach, Bastian; Benzko, Julia; Schlichting, Stefan; Zimolong, Andreas; Radermacher, Klaus
2012-08-01
Abstract With the increasing documentation requirements and communication capabilities of medical devices in the operating room, the integration and modular networking of these devices have become more and more important. Commercial integrated operating room systems are mainly proprietary developments using usually proprietary communication standards and interfaces, which reduce the possibility of integrating devices from different vendors. To overcome these limitations, there is a need for an open standardized architecture that is based on standard protocols and interfaces enabling the integration of devices from different vendors based on heterogeneous software and hardware components. Starting with an analysis of the requirements for device integration in the operating room and the techniques used for integrating devices in other industrial domains, a new concept for an integration architecture for the operating room based on the paradigm of a service-oriented architecture is developed. Standardized communication protocols and interface descriptions are used. As risk management is an important factor in the field of medical engineering, a risk analysis of the developed concept has been carried out and the first prototypes have been implemented.
Unified web-based network management based on distributed object orientated software agents
NASA Astrophysics Data System (ADS)
Djalalian, Amir; Mukhtar, Rami; Zukerman, Moshe
2002-09-01
This paper presents an architecture that provides a unified web interface to managed network devices that support CORBA, OSI or Internet-based network management protocols. A client gains access to managed devices through a web browser, which is used to issue management operations and receive event notifications. The proposed architecture is compatible with both the OSI Management reference Model and CORBA. The steps required for designing the building blocks of such architecture are identified.
EON: a component-based approach to automation of protocol-directed therapy.
Musen, M A; Tu, S W; Das, A K; Shahar, Y
1996-01-01
Provision of automated support for planning protocol-directed therapy requires a computer program to take as input clinical data stored in an electronic patient-record system and to generate as output recommendations for therapeutic interventions and laboratory testing that are defined by applicable protocols. This paper presents a synthesis of research carried out at Stanford University to model the therapy-planning task and to demonstrate a component-based architecture for building protocol-based decision-support systems. We have constructed general-purpose software components that (1) interpret abstract protocol specifications to construct appropriate patient-specific treatment plans; (2) infer from time-stamped patient data higher-level, interval-based, abstract concepts; (3) perform time-oriented queries on a time-oriented patient database; and (4) allow acquisition and maintenance of protocol knowledge in a manner that facilitates efficient processing both by humans and by computers. We have implemented these components in a computer system known as EON. Each of the components has been developed, evaluated, and reported independently. We have evaluated the integration of the components as a composite architecture by implementing T-HELPER, a computer-based patient-record system that uses EON to offer advice regarding the management of patients who are following clinical trial protocols for AIDS or HIV infection. A test of the reuse of the software components in a different clinical domain demonstrated rapid development of a prototype application to support protocol-based care of patients who have breast cancer. PMID:8930854
Project Integration Architecture: Implementation of the CORBA-Served Application Infrastructure
NASA Technical Reports Server (NTRS)
Jones, William Henry
2005-01-01
The Project Integration Architecture (PIA) has been demonstrated in a single-machine C++ implementation prototype. The architecture is in the process of being migrated to a Common Object Request Broker Architecture (CORBA) implementation. The migration of the Foundation Layer interfaces is fundamentally complete. The implementation of the Application Layer infrastructure for that migration is reported. The Application Layer provides for distributed user identification and authentication, per-user/per-instance access controls, server administration, the formation of mutually-trusting application servers, a server locality protocol, and an ability to search for interface implementations through such trusted server networks.
A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks
Lloret, Jaime; Garcia, Miguel; Bri, Diana; Diaz, Juan R.
2009-01-01
A wireless sensor network is a self-configuring network of mobile nodes connected by wireless links where the nodes have limited capacity and energy. In many cases, the application environment requires the design of an exclusive network topology for a particular case. Cluster-based network developments and proposals in existence have been designed to build a network for just one type of node, where all nodes can communicate with any other nodes in their coverage area. Let us suppose a set of clusters of sensor nodes where each cluster is formed by different types of nodes (e.g., they could be classified by the sensed parameter using different transmitting interfaces, by the node profile or by the type of device: laptops, PDAs, sensor etc.) and exclusive networks, as virtual networks, are needed with the same type of sensed data, or the same type of devices, or even the same type of profiles. In this paper, we propose an algorithm that is able to structure the topology of different wireless sensor networks to coexist in the same environment. It allows control and management of the topology of each network. The architecture operation and the protocol messages will be described. Measurements from a real test-bench will show that the designed protocol has low bandwidth consumption and also demonstrates the viability and the scalability of the proposed architecture. Our ccluster-based algorithm is compared with other algorithms reported in the literature in terms of architecture and protocol measurements. PMID:22303185
Sigint Application for Polymorphous Computing Architecture (PCA): Wideband DF
2006-08-01
Polymorphous Computing Architecture (PCA) program as stated by Robert Graybill is to Develop the computing foundation for agile systems by establishing...ubiquitous MUSIC algorithm rely upon an underlying narrowband signal model [8]. In this case, narrowband means that the signal bandwidth is less than...a wideband DF algorithm is needed to compensate for this model inadequacy. Among the various wideband DF techniques available, the coherent signal
Network Coded Cooperative Communication in a Real-Time Wireless Hospital Sensor Network.
Prakash, R; Balaji Ganesh, A; Sivabalan, Somu
2017-05-01
The paper presents a network coded cooperative communication (NC-CC) enabled wireless hospital sensor network architecture for monitoring health as well as postural activities of a patient. A wearable device, referred as a smartband is interfaced with pulse rate, body temperature sensors and an accelerometer along with wireless protocol services, such as Bluetooth and Radio-Frequency transceiver and Wi-Fi. The energy efficiency of wearable device is improved by embedding a linear acceleration based transmission duty cycling algorithm (NC-DRDC). The real-time demonstration is carried-out in a hospital environment to evaluate the performance characteristics, such as power spectral density, energy consumption, signal to noise ratio, packet delivery ratio and transmission offset. The resource sharing and energy efficiency features of network coding technique are improved by proposing an algorithm referred as network coding based dynamic retransmit/rebroadcast decision control (LA-TDC). From the experimental results, it is observed that the proposed LA-TDC algorithm reduces network traffic and end-to-end delay by an average of 27.8% and 21.6%, respectively than traditional network coded wireless transmission. The wireless architecture is deployed in a hospital environment and results are then successfully validated.
Internet-Protocol-Based Satellite Bus Architecture Designed
NASA Technical Reports Server (NTRS)
Slywczak, Richard A.
2004-01-01
NASA is designing future complex satellite missions ranging from single satellites and constellations to space networks and sensor webs. These missions require more interoperability, autonomy, and coordination than previous missions; in addition, a desire exists to have scientists retrieve data directly from the satellite rather than a central distribution source. To meet these goals, NASA has been studying the possibility of extending the Transmission Control Protocol/Internet Protocol (TCP/IP) suite for spacebased applications.
D. Humphreys; B. Cashore; I.J. Visseren-Hamakers; W. De Jong; K. McGinley; A. Denvir; P. Caro Torres; S. Lupberger
2017-01-01
This paper reports and reflects on the pilot application of an 11-step policy learning protocol that was developed by Cashore and Lupberger (2015) based on several years of Cashore's multi-author collaborations. The protocol was applied for the first time in Peru in 2015 and 2016 by the IUFRO Working Party on Forest Policy Learning Architectures (hereinafter...
Integrated AUTODIN System Architecture Report. Part 2.
1979-03-01
Link Modes Protocols and end-to- end host protocols Codes ASCII, ITA#2 ASCII, Others (Trans- parent to network) Speeds 45 thru 4800 bps 110 bps thru 56K ...service facilities such as AMPEs, subscriber access lines, modems , multiplexers, concentrators, interface development to include software design and...Protocol) CODES - ASCII and ITA#2 (others transparent) SPEEDS - 45.5bps - 56K bps FORMATS - AUTODIN II Segment Formats, JANAP 128, ACP 126/127, DOI 103
Multichannel Baseband Processor for Wideband CDMA
NASA Astrophysics Data System (ADS)
Jalloul, Louay M. A.; Lin, Jim
2005-12-01
The system architecture of the cellular base station modem engine (CBME) is described. The CBME is a single-chip multichannel transceiver capable of processing and demodulating signals from multiple users simultaneously. It is optimized to process different classes of code-division multiple-access (CDMA) signals. The paper will show that through key functional system partitioning, tightly coupled small digital signal processing cores, and time-sliced reuse architecture, CBME is able to achieve a high degree of algorithmic flexibility while maintaining efficiency. The paper will also highlight the implementation and verification aspects of the CBME chip design. In this paper, wideband CDMA is used as an example to demonstrate the architecture concept.
Progress on Ultra-Dense Quantum Communication Using Integrated Photonic Architecture
2013-01-01
entanglement based quantum key distribution . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Extended dispersive-optics QKD (DO-QKD) protocol...2 2.3 Analysis of non-local correlations of entangled photon pairs for arbitrary dis- persion...Section 3). 2 Protocol Development 2.1 Achieving multiple secure bits per coincidence in time-energy entanglement based quantum key distribution High
Considerations on communications network protocols in deep space
NASA Technical Reports Server (NTRS)
Clare, L. P.; Agre, J. R.; Yan, T.
2001-01-01
Communications supporting deep space missions impose numerous unique constraints that impact the architectural choices made for cost-effectiveness. We are entering the era where networks that exist in deep space are needed to support planetary exploration. Cost-effective performance will require a balanced integration of applicable widely used standard protocols with new and innovative designs.
ERIC Educational Resources Information Center
McNeal, McKenzie, III.
2012-01-01
Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…
ERIC Educational Resources Information Center
Tucker, Richard; Choy, Darryl Low; Heyes, Scott; Revell, Grant; Jones, David
2018-01-01
This paper reviews the current status and focus of Australian Architecture programs with respect to Indigenous Knowledge and the extent to which these tertiary programs currently address reconciliation and respect to Indigenous Australians in relation to their professional institutions and accreditation policies. The paper draws upon the findings…
ERIC Educational Resources Information Center
Agyapong, Parick Kwadwo
2013-01-01
Content-centric networking (CCN) has emerged as a dominant paradigm for future Internet architecture design due to its efficient support for content dissemination, which currently dominates Internet use. This dissertation shows how economic and social welfare analysis can be used to inform the design of a CCN architecture that provides network…
Security Analysis of DTN Architecture and Bundle Protocol Specification for Space-Based Networks
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2009-01-01
A Delay-Tolerant Network (DTN) Architecture (Request for Comment, RFC-4838) and Bundle Protocol Specification, RFC-5050, have been proposed for space and terrestrial networks. Additional security specifications have been provided via the Bundle Security Specification (currently a work in progress as an Internet Research Task Force internet-draft) and, for link-layer protocols applicable to Space networks, the Licklider Transport Protocol Security Extensions. This document provides a security analysis of the current DTN RFCs and proposed security related internet drafts with a focus on space-based communication networks, which is a rather restricted subset of DTN networks. Note, the original focus and motivation of DTN work was for the Interplanetary Internet . This document does not address general store-and-forward network overlays, just the current work being done by the Internet Research Task Force (IRTF) and the Consultative Committee for Space Data Systems (CCSDS) Space Internetworking Services Area (SIS) - DTN working group under the DTN and Bundle umbrellas. However, much of the analysis is relevant to general store-and-forward overlays.
Noise-Coupled Image Rejection Architecture of Complex Bandpass ΔΣAD Modulator
NASA Astrophysics Data System (ADS)
San, Hao; Kobayashi, Haruo
This paper proposes a new realization technique of image rejection function by noise-coupling architecture, which is used for a complex bandpass ΔΣAD modulator. The complex bandpass ΔΣAD modulator processes just input I and Q signals, not image signals, and the AD conversion can be realized with low power dissipation. It realizes an asymmetric noise-shaped spectra, which is desirable for such low-IF receiver applications. However, the performance of the complex bandpass ΔΣAD modulator suffers from the mismatch between internal analog I and Q paths. I/Q path mismatch causes an image signal, and the quantization noise of the mirror image band aliases into the desired signal band, which degrades the SQNDR (Signal to Quantization Noise and Distortion Ratio) of the modulator. In our proposed modulator architecture, an extra notch for image rejection is realized by noise-coupled topology. We just add some passive capacitors and switches to the modulator; the additional integrator circuit composed of an operational amplifier in the conventional image rejection realization is not necessary. Therefore, the performance of the complex modulator can be effectively raised without additional power dissipation. We have performed simulation with MATLAB to confirm the validity of the proposed architecture. The simulation results show that the proposed architecture can achieve the realization of image-rejection effectively, and improve the SQNDR of the complex bandpass ΔΣAD modulator.
NASA Astrophysics Data System (ADS)
Zabasta, A.; Kunicina, N.; Kondratjevs, K.
2017-06-01
Collaboration between heterogeneous systems and architectures is not an easy problem in the automation domain. By now, utilities and suppliers encounter real problems due to underestimated costs of technical solutions, frustration in selecting technical solutions relevant for local needs, and incompatibilities between a plenty of protocols and appropriate solutions. The paper presents research on creation of architecture of smart municipal systems in a local cloud of services that apply SOA and IoT approaches. The authors of the paper have developed a broker that applies orchestration services and resides on a gateway, which provides adapter and protocol translation functions, as well as applies a tool for wiring together hardware devices, APIs and online services.
Massively-Parallel Architectures for Automatic Recognition of Visual Speech Signals
1988-10-12
Secusrity Clamifieation, Nlassively-Parallel Architectures for Automa ic Recognitio of Visua, Speech Signals 12. PERSONAL AUTHOR(S) Terrence J...characteristics of speech from tJhe, visual speech signals. Neural networks have been trained on a database of vowels. The rqw images of faces , aligned and...images of faces , aligned and preprocessed, were used as input to these network which were trained to estimate the corresponding envelope of the
Initial Characterization of Optical Communications with Disruption-Tolerant Network Protocols
NASA Technical Reports Server (NTRS)
Schoolcraft, Joshua; Wilson, Keith
2011-01-01
Disruption-tolerant networks (DTNs) are groups of network assets connected with a suite of communication protocol technologies designed to mitigate the effects of link delay and disruption. Application of DTN protocols to diverse groups of network resources in multiple sub-networks results in an overlay network-of-networks with autonomous data routing capability. In space environments where delay or disruption is expected, performance of this type of architecture (such as an interplanetary internet) can increase with the inclusion of new communications mediums and techniques. Space-based optical communication links are therefore an excellent building block of space DTN architectures. When compared to traditional radio frequency (RF) communications, optical systems can provide extremely power-efficient and high bandwidth links bridging sub-networks. Because optical links are more susceptible to link disruption and experience the same light-speed delays as RF, optical-enabled DTN architectures can lessen potential drawbacks and maintain the benefits of autonomous optical communications over deep space distances. These environment-driven expectations - link delay and interruption, along with asymmetric data rates - are the purpose of the proof-of-concept experiment outlined herein. In recognizing the potential of these two technologies, we report an initial experiment and characterization of the performance of a DTN-enabled space optical link. The experiment design employs a point-to-point free-space optical link configured to have asymmetric bandwidth. This link connects two networked systems running a DTN protocol implementation designed and written at JPL for use on spacecraft, and further configured for higher bandwidth performance. Comparing baseline data transmission metrics with and without periodic optical link interruptions, the experiment confirmed the DTN protocols' ability to handle real-world unexpected link outages while maintaining capability of reliably delivering data at relatively high rates. Finally, performance characterizations from this data suggest performance optimizations to configuration and protocols for future optical-specific DTN space link scenarios.
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; Briscoe, Jeri M.
2005-01-01
Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a manned spacecraft. These systems include spacecraft navigation and attitude control, propulsion, automated docking, vehicle health management and life support. ISAACC can integrate local critical subsystem health management with subsystems performing long term health monitoring. The ISAACC system and its relationship to ISHM will be presented.
A Unified Fault-Tolerance Protocol
NASA Technical Reports Server (NTRS)
Miner, Paul; Gedser, Alfons; Pike, Lee; Maddalon, Jeffrey
2004-01-01
Davies and Wakerly show that Byzantine fault tolerance can be achieved by a cascade of broadcasts and middle value select functions. We present an extension of the Davies and Wakerly protocol, the unified protocol, and its proof of correctness. We prove that it satisfies validity and agreement properties for communication of exact values. We then introduce bounded communication error into the model. Inexact communication is inherent for clock synchronization protocols. We prove that validity and agreement properties hold for inexact communication, and that exact communication is a special case. As a running example, we illustrate the unified protocol using the SPIDER family of fault-tolerant architectures. In particular we demonstrate that the SPIDER interactive consistency, distributed diagnosis, and clock synchronization protocols are instances of the unified protocol.
Implementation of real-time digital endoscopic image processing system
NASA Astrophysics Data System (ADS)
Song, Chul Gyu; Lee, Young Mook; Lee, Sang Min; Kim, Won Ky; Lee, Jae Ho; Lee, Myoung Ho
1997-10-01
Endoscopy has become a crucial diagnostic and therapeutic procedure in clinical areas. Over the past four years, we have developed a computerized system to record and store clinical data pertaining to endoscopic surgery of laparascopic cholecystectomy, pelviscopic endometriosis, and surgical arthroscopy. In this study, we developed a computer system, which is composed of a frame grabber, a sound board, a VCR control board, a LAN card and EDMS. Also, computer system controls peripheral instruments such as a color video printer, a video cassette recorder, and endoscopic input/output signals. Digital endoscopic data management system is based on open architecture and a set of widely available industry standards; namely Microsoft Windows as an operating system, TCP/IP as a network protocol and a time sequential database that handles both images and speech. For the purpose of data storage, we used MOD and CD- R. Digital endoscopic system was designed to be able to store, recreate, change, and compress signals and medical images. Computerized endoscopy enables us to generate and manipulate the original visual document, making it accessible to a virtually unlimited number of physicians.
Parallel heterogeneous architectures for efficient OMP compressive sensing reconstruction
NASA Astrophysics Data System (ADS)
Kulkarni, Amey; Stanislaus, Jerome L.; Mohsenin, Tinoosh
2014-05-01
Compressive Sensing (CS) is a novel scheme, in which a signal that is sparse in a known transform domain can be reconstructed using fewer samples. The signal reconstruction techniques are computationally intensive and have sluggish performance, which make them impractical for real-time processing applications . The paper presents novel architectures for Orthogonal Matching Pursuit algorithm, one of the popular CS reconstruction algorithms. We show the implementation results of proposed architectures on FPGA, ASIC and on a custom many-core platform. For FPGA and ASIC implementation, a novel thresholding method is used to reduce the processing time for the optimization problem by at least 25%. Whereas, for the custom many-core platform, efficient parallelization techniques are applied, to reconstruct signals with variant signal lengths of N and sparsity of m. The algorithm is divided into three kernels. Each kernel is parallelized to reduce execution time, whereas efficient reuse of the matrix operators allows us to reduce area. Matrix operations are efficiently paralellized by taking advantage of blocked algorithms. For demonstration purpose, all architectures reconstruct a 256-length signal with maximum sparsity of 8 using 64 measurements. Implementation on Xilinx Virtex-5 FPGA, requires 27.14 μs to reconstruct the signal using basic OMP. Whereas, with thresholding method it requires 18 μs. ASIC implementation reconstructs the signal in 13 μs. However, our custom many-core, operating at 1.18 GHz, takes 18.28 μs to complete. Our results show that compared to the previous published work of the same algorithm and matrix size, proposed architectures for FPGA and ASIC implementations perform 1.3x and 1.8x respectively faster. Also, the proposed many-core implementation performs 3000x faster than the CPU and 2000x faster than the GPU.
Fiber-Optic Communication Links Suitable for On-Board Use in Modern Aircraft
NASA Technical Reports Server (NTRS)
Nguyen, Hung; Ngo, Duc; Alam, Mohammad F.; Atiquzzaman, Mohammed; Sluse, James; Slaveski, Filip
2004-01-01
The role of the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Centers has been focused mainly on the improvement of air transportation safety, with particular emphasis on air transportation communication systems in on-board aircraft. The conventional solutions for digital optical communications systems specifically designed for local/metro area networks are, unfortunately, not capable of transporting the microwave and millimeter RF signals used in avionics systems. Optical networks capable of transporting RF signals are substantially different from the standard digital optical communications systems. The objective of this paper is to identify a number of different communication link architectures for RF/fiber optic transmission using a single backbone fiber for carrying VHF and UHF RF signals in the aircraft. To support these architectures, two approaches derived from both hybrid RF-optical and all-optical processing methodologies are discussed with single and multiple antennas for explicitly transporting VHF and UHF signals, while the relative merits and demerits of each architecture are also addressed. Furthermore, the experimental results of wavelength division multiplexing (WDM) link architecture from our test-bed platform, configured for aircraft environment to support simultaneous transmission of multiple RF signals over a single optical fiber, exhibit no appreciable signal degradation at wavelengths of both 1330 and 1550 nm, respectively. Our measurements of signal to noise ratio carried out for the transmission of FM and AM analog modulated signals at these wavelengths indicate that WDM is a fiber optic technology which is potentially suitable for avionics applications.
Qin, J; Choi, K S; Ho, Simon S M; Heng, P A
2008-01-01
A force prediction algorithm is proposed to facilitate virtual-reality (VR) based collaborative surgical simulation by reducing the effect of network latencies. State regeneration is used to correct the estimated prediction. This algorithm is incorporated into an adaptive transmission protocol in which auxiliary features such as view synchronization and coupling control are equipped to ensure the system consistency. We implemented this protocol using multi-threaded technique on a cluster-based network architecture.
NASA Technical Reports Server (NTRS)
Carek, David Andrew
2003-01-01
This presentation covers the design of a command and control architecture developed by the author for the Combustion Module-2 microgravity experiment, which flew aboard the STS-107 Shuttle mission, The design was implemented to satisfy a hybrid network that utilized TCP/IP for both the onboard segment and ground segment, with an intermediary unreliable transport for the space to ground segment. With the infusion of Internet networking technologies into Space Shuttle, Space Station, and spacecraft avionics systems, comes the need for robust methodologies for ground command and control. Considerations of high bit error links, and unreliable transport over intermittent links must be considered in such systems. Internet protocols applied to these systems, coupled with the appropriate application layer protections, can provide adequate communication architectures for command and control. However, there are inherent limitations and additional complexities added by the use of Internet protocols that must be considered during the design. This presentation will discuss the rationale for the: framework and protocol algorithms developed by the author. A summary of design considerations, implantation issues, and learned lessons will be will be presented. A summary of mission results using this communications architecture will be presented. Additionally, areas of further needed investigation will be identified.
An information model for a virtual private optical network (OVPN) using virtual routers (VRs)
NASA Astrophysics Data System (ADS)
Vo, Viet Minh Nhat
2002-05-01
This paper describes a virtual private optical network architecture (Optical VPN - OVPN) based on virtual router (VR). It improves over architectures suggested for virtual private networks by using virtual routers with optical networks. The new things in this architecture are necessary changes to adapt to devices and protocols used in optical networks. This paper also presents information models for the OVPN: at the architecture level and at the service level. These are extensions to the DEN (directory enable network) and CIM (Common Information Model) for OVPNs using VRs. The goal is to propose a common management model using policies.
Effect of different analyte diffusion/adsorption protocols on SERS signals
NASA Astrophysics Data System (ADS)
Li, Ruoping; Petschek, Rolfe G.; Han, Junhe; Huang, Mingju
2018-07-01
The effect of different analyte diffusion/adsorption protocols was studied which is often overlooked in surface-enhanced Raman scattering (SERS) technique. Three protocols: highly concentrated dilution (HCD) protocol, half-half dilution (HHD) protocol and layered adsorption (LA) protocol were studied and the SERS substrates were monolayer films of 80 nm Ag nanoparticles (NPs) which were modified by polyvinylpyrrolidone. The diffusion/adsorption mechanisms were modelled using the diffusion equation and the electromagnetic field distribution of two adjacent Ag NPs was simulated by the finite-different time-domain method. All experimental data and theoretical analysis suggest that different diffusion/adsorption behaviour of analytes will cause different SERS signal enhancements. HHD protocol could produce the most uniform and reproducible samples, and the corresponding signal intensity of the analyte is the strongest. This study will help to understand and promote the use of SERS technique in quantitative analysis.
Radiation-Tolerant, SpaceWire-Compatible Switching Fabric
NASA Technical Reports Server (NTRS)
Katzman, Vladimir
2011-01-01
Current and future near-Earth and deep space exploration programs and space defense programs require the development of robust intra-spacecraft serial data transfer electronics that must be reconfigurable, fault-tolerant, and have the ability to operate effectively for long periods of time in harsh environmental conditions. Existing data transfer systems based on state-of-the-art serial data transfer protocols or passive backplanes are slow, power-hungry, and poorly reconfigurable. They provide limited expandability and poor tolerance to radiation effects and total ionizing dose (TID) in particular, which presents harmful threats to modern submicron electronics. This novel approach is based on a standard library of differential cells tolerant to TID, and patented, multi-level serial interface architecture that ensures the reliable operation of serial interconnects without application of a data-strobe or other encoding techniques. This proprietary, high-speed differential interface presents a lowpower solution fully compatible with the SpaceWire (SW) protocol. It replaces a dual data-strobe link with two identical independent data channels, thus improving the system s tolerance to harsh environments through additional double redundancy. Each channel incorporates an automatic line integrity control circuitry that delivers error signals in case of broken or shorted lines.
On the Design of a Comprehensive Authorisation Framework for Service Oriented Architecture (SOA)
2013-07-01
Authentication Server AZM Authorisation Manager AZS Authorisation Server BP Business Process BPAA Business Process Authorisation Architecture BPAD Business...Internet Protocol Security JAAS Java Authentication and Authorisation Service MAC Mandatory Access Control RBAC Role Based Access Control RCA Regional...the authentication process, make authorisation decisions using application specific access control functions that results in the practice of
Computing architecture for autonomous microgrids
Goldsmith, Steven Y.
2015-09-29
A computing architecture that facilitates autonomously controlling operations of a microgrid is described herein. A microgrid network includes numerous computing devices that execute intelligent agents, each of which is assigned to a particular entity (load, source, storage device, or switch) in the microgrid. The intelligent agents can execute in accordance with predefined protocols to collectively perform computations that facilitate uninterrupted control of the .
Communications and Intelligent Systems Division Overview
NASA Technical Reports Server (NTRS)
Emerson, Dawn
2017-01-01
Provides expertise, and plans, conducts and directs research and engineering development in the competency fields of advanced communications and intelligent systems technologies for applications in current and future aeronautics and space systems.Advances communication systems engineering, development and analysis needed for Glenn Research Center's leadership in communications and intelligent systems technology. Focus areas include advanced high frequency devices, components, and antennas; optical communications, health monitoring and instrumentation; digital signal processing for communications and navigation, and cognitive radios; network architectures, protocols, standards and network-based applications; intelligent controls, dynamics and diagnostics; and smart micro- and nano-sensors and harsh environment electronics. Research and discipline engineering allow for the creation of innovative concepts and designs for aerospace communication systems with reduced size and weight, increased functionality and intelligence. Performs proof-of-concept studies and analyses to assess the impact of the new technologies.
Health-Enabled Smart Sensor Fusion Technology
NASA Technical Reports Server (NTRS)
Wang, Ray
2012-01-01
A process was designed to fuse data from multiple sensors in order to make a more accurate estimation of the environment and overall health in an intelligent rocket test facility (IRTF), to provide reliable, high-confidence measurements for a variety of propulsion test articles. The object of the technology is to provide sensor fusion based on a distributed architecture. Specifically, the fusion technology is intended to succeed in providing health condition monitoring capability at the intelligent transceiver, such as RF signal strength, battery reading, computing resource monitoring, and sensor data reading. The technology also provides analytic and diagnostic intelligence at the intelligent transceiver, enhancing the IEEE 1451.x-based standard for sensor data management and distributions, as well as providing appropriate communications protocols to enable complex interactions to support timely and high-quality flow of information among the system elements.
Definition of architectural ideotypes for good yield capacity in Coffea canephora.
Cilas, Christian; Bar-Hen, Avner; Montagnon, Christophe; Godin, Christophe
2006-03-01
Yield capacity is a target trait for selection of agronomically desirable lines; it is preferred to simple yields recorded over different harvests. Yield capacity is derived using certain architectural parameters used to measure the components of yield capacity. Observation protocols for describing architecture and yield capacity were applied to six clones of coffee trees (Coffea canephora) in a comparative trial. The observations were used to establish architectural databases, which were explored using AMAPmod, a software dedicated to the analyses of plant architecture data. The traits extracted from the database were used to identify architectural parameters for predicting the yield of the plant material studied. Architectural traits are highly heritable and some display strong genetic correlations with cumulated yield. In particular, the proportion of fruiting nodes at plagiotropic level 15 counting from the top of the tree proved to be a good predictor of yield over two fruiting cycles.
Digital tanlock loop architecture with no delay
NASA Astrophysics Data System (ADS)
Al-Kharji AL-Ali, Omar; Anani, Nader; Al-Araji, Saleh; Al-Qutayri, Mahmoud; Ponnapalli, Prasad
2012-02-01
This article proposes a new architecture for a digital tanlock loop which eliminates the time-delay block. The ? (rad) phase shift relationship between the two channels, which is generated by the delay block in the conventional time-delay digital tanlock loop (TDTL), is preserved using two quadrature sampling signals for the loop channels. The proposed system outperformed the original TDTL architecture, when both systems were tested with frequency shift keying input signal. The new system demonstrated better linearity and acquisition speed as well as improved noise performance compared with the original TDTL architecture. Furthermore, the removal of the time-delay block enables all processing to be digitally performed, which reduces the implementation complexity. Both the original TDTL and the new architecture without the delay block were modelled and simulated using MATLAB/Simulink. Implementation issues, including complexity and relation to simulation of both architectures, are also addressed.
Coordinated traffic incident management using the I-Net embedded sensor architecture
NASA Astrophysics Data System (ADS)
Dudziak, Martin J.
1999-01-01
The I-Net intelligent embedded sensor architecture enables the reconfigurable construction of wide-area remote sensing and data collection networks employing diverse processing and data acquisition modules communicating over thin- server/thin-client protocols. Adaptive initially for operation using mobile remotely-piloted vehicle platforms such as small helicopter robots such as the Hornet and Ascend-I, the I-Net architecture lends itself to a critical problem in the management of both spontaneous and planned traffic congestion and rerouting over major interstate thoroughfares such as the I-95 Corridor. Pre-programmed flight plans and ad hoc operator-assisted navigation of the lightweight helicopter, using an auto-pilot and gyroscopic stabilization augmentation units, allows daytime or nighttime over-the-horizon flights of the unit to collect and transmit real-time video imagery that may be stored or transmitted to other locations. With on-board GPS and ground-based pattern recognition capabilities to augment the standard video collection process, this approach enables traffic management and emergency response teams to plan and assist real-time in the adjustment of traffic flows in high- density or congested areas or during dangerous road conditions such as during ice, snow, and hurricane storms. The I-Net architecture allows for integration of land-based and roadside sensors within a comprehensive automated traffic management system with communications to and form an airborne or other platform to devices in the network other than human-operated desktop computers, thereby allowing more rapid assimilation and response for critical data. Experiments have been conducted using several modified platforms and standard video and still photographic equipment. Current research and development is focused upon modification of the modular instrumentation units in order to accommodate faster loading and reloading of equipment onto the RPV, extension of the I-Net architecture to enable RPV-to-RPV signaling and control, and refinement of safety and emergency mechanisms to handle RPV mechanical failure during flight.
Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones
Hansen, R K; Bissell, M J
2010-01-01
The changes in tissue architecture that accompany the development of breast cancer have been the focus of investigations aimed at developing new cancer therapeutics. As we learn more about the normal mammary gland, we have begun to understand the complex signaling pathways underlying the dramatic shifts in the structure and function of breast tissue. Integrin-, growth factor-, and steroid hormone-signaling pathways all play an important part in maintaining tissue architecture; disruption of the delicate balance of signaling results in dramatic changes in the way cells interact with each other and with the extracellular matrix, leading to breast cancer. The extracellular matrix itself plays a central role in coordinating these signaling processes. In this review, we consider the interrelationships between the extracellular matrix, integrins, growth factors, and steroid hormones in mammary gland development and function. PMID:10903527
Design of an FMCW radar baseband signal processing system for automotive application.
Lin, Jau-Jr; Li, Yuan-Ping; Hsu, Wei-Chiang; Lee, Ta-Sung
2016-01-01
For a typical FMCW automotive radar system, a new design of baseband signal processing architecture and algorithms is proposed to overcome the ghost targets and overlapping problems in the multi-target detection scenario. To satisfy the short measurement time constraint without increasing the RF front-end loading, a three-segment waveform with different slopes is utilized. By introducing a new pairing mechanism and a spatial filter design algorithm, the proposed detection architecture not only provides high accuracy and reliability, but also requires low pairing time and computational loading. This proposed baseband signal processing architecture and algorithms balance the performance and complexity, and are suitable to be implemented in a real automotive radar system. Field measurement results demonstrate that the proposed automotive radar signal processing system can perform well in a realistic application scenario.
Cave, John W; Xia, Li; Caudy, Michael
2011-01-01
In Drosophila melanogaster, achaete (ac) and m8 are model basic helix-loop-helix activator (bHLH A) and repressor genes, respectively, that have the opposite cell expression pattern in proneural clusters during Notch signaling. Previous studies have shown that activation of m8 transcription in specific cells within proneural clusters by Notch signaling is programmed by a "combinatorial" and "architectural" DNA transcription code containing binding sites for the Su(H) and proneural bHLH A proteins. Here we show the novel result that the ac promoter contains a similar combinatorial code of Su(H) and bHLH A binding sites but contains a different Su(H) site architectural code that does not mediate activation during Notch signaling, thus programming a cell expression pattern opposite that of m8 in proneural clusters.
Families of quantum fingerprinting protocols
NASA Astrophysics Data System (ADS)
Lovitz, Benjamin; Lütkenhaus, Norbert
2018-03-01
We introduce several families of quantum fingerprinting protocols to evaluate the equality function on two n -bit strings in the simultaneous message passing model. The original quantum fingerprinting protocol uses a tensor product of a small number of O (logn ) -qubit high-dimensional signals [H. Buhrman et al., Phys. Rev. Lett. 87, 167902 (2001), 10.1103/PhysRevLett.87.167902], whereas a recently proposed optical protocol uses a tensor product of O (n ) single-qubit signals, while maintaining the O (logn ) information leakage of the original protocol [J. M. Arazola and N. Lütkenhaus, Phys. Rev. A 89, 062305 (2014), 10.1103/PhysRevA.89.062305]. We find a family of protocols which interpolate between the original and optical protocols while maintaining the O (logn ) information leakage, thus demonstrating a tradeoff between the number of signals sent and the dimension of each signal. There has been interest in experimental realization of the recently proposed optical protocol using coherent states [F. Xu et al., Nat. Commun. 6, 8735 (2015), 10.1038/ncomms9735; J.-Y. Guan et al., Phys. Rev. Lett. 116, 240502 (2016), 10.1103/PhysRevLett.116.240502], but as the required number of laser pulses grows linearly with the input size n , eventual challenges for the long-time stability of experimental setups arise. We find a coherent state protocol which reduces the number of signals by a factor 1/2 while also reducing the information leakage. Our reduction makes use of a simple modulation scheme in optical phase space, and we find that more complex modulation schemes are not advantageous. Using a similar technique, we improve a recently proposed coherent state protocol for evaluating the Euclidean distance between two real unit vectors [N. Kumar et al., Phys. Rev. A 95, 032337 (2017), 10.1103/PhysRevA.95.032337] by reducing the number of signals by a factor 1/2 and also reducing the information leakage.
Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing
Kudithipudi, Dhireesha; Saleh, Qutaiba; Merkel, Cory; Thesing, James; Wysocki, Bryant
2016-01-01
Reservoir computing (RC) is gaining traction in several signal processing domains, owing to its non-linear stateful computation, spatiotemporal encoding, and reduced training complexity over recurrent neural networks (RNNs). Previous studies have shown the effectiveness of software-based RCs for a wide spectrum of applications. A parallel body of work indicates that realizing RNN architectures using custom integrated circuits and reconfigurable hardware platforms yields significant improvements in power and latency. In this research, we propose a neuromemristive RC architecture, with doubly twisted toroidal structure, that is validated for biosignal processing applications. We exploit the device mismatch to implement the random weight distributions within the reservoir and propose mixed-signal subthreshold circuits for energy efficiency. A comprehensive analysis is performed to compare the efficiency of the neuromemristive RC architecture in both digital(reconfigurable) and subthreshold mixed-signal realizations. Both Electroencephalogram (EEG) and Electromyogram (EMG) biosignal benchmarks are used for validating the RC designs. The proposed RC architecture demonstrated an accuracy of 90 and 84% for epileptic seizure detection and EMG prosthetic finger control, respectively. PMID:26869876
Security in the Cache and Forward Architecture for the Next Generation Internet
NASA Astrophysics Data System (ADS)
Hadjichristofi, G. C.; Hadjicostis, C. N.; Raychaudhuri, D.
The future Internet architecture will be comprised predominately of wireless devices. It is evident at this stage that the TCP/IP protocol that was developed decades ago will not properly support the required network functionalities since contemporary communication profiles tend to be data-driven rather than host-based. To address this paradigm shift in data propagation, a next generation architecture has been proposed, the Cache and Forward (CNF) architecture. This research investigates security aspects of this new Internet architecture. More specifically, we discuss content privacy, secure routing, key management and trust management. We identify security weaknesses of this architecture that need to be addressed and we derive security requirements that should guide future research directions. Aspects of the research can be adopted as a step-stone as we build the future Internet.
Research in DRM architecture based on watermarking and PKI
NASA Astrophysics Data System (ADS)
Liu, Ligang; Chen, Xiaosu; Xiao, Dao-ju; Yi, Miao
2005-02-01
Analyze the virtue and disadvantage of the present digital copyright protecting system, design a kind of security protocol model of digital copyright protection, which equilibrium consider the digital media"s use validity, integrality, security of transmission, and trade equity, make a detailed formalize description to the protocol model, analyze the relationship of the entities involved in the digital work copyright protection. The analysis of the security and capability of the protocol model shows that the model is good at security and practicability.
2015-09-01
Gateway 2 4. Voice Packet Flow: SIP , Session Description Protocol (SDP), and RTP 3 5. Voice Data Analysis 5 6. Call Analysis 6 7. Call Metrics 6...analysis processing is designed for a general VoIP system architecture based on Session Initiation Protocol ( SIP ) for negotiating call sessions and...employs Skinny Client Control Protocol for network communication between the phone and the local CallManager (e.g., for each dialed digit), SIP
Hardware Timestamping for an Image Acquisition System Based on FlexRIO and IEEE 1588 v2 Standard
NASA Astrophysics Data System (ADS)
Esquembri, S.; Sanz, D.; Barrera, E.; Ruiz, M.; Bustos, A.; Vega, J.; Castro, R.
2016-02-01
Current fusion devices usually implement distributed acquisition systems for the multiple diagnostics of their experiments. However, each diagnostic is composed by hundreds or even thousands of signals, including images from the vessel interior. These signals and images must be correctly timestamped, because all the information will be analyzed to identify plasma behavior using temporal correlations. For acquisition devices without synchronization mechanisms the timestamp is given by another device with timing capabilities when signaled by the first device. Later, each data should be related with its timestamp, usually via software. This critical action is unfeasible for software applications when sampling rates are high. In order to solve this problem this paper presents the implementation of an image acquisition system with real-time hardware timestamping mechanism. This is synchronized with a master clock using the IEEE 1588 v2 Precision Time Protocol (PTP). Synchronization, image acquisition and processing, and timestamping mechanisms are implemented using Field Programmable Gate Array (FPGA) and a timing card -PTP v2 synchronized. The system has been validated using a camera simulator streaming videos from fusion databases. The developed architecture is fully compatible with ITER Fast Controllers and has been integrated with EPICS to control and monitor the whole system.
Advances Made in the Next Generation of Satellite Networks
NASA Technical Reports Server (NTRS)
Bhasin, Kul B.
1999-01-01
Because of the unique networking characteristics of communications satellites, global satellite networks are moving to the forefront in enhancing national and global information infrastructures. Simultaneously, broadband data services, which are emerging as the major market driver for future satellite and terrestrial networks, are being widely acknowledged as the foundation for an efficient global information infrastructure. In the past 2 years, various task forces and working groups around the globe have identified pivotal topics and key issues to address if we are to realize such networks in a timely fashion. In response, industry, government, and academia undertook efforts to address these topics and issues. A workshop was organized to provide a forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. The Satellite Networks: Architectures, Applications, and Technologies Workshop was hosted by the Space Communication Program at the NASA Lewis Research Center in Cleveland, Ohio. Nearly 300 executives and technical experts from academia, industry, and government, representing the United States and eight other countries, attended the event (June 2 to 4, 1998). The program included seven panels and invited sessions and nine breakout sessions in which 42 speakers presented on technical topics. The proceedings covers a wide range of topics: access technology and protocols, architectures and network simulations, asynchronous transfer mode (ATM) over satellite networks, Internet over satellite networks, interoperability experiments and applications, multicasting, NASA interoperability experiment programs, NASA mission applications, and Transmission Control Protocol/Internet Protocol (TCP/IP) over satellite: issues, relevance, and experience.
