Recommendations for a service framework to access astronomical archives
NASA Technical Reports Server (NTRS)
Travisano, J. J.; Pollizzi, J.
1992-01-01
There are a large number of astronomical archives and catalogs on-line for network access, with many different user interfaces and features. Some systems are moving towards distributed access, supplying users with client software for their home sites which connects to servers at the archive site. Many of the issues involved in defining a standard framework of services that archive/catalog suppliers can use to achieve a basic level of interoperability are described. Such a framework would simplify the development of client and server programs to access the wide variety of astronomical archive systems. The primary services that are supplied by current systems include: catalog browsing, dataset retrieval, name resolution, and data analysis. The following issues (and probably more) need to be considered in establishing a standard set of client/server interfaces and protocols: Archive Access - dataset retrieval, delivery, file formats, data browsing, analysis, etc.; Catalog Access - database management systems, query languages, data formats, synchronous/asynchronous mode of operation, etc.; Interoperability - transaction/message protocols, distributed processing mechanisms (DCE, ONC/SunRPC, etc), networking protocols, etc.; Security - user registration, authorization/authentication mechanisms, etc.; Service Directory - service registration, lookup, port/task mapping, parameters, etc.; Software - public vs proprietary, client/server software, standard interfaces to client/server functions, software distribution, operating system portability, data portability, etc. Several archive/catalog groups, notably the Astrophysics Data System (ADS), are already working in many of these areas. In the process of developing StarView, which is the user interface to the Space Telescope Data Archive and Distribution Service (ST-DADS), these issues and the work of others were analyzed. A framework of standard interfaces for accessing services on any archive system which would benefit archive user and supplier alike is proposed.
European distributed seismological data archives infrastructure: EIDA
NASA Astrophysics Data System (ADS)
Clinton, John; Hanka, Winfried; Mazza, Salvatore; Pederson, Helle; Sleeman, Reinoud; Stammler, Klaus; Strollo, Angelo
2014-05-01
The European Integrated waveform Data Archive (EIDA) is a distributed Data Center system within ORFEUS that (a) securely archives seismic waveform data and related metadata gathered by European research infrastructures, and (b) provides transparent access to the archives for the geosciences research communities. EIDA was founded in 2013 by ORFEUS Data Center, GFZ, RESIF, ETH, INGV and BGR to ensure sustainability of a distributed archive system and the implementation of standards (e.g. FDSN StationXML, FDSN webservices) and coordinate new developments. Under the mandate of the ORFEUS Board of Directors and Executive Committee the founding group is responsible for steering and maintaining the technical developments and organization of the European distributed seismic waveform data archive and the integration within broader multidisciplanry frameworks like EPOS. EIDA currently offers uniform data access to unrestricted data from 8 European archives (www.orfeus-eu.org/eida), linked by the Arclink protocol, hosting data from 75 permanent networks (1800+ stations) and 33 temporary networks (1200+) stations). Moreover, each archive may also provide unique, restricted datasets. A webinterface, developed at GFZ, offers interactive access to different catalogues (EMSC, GFZ, USGS) and EIDA waveform data. Clients and toolboxes like arclink_fetch and ObsPy can connect directly to any EIDA node to collect data. Current developments are directed to the implementation of quality parameters and strong motion parameters.
The extreme ultraviolet explorer archive
NASA Astrophysics Data System (ADS)
Polomski, E.; Drake, J. J.; Dobson, C.; Christian, C.
1993-09-01
The Extreme Ultrviolet Explorer (EUVE) public archive was created to handle the storage, maintenance, and distribution of EUVE data and ancillary documentation, information, and software. Access to the archive became available to the public on July 17, 1992, only 40 days after the launch of the EUVE satellite. A brief overview of the archive's contents and the various methods of access will be described.
The Hydrologic Cycle Distributed Active Archive Center
NASA Technical Reports Server (NTRS)
Hardin, Danny M.; Goodman, H. Michael
1995-01-01
The Marshall Space Flight Center Distributed Active Archive Center in Huntsville, Alabama supports the acquisition, production, archival and dissemination of data relevant to the study of the global hydrologic cycle. This paper describes the Hydrologic Cycle DAAC, surveys its principle data holdings, addresses future growth, and gives information for accessing the data sets.
NASA Technical Reports Server (NTRS)
Lapenta, C. C.
1992-01-01
The functionality of the Distributed Active Archive Centers (DAACs) which are significant elements of the Earth Observing System Data and Information System (EOSDIS) is discussed. Each DAAC encompasses the information management system, the data archival and distribution system, and the product generation system. The EOSDIS DAACs are expected to improve the access to earth science data set needed for global change research.
The Emirates Space Data Center, a PDS4-Compliant Data Archive
NASA Astrophysics Data System (ADS)
DeWolfe, A. W.; Al Hammadi, O.; Amiri, S.
2017-12-01
As part of the UAE's Emirates Mars Mission (EMM), we are constructing a data archive to preserve and distribute science data from this and future missions. The archive will be publicly accessible and will provide access to Level 2 and 3 science data products from EMM, as well as ancillary data such as SPICE kernels and mission event timelines. As a member of the International Planetary Data Alliance (IPDA), the UAE has committed to making its archive PDS4-compatible, and maintaining the archive beyond the end of the mission. EMM is scheduled to begin collecting science data in spring 2021, and the archive is expected to begin releasing data in September 2021.
EOSDIS: Archive and Distribution Systems in the Year 2000
NASA Technical Reports Server (NTRS)
Behnke, Jeanne; Lake, Alla
2000-01-01
Earth Science Enterprise (ESE) is a long-term NASA research mission to study the processes leading to global climate change. The Earth Observing System (EOS) is a NASA campaign of satellite observatories that are a major component of ESE. The EOS Data and Information System (EOSDIS) is another component of ESE that will provide the Earth science community with easy, affordable, and reliable access to Earth science data. EOSDIS is a distributed system, with major facilities at seven Distributed Active Archive Centers (DAACs) located throughout the United States. The EOSDIS software architecture is being designed to receive, process, and archive several terabytes of science data on a daily basis. Thousands of science users and perhaps several hundred thousands of non-science users are expected to access the system. The first major set of data to be archived in the EOSDIS is from Landsat-7. Another EOS satellite, Terra, was launched on December 18, 1999. With the Terra launch, the EOSDIS will be required to support approximately one terabyte of data into and out of the archives per day. Since EOS is a multi-mission program, including the launch of more satellites and many other missions, the role of the archive systems becomes larger and more critical. In 1995, at the fourth convening of NASA Mass Storage Systems and Technologies Conference, the development plans for the EOSDIS information system and archive were described. Five years later, many changes have occurred in the effort to field an operational system. It is interesting to reflect on some of the changes driving the archive technology and system development for EOSDIS. This paper principally describes the Data Server subsystem including how the other subsystems access the archive, the nature of the data repository, and the mass-storage I/O management. The paper reviews the system architecture (both hardware and software) of the basic components of the archive. It discusses the operations concept, code development, and testing phase of the system. Finally, it describes the future plans for the archive.
Enterprise utilization of "always on-line" diagnostic study archive.
McEnery, Kevin W; Suitor, Charles T; Thompson, Stephen K; Shepard, Jeffrey S; Murphy, William A
2002-01-01
To meet demands for enterprise image distribution, an "always on-line" image storage archive architecture was implemented before soft copy interpretation. It was presumed that instant availability of historical diagnostic studies would elicit a substantial utilization. Beginning November 1, 2000 an enterprise distribution archive was activated (Stentor, SanFrancisco, CA). As of August 8, 2001, 83,052 studies were available for immediate access without the need for retrieval from long-term archive. Image storage and retrieval logs for the period from June 12, 2001 to August 8, 2001 were analyzed. A total of 41,337 retrieval requests were noted for the 83,052 studies available as August 8, 2001. Computed radiography represented 16.8% of retrieval requests; digital radiography, 16.9%; computed tomography (CT), 44.5%; magnetic resonance (MR), 19.2%; and ultrasonography, 2.6%. A total of 51.5% of study retrievals were for studies less than 72 hours old. Study requests for cases greater than 100 days old represented 9.9% of all accessions, 9.7% of CT accessions, and 15.4% of MR accessions. Utilization of the archive indicates a substantial proportion of study retrievals for studies less than 72 hours after study completion. However, significant interest in historical CT and MR examinations was shown.