Parallel Processing of Broad-Band PPM Signals
NASA Technical Reports Server (NTRS)
Gray, Andrew; Kang, Edward; Lay, Norman; Vilnrotter, Victor; Srinivasan, Meera; Lee, Clement
2010-01-01
A parallel-processing algorithm and a hardware architecture to implement the algorithm have been devised for timeslot synchronization in the reception of pulse-position-modulated (PPM) optical or radio signals. As in the cases of some prior algorithms and architectures for parallel, discrete-time, digital processing of signals other than PPM, an incoming broadband signal is divided into multiple parallel narrower-band signals by means of sub-sampling and filtering. The number of parallel streams is chosen so that the frequency content of the narrower-band signals is low enough to enable processing by relatively-low speed complementary metal oxide semiconductor (CMOS) electronic circuitry. The algorithm and architecture are intended to satisfy requirements for time-varying time-slot synchronization and post-detection filtering, with correction of timing errors independent of estimation of timing errors. They are also intended to afford flexibility for dynamic reconfiguration and upgrading. The architecture is implemented in a reconfigurable CMOS processor in the form of a field-programmable gate array. The algorithm and its hardware implementation incorporate three separate time-varying filter banks for three distinct functions: correction of sub-sample timing errors, post-detection filtering, and post-detection estimation of timing errors. The design of the filter bank for correction of timing errors, the method of estimating timing errors, and the design of a feedback-loop filter are governed by a host of parameters, the most critical one, with regard to processing very broadband signals with CMOS hardware, being the number of parallel streams (equivalently, the rate-reduction parameter).
Biosensor Architectures for High-Fidelity Reporting of Cellular Signaling
Dushek, Omer; Lellouch, Annemarie C.; Vaux, David J.; Shahrezaei, Vahid
2014-01-01
Understanding mechanisms of information processing in cellular signaling networks requires quantitative measurements of protein activities in living cells. Biosensors are molecular probes that have been developed to directly track the activity of specific signaling proteins and their use is revolutionizing our understanding of signal transduction. The use of biosensors relies on the assumption that their activity is linearly proportional to the activity of the signaling protein they have been engineered to track. We use mechanistic mathematical models of common biosensor architectures (single-chain FRET-based biosensors), which include both intramolecular and intermolecular reactions, to study the validity of the linearity assumption. As a result of the classic mechanism of zero-order ultrasensitivity, we find that biosensor activity can be highly nonlinear so that small changes in signaling protein activity can give rise to large changes in biosensor activity and vice versa. This nonlinearity is abolished in architectures that favor the formation of biosensor oligomers, but oligomeric biosensors produce complicated FRET states. Based on this finding, we show that high-fidelity reporting is possible when a single-chain intermolecular biosensor is used that cannot undergo intramolecular reactions and is restricted to forming dimers. We provide phase diagrams that compare various trade-offs, including observer effects, which further highlight the utility of biosensor architectures that favor intermolecular over intramolecular binding. We discuss challenges in calibrating and constructing biosensors and highlight the utility of mathematical models in designing novel probes for cellular signaling. PMID:25099816
Model of a programmable quantum processing unit based on a quantum transistor effect
NASA Astrophysics Data System (ADS)
Ablayev, Farid; Andrianov, Sergey; Fetisov, Danila; Moiseev, Sergey; Terentyev, Alexandr; Urmanchev, Andrey; Vasiliev, Alexander
2018-02-01
In this paper we propose a model of a programmable quantum processing device realizable with existing nano-photonic technologies. It can be viewed as a basis for new high performance hardware architectures. Protocols for physical implementation of device on the controlled photon transfer and atomic transitions are presented. These protocols are designed for executing basic single-qubit and multi-qubit gates forming a universal set. We analyze the possible operation of this quantum computer scheme. Then we formalize the physical architecture by a mathematical model of a Quantum Processing Unit (QPU), which we use as a basis for the Quantum Programming Framework. This framework makes it possible to perform universal quantum computations in a multitasking environment.
NASA Astrophysics Data System (ADS)
Gabrielli, Alessandro; Loddo, Flavio; Ranieri, Antonio; De Robertis, Giuseppe
2008-10-01
This work is aimed at defining the architecture of a new digital ASIC, namely Slow-Control Adapter (SCA), which will be designed in a commercial 130-nm CMOS technology. This chip will be embedded within a high-speed data acquisition optical link (GBT) to control and monitor the front-end electronics in future high-energy physics experiments. The GBT link provides a transparent transport layer between the SCA and control electronics in the counting room. The proposed SCA supports a variety of common bus protocols to interface with end-user general-purpose electronics. Between the GBT and the SCA a standard 100 Mb/s IEEE-802.3 compatible protocol will be implemented. This standard protocol allows off-line tests of the prototypes using commercial components that support the same standard. The project is justified because embedded applications in modern large HEP experiments require particular care to assure the lowest possible power consumption, still offering the highest reliability demanded by very large particle detectors.
El-Mohri, Youcef; Antonuk, Larry E.; Koniczek, Martin; Zhao, Qihua; Li, Yixin; Street, Robert A.; Lu, Jeng-Ping
2009-01-01
Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and∕or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of ∼10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical fill factors that are close to unity. In addition, the greater complexity of PSI-2 and PSI-3 pixel circuits, compared to that of PSI-1, has no observable effect on spatial resolution. Both PSI-2 and PSI-3 exhibit high levels of additive noise, resulting in no net improvement in the signal-to-noise performance of these early prototypes compared to conventional AMFPIs. However, faster readout rates, coupled with implementation of multiple sampling protocols allowed by the nondestructive nature of pixel readout, resulted in a significantly lower noise level of ∼560 e (rms) for PSI-3. PMID:19673229
El-Mohri, Youcef; Antonuk, Larry E; Koniczek, Martin; Zhao, Qihua; Li, Yixin; Street, Robert A; Lu, Jeng-Ping
2009-07-01
Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and/or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of approximately 10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical fill factors that are close to unity. In addition, the greater complexity of PSI-2 and PSI-3 pixel circuits, compared to that of PSI-1, has no observable effect on spatial resolution. Both PSI-2 and PSI-3 exhibit high levels of additive noise, resulting in no net improvement in the signal-to-noise performance of these early prototypes compared to conventional AMFPIs. However, faster readout rates, coupled with implementation of multiple sampling protocols allowed by the nondestructive nature of pixel readout, resulted in a significantly lower noise level of approximately 560 e (rms) for PSI-3.
Progress on Ultra-Dense Quantum Communication Using Integrated Photonic Architecture
2012-05-09
REPORT Progress on Ultra-Dense Quantum Communication Using Integrated Photonic Architecture 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The goal of...including the development of a large-alphabet quantum key distribution protocol that uses measurements in mutually unbiased bases. 1. REPORT DATE (DD-MM... quantum information, integrated optics, photonic integrated chip Dirk Englund, Karl Berggren, Jeffrey Shapiro, Chee Wei Wong, Franco Wong, and Gregory
Innovative on board payload optical architecture for high throughput satellites
NASA Astrophysics Data System (ADS)
Baudet, D.; Braux, B.; Prieur, O.; Hughes, R.; Wilkinson, M.; Latunde-Dada, K.; Jahns, J.; Lohmann, U.; Fey, D.; Karafolas, N.
2017-11-01
For the next generation of HighThroughPut (HTP) Telecommunications Satellites, space end users' needs will result in higher link speeds and an increase in the number of channels; up to 512 channels running at 10Gbits/s. By keeping electrical interconnections based on copper, the constraints in term of power dissipation, number of electrical wires and signal integrity will become too demanding. The replacement of the electrical links by optical links is the most adapted solution as it provides high speed links with low power consumption and no EMC/EMI. But replacing all electrical links by optical links of an On Board Payload (OBP) is challenging. It is not simply a matter of replacing electrical components with optical but rather the whole concept and architecture have to be rethought to achieve a high reliability and high performance optical solution. In this context, this paper will present the concept of an Innovative OBP Optical Architecture. The optical architecture was defined to meet the critical requirements of the application: signal speed, number of channels, space reliability, power dissipation, optical signals crossing and components availability. The resulting architecture is challenging and the need for new developments is highlighted. But this innovative optically interconnected architecture will substantially outperform standard electrical ones.
Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, R K; Bissell, M J
The changes in tissue architecture that accompany the development of breast cancer have been the focus of investigations aimed at developing new cancer therapeutics. As we learn more about the normal mammary gland, we have begun to understand the complex signaling pathways underlying the dramatic shifts in the structure and function of breast tissue. Integrin-, growth factor-, and steroid hormone-signaling pathways all play an important part in maintaining tissue architecture; disruption of the delicate balance of signaling results in dramatic changes in the way cells interact with each other and with the extracellular matrix, leading to breast cancer. The extracellularmore » matrix itself plays a central role in coordinating these signaling processes. In this review, we consider the interrelationships between the extracellular matrix, integrins, growth factors, and steroid hormones in mammary gland development and function.« less
Modular, Cost-Effective, Extensible Avionics Architecture for Secure, Mobile Communications
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2006-01-01
Current onboard communication architectures are based upon an all-in-one communications management unit. This unit and associated radio systems has regularly been designed as a one-off, proprietary system. As such, it lacks flexibility and cannot adapt easily to new technology, new communication protocols, and new communication links. This paper describes the current avionics communication architecture and provides a historical perspective of the evolution of this system. A new onboard architecture is proposed that allows full use of commercial-off-the-shelf technologies to be integrated in a modular approach thereby enabling a flexible, cost-effective and fully deployable design that can take advantage of ongoing advances in the computer, cryptography, and telecommunications industries.
Modular, Cost-Effective, Extensible Avionics Architecture for Secure, Mobile Communications
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2007-01-01
Current onboard communication architectures are based upon an all-in-one communications management unit. This unit and associated radio systems has regularly been designed as a one-off, proprietary system. As such, it lacks flexibility and cannot adapt easily to new technology, new communication protocols, and new communication links. This paper describes the current avionics communication architecture and provides a historical perspective of the evolution of this system. A new onboard architecture is proposed that allows full use of commercial-off-the-shelf technologies to be integrated in a modular approach thereby enabling a flexible, cost-effective and fully deployable design that can take advantage of ongoing advances in the computer, cryptography, and telecommunications industries.
Fault tolerant architectures for integrated aircraft electronics systems, task 2
NASA Technical Reports Server (NTRS)
Levitt, K. N.; Melliar-Smith, P. M.; Schwartz, R. L.
1984-01-01
The architectural basis for an advanced fault tolerant on-board computer to succeed the current generation of fault tolerant computers is examined. The network error tolerant system architecture is studied with particular attention to intercluster configurations and communication protocols, and to refined reliability estimates. The diagnosis of faults, so that appropriate choices for reconfiguration can be made is discussed. The analysis relates particularly to the recognition of transient faults in a system with tasks at many levels of priority. The demand driven data-flow architecture, which appears to have possible application in fault tolerant systems is described and work investigating the feasibility of automatic generation of aircraft flight control programs from abstract specifications is reported.
Automated selective disruption of slow wave sleep.
Ooms, Sharon J; Zempel, John M; Holtzman, David M; Ju, Yo-El S
2017-04-01
Slow wave sleep (SWS) plays an important role in neurophysiologic restoration. Experimentally testing the effect of SWS disruption previously required highly time-intensive and subjective methods. Our goal was to develop an automated and objective protocol to reduce SWS without affecting sleep architecture. We developed a custom Matlab™ protocol to calculate electroencephalogram spectral power every 10s live during a polysomnogram, exclude artifact, and, if measurements met criteria for SWS, deliver increasingly louder tones through earphones. Middle-aged healthy volunteers (n=10) each underwent 2 polysomnograms, one with the SWS disruption protocol and one with sham condition. The SWS disruption protocol reduced SWS compared to sham condition, as measured by spectral power in the delta (0.5-4Hz) band, particularly in the 0.5-2Hz range (mean 20% decrease). A compensatory increase in the proportion of total spectral power in the theta (4-8Hz) and alpha (8-12Hz) bands was seen, but otherwise normal sleep features were preserved. N3 sleep decreased from 20±34 to 3±6min, otherwise there were no significant changes in total sleep time, sleep efficiency, or other macrostructural sleep characteristics. This novel SWS disruption protocol produces specific reductions in delta band power similar to existing methods, but has the advantage of being automated, such that SWS disruption can be performed easily in a highly standardized and operator-independent manner. This automated SWS disruption protocol effectively reduces SWS without impacting overall sleep architecture. Copyright © 2017 Elsevier B.V. All rights reserved.
Kwon, Kun-Sup; Yoon, Won-Sang
2010-01-01
In this paper we propose a method of removing from synthesizer output spurious signals due to quasi-amplitude modulation and superposition effect in a frequency-hopping synthesizer with direct digital frequency synthesizer (DDFS)-driven phase-locked loop (PLL) architecture, which has the advantages of high frequency resolution, fast transition time, and small size. There are spurious signals that depend on normalized frequency of DDFS. They can be dominant if they occur within the PLL loop bandwidth. We suggest that such signals can be eliminated by purposefully creating frequency errors in the developed synthesizer.
Cai, Hanyang; Zhao, Lihua; Wang, Lulu; Zhang, Man; Su, Zhenxia; Cheng, Yan; Zhao, Heming; Qin, Yuan
2017-06-01
Flowering plants display a remarkable diversity in inflorescence architecture, and pedicel length is one of the key contributors to this diversity. In Arabidopsis thaliana, the receptor-like kinase ERECTA (ER) mediated signaling pathway plays important roles in regulating inflorescence architecture by promoting cell proliferation. However, the regulating mechanism remains elusive in the pedicel. Genetic interactions between ERECTA signaling and the chromatin remodeling complex SWR1 in the control of inflorescence architecture were studied. Comparative transcriptome analysis was applied to identify downstream components. Chromatin immunoprecipitation and nucleosome occupancy was further investigated. The results indicated that the chromatin remodeler SWR1 coordinates with ERECTA signaling in regulating inflorescence architecture by activating the expression of PRE1 family genes and promoting pedicel elongation. It was found that SWR1 is required for the incorporation of the H2A.Z histone variant into nucleosomes of the whole PRE1 gene family and the ERECTA controlled expression of PRE1 gene family through regulating nucleosome dynamics. We propose that utilization of a chromatin remodeling complex to regulate gene expression is a common theme in developmental control across kingdoms. These findings shed light on the mechanisms through which chromatin remodelers orchestrate complex transcriptional regulation of gene expression in coordination with a developmental cue. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
High-throughput microfluidics to control and measure signaling dynamics in single yeast cells
Hansen, Anders S.; Hao, Nan; O'Shea, Erin K.
2015-01-01
Microfluidics coupled to quantitative time-lapse fluorescence microscopy is transforming our ability to control, measure, and understand signaling dynamics in single living cells. Here we describe a pipeline that incorporates multiplexed microfluidic cell culture, automated programmable fluid handling for cell perturbation, quantitative time-lapse microscopy, and computational analysis of time-lapse movies. We illustrate how this setup can be used to control the nuclear localization of the budding yeast transcription factor Msn2. Using this protocol, we generate oscillations of Msn2 localization and measure the dynamic gene expression response of individual genes in single cells. The protocol allows a single researcher to perform up to 20 different experiments in a single day, whilst collecting data for thousands of single cells. Compared to other protocols, the present protocol is relatively easy to adopt and higher-throughput. The protocol can be widely used to control and monitor single-cell signaling dynamics in other signal transduction systems in microorganisms. PMID:26158443
Optimization of neural network architecture for classification of radar jamming FM signals
NASA Astrophysics Data System (ADS)
Soto, Alberto; Mendoza, Ariadna; Flores, Benjamin C.
2017-05-01
The purpose of this study is to investigate several artificial Neural Network (NN) architectures in order to design a cognitive radar system capable of optimally distinguishing linear Frequency-Modulated (FM) signals from bandlimited Additive White Gaussian Noise (AWGN). The goal is to create a theoretical framework to determine an optimal NN architecture to achieve a Probability of Detection (PD) of 95% or higher and a Probability of False Alarm (PFA) of 1.5% or lower at 5 dB Signal to Noise Ratio (SNR). Literature research reveals that the frequency-domain power spectral densities characterize a signal more efficiently than its time-domain counterparts. Therefore, the input data is preprocessed by calculating the magnitude square of the Discrete Fourier Transform of the digitally sampled bandlimited AWGN and linear FM signals to populate a matrix containing N number of samples and M number of spectra. This matrix is used as input for the NN, and the spectra are divided as follows: 70% for training, 15% for validation, and 15% for testing. The study begins by experimentally deducing the optimal number of hidden neurons (1-40 neurons), then the optimal number of hidden layers (1-5 layers), and lastly, the most efficient learning algorithm. The training algorithms examined are: Resilient Backpropagation, Scaled Conjugate Gradient, Conjugate Gradient with Powell/Beale Restarts, Polak-Ribiére Conjugate Gradient, and Variable Learning Rate Backpropagation. We determine that an architecture with ten hidden neurons (or higher), one hidden layer, and a Scaled Conjugate Gradient for training algorithm encapsulates an optimal architecture for our application.
Analog Module Architecture for Space-Qualified Field-Programmable Mixed-Signal Arrays
NASA Technical Reports Server (NTRS)
Edwards, R. Timothy; Strohbehn, Kim; Jaskulek, Steven E.; Katz, Richard
1999-01-01
Spacecraft require all manner of both digital and analog circuits. Onboard digital systems are constructed almost exclusively from field-programmable gate array (FPGA) circuits providing numerous advantages over discrete design including high integration density, high reliability, fast turn-around design cycle time, lower mass, volume, and power consumption, and lower parts acquisition and flight qualification costs. Analog and mixed-signal circuits perform tasks ranging from housekeeping to signal conditioning and processing. These circuits are painstakingly designed and built using discrete components due to a lack of options for field-programmability. FPAA (Field-Programmable Analog Array) and FPMA (Field-Programmable Mixed-signal Array) parts exist but not in radiation-tolerant technology and not necessarily in an architecture optimal for the design of analog circuits for spaceflight applications. This paper outlines an architecture proposed for an FPAA fabricated in an existing commercial digital CMOS process used to make radiation-tolerant antifuse-based FPGA devices. The primary concerns are the impact of the technology and the overall array architecture on the flexibility of programming, the bandwidth available for high-speed analog circuits, and the accuracy of the components for high-performance applications.
Use of Flowchart for Automation of Clinical Protocols in mHealth.
Dias, Karine Nóra; Welfer, Daniel; Cordeiro d'Ornellas, Marcos; Pereira Haygert, Carlos Jesus; Dotto, Gustavo Nogara
2017-01-01
For healthcare professionals to use mobile applications we need someone who knows software development, provide them. In healthcare institutions, health professionals use clinical protocols to govern care, and sometimes these documents are computerized through mobile applications to assist them. This work aims to present a proposal of an application of flow as a way of describing clinical protocols for automatic generation of mobile applications to assist health professionals. The purpose of this research is to enable health professionals to develop applications from the description of their own clinical protocols. As a result, we developed a web system that automates clinical protocols for an Android platform, and we validated with two clinical protocols used in a Brazilian hospital. Preliminary results of the developed architecture demonstrate the feasibility of this study.
Statistical performance evaluation of ECG transmission using wireless networks.
Shakhatreh, Walid; Gharaibeh, Khaled; Al-Zaben, Awad
2013-07-01
This paper presents simulation of the transmission of biomedical signals (using ECG signal as an example) over wireless networks. Investigation of the effect of channel impairments including SNR, pathloss exponent, path delay and network impairments such as packet loss probability; on the diagnosability of the received ECG signal are presented. The ECG signal is transmitted through a wireless network system composed of two communication protocols; an 802.15.4- ZigBee protocol and an 802.11b protocol. The performance of the transmission is evaluated using higher order statistics parameters such as kurtosis and Negative Entropy in addition to the common techniques such as the PRD, RMS and Cross Correlation.
An adaptable chromosome preparation methodology for use in invertebrate research organisms.
Guo, Longhua; Accorsi, Alice; He, Shuonan; Guerrero-Hernández, Carlos; Sivagnanam, Shamilene; McKinney, Sean; Gibson, Matthew; Sánchez Alvarado, Alejandro
2018-02-26
The ability to efficiently visualize and manipulate chromosomes is fundamental to understanding the genome architecture of organisms. Conventional chromosome preparation protocols developed for mammalian cells and those relying on species-specific conditions are not suitable for many invertebrates. Hence, a simple and inexpensive chromosome preparation protocol, adaptable to multiple invertebrate species, is needed. We optimized a chromosome preparation protocol and applied it to several planarian species (phylum Platyhelminthes), the freshwater apple snail Pomacea canaliculata (phylum Mollusca), and the starlet sea anemone Nematostella vectensis (phylum Cnidaria). We demonstrated that both mitotically active adult tissues and embryos can be used as sources of metaphase chromosomes, expanding the potential use of this technique to invertebrates lacking cell lines and/or with limited access to the complete life cycle. Simple hypotonic treatment with deionized water was sufficient for karyotyping; growing cells in culture was not necessary. The obtained karyotypes allowed the identification of differences in ploidy and chromosome architecture among otherwise morphologically indistinguishable organisms, as in the case of a mixed population of planarians collected in the wild. Furthermore, we showed that in all tested organisms representing three different phyla this protocol could be effectively coupled with downstream applications, such as chromosome fluorescent in situ hybridization. Our simple and inexpensive chromosome preparation protocol can be readily adapted to new invertebrate research organisms to accelerate the discovery of novel genomic patterns across the branches of the tree of life.
Reconfigurable firmware-defined radios synthesized from standard digital logic cells
NASA Astrophysics Data System (ADS)
Faisal, Muhammad; Park, Youngmin; Wentzloff, David D.
2011-06-01
This paper presents recent work on reconfigurable all-digital radio architectures. We leverage the flexibility and scalability of synthesized digital cells to construct reconfigurable radio architectures that consume significantly less power than a software defined radio implementing similar architectures. We present two prototypes of such architectures that can receive and demodulate FM and FRS band signals. Moreover, a radio architecture based on a reconfigurable alldigital phase-locked loop for coherent demodulation is presented.
Design of a system based on DSP and FPGA for video recording and replaying
NASA Astrophysics Data System (ADS)
Kang, Yan; Wang, Heng
2013-08-01
This paper brings forward a video recording and replaying system with the architecture of Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA). The system achieved encoding, recording, decoding and replaying of Video Graphics Array (VGA) signals which are displayed on a monitor during airplanes and ships' navigating. In the architecture, the DSP is a main processor which is used for a large amount of complicated calculation during digital signal processing. The FPGA is a coprocessor for preprocessing video signals and implementing logic control in the system. In the hardware design of the system, Peripheral Device Transfer (PDT) function of the External Memory Interface (EMIF) is utilized to implement seamless interface among the DSP, the synchronous dynamic RAM (SDRAM) and the First-In-First-Out (FIFO) in the system. This transfer mode can avoid the bottle-neck of the data transfer and simplify the circuit between the DSP and its peripheral chips. The DSP's EMIF and two level matching chips are used to implement Advanced Technology Attachment (ATA) protocol on physical layer of the interface of an Integrated Drive Electronics (IDE) Hard Disk (HD), which has a high speed in data access and does not rely on a computer. Main functions of the logic on the FPGA are described and the screenshots of the behavioral simulation are provided in this paper. In the design of program on the DSP, Enhanced Direct Memory Access (EDMA) channels are used to transfer data between the FIFO and the SDRAM to exert the CPU's high performance on computing without intervention by the CPU and save its time spending. JPEG2000 is implemented to obtain high fidelity in video recording and replaying. Ways and means of acquiring high performance for code are briefly present. The ability of data processing of the system is desirable. And smoothness of the replayed video is acceptable. By right of its design flexibility and reliable operation, the system based on DSP and FPGA for video recording and replaying has a considerable perspective in analysis after the event, simulated exercitation and so forth.
Exploring the Implementation of Steganography Protocols on Quantum Audio Signals
NASA Astrophysics Data System (ADS)
Chen, Kehan; Yan, Fei; Iliyasu, Abdullah M.; Zhao, Jianping
2018-02-01
Two quantum audio steganography (QAS) protocols are proposed, each of which manipulates or modifies the least significant qubit (LSQb) of the host quantum audio signal that is encoded as an FRQA (flexible representation of quantum audio) audio content. The first protocol (i.e. the conventional LSQb QAS protocol or simply the cLSQ stego protocol) is built on the exchanges between qubits encoding the quantum audio message and the LSQb of the amplitude information in the host quantum audio samples. In the second protocol, the embedding procedure to realize it implants information from a quantum audio message deep into the constraint-imposed most significant qubit (MSQb) of the host quantum audio samples, we refer to it as the pseudo MSQb QAS protocol or simply the pMSQ stego protocol. The cLSQ stego protocol is designed to guarantee high imperceptibility between the host quantum audio and its stego version, whereas the pMSQ stego protocol ensures that the resulting stego quantum audio signal is better immune to illicit tampering and copyright violations (a.k.a. robustness). Built on the circuit model of quantum computation, the circuit networks to execute the embedding and extraction algorithms of both QAS protocols are determined and simulation-based experiments are conducted to demonstrate their implementation. Outcomes attest that both protocols offer promising trade-offs in terms of imperceptibility and robustness.
Examination of a Capabilities-based Prioritization Scheme for Service-Oriented Architecture Afloat
2012-09-01
Oriented Architecture Afloat 5. FUNDING NUMBERS 6. AUTHOR(S) Matthew C. Horton 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES) Naval...Postgraduate School Monterey, CA 93943–5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS (ES) N/A...within the Internet Protocol Version 4 ( IPv4 ) header (Xiao & Ni, 1999). By manipulating three bits within this byte, applications may specify
Engineering Three-dimensional Epithelial Tissues Embedded within Extracellular Matrix.
Piotrowski-Daspit, Alexandra S; Nelson, Celeste M
2016-07-10
The architecture of branched organs such as the lungs, kidneys, and mammary glands arises through the developmental process of branching morphogenesis, which is regulated by a variety of soluble and physical signals in the microenvironment. Described here is a method created to study the process of branching morphogenesis by forming engineered three-dimensional (3D) epithelial tissues of defined shape and size that are completely embedded within an extracellular matrix (ECM). This method enables the formation of arrays of identical tissues and enables the control of a variety of environmental factors, including tissue geometry, spacing, and ECM composition. This method can also be combined with widely used techniques such as traction force microscopy (TFM) to gain more information about the interactions between cells and their surrounding ECM. The protocol can be used to investigate a variety of cell and tissue processes beyond branching morphogenesis, including cancer invasion.
Providing end-to-end QoS for multimedia applications in 3G wireless networks
NASA Astrophysics Data System (ADS)
Guo, Katherine; Rangarajan, Samapth; Siddiqui, M. A.; Paul, Sanjoy
2003-11-01
As the usage of wireless packet data services increases, wireless carriers today are faced with the challenge of offering multimedia applications with QoS requirements within current 3G data networks. End-to-end QoS requires support at the application, network, link and medium access control (MAC) layers. We discuss existing CDMA2000 network architecture and show its shortcomings that prevent supporting multiple classes of traffic at the Radio Access Network (RAN). We then propose changes in RAN within the standards framework that enable support for multiple traffic classes. In addition, we discuss how Session Initiation Protocol (SIP) can be augmented with QoS signaling for supporting end-to-end QoS. We also review state of the art scheduling algorithms at the base station and provide possible extensions to these algorithms to support different classes of traffic as well as different classes of users.
Dynamic Task Assignment of Autonomous Distributed AGV in an Intelligent FMS Environment
NASA Astrophysics Data System (ADS)
Fauadi, Muhammad Hafidz Fazli Bin Md; Lin, Hao Wen; Murata, Tomohiro
The need of implementing distributed system is growing significantly as it is proven to be effective for organization to be flexible against a highly demanding market. Nevertheless, there are still large technical gaps need to be addressed to gain significant achievement. We propose a distributed architecture to control Automated Guided Vehicle (AGV) operation based on multi-agent architecture. System architectures and agents' functions have been designed to support distributed control of AGV. Furthermore, enhanced agent communication protocol has been configured to accommodate dynamic attributes of AGV task assignment procedure. Result proved that the technique successfully provides a better solution.
Weather Information Communications (WINCOMM) Overview and Status
NASA Technical Reports Server (NTRS)
Martzaklis, K.
2003-01-01
The second annual project review of Weather Information Communications (WINCOMM) is presented. The topics of discussion include: 1) In-Flight Weather Information; 2) System Elements; 3) Technology Investment Areas; 4) NAS Information Exchange; 5) FIS Datalink Architecture Analyses; 6) Hybrid FIS Datalink Architecture; 7) FIS Datalink Architecture Analyses; 8) Air Transport: Ground and Satellite-based Datalinks; 9) General Aviation: Ground and Satellite-based Datalinks; 10) Low Altitude AutoMET Reporting; 11) AutoMET: Airborne-based Datalinks; 12) Network Protocols Development; and 13) FAA/NASA Collaboration. A summary of WINCOMM is also included. This paper is in viewgraph form.
Integrating security in a group oriented distributed system
NASA Technical Reports Server (NTRS)
Reiter, Michael; Birman, Kenneth; Gong, LI
1992-01-01
A distributed security architecture is proposed for incorporation into group oriented distributed systems, and in particular, into the Isis distributed programming toolkit. The primary goal of the architecture is to make common group oriented abstractions robust in hostile settings, in order to facilitate the construction of high performance distributed applications that can tolerate both component failures and malicious attacks. These abstractions include process groups and causal group multicast. Moreover, a delegation and access control scheme is proposed for use in group oriented systems. The focus is the security architecture; particular cryptosystems and key exchange protocols are not emphasized.
1985-03-01
model referred to by the study group . IMCKIiN cuINICATION 31215FOR SDATA TWSU•l Sa *BSTtEO POOTO• AA14FTICT’WI PEM1 ITS ...operating systems, compared the DOD and ISO networking protocol architecture models , the protocols for LAN’s developed by the IEEE and ANSI, reviewed and...be initiated, so as to provide the Air Force a roadmap to guide its * "technology develop •ents. 4,’ /LAN 3-4 .°. SECTION 4.0
Remote Entanglement by Coherent Multiplication of Concurrent Quantum Signals
NASA Astrophysics Data System (ADS)
Roy, Ananda; Jiang, Liang; Stone, A. Douglas; Devoret, Michel
2015-10-01
Concurrent remote entanglement of distant, noninteracting quantum entities is a crucial function for quantum information processing. In contrast with the existing protocols which employ the addition of signals to generate entanglement between two remote qubits, the continuous variable protocol we present is based on the multiplication of signals. This protocol can be straightforwardly implemented by a novel Josephson junction mixing circuit. Our scheme would be able to generate provable entanglement even in the presence of practical imperfections: finite quantum efficiency of detectors and undesired photon loss in current state-of-the-art devices.
Intelligent Transportation Infrastructure Deployment Analysis System
DOT National Transportation Integrated Search
1997-01-01
Much of the work on Intelligent Transportation Systems (ITS) to date has emphasized technologies, Standards/protocols, architecture, user services, core infrastructure requirements, and various other technical and institutional issues. ITS implementa...
NASA Technical Reports Server (NTRS)
Hooke, A. J.
2000-01-01
Architectural design of the interplanetary internet is now underway and prototype flight testing of some of the candidate protocols is anticipated within a year. This talk will describe the current status of the project.
NASA Technical Reports Server (NTRS)
Sanders, Felicia A.; Jones, Grailing, Jr.; Levesque, Michael
2006-01-01
The CCSDS File Delivery Protocol (CFDP) Standard could reshape ground support architectures by enabling applications to communicate over the space link using reliable-symmetric transport services. JPL utilized the CFDP standard to support the Deep Impact Mission. The architecture was based on layering the CFDP applications on top of the CCSDS Space Link Extension Services for data transport from the mission control centers to the ground stations. On July 4, 2005 at 1:52 A.M. EDT, the Deep Impact impactor successfully collided with comet Tempel 1. During the final 48 hours prior to impact, over 300 files were uplinked to the spacecraft, while over 6 thousand files were downlinked from the spacecraft using the CFDP. This paper uses the Deep Impact Mission as a case study in a discussion of the CFDP architecture, Deep Impact Mission requirements, and design for integrating the CFDP into the JPL deep space support services. Issues and recommendations for future missions using CFDP are also provided.
A parallel unbalanced digitization architecture to reduce the dynamic range of multiple signals
NASA Astrophysics Data System (ADS)
Vallérian, Mathieu; HuÅ£u, Florin; Villemaud, Guillaume; Miscopein, Benoît; Risset, Tanguy
2016-05-01
Technologies employed in urban sensor networks are permanently evolving, and thus the gateways employed to collect data in such kind of networks have to be very flexible in order to be compliant with the new communication standards. A convenient way to do that is to digitize all the received signals in one shot and then to digitally perform the signal processing, as it is done in software-defined radio (SDR). All signals can be emitted with very different features (bandwidth, modulation type, and power level) in order to respond to the various propagation conditions. Their difference in terms of power levels is a problem when digitizing them together, as no current commercial analog-to-digital converter (ADC) can provide a fine enough resolution to digitize this high dynamic range between the weakest possible signal in the presence of a stronger signal. This paper presents an RF front end receiver architecture capable of handling this problem by using two ADCs of lower resolutions. The architecture is validated through a set of simulations using Keysight's ADS software. The main validation criterion is the bit error rate comparison with a classical receiver.
ECHO Services: Foundational Middleware for a Science Cyberinfrastructure
NASA Technical Reports Server (NTRS)
Burnett, Michael
2005-01-01
This viewgraph presentation describes ECHO, an interoperability middleware solution. It uses open, XML-based APIs, and supports net-centric architectures and solutions. ECHO has a set of interoperable registries for both data (metadata) and services, and provides user accounts and a common infrastructure for the registries. It is built upon a layered architecture with extensible infrastructure for supporting community unique protocols. It has been operational since November, 2002 and it available as open source.
Automated selective disruption of slow wave sleep
Ooms, Sharon J.; Zempel, John M.; Holtzman, David M.; Ju, Yo-El S.
2017-01-01
Background Slow wave sleep (SWS) plays an important role in neurophysiologic restoration. Experimentally testing the effect of SWS disruption previously required highly time-intensive and subjective methods. Our goal was to develop an automated and objective protocol to reduce SWS without affecting sleep architecture. New Method We developed a custom Matlab™ protocol to calculate electroencephalogram spectral power every 10 seconds live during a polysomnogram, exclude artifact, and, if measurements met criteria for SWS, deliver increasingly louder tones through earphones. Middle-aged healthy volunteers (n=10) each underwent 2 polysomnograms, one with the SWS disruption protocol and one with sham condition. Results The SWS disruption protocol reduced SWS compared to sham condition, as measured by spectral power in the delta (0.5–4 Hz) band, particularly in the 0.5–2 Hz range (mean 20% decrease). A compensatory increase in the proportion of total spectral power in the theta (4–8 Hz) and alpha (8–12 Hz) bands was seen, but otherwise normal sleep features were preserved. N3 sleep decreased from 20±34 to 3±6 minutes, otherwise there were no significant changes in total sleep time, sleep efficiency, or other macrostructural sleep characteristics. Comparison with existing method This novel SWS disruption protocol produces specific reductions in delta band power similar to existing methods, but has the advantage of being automated, such that SWS disruption can be performed easily in a highly standardized and operator-independent manner. Conclusion This automated SWS disruption protocol effectively reduces SWS without impacting overall sleep architecture. PMID:28238859
A comparative study of wireless sensor networks and their routing protocols.
Bhattacharyya, Debnath; Kim, Tai-hoon; Pal, Subhajit
2010-01-01
Recent developments in the area of micro-sensor devices have accelerated advances in the sensor networks field leading to many new protocols specifically designed for wireless sensor networks (WSNs). Wireless sensor networks with hundreds to thousands of sensor nodes can gather information from an unattended location and transmit the gathered data to a particular user, depending on the application. These sensor nodes have some constraints due to their limited energy, storage capacity and computing power. Data are routed from one node to other using different routing protocols. There are a number of routing protocols for wireless sensor networks. In this review article, we discuss the architecture of wireless sensor networks. Further, we categorize the routing protocols according to some key factors and summarize their mode of operation. Finally, we provide a comparative study on these various protocols.
Lu, Songjian; Jin, Bo; Cowart, L Ashley; Lu, Xinghua
2013-01-01
Genetic and pharmacological perturbation experiments, such as deleting a gene and monitoring gene expression responses, are powerful tools for studying cellular signal transduction pathways. However, it remains a challenge to automatically derive knowledge of a cellular signaling system at a conceptual level from systematic perturbation-response data. In this study, we explored a framework that unifies knowledge mining and data mining towards the goal. The framework consists of the following automated processes: 1) applying an ontology-driven knowledge mining approach to identify functional modules among the genes responding to a perturbation in order to reveal potential signals affected by the perturbation; 2) applying a graph-based data mining approach to search for perturbations that affect a common signal; and 3) revealing the architecture of a signaling system by organizing signaling units into a hierarchy based on their relationships. Applying this framework to a compendium of yeast perturbation-response data, we have successfully recovered many well-known signal transduction pathways; in addition, our analysis has led to many new hypotheses regarding the yeast signal transduction system; finally, our analysis automatically organized perturbed genes as a graph reflecting the architecture of the yeast signaling system. Importantly, this framework transformed molecular findings from a gene level to a conceptual level, which can be readily translated into computable knowledge in the form of rules regarding the yeast signaling system, such as "if genes involved in the MAPK signaling are perturbed, genes involved in pheromone responses will be differentially expressed."
Circular Regression in a Dual-Phase Lock-In Amplifier for Coherent Detection of Weak Signal
Wang, Gaoxuan; Reboul, Serge; Fertein, Eric
2017-01-01
Lock-in amplification (LIA) is an effective approach for recovery of weak signal buried in noise. Determination of the input signal amplitude in a classical dual-phase LIA is based on incoherent detection which leads to a biased estimation at low signal-to-noise ratio. This article presents, for the first time to our knowledge, a new architecture of LIA involving phase estimation with a linear-circular regression for coherent detection. The proposed phase delay estimate, between the input signal and a reference, is defined as the maximum-likelihood of a set of observations distributed according to a von Mises distribution. In our implementation this maximum is obtained with a Newton Raphson algorithm. We show that the proposed LIA architecture provides an unbiased estimate of the input signal amplitude. Theoretical simulations with synthetic data demonstrate that the classical LIA estimates are biased for SNR of the input signal lower than −20 dB, while the proposed LIA is able to accurately recover the weak signal amplitude. The novel approach is applied to an optical sensor for accurate measurement of NO2 concentrations at the sub-ppbv level in the atmosphere. Side-by-side intercomparison measurements with a commercial LIA (SR830, Stanford Research Inc., Sunnyvale, CA, USA ) demonstrate that the proposed LIA has an identical performance in terms of measurement accuracy and precision but with simplified hardware architecture. PMID:29135951
Data aggregation in wireless sensor networks using the SOAP protocol
NASA Astrophysics Data System (ADS)
Al-Yasiri, A.; Sunley, A.
2007-07-01
Wireless sensor networks (WSN) offer an increasingly attractive method of data gathering in distributed system architectures and dynamic access via wireless connectivity. Wireless sensor networks have physical and resource limitations, this leads to increased complexity for application developers and often results in applications that are closely coupled with network protocols. In this paper, a data aggregation framework using SOAP (Simple Object Access Protocol) on wireless sensor networks is presented. The framework works as a middleware for aggregating data measured by a number of nodes within a network. The aim of the study is to assess the suitability of the protocol in such environments where resources are limited compared to traditional networks.
An Evaluation of Protocols for UAV Science Applications
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Stewart, David E.; Sullivan, Donald V.; Finch, Patrick E.
2012-01-01
This paper identifies data transport needs for current and future science payloads deployed on the NASA Global Hawk Unmanned Aeronautical Vehicle (UAV). The NASA Global Hawk communication system and operational constrains are presented. The Genesis and Rapid Intensification Processes (GRIP) mission is used to provide the baseline communication requirements as a variety of payloads were utilized in this mission. User needs and desires are addressed. Protocols are matched to the payload needs and an evaluation of various techniques and tradeoffs are presented. Such techniques include utilization rate-base selective negative acknowledgement protocols and possible use of protocol enhancing proxies. Tradeoffs of communication architectures that address ease-of-use and security considerations are also presented.
Pseudo Asynchronous Level Crossing adc for ecg Signal Acquisition.
Marisa, T; Niederhauser, T; Haeberlin, A; Wildhaber, R A; Vogel, R; Goette, J; Jacomet, M
2017-02-07
A new pseudo asynchronous level crossing analogue-to-digital converter (adc) architecture targeted for low-power, implantable, long-term biomedical sensing applications is presented. In contrast to most of the existing asynchronous level crossing adc designs, the proposed design has no digital-to-analogue converter (dac) and no continuous time comparators. Instead, the proposed architecture uses an analogue memory cell and dynamic comparators. The architecture retains the signal activity dependent sampling operation by generating events only when the input signal is changing. The architecture offers the advantages of smaller chip area, energy saving and fewer analogue system components. Beside lower energy consumption the use of dynamic comparators results in a more robust performance in noise conditions. Moreover, dynamic comparators make interfacing the asynchronous level crossing system to synchronous processing blocks simpler. The proposed adc was implemented in [Formula: see text] complementary metal-oxide-semiconductor (cmos) technology, the hardware occupies a chip area of 0.0372 mm 2 and operates from a supply voltage of [Formula: see text] to [Formula: see text]. The adc's power consumption is as low as 0.6 μW with signal bandwidth from [Formula: see text] to [Formula: see text] and achieves an equivalent number of bits (enob) of up to 8 bits.
Toward a Fault Tolerant Architecture for Vital Medical-Based Wearable Computing.
Abdali-Mohammadi, Fardin; Bajalan, Vahid; Fathi, Abdolhossein
2015-12-01
Advancements in computers and electronic technologies have led to the emergence of a new generation of efficient small intelligent systems. The products of such technologies might include Smartphones and wearable devices, which have attracted the attention of medical applications. These products are used less in critical medical applications because of their resource constraint and failure sensitivity. This is due to the fact that without safety considerations, small-integrated hardware will endanger patients' lives. Therefore, proposing some principals is required to construct wearable systems in healthcare so that the existing concerns are dealt with. Accordingly, this paper proposes an architecture for constructing wearable systems in critical medical applications. The proposed architecture is a three-tier one, supporting data flow from body sensors to cloud. The tiers of this architecture include wearable computers, mobile computing, and mobile cloud computing. One of the features of this architecture is its high possible fault tolerance due to the nature of its components. Moreover, the required protocols are presented to coordinate the components of this architecture. Finally, the reliability of this architecture is assessed by simulating the architecture and its components, and other aspects of the proposed architecture are discussed.
A Novel Approach to Noise-Filtering Based on a Gain-Scheduling Neural Network Architecture
NASA Technical Reports Server (NTRS)
Troudet, T.; Merrill, W.
1994-01-01
A gain-scheduling neural network architecture is proposed to enhance the noise-filtering efficiency of feedforward neural networks, in terms of both nominal performance and robustness. The synergistic benefits of the proposed architecture are demonstrated and discussed in the context of the noise-filtering of signals that are typically encountered in aerospace control systems. The synthesis of such a gain-scheduled neurofiltering provides the robustness of linear filtering, while preserving the nominal performance advantage of conventional nonlinear neurofiltering. Quantitative performance and robustness evaluations are provided for the signal processing of pitch rate responses to typical pilot command inputs for a modern fighter aircraft model.
Examining Myddosome Formation by Luminescence-Based Mammalian Interactome Mapping (LUMIER).
Wolz, Olaf-Oliver; Koegl, Manfred; Weber, Alexander N R
2018-01-01
Recent structural, biochemical, and functional studies have led to the notion that many of the post-receptor signaling complexes in innate immunity have a multimeric, multi-protein architecture whose hierarchical assembly is vital for function. The Myddosome is a post-receptor complex in the cytoplasmic signaling of Toll-like receptors (TLR) and the Interleukin-1 receptor (IL-1R), involving the proteins MyD88, IL-1R-associated kinase 4 (IRAK4), and IRAK2. Its importance is strikingly illustrated by the fact that rare germline mutations in MYD88 causing high susceptibility to infections are characterized by failure to assemble Myddosomes; conversely, gain-of-function MYD88 mutations leading to oncogenic hyperactivation of NF-κB show increased Myddosome formation. Reliable methods to probe Myddosome formation experimentally are therefore vital to further study the properties of this important post-receptor complex and its role in innate immunity, such as its regulation by posttranslational modification. Compared to structural and biochemical analyses, luminescence-based mammalian interactome mapping (LUMIER) is a straightforward, automatable, quantifiable, and versatile technique to study protein-protein interactions in a physiologically relevant context. We adapted LUMIER for Myddosome analysis and provide here a basic background of this technique, suitable experimental protocols, and its potential for medium-throughput screening. The principles presented herein can be adapted to other signaling pathways.
Cybersecurity and Resilience | Energy Systems Integration Facility | NREL
, and offer prioritized action items to improve organizational protocols. The team is also helping and provide a prioritized list of action items for gaps in security controls. Security architectures
Dohan Ehrenfest, David M; Del Corso, Marco; Diss, Antoine; Mouhyi, Jaafar; Charrier, Jean-Baptiste
2010-04-01
Platelet-rich fibrin (PRF; Choukroun's technique) is a second-generation platelet concentrate for surgical use. This easy protocol allows the production of leukocyte and platelet-rich fibrin clots and membranes starting from 10-ml blood samples. The purposes of this study were to determine the cell composition and three-dimensional organization of this autologous biomaterial and to evaluate the influence of different collection tubes (dry glass or glass-coated plastic tubes) and compression procedures (forcible or soft) on the final PRF-membrane architecture. After centrifugation, blood analyses were performed on the residual waste plasmatic layers after collecting PRF clots. The PRF clots and membranes were processed for examination by light microscopy and scanning electron microscopy. Approximately 97% of the platelets and >50% of the leukocytes were concentrated in the PRF clot and showed a specific three-dimensional distribution, depending on the centrifugation forces. Platelets and fibrin formed large clusters of coagulation in the first millimeters of the membrane beyond the red blood cell base. The fibrin network was very mature and dense. Moreover, there was no significant difference in the PRF architecture between groups using the different tested collection tubes and compression techniques, even if these two parameters could have influenced the growth factor content and biologic matrix properties. The PRF protocol concentrated most platelets and leukocytes from a blood harvest into a single autologous fibrin biomaterial. This protocol offers reproducible results as long as the main production principles are respected.
The role of architecture and ontology for interoperability.
Blobel, Bernd; González, Carolina; Oemig, Frank; Lopéz, Diego; Nykänen, Pirkko; Ruotsalainen, Pekka
2010-01-01
Turning from organization-centric to process-controlled or even to personalized approaches, advanced healthcare settings have to meet special interoperability challenges. eHealth and pHealth solutions must assure interoperability between actors cooperating to achieve common business objectives. Hereby, the interoperability chain also includes individually tailored technical systems, but also sensors and actuators. For enabling corresponding pervasive computing and even autonomic computing, individualized systems have to be based on an architecture framework covering many domains, scientifically managed by specialized disciplines using their specific ontologies in a formalized way. Therefore, interoperability has to advance from a communication protocol to an architecture-centric approach mastering ontology coordination challenges.
Performance and analysis of MAC protocols based on application
NASA Astrophysics Data System (ADS)
Yadav, Ravi; Daniel, A. K.
2018-04-01
Wireless Sensor Network is one of the rapid emerging technology in recent decades. It covers large application area as civilian and military. Wireless Sensor Network primary consists of sensor nodes having low-power, low cost and multifunctional activities to collaborates and communicates via wireless medium. The deployment of sensor nodes are adhoc in nature, so sensor nodes are auto organize themselves in such a way to communicate with each other. The characteristics make more challenging areas on WSNs. This paper gives overview about characteristics of WSNs, Architecture and Contention Based MAC protocol. The paper present analysis of various protocol based on performance.
A Protocol Specification-Based Intrusion Detection System for VoIP and Its Evaluation
NASA Astrophysics Data System (ADS)
Phit, Thyda; Abe, Kôki
We propose an architecture of Intrusion Detection System (IDS) for VoIP using a protocol specification-based detection method to monitor the network traffics and alert administrator for further analysis of and response to suspicious activities. The protocol behaviors and their interactions are described by state machines. Traffic that behaves differently from the standard specifications are considered to be suspicious. The IDS has been implemented and simulated using OPNET Modeler, and verified to detect attacks. It was found that our system can detect typical attacks within a reasonable amount of delay time.
NASA Astrophysics Data System (ADS)
Rucinski, Marek; Coates, Adam; Montano, Giuseppe; Allouis, Elie; Jameux, David
2015-09-01
The Lightweight Advanced Robotic Arm Demonstrator (LARAD) is a state-of-the-art, two-meter long robotic arm for planetary surface exploration currently being developed by a UK consortium led by Airbus Defence and Space Ltd under contract to the UK Space Agency (CREST-2 programme). LARAD has a modular design, which allows for experimentation with different electronics and control software. The control system architecture includes the on-board computer, control software and firmware, and the communication infrastructure (e.g. data links, switches) connecting on-board computer(s), sensors, actuators and the end-effector. The purpose of the control system is to operate the arm according to pre-defined performance requirements, monitoring its behaviour in real-time and performing safing/recovery actions in case of faults. This paper reports on the results of a recent study about the feasibility of the development and integration of a novel control system architecture for LARAD fully based on the SpaceWire protocol. The current control system architecture is based on the combination of two communication protocols, Ethernet and CAN. The new SpaceWire-based control system will allow for improved monitoring and telecommanding performance thanks to higher communication data rate, allowing for the adoption of advanced control schemes, potentially based on multiple vision sensors, and for the handling of sophisticated end-effectors that require fine control, such as science payloads or robotic hands.
Clinical results of HIS, RIS, PACS integration using data integration CASE tools
NASA Astrophysics Data System (ADS)
Taira, Ricky K.; Chan, Hing-Ming; Breant, Claudine M.; Huang, Lu J.; Valentino, Daniel J.
1995-05-01
Current infrastructure research in PACS is dominated by the development of communication networks (local area networks, teleradiology, ATM networks, etc.), multimedia display workstations, and hierarchical image storage architectures. However, limited work has been performed on developing flexible, expansible, and intelligent information processing architectures for the vast decentralized image and text data repositories prevalent in healthcare environments. Patient information is often distributed among multiple data management systems. Current large-scale efforts to integrate medical information and knowledge sources have been costly with limited retrieval functionality. Software integration strategies to unify distributed data and knowledge sources is still lacking commercially. Systems heterogeneity (i.e., differences in hardware platforms, communication protocols, database management software, nomenclature, etc.) is at the heart of the problem and is unlikely to be standardized in the near future. In this paper, we demonstrate the use of newly available CASE (computer- aided software engineering) tools to rapidly integrate HIS, RIS, and PACS information systems. The advantages of these tools include fast development time (low-level code is generated from graphical specifications), and easy system maintenance (excellent documentation, easy to perform changes, and centralized code repository in an object-oriented database). The CASE tools are used to develop and manage the `middle-ware' in our client- mediator-serve architecture for systems integration. Our architecture is scalable and can accommodate heterogeneous database and communication protocols.
Design of SIP transformation server for efficient media negotiation
NASA Astrophysics Data System (ADS)
Pack, Sangheon; Paik, Eun Kyoung; Choi, Yanghee
2001-07-01
Voice over IP (VoIP) is one of the advanced services supported by the next generation mobile communication. VoIP should support various media formats and terminals existing together. This heterogeneous environment may prevent diverse users from establishing VoIP sessions among them. To solve the problem an efficient media negotiation mechanism is required. In this paper, we propose the efficient media negotiation architecture using the transformation server and the Intelligent Location Server (ILS). The transformation server is an extended Session Initiation Protocol (SIP) proxy server. It can modify an unacceptable session INVITE message into an acceptable one using the ILS. The ILS is a directory server based on the Lightweight Directory Access Protocol (LDAP) that keeps userí*s location information and available media information. The proposed architecture can eliminate an unnecessary response and re-INVITE messages of the standard SIP architecture. It takes only 1.5 round trip times to negotiate two different media types while the standard media negotiation mechanism takes 2.5 round trip times. The extra processing time in message handling is negligible in comparison to the reduced round trip time. The experimental results show that the session setup time in the proposed architecture is less than the setup time in the standard SIP. These results verify that the proposed media negotiation mechanism is more efficient in solving diversity problems.
Empowering open systems through cross-platform interoperability
NASA Astrophysics Data System (ADS)
Lyke, James C.
2014-06-01
Most of the motivations for open systems lie in the expectation of interoperability, sometimes referred to as "plug-and-play". Nothing in the notion of "open-ness", however, guarantees this outcome, which makes the increased interest in open architecture more perplexing. In this paper, we explore certain themes of open architecture. We introduce the concept of "windows of interoperability", which can be used to align disparate portions of architecture. Such "windows of interoperability", which concentrate on a reduced set of protocol and interface features, might achieve many of the broader purposes assigned as benefits in open architecture. Since it is possible to engineer proprietary systems that interoperate effectively, this nuanced definition of interoperability may in fact be a more important concept to understand and nurture for effective systems engineering and maintenance.
NASA Technical Reports Server (NTRS)
Jethwa, Dipan; Selmic, Rastko R.; Figueroa, Fernando
2008-01-01
This paper presents a concept of feedback control for smart actuators that are compatible with smart sensors, communication protocols, and a hierarchical Integrated System Health Management (ISHM) architecture developed by NASA s Stennis Space Center. Smart sensors and actuators typically provide functionalities such as automatic configuration, system condition awareness and self-diagnosis. Spacecraft and rocket test facilities are in the early stages of adopting these concepts. The paper presents a concept combining the IEEE 1451-based ISHM architecture with a transducer health monitoring capability to enhance the control process. A control system testbed for intelligent actuator control, with on-board ISHM capabilities, has been developed and implemented. Overviews of the IEEE 1451 standard, the smart actuator architecture, and control based on this architecture are presented.
Evolution of synthetic signaling scaffolds by recombination of modular protein domains.
Lai, Andicus; Sato, Paloma M; Peisajovich, Sergio G
2015-06-19
Signaling scaffolds are proteins that interact via modular domains with multiple partners, regulating signaling networks in space and time and providing an ideal platform from which to alter signaling functions. However, to better exploit scaffolds for signaling engineering, it is necessary to understand the full extent of their modularity. We used a directed evolution approach to identify, from a large library of randomly shuffled protein interaction domains, variants capable of rescuing the signaling defect of a yeast strain in which Ste5, the scaffold in the mating pathway, had been deleted. After a single round of selection, we identified multiple synthetic scaffold variants with diverse domain architectures, able to mediate mating pathway activation in a pheromone-dependent manner. The facility with which this signaling network accommodates changes in scaffold architecture suggests that the mating signaling complex does not possess a single, precisely defined geometry into which the scaffold has to fit. These relaxed geometric constraints may facilitate the evolution of signaling networks, as well as their engineering for applications in synthetic biology.
2008-03-01
Machine [29]. OC4J applications support Java Servlets , Web services, and the following J2EE specific standards: Extensible Markup Language (XML...IMAP Internet Message Access Protocol IP Internet Protocol IT Information Technology xviii J2EE Java Enterprise Environment JSR 168 Java ...LDAP), World Wide Web Distributed Authoring and Versioning (WebDav), Java Specification Request 168 (JSR 168), and Web Services for Remote
2018 NDIA 33rd Annual National Test and Evaluation Conference
2018-05-17
Breach IOC Delayed RDT&E Overrun MS B IOC First Flight CDR Wind Tunnel Campaign Flight Test Campaign $ Peak Burn Rate Occurs Around FF Wind Tunnel...Connectivity Team – Tier 2 network support, network characterization and analysis, walk-the- wire trouble resolution, assistance with new site Connection...File Transfer Protocol (SFTP) Server. The Test and Training Enabling Architecture (TENA) is used for over the wire simulation protocol via the DISGW
A Framework for Building and Reasoning with Adaptive and Interoperable PMESII Models
2007-11-01
Description Logic SOA Service Oriented Architecture SPARQL Simple Protocol And RDF Query Language SQL Standard Query Language SROM Stability and...another by providing a more expressive ontological structure for one of the models, e.g., semantic networks can be mapped to first- order logical...Pellet is an open-source reasoner that works with OWL-DL. It accepts the SPARQL protocol and RDF query language ( SPARQL ) and provides a Java API to
Utilization of Internet Protocol-Based Voice Systems in Remote Payload Operations
NASA Technical Reports Server (NTRS)
Best, Susan; Nichols, Kelvin; Bradford, Robert
2003-01-01
This viewgraph presentation provides an overview of a proposed voice communication system for use in remote payload operations performed on the International Space Station. The system, Internet Voice Distribution System (IVoDS), would make use of existing Internet protocols, and offer a number of advantages over the system currently in use. Topics covered include: system description and operation, system software and hardware, system architecture, project status, and technology transfer applications.
An implementation of the SNR high speed network communication protocol (Receiver part)
NASA Astrophysics Data System (ADS)
Wan, Wen-Jyh
1995-03-01
This thesis work is to implement the receiver pan of the SNR high speed network transport protocol. The approach was to use the Systems of Communicating Machines (SCM) as the formal definition of the protocol. Programs were developed on top of the Unix system using C programming language. The Unix system features that were adopted for this implementation were multitasking, signals, shared memory, semaphores, sockets, timers and process control. The problems encountered, and solved, were signal loss, shared memory conflicts, process synchronization, scheduling, data alignment and errors in the SCM specification itself. The result was a correctly functioning program which implemented the SNR protocol. The system was tested using different connection modes, lost packets, duplicate packets and large data transfers. The contributions of this thesis are: (1) implementation of the receiver part of the SNR high speed transport protocol; (2) testing and integration with the transmitter part of the SNR transport protocol on an FDDI data link layered network; (3) demonstration of the functions of the SNR transport protocol such as connection management, sequenced delivery, flow control and error recovery using selective repeat methods of retransmission; and (4) modifications to the SNR transport protocol specification such as corrections for incorrect predicate conditions, defining of additional packet types formats, solutions for signal lost and processes contention problems etc.
Study on networking issues of medium earth orbit satellite communications systems
NASA Technical Reports Server (NTRS)
Araki, Noriyuki; Shinonaga, Hideyuki; Ito, Yasuhiko
1993-01-01
Two networking issues of communications systems with medium earth orbit (MEO) satellites, namely network architectures and location determination and registration methods for hand-held terminals, are investigated in this paper. For network architecture, five candidate architectures are considered and evaluated in terms of signaling traffic. For location determination and registration, two methods are discussed and evaluated.
A wide-range programmable frequency synthesizer based on a finite state machine filter
NASA Astrophysics Data System (ADS)
Alser, Mohammed H.; Assaad, Maher M.; Hussin, Fawnizu A.
2013-11-01
In this article, an FPGA-based design and implementation of a fully digital wide-range programmable frequency synthesizer based on a finite state machine filter is presented. The advantages of the proposed architecture are that, it simultaneously generates a high frequency signal from a low frequency reference signal (i.e. synthesising), and synchronising the two signals (signals have the same phase, or a constant difference) without jitter accumulation issue. The architecture is portable and can be easily implemented for various platforms, such as FPGAs and integrated circuits. The frequency synthesizer circuit can be used as a part of SERDES devices in intra/inter chip communication in system-on-chip (SoC). The proposed circuit is designed using Verilog language and synthesized for the Altera DE2-70 development board, with the Cyclone II (EP2C35F672C6) device on board. Simulation and experimental results are included; they prove the synthesizing and tracking features of the proposed architecture. The generated clock signal frequency of a range from 19.8 MHz to 440 MHz is synchronized to the input reference clock with a frequency step of 0.12 MHz.
Continuous-variable quantum key distribution with a leakage from state preparation
NASA Astrophysics Data System (ADS)
Derkach, Ivan; Usenko, Vladyslav C.; Filip, Radim
2017-12-01
We address side-channel leakage in a trusted preparation station of continuous-variable quantum key distribution with coherent and squeezed states. We consider two different scenarios: multimode Gaussian modulation, directly accessible to an eavesdropper, or side-channel loss of the signal states prior to the modulation stage. We show the negative impact of excessive modulation on both the coherent- and squeezed-state protocols. The impact is more pronounced for squeezed-state protocols and may require optimization of squeezing in the case of noisy quantum channels. Further, we demonstrate that the coherent-state protocol is immune to side-channel signal state leakage prior to modulation, while the squeezed-state protocol is vulnerable to such attacks, becoming more sensitive to the noise in the channel. In the general case of noisy quantum channels the signal squeezing can be optimized to provide best performance of the protocol in the presence of side-channel leakage prior to modulation. Our results demonstrate that leakage from the trusted source in continuous-variable quantum key distribution should not be underestimated and squeezing optimization is needed to overcome coherent state protocols.
Zhang, Zheshen; Voss, Paul L
2009-07-06
We propose a continuous variable based quantum key distribution protocol that makes use of discretely signaled coherent light and reverse error reconciliation. We present a rigorous security proof against collective attacks with realistic lossy, noisy quantum channels, imperfect detector efficiency, and detector electronic noise. This protocol is promising for convenient, high-speed operation at link distances up to 50 km with the use of post-selection.
The Interplanetary Internet: A Communications Infrastructure for Mars Exploration
NASA Astrophysics Data System (ADS)
Burleigh, S.; Cerf, V.; Durst, R.; Fall, K.; Hooke, A.; Scott, K.; Weiss, H.
2002-01-01
A successful program of Mars Exploration will depend heavily on a robust and dependable space communications infrastructure that is well integrated with the terrestrial Internet. In the same way that the underpinnings of the Internet are the standardized "TCP/IP" suite of protocols, an "Interplanetary Internet" will need a similar set of capabilities that can support reliable communications across vast distances and highly stressed communications environments. For the past twenty years, the Consultative Committee for Space Data Systems (CCSDS) has been developing standardized long- haul space link communications techniques that are now in use by over two hundred missions within the international space community. New CCSDS developments, shortly to be infused into Mars missions, include a proximity link standard and a store-and- forward file transfer protocol. As part of its `Next Generation Internet' initiative, the U.S. Defense Advanced Projects Agency (DARPA) recently supported an architectural study of a future "InterPlaNetary Internet" (IPN). The IPN architecture assumes that in short-delay environments - such as on and around Mars - standard Internet technologies will be adapted to the locally harsh environment and deployed within surface vehicles and orbiting relays. A long-haul interplanetary backbone network that includes Deep Space Network (DSN) gateways into the terrestrial Internet will interconnect these distributed internets that are scattered across the Solar System. Just as TCP/IP unites the Earth's "network of networks" to become the Internet, a new suite of protocols known as "Bundling" will enable the IPN to become a "network of internets" to support true interplanetary dialog. An InterPlaNetary Internet Research Group has been established within the Internet community to coordinate this research and NASA has begun to support the further development of the IPN architecture and the Bundling protocols. A strategy is being developed whereby the current set of standard CCSDS data communications protocols can be incrementally evolved so that true InterPlaNetary Internet operations are feasible by the end of the decade. The strategy - which is already in progress via the deployment of Mars relay links - needs individual missions to each contribute increments of capability so that a standard communications infrastructure can rapidly accrete. This paper will describe the IPN architectural concepts, discuss the current set of standard data communications capabilities that exist to support Mars exploration and review the proposed new developments. We will also postulate that the concept is scalable and can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog among planets is routine. 1 2 3 4 5
Architectural design for a low cost FPGA-based traffic signal detection system in vehicles
NASA Astrophysics Data System (ADS)
López, Ignacio; Salvador, Rubén; Alarcón, Jaime; Moreno, Félix
2007-05-01
In this paper we propose an architecture for an embedded traffic signal detection system. Development of Advanced Driver Assistance Systems (ADAS) is one of the major trends of research in automotion nowadays. Examples of past and ongoing projects in the field are CHAMELEON ("Pre-Crash Application all around the vehicle" IST 1999-10108), PREVENT (Preventive and Active Safety Applications, FP6-507075, http://www.prevent-ip.org/) and AVRT in the US (Advanced Vision-Radar Threat Detection (AVRT): A Pre-Crash Detection and Active Safety System). It can be observed a major interest in systems for real-time analysis of complex driving scenarios, evaluating risk and anticipating collisions. The system will use a low cost CCD camera on the dashboard facing the road. The images will be processed by an Altera Cyclone family FPGA. The board does median and Sobel filtering of the incoming frames at PAL rate, and analyzes them for several categories of signals. The result is conveyed to the driver. The scarce resources provided by the hardware require an architecture developed for optimal use. The system will use a combination of neural networks and an adapted blackboard architecture. Several neural networks will be used in sequence for image analysis, by reconfiguring a single, generic hardware neural network in the FPGA. This generic network is optimized for speed, in order to admit several executions within the frame rate. The sequence will follow the execution cycle of the blackboard architecture. The global, blackboard architecture being developed and the hardware architecture for the generic, reconfigurable FPGA perceptron will be explained in this paper. The project is still at an early stage. However, some hardware implementation results are already available and will be offered in the paper.
Internet Protocol Display Sharing Solution for Mission Control Center Video System
NASA Technical Reports Server (NTRS)
Brown, Michael A.
2009-01-01
With the advent of broadcast television as a constant source of information throughout the NASA manned space flight Mission Control Center (MCC) at the Johnson Space Center (JSC), the current Video Transport System (VTS) characteristics provides the ability to visually enhance real-time applications as a broadcast channel that decision making flight controllers come to rely on, but can be difficult to maintain and costly. The Operations Technology Facility (OTF) of the Mission Operations Facility Division (MOFD) has been tasked to provide insight to new innovative technological solutions for the MCC environment focusing on alternative architectures for a VTS. New technology will be provided to enable sharing of all imagery from one specific computer display, better known as Display Sharing (DS), to other computer displays and display systems such as; large projector systems, flight control rooms, and back supporting rooms throughout the facilities and other offsite centers using IP networks. It has been stated that Internet Protocol (IP) applications are easily readied to substitute for the current visual architecture, but quality and speed may need to be forfeited for reducing cost and maintainability. Although the IP infrastructure can support many technologies, the simple task of sharing ones computer display can be rather clumsy and difficult to configure and manage to the many operators and products. The DS process shall invest in collectively automating the sharing of images while focusing on such characteristics as; managing bandwidth, encrypting security measures, synchronizing disconnections from loss of signal / loss of acquisitions, performance latency, and provide functions like, scalability, multi-sharing, ease of initial integration / sustained configuration, integration with video adjustments packages, collaborative tools, host / recipient controllability, and the utmost paramount priority, an enterprise solution that provides ownership to the whole process, while maintaining the integrity of the latest technological displayed image devices. This study will provide insights to the many possibilities that can be filtered down to a harmoniously responsive product that can be used in today's MCC environment.
A survey of system architecture requirements for health care-based wireless sensor networks.
Egbogah, Emeka E; Fapojuwo, Abraham O
2011-01-01
Wireless Sensor Networks (WSNs) have emerged as a viable technology for a vast number of applications, including health care applications. To best support these health care applications, WSN technology can be adopted for the design of practical Health Care WSNs (HCWSNs) that support the key system architecture requirements of reliable communication, node mobility support, multicast technology, energy efficiency, and the timely delivery of data. Work in the literature mostly focuses on the physical design of the HCWSNs (e.g., wearable sensors, in vivo embedded sensors, et cetera). However, work towards enhancing the communication layers (i.e., routing, medium access control, et cetera) to improve HCWSN performance is largely lacking. In this paper, the information gleaned from an extensive literature survey is shared in an effort to fortify the knowledge base for the communication aspect of HCWSNs. We highlight the major currently existing prototype HCWSNs and also provide the details of their routing protocol characteristics. We also explore the current state of the art in medium access control (MAC) protocols for WSNs, for the purpose of seeking an energy efficient solution that is robust to mobility and delivers data in a timely fashion. Furthermore, we review a number of reliable transport layer protocols, including a network coding based protocol from the literature, that are potentially suitable for delivering end-to-end reliability of data transmitted in HCWSNs. We identify the advantages and disadvantages of the reviewed MAC, routing, and transport layer protocols as they pertain to the design and implementation of a HCWSN. The findings from this literature survey will serve as a useful foundation for designing a reliable HCWSN and also contribute to the development and evaluation of protocols for improving the performance of future HCWSNs. Open issues that required further investigations are highlighted.
Delay and Disruption Tolerant Networking MACHETE Model
NASA Technical Reports Server (NTRS)
Segui, John S.; Jennings, Esther H.; Gao, Jay L.
2011-01-01
To verify satisfaction of communication requirements imposed by unique missions, as early as 2000, the Communications Networking Group at the Jet Propulsion Laboratory (JPL) saw the need for an environment to support interplanetary communication protocol design, validation, and characterization. JPL's Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in Simulator of Space Communication Networks (NPO-41373) NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various commercial, non-commercial, and in-house custom tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. As NASA is expanding its Space Communications and Navigation (SCaN) capabilities to support planned and future missions, building infrastructure to maintain services and developing enabling technologies, an important and broader role is seen for MACHETE in design-phase evaluation of future SCaN architectures. To support evaluation of the developing Delay Tolerant Networking (DTN) field and its applicability for space networks, JPL developed MACHETE models for DTN Bundle Protocol (BP) and Licklider/Long-haul Transmission Protocol (LTP). DTN is an Internet Research Task Force (IRTF) architecture providing communication in and/or through highly stressed networking environments such as space exploration and battlefield networks. Stressed networking environments include those with intermittent (predictable and unknown) connectivity, large and/or variable delays, and high bit error rates. To provide its services over existing domain specific protocols, the DTN protocols reside at the application layer of the TCP/IP stack, forming a store-and-forward overlay network. The key capabilities of the Bundle Protocol include custody-based reliability, the ability to cope with intermittent connectivity, the ability to take advantage of scheduled and opportunistic connectivity, and late binding of names to addresses.
Soil hydraulic material properties and layered architecture from time-lapse GPR
NASA Astrophysics Data System (ADS)
Jaumann, Stefan; Roth, Kurt
2018-04-01
Quantitative knowledge of the subsurface material distribution and its effective soil hydraulic material properties is essential to predict soil water movement. Ground-penetrating radar (GPR) is a noninvasive and nondestructive geophysical measurement method that is suitable to monitor hydraulic processes. Previous studies showed that the GPR signal from a fluctuating groundwater table is sensitive to the soil water characteristic and the hydraulic conductivity function. In this work, we show that the GPR signal originating from both the subsurface architecture and the fluctuating groundwater table is suitable to estimate the position of layers within the subsurface architecture together with the associated effective soil hydraulic material properties with inversion methods. To that end, we parameterize the subsurface architecture, solve the Richards equation, convert the resulting water content to relative permittivity with the complex refractive index model (CRIM), and solve Maxwell's equations numerically. In order to analyze the GPR signal, we implemented a new heuristic algorithm that detects relevant signals in the radargram (events) and extracts the corresponding signal travel time and amplitude. This algorithm is applied to simulated as well as measured radargrams and the detected events are associated automatically. Using events instead of the full wave regularizes the inversion focussing on the relevant measurement signal. For optimization, we use a global-local approach with preconditioning. Starting from an ensemble of initial parameter sets drawn with a Latin hypercube algorithm, we sequentially couple a simulated annealing algorithm with a Levenberg-Marquardt algorithm. The method is applied to synthetic as well as measured data from the ASSESS test site. We show that the method yields reasonable estimates for the position of the layers as well as for the soil hydraulic material properties by comparing the results to references derived from ground truth data as well as from time domain reflectometry (TDR).
Ma, Wenxiu; Ay, Ferhat; Lee, Choli; Gulsoy, Gunhan; Deng, Xinxian; Cook, Savannah; Hesson, Jennifer; Cavanaugh, Christopher; Ware, Carol B; Krumm, Anton; Shendure, Jay; Blau, C Anthony; Disteche, Christine M; Noble, William S; Duan, ZhiJun
2018-06-01
The folding and three-dimensional (3D) organization of chromatin in the nucleus critically impacts genome function. The past decade has witnessed rapid advances in genomic tools for delineating 3D genome architecture. Among them, chromosome conformation capture (3C)-based methods such as Hi-C are the most widely used techniques for mapping chromatin interactions. However, traditional Hi-C protocols rely on restriction enzymes (REs) to fragment chromatin and are therefore limited in resolution. We recently developed DNase Hi-C for mapping 3D genome organization, which uses DNase I for chromatin fragmentation. DNase Hi-C overcomes RE-related limitations associated with traditional Hi-C methods, leading to improved methodological resolution. Furthermore, combining this method with DNA capture technology provides a high-throughput approach (targeted DNase Hi-C) that allows for mapping fine-scale chromatin architecture at exceptionally high resolution. Hence, targeted DNase Hi-C will be valuable for delineating the physical landscapes of cis-regulatory networks that control gene expression and for characterizing phenotype-associated chromatin 3D signatures. Here, we provide a detailed description of method design and step-by-step working protocols for these two methods. Copyright © 2018 Elsevier Inc. All rights reserved.
Scada Malware, a Proof of Concept
NASA Astrophysics Data System (ADS)
Carcano, Andrea; Fovino, Igor Nai; Masera, Marcelo; Trombetta, Alberto
Critical Infrastructures are nowadays exposed to new kind of threats. The cause of such threats is related to the large number of new vulnerabilities and architectural weaknesses introduced by the extensive use of ICT and Network technologies into such complex critical systems. Of particular interest are the set of vulnerabilities related to the class of communication protocols normally known as “SCADA” protocols, under which fall all the communication protocols used to remotely control the RTU devices of an industrial system. In this paper we present a proof of concept of the potential effects of a set of computer malware specifically designed and created in order to impact, by taking advantage of some vulnerabilities of the ModBUS protocol, on a typical Supervisory Control and Data Acquisition system.
NASA Technical Reports Server (NTRS)
Alkhatib, Hasan S.
1991-01-01
The hardware and the software architecture of the TurboLAN Intelligent Network Adapter Card (TINAC) are described. A high level as well as detailed treatment of the workings of various components of the TINAC are presented. The TINAC is divided into the following four major functional units: (1) the network access unit (NAU); (2) the buffer management unit; (3) the host interface unit; and (4) the node processor unit.
A Machine Learning Concept for DTN Routing
NASA Technical Reports Server (NTRS)
Dudukovich, Rachel; Hylton, Alan; Papachristou, Christos
2017-01-01
This paper discusses the concept and architecture of a machine learning based router for delay tolerant space networks. The techniques of reinforcement learning and Bayesian learning are used to supplement the routing decisions of the popular Contact Graph Routing algorithm. An introduction to the concepts of Contact Graph Routing, Q-routing and Naive Bayes classification are given. The development of an architecture for a cross-layer feedback framework for DTN (Delay-Tolerant Networking) protocols is discussed. Finally, initial simulation setup and results are given.
Video Coding and the Application Level Framing Protocol Architecture
1992-06-01
missing ADU can be sent to the decoder when and if it arrives. The need for out-of- order processing arises for two reasons. First, ADUs may be reordered...by the network. Second, an ADU which is lost and then successfully retransmitted will arrive out of order. In either case, out-of- order processing makes...the code do not allow at least some out-of- order processing , one of the strong points of the ALF architecture is eliminated. 2.3.4 Header Data
Influence of dopant substitution mechanism on catalytic properties within hierarchical architectures
Newland, Stephanie H.; Sinkler, Wharton; Mezza, Thomas; Bare, Simon R.
2016-01-01
A range of hierarchically porous (HP) AlPO-5 catalysts, with isomorphously substituted transition metal ions, have been synthesized using an organosilane as a soft template. By employing a range of structural and spectroscopic characterization protocols, the properties of the dopant-substituted species within the HP architectures have been carefully evaluated. The resulting nature of the active site is shown to have a direct impact on the ensuing catalytic properties in the liquid-phase Beckmann rearrangement of cyclic ketones. PMID:27493563
2015-12-01
response time re- quirements and in additional calibration requirements for DCFM that may create unexpected la - tency and latency jitter that can...manage the flight path of the aircraft. For more information about sensor correlation and fusion processes, the Air University New World Vistas ...request/reply actions. We specify its la - tency as a minimum and maximum of 300 ms. SADataServiceProtocol: an abstraction of the SA data service as a
Influence of dopant substitution mechanism on catalytic properties within hierarchical architectures
NASA Astrophysics Data System (ADS)
Newland, Stephanie H.; Sinkler, Wharton; Mezza, Thomas; Bare, Simon R.; Raja, Robert
2016-07-01
A range of hierarchically porous (HP) AlPO-5 catalysts, with isomorphously substituted transition metal ions, have been synthesized using an organosilane as a soft template. By employing a range of structural and spectroscopic characterization protocols, the properties of the dopant-substituted species within the HP architectures have been carefully evaluated. The resulting nature of the active site is shown to have a direct impact on the ensuing catalytic properties in the liquid-phase Beckmann rearrangement of cyclic ketones.
FEDEF: A High Level Architecture Federate Development Framework
2010-09-01
require code changes for operability between HLA specifications. Configuration of federate requirements such as publications, subscriptions, time ... management , and management protocol should occur outside of federate source code, allowing for federate reusability without code modification and re
Preparation of samples for leaf architecture studies, a method for mounting cleared leaves.
Vasco, Alejandra; Thadeo, Marcela; Conover, Margaret; Daly, Douglas C
2014-09-01
Several recent waves of interest in leaf architecture have shown an expanding range of approaches and applications across a number of disciplines. Despite this increased interest, examination of existing archives of cleared and mounted leaves shows that current methods for mounting, in particular, yield unsatisfactory results and deterioration of samples over relatively short periods. Although techniques for clearing and staining leaves are numerous, published techniques for mounting leaves are scarce. • Here we present a complete protocol and recommendations for clearing, staining, and imaging leaves, and, most importantly, a method to permanently mount cleared leaves. • The mounting protocol is faster than other methods, inexpensive, and straightforward; moreover, it yields clear and permanent samples that can easily be imaged, scanned, and stored. Specimens mounted with this method preserve well, with leaves that were mounted more than 35 years ago showing no signs of bubbling or discoloration.
Analysis of NASA communications (Nascom) II network protocols and performance
NASA Technical Reports Server (NTRS)
Omidyar, Guy C.; Butler, Thomas E.
1991-01-01
The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate is to undertake a major initiative to develop the Nascom II (NII) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System, and other projects. NII is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The authors describe various baseline protocol architectures based on current and evolving technologies. They address the internetworking issues suggested for reliable transfer of data over heterogeneous segments. They also describe the NII architecture, topology, system components, and services. A comparative evaluation of the current and evolving technologies was made, and suggestions for further study are described. It is shown that the direction of the NII configuration and the subsystem component design will clearly depend on the advances made in the area of broadband integrated services.
A PCIe Gen3 based readout for the LHCb upgrade
NASA Astrophysics Data System (ADS)
Bellato, M.; Collazuol, G.; D'Antone, I.; Durante, P.; Galli, D.; Jost, B.; Lax, I.; Liu, G.; Marconi, U.; Neufeld, N.; Schwemmer, R.; Vagnoni, V.
2014-06-01
The architecture of the data acquisition system foreseen for the LHCb upgrade, to be installed by 2018, is devised to readout events trigger-less, synchronously with the LHC bunch crossing rate at 40 MHz. Within this approach the readout boards act as a bridge between the front-end electronics and the High Level Trigger (HLT) computing farm. The baseline design for the LHCb readout is an ATCA board requiring dedicated crates. A local area standard network protocol is implemented in the on-board FPGAs to read out the data. The alternative solution proposed here consists in building the readout boards as PCIe peripherals of the event-builder servers. The main architectural advantage is that protocol and link-technology of the event-builder can be left open until very late, to profit from the most cost-effective industry technology available at the time of the LHC LS2.
Efficient security mechanisms for mHealth applications using wireless body sensor networks.
Sahoo, Prasan Kumar
2012-01-01
Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth) applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme.
Efficient Security Mechanisms for mHealth Applications Using Wireless Body Sensor Networks
Sahoo, Prasan Kumar
2012-01-01
Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth) applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme. PMID:23112734
Yang, Li; Zheng, Zhiming
2018-01-01
According to advancements in the wireless technologies, study of biometrics-based multi-server authenticated key agreement schemes has acquired a lot of momentum. Recently, Wang et al. presented a three-factor authentication protocol with key agreement and claimed that their scheme was resistant to several prominent attacks. Unfortunately, this paper indicates that their protocol is still vulnerable to the user impersonation attack, privileged insider attack and server spoofing attack. Furthermore, their protocol cannot provide the perfect forward secrecy. As a remedy of these aforementioned problems, we propose a biometrics-based authentication and key agreement scheme for multi-server environments. Compared with various related schemes, our protocol achieves the stronger security and provides more functionality properties. Besides, the proposed protocol shows the satisfactory performances in respect of storage requirement, communication overhead and computational cost. Thus, our protocol is suitable for expert systems and other multi-server architectures. Consequently, the proposed protocol is more appropriate in the distributed networks.