ERIC Educational Resources Information Center
Stackpole, Laurie
2001-01-01
The Naval Research Laboratory Library has made significant progress providing its distributed user community with a single point-of-access to information needed to support scientific research through TORPEDO "Ultra," a digital archive that in many respects functions as an electronic counterpart of a traditional library. It consists of…
Peer-to-peer architecture for multi-departmental distributed PACS
NASA Astrophysics Data System (ADS)
Rosset, Antoine; Heuberger, Joris; Pysher, Lance; Ratib, Osman
2006-03-01
We have elected to explore peer-to-peer technology as an alternative to centralized PACS architecture for the increasing requirements for wide access to images inside and outside a radiology department. The goal being to allow users across the enterprise to access any study anytime without the need for prefetching or routing of images from central archive. Images can be accessed between different workstations and local storage nodes. We implemented "bonjour" a new remote file access technology developed by Apple allowing applications to share data and files remotely with optimized data access and data transfer. Our Open-source image display platform called OsiriX was adapted to allow sharing of local DICOM images through direct access of each local SQL database to be accessible from any other OsiriX workstation over the network. A server version of Osirix Core Data database also allows to access distributed archives servers in the same way. The infrastructure implemented allows fast and efficient access to any image anywhere anytime independently from the actual physical location of the data. It also allows benefiting from the performance of distributed low-cost and high capacity storage servers that can provide efficient caching of PACS data that was found to be 10 to 20 x faster that accessing the same date from the central PACS archive. It is particularly suitable for large hospitals and academic environments where clinical conferences, interdisciplinary discussions and successive sessions of image processing are often part of complex workflow or patient management and decision making.
OASIS: A Data Fusion System Optimized for Access to Distributed Archives
NASA Astrophysics Data System (ADS)
Berriman, G. B.; Kong, M.; Good, J. C.
2002-05-01
The On-Line Archive Science Information Services (OASIS) is accessible as a java applet through the NASA/IPAC Infrared Science Archive home page. It uses Geographical Information System (GIS) technology to provide data fusion and interaction services for astronomers. These services include the ability to process and display arbitrarily large image files, and user-controlled contouring, overlay regeneration and multi-table/image interactions. OASIS has been optimized for access to distributed archives and data sets. Its second release (June 2002) provides a mechanism that enables access to OASIS from "third-party" services and data providers. That is, any data provider who creates a query form to an archive containing a collection of data (images, catalogs, spectra) can direct the result files from the query into OASIS. Similarly, data providers who serve links to datasets or remote services on a web page can access all of these data with one instance of OASIS. In this was any data or service provider is given access to the full suite of capabilites of OASIS. We illustrate the "third-party" access feature with two examples: queries to the high-energy image datasets accessible from GSFC SkyView, and links to data that are returned from a target-based query to the NASA Extragalactic Database (NED). The second release of OASIS also includes a file-transfer manager that reports the status of multiple data downloads from remote sources to the client machine. It is a prototype for a request management system that will ultimately control and manage compute-intensive jobs submitted through OASIS to computing grids, such as request for large scale image mosaics and bulk statistical analysis.
A Tale of Two Archives: PDS3/PDS4 Archiving and Distribution of Juno Mission Data
NASA Astrophysics Data System (ADS)
Stevenson, Zena; Neakrase, Lynn; Huber, Lyle; Chanover, Nancy J.; Beebe, Reta F.; Sweebe, Kathrine; Johnson, Joni J.
2017-10-01
The Juno mission to Jupiter, which was launched on 5 August 2011 and arrived at the Jovian system in July 2016, represents the last mission to be officially archived under the PDS3 archive standards. Modernization and availability of the newer PDS4 archive standard has prompted the PDS Atmospheres Node (ATM) to provide on-the-fly migration of Juno data from PDS3 to PDS4. Data distribution under both standards presents challenges in terms of how to present data to the end user in both standards, without sacrificing accessibility to the data or impacting the active PDS3 mission pipelines tasked with delivering the data on predetermined schedules. The PDS Atmospheres Node has leveraged its experience with prior active PDS4 missions (e.g., LADEE and MAVEN) and ongoing PDS3-to-PDS4 data migration efforts providing a seamless distribution of Juno data in both PDS3 and PDS4. When ATM receives a data delivery from the Juno Science Operations Center, the PDS3 labels are validated and then fed through PDS4 migration software built at ATM. Specifically, a collection of Python methods and scripts has been developed to make the migration process as automatic as possible, even when working with the more complex labels used by several of the Juno instruments. This is used to create all of the PDS4 data labels at once and build PDS4 archive bundles with minimal human effort. Resultant bundles are then validated against the PDS4 standard and released alongside the certified PDS3 versions of the same data. The newer design of the distribution pages provides access to both versions of the data, utilizing some of the enhanced capabilities of PDS4 to improve search and retrieval of Juno data. Webpages are designed with the intent of offering easy access to all documentation for Juno data as well as the data themselves in both standards for users of all experience levels. We discuss the structure and organization of the Juno archive and associated webpages as examples of joint PDS3/PDS4 data access for end users.
Design and implementation of scalable tape archiver
NASA Technical Reports Server (NTRS)
Nemoto, Toshihiro; Kitsuregawa, Masaru; Takagi, Mikio
1996-01-01
In order to reduce costs, computer manufacturers try to use commodity parts as much as possible. Mainframes using proprietary processors are being replaced by high performance RISC microprocessor-based workstations, which are further being replaced by the commodity microprocessor used in personal computers. Highly reliable disks for mainframes are also being replaced by disk arrays, which are complexes of disk drives. In this paper we try to clarify the feasibility of a large scale tertiary storage system composed of 8-mm tape archivers utilizing robotics. In the near future, the 8-mm tape archiver will be widely used and become a commodity part, since recent rapid growth of multimedia applications requires much larger storage than disk drives can provide. We designed a scalable tape archiver which connects as many 8-mm tape archivers (element archivers) as possible. In the scalable archiver, robotics can exchange a cassette tape between two adjacent element archivers mechanically. Thus, we can build a large scalable archiver inexpensively. In addition, a sophisticated migration mechanism distributes frequently accessed tapes (hot tapes) evenly among all of the element archivers, which improves the throughput considerably. Even with the failures of some tape drives, the system dynamically redistributes hot tapes to the other element archivers which have live tape drives. Several kinds of specially tailored huge archivers are on the market, however, the 8-mm tape scalable archiver could replace them. To maintain high performance in spite of high access locality when a large number of archivers are attached to the scalable archiver, it is necessary to scatter frequently accessed cassettes among the element archivers and to use the tape drives efficiently. For this purpose, we introduce two cassette migration algorithms, foreground migration and background migration. Background migration transfers cassettes between element archivers to redistribute frequently accessed cassettes, thus balancing the load of each archiver. Background migration occurs the robotics are idle. Both migration algorithms are based on access frequency and space utility of each element archiver. To normalize these parameters according to the number of drives in each element archiver, it is possible to maintain high performance even if some tape drives fail. We found that the foreground migration is efficient at reducing access response time. Beside the foreground migration, the background migration makes it possible to track the transition of spatial access locality quickly.
NASA Technical Reports Server (NTRS)
Behnke, Jeanne; Doescher, Chris
2015-01-01
This presentation discusses 25 years of interactions between NASA and the USGS to manage a Land Processes Distributed Active Archive Center (LPDAAC) for the purpose of providing users access to NASA's rich collection of Earth Science data. The presentation addresses challenges, efforts and metrics on the performance.
NASA Langley Atmospheric Science Data Center (ASDC) Experience with Aircraft Data
NASA Astrophysics Data System (ADS)
Perez, J.; Sorlie, S.; Parker, L.; Mason, K. L.; Rinsland, P.; Kusterer, J.
2011-12-01
Over the past decade the NASA Langley ASDC has archived and distributed a variety of aircraft mission data sets. These datasets posed unique challenges for archiving from the rigidity of the archiving system and formats to the lack of metadata. The ASDC developed a state-of-the-art data archive and distribution system to serve the atmospheric sciences data provider and researcher communities. The system, called Archive - Next Generation (ANGe), is designed with a distributed, multi-tier, serviced-based, message oriented architecture enabling new methods for searching, accessing, and customizing data. The ANGe system provides the ease and flexibility to ingest and archive aircraft data through an ad hoc workflow or to develop a new workflow to suit the providers needs. The ASDC will describe the challenges encountered in preparing aircraft data for archiving and distribution. The ASDC is currently providing guidance to the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Earth Venture-1 project on developing collection, granule, and browse metadata as well as supporting the ADAM (Airborne Data For Assessing Models) site.
Designing Solar Data Archives: Practical Considerations
NASA Astrophysics Data System (ADS)
Messerotti, M.
The variety of new solar observatories in space and on the ground poses the stringent problem of an efficient storage and archiving of huge datasets. We briefly address some typical architectures and consider the key point of data access and distribution through networking.
Atmospheric Composition Data and Information Services Center (ACDISC)
NASA Technical Reports Server (NTRS)
Kempler, S.
2005-01-01
NASA's GSFC Earth Sciences (GES) Data and Information and Data Services Center (DISC) manages the archive, distribution and data access for atmospheric composition data from AURA'S OMI, MLS, and hopefully one day, HIRDLS instruments, as well as heritage datasets from TOMS, UARS, MODIS, and AIRS. This data is currently archived in the GES Distributed Active Archive Center (DAAC). The GES DISC has begun the development of a community driven data management system that's sole purpose is to manage and provide value added services to NASA's Atmospheric Composition (AC) Data. This system, called the Atmospheric Composition Data and Information Services Center (ACDISC) will provide access all AC datasets from the above mentioned instruments, as well as AC datasets residing at remote archive sites (e.g, LaRC DAAC) The goals of the ACDISC are to: 1) Provide a data center for Atmospheric Scientists, guided by Atmospheric Scientists; 2) Be absolutely responsive to the data and data service needs of the Atmospheric Composition (AC) community; 3) Provide services (i.e., expertise) that will facilitate the effortless access to and usage of AC data; 4) Collaborate with AC scientists to facilitate the use of data from multiple sensors for long term atmospheric research. The ACDISC is an AC specific, user driven, multi-sensor, on-line, easy access archive and distribution system employing data analysis and visualization, data mining, and other user requested techniques that facilitate science data usage. The purpose of this presentation is to provide the evolution path that the GES DISC in order to better serve AC data, and also to receive continued community feedback and further foster collaboration with AC data users and providers.
NASA Earthdata Webinar: Improving Accessibility and Use of NASA Earth Science Data
Atmospheric Science Data Center
2015-05-08
... Webinar: Improving Accessibility and Use of NASA Earth Science Data Friday, May 8, 2015 Many of the NASA Langley Atmospheric Science Data Center (ASDC) Distributed Active Archive Center (DAAC) ...
NASA Astrophysics Data System (ADS)
Kindermann, Stephan; Berger, Katharina; Toussaint, Frank
2014-05-01
The integration of well-established legacy data centers into newly developed data federation infrastructures is a key requirement to enhance climate data access based on widely agreed interfaces. We present the approach taken to integrate the ICSU World Data Center for Climate (WDCC) located in Hamburg, Germany into the European ENES climate data Federation which is part of the international ESGF data federation. The ENES / ESGF data federation hosts petabytes of climate model data and provides scalable data search and access services across the worldwide distributed data centers. Parts of the data provided by the ENES / ESGF data federation is also long term archived and curated at the WDCC data archive, allowing e.g. for DOI based data citation. An integration of the WDCC into the ENES / ESGF federation allows end users to search and access WDCC data using consistent interfaces worldwide. We will summarize the integration approach we have taken for WDCC legacy system and ESGF infrastructure integration. On the technical side we describe the provisioning of ESGF consistent metadata and data interfaces as well as the security infrastructure adoption. On the non-technical side we describe our experiences in integrating a long-term archival center with costly quality assurance procedures with an integrated distributed data federation putting emphasis on providing early and consistent data search and access services to scientists. The experiences were gained in the process of curating ESGF hosted CMIP5 data at the WDCC. Approximately one petabyte of CMIP5 data which was used for the IPCC climate report is being replicated and archived at the WDCC.
The Land Processes Distributed Active Archive Center (LP DAAC)
Golon, Danielle K.
2016-10-03
The Land Processes Distributed Active Archive Center (LP DAAC) operates as a partnership with the U.S. Geological Survey and is 1 of 12 DAACs within the National Aeronautics and Space Administration (NASA) Earth Observing System Data and Information System (EOSDIS). The LP DAAC ingests, archives, processes, and distributes NASA Earth science remote sensing data. These data are provided to the public at no charge. Data distributed by the LP DAAC provide information about Earth’s surface from daily to yearly intervals and at 15 to 5,600 meter spatial resolution. Data provided by the LP DAAC can be used to study changes in agriculture, vegetation, ecosystems, elevation, and much more. The LP DAAC provides several ways to access, process, and interact with these data. In addition, the LP DAAC is actively archiving new datasets to provide users with a variety of data to study the Earth.
Stewardship of NASA's Earth Science Data and Ensuring Long-Term Active Archives
NASA Technical Reports Server (NTRS)
Ramapriyan, Hampapuram K.; Behnke, Jeanne
2016-01-01
Program, NASA has followed an open data policy, with non-discriminatory access to data with no period of exclusive access. NASA has well-established processes for assigning and or accepting datasets into one of 12 Distributed Active Archive Centers (DAACs) that are parts of EOSDIS. EOSDIS has been evolving through several information technology cycles, adapting to hardware and software changes in the commercial sector. NASA is responsible for maintaining Earth science data as long as users are interested in using them for research and applications, which is well beyond the life of the data gathering missions. For science data to remain useful over long periods of time, steps must be taken to preserve: (1) Data bits with no corruption, (2) Discoverability and access, (3) Readability, (4) Understandability, (5) Usability' and (6). Reproducibility of results. NASAs Earth Science data and Information System (ESDIS) Project, along with the 12 EOSDIS Distributed Active Archive Centers (DAACs), has made significant progress in each of these areas over the last decade, and continues to evolve its active archive capabilities. Particular attention is being paid in recent years to ensure that the datasets are published in an easily accessible and citable manner through a unified metadata model, a common metadata repository (CMR), a coherent view through the earthdata.gov website, and assignment of Digital Object Identifiers (DOI) with well-designed landing product information pages.
(abstract) Satellite Physical Oceanography Data Available From an EOSDIS Archive
NASA Technical Reports Server (NTRS)
Digby, Susan A.; Collins, Donald J.
1996-01-01
The Physical Oceanography Distributed Active Archive Center (PO.DAAC) at the Jet Propulsion Laboratory archives and distributes data as part of the Earth Observing System Data and Information System (EOSDIS). Products available from JPL are largely satellite derived and include sea-surface height, surface-wind speed and vectors, integrated water vapor, atmospheric liquid water, sea-surface temperature, heat flux, and in-situ data as it pertains to satellite data. Much of the data is global and spans fourteen years.There is email access, a WWW site, product catalogs, and FTP capabilities. Data is free of charge.
The Fermi Science Support Center Data Servers and Archive
NASA Astrophysics Data System (ADS)
Reustle, Alexander; Fermi Science Support Center
2018-01-01
The Fermi Science Support Center (FSSC) provides the scientific community with access to Fermi data and other products. The Gamma-Ray Burst Monitor (GBM) data is stored at NASA's High Energy Astrophysics Science Archive Research Center (HEASARC) and is accessible through their searchable Browse web interface. The Large Area Telescope (LAT) data is distributed through a custom FSSC interface where users can request all photons detected from a region on the sky over a specified time and energy range. Through its website the FSSC also provides planning and scheduling products, such as long and short term observing timelines, spacecraft position and attitude histories, and exposure maps. We present an overview of the different data products provided by the FSSC, how they can be accessed, and statistics on the archive usage since launch.
Making geospatial data in ASF archive readily accessible
NASA Astrophysics Data System (ADS)
Gens, R.; Hogenson, K.; Wolf, V. G.; Drew, L.; Stern, T.; Stoner, M.; Shapran, M.