Zheng, Zhiming
2018-01-01
According to advancements in the wireless technologies, study of biometrics-based multi-server authenticated key agreement schemes has acquired a lot of momentum. Recently, Wang et al. presented a three-factor authentication protocol with key agreement and claimed that their scheme was resistant to several prominent attacks. Unfortunately, this paper indicates that their protocol is still vulnerable to the user impersonation attack, privileged insider attack and server spoofing attack. Furthermore, their protocol cannot provide the perfect forward secrecy. As a remedy of these aforementioned problems, we propose a biometrics-based authentication and key agreement scheme for multi-server environments. Compared with various related schemes, our protocol achieves the stronger security and provides more functionality properties. Besides, the proposed protocol shows the satisfactory performances in respect of storage requirement, communication overhead and computational cost. Thus, our protocol is suitable for expert systems and other multi-server architectures. Consequently, the proposed protocol is more appropriate in the distributed networks. PMID:29534085
The quaternary architecture of RARβ–RXRα heterodimer facilitates domain–domain signal transmission
Chandra, Vikas; Wu, Dalei; Li, Sheng; ...
2017-10-11
Assessing the physical connections and allosteric communications in multi-domain nuclear receptor (NR) polypeptides has remained challenging, with few crystal structures available to show their overall structural organizations. Here we report the quaternary architecture of multi-domain retinoic acid receptor beta-retinoic X receptor alpha (RAR beta-RXR alpha) heterodimer bound to DNA, ligands and coactivator peptides, examined through crystallographic, hydrogen-deuterium exchange mass spectrometry, mutagenesis and functional studies. The RAR beta ligand-binding domain (LBD) and DNA-binding domain (DBD) are physically connected to foster allosteric signal transmission between them. Direct comparisons among all the multi-domain NRs studied crystallographically to date show significant variations within theirmore » quaternary architectures, rather than a common architecture adhering to strict rules. RXR remains flexible and adaptive by maintaining loosely organized domains, while its hetero-dimerization partners use a surface patch on their LBDs to form domain-domain interactions with DBDs.« less
The quaternary architecture of RARβ–RXRα heterodimer facilitates domain–domain signal transmission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, Vikas; Wu, Dalei; Li, Sheng
Assessing the physical connections and allosteric communications in multi-domain nuclear receptor (NR) polypeptides has remained challenging, with few crystal structures available to show their overall structural organizations. Here we report the quaternary architecture of multi-domain retinoic acid receptor beta-retinoic X receptor alpha (RAR beta-RXR alpha) heterodimer bound to DNA, ligands and coactivator peptides, examined through crystallographic, hydrogen-deuterium exchange mass spectrometry, mutagenesis and functional studies. The RAR beta ligand-binding domain (LBD) and DNA-binding domain (DBD) are physically connected to foster allosteric signal transmission between them. Direct comparisons among all the multi-domain NRs studied crystallographically to date show significant variations within theirmore » quaternary architectures, rather than a common architecture adhering to strict rules. RXR remains flexible and adaptive by maintaining loosely organized domains, while its hetero-dimerization partners use a surface patch on their LBDs to form domain-domain interactions with DBDs.« less
A new FPGA architecture suitable for DSP applications
NASA Astrophysics Data System (ADS)
Liyun, Wang; Jinmei, Lai; Jiarong, Tong; Pushan, Tang; Xing, Chen; Xueyan, Duan; Liguang, Chen; Jian, Wang; Yuan, Wang
2011-05-01
A new FPGA architecture suitable for digital signal processing applications is presented. DSP modules can be inserted into FPGA conveniently with the proposed architecture, which is much faster when used in the field of digital signal processing compared with traditional FPGAs. An advanced 2-level MUX (multiplexer) is also proposed. With the added SLEEP MODE PASS to traditional 2-level MUX, static leakage is reduced. Furthermore, buffers are inserted at early returns of long lines. With this kind of buffer, the delay of the long line is improved by 9.8% while the area increases by 4.37%. The layout of this architecture has been taped out in standard 0.13 μm CMOS technology successfully. The die size is 6.3 × 4.5 mm2 with the QFP208 package. Test results show that performances of presented classical DSP cases are improved by 28.6%-302% compared with traditional FPGAs.
Lee, David A.
2017-01-01
ABSTRACT Nuclear architecture, a function of both chromatin and nucleoskeleton structure, is known to change with stem cell differentiation and differs between various somatic cell types. These changes in nuclear architecture are associated with the regulation of gene expression and genome function in a cell-type specific manner. Biophysical stimuli are known effectors of differentiation and also elicit stimuli-specific changes in nuclear architecture. This occurs via the process of mechanotransduction whereby extracellular mechanical forces activate several well characterized signaling cascades of cytoplasmic origin, and potentially some recently elucidated signaling cascades originating in the nucleus. Recent work has demonstrated changes in nuclear mechanics both with pluripotency state in embryonic stem cells, and with differentiation progression in adult mesenchymal stem cells. This review explores the interplay between cytoplasmic and nuclear mechanosensitivity, highlighting a role for the nucleus as a rheostat in tuning the cellular mechano-response. PMID:28152338
Thorpe, Stephen D; Lee, David A
2017-05-04
Nuclear architecture, a function of both chromatin and nucleoskeleton structure, is known to change with stem cell differentiation and differs between various somatic cell types. These changes in nuclear architecture are associated with the regulation of gene expression and genome function in a cell-type specific manner. Biophysical stimuli are known effectors of differentiation and also elicit stimuli-specific changes in nuclear architecture. This occurs via the process of mechanotransduction whereby extracellular mechanical forces activate several well characterized signaling cascades of cytoplasmic origin, and potentially some recently elucidated signaling cascades originating in the nucleus. Recent work has demonstrated changes in nuclear mechanics both with pluripotency state in embryonic stem cells, and with differentiation progression in adult mesenchymal stem cells. This review explores the interplay between cytoplasmic and nuclear mechanosensitivity, highlighting a role for the nucleus as a rheostat in tuning the cellular mechano-response.
Colorless ONU implementation for WDM-PON using direct-detection optical OFDM
NASA Astrophysics Data System (ADS)
Feng, Min; Luo, Qing-long; Bai, Cheng-lin
2013-03-01
A novel architecture for the colorless optical network unit (ONU) is proposed and experimentally demonstrated with direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM). In this architecture, polarization-division multiplexing is used to reduce the cost at ONU. In optical line terminal (OLT), quadrature amplitude modulation (QAM) intensity-modulated OFDM signal with x-polarization at 10 Gbit/s is transmitted as downstream. At each ONU, the optical OFDM signal is demodulated with direct detection, and γ-polarization signal is modulated for upstream on-off keying (OOK) data at 5 Gbit/s. Simulation results show that the power penalty is negligible for both optical OFDM downstream and the on-off keying upstream signals after over 50 km single-mode fiber (SMF) transmission.
Interferometric architectures based All-Optical logic design methods and their implementations
NASA Astrophysics Data System (ADS)
Singh, Karamdeep; Kaur, Gurmeet
2015-06-01
All-Optical Signal Processing is an emerging technology which can avoid costly Optical-electronic-optical (O-E-O) conversions which are usually compulsory in traditional Electronic Signal Processing systems, thus greatly enhancing operating bit rate with some added advantages such as electro-magnetic interference immunity and low power consumption etc. In order to implement complex signal processing tasks All-Optical logic gates are required as backbone elements. This review describes the advances in the field of All-Optical logic design methods based on interferometric architectures such as Mach-Zehnder Interferometer (MZI), Sagnac Interferometers and Ultrafast Non-Linear Interferometer (UNI). All-Optical logic implementations for realization of arithmetic and signal processing applications based on each interferometric arrangement are also presented in a categorized manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karamooz, Saeed; Breeding, John Eric; Justice, T Alan
As MicroTCA expands into applications beyond the telecommunications industry from which it originated, it faces new challenges in the area of inter-blade communications. The ability to achieve deterministic, low-latency communications between blades is critical to realizing a scalable architecture. In the past, legacy bus architectures accomplished inter-blade communications using dedicated parallel buses across the backplane. Because of limited fabric resources on its backplane, MicroTCA uses the carrier hub (MCH) for this purpose. Unfortunately, MCH products from commercial vendors are limited to standard bus protocols such as PCI Express, Serial Rapid IO and 10/40GbE. While these protocols have exceptional throughput capability,more » they are neither deterministic nor necessarily low-latency. To overcome this limitation, an MCH has been developed based on the Xilinx Virtex-7 690T FPGA. This MCH provides the system architect/developer complete flexibility in both the interface protocol and routing of information between blades. In this paper, we present the application of this configurable MCH concept to the Machine Protection System under development for the Spallation Neutron Sources's proton accelerator. Specifically, we demonstrate the use of the configurable MCH as a 12x4-lane crossbar switch using the Aurora protocol to achieve a deterministic, low-latency data link. In this configuration, the crossbar has an aggregate bandwidth of 48 GB/s.« less
NASA Astrophysics Data System (ADS)
Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.
2015-12-01
In the attempt to develop an interconnection architecture optimized for hybrid HPC systems dedicated to scientific computing, we designed APEnet+, a point-to-point, low-latency and high-performance network controller supporting 6 fully bidirectional off-board links over a 3D torus topology. The first release of APEnet+ (named V4) was a board based on a 40 nm Altera FPGA, integrating 6 channels at 34 Gbps of raw bandwidth per direction and a PCIe Gen2 x8 host interface. It has been the first-of-its-kind device to implement an RDMA protocol to directly read/write data from/to Fermi and Kepler NVIDIA GPUs using NVIDIA peer-to-peer and GPUDirect RDMA protocols, obtaining real zero-copy GPU-to-GPU transfers over the network. The latest generation of APEnet+ systems (now named V5) implements a PCIe Gen3 x8 host interface on a 28 nm Altera Stratix V FPGA, with multi-standard fast transceivers (up to 14.4 Gbps) and an increased amount of configurable internal resources and hardware IP cores to support main interconnection standard protocols. Herein we present the APEnet+ V5 architecture, the status of its hardware and its system software design. Both its Linux Device Driver and the low-level libraries have been redeveloped to support the PCIe Gen3 protocol, introducing optimizations and solutions based on hardware/software co-design.
Passion fruit-like nano-architectures: a general synthesis route
NASA Astrophysics Data System (ADS)
Cassano, D.; David, J.; Luin, S.; Voliani, V.
2017-03-01
Noble metal nanostructures have demonstrated a number of intriguing features for both medicine and catalysis. However, accumulation issues have prevented their clinical translation, while their use in catalysis has shown serious efficiency and stability hurdles. Here we introduce a simple and robust synthetic protocol for passion fruit-like nano-architectures composed by a silica shell embedding polymeric arrays of ultrasmall noble metal nanoparticles. These nano-architectures show interesting features for both oncology and catalysis. They avoid the issue of persistence in organism thanks to their fast biodegradation in renal clearable building blocks. Furthermore, their calcination results in yolk-shell structures composed by naked metal or alloy nanospheres shielded from aggregation by a silica shell.
Intranet technology in hospital information systems.
Cimino, J J
1997-01-01
The clinical information system architecture at the Columbia-Presbyterian Medical Center in New York is being incorporated into an intranet using Internet and World Wide Web protocols. The result is an Enterprise-Wide Web which provides more flexibility for access to specific patient information and general medical knowledge. Critical aspects of the architecture include a central data repository and a vocabulary server. The new architecture provides ways of displaying patient information in summary, graphical, and multimedia forms. Using customized links called Infobuttons, we provide access to on-line information resources available on the World Wide Web. Our experience to date has raised a number of interesting issues about the use of this technology for health care systems.
Passion fruit-like nano-architectures: a general synthesis route
Cassano, D.; David, J.; Luin, S.; Voliani, V.
2017-01-01
Noble metal nanostructures have demonstrated a number of intriguing features for both medicine and catalysis. However, accumulation issues have prevented their clinical translation, while their use in catalysis has shown serious efficiency and stability hurdles. Here we introduce a simple and robust synthetic protocol for passion fruit-like nano-architectures composed by a silica shell embedding polymeric arrays of ultrasmall noble metal nanoparticles. These nano-architectures show interesting features for both oncology and catalysis. They avoid the issue of persistence in organism thanks to their fast biodegradation in renal clearable building blocks. Furthermore, their calcination results in yolk-shell structures composed by naked metal or alloy nanospheres shielded from aggregation by a silica shell. PMID:28256565
TMN: Introduction and interpretation
NASA Astrophysics Data System (ADS)
Pras, Aiko
An overview of Telecommunications Management Network (TMN) status is presented. Its relation with Open System Interconnection (OSI) systems management is given and the commonalities and distinctions are identified. Those aspects that distinguish TMN from OSI management are introduced; TMN's functional and physical architectures and TMN's logical layered architecture are discussed. An analysis of the concepts used by these architectures (reference point, interface, function block, and building block) is given. The use of these concepts to express geographical distribution and functional layering is investigated. This aspect is interesting to understand how OSI management protocols can be used in a TMN environment. A statement regarding applicability of TMN as a model that helps the designers of (management) networks is given.
Space-Based Information Infrastructure Architecture for Broadband Services
NASA Technical Reports Server (NTRS)
Price, Kent M.; Inukai, Tom; Razdan, Rajendev; Lazeav, Yvonne M.
1996-01-01
This study addressed four tasks: (1) identify satellite-addressable information infrastructure markets; (2) perform network analysis for space-based information infrastructure; (3) develop conceptual architectures; and (4) economic assessment of architectures. The report concludes that satellites will have a major role in the national and global information infrastructure, requiring seamless integration between terrestrial and satellite networks. The proposed LEO, MEO, and GEO satellite systems have satellite characteristics that vary widely. They include delay, delay variations, poorer link quality and beam/satellite handover. The barriers against seamless interoperability between satellite and terrestrial networks are discussed. These barriers are the lack of compatible parameters, standards and protocols, which are presently being evaluated and reduced.
A Space-Time Signal Decomposition Algorithm for Downlink MIMO DS-CDMA Receivers
NASA Astrophysics Data System (ADS)
Wang, Yung-Yi; Fang, Wen-Hsien; Chen, Jiunn-Tsair
We propose a dimension reduction algorithm for the receiver of the downlink of direct-sequence code-division multiple access (DS-CDMA) systems in which both the transmitters and the receivers employ antenna arrays of multiple elements. To estimate the high order channel parameters, we develop a layered architecture using dimension-reduced parameter estimation algorithms to estimate the frequency-selective multipath channels. In the proposed architecture, to exploit the space-time geometric characteristics of multipath channels, spatial beamformers and constrained (or unconstrained) temporal filters are adopted for clustered-multipath grouping and path isolation. In conjunction with the multiple access interference (MAI) suppression techniques, the proposed architecture jointly estimates the direction of arrivals, propagation delays, and fading amplitudes of the downlink fading multipaths. With the outputs of the proposed architecture, the signals of interest can then be naturally detected by using path-wise maximum ratio combining. Compared to the traditional techniques, such as the Joint-Angle-and-Delay-Estimation (JADE) algorithm for DOA-delay joint estimation and the space-time minimum mean square error (ST-MMSE) algorithm for signal detection, computer simulations show that the proposed algorithm substantially mitigate the computational complexity at the expense of only slight performance degradation.
High dynamic range pixel architecture for advanced diagnostic medical x-ray imaging applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izadi, Mohammad Hadi; Karim, Karim S.
2006-05-15
The most widely used architecture in large-area amorphous silicon (a-Si) flat panel imagers is a passive pixel sensor (PPS), which consists of a detector and a readout switch. While the PPS has the advantage of being compact and amenable toward high-resolution imaging, small PPS output signals are swamped by external column charge amplifier and data line thermal noise, which reduce the minimum readable sensor input signal. In contrast to PPS circuits, on-pixel amplifiers in a-Si technology reduce readout noise to levels that can meet even the stringent requirements for low noise digital x-ray fluoroscopy (<1000 noise electrons). However, larger voltagesmore » at the pixel input cause the output of the amplified pixel to become nonlinear thus reducing the dynamic range. We reported a hybrid amplified pixel architecture based on a combination of PPS and amplified pixel designs that, in addition to low noise performance, also resulted in large-signal linearity and consequently higher dynamic range [K. S. Karim et al., Proc. SPIE 5368, 657 (2004)]. The additional benefit in large-signal linearity, however, came at the cost of an additional pixel transistor. We present an amplified pixel design that achieves the goals of low noise performance and large-signal linearity without the need for an additional pixel transistor. Theoretical calculations and simulation results for noise indicate the applicability of the amplified a-Si pixel architecture for high dynamic range, medical x-ray imaging applications that require switching between low exposure, real-time fluoroscopy and high-exposure radiography.« less
Communication architecture system for fiber positioning of DESI spectrograph
NASA Astrophysics Data System (ADS)
Kaci, Karim; Glez-de-Rivera, Guillermo; Lopez-Colino, Fernando; Martinez-Garcia, M. Sofia; Masa, Jose L.; Garrido, Javier; Sanchez, Justo; Prada, Francisco
2016-07-01
This paper presents a design proposal for controlling the five thousand fiber positioners within the focal plate of the DESI instrument. Each of these positioners is a robot which allows positioning its optic fiber with a resolution within the range of few microns. The high number and density of these robots poses a challenge for handling the communication from a central control device to each of these five thousand. Furthermore, an additional restriction applies as the required time to communicate to every robot of its position must be smaller than a second. Additionally. a low energy consumption profile is also desired. Both wireless and wired communication protocols have been evaluated, proposing single-technology-based architectures and hybrid ones (a combination of them). Among the wireless solutions, ZigBee and CyFi have been considered. Using simulation tools these wireless protocols have been discarded as they do not allow an efficient communication. The studied wired protocols comprise I2C, CAN and Ethernet. The best solution found is a hybrid multilayer architecture combining both Ethernet and I2C. A 100 Mbps Ethernet based network is used to communicate the central control unit with ten management boards. Each of these boards is a low-cost, low-power embedded device that manages a thirty six degrees sector of the sensing plate. Each of these boards receives the positioning data for five hundred robots and communicate with each one through a fast mode plus I2C bus. This proposal allows to communicate the positioning information for all five thousand robots in 350 ms total.
Quantum Transduction with Adaptive Control
NASA Astrophysics Data System (ADS)
Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang
2018-01-01
Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.
Enhancement of Beaconless Location-Based Routing with Signal Strength Assistance for Ad-Hoc Networks
NASA Astrophysics Data System (ADS)
Chen, Guowei; Itoh, Kenichi; Sato, Takuro
Routing in Ad-hoc networks is unreliable due to the mobility of the nodes. Location-based routing protocols, unlike other protocols which rely on flooding, excel in network scalability. Furthermore, new location-based routing protocols, like, e. g. BLR [1], IGF [2], & CBF [3] have been proposed, with the feature of not requiring beacons in MAC-layer, which improve more in terms of scalability. Such beaconless routing protocols can work efficiently in dense network areas. However, these protocols' algorithms have no ability to avoid from routing into sparse areas. In this article, historical signal strength has been added as a factor into the BLR algorithm, which avoids routing into sparse area, and consequently improves the global routing efficiency.
Quantum Transduction with Adaptive Control.
Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang
2018-01-12
Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.
Park, Yang-Nim; Srikantha, Thyagarajan; Daniels, Karla J.; Jacob, Melissa R.; Agarwal, Ameeta K.; Li, Xing-Cong
2017-01-01
ABSTRACT In the screening of natural plant extracts for antifungal activity, assessment of their effects on the growth of cells in suspension or in the wells of microtiter plates is expedient. However, microorganisms, including Candida albicans, grow in nature as biofilms, which are organized cellular communities with a complex architecture capable of conditioning their microenvironment, communicating, and excluding low- and high-molecular-weight molecules and white blood cells. Here, a confocal laser scanning microscopy (CLSM) protocol for testing the effects of large numbers of agents on biofilm development is described. The protocol assessed nine parameters from a single z-stack series of CLSM scans for each individual biofilm analyzed. The parameters included adhesion, thickness, formation of a basal yeast cell polylayer, hypha formation, the vertical orientation of hyphae, the hyphal bend point, pseudohypha formation, calcofluor white staining of the extracellular matrix (ECM), and human white blood cell impenetrability. The protocol was applied first to five plant extracts and derivative compounds and then to a collection of 88 previously untested plant extracts. They were found to cause a variety of phenotypic profiles, as was the case for 64 of the 88 extracts (73%). Half of the 46 extracts that did not affect biofilm thickness affected other biofilm parameters. Correlations between specific effects were revealed. The protocol will be useful not only in the screening of chemical libraries but also in the analysis of compounds with known effects and mutations. PMID:28893778
Pilot-aided feedforward data recovery in optical coherent communications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Bing
2017-09-19
A method and a system for pilot-aided feedforward data recovery are provided. The method and system include a receiver including a strong local oscillator operating in a free running mode independent of a signal light source. The phase relation between the signal light source and the local oscillator source is determined based on quadrature measurements on pilot pulses from the signal light source. Using the above phase relation, information encoded in an incoming signal can be recovered, optionally for use in communication with classical coherent communication protocols and quantum communication protocols.
ERIC Educational Resources Information Center
Buzzi, Marina, Ed.
2010-01-01
E-Learning is a vast and complex research topic that poses many challenges in every aspect: educational and pedagogical strategies and techniques and the tools for achieving them; usability, accessibility and user interface design; knowledge sharing and collaborative environments; technologies, architectures, and protocols; user activity…
Wifi-friendly building, enabling wifi signal indoor: an initial study
NASA Astrophysics Data System (ADS)
Suherman; Mubarakah, Naemah; Sagala, Romulo S.; Prayitno, Hendra
2018-03-01
The 802.11 network (wireless fidelity/WiFi) is the most common wireless infrastructure applied for internet access indoor. Widespread devices and installation simplicity make it better than similar technologies such as 802.16 and other 802.xx series. The access points are the most influential devices for indoor access. However, building indoor architectures contribute to the signal quality. Since WiFi installation in buildings becomes prevalent, the architecture should consider WiFi-friendliness into consideration. The more friendly the building to WiFi signal, the more efficient the 802.11 based wireless infrastructure. This paper present preliminary study how the building, specially the obstacle material, effects the WiFi signal propagation indoor. The study was performed by using ESP8266-based WiFi signal reader, to determine the impact indoor obstacles to WiFi signal propagation. The initial study shows that simple reflecting materials increase signal level about 1.14 dBm. WiFi-friendly building can be achieved by transforming building properties into signal interconnector. A simple photo frame with aluminium sheet insertion increase signal level on the second floor up to 6.56dBm.
Adaptive tracking of a time-varying field with a quantum sensor
NASA Astrophysics Data System (ADS)
Bonato, Cristian; Berry, Dominic W.
2017-05-01
Sensors based on single spins can enable magnetic-field detection with very high sensitivity and spatial resolution. Previous work has concentrated on sensing of a constant magnetic field or a periodic signal. Here, we instead investigate the problem of estimating a field with nonperiodic variation described by a Wiener process. We propose and study, by numerical simulations, an adaptive tracking protocol based on Bayesian estimation. The tracking protocol updates the probability distribution for the magnetic field based on measurement outcomes and adapts the choice of sensing time and phase in real time. By taking the statistical properties of the signal into account, our protocol strongly reduces the required measurement time. This leads to a reduction of the error in the estimation of a time-varying signal by up to a factor of four compare with protocols that do not take this information into account.
Liu, Wenbo; Chen, Long; Dong, Xin; Yan, Jiazhen; Li, Ning; Shi, Sanqiang; Zhang, Shichao
2016-01-01
In this report, a facile and effective one-pot oxidation-assisted dealloying protocol has been developed to massively synthesize monolithic core-shell architectured nanoporous copper@cuprous oxide nanonetworks (C-S NPC@Cu2O NNs) by chemical dealloying of melt-spun Al 37 at.% Cu alloy in an oxygen-rich alkaline solution at room temperature, which possesses superior photocatalytic activity towards photodegradation of methyl orange (MO). The experimental results show that the as-prepared nanocomposite exhibits an open, bicontinuous interpenetrating ligament-pore structure with length scales of 20 ± 5 nm, in which the ligaments comprising Cu and Cu2O are typical of core-shell architecture with uniform shell thickness of ca. 3.5 nm. The photodegradation experiments of C-S NPC@Cu2O NNs show their superior photocatalytic activities for the MO degradation under visible light irradiation with degradation rate as high as 6.67 mg min−1 gcat−1, which is a diffusion-controlled kinetic process in essence in light of the good linear correlation between photodegradation ratio and square root of irradiation time. The excellent photocatalytic activity can be ascribed to the synergistic effects between unique core-shell architecture and 3D nanoporous network with high specific surface area and fast mass transfer channel, indicating that the C-S NPC@Cu2O NNs will be a promising candidate for photocatalysts of MO degradation. PMID:27830720
NASA Astrophysics Data System (ADS)
Liu, Wenbo; Chen, Long; Dong, Xin; Yan, Jiazhen; Li, Ning; Shi, Sanqiang; Zhang, Shichao
2016-11-01
In this report, a facile and effective one-pot oxidation-assisted dealloying protocol has been developed to massively synthesize monolithic core-shell architectured nanoporous copper@cuprous oxide nanonetworks (C-S NPC@Cu2O NNs) by chemical dealloying of melt-spun Al 37 at.% Cu alloy in an oxygen-rich alkaline solution at room temperature, which possesses superior photocatalytic activity towards photodegradation of methyl orange (MO). The experimental results show that the as-prepared nanocomposite exhibits an open, bicontinuous interpenetrating ligament-pore structure with length scales of 20 ± 5 nm, in which the ligaments comprising Cu and Cu2O are typical of core-shell architecture with uniform shell thickness of ca. 3.5 nm. The photodegradation experiments of C-S NPC@Cu2O NNs show their superior photocatalytic activities for the MO degradation under visible light irradiation with degradation rate as high as 6.67 mg min-1 gcat-1, which is a diffusion-controlled kinetic process in essence in light of the good linear correlation between photodegradation ratio and square root of irradiation time. The excellent photocatalytic activity can be ascribed to the synergistic effects between unique core-shell architecture and 3D nanoporous network with high specific surface area and fast mass transfer channel, indicating that the C-S NPC@Cu2O NNs will be a promising candidate for photocatalysts of MO degradation.
Performance of the Wavelet Decomposition on Massively Parallel Architectures
NASA Technical Reports Server (NTRS)
El-Ghazawi, Tarek A.; LeMoigne, Jacqueline; Zukor, Dorothy (Technical Monitor)
2001-01-01
Traditionally, Fourier Transforms have been utilized for performing signal analysis and representation. But although it is straightforward to reconstruct a signal from its Fourier transform, no local description of the signal is included in its Fourier representation. To alleviate this problem, Windowed Fourier transforms and then wavelet transforms have been introduced, and it has been proven that wavelets give a better localization than traditional Fourier transforms, as well as a better division of the time- or space-frequency plane than Windowed Fourier transforms. Because of these properties and after the development of several fast algorithms for computing the wavelet representation of any signal, in particular the Multi-Resolution Analysis (MRA) developed by Mallat, wavelet transforms have increasingly been applied to signal analysis problems, especially real-life problems, in which speed is critical. In this paper we present and compare efficient wavelet decomposition algorithms on different parallel architectures. We report and analyze experimental measurements, using NASA remotely sensed images. Results show that our algorithms achieve significant performance gains on current high performance parallel systems, and meet scientific applications and multimedia requirements. The extensive performance measurements collected over a number of high-performance computer systems have revealed important architectural characteristics of these systems, in relation to the processing demands of the wavelet decomposition of digital images.
Optical switching using IP protocol
NASA Astrophysics Data System (ADS)
Utreras, Andres J.; Gusqui, Luis; Reyes, Andres; Mena, Ricardo I.; Licenko, Gennady L.; Amirgaliyev, Yedilkhan; Komada, Paweł; Luganskaya, Saule; Kashaganova, Gulzhan
2017-08-01
To understand and evaluate the Optical Layer, and how it will affect the IP protocols over WDM (Switching), the present analyse is proposed. Optical communications have attractive proprieties, but also have some disadvantages, so the challenge is to combine the best of both branches. In this paper, general concepts for different options of switching are reviewed as: optical burst switching (OBS) and automatically switching optical network (ASON). Specific details such as their architectures are also discussed. In addition, the relevant characteristics of each variation for switching are reviewed.
Study of intelligent building system based on the internet of things
NASA Astrophysics Data System (ADS)
Wan, Liyong; Xu, Renbo
2017-03-01
In accordance with the problem such as isolated subsystems, weak system linkage and expansibility of the bus type buildings management system, this paper based on the modern intelligent buildings has studied some related technologies of the intelligent buildings and internet of things, and designed system architecture of the intelligent buildings based on the Internet of Things. Meanwhile, this paper has also analyzed wireless networking modes, wireless communication protocol and wireless routing protocol of the intelligent buildings based on the Internet of Things.
NASA Astrophysics Data System (ADS)
Zhizhimov, Oleg; Mazov, Nikolay; Skibin, Sergey
Questions concerned with construction and operation of the distributed information systems on the basis of ANSI/NISO Z39.50 Information Retrieval Protocol are discussed in the paper. The paper is based on authors' practice in developing ZooPARK server. Architecture of distributed information systems, questions of reliability of such systems, minimization of search time and administration are examined. Problems with developing of distributed information systems are also described.
1982-02-23
segregate the computer and storage from the outside world 2. Administrative security to control access to secure computer facilities 3. Network security to...Classification Alternative A- 8 NETWORK KG GENSER DSSCS AMPE TERMINALS TP No. 022-4668-A Figure A-2. Dedicated Switching Architecture Alternative A- 9...communications protocol with the network and GENSER message transmission to the - I-S/A AMPE processor. 7. DSSCS TPU - Handles communications protocol with
SPOT: Optimization Tool for Network Adaptable Security
NASA Astrophysics Data System (ADS)
Ksiezopolski, Bogdan; Szalachowski, Pawel; Kotulski, Zbigniew
Recently we have observed the growth of the intelligent application especially with its mobile character, called e-anything. The implementation of these applications provides guarantee of security requirements of the cryptographic protocols which are used in the application. Traditionally the protocols have been configured with the strongest possible security mechanisms. Unfortunately, when the application is used by means of the mobile devices, the strongest protection can lead to the denial of services for them. The solution of this problem is introducing the quality of protection models which will scale the protection level depending on the actual threat level. In this article we would like to introduce the application which manages the protection level of the processes in the mobile environment. The Security Protocol Optimizing Tool (SPOT) optimizes the cryptographic protocol and defines the protocol version appropriate to the actual threat level. In this article the architecture of the SPOT is presented with a detailed description of the included modules.
A Mobile Satellite Experiment (MSAT-X) network definition
NASA Technical Reports Server (NTRS)
Wang, Charles C.; Yan, Tsun-Yee
1990-01-01
The network architecture development of the Mobile Satellite Experiment (MSAT-X) project for the past few years is described. The results and findings of the network research activities carried out under the MSAT-X project are summarized. A framework is presented upon which the Mobile Satellite Systems (MSSs) operator can design a commercial network. A sample network configuration and its capability are also included under the projected scenario. The Communication Interconnection aspect of the MSAT-X network is discussed. In the MSAT-X network structure two basic protocols are presented: the channel access protocol, and the link connection protocol. The error-control techniques used in the MSAT-X project and the packet structure are also discussed. A description of two testbeds developed for experimentally simulating the channel access protocol and link control protocol, respectively, is presented. A sample network configuration and some future network activities of the MSAT-X project are also presented.
Stochastic-master-equation analysis of optimized three-qubit nondemolition parity measurements
NASA Astrophysics Data System (ADS)
Tornberg, L.; Barzanjeh, Sh.; DiVincenzo, David P.
2014-03-01
We analyzea direct parity measurement of the state of three superconducting qubits in circuit quantum electrodynamics. The parity is inferred from a homodyne measurement of the reflected and transmitted microwave radiation, and the measurement is direct in the sense that the parity is measured without the need for any quantum circuit operations or for ancilla qubits. Qubits are coupled to two resonant-cavity modes, allowing the steady state of the emitted radiation to satisfy the necessary conditions to act as a pointer state for the parity. However, the transient dynamics violates these conditions, and we analyze this detrimental effect and show that it can be overcome in the limit of a weak measurement signal. Our analysis shows that, with a moderate degree of postselection, it is possible to achieve postmeasurement states with fidelity of order 95%. We believe that this type of measurement could serve as a benchmark for future error correction protocols in a scalable architecture.
Integrated light and scanning electron microscopy of GFP-expressing cells.
Peddie, Christopher J; Liv, Nalan; Hoogenboom, Jacob P; Collinson, Lucy M
2014-01-01
Integration of light and electron microscopes provides imaging tools in which fluorescent proteins can be localized to cellular structures with a high level of precision. However, until recently, there were few methods that could deliver specimens with sufficient fluorescent signal and electron contrast for dual imaging without intermediate staining steps. Here, we report protocols that preserve green fluorescent protein (GFP) in whole cells and in ultrathin sections of resin-embedded cells, with membrane contrast for integrated imaging. Critically, GFP is maintained in a stable and active state within the vacuum of an integrated light and scanning electron microscope. For light microscopists, additional structural information gives context to fluorescent protein expression in whole cells, illustrated here by analysis of filopodia and focal adhesions in Madin Darby canine kidney cells expressing GFP-Paxillin. For electron microscopists, GFP highlights the proteins of interest within the architectural space of the cell, illustrated here by localization of the conical lipid diacylglycerol to cellular membranes. © 2014 Elsevier Inc. All rights reserved.
ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs.
Lee, Michelle H; Goralczyk, Anna G; Kriszt, Rókus; Ang, Xiu Min; Badowski, Cedric; Li, Ying; Summers, Scott A; Toh, Sue-Anne; Yassin, M Shabeer; Shabbir, Asim; Sheppard, Allan; Raghunath, Michael
2016-02-17
Key to realizing the diagnostic and therapeutic potential of human brown/brite adipocytes is the identification of a renewable, easily accessible and safe tissue source of progenitor cells, and an efficacious in vitro differentiation protocol. We show that macromolecular crowding (MMC) facilitates brown adipocyte differentiation in adult human bone marrow mesenchymal stem cells (bmMSCs), as evidenced by substantially upregulating uncoupling protein 1 (UCP1) and uncoupled respiration. Moreover, MMC also induced 'browning' in bmMSC-derived white adipocytes. Mechanistically, MMC creates a 3D extracellular matrix architecture enshrouding maturing adipocytes in a collagen IV cocoon that is engaged by paxillin-positive focal adhesions also at the apical side of cells, without contact to the stiff support structure. This leads to an enhanced matrix-cell signaling, reflected by increased phosphorylation of ATF2, a key transcription factor in UCP1 regulation. Thus, tuning the dimensionality of the microenvironment in vitro can unlock a strong brown potential dormant in bone marrow.
Olmo, Rocío; Silva, Ana Cláudia; Díaz-Manzano, Fernando E; Cabrera, Javier; Fenoll, Carmen; Escobar, Carolina
2017-01-01
Plant parasitic nematodes cause a great impact in agricultural systems. The search for effective control methods is partly based on the understanding of underlying molecular mechanisms leading to the formation of nematode feeding sites. In this respect, crosstalk of hormones such as auxins and cytokinins (IAA, CK) between the plant and the nematode seems to be crucial. Thence, the study of loss of function or overexpressing lines with altered IAA and CK functioning is entailed. Those lines frequently show developmental defects in the number, position and/or length of the lateral roots what could generate a bias in the interpretation of the nematode infection parameters. Here we present a protocol to assess differences in nematode infectivity with the lowest interference of root architecture phenotypes in the results. Thus, tailored growth conditions and normalization parameters facilitate the standardized phenotyping of nematode infection.
Sambi, Manpreet; Chow, Theresa; Whiteley, Jennifer; Li, Mira; Chua, Shawn; Raileanu, Vanessa; Rogers, Ian M
2017-08-01
The development of strategies for tissue regeneration and bio-artificial organ development is based on our understanding of embryogenesis. Differentiation protocols attempt to recapitulate the signaling modalities of gastrulation and organogenesis, coupled with cell selection regimens to isolate the cells of choice. This strategy is impeded by the lack of optimal in vitro culture systems since traditional culture systems do not allow for the three-dimensional interaction between cells and the extracellular matrix. While artificial three-dimensional scaffolds are available, using the natural extracellular matrix scaffold is advantageous because it has a distinct architecture that is difficult to replicate. The adult extracellular matrix is predicted to mediate signaling related to tissue repair not embryogenesis but existing similarities between the two argues that the extracellular matrix will influence the differentiation of stem and progenitor cells. Previous studies using undifferentiated embryonic stem cells grown directly on acellular kidney ECM demonstrated that the acellular kidney supported cell growth but limited differentiation occurred. Using mouse kidney extracellular matrix and mouse embryonic stem cells we report that the extracellular matrix can support the development of kidney structures if the stem cells are first differentiated to kidney progenitor cells before being applied to the acellular organ.
Efficient control-channel multifailure management mechanism in GMPLS-based optical networks
NASA Astrophysics Data System (ADS)
Muñoz, Raül; Martínez, Ricardo; Junyent, Gabriel
2006-12-01
In generalized multiprotocol label switching (GMPLS) architecture, the control channels between each pair of optical nodes are not forced to use the same physical link as the data/transport channels. The problem arises when, due to the fact of allowing the control channels to be physically diverse from the associated data links, there may not be any active control channels available while data channels are still in use. Control-channel faults should not have a service impact on the existing connections; that is, a link that is carrying data traffic must not be torn down because the control channel is no longer available. But, due to the lack of the control channel, the active traffic that is using the data link may no longer be guaranteed with the same level of recovery service (protection or restoration). Under these circumstances the link must be considered to be in a degraded state. This means that routing and signaling should be notified that new connections are not accepted and the link is advertised with no unreserved resources. For this purpose, here we propose a control-channel multifailure management mechanism involving routing, signaling, and link management with extended GMPLS-based protocol extensions to keep the same level of service (in terms of provisioning and recovery) when a link is in the degraded state.
NOTCH-mediated non-cell autonomous regulation of chromatin structure during senescence.
Parry, Aled J; Hoare, Matthew; Bihary, Dóra; Hänsel-Hertsch, Robert; Smith, Stephen; Tomimatsu, Kosuke; Mannion, Elizabeth; Smith, Amy; D'Santos, Paula; Russell, I Alasdair; Balasubramanian, Shankar; Kimura, Hiroshi; Samarajiwa, Shamith A; Narita, Masashi
2018-05-09
Senescent cells interact with the surrounding microenvironment achieving diverse functional outcomes. We have recently identified that NOTCH1 can drive 'lateral induction' of a unique senescence phenotype in adjacent cells by specifically upregulating the NOTCH ligand JAG1. Here we show that NOTCH signalling can modulate chromatin structure autonomously and non-autonomously. In addition to senescence-associated heterochromatic foci (SAHF), oncogenic RAS-induced senescent (RIS) cells exhibit a massive increase in chromatin accessibility. NOTCH signalling suppresses SAHF and increased chromatin accessibility in this context. Strikingly, NOTCH-induced senescent cells, or cancer cells with high JAG1 expression, drive similar chromatin architectural changes in adjacent cells through cell-cell contact. Mechanistically, we show that NOTCH signalling represses the chromatin architectural protein HMGA1, an association found in multiple human cancers. Thus, HMGA1 is involved not only in SAHFs but also in RIS-driven chromatin accessibility. In conclusion, this study identifies that the JAG1-NOTCH-HMGA1 axis mediates the juxtacrine regulation of chromatin architecture.
Portable Cytometry Using Microscale Electronic Sensing
Emaminejad, Sam; Paik, Kee-Hyun; Tabard-Cossa, Vincent; Javanmard, Mehdi
2015-01-01
In this manuscript, we present three different micro-impedance sensing architectures for electronic counting of cells and beads. The first method of sensing is based on using an open circuit sensing electrode integrated in a micro-pore, which measures the shift in potential as a micron-sized particle passes through. Our micro-pore, based on a funnel shaped microchannel, was fabricated in PDMS and was bound covalently to a glass substrate patterned with a gold open circuit electrode. The amplification circuitry was integrated onto a battery-powered custom printed circuit board. The second method is based on a three electrode differential measurement, which opens up the potential of using signal processing techniques to increase signal to noise ratio post measurement. The third architecture uses a contactless sensing approach, which significantly minimizes the cost of the consumable component of the impedance cytometer. We demonstrated proof of concept for the three sensing architectures by measuring the detected signal due to the passage of micron sized beads through the pore. PMID:27647950
Failure detection and recovery in the assembly/contingency subsystem
NASA Technical Reports Server (NTRS)
Gantenbein, Rex E.