2015-12-01
The way geospatial data is searched, managed, processed and used has changed significantly in recent years. A data archive such as the one at the Alaska Satellite Facility (ASF), one of NASA's twelve interlinked Distributed Active Archive Centers (DAACs), used to be searched solely via user interfaces that were specifically developed for its particular archive and data sets. ASF then moved to using an application programming interface (API) that defined a set of routines, protocols, and tools for distributing the geospatial information stored in the database in real time. This provided a more flexible access to the geospatial data. Yet, it was up to user to develop the tools to get a more tailored access to the data they needed. We present two new approaches for serving data to users. In response to the recent Nepal earthquake we developed a data feed for distributing ESA's Sentinel data. Users can subscribe to the data feed and are provided with the relevant metadata the moment a new data set is available for download. The second approach was an Open Geospatial Consortium (OGC) web feature service (WFS). The WFS hosts the metadata along with a direct link from which the data can be downloaded. It uses the open-source GeoServer software (Youngblood and Iacovella, 2013) and provides an interface to include the geospatial information in the archive directly into the user's geographic information system (GIS) as an additional data layer. Both services are run on top of a geospatial PostGIS database, an open-source geographic extension for the PostgreSQL object-relational database (Marquez, 2015). Marquez, A., 2015. PostGIS essentials. Packt Publishing, 198 p. Youngblood, B. and Iacovella, S., 2013. GeoServer Beginner's Guide, Packt Publishing, 350 p.
Data Archival and Retrieval Enhancement (DARE) Metadata Modeling and Its User Interface
NASA Technical Reports Server (NTRS)
Hyon, Jason J.; Borgen, Rosana B.
1996-01-01
The Defense Nuclear Agency (DNA) has acquired terabytes of valuable data which need to be archived and effectively distributed to the entire nuclear weapons effects community and others...This paper describes the DARE (Data Archival and Retrieval Enhancement) metadata model and explains how it is used as a source for generating HyperText Markup Language (HTML)or Standard Generalized Markup Language (SGML) documents for access through web browsers such as Netscape.
Brave New World: Data Intensive Science with SDSS and the VO
NASA Astrophysics Data System (ADS)
Thakar, A. R.; Szalay, A. S.; O'Mullane, W.; Nieto-Santisteban, M.; Budavari, T.; Li, N.; Carliles, S.; Haridas, V.; Malik, T.; Gray, J.
2004-12-01
With the advent of digital archives and the VO, astronomy is quickly changing from a data-hungry to a data-intensive science. Local and specialized access to data will remain the most direct and efficient way to get data out of individual archives, especially if you know what you are looking for. However, the enormous sizes of the upcoming archives will preclude this type of access for most institutions, and will not allow researchers to tap the vast potential for discovery in cross-matching and comparing data between different archives. The VO makes this type of interoperability and distributed data access possible by adopting industry standards for data access (SQL) and data interchange (SOAP/XML) with platform independence (Web services). As a sneak preview of this brave new world where astronomers may need to become SQL warriors, we present a look at VO-enabled access to catalog data in the SDSS Catalog Archive Server (CAS): CasJobs - a workbench environment that allows arbitrarily complex SQL queries and your own personal database (MyDB) that you can share with collaborators; OpenSkyQuery - an IVOA (International Virtual Observatory Alliance) compliant federation of multiple archives (OpenSkyNodes) that currently links nearly 20 catalogs and allows cross-match queries (in ADQL - Astronomical Data Query Language) between them; Spectrum and Filter Profile Web services that provide access to an open database of spectra (registered users may add their own spectra); and VO-enabled Mirage - a Java visualizatiion tool developed at Bell Labs and enhanced at JHU that allows side-by-side comparison of SDSS catalog and FITS image data. Anticipating the next generation of Petabyte archives like LSST by the end of the decade, we are developing a parallel cross-match engine for all-sky cross-matches between large surveys, along with a 100-Terabyte data intensive science laboratory with high-speed parallel data access.
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory
1999-01-01
The Goddard Distributed Active Archive Center (DAAC), as an integral part of the Earth Observing System Data and Information System (EOSDIS), is the official source of data for several important earth remote sensing missions. These include the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) launched in August 1997, the Tropical Rainfall Measuring Mission (TRMM) launched in November 1997, and the Moderate Resolution Imaging Spectroradiometer (MODIS) scheduled for launch in mid 1999 as part of the EOS AM-1 instrumentation package. The data generated from these missions supports a host of users in the hydrological, land biosphere and oceanographic research and applications communities. The volume and nature of the data present unique challenges to an Earth science data archive and distribution system such as the DAAC. The DAAC system receives, archives and distributes a large number of standard data products on a daily basis, including data files that have been reprocessed with updated calibration data or improved analytical algorithms. A World Wide Web interface is provided allowing interactive data selection and automatic data subscriptions as distribution options. The DAAC also creates customized and value-added data products, which allow additional user flexibility and reduced data volume. Another significant part of our overall mission is to provide ancillary data support services and archive support for worldwide field campaigns designed to validate the results from the various satellite-derived measurements. In addition to direct data services, accompanying documentation, WWW links to related resources, support for EOSDIS data formats, and informed response to inquiries are routinely provided to users. The current GDAAC WWW search and order system is being restructured to provide users with a simplified, hierarchical access to data. Data Browsers have been developed for several data sets to aid users in ordering data. These Browsers allow users to specify spatial, temporal, and other parameter criteria in searching for and previewing data.
NASA Astrophysics Data System (ADS)
Donoho, N.; Graumann, A.; McNamara, D. P.
2015-12-01
In this presentation we will highlight access and availability of NOAA satellite data for near real time (NRT) and retrospective product users. The presentation includes an overview of the current fleet of NOAA satellites and methods of data distribution and access to hundreds of imagery and products offered by the Environmental Satellite Processing Center (ESPC) and the Comprehensive Large Array-data Stewardship System (CLASS). In particular, emphasis on the various levels of services for current and past observations will be presented. The National Environmental Satellite, Data, and Information Service (NESDIS) is dedicated to providing timely access to global environmental data from satellites and other sources. In special cases, users are authorized direct access to NESDIS data distribution systems for environmental satellite data and products. Other means of access include publicly available distribution services such as the Global Telecommunication System (GTS), NOAA satellite direct broadcast services and various NOAA websites and ftp servers, including CLASS. CLASS is NOAA's information technology system designed to support long-term, secure preservation and standards-based access to environmental data collections and information. The National Centers for Environmental Information (NCEI) is responsible for the ingest, quality control, stewardship, archival and access to data and science information. This work will also show the latest technology improvements, enterprise approach and future plans for distribution of exponentially increasing data volumes from future NOAA missions. A primer on access to NOAA operational satellite products and services is available at http://www.ospo.noaa.gov/Organization/About/access.html. Access to post-operational satellite data and assorted products is available at http://www.class.noaa.gov
The DIAS/CEOS Water Portal, distributed system using brokering architecture
NASA Astrophysics Data System (ADS)
Miura, Satoko; Sekioka, Shinichi; Kuroiwa, Kaori; Kudo, Yoshiyuki
2015-04-01
The DIAS/CEOS Water Portal is a one of the DIAS (Data Integration and Analysis System, http://www.editoria.u-tokyo.ac.jp/projects/dias/?locale=en_US) systems for data distribution for users including, but not limited to, scientists, decision makers and officers like river administrators. This portal has two main functions; one is to search and access data and the other is to register and share use cases which use datasets provided via this portal. This presentation focuses on the first function, to search and access data. The Portal system is distributed in the sense that, while the portal system is located in Tokyo, the data is located in archive centers which are globally distributed. For example, some in-situ data is archived at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory in Boulder, Colorado, USA. The NWP station time series and global gridded model output data is archived at the Max Planck Institute for Meteorology (MPIM) in cooperation with the World Data Center for Climate in Hamburg, Germany. Part of satellite data is archived at DIAS storage at the University of Tokyo, Japan. This portal itself does not store data. Instead, according to requests made by users on the web page, it retrieves data from distributed data centers on-the-fly and lets them download and see rendered images/plots. Although some data centers have unique meta data format and/or data search protocols, our portal's brokering function enables users to search across various data centers at one time, like one-stop shopping. And this portal is also connected to other data brokering systems, including GEOSS DAB (Discovery and Access Broker). As a result, users can search over thousands of datasets, millions of files at one time. Our system mainly relies on the open source software GI-cat (http://essi-lab.eu/do/view/GIcat), Opensearch protocol and OPeNDAP protocol to enable the above functions. Details on how it works will be introduced during the presentation. Users can access the DIAS/CEOS Water Portal system at http://waterportal.ceos.org/.