1993-01-01
The Assembly/Contingency Subsystem (ACS) is the primary communications link on board the Space Station. Any failure in a component of this system or in the external devices through which it communicates with ground-based systems will isolate the Station. The ACS software design includes a failure management capability (ACFM) that provides protocols for failure detection, isolation, and recovery (FDIR). The the ACFM design requirements as outlined in the current ACS software requirements specification document are reviewed. The activities carried out in this review include: (1) an informal, but thorough, end-to-end failure mode and effects analysis of the proposed software architecture for the ACFM; and (2) a prototype of the ACFM software, implemented as a C program under the UNIX operating system. The purpose of this review is to evaluate the FDIR protocols specified in the ACS design and the specifications themselves in light of their use in implementing the ACFM. The basis of failure detection in the ACFM is the loss of signal between the ground and the Station, which (under the appropriate circumstances) will initiate recovery to restore communications. This recovery involves the reconfiguration of the ACS to either a backup set of components or to a degraded communications mode. The initiation of recovery depends largely on the criticality of the failure mode, which is defined by tables in the ACFM and can be modified to provide a measure of flexibility in recovery procedures.
Space Communications Technology Conference: Onboard Processing and Switching
NASA Technical Reports Server (NTRS)
1991-01-01
Papers and presentations from the conference are presented. The topics covered include the following: satellite network architecture, network control and protocols, fault tolerance and autonomy, multichanned demultiplexing and demodulation, information switching and routing, modulation and coding, and planned satellite communications systems.
A New Indoor Positioning System Architecture Using GPS Signals.
Xu, Rui; Chen, Wu; Xu, Ying; Ji, Shengyue
2015-04-29
The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS) receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding) by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations.
NASA Astrophysics Data System (ADS)
Bakir, A.; Rocher, C.; Maréchal, B.; Bigler, E.; Boudot, R.; Kersalé, Y.; Millo, J.
2018-05-01
We report on the development of a simple-architecture fiber-based frequency distribution system used to transfer high frequency stability 100 MHz signals. This work is focused on the emitter and the receiver performances that allow the transmission of the radio-frequency signal over an optical fiber. The system exhibits a residual fractional frequency stability of 1 × 10-14 at 1 s integration time and in the low 10-16 range after 100 s. These performances are suitable to transfer the signal of frequency references such as those of a state-of-the-art hydrogen maser without any phase noise compensation scheme. As an application, we demonstrate the dissemination of such a signal through a 100 m long optical fiber without any degradation. The proposed setup could be easily extended for operating frequencies in the 10 MHz-1 GHz range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupcich, Franco; Gilat Schmidt, Taly; Badal, Andreu
2013-08-15
Purpose: The authors compared the performance of five protocols intended to reduce dose to the breast during computed tomography (CT) coronary angiography scans using a model observer unknown-location signal-detectability metric.Methods: The authors simulated CT images of an anthropomorphic female thorax phantom for a 120 kV reference protocol and five “dose reduction” protocols intended to reduce dose to the breast: 120 kV partial angle (posteriorly centered), 120 kV tube-current modulated (TCM), 120 kV with shielded breasts, 80 kV, and 80 kV partial angle (posteriorly centered). Two image quality tasks were investigated: the detection and localization of 4-mm, 3.25 mg/ml and 1-mm,more » 6.0 mg/ml iodine contrast signals randomly located in the heart region. For each protocol, the authors plotted the signal detectability, as quantified by the area under the exponentially transformed free response characteristic curve estimator (A-caret{sub FE}), as well as noise and contrast-to-noise ratio (CNR) versus breast and lung dose. In addition, the authors quantified each protocol's dose performance as the percent difference in dose relative to the reference protocol achieved while maintaining equivalent A-caret{sub FE}.Results: For the 4-mm signal-size task, the 80 kV full scan and 80 kV partial angle protocols decreased dose to the breast (80.5% and 85.3%, respectively) and lung (80.5% and 76.7%, respectively) with A-caret{sub FE} = 0.96, but also resulted in an approximate three-fold increase in image noise. The 120 kV partial protocol reduced dose to the breast (17.6%) at the expense of increased lung dose (25.3%). The TCM algorithm decreased dose to the breast (6.0%) and lung (10.4%). Breast shielding increased breast dose (67.8%) and lung dose (103.4%). The 80 kV and 80 kV partial protocols demonstrated greater dose reductions for the 4-mm task than for the 1-mm task, and the shielded protocol showed a larger increase in dose for the 4-mm task than for the 1-mm task. In general, the CNR curves indicate a similar relative ranking of protocol performance as the corresponding A-caret{sub FE} curves, however, the CNR metric overestimated the performance of the shielded protocol for both tasks, leading to corresponding underestimates in the relative dose increases compared to those obtained when using the A-caret{sub FE} metric.Conclusions: The 80 kV and 80 kV partial angle protocols demonstrated the greatest reduction to breast and lung dose, however, the subsequent increase in image noise may be deemed clinically unacceptable. Tube output for these protocols can be adjusted to achieve a more desirable noise level with lesser breast dose savings. Breast shielding increased breast and lung dose when maintaining equivalent A-caret{sub FE}. The results demonstrated that comparisons of dose performance depend on both the image quality metric and the specific task, and that CNR may not be a reliable metric of signal detectability.« less
Hardware Architecture Study for NASA's Space Software Defined Radios
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Scardelletti, Maximilian C.; Mortensen, Dale J.; Kacpura, Thomas J.; Andro, Monty; Smith, Carl; Liebetreu, John
2008-01-01
This study defines a hardware architecture approach for software defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general purpose processors, digital signal processors, field programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) in addition to flexible and tunable radio frequency (RF) front-ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and and interfaces. The modules are a logical division of common radio functions that comprise a typical communication radio. This paper describes the architecture details, module definitions, and the typical functions on each module as well as the module interfaces. Trade-offs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify the internal physical implementation within each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Kacpura, Thomas J.; Smith, Carl R.; Liebetreu, John; Hill, Gary; Mortensen, Dale J.; Andro, Monty; Scardelletti, Maximilian C.; Farrington, Allen
2008-01-01
This report defines a hardware architecture approach for software-defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general-purpose processors, digital signal processors, field programmable gate arrays, and application-specific integrated circuits (ASICs) in addition to flexible and tunable radiofrequency front ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and interfaces. The modules are a logical division of common radio functions that compose a typical communication radio. This report describes the architecture details, the module definitions, the typical functions on each module, and the module interfaces. Tradeoffs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify a physical implementation internally on each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.
Advanced Communications Architecture Demonstration Made Significant Progress
NASA Technical Reports Server (NTRS)
Carek, David Andrew
2004-01-01
Simulation for a ground station located at 44.5 deg latitude. The Advanced Communications Architecture Demonstration (ACAD) is a concept architecture to provide high-rate Ka-band (27-GHz) direct-to-ground delivery of payload data from the International Space Station. This new concept in delivering data from the space station targets scientific experiments that buffer data onboard. The concept design provides a method to augment the current downlink capability through the Tracking Data Relay Satellite System (TDRSS) Ku-band (15-GHz) communications system. The ACAD concept pushes the limits of technology in high-rate data communications for space-qualified systems. Research activities are ongoing in examining the various aspects of high-rate communications systems including: (1) link budget parametric analyses, (2) antenna configuration trade studies, (3) orbital simulations (see the preceding figure), (4) optimization of ground station contact time (see the following graph), (5) processor and storage architecture definition, and (6) protocol evaluations and dependencies.
Flexible Rover Architecture for Science Instrument Integration and Testing
NASA Technical Reports Server (NTRS)
Bualat, Maria G.; Kobayashi, Linda; Lee, Susan Y.; Park, Eric
2006-01-01
At NASA Ames Research Center, the Intelligent Robotics Group (IRG) fields the K9 and K10 class rovers. Both use a mobile robot hardware architecture designed for extensibility and reconfigurability that allows for rapid changes in instrumentation and provides a high degree of modularity. Over the past ssveral years, we have worked with instrument developers at NASA centers, universities, and national laboratories to integrate or partially integrate their instruments onboard the K9 and K10 rovers. Early efforts required considerable interaction to work through integration issues such as power, data protocol and mechanical mounting. These interactions informed the design of our current avionics architecture, and have simplified more recent integration projects. In this paper, we will describe the IRG extensible avionics and software architecture and the effect it has had on our recent instrument integration efforts, including integration of four Mars Instrument Development Program devices.
Regulation of traffic and organelle architecture of the ER-Golgi interface by signal transduction.
Tillmann, Kerstin D; Millarte, Valentina; Farhan, Hesso
2013-09-01
The components that control trafficking between organelles of the secretory pathway as well as their architecture were uncovered to a reasonable extent in the past decades. However, only recently did we begin to explore the regulation of the secretory pathway by cellular signaling. In the current review, we focus on trafficking between the endoplasmic reticulum and the Golgi apparatus. We highlight recent advances that have been made toward a better understanding of how the secretory pathway is regulated by signaling and discuss how this knowledge is important to obtain an integrative view of secretion in the context of other homeostatic processes such as growth and proliferation.
NASA Astrophysics Data System (ADS)
Kretschmer, E.; Bachner, M.; Blank, J.; Dapp, R.; Ebersoldt, A.; Friedl-Vallon, F.; Guggenmoser, T.; Gulde, T.; Hartmann, V.; Lutz, R.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Schardt, G.; Schmitt, C.; Schönfeld, A.; Tan, V.
2015-06-01
The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), a Fourier-transform-spectrometer-based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.
NASA Astrophysics Data System (ADS)
Kretschmer, E.; Bachner, M.; Blank, J.; Dapp, R.; Ebersoldt, A.; Friedl-Vallon, F.; Guggenmoser, T.; Gulde, T.; Hartmann, V.; Lutz, R.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Schardt, G.; Schmitt, C.; Schönfeld, A.; Tan, V.
2015-02-01
The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), a Fourier transform spectrometer based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.
Performance analysis of an all-digital BPSK direct sequence spread-spectrum IF receiver architecture
NASA Astrophysics Data System (ADS)
Chung, Bong-Young; Chien, Charles; Samueli, Henry; Jain, Rajeev
1993-09-01
A VLSI architecture for an all-digital binary phase shift keyed (BPSK) direct-sequence (DS) spread spectrum (SS) IF receiver is presented, and an in-depth performance analysis is given. The all-digital architecture incorporates a Costar loop for carrier recovery and a delay-locked loop for clock recovery. For the PN acquisition block, a robust energy detection scheme is proposed to reduce false PN locks over a broad range of signal-to-noise ratios. The proposed architecture is intended for use in the 902-928 MHz unlicensed spread spectrum radio band. A 100 kbs information rate and a 12.7 Mchips/second PN code rate are assumed. The IF center frequency is 12.7 MHz and the IF sampling rate is 50.8 Msamples/ second, which is the Nyquist rate for the 25.4 MHz bandwidth signal. Finite wordlength effects have been simulated to optimize the architecture, thereby minimizing the chip area, and results of the finite wordlength simulations demonstrate that the chip architecture achieves a bit error rate performance within 1 dB of theory in an additive white Gaussian noise channel. The probability of PN acquisition within 5 ms is approximately 56% at -17 dB IF input SNR and 82% at -11 dB IF input SNR.
Experience in running relational databases on clustered storage
NASA Astrophysics Data System (ADS)
Gaspar Aparicio, Ruben; Potocky, Miroslav
2015-12-01
For past eight years, CERN IT Database group has based its backend storage on NAS (Network-Attached Storage) architecture, providing database access via NFS (Network File System) protocol. In last two and half years, our storage has evolved from a scale-up architecture to a scale-out one. This paper describes our setup and a set of functionalities providing key features to other services like Database on Demand [1] or CERN Oracle backup and recovery service. It also outlines possible trend of evolution that, storage for databases could follow.
Middleware Trade Study for NASA Domain
NASA Technical Reports Server (NTRS)
Bowman, Dan
2007-01-01
This presentation presents preliminary results of a trade study designed to assess three distributed simulation middleware technologies for support of the NASA Constellation Distributed Space Exploration Simulation (DSES) project and Test and Verification Distributed System Integration Laboratory (DSIL). The technologies are: the High Level Architecture (HLA), the Test and Training Enabling Architecture (TENA), and an XML-based variant of Distributed Interactive Simulation (DIS-XML) coupled with the Extensible Messaging and Presence Protocol (XMPP). According to the criteria and weights determined in this study, HLA scores better than the other two for DSES as well as the DSIL
Satellite Networks: Architectures, Applications, and Technologies
NASA Technical Reports Server (NTRS)
Bhasin, Kul (Compiler)
1998-01-01
Since global satellite networks are moving to the forefront in enhancing the national and global information infrastructures due to communication satellites' unique networking characteristics, a workshop was organized to assess the progress made to date and chart the future. This workshop provided the forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. Presentations on overview, state-of-the-art in research, development, deployment and applications and future trends on satellite networks are assembled.
OSI for hardware/software interoperability
NASA Astrophysics Data System (ADS)
Wood, Richard J.; Harvey, Donald L.; Linderman, Richard W.; Gardener, Gary A.; Capraro, Gerard T.
1994-03-01
There is a need in public safety for real-time data collection and transmission from one or more sensors. The Rome Laboratory and the Ballistic Missile Defense Organization are pursuing an effort to bring the benefits of Open System Architectures (OSA) to embedded systems within the Department of Defense. When developed properly OSA provides interoperability, commonality, graceful upgradeability, survivability and hardware/software transportability to greatly minimize life cycle costs, integration and supportability. Architecture flexibility can be achieved to take advantage of commercial accomplishments by basing these developments on vendor-neutral commercially accepted standards and protocols.
Network Monitoring in the age of the Cloud
NASA Astrophysics Data System (ADS)
Ciuffoletti, Augusto
Network virtualization plays a relevant role in provisioning an Infrastructure as a Service (IaaS), implementing the fabric that interconnects virtual components. We identify the standard protocol IEEE802.1Q, that describes Virtual LAN (VLAN) functionalities, as a cornerstone in this architecture.
Streamlining the Process of Acquiring Secure Open Architecture Software Systems
2013-10-08
Microsoft.NET, Enterprise Java Beans, GNU Lesser General Public License (LGPL) libraries, and data communication protocols like the Hypertext Transfer...NetBeans development environments), customer relationship management (SugarCRM), database management systems (PostgreSQL, MySQL ), operating
Cai, J; Li, W; Sun, T; Li, X; Luo, E; Jing, D
2018-05-01
The effects of exogenous pulsed electromagnetic field (PEMF) stimulation on T1DM-associated osteopathy were investigated in alloxan-treated rabbits. We found that PEMF improved bone architecture, mechanical properties, and porous titanium (pTi) osseointegration by promoting bone anabolism through a canonical Wnt/β-catenin signaling-associated mechanism, and revealed the clinical potential of PEMF stimulation for the treatment of T1DM-associated bone complications. Type 1 diabetes mellitus (T1DM) is associated with deteriorated bone architecture and impaired osseous healing potential; nonetheless, effective methods for resisting T1DM-associated osteopenia/osteoporosis and promoting bone defect/fracture healing are still lacking. PEMF, as a safe and noninvasive method, have proven to be effective for promoting osteogenesis, whereas the potential effects of PEMF on T1DM osteopathy remain poorly understood. We herein investigated the effects of PEMF stimulation on bone architecture, mechanical properties, bone turnover, and its potential molecular mechanisms in alloxan-treated diabetic rabbits. We also developed novel nontoxic Ti2448 pTi implants with closer elastic modulus with natural bone and investigated the impacts of PEMF on pTi osseointegration for T1DM bone-defect repair. The deteriorations of cancellous and cortical bone architecture and tissue-level mechanical strength were attenuated by 8-week PEMF stimulation. PEMF also promoted osseointegration and stimulated more adequate bone ingrowths into the pore spaces of pTi in T1DM long-bone defects. Moreover, T1DM-associated reduction of bone formation was significantly attenuated by PEMF, whereas PEMF exerted no impacts on bone resorption. We also found PEMF-induced activation of osteoblastogenesis-related Wnt/β-catenin signaling in T1DM skeletons, but PEMF did not alter osteoclastogenesis-associated RANKL/RANK signaling gene expression. We reveal that PEMF improved bone architecture, mechanical properties, and pTi osseointegration by promoting bone anabolism through a canonical Wnt/β-catenin signaling-associated mechanism. This study enriches our basic knowledge for understanding skeletal sensitivity in response to external electromagnetic signals, and also opens new treatment alternatives for T1DM-associated osteopenia/osteoporosis and osseous defects in an easy and highly efficient manner.
Software-Defined Architectures for Spectrally Efficient Cognitive Networking in Extreme Environments
NASA Astrophysics Data System (ADS)
Sklivanitis, Georgios
The objective of this dissertation is the design, development, and experimental evaluation of novel algorithms and reconfigurable radio architectures for spectrally efficient cognitive networking in terrestrial, airborne, and underwater environments. Next-generation wireless communication architectures and networking protocols that maximize spectrum utilization efficiency in congested/contested or low-spectral availability (extreme) communication environments can enable a rich body of applications with unprecedented societal impact. In recent years, underwater wireless networks have attracted significant attention for military and commercial applications including oceanographic data collection, disaster prevention, tactical surveillance, offshore exploration, and pollution monitoring. Unmanned aerial systems that are autonomously networked and fully mobile can assist humans in extreme or difficult-to-reach environments and provide cost-effective wireless connectivity for devices without infrastructure coverage. Cognitive radio (CR) has emerged as a promising technology to maximize spectral efficiency in dynamically changing communication environments by adaptively reconfiguring radio communication parameters. At the same time, the fast developing technology of software-defined radio (SDR) platforms has enabled hardware realization of cognitive radio algorithms for opportunistic spectrum access. However, existing algorithmic designs and protocols for shared spectrum access do not effectively capture the interdependencies between radio parameters at the physical (PHY), medium-access control (MAC), and network (NET) layers of the network protocol stack. In addition, existing off-the-shelf radio platforms and SDR programmable architectures are far from fulfilling runtime adaptation and reconfiguration across PHY, MAC, and NET layers. Spectrum allocation in cognitive networks with multi-hop communication requirements depends on the location, network traffic load, and interference profile at each network node. As a result, the development and implementation of algorithms and cross-layer reconfigurable radio platforms that can jointly treat space, time, and frequency as a unified resource to be dynamically optimized according to inter- and intra-network interference constraints is of fundamental importance. In the next chapters, we present novel algorithmic and software/hardware implementation developments toward the deployment of spectrally efficient terrestrial, airborne, and underwater wireless networks. In Chapter 1 we review the state-of-art in commercially available SDR platforms, describe their software and hardware capabilities, and classify them based on their ability to enable rapid prototyping and advance experimental research in wireless networks. Chapter 2 discusses system design and implementation details toward real-time evaluation of a software-radio platform for all-spectrum cognitive channelization in the presence of narrowband or wideband primary stations. All-spectrum channelization is achieved by designing maximum signal-to-interference-plus-noise ratio (SINR) waveforms that span the whole continuum of the device-accessible spectrum, while satisfying peak power and interference temperature (IT) constraints for the secondary and primary users, respectively. In Chapter 3, we introduce the concept of all-spectrum channelization based on max-SINR optimized sparse-binary waveforms, we propose optimal and suboptimal waveform design algorithms, and evaluate their SINR and bit-error-rate (BER) performance in an SDR testbed. Chapter 4 considers the problem of channel estimation with minimal pilot signaling in multi-cell multi-user multi-input multi-output (MIMO) systems with very large antenna arrays at the base station, and proposes a least-squares (LS)-type algorithm that iteratively extracts channel and data estimates from a short record of data measurements. Our algorithmic developments toward spectrally-efficient cognitive networking through joint optimization of channel access code-waveforms and routes in a multi-hop network are described in Chapter 5. Algorithmic designs are software optimized on heterogeneous multi-core general-purpose processor (GPP)-based SDR architectures by leveraging a novel software-radio framework that offers self-optimization and real-time adaptation capabilities at the PHY, MAC, and NET layers of the network protocol stack. Our system design approach is experimentally validated under realistic conditions in a large-scale hybrid ground-air testbed deployment. Chapter 6 reviews the state-of-art in software and hardware platforms for underwater wireless networking and proposes a software-defined acoustic modem prototype that enables (i) cognitive reconfiguration of PHY/MAC parameters, and (ii) cross-technology communication adaptation. The proposed modem design is evaluated in terms of effective communication data rate in both water tank and lake testbed setups. In Chapter 7, we present a novel receiver configuration for code-waveform-based multiple-access underwater communications. The proposed receiver is fully reconfigurable and executes (i) all-spectrum cognitive channelization, and (ii) combined synchronization, channel estimation, and demodulation. Experimental evaluation in terms of SINR and BER show that all-spectrum channelization is a powerful proposition for underwater communications. At the same time, the proposed receiver design can significantly enhance bandwidth utilization. Finally, in Chapter 8, we focus on challenging practical issues that arise in underwater acoustic sensor network setups where co-located multi-antenna sensor deployment is not feasible due to power, computation, and hardware limitations, and design, implement, and evaluate an underwater receiver structure that accounts for multiple carrier frequency and timing offsets in virtual (distributed) MIMO underwater systems.
Mohd-Radzman, Nadiatul A; Djordjevic, Michael A; Imin, Nijat
2013-10-01
Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.
Protein Kinases in Shaping Plant Architecture.
Wu, Juan; Wang, Bo; Xin, Xiaoyun; Ren, Dongtao
2018-02-13
Plant architecture, the three-dimensional organization of the plant body, includes the branching pattern and the size, shape, and position of organs. Plant architecture is genetically controlled and is influenced by environmental conditions. The regulations occur at most of the stages from the first division of the fertilized eggs to the final establishment of plant architecture. Among the various endogenous regulators, protein kinases and their associated signaling pathways have been shown to play important roles in regulating the process of plant architecture establishment. In this review, we summarize recent progress in the understanding of the mechanisms by which plant architecture formation is regulated by protein kinases, especially mitogen-activated protein kinase (MAPK). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Architecture of Eph receptor clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Himanen, Juha P.; Yermekbayeva, Laila; Janes, Peter W.
2010-10-04
Eph receptor tyrosine kinases and their ephrin ligands regulate cell navigation during normal and oncogenic development. Signaling of Ephs is initiated in a multistep process leading to the assembly of higher-order signaling clusters that set off bidirectional signaling in interacting cells. However, the structural and mechanistic details of this assembly remained undefined. Here we present high-resolution structures of the complete EphA2 ectodomain and complexes with ephrin-A1 and A5 as the base unit of an Eph cluster. The structures reveal an elongated architecture with novel Eph/Eph interactions, both within and outside of the Eph ligand-binding domain, that suggest the molecular mechanismmore » underlying Eph/ephrin clustering. Structure-function analysis, by using site-directed mutagenesis and cell-based signaling assays, confirms the importance of the identified oligomerization interfaces for Eph clustering.« less
On-Board Fiber-Optic Network Architectures for Radar and Avionics Signal Distribution
NASA Technical Reports Server (NTRS)
Alam, Mohammad F.; Atiquzzaman, Mohammed; Duncan, Bradley B.; Nguyen, Hung; Kunath, Richard
2000-01-01
Continued progress in both civil and military avionics applications is overstressing the capabilities of existing radio-frequency (RF) communication networks based on coaxial cables on board modem aircrafts. Future avionics systems will require high-bandwidth on- board communication links that are lightweight, immune to electromagnetic interference, and highly reliable. Fiber optic communication technology can meet all these challenges in a cost-effective manner. Recently, digital fiber-optic communication systems, where a fiber-optic network acts like a local area network (LAN) for digital data communications, have become a topic of extensive research and development. Although a fiber-optic system can be designed to transport radio-frequency (RF) signals, the digital fiber-optic systems under development today are not capable of transporting microwave and millimeter-wave RF signals used in radar and avionics systems on board an aircraft. Recent advances in fiber optic technology, especially wavelength division multiplexing (WDM), has opened a number of possibilities for designing on-board fiber optic networks, including all-optical networks for radar and avionics RF signal distribution. In this paper, we investigate a number of different novel approaches for fiber-optic transmission of on-board VHF and UHF RF signals using commercial off-the-shelf (COTS) components. The relative merits and demerits of each architecture are discussed, and the suitability of each architecture for particular applications is pointed out. All-optical approaches show better performance than other traditional approaches in terms of signal-to-noise ratio, power consumption, and weight requirements.
NASA Astrophysics Data System (ADS)
Rantz, Robert; Roundy, Shad
2016-04-01
A tremendous amount of research has been performed on the design and analysis of vibration energy harvester architectures with the goal of optimizing power output; most studies assume idealized input vibrations without paying much attention to whether such idealizations are broadly representative of real sources. These "idealized input signals" are typically derived from the expected nature of the vibrations produced from a given source. Little work has been done on corroborating these expectations by virtue of compiling a comprehensive list of vibration signals organized by detailed classifications. Vibration data representing 333 signals were collected from the NiPS Laboratory "Real Vibration" database, processed, and categorized according to the source of the signal (e.g. animal, machine, etc.), the number of dominant frequencies, the nature of the dominant frequencies (e.g. stationary, band-limited noise, etc.), and other metrics. By categorizing signals in this way, the set of idealized vibration inputs commonly assumed for harvester input can be corroborated and refined, and heretofore overlooked vibration input types have motivation for investigation. An initial qualitative analysis of vibration signals has been undertaken with the goal of determining how often a standard linear oscillator based harvester is likely the optimal architecture, and how often a nonlinear harvester with a cubic stiffness function might provide improvement. Although preliminary, the analysis indicates that in at least 23% of cases, a linear harvester is likely optimal and in no more than 53% of cases would a nonlinear cubic stiffness based harvester provide improvement.
Atluri, Sravya; Frehlich, Matthew; Mei, Ye; Garcia Dominguez, Luis; Rogasch, Nigel C; Wong, Willy; Daskalakis, Zafiris J; Farzan, Faranak
2016-01-01
Concurrent recording of electroencephalography (EEG) during transcranial magnetic stimulation (TMS) is an emerging and powerful tool for studying brain health and function. Despite a growing interest in adaptation of TMS-EEG across neuroscience disciplines, its widespread utility is limited by signal processing challenges. These challenges arise due to the nature of TMS and the sensitivity of EEG to artifacts that often mask TMS-evoked potentials (TEP)s. With an increase in the complexity of data processing methods and a growing interest in multi-site data integration, analysis of TMS-EEG data requires the development of a standardized method to recover TEPs from various sources of artifacts. This article introduces TMSEEG, an open-source MATLAB application comprised of multiple algorithms organized to facilitate a step-by-step procedure for TMS-EEG signal processing. Using a modular design and interactive graphical user interface (GUI), this toolbox aims to streamline TMS-EEG signal processing for both novice and experienced users. Specifically, TMSEEG provides: (i) targeted removal of TMS-induced and general EEG artifacts; (ii) a step-by-step modular workflow with flexibility to modify existing algorithms and add customized algorithms; (iii) a comprehensive display and quantification of artifacts; (iv) quality control check points with visual feedback of TEPs throughout the data processing workflow; and (v) capability to label and store a database of artifacts. In addition to these features, the software architecture of TMSEEG ensures minimal user effort in initial setup and configuration of parameters for each processing step. This is partly accomplished through a close integration with EEGLAB, a widely used open-source toolbox for EEG signal processing. In this article, we introduce TMSEEG, validate its features and demonstrate its application in extracting TEPs across several single- and multi-pulse TMS protocols. As the first open-source GUI-based pipeline for TMS-EEG signal processing, this toolbox intends to promote the widespread utility and standardization of an emerging technology in brain research.
Atluri, Sravya; Frehlich, Matthew; Mei, Ye; Garcia Dominguez, Luis; Rogasch, Nigel C.; Wong, Willy; Daskalakis, Zafiris J.; Farzan, Faranak
2016-01-01
Concurrent recording of electroencephalography (EEG) during transcranial magnetic stimulation (TMS) is an emerging and powerful tool for studying brain health and function. Despite a growing interest in adaptation of TMS-EEG across neuroscience disciplines, its widespread utility is limited by signal processing challenges. These challenges arise due to the nature of TMS and the sensitivity of EEG to artifacts that often mask TMS-evoked potentials (TEP)s. With an increase in the complexity of data processing methods and a growing interest in multi-site data integration, analysis of TMS-EEG data requires the development of a standardized method to recover TEPs from various sources of artifacts. This article introduces TMSEEG, an open-source MATLAB application comprised of multiple algorithms organized to facilitate a step-by-step procedure for TMS-EEG signal processing. Using a modular design and interactive graphical user interface (GUI), this toolbox aims to streamline TMS-EEG signal processing for both novice and experienced users. Specifically, TMSEEG provides: (i) targeted removal of TMS-induced and general EEG artifacts; (ii) a step-by-step modular workflow with flexibility to modify existing algorithms and add customized algorithms; (iii) a comprehensive display and quantification of artifacts; (iv) quality control check points with visual feedback of TEPs throughout the data processing workflow; and (v) capability to label and store a database of artifacts. In addition to these features, the software architecture of TMSEEG ensures minimal user effort in initial setup and configuration of parameters for each processing step. This is partly accomplished through a close integration with EEGLAB, a widely used open-source toolbox for EEG signal processing. In this article, we introduce TMSEEG, validate its features and demonstrate its application in extracting TEPs across several single- and multi-pulse TMS protocols. As the first open-source GUI-based pipeline for TMS-EEG signal processing, this toolbox intends to promote the widespread utility and standardization of an emerging technology in brain research. PMID:27774054
A flexible acquisition cycle for incompletely defined fieldbus protocols.
Gaitan, Vasile-Gheorghita; Gaitan, Nicoleta-Cristina; Ungurean, Ioan
2014-05-01
Real time data-acquisition from fieldbuses strongly depends on the network type and protocol used. Currently, there is an impressive number of fieldbuses, some of them are completely defined and others are incompletely defined. In those from the second category, the time variable, the main element in real-time data acquisition, does not appear explicitly. Examples include protocols such as Modbus ASCII/RTU, M-bus, ASCII character-based, and so on. This paper defines a flexible acquisition cycle based on the Master-Slave architecture that can be implemented on a Master station, called a Base Station Gateway (BSG). The BSG can add a timestamp for temporal location of data. It also presents a possible extension for the Modbus protocol, developed as simple and low cost solution based on existing hardware. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Real time network traffic monitoring for wireless local area networks based on compressed sensing
NASA Astrophysics Data System (ADS)
Balouchestani, Mohammadreza
2017-05-01
A wireless local area network (WLAN) is an important type of wireless networks which connotes different wireless nodes in a local area network. WLANs suffer from important problems such as network load balancing, large amount of energy, and load of sampling. This paper presents a new networking traffic approach based on Compressed Sensing (CS) for improving the quality of WLANs. The proposed architecture allows reducing Data Delay Probability (DDP) to 15%, which is a good record for WLANs. The proposed architecture is increased Data Throughput (DT) to 22 % and Signal to Noise (S/N) ratio to 17 %, which provide a good background for establishing high qualified local area networks. This architecture enables continuous data acquisition and compression of WLAN's signals that are suitable for a variety of other wireless networking applications. At the transmitter side of each wireless node, an analog-CS framework is applied at the sensing step before analog to digital converter in order to generate the compressed version of the input signal. At the receiver side of wireless node, a reconstruction algorithm is applied in order to reconstruct the original signals from the compressed signals with high probability and enough accuracy. The proposed algorithm out-performs existing algorithms by achieving a good level of Quality of Service (QoS). This ability allows reducing 15 % of Bit Error Rate (BER) at each wireless node.
Integrating DXplain into a clinical information system using the World Wide Web.
Elhanan, G; Socratous, S A; Cimino, J J
1996-01-01
The World Wide Web(WWW) offers a cross-platform environment and standard protocols that enable integration of various applications available on the Internet. The authors use the Web to facilitate interaction between their Web-based Clinical Information System and a decision-support system-DXplain, at the Massachusetts General Hospital-using local architecture and Common Gateway Interface programs. The current application translates patients laboratory test results into DXplain's terms to generate diagnostic hypotheses. Two different access methods are utilized for this model; Hypertext Transfer Protocol (HTTP) and TCP/IP function calls. While clinical aspects cannot be evaluated as yet, the model demonstrates the potential of Web-based applications for interaction and integration and how local architecture, with a controlled vocabulary server, can further facilitate such integration. This model serves to demonstrate some of the limitations of the current WWW technology and identifies issues such as control over Web resources and their utilization and liability issues as possible obstacles for further integration.
Achieving Reliable Communication in Dynamic Emergency Responses
Chipara, Octav; Plymoth, Anders N.; Liu, Fang; Huang, Ricky; Evans, Brian; Johansson, Per; Rao, Ramesh; Griswold, William G.
2011-01-01
Emergency responses require the coordination of first responders to assess the condition of victims, stabilize their condition, and transport them to hospitals based on the severity of their injuries. WIISARD is a system designed to facilitate the collection of medical information and its reliable dissemination during emergency responses. A key challenge in WIISARD is to deliver data with high reliability as first responders move and operate in a dynamic radio environment fraught with frequent network disconnections. The initial WIISARD system employed a client-server architecture and an ad-hoc routing protocol was used to exchange data. The system had low reliability when deployed during emergency drills. In this paper, we identify the underlying causes of unreliability and propose a novel peer-to-peer architecture that in combination with a gossip-based communication protocol achieves high reliability. Empirical studies show that compared to the initial WIISARD system, the redesigned system improves reliability by as much as 37% while reducing the number of transmitted packets by 23%. PMID:22195075
Preparation of samples for leaf architecture studies, a method for mounting cleared leaves1
Vasco, Alejandra; Thadeo, Marcela; Conover, Margaret; Daly, Douglas C.
2014-01-01
• Premise of the study: Several recent waves of interest in leaf architecture have shown an expanding range of approaches and applications across a number of disciplines. Despite this increased interest, examination of existing archives of cleared and mounted leaves shows that current methods for mounting, in particular, yield unsatisfactory results and deterioration of samples over relatively short periods. Although techniques for clearing and staining leaves are numerous, published techniques for mounting leaves are scarce. • Methods and Results: Here we present a complete protocol and recommendations for clearing, staining, and imaging leaves, and, most importantly, a method to permanently mount cleared leaves. • Conclusions: The mounting protocol is faster than other methods, inexpensive, and straightforward; moreover, it yields clear and permanent samples that can easily be imaged, scanned, and stored. Specimens mounted with this method preserve well, with leaves that were mounted more than 35 years ago showing no signs of bubbling or discoloration. PMID:25225627
The Gaia Archive at ESAC: a VO-inside archive
NASA Astrophysics Data System (ADS)
Gonzalez-Nunez, J.
2015-12-01
The ESDC (ESAC Science Data Center) is one of the active members of the IVOA (International Virtual Observatory Alliance) that have defined a set of standards, libraries and concepts that allows to create flexible,scalable and interoperable architectures on the data archives development. In the case of astronomy science that involves the use of big catalogues, as in Gaia or Euclid, TAP, UWS and VOSpace standards can be used to create an architecture that allows the explotation of this valuable data from the community. Also, new challenges arise like the implementation of the new paradigm "move code close to the data", what can be partially obtained by the extension of the protocols (TAP+, UWS+, etc) or the languages (ADQL). We explain how we have used VO standards and libraries for the Gaia Archive that, not only have producing an open and interoperable archive but, also, minimizing the developement on certain areas. Also we will explain how we have extended these protocols and the future plans.
Tschiersch, Henning; Junker, Astrid; Meyer, Rhonda C; Altmann, Thomas
2017-01-01
Automated plant phenotyping has been established as a powerful new tool in studying plant growth, development and response to various types of biotic or abiotic stressors. Respective facilities mainly apply non-invasive imaging based methods, which enable the continuous quantification of the dynamics of plant growth and physiology during developmental progression. However, especially for plants of larger size, integrative, automated and high throughput measurements of complex physiological parameters such as photosystem II efficiency determined through kinetic chlorophyll fluorescence analysis remain a challenge. We present the technical installations and the establishment of experimental procedures that allow the integrated high throughput imaging of all commonly determined PSII parameters for small and large plants using kinetic chlorophyll fluorescence imaging systems (FluorCam, PSI) integrated into automated phenotyping facilities (Scanalyzer, LemnaTec). Besides determination of the maximum PSII efficiency, we focused on implementation of high throughput amenable protocols recording PSII operating efficiency (Φ PSII ). Using the presented setup, this parameter is shown to be reproducibly measured in differently sized plants despite the corresponding variation in distance between plants and light source that caused small differences in incident light intensity. Values of Φ PSII obtained with the automated chlorophyll fluorescence imaging setup correlated very well with conventionally determined data using a spot-measuring chlorophyll fluorometer. The established high throughput operating protocols enable the screening of up to 1080 small and 184 large plants per hour, respectively. The application of the implemented high throughput protocols is demonstrated in screening experiments performed with large Arabidopsis and maize populations assessing natural variation in PSII efficiency. The incorporation of imaging systems suitable for kinetic chlorophyll fluorescence analysis leads to a substantial extension of the feature spectrum to be assessed in the presented high throughput automated plant phenotyping platforms, thus enabling the simultaneous assessment of plant architectural and biomass-related traits and their relations to physiological features such as PSII operating efficiency. The implemented high throughput protocols are applicable to a broad spectrum of model and crop plants of different sizes (up to 1.80 m height) and architectures. The deeper understanding of the relation of plant architecture, biomass formation and photosynthetic efficiency has a great potential with respect to crop and yield improvement strategies.
Mapping 3D genome architecture through in situ DNase Hi-C.
Ramani, Vijay; Cusanovich, Darren A; Hause, Ronald J; Ma, Wenxiu; Qiu, Ruolan; Deng, Xinxian; Blau, C Anthony; Disteche, Christine M; Noble, William S; Shendure, Jay; Duan, Zhijun
2016-11-01
With the advent of massively parallel sequencing, considerable work has gone into adapting chromosome conformation capture (3C) techniques to study chromosomal architecture at a genome-wide scale. We recently demonstrated that the inactive murine X chromosome adopts a bipartite structure using a novel 3C protocol, termed in situ DNase Hi-C. Like traditional Hi-C protocols, in situ DNase Hi-C requires that chromatin be chemically cross-linked, digested, end-repaired, and proximity-ligated with a biotinylated bridge adaptor. The resulting ligation products are optionally sheared, affinity-purified via streptavidin bead immobilization, and subjected to traditional next-generation library preparation for Illumina paired-end sequencing. Importantly, in situ DNase Hi-C obviates the dependence on a restriction enzyme to digest chromatin, instead relying on the endonuclease DNase I. Libraries generated by in situ DNase Hi-C have a higher effective resolution than traditional Hi-C libraries, which makes them valuable in cases in which high sequencing depth is allowed for, or when hybrid capture technologies are expected to be used. The protocol described here, which involves ∼4 d of bench work, is optimized for the study of mammalian cells, but it can be broadly applicable to any cell or tissue of interest, given experimental parameter optimization.
Photocopy of drawing (original drawing of Signal & Ordnance Warehouse ...
Photocopy of drawing (original drawing of Signal & Ordnance Warehouse in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General)TRUSS DETAILS - MacDill Air Force Base, Signal & Ordnance Warehouse, 7620 Hanger Loop Drive, Tampa, Hillsborough County, FL
Colas, Jaron T; Pauli, Wolfgang M; Larsen, Tobias; Tyszka, J Michael; O'Doherty, John P
2017-10-01
Prediction-error signals consistent with formal models of "reinforcement learning" (RL) have repeatedly been found within dopaminergic nuclei of the midbrain and dopaminoceptive areas of the striatum. However, the precise form of the RL algorithms implemented in the human brain is not yet well determined. Here, we created a novel paradigm optimized to dissociate the subtypes of reward-prediction errors that function as the key computational signatures of two distinct classes of RL models-namely, "actor/critic" models and action-value-learning models (e.g., the Q-learning model). The state-value-prediction error (SVPE), which is independent of actions, is a hallmark of the actor/critic architecture, whereas the action-value-prediction error (AVPE) is the distinguishing feature of action-value-learning algorithms. To test for the presence of these prediction-error signals in the brain, we scanned human participants with a high-resolution functional magnetic-resonance imaging (fMRI) protocol optimized to enable measurement of neural activity in the dopaminergic midbrain as well as the striatal areas to which it projects. In keeping with the actor/critic model, the SVPE signal was detected in the substantia nigra. The SVPE was also clearly present in both the ventral striatum and the dorsal striatum. However, alongside these purely state-value-based computations we also found evidence for AVPE signals throughout the striatum. These high-resolution fMRI findings suggest that model-free aspects of reward learning in humans can be explained algorithmically with RL in terms of an actor/critic mechanism operating in parallel with a system for more direct action-value learning.
Pauli, Wolfgang M.; Larsen, Tobias; Tyszka, J. Michael; O’Doherty, John P.