NASA Astrophysics Data System (ADS)
Kiebuzinski, A. B.; Bories, C. M.; Kalluri, S.
2002-12-01
As part of its Earth Observing System (EOS), NASA supports operations for several satellites including Landsat 7, Terra, and Aqua. ECS (EOSDIS Core System) is a vast archival and distribution system and includes several Distributed Active Archive Centers (DAACs) located around the United States. EOSDIS reached a milestone in February when its data holdings exceeded one petabyte (1,000 terabytes) in size. It has been operational since 1999 and originally was intended to serve a large community of Earth Science researchers studying global climate change. The Synergy Program was initiated in 2000 with the purpose of exploring and expanding the use of remote sensing data beyond the traditional research community to the applications community including natural resource managers, disaster/emergency managers, urban planners and others. This included facilitating data access at the DAACs to enable non-researchers to exploit the data for their specific applications. The combined volume of data archived daily across the DAACs is of the order of three terabytes. These archived data are made available to the research community and to general users of ECS data. Currently, the average data volume distributed daily is two terabytes, which combined with an ever-increasing need for timely access to these data, taxes the ECS processing and archival resources for more real-time use than was previously intended for research purposes. As a result, the delivery of data sets to users was being delayed in many cases, to unacceptable limits. Raytheon, under the auspices of the Synergy Program, investigated methods at making data more accessible at a lower cost of resources (processing and archival) at the DAACs. Large on-line caches (as big as 70 Terabytes) of data were determined to be a solution that would allow users who require contemporary data to access them without having to pull it from the archive. These on-line caches are referred to as "Data Pools." In the Data Pool concept, data is inserted via subscriptions based on ECS events, for example, arrival of data matching a specific spatial context. Upon acquisition, these data are written to the Data Pools as well as to the permanent archive. The data is then accessed via a public Web interface, which provides a drilldown search, using data group, spatial, temporal and other flags. The result set is displayed as a list of ftp links to the data, which the user can click and directly download. Data Pool holdings are continuously renewed as the data is allowed to expire and is replaced by more current insertions. In addition, the Data Pool may also house data sets that though not contemporary, receive significant user attention, i.e. a Chernobyl-type of incident, a flood, or a forest fire. The benefits are that users who require contemporary data can access the data immediately (within 24 hours of acquisition) under a much improved access technique. Users not requiring contemporary data, benefit from the Data Pools by having greater archival and processing resources (and a shorter processing queue) made available to them. All users benefit now from the capability to have standing data orders for data matching a geographic context (spatial subscription), a capability also developed under the Synergy program. The Data Pools are currently being installed and checked at each of the DAACs. Additionally, several improvements to the search capabilities, data manipulation tools and overall storage capacity are being developed and will be installed in the First Quarter of 2003.
The imaging node for the Planetary Data System
Eliason, E.M.; LaVoie, S.K.; Soderblom, L.A.
1996-01-01
The Planetary Data System Imaging Node maintains and distributes the archives of planetary image data acquired from NASA's flight projects with the primary goal of enabling the science community to perform image processing and analysis on the data. The Node provides direct and easy access to the digital image archives through wide distribution of the data on CD-ROM media and on-line remote-access tools by way of Internet services. The Node provides digital image processing tools and the expertise and guidance necessary to understand the image collections. The data collections, now approaching one terabyte in volume, provide a foundation for remote sensing studies for virtually all the planetary systems in our solar system (except for Pluto). The Node is responsible for restoring data sets from past missions in danger of being lost. The Node works with active flight projects to assist in the creation of their archive products and to ensure that their products and data catalogs become an integral part of the Node's data collections.
Architecture and evolution of Goddard Space Flight Center Distributed Active Archive Center
NASA Technical Reports Server (NTRS)
Bedet, Jean-Jacques; Bodden, Lee; Rosen, Wayne; Sherman, Mark; Pease, Phil
1994-01-01
The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been developed to enhance Earth Science research by improved access to remote sensor earth science data. Building and operating an archive, even one of a moderate size (a few Terabytes), is a challenging task. One of the critical components of this system is Unitree, the Hierarchical File Storage Management System. Unitree, selected two years ago as the best available solution, requires constant system administrative support. It is not always suitable as an archive and distribution data center, and has moderate performance. The Data Archive and Distribution System (DADS) software developed to monitor, manage, and automate the ingestion, archive, and distribution functions turned out to be more challenging than anticipated. Having the software and tools is not sufficient to succeed. Human interaction within the system must be fully understood to improve efficiency to improve efficiency and ensure that the right tools are developed. One of the lessons learned is that the operability, reliability, and performance aspects should be thoroughly addressed in the initial design. However, the GSFC DAAC has demonstrated that it is capable of distributing over 40 GB per day. A backup system to archive a second copy of all data ingested is under development. This backup system will be used not only for disaster recovery but will also replace the main archive when it is unavailable during maintenance or hardware replacement. The GSFC DAAC has put a strong emphasis on quality at all level of its organization. A Quality team has also been formed to identify quality issues and to propose improvements. The DAAC has conducted numerous tests to benchmark the performance of the system. These tests proved to be extremely useful in identifying bottlenecks and deficiencies in operational procedures.
Analysis of the access patterns at GSFC distributed active archive center
NASA Technical Reports Server (NTRS)
Johnson, Theodore; Bedet, Jean-Jacques
1996-01-01
The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been operational for more than two years. Its mission is to support existing and pre Earth Observing System (EOS) Earth science datasets, facilitate the scientific research, and test Earth Observing System Data and Information System (EOSDIS) concepts. Over 550,000 files and documents have been archived, and more than six Terabytes have been distributed to the scientific community. Information about user request and file access patterns, and their impact on system loading, is needed to optimize current operations and to plan for future archives. To facilitate the management of daily activities, the GSFC DAAC has developed a data base system to track correspondence, requests, ingestion and distribution. In addition, several log files which record transactions on Unitree are maintained and periodically examined. This study identifies some of the users' requests and file access patterns at the GSFC DAAC during 1995. The analysis is limited to the subset of orders for which the data files are under the control of the Hierarchical Storage Management (HSM) Unitree. The results show that most of the data volume ordered was for two data products. The volume was also mostly made up of level 3 and 4 data and most of the volume was distributed on 8 mm and 4 mm tapes. In addition, most of the volume ordered was for deliveries in North America although there was a significant world-wide use. There was a wide range of request sizes in terms of volume and number of files ordered. On an average 78.6 files were ordered per request. Using the data managed by Unitree, several caching algorithms have been evaluated for both hit rate and the overhead ('cost') associated with the movement of data from near-line devices to disks. The algorithm called LRU/2 bin was found to be the best for this workload, but the STbin algorithm also worked well.
Kalvelage, Thomas A.; Willems, Jennifer
2005-01-01
The US Geological Survey's EROS Data Center (EDC) hosts the Land Processes Distributed Active Archive Center (LP DAAC). The LP DAAC supports NASA's Earth Observing System (EOS), which is a series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. The EOS Data and Information Systems (EOSDIS) was designed to acquire, archive, manage and distribute Earth observation data to the broadest possible user community.The LP DAAC is one of four DAACs that utilize the EOSDIS Core System (ECS) to manage and archive their data. Since the ECS was originally designed, significant changes have taken place in technology, user expectations, and user requirements. Therefore the LP DAAC has implemented additional systems to meet the evolving needs of scientific users, tailored to an integrated working environment. These systems provide a wide variety of services to improve data access and to enhance data usability through subsampling, reformatting, and reprojection. These systems also support the wide breadth of products that are handled by the LP DAAC.The LP DAAC is the primary archive for the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data; it is the only facility in the United States that archives, processes, and distributes data from the Advanced Spaceborne Thermal Emission/Reflection Radiometer (ASTER) on NASA's Terra spacecraft; and it is responsible for the archive and distribution of “land products” generated from data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra and Aqua satellites.