2017-01-01
Prediction-error signals consistent with formal models of “reinforcement learning” (RL) have repeatedly been found within dopaminergic nuclei of the midbrain and dopaminoceptive areas of the striatum. However, the precise form of the RL algorithms implemented in the human brain is not yet well determined. Here, we created a novel paradigm optimized to dissociate the subtypes of reward-prediction errors that function as the key computational signatures of two distinct classes of RL models—namely, “actor/critic” models and action-value-learning models (e.g., the Q-learning model). The state-value-prediction error (SVPE), which is independent of actions, is a hallmark of the actor/critic architecture, whereas the action-value-prediction error (AVPE) is the distinguishing feature of action-value-learning algorithms. To test for the presence of these prediction-error signals in the brain, we scanned human participants with a high-resolution functional magnetic-resonance imaging (fMRI) protocol optimized to enable measurement of neural activity in the dopaminergic midbrain as well as the striatal areas to which it projects. In keeping with the actor/critic model, the SVPE signal was detected in the substantia nigra. The SVPE was also clearly present in both the ventral striatum and the dorsal striatum. However, alongside these purely state-value-based computations we also found evidence for AVPE signals throughout the striatum. These high-resolution fMRI findings suggest that model-free aspects of reward learning in humans can be explained algorithmically with RL in terms of an actor/critic mechanism operating in parallel with a system for more direct action-value learning. PMID:29049406
Call for Papers: Photonics in Switching
NASA Astrophysics Data System (ADS)
Wosinska, Lena; Glick, Madeleine
2006-04-01
Protocol Design Challenges in the Detection of Awareness in Aware Subjects Using EEG Signals.
Henriques, J; Gabriel, D; Grigoryeva, L; Haffen, E; Moulin, T; Aubry, R; Pazart, L; Ortega, J-P
2016-10-01
Recent studies have evidenced serious difficulties in detecting covert awareness with electroencephalography-based techniques both in unresponsive patients and in healthy control subjects. This work reproduces the protocol design in two recent mental imagery studies with a larger group comprising 20 healthy volunteers. The main goal is assessing if modifications in the signal extraction techniques, training-testing/cross-validation routines, and hypotheses evoked in the statistical analysis, can provide solutions to the serious difficulties documented in the literature. The lack of robustness in the results advises for further search of alternative protocols more suitable for machine learning classification and of better performing signal treatment techniques. Specific recommendations are made using the findings in this work. © EEG and Clinical Neuroscience Society (ECNS) 2014.
Rodriguez-Rivera, Veronica; Weidner, John W.; Yost, Michael J.
2016-01-01
Tissue scaffolds play a crucial role in the tissue regeneration process. The ideal scaffold must fulfill several requirements such as having proper composition, targeted modulus, and well-defined architectural features. Biomaterials that recapitulate the intrinsic architecture of in vivo tissue are vital for studying diseases as well as to facilitate the regeneration of lost and malformed soft tissue. A novel biofabrication technique was developed which combines state of the art imaging, three-dimensional (3D) printing, and selective enzymatic activity to create a new generation of biomaterials for research and clinical application. The developed material, Bovine Serum Albumin rubber, is reaction injected into a mold that upholds specific geometrical features. This sacrificial material allows the adequate transfer of architectural features to a natural scaffold material. The prototype consists of a 3D collagen scaffold with 4 and 3 mm channels that represent a branched architecture. This paper emphasizes the use of this biofabrication technique for the generation of natural constructs. This protocol utilizes a computer-aided software (CAD) to manufacture a solid mold which will be reaction injected with BSA rubber followed by the enzymatic digestion of the rubber, leaving its architectural features within the scaffold material. PMID:26967145
Rodriguez-Rivera, Veronica; Weidner, John W; Yost, Michael J
2016-02-12
Tissue scaffolds play a crucial role in the tissue regeneration process. The ideal scaffold must fulfill several requirements such as having proper composition, targeted modulus, and well-defined architectural features. Biomaterials that recapitulate the intrinsic architecture of in vivo tissue are vital for studying diseases as well as to facilitate the regeneration of lost and malformed soft tissue. A novel biofabrication technique was developed which combines state of the art imaging, three-dimensional (3D) printing, and selective enzymatic activity to create a new generation of biomaterials for research and clinical application. The developed material, Bovine Serum Albumin rubber, is reaction injected into a mold that upholds specific geometrical features. This sacrificial material allows the adequate transfer of architectural features to a natural scaffold material. The prototype consists of a 3D collagen scaffold with 4 and 3 mm channels that represent a branched architecture. This paper emphasizes the use of this biofabrication technique for the generation of natural constructs. This protocol utilizes a computer-aided software (CAD) to manufacture a solid mold which will be reaction injected with BSA rubber followed by the enzymatic digestion of the rubber, leaving its architectural features within the scaffold material.
Selective randomized load balancing and mesh networks with changing demands
NASA Astrophysics Data System (ADS)
Shepherd, F. B.; Winzer, P. J.
2006-05-01
We consider the problem of building cost-effective networks that are robust to dynamic changes in demand patterns. We compare several architectures using demand-oblivious routing strategies. Traditional approaches include single-hop architectures based on a (static or dynamic) circuit-switched core infrastructure and multihop (packet-switched) architectures based on point-to-point circuits in the core. To address demand uncertainty, we seek minimum cost networks that can carry the class of hose demand matrices. Apart from shortest-path routing, Valiant's randomized load balancing (RLB), and virtual private network (VPN) tree routing, we propose a third, highly attractive approach: selective randomized load balancing (SRLB). This is a blend of dual-hop hub routing and randomized load balancing that combines the advantages of both architectures in terms of network cost, delay, and delay jitter. In particular, we give empirical analyses for the cost (in terms of transport and switching equipment) for the discussed architectures, based on three representative carrier networks. Of these three networks, SRLB maintains the resilience properties of RLB while achieving significant cost reduction over all other architectures, including RLB and multihop Internet protocol/multiprotocol label switching (IP/MPLS) networks using VPN-tree routing.
NASA Astrophysics Data System (ADS)
Abari, C. F.; Chu, X.; Mann, J.
2014-12-01
Doppler light detection and ranging (lidar) has been used for a few decades for the characterization of wind fields and turbulence structures in the atmosphere. More recently, due to the advances in fiber optic communications, all-fiber coherent Doppler lidars (CDL) have been developed and widely used as a primary instrument for probing the atmospheric boundary layer wind fields. Due to a variety of reasons, all-fiber CDLs have gradually replaced their counterparts benefiting from technologies other than fiber optics. Most CDLs suffer from a number of drawbacks inherent to their principle of operation. For instance, one of the main challenges in CDLs is extracting the signal information from noisy observations, which is common to most opto-electronic systems. Moreover, it is sometimes challenging to extract the sign of the measured radial velocity. Conventionally, CDLs have benefitted from an intermediate frequency (IF) heterodyne receiver architecture for the determination of the radial velocity. In such systems, either the transmitted or the local oscillator (LO) signal is shifted in frequency. Such architectures may suffer from increased noise and spurious effects due to the employment of additional active components, e.g., acousto-optic modulator (AOM), limited measurement bandwidth (BW), and a more sophisticated electronic front-end for signal detection. On the other hand, one of the main challenges in long-range (pulsed) CDLs is the limitations imposed on the pulse repetition rate (PRR) as well as the available transmit power. These restrictions are more significant in all-fiber pulsed CDLs in which Erbium doped fiber amplifiers (EDFA) are employed for the amplification of the optical pulses. In this study, we propose an alternative reconfigurable opto-electronic front-end transceiver architecture in all-fiber CDLs where there is no compromise in the detection BW. Additionally, by benefiting from a polarization diversity architecture we show that both the PRR and transmit optical power can be doubled. Other benefits of the proposed system include, but not limited to, capturing additional information about the nature of aerosol particles, improvement of the signal-to-estimation-noise-ratio (SENR), faster scanning of the wind field, and improved measurement range.
Two-dimensional acousto-optic processor using circular antenna array with a Butler matrix
NASA Astrophysics Data System (ADS)
Lee, Jim P.
1992-09-01
A two-dimensional acousto-optic signal processor is shown to be useful for providing simultaneous spectrum analysis and direction finding of radar signals over an instantaneous field of view of 360 deg. A system analysis with emphasis on the direction-finding aspect of this new architecture is presented. The peak location of the optical pattern provides a direct measure of bearing, independent of signal frequency. In addition, the sidelobe levels of the pattern can be effectively reduced using amplitude weighting. Performance parameters, such as mainlobe beamwidth, peak-sidelobe level, and pointing error, are analyzed as a function of the Gaussian laser illumination profile and the number of channels. Finally, a comparison with a linear antenna array architecture is also discussed.
Fiber optic control system integration
NASA Technical Reports Server (NTRS)
Poppel, G. L.; Glasheen, W. M.; Russell, J. C.
1987-01-01
A total fiber optic, integrated propulsion/flight control system concept for advanced fighter aircraft is presented. Fiber optic technology pertaining to this system is identified and evaluated for application readiness. A fiber optic sensor vendor survey was completed, and the results are reported. The advantages of centralized/direct architecture are reviewed, and the concept of the protocol branch is explained. Preliminary protocol branch selections are made based on the F-18/F404 application. Concepts for new optical tools are described. Development plans for the optical technology and the described system are included.
Quantum sensing of weak radio-frequency signals by pulsed Mollow absorption spectroscopy.
Joas, T; Waeber, A M; Braunbeck, G; Reinhard, F
2017-10-17
Quantum sensors-qubits sensitive to external fields-have become powerful detectors for various small acoustic and electromagnetic fields. A major key to their success have been dynamical decoupling protocols which enhance sensitivity to weak oscillating (AC) signals. Currently, those methods are limited to signal frequencies below a few MHz. Here we harness a quantum-optical effect, the Mollow triplet splitting of a strongly driven two-level system, to overcome this limitation. We microscopically understand this effect as a pulsed dynamical decoupling protocol and find that it enables sensitive detection of fields close to the driven transition. Employing a nitrogen-vacancy center, we detect GHz microwave fields with a signal strength (Rabi frequency) below the current detection limit, which is set by the center's spectral linewidth [Formula: see text]. Pushing detection sensitivity to the much lower 1/T 2 limit, this scheme could enable various applications, most prominently coherent coupling to single phonons and microwave photons.Dynamical decoupling protocols can enhance the sensitivity of quantum sensors but this is limited to signal frequencies below a few MHz. Here, Joas et al. use the Mollow triplet splitting in a nitrogen-vacancy centre to overcome this limitation, enabling sensitive detection of signals in the GHz range.
Standardizing the information architecture for spacecraft operations
NASA Technical Reports Server (NTRS)
Easton, C. R.
1994-01-01
This paper presents an information architecture developed for the Space Station Freedom as a model from which to derive an information architecture standard for advanced spacecraft. The information architecture provides a way of making information available across a program, and among programs, assuming that the information will be in a variety of local formats, structures and representations. It provides a format that can be expanded to define all of the physical and logical elements that make up a program, add definitions as required, and import definitions from prior programs to a new program. It allows a spacecraft and its control center to work in different representations and formats, with the potential for supporting existing spacecraft from new control centers. It supports a common view of data and control of all spacecraft, regardless of their own internal view of their data and control characteristics, and of their communications standards, protocols and formats. This information architecture is central to standardizing spacecraft operations, in that it provides a basis for information transfer and translation, such that diverse spacecraft can be monitored and controlled in a common way.
Using manufacturing message specification for monitor and control at Venus
NASA Technical Reports Server (NTRS)
Heuser, W. Randy; Chen, Richard L.; Stockett, Michael H.
1993-01-01
The flexibility and robustness of a monitor and control (M&C) system are a direct result of the underlying interprocessor communications architecture. A new architecture for M&C at the Deep Space Communications Complexes (DSCC's) has been developed based on the Manufacturing Message Specification (MMS) process control standard of the Open System Interconnection (OSI) suite of protocols. This architecture has been tested both in a laboratory environment and under operational conditions at the Deep Space Network (DSN) experimental Venus station (DSS-13). The Venus experience in the application of OSI standards to support M&C has been extremely successful. MMS meets the functional needs of the station and provides a level of flexibility and responsiveness previously unknown in that environment. The architecture is robust enough to meet current operational needs and flexible enough to provide a migration path for new subsystems. This paper will describe the architecture of the Venus M&C system, discuss how MMS was used and the requirements this imposed on other parts of the system, and provide results from systems and operational testing at the Venus site.
van Ruymbeke, E; Lee, H; Chang, T; Nikopoulou, A; Hadjichristidis, N; Snijkers, F; Vlassopoulos, D
2014-07-21
An emerging challenge in polymer physics is the quantitative understanding of the influence of a macromolecular architecture (i.e., branching) on the rheological response of entangled complex polymers. Recent investigations of the rheology of well-defined architecturally complex polymers have determined the composition in the molecular structure and identified the role of side-products in the measured samples. The combination of different characterization techniques, experimental and/or theoretical, represents the current state-of-the-art. Here we review this interdisciplinary approach to molecular rheology of complex polymers, and show the importance of confronting these different tools for ensuring an accurate characterization of a given polymeric sample. We use statistical tools in order to relate the information available from the synthesis protocols of a sample and its experimental molar mass distribution (typically obtained from size exclusion chromatography), and hence obtain precise information about its structural composition, i.e. enhance the existing sensitivity limit. We critically discuss the use of linear rheology as a reliable quantitative characterization tool, along with the recently developed temperature gradient interaction chromatography. The latter, which has emerged as an indispensable characterization tool for branched architectures, offers unprecedented sensitivity in detecting the presence of different molecular structures in a sample. Combining these techniques is imperative in order to quantify the molecular composition of a polymer and its consequences on the macroscopic properties. We validate this approach by means of a new model asymmetric comb polymer which was synthesized anionically. It was thoroughly characterized and its rheology was carefully analyzed. The main result is that the rheological signal reveals fine molecular details, which must be taken into account to fully elucidate the viscoelastic response of entangled branched polymers. It is important to appreciate that, even optimal model systems, i.e., those synthesized with high-vacuum anionic methods, need thorough characterization via a combination of techniques. Besides helping to improve synthetic techniques, this methodology will be significant in fine-tuning mesoscopic tube-based models and addressing outstanding issues such as the quantitative description of the constraint release mechanism.
Squeezed-state quantum key distribution with a Rindler observer
NASA Astrophysics Data System (ADS)
Zhou, Jian; Shi, Ronghua; Guo, Ying
2018-03-01
Lengthening the maximum transmission distance of quantum key distribution plays a vital role in quantum information processing. In this paper, we propose a directional squeezed-state protocol with signals detected by a Rindler observer in the relativistic quantum field framework. We derive an analytical solution to the transmission problem of squeezed states from the inertial sender to the accelerated receiver. The variance of the involved signal mode is closer to optimality than that of the coherent-state-based protocol. Simulation results show that the proposed protocol has better performance than the coherent-state counterpart especially in terms of the maximal transmission distance.
Cantwell, Colin P; Kerr, Jennifer; O'Byrne, John; Eustace, Stephen
2006-05-01
The purposes of our study were to determine the temporal changes in MR signal in bone after radiofrequency ablation of osteoid osteoma and the size of the zone of marrow signal change produced by the radiofrequency technique and to compare the size of the zone with published data for radiofrequency ablation with manual-control protocols. Radiofrequency ablation was performed in 10 patients with a clinical and radiologic diagnosis of osteoid osteoma. A cooled radiofrequency probe was inserted in the nidus. Twelve minutes of radiofrequency energy was applied from a 200-W radiofrequency generator in an impedance-control setting. MRI with multiplanar turbo spin-echo T1-weighted and STIR sequences was performed at 1, 7, and 28 days after the procedure in seven patients. The three remaining patients had follow-up imaging at 28 days only. The images were reviewed by two radiologists who categorized the imaging features and measured the marrow zone of signal alteration when visible. The size of the zone of marrow signal change produced by the radiofrequency technique was compared with published data for radiofrequency ablation with manual-control protocols. A 1-mm band of homogeneous altered marrow signal distributed symmetrically parallel to the entire probe tract was seen earliest, at 1 day, in the femoral neck lesion treated with the 2-cm probe. The band was low signal on the T1 sequence and high signal on the STIR sequence, and the diameter of the zone was 27 mm. By 7 days, five of the seven treated bones showed a band of marrow signal alteration. By 28 days, all 10 treated bones had a band of marrow signal alteration. The interband distance at 90 degrees to the probe measured on STIR images at 28 days was a mean of 20.9 mm (confidence interval, 16.1-25.7 mm [p < 0.05]; range +/- measurement error, 10.5-35 +/- 1.64 mm) with a 1-cm probe and 30.5 mm (measurement error, +/- 0.78 mm) on T1 images without contrast material when a 2-cm exposed-tip probe was used. Higher-output generators with impedance-control software and internally cooled radiofrequency probes with longer exposed tips produce larger zones of marrow signal change than expected with manual-control protocols. MRI allows detection of temporal marrow signal change after radiofrequency ablation. The marrow signal change with a high-energy delivery protocol is larger than manual-control protocols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalewski, Markus, E-mail: mkowalew@uci.edu; Mukamel, Shaul, E-mail: smukamel@uci.edu
2015-07-28
Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings.
The emerging complexity of ubiquitin architecture.
Ohtake, Fumiaki; Tsuchiya, Hikaru
2017-02-01
Ubiquitylation is an essential post-translational modification (PTM) of proteins with diverse cellular functions. Polyubiquitin chains with different topologies have different cellular roles, and are referred to as a 'ubiquitin code'. Recent studies have begun to reveal that more complex ubiquitin architectures function as important signals in several biological pathways. These include PTMs of ubiquitin itself, such as acetylated ubiquitin and phospho-ubiquitin. Moreover, important roles for heterogeneous polyubiquitin chains, such as mixed or branched chains, have been reported, which significantly increase the diversity of the ubiquitin code. In this review, we describe mass spectrometry-based methods to characterize the ubiquitin signal. We also describe recent advances in our understanding of complex ubiquitin architectures, including our own findings concerning ubiquitin acetylation and branching within polyubiquitin chains. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Design and Development of a Network-Based Electronic Library.
ERIC Educational Resources Information Center
Larson, Ray R.
1994-01-01
Describes collaboration between the University of California at Berkeley and four other universities to develop interoperable servers containing each participant's Computer Science Technical Reports and to make them available over the Internet using standard protocols. The proposed library architecture, approaches to indexing and retrieval, and…
A tone analyzer based on a piezoelectric polymer and organic thin film transistors.
Hsu, Yu-Jen; Kymissis, Ioannis
2012-12-01
A tone analyzer is demonstrated using a distributed resonator architecture on a tensioned piezoelectric polyvinyledene diuoride (PVDF) sheet. This sheet is used as both the resonator and detection element. Two architectures are demonstrated; one uses distributed, directly addressed elements as a proof of concept, and the other integrates organic thin film transistor-based transimpedance amplifiers directly with the PVDF to convert the piezoelectric charge signal into a current signal. The PVDF sheet material is instrumented along its length, and the amplitude response at 15 sites is recorded and analyzed as a function of the frequency of excitation. The determination of the dominant component of an incoming tone is demonstrated using linear system decomposition of the time-averaged response of the sheet and is performed without any time domain analysis. This design allows for the determination of the spectral composition of a sound using the mechanical signal processing provided by the amplitude response and eliminates the need for time-domain downstream signal processing of the incoming signal.
Wright, Adam; Sittig, Dean F
2008-12-01
In this paper, we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. The SANDS architecture for decision support has several significant advantages over other architectures for clinical decision support. The most salient of these are:
Stable propagation of mechanical signals in soft media using stored elastic energy.
Raney, Jordan R; Nadkarni, Neel; Daraio, Chiara; Kochmann, Dennis M; Lewis, Jennifer A; Bertoldi, Katia
2016-08-30
Soft structures with rationally designed architectures capable of large, nonlinear deformation present opportunities for unprecedented, highly tunable devices and machines. However, the highly dissipative nature of soft materials intrinsically limits or prevents certain functions, such as the propagation of mechanical signals. Here we present an architected soft system composed of elastomeric bistable beam elements connected by elastomeric linear springs. The dissipative nature of the polymer readily damps linear waves, preventing propagation of any mechanical signal beyond a short distance, as expected. However, the unique architecture of the system enables propagation of stable, nonlinear solitary transition waves with constant, controllable velocity and pulse geometry over arbitrary distances. Because the high damping of the material removes all other linear, small-amplitude excitations, the desired pulse propagates with high fidelity and controllability. This phenomenon can be used to control signals, as demonstrated by the design of soft mechanical diodes and logic gates.
Quantum secured gigabit optical access networks
Fröhlich, Bernd; Dynes, James F.; Lucamarini, Marco; Sharpe, Andrew W.; Tam, Simon W.-B.; Yuan, Zhiliang; Shields, Andrew J.
2015-01-01
Optical access networks connect multiple endpoints to a common network node via shared fibre infrastructure. They will play a vital role to scale up the number of users in quantum key distribution (QKD) networks. However, the presence of power splitters in the commonly used passive network architecture makes successful transmission of weak quantum signals challenging. This is especially true if QKD and data signals are multiplexed in the passive network. The splitter introduces an imbalance between quantum signal and Raman noise, which can prevent the recovery of the quantum signal completely. Here we introduce a method to overcome this limitation and demonstrate coexistence of multi-user QKD and full power data traffic from a gigabit passive optical network (GPON) for the first time. The dual feeder implementation is compatible with standard GPON architectures and can support up to 128 users, highlighting that quantum protected GPON networks could be commonplace in the future. PMID:26656307
VLSI implementation of a new LMS-based algorithm for noise removal in ECG signal
NASA Astrophysics Data System (ADS)
Satheeskumaran, S.; Sabrigiriraj, M.
2016-06-01
Least mean square (LMS)-based adaptive filters are widely deployed for removing artefacts in electrocardiogram (ECG) due to less number of computations. But they posses high mean square error (MSE) under noisy environment. The transform domain variable step-size LMS algorithm reduces the MSE at the cost of computational complexity. In this paper, a variable step-size delayed LMS adaptive filter is used to remove the artefacts from the ECG signal for improved feature extraction. The dedicated digital Signal processors provide fast processing, but they are not flexible. By using field programmable gate arrays, the pipelined architectures can be used to enhance the system performance. The pipelined architecture can enhance the operation efficiency of the adaptive filter and save the power consumption. This technique provides high signal-to-noise ratio and low MSE with reduced computational complexity; hence, it is a useful method for monitoring patients with heart-related problem.
Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity.
Wang, Yanshu; Rattner, Amir; Zhou, Yulian; Williams, John; Smallwood, Philip M; Nathans, Jeremy
2012-12-07
Norrin/Frizzled4 (Fz4) signaling activates the canonical Wnt pathway to control retinal vascular development. Using genetically engineered mice, we show that precocious Norrin production leads to premature retinal vascular invasion and delayed Norrin production leads to characteristic defects in intraretinal vascular architecture. In genetic mosaics, wild-type endothelial cells (ECs) instruct neighboring Fz4(-/-) ECs to produce an architecturally normal mosaic vasculature, a cell nonautonomous effect. However, over the ensuing weeks, Fz4(-/-) ECs are selectively eliminated from the mosaic vasculature, implying the existence of a quality control program that targets defective ECs. In the adult retina and cerebellum, gain or loss of Norrin/Fz4 signaling results in a cell-autonomous gain or loss, respectively, of blood retina barrier and blood brain barrier function, indicating an ongoing requirement for Frizzled signaling in barrier maintenance and substantial plasticity in mature CNS vascular structure. Copyright © 2012 Elsevier Inc. All rights reserved.
Stable propagation of mechanical signals in soft media using stored elastic energy
Raney, Jordan R.; Nadkarni, Neel; Daraio, Chiara; Lewis, Jennifer A.; Bertoldi, Katia
2016-01-01
Soft structures with rationally designed architectures capable of large, nonlinear deformation present opportunities for unprecedented, highly tunable devices and machines. However, the highly dissipative nature of soft materials intrinsically limits or prevents certain functions, such as the propagation of mechanical signals. Here we present an architected soft system composed of elastomeric bistable beam elements connected by elastomeric linear springs. The dissipative nature of the polymer readily damps linear waves, preventing propagation of any mechanical signal beyond a short distance, as expected. However, the unique architecture of the system enables propagation of stable, nonlinear solitary transition waves with constant, controllable velocity and pulse geometry over arbitrary distances. Because the high damping of the material removes all other linear, small-amplitude excitations, the desired pulse propagates with high fidelity and controllability. This phenomenon can be used to control signals, as demonstrated by the design of soft mechanical diodes and logic gates. PMID:27519797
VLSI processors for signal detection in SETI
NASA Technical Reports Server (NTRS)
Duluk, J. F.; Linscott, I. R.; Peterson, A. M.; Burr, J.; Ekroot, B.; Twicken, J.
1989-01-01
The objective of the Search for Extraterrestrial Intelligence (SETI) is to locate an artificially created signal coming from a distant star. This is done in two steps: (1) spectral analysis of an incoming radio frequency band, and (2) pattern detection for narrow-band signals. Both steps are computationally expensive and require the development of specially designed computer architectures. To reduce the size and cost of the SETI signal detection machine, two custom VLSI chips are under development. The first chip, the SETI DSP Engine, is used in the spectrum analyzer and is specially designed to compute Discrete Fourier Transforms (DFTs). It is a high-speed arithmetic processor that has two adders, one multiplier-accumulator, and three four-port memories. The second chip is a new type of Content-Addressable Memory. It is the heart of an associative processor that is used for pattern detection. Both chips incorporate many innovative circuits and architectural features.
VLSI processors for signal detection in SETI.
Duluk, J F; Linscott, I R; Peterson, A M; Burr, J; Ekroot, B; Twicken, J
1989-01-01
The objective of the Search for Extraterrestrial Intelligence (SETI) is to locate an artificially created signal coming from a distant star. This is done in two steps: (1) spectral analysis of an incoming radio frequency band, and (2) pattern detection for narrow-band signals. Both steps are computationally expensive and require the development of specially designed computer architectures. To reduce the size and cost of the SETI signal detection machine, two custom VLSI chips are under development. The first chip, the SETI DSP Engine, is used in the spectrum analyzer and is specially designed to compute Discrete Fourier Transforms (DFTs). It is a high-speed arithmetic processor that has two adders, one multiplier-accumulator, and three four-port memories. The second chip is a new type of Content-Addressable Memory. It is the heart of an associative processor that is used for pattern detection. Both chips incorporate many innovative circuits and architectural features.
Glucose control of root growth direction in Arabidopsis thaliana.
Singh, Manjul; Gupta, Aditi; Laxmi, Ashverya
2014-07-01
Directional growth of roots is a complex process that is modulated by various environmental signals. This work shows that presence of glucose (Glc) in the medium also extensively modulated seedling root growth direction. Glc modulation of root growth direction was dramatically enhanced by simultaneous brassinosteroid (BR) application. Glc enhanced BR receptor BRASSINOSTEROID INSENSITIVE1 (BRI1) endocytosis from plasma membrane to early endosomes. Glc-induced root deviation was highly enhanced in a PP2A-defective mutant, roots curl in naphthyl phthalamic acid 1-1 (rcn1-1) suggesting that there is a role of phosphatase in Glc-induced root-growth deviation. RCN1, therefore, acted as a link between Glc and the BR-signalling pathway. Polar auxin transport worked further downstream to BR in controlling Glc-induced root deviation response. Glc also affected other root directional responses such as root waving and coiling leading to altered root architecture. High light intensity mimicked the Glc-induced changes in root architecture that were highly reduced in Glc-signalling mutants. Thus, under natural environmental conditions, changing light flux in the environment may lead to enhanced Glc production/response and is a way to manipulate root architecture for optimized development via integrating several extrinsic and intrinsic signalling cues. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Further developments in generating type-safe messaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neswold, R.; King, C.; /Fermilab
2011-11-01
At ICALEPCS 09, we introduced a source code generator that allows processes to communicate safely using data types native to each host language. In this paper, we discuss further development that has occurred since the conference in Kobe, Japan, including the addition of three more client languages, an optimization in network packet size and the addition of a new protocol data type. The protocol compiler is continuing to prove itself as an easy and robust way to get applications written in different languages hosted on different computer architectures to communicate. We have two active Erlang projects that are using themore » protocol compiler to access ACNET data at high data rates. We also used the protocol compiler output to deliver ACNET data to an iPhone/iPad application. Since it takes an average of two weeks to support a new language, we're willing to expand the protocol compiler to support new languages that our community uses.« less
Gaussification and entanglement distillation of continuous-variable systems: a unifying picture.
Campbell, Earl T; Eisert, Jens
2012-01-13
Distillation of entanglement using only Gaussian operations is an important primitive in quantum communication, quantum repeater architectures, and distributed quantum computing. Existing distillation protocols for continuous degrees of freedom are only known to converge to a Gaussian state when measurements yield precisely the vacuum outcome. In sharp contrast, non-Gaussian states can be deterministically converted into Gaussian states while preserving their second moments, albeit by usually reducing their degree of entanglement. In this work-based on a novel instance of a noncommutative central limit theorem-we introduce a picture general enough to encompass the known protocols leading to Gaussian states, and new classes of protocols including multipartite distillation. This gives the experimental option of balancing the merits of success probability against entanglement produced.
Control systems and coordination protocols of the secretory pathway.
Luini, Alberto; Mavelli, Gabriella; Jung, Juan; Cancino, Jorge
2014-01-01
Like other cellular modules, the secretory pathway and the Golgi complex are likely to be supervised by control systems that support homeostasis and optimal functionality under all conditions, including external and internal perturbations. Moreover, the secretory apparatus must be functionally connected with other cellular modules, such as energy metabolism and protein degradation, via specific rules of interaction, or "coordination protocols". These regulatory devices are of fundamental importance for optimal function; however, they are generally "hidden" at steady state. The molecular components and the architecture of the control systems and coordination protocols of the secretory pathway are beginning to emerge through studies based on the use of controlled transport-specific perturbations aimed specifically at the detection and analysis of these internal regulatory devices.
Forecast analysis of optical waveguide bus performance
NASA Technical Reports Server (NTRS)
Ledesma, R.; Rourke, M. D.
1979-01-01
Elements to be considered in the design of a data bus include: architecture; data rate; modulation, encoding, detection; power distribution requirements; protocol, work structure; bus reliability, maintainability; interterminal transmission medium; cost; and others specific to application. Fiber- optic data bus considerations for a 32 port transmissive star architecture, are discussed in a tutorial format. General optical-waveguide bus concepts, are reviewed. The electrical and optical performance of a 32 port transmissive star bus, and the effects of temperature on the performance of optical-waveguide buses are examined. A bibliography of pertinent references and the bus receiver test results are included.
NASA Constellation Distributed Simulation Middleware Trade Study
NASA Technical Reports Server (NTRS)
Hasan, David; Bowman, James D.; Fisher, Nancy; Cutts, Dannie; Cures, Edwin Z.
2008-01-01
This paper presents the results of a trade study designed to assess three distributed simulation middleware technologies for support of the NASA Constellation Distributed Space Exploration Simulation (DSES) project and Test and Verification Distributed System Integration Laboratory (DSIL). The technologies are the High Level Architecture (HLA), the Test and Training Enabling Architecture (TENA), and an XML-based variant of Distributed Interactive Simulation (DIS-XML) coupled with the Extensible Messaging and Presence Protocol (XMPP). According to the criteria and weights determined in this study, HLA scores better than the other two for DSES as well as the DSIL.
Transit signal priority research tools
DOT National Transportation Integrated Search
2008-05-01
This report presents the results of a research project that addresses Transit Signal Priority (TSP) deployment issues. The report reviews National Transportation Communications for ITS Protocol (NTCIP) 1211 Signal Control and Prioritization (SCP) sta...
Photocopy of drawing (original drawing of Signal & Ordnance Warehouse ...
Photocopy of drawing (original drawing of Signal & Ordnance Warehouse in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) SECTIONS AND DETAILS - MacDill Air Force Base, Signal & Ordnance Warehouse, 7620 Hanger Loop Drive, Tampa, Hillsborough County, FL
Photocopy of drawing (original drawing of Signal & Ordnance Warehouse ...
Photocopy of drawing (original drawing of Signal & Ordnance Warehouse in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) PLANS, ELEVATIONS, SECTIONS AND DETAILS - MacDill Air Force Base, Signal & Ordnance Warehouse, 7620 Hanger Loop Drive, Tampa, Hillsborough County, FL
NASA Astrophysics Data System (ADS)
Qiu, Zhaoyang; Wang, Pei; Zhu, Jun; Tang, Bin
2016-12-01
Nyquist folding receiver (NYFR) is a novel ultra-wideband receiver architecture which can realize wideband receiving with a small amount of equipment. Linear frequency modulated/binary phase shift keying (LFM/BPSK) hybrid modulated signal is a novel kind of low probability interception signal with wide bandwidth. The NYFR is an effective architecture to intercept the LFM/BPSK signal and the LFM/BPSK signal intercepted by the NYFR will add the local oscillator modulation. A parameter estimation algorithm for the NYFR output signal is proposed. According to the NYFR prior information, the chirp singular value ratio spectrum is proposed to estimate the chirp rate. Then, based on the output self-characteristic, matching component function is designed to estimate Nyquist zone (NZ) index. Finally, matching code and subspace method are employed to estimate the phase change points and code length. Compared with the existing methods, the proposed algorithm has a better performance. It also has no need to construct a multi-channel structure, which means the computational complexity for the NZ index estimation is small. The simulation results demonstrate the efficacy of the proposed algorithm.
Stanford Hardware Development Program
NASA Technical Reports Server (NTRS)
Peterson, A.; Linscott, I.; Burr, J.
1986-01-01
Architectures for high performance, digital signal processing, particularly for high resolution, wide band spectrum analysis were developed. These developments are intended to provide instrumentation for NASA's Search for Extraterrestrial Intelligence (SETI) program. The real time signal processing is both formal and experimental. The efficient organization and optimal scheduling of signal processing algorithms were investigated. The work is complemented by efforts in processor architecture design and implementation. A high resolution, multichannel spectrometer that incorporates special purpose microcoded signal processors is being tested. A general purpose signal processor for the data from the multichannel spectrometer was designed to function as the processing element in a highly concurrent machine. The processor performance required for the spectrometer is in the range of 1000 to 10,000 million instructions per second (MIPS). Multiple node processor configurations, where each node performs at 100 MIPS, are sought. The nodes are microprogrammable and are interconnected through a network with high bandwidth for neighboring nodes, and medium bandwidth for nodes at larger distance. The implementation of both the current mutlichannel spectrometer and the signal processor as Very Large Scale Integration CMOS chip sets was commenced.
The SKA1 LOW telescope: system architecture and design performance
NASA Astrophysics Data System (ADS)
Waterson, Mark F.; Labate, Maria Grazia; Schnetler, Hermine; Wagg, Jeff; Turner, Wallace; Dewdney, Peter
2016-07-01
The SKA1-LOW radio telescope will be a low-frequency (50-350 MHz) aperture array located in Western Australia. Its scientific objectives will prioritize studies of the Epoch of Reionization and pulsar physics. Development of the telescope has been allocated to consortia responsible for the aperture array front end, timing distribution, signal and data transport, correlation and beamforming signal processors, infrastructure, monitor and control systems, and science data processing. This paper will describe the system architectural design and key performance parameters of the telescope and summarize the high-level sub-system designs of the consortia.
Establishing security of quantum key distribution without monitoring disturbance
NASA Astrophysics Data System (ADS)
Koashi, Masato
2015-10-01
In conventional quantum key distribution (QKD) protocols, the information leak to an eavesdropper is estimated through the basic principle of quantum mechanics dictated in the original version of Heisenberg's uncertainty principle. The amount of leaked information on a shared sifted key is bounded from above essentially by using information-disturbance trade-off relations, based on the amount of signal disturbance measured via randomly sampled or inserted probe signals. Here we discuss an entirely different avenue toward the private communication, which does not rely on the information disturbance trade-off relations and hence does not require a monitoring of signal disturbance. The independence of the amount of privacy amplification from that of disturbance tends to give it a high tolerance on the channel noises. The lifting of the burden of precise statistical estimation of disturbance leads to a favorable finite-key-size effect. A protocol based on the novel principle can be implemented by only using photon detectors and classical optics tools: a laser, a phase modulator, and an interferometer. The protocol resembles the differential-phase-shift QKD protocol in that both share a simple binary phase shift keying on a coherent train of weak pulses from a laser. The difference lies in the use of a variable-delay interferometer in the new protocol, which randomly changes the combination of pulse pairs to be superposed. This extra randomness has turned out to be enough to upper-bound the information extracted by the eavesdropper, regardless of how they have disturbed the quantum signal.
Excessive training impairs the insulin signal transduction in mice skeletal muscles.
Pereira, Bruno C; da Rocha, Alisson L; Pinto, Ana P; Pauli, José R; de Moura, Leandro P; Mekary, Rania A; de Freitas, Ellen C; da Silva, Adelino S R
2016-07-01
The main aim of this investigation was to verify the effects of overtraining (OT) on the insulin and inflammatory signaling pathways in mice skeletal muscles. Rodents were divided into control (CT), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up), and overtrained by running without inclination (OTR) groups. Rotarod, incremental load, exhaustive, and grip force tests were used to evaluate performance. Thirty-six hours after the grip force test, the extensor digitorum longus (EDL) and soleus were extracted for subsequent protein analyses. The three OT protocols led to similar responses of all performance evaluation tests. The phosphorylation of insulin receptor beta (pIRβ; Tyr), protein kinase B (pAkt; Ser473), and the protein levels of plasma membrane glucose transporter-4 (GLUT4) were lower in the EDL and soleus after the OTR/down protocol and in the soleus after the OTR/up and OTR protocols. While the pIRβ was lower after the OTR/up and OTR protocols, the pAkt was higher after the OTR/up in the EDL. The phosphorylation of IκB kinase alpha and beta (pIKKα/β; Ser180/181), stress-activated protein kinases/Jun amino-terminal kinases (pSAPK-JNK; Thr183/Tyr185), factor nuclear kappa B (pNFκB p65; Ser536), and insulin receptor substrate 1 (pIRS1; Ser307) were higher after the OTR/down protocol, but were not altered after the two other OT protocols. In summary, these data suggest that OT may lead to skeletal muscle insulin signaling pathway impairment, regardless of the predominance of eccentric contractions, although the insulin signal pathway impairment induced in OTR/up and OTR appeared to be muscle fiber-type specific. © 2016 Society for Endocrinology.
Comparison of H.323 and SIP for IP telephony signaling
NASA Astrophysics Data System (ADS)
Dalgic, Ismail; Fang, Hanlin
1999-11-01
Two standards currently compete for the dominance of IP telephony signaling: the H.323 protocol suite by ITU-T, and the Session Initiation Protocol (SIP) by IETF. Both of these signaling protocols provide mechanisms for call establishment and teardown, call control and supplementary services, and capability exchange. We investigate and compare these two protocols in terms of Functionality, Quality of Service (QoS), Scalability, Flexibility, Interoperability, and Ease of Implementation. For fairness of comparison, we consider similar scenarios for both protocols. In particular, we focus on scenarios that involve a gatekeeper for H.323, and a Proxy/Redirect server for SIP. The reason is that medium-to-large IP Telephony systems are not manageable without a gatekeeper or proxy server. We consider all three versions of H.323. In terms of functionality and services that can be supported, H.323 version 2 and SIP are very similar. However, supplementary services in H.323 are more rigorously defined, and therefore fewer interoperability issues are expected among its implementations. Furthermore, H.323 has taken more steps to ensure compatibility among its different versions, and to interoperate with PSTN. The two protocols are comparable in their QoS support [similar call setup delays, no support for resource reservation or class of service (CoS) setting], but H.323 version 3 will allow signaling of the requested CoS. SIP's primary advantages are (1) flexibility to add new features, and (2) relative ease of implementation and debugging. Finally, we note that H.323 and SIP are improving themselves by learning from each other, and the differences between them are diminishing with each new version.
Genomics-Based Security Protocols: From Plaintext to Cipherprotein
NASA Technical Reports Server (NTRS)
Shaw, Harry; Hussein, Sayed; Helgert, Hermann
2011-01-01
The evolving nature of the internet will require continual advances in authentication and confidentiality protocols. Nature provides some clues as to how this can be accomplished in a distributed manner through molecular biology. Cryptography and molecular biology share certain aspects and operations that allow for a set of unified principles to be applied to problems in either venue. A concept for developing security protocols that can be instantiated at the genomics level is presented. A DNA (Deoxyribonucleic acid) inspired hash code system is presented that utilizes concepts from molecular biology. It is a keyed-Hash Message Authentication Code (HMAC) capable of being used in secure mobile Ad hoc networks. It is targeted for applications without an available public key infrastructure. Mechanics of creating the HMAC are presented as well as a prototype HMAC protocol architecture. Security concepts related to the implementation differences between electronic domain security and genomics domain security are discussed.