Analysis of the request patterns to the NSSDC on-line archive
NASA Technical Reports Server (NTRS)
Johnson, Theodore
1994-01-01
NASA missions, both for earth science and for space science, collect huge amounts of data, and the rate at which data is being gathered is increasing. For example, the EOSDIS project is expected to collect petabytes per year. In addition, these archives are being made available to remote users over the Internet. The ability to manage the growth of the size and request activity of scientific archives depends on an understanding of the access patterns of scientific users. The National Space Science Data Center (NSSDC) of NASA Goddard Space Flight Center has run their on-line mass storage archive of space data, the National Data Archive and Distribution Service (NDADS), since November 1991. A large world-wide space research community makes use of NSSDC, requesting more than 20,000 files per month. Since the initiation of their service, they have maintained log files which record all accesses the archive. In this report, we present an analysis of the NDADS log files. We analyze the log files, and discuss several issues, including caching, reference patterns, clustering, and system loading.
Policies and Procedures for Accessing Archived NASA Lunar Data via the Web
NASA Technical Reports Server (NTRS)
James, Nathan L.; Williams, David R.
2011-01-01
The National Space Science Data Center (NSSDC) was established by NASA to provide for the preservation and dissemination of scientific data from NASA missions. This paper describes the policies specifically related to lunar science data. NSSDC presently archives 660 lunar data collections. Most of these data (423 units) are stored offline in analog format. The remainder of this collection consists of magnetic tapes and discs containing approximately 1.7 TB of digital lunar data. The active archive for NASA lunar data is the Planetary Data System (PDS). NSSDC has an agreement with the PDS Lunar Data Node to assist in the restoration and preparation of NSSDC-resident lunar data upon request for access and distribution via the PDS archival system. Though much of NSSDC's digital store also resides in PDS, NSSDC has many analog data collections and some digital lunar data sets that are not in PDS. NSSDC stands ready to make these archived lunar data accessible to both the research community and the general public upon request as resources allow. Newly requested offline lunar data are digitized and moved to near-line storage devices called digital linear tape jukeboxes. The data are then packaged and made network-accessible via FTP for the convenience of a growing segment of the user community. This publication will 1) discuss the NSSDC processes and policies that govern how NASA lunar data is preserved, restored, and made accessible via the web and 2) highlight examples of special lunar data requests.
EMMA—mouse mutant resources for the international scientific community
Wilkinson, Phil; Sengerova, Jitka; Matteoni, Raffaele; Chen, Chao-Kung; Soulat, Gaetan; Ureta-Vidal, Abel; Fessele, Sabine; Hagn, Michael; Massimi, Marzia; Pickford, Karen; Butler, Richard H.; Marschall, Susan; Mallon, Ann-Marie; Pickard, Amanda; Raspa, Marcello; Scavizzi, Ferdinando; Fray, Martin; Larrigaldie, Vanessa; Leyritz, Johan; Birney, Ewan; Tocchini-Valentini, Glauco P.; Brown, Steve; Herault, Yann; Montoliu, Lluis; de Angelis, Martin Hrabé; Smedley, Damian
2010-01-01
The laboratory mouse is the premier animal model for studying human disease and thousands of mutants have been identified or produced, most recently through gene-specific mutagenesis approaches. High throughput strategies by the International Knockout Mouse Consortium (IKMC) are producing mutants for all protein coding genes. Generating a knock-out line involves huge monetary and time costs so capture of both the data describing each mutant alongside archiving of the line for distribution to future researchers is critical. The European Mouse Mutant Archive (EMMA) is a leading international network infrastructure for archiving and worldwide provision of mouse mutant strains. It operates in collaboration with the other members of the Federation of International Mouse Resources (FIMRe), EMMA being the European component. Additionally EMMA is one of four repositories involved in the IKMC, and therefore the current figure of 1700 archived lines will rise markedly. The EMMA database gathers and curates extensive data on each line and presents it through a user-friendly website. A BioMart interface allows advanced searching including integrated querying with other resources e.g. Ensembl. Other resources are able to display EMMA data by accessing our Distributed Annotation System server. EMMA database access is publicly available at http://www.emmanet.org. PMID:19783817
Development of multi-mission satellite data systems at the German Remote Sensing Data Centre
NASA Astrophysics Data System (ADS)
Lotz-Iwen, H. J.; Markwitz, W.; Schreier, G.
1998-11-01
This paper focuses on conceptual aspects of the access to multi-mission remote sensing data by online catalogue and information systems. The system ISIS of the German Remote Sensing Data Centre is described as an example of a user interface to earth observation data. ISIS has been designed to support international scientific research as well as operational applications by offering online access to the database via public networks. It provides catalogue retrieval, visualisation and transfer of image data, and is integrated in international activities dedicated to catalogue and archive interoperability. Finally, an outlook is given on international projects dealing with access to remote sensing data in distributed archives.
Carneggie, David M.; Metz, Gary G.; Draeger, William C.; Thompson, Ralph J.
1991-01-01
The U.S. Geological Survey's Earth Resources Observation Systems (EROS) Data Center, the national archive for Landsat data, has 20 years of experience in acquiring, archiving, processing, and distributing Landsat and earth science data. The Center is expanding its satellite and earth science data management activities to support the U.S. Global Change Research Program and the National Aeronautics and Space Administration (NASA) Earth Observing System Program. The Center's current and future data management activities focus on land data and include: satellite and earth science data set acquisition, development and archiving; data set preservation, maintenance and conversion to more durable and accessible archive medium; development of an advanced Land Data Information System; development of enhanced data packaging and distribution mechanisms; and data processing, reprocessing, and product generation systems.
Improved Data Access From the Northern California Earthquake Data Center
NASA Astrophysics Data System (ADS)
Neuhauser, D.; Oppenheimer, D.; Zuzlewski, S.; Klein, F.; Jensen, E.; Gee, L.; Murray, M.; Romanowicz, B.
2002-12-01
The NCEDC is a joint project of the UC Berkeley Seismological Laboratory and the USGS Menlo Park to provide a long-term archive and distribution center for geophysical data for northern California. Most data are available via the Web at http://quake.geo.berkeley.edu and research accounts are available for access to specialized datasets. Current efforts continue to expand the available datasets, enhance distribution methods, and to provide rapid access to all datasets. The NCEDC archives continuous and event-based seismic and geophysical time-series data from the BDSN, the USGS NCSN, the UNR Seismic Network, the Parkfield HRSN, and the Calpine/Unocal Geysers network. In collaboration with the USGS, the NCEDC has archived a total of 887 channels from 139 sites of the "USGS low-frequency" geophysical network (UL), including data from strainmeters, creep meters, magnetometers, water well levels, and tiltmeters. There are 336 active continuous data channels that are updated at the NCEDC on a daily basis. Geodetic data from the BARD network of over 40 continuously recording GPS sites are archived at the NCEDC in both raw and RINEX format. The NCEDC is the primary archive for survey-mode GPS and other geodetic data collected in northern California by the USGS, universities, and other agencies. All of the BARD data and GPS data archived from USGS Menlo Park surveys are now available through the GPS Seamless Archive Centers (GSAC), and by FTP directly from the NCEDC. Virtually all time-series data at the NCEDC are now available in SEED with complete instrument responses. Assembling, verifying, and maintaining the response information for these networks is a huge task, and is accomplished through the collaborative efforts of the NCEDC and the contributing agencies. Until recently, the NCSN waveform data were available only through research accounts and special request methods due to incomplete instrument responses. In the last year, the USGS compiled the necessary descriptions for for both historic and current NCSN instrumentation. The NCEDC and USGS jointly developed a procedure to create and maintain the hardware attributes and instrument responses at the NCEDC for the 3500 NCSN channels. As a result, the NCSN waveform data can now be distributed in SEED format. The NCEDC provides access to waveform data through Web forms, email requests, and programming interfaces. The SeismiQuery Web interface provides information about data holdings. NetDC allows users to retrieve inventory information, instrument responses, and waveforms in SEED format. STP provides both a Web and programming interface to retrieve data in SEED or other user-friendly formats. Through the newly formed California Integrated Seismic Network, we are working with the SCEDC to provide unified access to California earthquake data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prather, J. C.; Smith, S. K.; Watson, C. R.