Data-centric multiobjective QoS-aware routing protocol for body sensor networks.
Razzaque, Md Abdur; Hong, Choong Seon; Lee, Sungwon
2011-01-01
In this paper, we address Quality-of-Service (QoS)-aware routing issue for Body Sensor Networks (BSNs) in delay and reliability domains. We propose a data-centric multiobjective QoS-Aware routing protocol, called DMQoS, which facilitates the system to achieve customized QoS services for each traffic category differentiated according to the generated data types. It uses modular design architecture wherein different units operate in coordination to provide multiple QoS services. Their operation exploits geographic locations and QoS performance of the neighbor nodes and implements a localized hop-by-hop routing. Moreover, the protocol ensures (almost) a homogeneous energy dissipation rate for all routing nodes in the network through a multiobjective Lexicographic Optimization-based geographic forwarding. We have performed extensive simulations of the proposed protocol, and the results show that DMQoS has significant performance improvements over several state-of-the-art approaches.
Advanced information processing system: Authentication protocols for network communication
NASA Technical Reports Server (NTRS)
Harper, Richard E.; Adams, Stuart J.; Babikyan, Carol A.; Butler, Bryan P.; Clark, Anne L.; Lala, Jaynarayan H.
1994-01-01
In safety critical I/O and intercomputer communication networks, reliable message transmission is an important concern. Difficulties of communication and fault identification in networks arise primarily because the sender of a transmission cannot be identified with certainty, an intermediate node can corrupt a message without certainty of detection, and a babbling node cannot be identified and silenced without lengthy diagnosis and reconfiguration . Authentication protocols use digital signature techniques to verify the authenticity of messages with high probability. Such protocols appear to provide an efficient solution to many of these problems. The objective of this program is to develop, demonstrate, and evaluate intercomputer communication architectures which employ authentication. As a context for the evaluation, the authentication protocol-based communication concept was demonstrated under this program by hosting a real-time flight critical guidance, navigation and control algorithm on a distributed, heterogeneous, mixed redundancy system of workstations and embedded fault-tolerant computers.
Self-Configuration and Self-Optimization Process in Heterogeneous Wireless Networks
Guardalben, Lucas; Villalba, Luis Javier García; Buiati, Fábio; Sobral, João Bosco Mangueira; Camponogara, Eduardo
2011-01-01
Self-organization in Wireless Mesh Networks (WMN) is an emergent research area, which is becoming important due to the increasing number of nodes in a network. Consequently, the manual configuration of nodes is either impossible or highly costly. So it is desirable for the nodes to be able to configure themselves. In this paper, we propose an alternative architecture for self-organization of WMN based on Optimized Link State Routing Protocol (OLSR) and the ad hoc on demand distance vector (AODV) routing protocols as well as using the technology of software agents. We argue that the proposed self-optimization and self-configuration modules increase the throughput of network, reduces delay transmission and network load, decreases the traffic of HELLO messages according to network’s scalability. By simulation analysis, we conclude that the self-optimization and self-configuration mechanisms can significantly improve the performance of OLSR and AODV protocols in comparison to the baseline protocols analyzed. PMID:22346584
Self-configuration and self-optimization process in heterogeneous wireless networks.
Guardalben, Lucas; Villalba, Luis Javier García; Buiati, Fábio; Sobral, João Bosco Mangueira; Camponogara, Eduardo
2011-01-01
Self-organization in Wireless Mesh Networks (WMN) is an emergent research area, which is becoming important due to the increasing number of nodes in a network. Consequently, the manual configuration of nodes is either impossible or highly costly. So it is desirable for the nodes to be able to configure themselves. In this paper, we propose an alternative architecture for self-organization of WMN based on Optimized Link State Routing Protocol (OLSR) and the ad hoc on demand distance vector (AODV) routing protocols as well as using the technology of software agents. We argue that the proposed self-optimization and self-configuration modules increase the throughput of network, reduces delay transmission and network load, decreases the traffic of HELLO messages according to network's scalability. By simulation analysis, we conclude that the self-optimization and self-configuration mechanisms can significantly improve the performance of OLSR and AODV protocols in comparison to the baseline protocols analyzed.
CW-OSL measurement protocols using optical fibre Al2O3:C dosemeters.
Edmund, J M; Andersen, C E; Marckmann, C J; Aznar, M C; Akselrod, M S; Bøtter-Jensen, L
2006-01-01
A new system for in vivo dosimetry during radiotherapy has been introduced. Luminescence signals from a small crystal of carbon-doped aluminium oxide (Al2O3:C) are transmitted through an optical fibre cable to an instrument that contains optical filters, a photomultiplier tube and a green (532 nm) laser. The prime output is continuous wave optically stimulated luminescence (CW-OSL) used for the measurement of the integrated dose. We demonstrate a measurement protocol with high reproducibility and improved linearity, which is suitable for clinical dosimetry. A crystal-specific minimum pre-dose is necessary for signal stabilisation. Simple background subtraction only partially removes the residual signal present at long integration times. Instead, the measurement protocol separates the decay curve into three individual components and only the fast and medium components were used.
Protocol for Communication Networking for Formation Flying
NASA Technical Reports Server (NTRS)
Jennings, Esther; Okino, Clayton; Gao, Jay; Clare, Loren
2009-01-01
An application-layer protocol and a network architecture have been proposed for data communications among multiple autonomous spacecraft that are required to fly in a precise formation in order to perform scientific observations. The protocol could also be applied to other autonomous vehicles operating in formation, including robotic aircraft, robotic land vehicles, and robotic underwater vehicles. A group of spacecraft or other vehicles to which the protocol applies could be characterized as a precision-formation- flying (PFF) network, and each vehicle could be characterized as a node in the PFF network. In order to support precise formation flying, it would be necessary to establish a corresponding communication network, through which the vehicles could exchange position and orientation data and formation-control commands. The communication network must enable communication during early phases of a mission, when little positional knowledge is available. Particularly during early mission phases, the distances among vehicles may be so large that communication could be achieved only by relaying across multiple links. The large distances and need for omnidirectional coverage would limit communication links to operation at low bandwidth during these mission phases. Once the vehicles were in formation and distances were shorter, the communication network would be required to provide high-bandwidth, low-jitter service to support tight formation-control loops. The proposed protocol and architecture, intended to satisfy the aforementioned and other requirements, are based on a standard layered-reference-model concept. The proposed application protocol would be used in conjunction with conventional network, data-link, and physical-layer protocols. The proposed protocol includes the ubiquitous Institute of Electrical and Electronics Engineers (IEEE) 802.11 medium access control (MAC) protocol to be used in the datalink layer. In addition to its widespread and proven use in diverse local-area networks, this protocol offers both (1) a random- access mode needed for the early PFF deployment phase and (2) a time-bounded-services mode needed during PFF-maintenance operations. Switching between these two modes could be controlled by upper-layer entities using standard link-management mechanisms. Because the early deployment phase of a PFF mission can be expected to involve multihop relaying to achieve network connectivity (see figure), the proposed protocol includes the open shortest path first (OSPF) network protocol that is commonly used in the Internet. Each spacecraft in a PFF network would be in one of seven distinct states as the mission evolved from initial deployment, through coarse formation, and into precise formation. Reconfiguration of the formation to perform different scientific observations would also cause state changes among the network nodes. The application protocol provides for recognition and tracking of the seven states for each node and for protocol changes under specified conditions to adapt the network and satisfy communication requirements associated with the current PFF mission phase. Except during early deployment, when peer-to-peer random access discovery methods would be used, the application protocol provides for operation in a centralized manner.
Angleri, Vitor; Ugrinowitsch, Carlos; Libardi, Cleiton Augusto
2017-02-01
The aim of this study was to compare the effects of crescent pyramid (CP) and drop-set (DS) systems with traditional resistance training (TRAD) with equalized total training volume (TTV) on maximum dynamic strength (1-RM), muscle cross-sectional area (CSA), pennation angle (PA), and fascicle length (FL). Thirty-two volunteers had their legs randomized in a within-subject design in TRAD (3-5 sets of 6-12 repetitions at 75% 1-RM), CP (3-5 sets of 6-15 repetitions at 65-85% 1-RM), and DS (3-5 sets of ~50-75% 1-RM to muscle failure) protocols. Each leg was trained for 12 weeks. Participants had one leg fixed in the TRAD while the contralateral leg performed either CP or DS to allow for TTV equalization. The CSA increased significantly and similarly for all protocols (TRAD: 7.6%; CP: 7.5%; DS: 7.8%). All protocols showed significant and similar increases in leg press (TRAD = 25.9%; CP = 25.9%; DS = 24.9%) and leg extension 1-RM loads (TRAD = 16.6%; CP = 16.4%; DS = 17.1%). All protocols increased PA (TRAD = 10.6%; CP = 11.0%; DS = 10.3%) and FL (TRAD = 8.9%; CP = 8.9%; DS = 9.1%) similarly. CP and DS systems do not promote greater gains in strength, muscle hypertrophy and changes in muscle architecture compared to traditional resistance training.
Rate-loss analysis of an efficient quantum repeater architecture
NASA Astrophysics Data System (ADS)
Guha, Saikat; Krovi, Hari; Fuchs, Christopher A.; Dutton, Zachary; Slater, Joshua A.; Simon, Christoph; Tittel, Wolfgang
2015-08-01
We analyze an entanglement-based quantum key distribution (QKD) architecture that uses a linear chain of quantum repeaters employing photon-pair sources, spectral-multiplexing, linear-optic Bell-state measurements, multimode quantum memories, and classical-only error correction. Assuming perfect sources, we find an exact expression for the secret-key rate, and an analytical description of how errors propagate through the repeater chain, as a function of various loss-and-noise parameters of the devices. We show via an explicit analytical calculation, which separately addresses the effects of the principle nonidealities, that this scheme achieves a secret-key rate that surpasses the Takeoka-Guha-Wilde bound—a recently found fundamental limit to the rate-vs-loss scaling achievable by any QKD protocol over a direct optical link—thereby providing one of the first rigorous proofs of the efficacy of a repeater protocol. We explicitly calculate the end-to-end shared noisy quantum state generated by the repeater chain, which could be useful for analyzing the performance of other non-QKD quantum protocols that require establishing long-distance entanglement. We evaluate that shared state's fidelity and the achievable entanglement-distillation rate, as a function of the number of repeater nodes, total range, and various loss-and-noise parameters of the system. We extend our theoretical analysis to encompass sources with nonzero two-pair-emission probability, using an efficient exact numerical evaluation of the quantum state propagation and measurements. We expect our results to spur formal rate-loss analysis of other repeater protocols and also to provide useful abstractions to seed analyses of quantum networks of complex topologies.
Integrated Operations Architecture Technology Assessment Study
NASA Technical Reports Server (NTRS)
2001-01-01
As part of NASA's Integrated Operations Architecture (IOA) Baseline, NASA will consolidate all communications operations. including ground-based, near-earth, and deep-space communications, into a single integrated network. This network will make maximum use of commercial equipment, services and standards. It will be an Internet Protocol (IP) based network. This study supports technology development planning for the IOA. The technical problems that may arise when LEO mission spacecraft interoperate with commercial satellite services were investigated. Commercial technology and services that could support the IOA were surveyed, and gaps in the capability of existing technology and techniques were identified. Recommendations were made on which gaps should be closed by means of NASA research and development funding. Several findings emerged from the interoperability assessment: in the NASA mission set, there is a preponderance of small. inexpensive, low data rate science missions; proposed commercial satellite communications services could potentially provide TDRSS-like data relay functions; and. IP and related protocols, such as TCP, require augmentation to operate in the mobile networking environment required by the space-to-ground portion of the IOA. Five case studies were performed in the technology assessment. Each case represented a realistic implementation of the near-earth portion of the IOA. The cases included the use of frequencies at L-band, Ka-band and the optical spectrum. The cases also represented both space relay architectures and direct-to-ground architectures. Some of the main recommendations resulting from the case studies are: select an architecture for the LEO/MEO communications network; pursue the development of a Ka-band space-qualified transmitter (and possibly a receiver), and a low-cost Ka-band ground terminal for a direct-to-ground network, pursue the development of an Inmarsat (L-band) space-qualified transceiver to implement a global, low data rate network for LEO/MEO, mission spacecraft; and, pursue developmental research for a miniaturized, high data rate optical transceiver.
Efficient Security Mechanisms for the Border Gateway Routing Protocol
1997-08-22
Finding Algorithm for Loop- Free Routing. IEEE/ACM Transactions on Networking, 5(1):148{160, Feb. 1997. [7] International Standards Organization. ISO/IEC...Jersey 07974, Feb. 1985. ftp://netlib.att.com/netlib/att/cs/ cstr /117.ps.Z. [16] S. L. Murphy. Presentation in Panel on \\Security Architecture for the
GINSU: Guaranteed Internet Stack Utilization
2005-11-01
Computer Architecture Data Links, Internet , Protocol Stacks 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY...AFRL-IF-RS-TR-2005-383 Final Technical Report November 2005 GINSU: GUARANTEED INTERNET STACK UTILIZATION Trusted... Information Systems, Inc. Sponsored by Defense Advanced Research Projects Agency DARPA Order No. ARPS APPROVED FOR PUBLIC
Progress towards a microwave-based high-fidelity Toffoli gate with superconducting qubits
NASA Astrophysics Data System (ADS)
Rigetti, Chad; Chow, Jerry; Corcoles, Antonio; Rozen, Jim; Keefe, George; Rothwell, Mary Beth; Rohrs, Jack; Borstelmann, Mark; Divincenzo, David; Ketchen, Mark; Steffen, Matthias
2011-03-01
We describe recent progress at IBM towards a microwave-based implementation of the Toffoli gate using three capacitively shunted flux qubits dispersively coupled to a resonator. We discuss the device architecture and the microwave protocol, along with expected limits to gate fidelity and scaling.
Office Automation and the Navy Finance Center.
1984-09-01
inexpensive premise-distribution cable. - r wide range o protocols and transmission speeds. - Modem -pooling. Modems can be accessed on an as-needeo...the IBM System Nerworr Architecture (SNA and is composed of four 56K baud ii ne [Ref. IT]. 4. Protocop L ers NFC has Kodak and Royal copiers
SoyBase Simple Semantic Web Architecture and Protocol (SSWAP) Services
USDA-ARS?s Scientific Manuscript database
Semantic web technologies offer the potential to link internet resources and data by shared concepts without having to rely on absolute lexical matches. Thus two web sites or web resources which are concerned with similar data types could be identified based on similar semantics. In the biological...
DFT algorithms for bit-serial GaAs array processor architectures
NASA Technical Reports Server (NTRS)
Mcmillan, Gary B.
1988-01-01
Systems and Processes Engineering Corporation (SPEC) has developed an innovative array processor architecture for computing Fourier transforms and other commonly used signal processing algorithms. This architecture is designed to extract the highest possible array performance from state-of-the-art GaAs technology. SPEC's architectural design includes a high performance RISC processor implemented in GaAs, along with a Floating Point Coprocessor and a unique Array Communications Coprocessor, also implemented in GaAs technology. Together, these data processors represent the latest in technology, both from an architectural and implementation viewpoint. SPEC has examined numerous algorithms and parallel processing architectures to determine the optimum array processor architecture. SPEC has developed an array processor architecture with integral communications ability to provide maximum node connectivity. The Array Communications Coprocessor embeds communications operations directly in the core of the processor architecture. A Floating Point Coprocessor architecture has been defined that utilizes Bit-Serial arithmetic units, operating at very high frequency, to perform floating point operations. These Bit-Serial devices reduce the device integration level and complexity to a level compatible with state-of-the-art GaAs device technology.
Security for IP Multimedia Services in the 3GPP Third Generation Mobile System.
ERIC Educational Resources Information Center
Horn, G.; Kroselberg, D.; Muller, K.
2003-01-01
Presents an overview of the security architecture of the IP multimedia core network subsystem (IMS) of the third generation mobile system, known in Europe as UMTS. Discusses IMS security requirements; IMS security architecture; authentication between IMS user and home network; integrity and confidentiality for IMS signalling; and future aspects of…
Complex Event Recognition Architecture
NASA Technical Reports Server (NTRS)
Fitzgerald, William A.; Firby, R. James
2009-01-01
Complex Event Recognition Architecture (CERA) is the name of a computational architecture, and software that implements the architecture, for recognizing complex event patterns that may be spread across multiple streams of input data. One of the main components of CERA is an intuitive event pattern language that simplifies what would otherwise be the complex, difficult tasks of creating logical descriptions of combinations of temporal events and defining rules for combining information from different sources over time. In this language, recognition patterns are defined in simple, declarative statements that combine point events from given input streams with those from other streams, using conjunction, disjunction, and negation. Patterns can be built on one another recursively to describe very rich, temporally extended combinations of events. Thereafter, a run-time matching algorithm in CERA efficiently matches these patterns against input data and signals when patterns are recognized. CERA can be used to monitor complex systems and to signal operators or initiate corrective actions when anomalous conditions are recognized. CERA can be run as a stand-alone monitoring system, or it can be integrated into a larger system to automatically trigger responses to changing environments or problematic situations.
Study on Global GIS architecture and its key technologies
NASA Astrophysics Data System (ADS)
Cheng, Chengqi; Guan, Li; Lv, Xuefeng
2009-09-01
Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.
Study on Global GIS architecture and its key technologies
NASA Astrophysics Data System (ADS)
Cheng, Chengqi; Guan, Li; Lv, Xuefeng
2010-11-01
Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.
The AI Bus architecture for distributed knowledge-based systems
NASA Technical Reports Server (NTRS)
Schultz, Roger D.; Stobie, Iain
1991-01-01
The AI Bus architecture is layered, distributed object oriented framework developed to support the requirements of advanced technology programs for an order of magnitude improvement in software costs. The consequent need for highly autonomous computer systems, adaptable to new technology advances over a long lifespan, led to the design of an open architecture and toolbox for building large scale, robust, production quality systems. The AI Bus accommodates a mix of knowledge based and conventional components, running on heterogeneous, distributed real world and testbed environment. The concepts and design is described of the AI Bus architecture and its current implementation status as a Unix C++ library or reusable objects. Each high level semiautonomous agent process consists of a number of knowledge sources together with interagent communication mechanisms based on shared blackboards and message passing acquaintances. Standard interfaces and protocols are followed for combining and validating subsystems. Dynamic probes or demons provide an event driven means for providing active objects with shared access to resources, and each other, while not violating their security.
Physical layer one-time-pad data encryption through synchronized semiconductor laser networks
NASA Astrophysics Data System (ADS)
Argyris, Apostolos; Pikasis, Evangelos; Syvridis, Dimitris
2016-02-01
Semiconductor lasers (SL) have been proven to be a key device in the generation of ultrafast true random bit streams. Their potential to emit chaotic signals under conditions with desirable statistics, establish them as a low cost solution to cover various needs, from large volume key generation to real-time encrypted communications. Usually, only undemanding post-processing is needed to convert the acquired analog timeseries to digital sequences that pass all established tests of randomness. A novel architecture that can generate and exploit these true random sequences is through a fiber network in which the nodes are semiconductor lasers that are coupled and synchronized to central hub laser. In this work we show experimentally that laser nodes in such a star network topology can synchronize with each other through complex broadband signals that are the seed to true random bit sequences (TRBS) generated at several Gb/s. The potential for each node to access real-time generated and synchronized with the rest of the nodes random bit streams, through the fiber optic network, allows to implement an one-time-pad encryption protocol that mixes the synchronized true random bit sequence with real data at Gb/s rates. Forward-error correction methods are used to reduce the errors in the TRBS and the final error rate at the data decoding level. An appropriate selection in the sampling methodology and properties, as well as in the physical properties of the chaotic seed signal through which network locks in synchronization, allows an error free performance.
Cislan-2 extension final document by University of Twente (Netherlands)
NASA Astrophysics Data System (ADS)
Niemegeers, Ignas; Baumann, Frank; Beuwer, Wim; Jordense, Marcel; Pras, Aiko; Schutte, Leon; Tracey, Ian
1992-01-01
Results of worked performed under the so called Cislan extension contract are presented. The adaptation of the Cislan 2 prototype design to an environment of interconnected Local Area Networks (LAN's) instead of a single 802.5 token ring LAN is considered. In order to extend the network architecture, the Interconnection Function (IF) protocol layer was subdivided into two protocol layers: a new IF layer, and below the Medium Enhancement (ME) protocol layer. Some small enhancements to the distributed bandwidth allocation protocol were developed, which in fact are also applicable to the 'normal' Cislan 2 system. The new services and protocols are described together with some scenarios and requirements for the new internetting Cislan 2 system. How to overcome the degradation of the quality of speech due to packet loss on the LAN subsystem was studied. Experiments were planned in order to measure this speech quality degradation. Simulations were performed of two Cislan subsystems, the bandwidth allocation protocol and the clock synchronization mechanism. Results on both simulations, performed on SUN workstations using QNAP as a simulation tool, are given. Results of the simulations of the clock synchronization mechanism, and results of the simulation of the distributed bandwidth allocation protocol are given.
Increasing the Automation and Autonomy for Spacecraft Operations with Criteria Action Table
NASA Technical Reports Server (NTRS)
Li, Zhen-Ping; Savki, Cetin
2005-01-01
The Criteria Action Table (CAT) is an automation tool developed for monitoring real time system messages for specific events and processes in order to take user defined actions based on a set of user-defined rules. CAT was developed by Lockheed Martin Space Operations as a part of a larger NASA effort at the Goddard Space Flight Center (GSFC) to create a component-based, middleware-based, and standard-based general purpose ground system architecture referred as GMSEC - the GSFC Mission Services Evolution Center. CAT has been integrated into the upgraded ground systems for Tropical Rainfall Measuring Mission (TRMM) and Small Explorer (SMEX) satellites and it plays the central role in their automation effort to reduce the cost and increase the reliability for spacecraft operations. The GMSEC architecture provides a standard communication interface and protocol for components to publish/describe messages to an information bus. It also provides a standard message definition so components can send and receive messages to the bus interface rather than each other, thus reducing the component-to-component coupling, interface, protocols, and link (socket) management. With the GMSEC architecture, components can publish standard event messages to the bus for all nominal, significant, and surprising events in regard to satellite, celestial, ground system, or any other activity. In addition to sending standard event messages, each GMSEC compliant component is required to accept and process GMSEC directive request messages.
Food for thought: how nutrients regulate root system architecture.
Shahzad, Zaigham; Amtmann, Anna
2017-10-01
The spatial arrangement of the plant root system (root system architecture, RSA) is very sensitive to edaphic and endogenous signals that report on the nutrient status of soil and plant. Signalling pathways underpinning RSA responses to individual nutrients, particularly nitrate and phosphate, have been unravelled. Researchers have now started to investigate interactive effects between two or more nutrients on RSA. Several proteins enabling crosstalk between signalling pathways have recently been identified. RSA is potentially an important trait for sustainable and/or marginal agriculture. It is generally assumed that RSA responses are adaptive and optimise nutrient uptake in a given environment, but hard evidence for this paradigm is still sparse. Here we summarize recent advances made in these areas of research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Chatrath, Jatin; Aziz, Mohsin; Helaoui, Mohamed
2018-01-01
Reconfigurable and multi-standard RF front-ends for wireless communication and sensor networks have gained importance as building blocks for the Internet of Things. Simpler and highly-efficient transmitter architectures, which can transmit better quality signals with reduced impairments, are an important step in this direction. In this regard, mixer-less transmitter architecture, namely, the three-way amplitude modulator-based transmitter, avoids the use of imperfect mixers and frequency up-converters, and their resulting distortions, leading to an improved signal quality. In this work, an augmented memory polynomial-based model for the behavioral modeling of such mixer-less transmitter architecture is proposed. Extensive simulations and measurements have been carried out in order to validate the accuracy of the proposed modeling strategy. The performance of the proposed model is evaluated using normalized mean square error (NMSE) for long-term evolution (LTE) signals. NMSE for a LTE signal of 1.4 MHz bandwidth with 100,000 samples for digital combining and analog combining are recorded as −36.41 dB and −36.9 dB, respectively. Similarly, for a 5 MHz signal the proposed models achieves −31.93 dB and −32.08 dB NMSE using digital and analog combining, respectively. For further validation of the proposed model, amplitude-to-amplitude (AM-AM), amplitude-to-phase (AM-PM), and the spectral response of the modeled and measured data are plotted, reasonably meeting the desired modeling criteria. PMID:29510501
Uncoupling File System Components for Bridging Legacy and Modern Storage Architectures
NASA Astrophysics Data System (ADS)
Golpayegani, N.; Halem, M.; Tilmes, C.; Prathapan, S.; Earp, D. N.; Ashkar, J. S.
2016-12-01
Long running Earth Science projects can span decades of architectural changes in both processing and storage environments. As storage architecture designs change over decades such projects need to adjust their tools, systems, and expertise to properly integrate such new technologies with their legacy systems. Traditional file systems lack the necessary support to accommodate such hybrid storage infrastructure resulting in more complex tool development to encompass all possible storage architectures used for the project. The MODIS Adaptive Processing System (MODAPS) and the Level 1 and Atmospheres Archive and Distribution System (LAADS) is an example of a project spanning several decades which has evolved into a hybrid storage architecture. MODAPS/LAADS has developed the Lightweight Virtual File System (LVFS) which ensures a seamless integration of all the different storage architectures, including standard block based POSIX compliant storage disks, to object based architectures such as the S3 compliant HGST Active Archive System, and the Seagate Kinetic disks utilizing the Kinetic Protocol. With LVFS, all analysis and processing tools used for the project continue to function unmodified regardless of the underlying storage architecture enabling MODAPS/LAADS to easily integrate any new storage architecture without the costly need to modify existing tools to utilize such new systems. Most file systems are designed as a single application responsible for using metadata to organizing the data into a tree, determine the location for data storage, and a method of data retrieval. We will show how LVFS' unique approach of treating these components in a loosely coupled fashion enables it to merge different storage architectures into a single uniform storage system which bridges the underlying hybrid architecture.
Atypical Diabetic Foot Ulcer Keratinocyte Protein Signaling Correlates with Impaired Wound Healing.
Hoke, Glenn D; Ramos, Corrine; Hoke, Nicholas N; Crossland, Mary C; Shawler, Lisa G; Boykin, Joseph V
2016-01-01
Diabetes mellitus is associated with chronic diabetic foot ulcers (DFUs) and wound infections often resulting in lower extremity amputations. The protein signaling architecture of the mechanisms responsible for impaired DFU healing has not been characterized. In this preliminary clinical study, the intracellular levels of proteins involved in signal transduction networks relevant to wound healing were non-biasedly measured using reverse-phase protein arrays (RPPA) in keratinocytes isolated from DFU wound biopsies. RPPA allows for the simultaneous documentation and assessment of the signaling pathways active in each DFU. Thus, RPPA provides for the accurate mapping of wound healing pathways associated with apoptosis, proliferation, senescence, survival, and angiogenesis. From the study data, we have identified potential diagnostic, or predictive, biomarkers for DFU wound healing derived from the ratios of quantified signaling protein expressions within interconnected pathways. These biomarkers may allow physicians to personalize therapeutic strategies for DFU management on an individual basis based upon the signaling architecture present in each wound. Additionally, we have identified altered, interconnected signaling pathways within DFU keratinocytes that may help guide the development of therapeutics to modulate these dysregulated pathways, many of which parallel the therapeutic targets which are the hallmarks of molecular therapies for treating cancer.
Quantum neural network-based EEG filtering for a brain-computer interface.
Gandhi, Vaibhav; Prasad, Girijesh; Coyle, Damien; Behera, Laxmidhar; McGinnity, Thomas Martin
2014-02-01
A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics. The results from a number of benchmark tests show that simple signals such as dc, staircase dc, and sinusoidal signals embedded within high noise can be accurately filtered and particle swarm optimization can be employed to select model parameters. The RQNN filtering procedure is applied in a two-class motor imagery-based brain-computer interface where the objective was to filter electroencephalogram (EEG) signals before feature extraction and classification to increase signal separability. A two-step inner-outer fivefold cross-validation approach is utilized to select the algorithm parameters subject-specifically for nine subjects. It is shown that the subject-specific RQNN EEG filtering significantly improves brain-computer interface performance compared to using only the raw EEG or Savitzky-Golay filtered EEG across multiple sessions.
Medical Signal-Conditioning and Data-Interface System
NASA Technical Reports Server (NTRS)
Braun, Jeffrey; Jacobus, charles; Booth, Scott; Suarez, Michael; Smith, Derek; Hartnagle, Jeffrey; LePrell, Glenn
2006-01-01
A general-purpose portable, wearable electronic signal-conditioning and data-interface system is being developed for medical applications. The system can acquire multiple physiological signals (e.g., electrocardiographic, electroencephalographic, and electromyographic signals) from sensors on the wearer s body, digitize those signals that are received in analog form, preprocess the resulting data, and transmit the data to one or more remote location(s) via a radiocommunication link and/or the Internet. The system includes a computer running data-object-oriented software that can be programmed to configure the system to accept almost any analog or digital input signals from medical devices. The computing hardware and software implement a general-purpose data-routing-and-encapsulation architecture that supports tagging of input data and routing the data in a standardized way through the Internet and other modern packet-switching networks to one or more computer(s) for review by physicians. The architecture supports multiple-site buffering of data for redundancy and reliability, and supports both real-time and slower-than-real-time collection, routing, and viewing of signal data. Routing and viewing stations support insertion of automated analysis routines to aid in encoding, analysis, viewing, and diagnosis.
Rajan, J Pandia; Rajan, S Edward
2018-01-01
Wireless physiological signal monitoring system designing with secured data communication in the health care system is an important and dynamic process. We propose a signal monitoring system using NI myRIO connected with the wireless body sensor network through multi-channel signal acquisition method. Based on the server side validation of the signal, the data connected to the local server is updated in the cloud. The Internet of Things (IoT) architecture is used to get the mobility and fast access of patient data to healthcare service providers. This research work proposes a novel architecture for wireless physiological signal monitoring system using ubiquitous healthcare services by virtual Internet of Things. We showed an improvement in method of access and real time dynamic monitoring of physiological signal of this remote monitoring system using virtual Internet of thing approach. This remote monitoring and access system is evaluated in conventional value. This proposed system is envisioned to modern smart health care system by high utility and user friendly in clinical applications. We claim that the proposed scheme significantly improves the accuracy of the remote monitoring system compared to the other wireless communication methods in clinical system.
Atypical Diabetic Foot Ulcer Keratinocyte Protein Signaling Correlates with Impaired Wound Healing
Hoke, Glenn D.; Ramos, Corrine; Hoke, Nicholas N.; Crossland, Mary C.; Shawler, Lisa G.
2016-01-01
Diabetes mellitus is associated with chronic diabetic foot ulcers (DFUs) and wound infections often resulting in lower extremity amputations. The protein signaling architecture of the mechanisms responsible for impaired DFU healing has not been characterized. In this preliminary clinical study, the intracellular levels of proteins involved in signal transduction networks relevant to wound healing were non-biasedly measured using reverse-phase protein arrays (RPPA) in keratinocytes isolated from DFU wound biopsies. RPPA allows for the simultaneous documentation and assessment of the signaling pathways active in each DFU. Thus, RPPA provides for the accurate mapping of wound healing pathways associated with apoptosis, proliferation, senescence, survival, and angiogenesis. From the study data, we have identified potential diagnostic, or predictive, biomarkers for DFU wound healing derived from the ratios of quantified signaling protein expressions within interconnected pathways. These biomarkers may allow physicians to personalize therapeutic strategies for DFU management on an individual basis based upon the signaling architecture present in each wound. Additionally, we have identified altered, interconnected signaling pathways within DFU keratinocytes that may help guide the development of therapeutics to modulate these dysregulated pathways, many of which parallel the therapeutic targets which are the hallmarks of molecular therapies for treating cancer. PMID:27840833
Front end design of smartphone-based mobile health
NASA Astrophysics Data System (ADS)
Zhang, Changfan; He, Lingsong; Gao, Zhiqiang; Ling, Cong; Du, Jianhao
2015-02-01
Mobile health has been a new trend all over the world with the rapid development of intelligent terminals and mobile internet. It can help patients monitor health in-house and is convenient for doctors to diagnose remotely. Smart-phone-based mobile health has big advantages in cost and data sharing. Front end design of it mainly focuses on two points: one is implementation of medical sensors aimed at measuring kinds of medical signal; another is acquisition of medical signal from sensors to smart phone. In this paper, the above two aspects were both discussed. First, medical sensor implementation was proposed to refer to mature measurement solutions with ECG (electrocardiograph) sensor design taken for example. And integrated chip using can simplify design. Then second, typical data acquisition architecture of smart phones, namely Bluetooth and MIC (microphone)-based architecture, were compared. Bluetooth architecture should be equipped with an acquisition card; MIC design uses sound card of smart phone instead. Smartphone-based virtual instrument app design corresponding to above acquisition architecture was discussed. In experiments, Bluetooth and MIC architecture were used to acquire blood pressure and ECG data respectively. The results showed that Bluetooth design can guarantee high accuracy during the acquisition and transmission process, and MIC design is competitive because of low cost and convenience.
Lopez-Iturri, Peio; Aguirre, Erik; Trigo, Jesús Daniel; Astrain, José Javier; Azpilicueta, Leyre; Serrano, Luis; Villadangos, Jesús; Falcone, Francisco
2018-01-29
In the context of hospital management and operation, Intensive Care Units (ICU) are one of the most challenging in terms of time responsiveness and criticality, in which adequate resource management and signal processing play a key role in overall system performance. In this work, a context aware Intensive Care Unit is implemented and analyzed to provide scalable signal acquisition capabilities, as well as to provide tracking and access control. Wireless channel analysis is performed by means of hybrid optimized 3D Ray Launching deterministic simulation to assess potential interference impact as well as to provide required coverage/capacity thresholds for employed transceivers. Wireless system operation within the ICU scenario, considering conventional transceiver operation, is feasible in terms of quality of service for the complete scenario. Extensive measurements of overall interference levels have also been carried out, enabling subsequent adequate coverage/capacity estimations, for a set of Zigbee based nodes. Real system operation has been tested, with ad-hoc designed Zigbee wireless motes, employing lightweight communication protocols to minimize energy and bandwidth usage. An ICU information gathering application and software architecture for Visitor Access Control has been implemented, providing monitoring of the Boxes external doors and the identification of visitors via a RFID system. The results enable a solution to provide ICU access control and tracking capabilities previously not exploited, providing a step forward in the implementation of a Smart Health framework.
Low power adder based auditory filter architecture.
Rahiman, P F Khaleelur; Jayanthi, V S
2014-01-01
Cochlea devices are powered up with the help of batteries and they should possess long working life to avoid replacing of devices at regular interval of years. Hence the devices with low power consumptions are required. In cochlea devices there are numerous filters, each responsible for frequency variant signals, which helps in identifying speech signals of different audible range. In this paper, multiplierless lookup table (LUT) based auditory filter is implemented. Power aware adder architectures are utilized to add the output samples of the LUT, available at every clock cycle. The design is developed and modeled using Verilog HDL, simulated using Mentor Graphics Model-Sim Simulator, and synthesized using Synopsys Design Compiler tool. The design was mapped to TSMC 65 nm technological node. The standard ASIC design methodology has been adapted to carry out the power analysis. The proposed FIR filter architecture has reduced the leakage power by 15% and increased its performance by 2.76%.
Recurrent cerebellar architecture solves the motor-error problem.
Porrill, John; Dean, Paul; Stone, James V.
2004-01-01
Current views of cerebellar function have been heavily influenced by the models of Marr and Albus, who suggested that the climbing fibre input to the cerebellum acts as a teaching signal for motor learning. It is commonly assumed that this teaching signal must be motor error (the difference between actual and correct motor command), but this approach requires complex neural structures to estimate unobservable motor error from its observed sensory consequences. We have proposed elsewhere a recurrent decorrelation control architecture in which Marr-Albus models learn without requiring motor error. Here, we prove convergence for this architecture and demonstrate important advantages for the modular control of systems with multiple degrees of freedom. These results are illustrated by modelling adaptive plant compensation for the three-dimensional vestibular ocular reflex. This provides a functional role for recurrent cerebellar connectivity, which may be a generic anatomical feature of projections between regions of cerebral and cerebellar cortex. PMID:15255096
Software Architecture of Sensor Data Distribution In Planetary Exploration
NASA Technical Reports Server (NTRS)
Lee, Charles; Alena, Richard; Stone, Thom; Ossenfort, John; Walker, Ed; Notario, Hugo
2006-01-01
Data from mobile and stationary sensors will be vital in planetary surface exploration. The distribution and collection of sensor data in an ad-hoc wireless network presents a challenge. Irregular terrain, mobile nodes, new associations with access points and repeaters with stronger signals as the network reconfigures to adapt to new conditions, signal fade and hardware failures can cause: a) Data errors; b) Out of sequence packets; c) Duplicate packets; and d) Drop out periods (when node is not connected). To mitigate the effects of these impairments, a robust and reliable software architecture must be implemented. This architecture must also be tolerant of communications outages. This paper describes such a robust and reliable software infrastructure that meets the challenges of a distributed ad hoc network in a difficult environment and presents the results of actual field experiments testing the principles and actual code developed.
NASA Technical Reports Server (NTRS)
Albus, James S.
1996-01-01
The Real-time Control System (RCS) developed at NIST and elsewhere over the past two decades defines a reference model architecture for design and analysis of complex intelligent control systems. The RCS architecture consists of a hierarchically layered set of functional processing modules connected by a network of communication pathways. The primary distinguishing feature of the layers is the bandwidth of the control loops. The characteristic bandwidth of each level is determined by the spatial and temporal integration window of filters, the temporal frequency of signals and events, the spatial frequency of patterns, and the planning horizon and granularity of the planners that operate at each level. At each level, tasks are decomposed into sequential subtasks, to be performed by cooperating sets of subordinate agents. At each level, signals from sensors are filtered and correlated with spatial and temporal features that are relevant to the control function being implemented at that level.
Course 6: Physics of Composite Cell Membrane and Actin Based Cytoskeleton
NASA Astrophysics Data System (ADS)
Sackmann, E.; Bausch, A. R.; Vonna, L.
1 Architecture of composite cell membranes 1.1 The lipid/protein bilayer is a multicomponent smectic phase with mosaic like architecture 1.2 The spectrin/actin cytoskeleton as hyperelastic cell stabilizer 1.3 The actin cortex: Architecture and function 2 Physics of the actin based cytoskeleton 2.1 Actin is a living semiflexible polymer 2.2 Actin network as viscoelastic body 2.3 Correlation between macroscopic viscoelasticity and molecular 3 Heterogeneous actin gels in cells and biological function 3.1 Manipulation of actin gels 3.2 Control of organization and function of actin cortex by cell signalling 4 Micromechanics and microrheometry of cells 5 Activation of endothelial cells: On the possibility of formation of stress fibers as phase transition of actin-network triggered by cell signalling pathways 6 On cells as adaptive viscoplastic bodies 7 Controll of cellular protrusions controlled by actin/myosin cortex
Software defined radio (SDR) architecture for concurrent multi-satellite communications
NASA Astrophysics Data System (ADS)
Maheshwarappa, Mamatha R.
SDRs have emerged as a viable approach for space communications over the last decade by delivering low-cost hardware and flexible software solutions. The flexibility introduced by the SDR concept not only allows the realisation of concurrent multiple standards on one platform, but also promises to ease the implementation of one communication standard on differing SDR platforms by signal porting. This technology would facilitate implementing reconfigurable nodes for parallel satellite reception in Mobile/Deployable Ground Segments and Distributed Satellite Systems (DSS) for amateur radio/university satellite operations. This work outlines the recent advances in embedded technologies that can enable new communication architectures for concurrent multi-satellite or satellite-to-ground missions where multi-link challenges are associated. This research proposes a novel concept to run advanced parallelised SDR back-end technologies in a Commercial-Off-The-Shelf (COTS) embedded system that can support multi-signal processing for multi-satellite scenarios simultaneously. The initial SDR implementation could support only one receiver chain due to system saturation. However, the design was optimised to facilitate multiple signals within the limited resources available on an embedded system at any given time. This was achieved by providing a VHDL solution to the existing Python and C/C++ programming languages along with parallelisation so as to accelerate performance whilst maintaining the flexibility. The improvement in the performance was validated at every stage through profiling. Various cases of concurrent multiple signals with different standards such as frequency (with Doppler effect) and symbol rates were simulated in order to validate the novel architecture proposed in this research. Also, the architecture allows the system to be reconfigurable by providing the opportunity to change the communication standards in soft real-time. The chosen COTS solution provides a generic software methodology for both ground and space applications that will remain unaltered despite new evolutions in hardware, and supports concurrent multi-standard, multi-channel and multi-rate telemetry signals.