The National Radiobiology Archives is a comprehensive effort to gather, organize, and catalog original data, representative specimens, and supporting materials related to significant radiobiology studies. This provides researchers with information for analyses which compare or combine results of these and other studies and with materials for analysis by advanced molecular biology techniques. This Programmer's Guide document describes the database access software, NRADEMO, and the subset loading script NRADEMO/MAINT/MAINTAIN, which comprise the National Laboratory Archives Distributed Access Package. The guide is intended for use by an experienced database management specialist. It contains information about the physical and logical organization of themore » software and data files. It also contains printouts of all the scripts and associated batch processing files. It is part of a suite of documents published by the National Radiobiology Archives.« less
NASA Technical Reports Server (NTRS)
Short, Nick, Jr.; Bedet, Jean-Jacques; Bodden, Lee; Boddy, Mark; White, Jim; Beane, John
1994-01-01
The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been operational since October 1, 1993. Its mission is to support the Earth Observing System (EOS) by providing rapid access to EOS data and analysis products, and to test Earth Observing System Data and Information System (EOSDIS) design concepts. One of the challenges is to ensure quick and easy retrieval of any data archived within the DAAC's Data Archive and Distributed System (DADS). Over the 15-year life of EOS project, an estimated several Petabytes (10(exp 15)) of data will be permanently stored. Accessing that amount of information is a formidable task that will require innovative approaches. As a precursor of the full EOS system, the GSFC DAAC with a few Terabits of storage, has implemented a prototype of a constraint-based task and resource scheduler to improve the performance of the DADS. This Honeywell Task and Resource Scheduler (HTRS), developed by Honeywell Technology Center in cooperation the Information Science and Technology Branch/935, the Code X Operations Technology Program, and the GSFC DAAC, makes better use of limited resources, prevents backlog of data, provides information about resources bottlenecks and performance characteristics. The prototype which is developed concurrently with the GSFC Version 0 (V0) DADS, models DADS activities such as ingestion and distribution with priority, precedence, resource requirements (disk and network bandwidth) and temporal constraints. HTRS supports schedule updates, insertions, and retrieval of task information via an Application Program Interface (API). The prototype has demonstrated with a few examples, the substantial advantages of using HTRS over scheduling algorithms such as a First In First Out (FIFO) queue. The kernel scheduling engine for HTRS, called Kronos, has been successfully applied to several other domains such as space shuttle mission scheduling, demand flow manufacturing, and avionics communications scheduling.
Image dissemination and archiving.
Robertson, Ian
2007-08-01
Images generated as part of the sonographic examination are an integral part of the medical record and must be retained according to local regulations. The standard medical image format, known as DICOM (Digital Imaging and COmmunications in Medicine) makes it possible for images from many different imaging modalities, including ultrasound, to be distributed via a standard internet network to distant viewing workstations and a central archive in an almost seamless fashion. The DICOM standard is a truly universal standard for the dissemination of medical images. When purchasing an ultrasound unit, the consumer should research the unit's capacity to generate images in a DICOM format, especially if one wishes interconnectivity with viewing workstations and an image archive that stores other medical images. PACS, an acronym for Picture Archive and Communication System refers to the infrastructure that links modalities, workstations, the image archive, and the medical record information system into an integrated system, allowing for efficient electronic distribution and storage of medical images and access to medical record data.
Simple, Script-Based Science Processing Archive
NASA Technical Reports Server (NTRS)
Lynnes, Christopher; Hegde, Mahabaleshwara; Barth, C. Wrandle
2007-01-01
The Simple, Scalable, Script-based Science Processing (S4P) Archive (S4PA) is a disk-based archival system for remote sensing data. It is based on the data-driven framework of S4P and is used for data transfer, data preprocessing, metadata generation, data archive, and data distribution. New data are automatically detected by the system. S4P provides services such as data access control, data subscription, metadata publication, data replication, and data recovery. It comprises scripts that control the data flow. The system detects the availability of data on an FTP (file transfer protocol) server, initiates data transfer, preprocesses data if necessary, and archives it on readily available disk drives with FTP and HTTP (Hypertext Transfer Protocol) access, allowing instantaneous data access. There are options for plug-ins for data preprocessing before storage. Publication of metadata to external applications such as the Earth Observing System Clearinghouse (ECHO) is also supported. S4PA includes a graphical user interface for monitoring the system operation and a tool for deploying the system. To ensure reliability, S4P continuously checks stored data for integrity, Further reliability is provided by tape backups of disks made once a disk partition is full and closed. The system is designed for low maintenance, requiring minimal operator oversight.
Preserving Long-Term Access to United States Government Documents in Legacy Digital Formats
ERIC Educational Resources Information Center
Woods, Kam A.
2010-01-01
Over the past several decades, millions of digital objects of significant scientific, economic, cultural, and historic value have been published and distributed to libraries and archives on removable media. Providing long-term access to these documents, media files, and software executables is an increasingly complex task because of dependencies…
Issues in Electronic Publishing.
ERIC Educational Resources Information Center
Meadow, Charles T.
1997-01-01
Discusses issues related to electronic publishing. Topics include writing; reading; production, distribution, and commerce; copyright and ownership of intellectual property; archival storage; technical obsolescence; control of content; equality of access; and cultural changes. (Author/LRW)
Stewardship of NASA's Earth Science Data and Ensuring Long-Term Active Archives
NASA Astrophysics Data System (ADS)
Ramapriyan, H.; Behnke, J.
2016-12-01
NASA's Earth Observing System Data and Information System (EOSDIS) has been in operation since 1994. EOSDIS manages data from pre-EOS missions dating back to 1960s, EOS missions that started in 1997, and missions from the post-EOS era. Its data holdings come from many different sources - satellite and airborne instruments, in situ measures, field experiments, science investigations, etc. Since the beginning of the EOS Program, NASA has followed an open data policy, with non-discriminatory access to data with no period of exclusive access. NASA has well-established processes for assigning and/or accepting datasets into one of 12 Distributed Active Archive Centers (DAACs) that are parts of EOSDIS. EOSDIS has been evolving through several information technology cycles, adapting to hardware and software changes in the commercial sector. NASA is responsible for maintaining Earth science data as long as users are interested in using them for research and applications, which is well beyond the life of the data gathering missions. For science data to remain useful over long periods of time, steps must be taken to preserve: 1. Data bits with no corruption, 2. Discoverability and access, 3. Readability, 4. Understandability, 5. Usability and 6. Reproducibility of results. NASA's Earth Science data and Information System (ESDIS) Project, along with the 12 EOSDIS Distributed Active Archive Centers (DAACs), has made significant progress in each of these areas over the last decade, and continues to evolve its active archive capabilities. Particular attention is being paid in recent years to ensure that the datasets are "published" in an easily accessible and citable manner through a unified metadata model, a common metadata repository (CMR), a coherent view through the earthdata.gov website, and assignment of Digital Object Identifiers (DOI) with well-designed landing/product information pages.
(abstract) Towards Ancillary Data Standards
NASA Technical Reports Server (NTRS)
Acton, Charles H.
1997-01-01
NASA's SPICE information system for archiving, distributing, and accessing spacecraft navigation, orientation, and other ancillary data is described. A proposal is made for the further evolution of this concept to an internationally useful standard, to be.
NASA Technical Reports Server (NTRS)
Perry, Charleen M.; Vansteenberg, Michael E.
1992-01-01
The National Space Science Data Center (NSSDC) has developed an automated data retrieval request service utilizing our Data Archive and Distribution Service (NDADS) computer system. NDADS currently has selected project data written to optical disk platters with the disks residing in a robotic 'jukebox' near-line environment. This allows for rapid and automated access to the data with no staff intervention required. There are also automated help information and user services available that can be accessed. The request system permits an average-size data request to be completed within minutes of the request being sent to NSSDC. A mail message, in the format described in this document, retrieves the data and can send it to a remote site. Also listed in this document are the data currently available.
A Routing Mechanism for Cloud Outsourcing of Medical Imaging Repositories.
Godinho, Tiago Marques; Viana-Ferreira, Carlos; Bastião Silva, Luís A; Costa, Carlos
2016-01-01
Web-based technologies have been increasingly used in picture archive and communication systems (PACS), in services related to storage, distribution, and visualization of medical images. Nowadays, many healthcare institutions are outsourcing their repositories to the cloud. However, managing communications between multiple geo-distributed locations is still challenging due to the complexity of dealing with huge volumes of data and bandwidth requirements. Moreover, standard methodologies still do not take full advantage of outsourced archives, namely because their integration with other in-house solutions is troublesome. In order to improve the performance of distributed medical imaging networks, a smart routing mechanism was developed. This includes an innovative cache system based on splitting and dynamic management of digital imaging and communications in medicine objects. The proposed solution was successfully deployed in a regional PACS archive. The results obtained proved that it is better than conventional approaches, as it reduces remote access latency and also the required cache storage space.