Flexible Software Architecture for Visualization and Seismic Data Analysis
NASA Astrophysics Data System (ADS)
Petunin, S.; Pavlov, I.; Mogilenskikh, D.; Podzyuban, D.; Arkhipov, A.; Baturuin, N.; Lisin, A.; Smith, A.; Rivers, W.; Harben, P.
2007-12-01
Research in the field of seismology requires software and signal processing utilities for seismogram manipulation and analysis. Seismologists and data analysts often encounter a major problem in the use of any particular software application specific to seismic data analysis: the tuning of commands and windows to the specific waveforms and hot key combinations so as to fit their familiar informational environment. The ability to modify the user's interface independently from the developer requires an adaptive code structure. An adaptive code structure also allows for expansion of software capabilities such as new signal processing modules and implementation of more efficient algorithms. Our approach is to use a flexible "open" architecture for development of geophysical software. This report presents an integrated solution for organizing a logical software architecture based on the Unix version of the Geotool software implemented on the Microsoft NET 2.0 platform. Selection of this platform greatly expands the variety and number of computers that can implement the software, including laptops that can be utilized in field conditions. It also facilitates implementation of communication functions for seismic data requests from remote databases through the Internet. The main principle of the new architecture for Geotool is that scientists should be able to add new routines for digital waveform analysis via software plug-ins that utilize the basic Geotool display for GUI interaction. The use of plug-ins allows the efficient integration of diverse signal-processing software, including software still in preliminary development, into an organized platform without changing the fundamental structure of that platform itself. An analyst's use of Geotool is tracked via a metadata file so that future studies can reconstruct, and alter, the original signal processing operations. The work has been completed in the framework of a joint Russian- American project.
Developing traffic signal control systems using the national ITS architecture
DOT National Transportation Integrated Search
1998-02-01
This is one of a series of documents providing support for deploying Intelligent Transportation Systems (ITS). This document focuses on traffic signal control, a component of ITS. It aims to provide practical help for the traffic engineering communit...
Developing Traffic Signal Control Systems using the National ITS Architecture
DOT National Transportation Integrated Search
1998-02-01
This is one of a series of documents providing support for deploying Intelligent Transportation Systems (ITS). This document focuses on traffic signal control, a component of ITS. It aims to provide practical help for the traffic engineering communit...
NASA Technical Reports Server (NTRS)
Poppel, G. L.; Glasheen, W. M.
1989-01-01
A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.
Advanced Communication and Networking Technologies for Mars Exploration
NASA Technical Reports Server (NTRS)
Bhasin, Kul; Hayden, Jeff; Agre, Jonathan R.; Clare, Loren P.; Yan, Tsun-Yee
2001-01-01
Next-generation Mars communications networks will provide communications and navigation services to a wide variety of Mars science vehicles including: spacecraft that are arriving at Mars, spacecraft that are entering and descending in the Mars atmosphere, scientific orbiter spacecraft, spacecraft that return Mars samples to Earth, landers, rovers, aerobots, airplanes, and sensing pods. In the current architecture plans, the communication services will be provided using capabilities deployed on the science vehicles as well as dedicated communication satellites that will together make up the Mars network. This network will evolve as additional vehicles arrive, depart or end their useful missions. Cost savings and increased reliability will result from the ability to share communication services between missions. This paper discusses the basic architecture that is needed to support the Mars Communications Network part of NASA's Space Science Enterprise (SSE) communications architecture. The network may use various networking technologies such as those employed in the terrestrial Internet, as well as special purpose deep-space protocols to move data and commands autonomously between vehicles, at disparate Mars vicinity sites (on the surface or in near-Mars space) and between Mars vehicles and earthbound users. The architecture of the spacecraft on-board local communications is being reconsidered in light of these new networking requirements. The trend towards increasingly autonomous operation of the spacecraft is aimed at reducing the dependence on resource scheduling provided by Earth-based operators and increasing system fault tolerance. However, these benefits will result in increased communication and software development requirements. As a result, the envisioned Mars communications infrastructure requires both hardware and protocol technology advancements. This paper will describe a number of the critical technology needs and some of the ongoing research activities.
Cool Apps: Building Cryospheric Data Applications With Standards-Based Service Oriented Architecture
NASA Astrophysics Data System (ADS)
Collins, J. A.; Truslove, I.; Billingsley, B. W.; Oldenburg, J.; Brodzik, M.; Lewis, S.; Liu, M.
2012-12-01
The National Snow and Ice Data Center (NSIDC) holds a large collection of cryospheric data, and is involved in a number of informatics research and development projects aimed at improving the discoverability and accessibility of these data. To develop high-quality software in a timely manner, we have adopted a Service-Oriented Architecture (SOA) approach for our core technical infrastructure development. Data services at NSIDC are internally exposed to other tools and applications through standards-based service interfaces. These standards include OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting), various OGC (Open Geospatial Consortium) standards including WMS (Web Map Service) and WFS (Web Feature Service), ESIP (Federation of Earth Sciences Information Partners) OpenSearch, and NSIDC-specific RESTful services. By taking a standards-based approach, we are able to use off-the-shelf tools and libraries to consume, translate and broker these data services, and thus develop applications faster. Additionally, by exposing public interfaces to these services we provide valuable data services to technical collaborators; for example, NASA Reverb (http://reverb.echo.nasa.gov) uses NSIDC's WMS services. Our latest generation of web applications consume these data services directly. The most complete example of this is the Operation IceBridge Data Portal (http://nsidc.org/icebridge/portal) which depends on many of the aforementioned services, and clearly exhibits many of the advantages of building applications atop a service-oriented architecture. This presentation outlines the architectural approach and components and open standards and protocols adopted at NSIDC, demonstrates the interactions and uses of public and internal service interfaces currently powering applications including the IceBridge Data Portal, and outlines the benefits and challenges of this approach.
Systems Imaging of the Immune Synapse.
Ambler, Rachel; Ruan, Xiangtao; Murphy, Robert F; Wülfing, Christoph
2017-01-01
Three-dimensional live cell imaging of the interaction of T cells with antigen-presenting cells (APCs) visualizes the subcellular distributions of signaling intermediates during T cell activation at thousands of resolved positions within a cell. These information-rich maps of local protein concentrations are a valuable resource in understanding T cell signaling. Here, we describe a protocol for the efficient acquisition of such imaging data and their computational processing to create four-dimensional maps of local concentrations. This protocol allows quantitative analysis of T cell signaling as it occurs inside live cells with resolution in time and space across thousands of cells.
Development Of A Three-Dimensional Circuit Integration Technology And Computer Architecture
NASA Astrophysics Data System (ADS)
Etchells, R. D.; Grinberg, J.; Nudd, G. R.
1981-12-01
This paper is the first of a series 1,2,3 describing a range of efforts at Hughes Research Laboratories, which are collectively referred to as "Three-Dimensional Microelectronics." The technology being developed is a combination of a unique circuit fabrication/packaging technology and a novel processing architecture. The packaging technology greatly reduces the parasitic impedances associated with signal-routing in complex VLSI structures, while simultaneously allowing circuit densities orders of magnitude higher than the current state-of-the-art. When combined with the 3-D processor architecture, the resulting machine exhibits a one- to two-order of magnitude simultaneous improvement over current state-of-the-art machines in the three areas of processing speed, power consumption, and physical volume. The 3-D architecture is essentially that commonly referred to as a "cellular array", with the ultimate implementation having as many as 512 x 512 processors working in parallel. The three-dimensional nature of the assembled machine arises from the fact that the chips containing the active circuitry of the processor are stacked on top of each other. In this structure, electrical signals are passed vertically through the chips via thermomigrated aluminum feedthroughs. Signals are passed between adjacent chips by micro-interconnects. This discussion presents a broad view of the total effort, as well as a more detailed treatment of the fabrication and packaging technologies themselves. The results of performance simulations of the completed 3-D processor executing a variety of algorithms are also presented. Of particular pertinence to the interests of the focal-plane array community is the simulation of the UNICORNS nonuniformity correction algorithms as executed by the 3-D architecture.
Olswang, Lesley B.; Greenslade, Kathryn; Pinder, Gay Lloyd; Dowden, Patricia; Madden, Jodi
2017-01-01
Purpose This research investigated a first step in implementing the dynamic assessment (DA) component of Triadic Gaze Intervention (Olswang, Feuerstein, Pinder, & Dowden, 2013; Olswang et al., 2014), an evidence-based protocol for teaching early signals of communication to young children with physical disabilities. Clinician attitudes about adopting external evidence into practice and implementation fidelity in DA protocol delivery were examined following training. Method Seven early intervention clinicians from multiple disciplines were trained to deliver the four essential elements of the DA protocol: (a) provide communication opportunity, (b) recognize child's potentially communicative signal, (c) shape child's signal toward triadic gaze, and (d) reinforce with play. Clinician attitude regarding adopting evidence into practice was measured at baseline and follow-up, with the Evidence-Based Practice Attitude Scale (Aarons, 2004). Implementation fidelity in delivering the protocol was measured for adherence (accuracy) and competence (quality) during trial implementation. Results Clinicians' attitudes about trying new evidence that at first was perceived as incongruent with their practice improved over the course of the research. Clinicians demonstrated strong adherence to the DA protocol; however, competence varied across clinicians and appeared related to child performance. Conclusions The results provided insight into moving Triadic Gaze Intervention into practice and yielded valuable information regarding the implementation process, with implications for future research. PMID:28525577
The design of the m-health service application using a Nintendo DS game console.
Lee, Sangjoon; Kim, Jungkuk; Lee, Myoungho
2011-03-01
In this article, we developed an m-health monitoring system using a Nintendo DS game console to demonstrate its utility. The proposed system consists of a biosignal acquisition device, wireless sensor network, base-station for signal reception from the sensor network and signal conversion according to Internet protocol, personal computer display program, and the Nintendo DS game console. The system collects three-channel electrocardiogram (ECG) signals for cardiac abnormality detection and three-axis accelerometer signals for fall detection of a person. The collected signals are then transmitted to the base-station through the wireless sensor network, where they are transformed according to the transmission control protocol/Internet protocol (TCP/IP) and sent to the destination IP through Internet network. To test the developed system, the collected signals were displayed on a computer located in different building through wired Internet network and also simultaneously displayed on the Nintendo DS game console connected to Internet network wirelessly. The system was able to collect and transmit signals for more than 24 h without any interruptions or malfunctions, showing the possibility of integrating healthcare monitoring functions into a small handheld-type electronic device developed for different purposes without significant complications. It is expected that the system can be used in an ambulance, nursing home, or general hospital where efficient patient monitoring from long distance is necessary.
Bernardes, Juliana; Zaverucha, Gerson; Vaquero, Catherine; Carbone, Alessandra
2016-01-01
Traditional protein annotation methods describe known domains with probabilistic models representing consensus among homologous domain sequences. However, when relevant signals become too weak to be identified by a global consensus, attempts for annotation fail. Here we address the fundamental question of domain identification for highly divergent proteins. By using high performance computing, we demonstrate that the limits of state-of-the-art annotation methods can be bypassed. We design a new strategy based on the observation that many structural and functional protein constraints are not globally conserved through all species but might be locally conserved in separate clades. We propose a novel exploitation of the large amount of data available: 1. for each known protein domain, several probabilistic clade-centered models are constructed from a large and differentiated panel of homologous sequences, 2. a decision-making protocol combines outcomes obtained from multiple models, 3. a multi-criteria optimization algorithm finds the most likely protein architecture. The method is evaluated for domain and architecture prediction over several datasets and statistical testing hypotheses. Its performance is compared against HMMScan and HHblits, two widely used search methods based on sequence-profile and profile-profile comparison. Due to their closeness to actual protein sequences, clade-centered models are shown to be more specific and functionally predictive than the broadly used consensus models. Based on them, we improved annotation of Plasmodium falciparum protein sequences on a scale not previously possible. We successfully predict at least one domain for 72% of P. falciparum proteins against 63% achieved previously, corresponding to 30% of improvement over the total number of Pfam domain predictions on the whole genome. The method is applicable to any genome and opens new avenues to tackle evolutionary questions such as the reconstruction of ancient domain duplications, the reconstruction of the history of protein architectures, and the estimation of protein domain age. Website and software: http://www.lcqb.upmc.fr/CLADE. PMID:27472895
NASA Astrophysics Data System (ADS)
Kerschke, D. I.; Häner, R.; Schurr, B.; Oncken, O.; Wächter, J.
2014-12-01
Interoperable data management platforms play an increasing role in the advancement of knowledge and technology in many scientific disciplines. Through high quality services they support the establishment of efficient and innovative research environments. Well-designed research environments can facilitate the sustainable utilization, exchange, and re-use of scientific data and functionality by using standardized community models. Together with innovative 3D/4D visualization, these concepts provide added value in improving scientific knowledge-gain, even across the boundaries of disciplines. A project benefiting from the added value is the Integrated Plate boundary Observatory in Chile (IPOC). IPOC is a European-South American network to study earthquakes and deformation at the Chilean continental margin and to monitor the plate boundary system for capturing an anticipated great earthquake in a seismic gap. In contrast to conventional observatories that monitor individual signals only, IPOC captures a large range of different processes through various observation methods (e.g., seismographs, GPS, magneto-telluric sensors, creep-meter, accelerometer, InSAR). For IPOC a conceptual design has been devised that comprises an architectural blueprint for a data management platform based on common and standardized data models, protocols, and encodings as well as on an exclusive use of Free and Open Source Software (FOSS) including visualization components. Following the principles of event-driven service-oriented architectures, the design enables novel processes by sharing and re-using functionality and information on the basis of innovative data mining and data fusion technologies. This platform can help to improve the understanding of the physical processes underlying plate deformations as well as the natural hazards induced by them. Through the use of standards, this blueprint can not only be facilitated for other plate observing systems (e.g., the European Plate Observing System EPOS), it also supports integrated approaches to include sensor networks that provide complementary processes for dynamic monitoring. Moreover, the integration of such observatories into superordinate research infrastructures (federation of virtual observatories) will be enabled.
Wright, Adam; Sittig, Dean F.
2008-01-01
In this paper we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. PMID:18434256
A Family of ACO Routing Protocols for Mobile Ad Hoc Networks.
Rupérez Cañas, Delfín; Sandoval Orozco, Ana Lucila; García Villalba, Luis Javier; Kim, Tai-Hoon
2017-05-22
In this work, an ACO routing protocol for mobile ad hoc networks based on AntHocNet is specified. As its predecessor, this new protocol, called AntOR, is hybrid in the sense that it contains elements from both reactive and proactive routing. Specifically, it combines a reactive route setup process with a proactive route maintenance and improvement process. Key aspects of the AntOR protocol are the disjoint-link and disjoint-node routes, separation between the regular pheromone and the virtual pheromone in the diffusion process and the exploration of routes, taking into consideration the number of hops in the best routes. In this work, a family of ACO routing protocols based on AntOR is also specified. These protocols are based on protocol successive refinements. In this work, we also present a parallelized version of AntOR that we call PAntOR. Using programming multiprocessor architectures based on the shared memory protocol, PAntOR allows running tasks in parallel using threads. This parallelization is applicable in the route setup phase, route local repair process and link failure notification. In addition, a variant of PAntOR that consists of having more than one interface, which we call PAntOR-MI (PAntOR-Multiple Interface), is specified. This approach parallelizes the sending of broadcast messages by interface through threads.
Cooperative dry-electrode sensors for multi-lead biopotential and bioimpedance monitoring.
Rapin, M; Proença, M; Braun, F; Meier, C; Solà, J; Ferrario, D; Grossenbacher, O; Porchet, J-A; Chételat, O
2015-04-01
Cooperative sensors is a novel measurement architecture that allows the acquiring of biopotential signals on patients in a comfortable and easy-to-integrate manner. The novel sensors are defined as cooperative in the sense that at least two of them work in concert to measure a target physiological signal, such as a multi-lead electrocardiogram or a thoracic bioimpedance.This paper starts by analysing the state-of-the-art methods to simultaneously measure biopotential and bioimpedance signals, and justifies why currently (1) passive electrodes require the use of shielded or double-shielded cables, and (2) active electrodes require the use of multi-wired cabled technologies, when aiming at high quality physiological measurements.In order to overcome the limitations of the state-of-the-art, a new method for biopotential and bioimpedance measurement using the cooperative sensor is then presented. The novel architecture allows the acquisition of the aforementioned biosignals without the need of shielded or multi-wire cables by splitting the electronics into separate electronic sensors comprising each of two electrodes, one for voltage measurement and one for current injection. The sensors are directly in contact with the skin and connected together by only one unshielded wire. This new configuration requires one power supply per sensor and all sensors need to be synchronized together to allow them to work in concert.After presenting the working principle of the cooperative sensor architecture, this paper reports first experimental results on the use of the technology when applied to measuring multi-lead ECG signals on patients. Measurements performed on a healthy patient demonstrate the feasibility of using this novel cooperative sensor architecture to measure biopotential signals and compliance with common mode rejection specification accordingly to international standard (IEC 60601-2-47) has also been assessed.By reducing the need of using complex wiring setups, and by eliminating the presence of central recording devices (cooperative sensors directly sense and store the measured biosignals on the site), the depicted novel technology is a candidate to a novel generation of highly-integrated, comfortable and reliable technologies that measure physiological signals in real-life scenarios.
A Plug-and-Play Human-Centered Virtual TEDS Architecture for the Web of Things.
Hernández-Rojas, Dixys L; Fernández-Caramés, Tiago M; Fraga-Lamas, Paula; Escudero, Carlos J
2018-06-27
This article presents a Virtual Transducer Electronic Data Sheet (VTEDS)-based framework for the development of intelligent sensor nodes with plug-and-play capabilities in order to contribute to the evolution of the Internet of Things (IoT) toward the Web of Things (WoT). It makes use of new lightweight protocols that allow sensors to self-describe, auto-calibrate, and auto-register. Such protocols enable the development of novel IoT solutions while guaranteeing low latency, low power consumption, and the required Quality of Service (QoS). Thanks to the developed human-centered tools, it is possible to configure and modify dynamically IoT device firmware, managing the active transducers and their communication protocols in an easy and intuitive way, without requiring any prior programming knowledge. In order to evaluate the performance of the system, it was tested when using Bluetooth Low Energy (BLE) and Ethernet-based smart sensors in different scenarios. Specifically, user experience was quantified empirically (i.e., how fast the system shows collected data to a user was measured). The obtained results show that the proposed VTED architecture is very fast, with some smart sensors (located in Europe) able to self-register and self-configure in a remote cloud (in South America) in less than 3 s and to display data to remote users in less than 2 s.
NASA Astrophysics Data System (ADS)
Amyay, Omar
A method defined in terms of synthesis and verification steps is presented. The specification of the services and protocols of communication within a multilayered architecture of the Open Systems Interconnection (OSI) type is an essential issue for the design of computer networks. The aim is to obtain an operational specification of the protocol service couple of a given layer. Planning synthesis and verification steps constitute a specification trajectory. The latter is based on the progressive integration of the 'initial data' constraints and verification of the specification originating from each synthesis step, through validity constraints that characterize an admissible solution. Two types of trajectories are proposed according to the style of the initial specification of the service protocol couple: operational type and service supplier viewpoint; knowledge property oriented type and service viewpoint. Synthesis and verification activities were developed and formalized in terms of labeled transition systems, temporal logic and epistemic logic. The originality of the second specification trajectory and the use of the epistemic logic are shown. An 'artificial intelligence' approach enables a conceptual model to be defined for a knowledge base system for implementing the method proposed. It is structured in three levels of representation of the knowledge relating to the domain, the reasoning characterizing synthesis and verification activities and the planning of the steps of a specification trajectory.
System Software Framework for System of Systems Avionics
NASA Technical Reports Server (NTRS)
Ferguson, Roscoe C.; Peterson, Benjamin L; Thompson, Hiram C.
2005-01-01
Project Constellation implements NASA's vision for space exploration to expand human presence in our solar system. The engineering focus of this project is developing a system of systems architecture. This architecture allows for the incremental development of the overall program. Systems can be built and connected in a "Lego style" manner to generate configurations supporting various mission objectives. The development of the avionics or control systems of such a massive project will result in concurrent engineering. Also, each system will have software and the need to communicate with other (possibly heterogeneous) systems. Fortunately, this design problem has already been solved during the creation and evolution of systems such as the Internet and the Department of Defense's successful effort to standardize distributed simulation (now IEEE 1516). The solution relies on the use of a standard layered software framework and a communication protocol. A standard framework and communication protocol is suggested for the development and maintenance of Project Constellation systems. The ARINC 653 standard is a great start for such a common software framework. This paper proposes a common system software framework that uses the Real Time Publish/Subscribe protocol for framework-to-framework communication to extend ARINC 653. It is highly recommended that such a framework be established before development. This is important for the success of concurrent engineering. The framework provides an infrastructure for general system services and is designed for flexibility to support a spiral development effort.
Research on IPv6 intrusion detection system Snort-based
NASA Astrophysics Data System (ADS)
Shen, Zihao; Wang, Hui
2010-07-01
This paper introduces the common intrusion detection technologies, discusses the work flow of Snort intrusion detection system, and analyzes IPv6 data packet encapsulation and protocol decoding technology. We propose the expanding Snort architecture to support IPv6 intrusion detection in accordance with CIDF standard combined with protocol analysis technology and pattern matching technology, and present its composition. The research indicates that the expanding Snort system can effectively detect various intrusion attacks; it is high in detection efficiency and detection accuracy and reduces false alarm and omission report, which effectively solves the problem of IPv6 intrusion detection.
Quantum Tomography Protocols with Positivity are Compressed Sensing Protocols (Open Access)
2015-12-08
ARTICLE OPEN Quantum tomography protocols with positivity are compressed sensing protocols Amir Kalev1, Robert L Kosut2 and Ivan H Deutsch1...Characterising complex quantum systems is a vital task in quantum information science. Quantum tomography, the standard tool used for this purpose, uses a well...designed measurement record to reconstruct quantum states and processes. It is, however, notoriously inefficient. Recently, the classical signal
Hardware-in-the-Loop Co-simulation of Distribution Grid for Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotger-Griful, Sergi; Chatzivasileiadis, Spyros; Jacobsen, Rune H.
2016-06-20
In modern power systems, co-simulation is proposed as an enabler for analyzing the interactions between disparate systems. This paper introduces the co-simulation platform Virtual Grid Integration Laboratory (VirGIL) including Hardware-in-the-Loop testing, and demonstrates its potential to assess demand response strategies. VirGIL is based on a modular architecture using the Functional Mock-up Interface industrial standard to integrate new simulators. VirGIL combines state-of-the-art simulators in power systems, communications, buildings, and control. In this work, VirGIL is extended with a Hardware-in-the-Loop component to control the ventilation system of a real 12-story building in Denmark. VirGIL capabilities are illustrated in three scenarios: load following,more » primary reserves and load following aggregation. Experimental results show that the system can track one minute changing signals and it can provide primary reserves for up-regulation. Furthermore, the potential of aggregating several ventilation systems is evaluated considering the impact at distribution grid level and the communications protocol effect.« less
Wu, Zhen-Yu; Tseng, Yi-Ju; Chung, Yufang; Chen, Yee-Chun; Lai, Feipei
2012-08-01
With the rapid development of the Internet, both digitization and electronic orientation are required on various applications in the daily life. For hospital-acquired infection control, a Web-based Hospital-acquired Infection Surveillance System was implemented. Clinical data from different hospitals and systems were collected and analyzed. The hospital-acquired infection screening rules in this system utilized this information to detect different patterns of defined hospital-acquired infection. Moreover, these data were integrated into the user interface of a signal entry point to assist physicians and healthcare providers in making decisions. Based on Service-Oriented Architecture, web-service techniques which were suitable for integrating heterogeneous platforms, protocols, and applications, were used. In summary, this system simplifies the workflow of hospital infection control and improves the healthcare quality. However, it is probable for attackers to intercept the process of data transmission or access to the user interface. To tackle the illegal access and to prevent the information from being stolen during transmission over the insecure Internet, a password-based user authentication scheme is proposed for information integrity.
Liu, Lei; Peng, Wei-Ren; Casellas, Ramon; Tsuritani, Takehiro; Morita, Itsuro; Martínez, Ricardo; Muñoz, Raül; Yoo, S J B
2014-01-13
Optical Orthogonal Frequency Division Multiplexing (O-OFDM), which transmits high speed optical signals using multiple spectrally overlapped lower-speed subcarriers, is a promising candidate for supporting future elastic optical networks. In contrast to previous works which focus on Coherent Optical OFDM (CO-OFDM), in this paper, we consider the direct-detection optical OFDM (DDO-OFDM) as the transport technique, which leads to simpler hardware and software realizations, potentially offering a low-cost solution for elastic optical networks, especially in metro networks, and short or medium distance core networks. Based on this network scenario, we design and deploy a software-defined networking (SDN) control plane enabled by extending OpenFlow, detailing the network architecture, the routing and spectrum assignment algorithm, OpenFlow protocol extensions and the experimental validation. To the best of our knowledge, it is the first time that an OpenFlow-based control plane is reported and its performance is quantitatively measured in an elastic optical network with DDO-OFDM transmission.
Strategy for Developing Expert-System-Based Internet Protocols (TCP/IP)
NASA Technical Reports Server (NTRS)
Ivancic, William D.
1997-01-01
The Satellite Networks and Architectures Branch of NASA's Lewis Research is addressing the issue of seamless interoperability of satellite networks with terrestrial networks. One of the major issues is improving reliable transmission protocols such as TCP over long latency and error-prone links. Many tuning parameters are available to enhance the performance of TCP including segment size, timers and window sizes. There are also numerous congestion avoidance algorithms such as slow start, selective retransmission and selective acknowledgment that are utilized to improve performance. This paper provides a strategy to characterize the performance of TCP relative to various parameter settings in a variety of network environments (i.e. LAN, WAN, wireless, satellite, and IP over ATM). This information can then be utilized to develop expert-system-based Internet protocols.
Multiprocessor shared-memory information exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santoline, L.L.; Bowers, M.D.; Crew, A.W.
1989-02-01
In distributed microprocessor-based instrumentation and control systems, the inter-and intra-subsystem communication requirements ultimately form the basis for the overall system architecture. This paper describes a software protocol which addresses the intra-subsystem communications problem. Specifically the protocol allows for multiple processors to exchange information via a shared-memory interface. The authors primary goal is to provide a reliable means for information to be exchanged between central application processor boards (masters) and dedicated function processor boards (slaves) in a single computer chassis. The resultant Multiprocessor Shared-Memory Information Exchange (MSMIE) protocol, a standard master-slave shared-memory interface suitable for use in nuclear safety systems, ismore » designed to pass unidirectional buffers of information between the processors while providing a minimum, deterministic cycle time for this data exchange.« less
Research on TCP/IP network communication based on Node.js
NASA Astrophysics Data System (ADS)
Huang, Jing; Cai, Lixiong
2018-04-01
In the face of big data, long connection and high synchronization, TCP/IP network communication will cause performance bottlenecks due to its blocking multi-threading service model. This paper presents a method of TCP/IP network communication protocol based on Node.js. On the basis of analyzing the characteristics of Node.js architecture and asynchronous non-blocking I/O model, the principle of its efficiency is discussed, and then compare and analyze the network communication model of TCP/IP protocol to expound the reasons why TCP/IP protocol stack is widely used in network communication. Finally, according to the large data and high concurrency in the large-scale grape growing environment monitoring process, a TCP server design based on Node.js is completed. The results show that the example runs stably and efficiently.
Probabilistic Analysis of Hierarchical Cluster Protocols for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Kaj, Ingemar
Wireless sensor networks are designed to extract data from the deployment environment and combine sensing, data processing and wireless communication to provide useful information for the network users. Hundreds or thousands of small embedded units, which operate under low-energy supply and with limited access to central network control, rely on interconnecting protocols to coordinate data aggregation and transmission. Energy efficiency is crucial and it has been proposed that cluster based and distributed architectures such as LEACH are particularly suitable. We analyse the random cluster hierarchy in this protocol and provide a solution for low-energy and limited-loss optimization. Moreover, we extend these results to a multi-level version of LEACH, where clusters of nodes again self-organize to form clusters of clusters, and so on.
A 1V low power second-order delta-sigma modulator for biomedical signal application.
Hsu, Chih-Han; Tang, Kea-Tiong
2013-01-01
This paper presents the design and implementation of a low-power delta-sigma modulator for biomedical application with a standard 90 nm CMOS technology. The delta-sigma architecture is implemented as 2nd order feedforward architecture. A low quiescent current operational transconductance amplifier (OTA) is utilized to reduce power consumption. This delta-sigma modulator operated in 1V power supply, and achieved 64.87 dB signal to noise distortion ratio (SNDR) at 10 KHz bandwidth with an oversampling ratio (OSR) of 64. The power consumption is 17.14 µW, and the figure-of-merit (FOM) is 0.60 pJ/conv.
NASA Astrophysics Data System (ADS)
Benini, Luca
2017-06-01
The "internet of everything" envisions trillions of connected objects loaded with high-bandwidth sensors requiring massive amounts of local signal processing, fusion, pattern extraction and classification. From the computational viewpoint, the challenge is formidable and can be addressed only by pushing computing fabrics toward massive parallelism and brain-like energy efficiency levels. CMOS technology can still take us a long way toward this goal, but technology scaling is losing steam. Energy efficiency improvement will increasingly hinge on architecture, circuits, design techniques such as heterogeneous 3D integration, mixed-signal preprocessing, event-based approximate computing and non-Von-Neumann architectures for scalable acceleration.
NASA Technical Reports Server (NTRS)
Premkumar, A. B.; Purviance, J. E.
1990-01-01
A simplified model for the SAR imaging problem is presented. The model is based on the geometry of the SAR system. Using this model an expression for the entire phase history of the received SAR signal is formulated. From the phase history, it is shown that the range and the azimuth coordinates for a point target image can be obtained by processing the phase information during the intrapulse and interpulse periods respectively. An architecture for a VLSI implementation for the SAR signal processor is presented which generates images in real time. The architecture uses a small number of chips, a new correlation processor, and an efficient azimuth correlation process.
Chakraborty, Chiranjib; Sarkar, Bimal Kumar; Patel, Pratiksha; Agoramoorthy, Govindasamy
2012-01-01
In this paper, Shannon information theory has been applied to elaborate cell signaling. It is proposed that in the cellular network architecture, four components viz. source (DNA), transmitter (mRNA), receiver (protein) and destination (another protein) are involved. The message transmits from source (DNA) to transmitter (mRNA) and then passes through a noisy channel reaching finally the receiver (protein). The protein synthesis process is here considered as the noisy channel. Ultimately, signal is transmitted from receiver to destination (another protein). The genome network architecture elements were compared with genetic alphabet L = {A, C, G, T} with a biophysical model based on the popular Shannon information theory. This study found the channel capacity as maximum for zero error (sigma = 0) and at this condition, transition matrix becomes a unit matrix with rank 4. The transition matrix will be erroneous and finally at sigma = 1 channel capacity will be localized maxima with a value of 0.415 due to the increased value at sigma. On the other hand, minima exists at sigma = 0.75, where all transition probabilities become 0.25 and uncertainty will be maximum resulting in channel capacity with the minima value of zero.
Practical decoy state for quantum key distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma Xiongfeng; Qi Bing; Zhao Yi
2005-07-15
Decoy states have recently been proposed as a useful method for substantially improving the performance of quantum key distribution (QKD). Here, we present a general theory of the decoy state protocol based on only two decoy states and one signal state. We perform optimization on the choice of intensities of the two decoy states and the signal state. Our result shows that a decoy state protocol with only two types of decoy states - the vacuum and a weak decoy state - asymptotically approaches the theoretical limit of the most general type of decoy state protocol (with an infinite numbermore » of decoy states). We also present a one-decoy-state protocol. Moreover, we provide estimations on the effects of statistical fluctuations and suggest that, even for long-distance (larger than 100 km) QKD, our two-decoy-state protocol can be implemented with only a few hours of experimental data. In conclusion, decoy state quantum key distribution is highly practical.« less
del Sol, Antonio; Araúzo-Bravo, Marcos J; Amoros, Dolors; Nussinov, Ruth
2007-01-01
Background Allosteric communications are vital for cellular signaling. Here we explore a relationship between protein architectural organization and shortcuts in signaling pathways. Results We show that protein domains consist of modules interconnected by residues that mediate signaling through the shortest pathways. These mediating residues tend to be located at the inter-modular boundaries, which are more rigid and display a larger number of long-range interactions than intra-modular regions. The inter-modular boundaries contain most of the residues centrally conserved in the protein fold, which may be crucial for information transfer between amino acids. Our approach to modular decomposition relies on a representation of protein structures as residue-interacting networks, and removal of the most central residue contacts, which are assumed to be crucial for allosteric communications. The modular decomposition of 100 multi-domain protein structures indicates that modules constitute the building blocks of domains. The analysis of 13 allosteric proteins revealed that modules characterize experimentally identified functional regions. Based on the study of an additional functionally annotated dataset of 115 proteins, we propose that high-modularity modules include functional sites and are the basic functional units. We provide examples (the Gαs subunit and P450 cytochromes) to illustrate that the modular architecture of active sites is linked to their functional specialization. Conclusion Our method decomposes protein structures into modules, allowing the study of signal transmission between functional sites. A modular configuration might be advantageous: it allows signaling proteins to expand their regulatory linkages and may elicit a broader range of control mechanisms either via modular combinations or through modulation of inter-modular linkages. PMID:17531094
Performance Evaluation of Reliable Multicast Protocol for Checkout and Launch Control Systems
NASA Technical Reports Server (NTRS)
Shu, Wei Wennie; Porter, John
2000-01-01
The overall objective of this project is to study reliability and performance of Real Time Critical Network (RTCN) for checkout and launch control systems (CLCS). The major tasks include reliability and performance evaluation of Reliable Multicast (RM) package and fault tolerance analysis and design of dual redundant network architecture.
Incorporating Flexibility in the Design of Repairable Systems - Design of Microgrids
2014-01-01
MICROGRIDS Vijitashwa Pandey1 Annette Skowronska1,2...optimization of complex systems such as a microgrid is however, computationally intensive. The problem is exacerbated if we must incorporate...flexibility in terms of allowing the microgrid architecture and its running protocol to change with time. To reduce the computational effort, this paper
Space station data system analysis/architecture study. Task 5: Program plan
NASA Technical Reports Server (NTRS)
1985-01-01
Cost estimates for both the on-board and ground segments of the Space Station Data System (SSDS) are presented along with summary program schedules. Advanced technology development recommendations are provided in the areas of distributed data base management, end-to-end protocols, command/resource management, and flight qualified artificial intelligence machines.
Owls as platform technology in OPTOS satellite
NASA Astrophysics Data System (ADS)
Rivas, J.; Martinez-Oter, J.; Arruego, I.; Martin-Ortega, A.; de Mingo, J. R.; Jimenez, J. J.; Martin, B.
2017-09-01
Optical Wireless Links for intra-Satellite communications (OWLS) [1] was proposed by Instituto Nacional de Tecnica Aeroespacial (INTA) in 1999 [2] [3] [4] and was developed during the last years. Several ground and in-orbit demonstrations were made to test and validate new technologies and concepts, for example, network architectures and communication protocols.
Wireless Computing Architecture III
2013-09-01
MIMO Multiple-Input and Multiple-Output MIMO /CON MIMO with concurrent hannel access and estimation MU- MIMO Multiuser MIMO OFDM Orthogonal...compressive sensing \\; a design for concurrent channel estimation in scalable multiuser MIMO networking; and novel networking protocols based on machine...Network, Antenna Arrays, UAV networking, Angle of Arrival, Localization MIMO , Access Point, Channel State Information, Compressive Sensing 16
The Building of Multimedia Communications Network based on Session Initiation Protocol
NASA Astrophysics Data System (ADS)
Yuexiao, Han; Yanfu, Zhang
In this paper, we presented a novel design for a distributed multimedia communications network. We introduced the distributed tactic, flow procedure and particular structure. We also analyzed its scalability, stability, robustness, extension, and transmission delay of this architecture. Finally, the result shows our framework is suitable for very large scale communications.
Towards an interplanetary internet: a proposed strategy for standardization
NASA Technical Reports Server (NTRS)
Hooke, A. J.
2002-01-01
This paper reviews the current set of standard data communications capabilities that exist to support advanced missions, discusses the architectural concepts for the future Interplanetary Internet, and suggests how a standardized set of space communications protocols that can grow to support future scenarios where human intelligence is widely distributed across the Solar System.
USDA-ARS?s Scientific Manuscript database
Scientific data integration and computational service discovery are challenges for the bioinformatic community. This process is made more difficult by the separate and independent construction of biological databases, which makes the exchange of scientific data between information resources difficu...
A review of tree root conflicts with sidewalks, curbs, and roads
T.B. Randrup; E.G. McPherson; L.R. Costello
2003-01-01
Literature relevant to tree root and urban infrastructure conflicts is reviewed. Although tree roots can conflict with many infrastructure elements, sidewalk and curb conflicts are the focus of this review. Construction protocols, urban soils, root growth, and causal factors (soil conditions, limited planting space, tree size, variation in root architecture, management...
A Stateful Multicast Access Control Mechanism for Future Metro-Area-Networks.
ERIC Educational Resources Information Center
Sun, Wei-qiang; Li, Jin-sheng; Hong, Pei-lin
2003-01-01
Multicasting is a necessity for a broadband metro-area-network; however security problems exist with current multicast protocols. A stateful multicast access control mechanism, based on MAPE, is proposed. The architecture of MAPE is discussed, as well as the states maintained and messages exchanged. The scheme is flexible and scalable. (Author/AEF)
World-Wide Web: The Information Universe.
ERIC Educational Resources Information Center
Berners-Lee, Tim; And Others
1992-01-01
Describes the World-Wide Web (W3) project, which is designed to create a global information universe using techniques of hypertext, information retrieval, and wide area networking. Discussion covers the W3 data model, W3 architecture, the document naming scheme, protocols, document formats, comparison with other systems, experience with the W3…
Efficient SCT Protocol for Post Disaster Communication
NASA Astrophysics Data System (ADS)
Ramesh, T. K.; Giriraja, C. V.
2017-08-01
Natural and catastrophic disasters can cause damage to the communication system, the damage may be complete or it may be partial. In such areas communication and exchange of information plays a very important role and become difficult to happen in such situations. So, the rescue systems should be installed in those areas for the rescue operations and to take important decisions about how to make a connection from there to the outside world. Wireless communication network architecture should be setup in disaster areas for the communication to happen and to gather information. Wireless ad-hoc network architecture is proposed in this paper with access nodes. These access nodes acts as hotspot for certain area in which they are set up such that the Wi-Fi capable devices get connected to them for communication to happen. If the mobile battery is drained in such situations wireless charging using microwave is shown in this paper. Performance analysis of the communication transport layer protocols is shown and Efficient SCTP (ESTP) algorithm is developed which shows better results in terms of cumulative packet loss.
Chemokine receptor binding and signal transduction in native cells of the central nervous system.
Davis, Christopher N; Chen, Shuzhen; Boehme, Stefen A; Bacon, Kevin B; Harrison, Jeffrey K
2003-04-01
Chemokine receptors belong to the superfamily of seven-transmembrane-spanning, G-protein-coupled receptors, and their expression by central nervous system cells is clearly documented. As this gene family has become the target of novel therapeutic development, the analysis of these receptors requires radioligand binding techniques as well as methods that entail assessing receptor stimulation of signal transduction pathways. Herein, we describe specific protocols for measuring radiolabeled chemokine binding to their cognate receptors on cultured glial cells as well as to receptors expressed in heterologous cell systems. Multiple downstream signaling pathways, including intracellular calcium influx and receptor-dependent kinase activation, are associated with chemokine receptor stimulation. Protocols for measuring these signaling events in chemokine-receptor-expressing cells are also presented.
Agent-oriented privacy-based information brokering architecture for healthcare environments.
Masaud-Wahaishi, Abdulmutalib; Ghenniwa, Hamada
2009-01-01
Healthcare industry is facing a major reform at all levels-locally, regionally, nationally, and internationally. Healthcare services and systems become very complex and comprise of a vast number of components (software systems, doctors, patients, etc.) that are characterized by shared, distributed and heterogeneous information sources with varieties of clinical and other settings. The challenge now faced with decision making, and management of care is to operate effectively in order to meet the information needs of healthcare personnel. Currently, researchers, developers, and systems engineers are working toward achieving better efficiency and quality of service in various sectors of healthcare, such as hospital management, patient care, and treatment. This paper presents a novel information brokering architecture that supports privacy-based information gathering in healthcare. Architecturally, the brokering is viewed as a layer of services where a brokering service is modeled as an agent with a specific architecture and interaction protocol that are appropriate to serve various requests. Within the context of brokering, we model privacy in terms of the entities ability to hide or reveal information related to its identities, requests, and/or capabilities. A prototype of the proposed architecture has been implemented to support information-gathering capabilities in healthcare environments using FIPA-complaint platform JADE.