Solar-terrestrial data access distribution and archiving
NASA Technical Reports Server (NTRS)
1984-01-01
It is recommended that a central data catalog and data access network (CDC/DAN) for solar-terrestrial research be established, initially as a NASA pilot program. The system is envisioned to be flexible and to evolve as funds permit, starting from a catalog to an access network for high-resolution data. The report describes the various functional requirements for the CDC/DAN, but does not specify the hardware and software architectures as these are constantly evolving. The importance of a steering committee, working with the CDC/DAN organization, to provide scientific guidelines for the data catalog and for data storage, access, and distribution is also stressed.
Lessons Learned While Exploring Cloud-Native Architectures for NASA EOSDIS Applications and Systems
NASA Technical Reports Server (NTRS)
Pilone, Dan; Mclaughlin, Brett; Plofchan, Peter
2017-01-01
NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a multi-petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 6000 data products ranging from various types of science disciplines. EOSDIS has continually evolved to improve the discoverability, accessibility, and usability of high-impact NASA data spanning the multi-petabyte-scale archive of Earth science data products. Reviewed and approved by Chris Lynnes.
Goddard Atmospheric Composition Data Center: Aura Data and Services in One Place
NASA Technical Reports Server (NTRS)
Leptoukh, G.; Kempler, S.; Gerasimov, I.; Ahmad, S.; Johnson, J.
2005-01-01
The Goddard Atmospheric Composition Data and Information Services Center (AC-DISC) is a portal to the Atmospheric Composition specific, user driven, multi-sensor, on-line, easy access archive and distribution system employing data analysis and visualization, data mining, and other user requested techniques for the better science data usage. It provides convenient access to Atmospheric Composition data and information from various remote-sensing missions, from TOMS, UARS, MODIS, and AIRS, to the most recent data from Aura OMI, MLS, HIRDLS (once these datasets are released to the public), as well as Atmospheric Composition datasets residing at other remote archive site.
Use of Schema on Read in Earth Science Data Archives
NASA Astrophysics Data System (ADS)
Petrenko, M.; Hegde, M.; Smit, C.; Pilone, P.; Pham, L.
2017-12-01
Traditionally, NASA Earth Science data archives have file-based storage using proprietary data file formats, such as HDF and HDF-EOS, which are optimized to support fast and efficient storage of spaceborne and model data as they are generated. The use of file-based storage essentially imposes an indexing strategy based on data dimensions. In most cases, NASA Earth Science data uses time as the primary index, leading to poor performance in accessing data in spatial dimensions. For example, producing a time series for a single spatial grid cell involves accessing a large number of data files. With exponential growth in data volume due to the ever-increasing spatial and temporal resolution of the data, using file-based archives poses significant performance and cost barriers to data discovery and access. Storing and disseminating data in proprietary data formats imposes an additional access barrier for users outside the mainstream research community. At the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), we have evaluated applying the "schema-on-read" principle to data access and distribution. We used Apache Parquet to store geospatial data, and have exposed data through Amazon Web Services (AWS) Athena, AWS Simple Storage Service (S3), and Apache Spark. Using the "schema-on-read" approach allows customization of indexing—spatial or temporal—to suit the data access pattern. The storage of data in open formats such as Apache Parquet has widespread support in popular programming languages. A wide range of solutions for handling big data lowers the access barrier for all users. This presentation will discuss formats used for data storage, frameworks with support for "schema-on-read" used for data access, and common use cases covering data usage patterns seen in a geospatial data archive.
Use of Schema on Read in Earth Science Data Archives
NASA Technical Reports Server (NTRS)
Hegde, Mahabaleshwara; Smit, Christine; Pilone, Paul; Petrenko, Maksym; Pham, Long
2017-01-01
Traditionally, NASA Earth Science data archives have file-based storage using proprietary data file formats, such as HDF and HDF-EOS, which are optimized to support fast and efficient storage of spaceborne and model data as they are generated. The use of file-based storage essentially imposes an indexing strategy based on data dimensions. In most cases, NASA Earth Science data uses time as the primary index, leading to poor performance in accessing data in spatial dimensions. For example, producing a time series for a single spatial grid cell involves accessing a large number of data files. With exponential growth in data volume due to the ever-increasing spatial and temporal resolution of the data, using file-based archives poses significant performance and cost barriers to data discovery and access. Storing and disseminating data in proprietary data formats imposes an additional access barrier for users outside the mainstream research community. At the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), we have evaluated applying the schema-on-read principle to data access and distribution. We used Apache Parquet to store geospatial data, and have exposed data through Amazon Web Services (AWS) Athena, AWS Simple Storage Service (S3), and Apache Spark. Using the schema-on-read approach allows customization of indexing spatially or temporally to suit the data access pattern. The storage of data in open formats such as Apache Parquet has widespread support in popular programming languages. A wide range of solutions for handling big data lowers the access barrier for all users. This presentation will discuss formats used for data storage, frameworks with This presentation will discuss formats used for data storage, frameworks with support for schema-on-read used for data access, and common use cases covering data usage patterns seen in a geospatial data archive.
ERIC Educational Resources Information Center
Tedd, Lucy A.
2011-01-01
Purpose: The People's Collection Wales aims to collect, interpret, distribute and discuss Wales' cultural heritage in an online environment. Individual users or local history societies are able to create their own digital collections, contribute relevant content, as well as access digital resources from heritage institutions. This paper aims to…
Intelligent Systems Technologies and Utilization of Earth Observation Data
NASA Technical Reports Server (NTRS)
Ramapriyan, H. K.; McConaughy, G. R.; Morse, H. S.
2004-01-01
The addition of raw data and derived geophysical parameters from several Earth observing satellites over the last decade to the data held by NASA data centers has created a data rich environment for the Earth science research and applications communities. The data products are being distributed to a large and diverse community of users. Due to advances in computational hardware, networks and communications, information management and software technologies, significant progress has been made in the last decade in archiving and providing data to users. However, to realize the full potential of the growing data archives, further progress is necessary in the transformation of data into information, and information into knowledge that can be used in particular applications. Sponsored by NASA s Intelligent Systems Project within the Computing, Information and Communication Technology (CICT) Program, a conceptual architecture study has been conducted to examine ideas to improve data utilization through the addition of intelligence into the archives in the context of an overall knowledge building system (KBS). Potential Intelligent Archive concepts include: 1) Mining archived data holdings to improve metadata to facilitate data access and usability; 2) Building intelligence about transformations on data, information, knowledge, and accompanying services; 3) Recognizing the value of results, indexing and formatting them for easy access; 4) Interacting as a cooperative node in a web of distributed systems to perform knowledge building; and 5) Being aware of other nodes in the KBS, participating in open systems interfaces and protocols for virtualization, and achieving collaborative interoperability.
Global Data Assembly Center (GDAC) Report to the GHRSST Science Team
NASA Technical Reports Server (NTRS)
Armstrong, Edward; Vazquez, Jorge; Bingham, Andy; Gierach, Michelle; Huang, Thomas; Chen, Cynthia; Finch, Chris; Thompson, Charles
2013-01-01
In 2012-2013 the Global Data Assembly Center (GDAC) at NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC) continued its role as the primary clearinghouse and access node for operational GHRSST data streams, as well as its collaborative role with the NOAA Long Term Stewardship and Reanalysis Facility (LTSRF) for archiving. Our presentation reported on our data management activities and infrastructure improvements since the last science team meeting in 2012.
Archiving Space Geodesy Data for 20+ Years at the CDDIS
NASA Technical Reports Server (NTRS)
Noll, Carey E.; Dube, M. P.
2004-01-01
Since 1982, the Crustal Dynamics Data Information System (CDDIS) has supported the archive and distribution of geodetic data products acquired by NASA programs. These data include GPS (Global Positioning System), GLONASS (GLObal NAvigation Satellite System), SLR (Satellite Laser Ranging), VLBI (Very Long Baseline Interferometry), and DORIS (Doppler Orbitography and Radiolocation Integrated by Satellite). The data archive supports NASA's space geodesy activities through the Solid Earth and Natural Hazards (SENH) program. The CDDIS data system and its archive have become increasingly important to many national and international programs, particularly several of the operational services within the International Association of Geodesy (IAG), including the International GPS Service (IGS), the International Laser Ranging Service (ILRS), the International VLBI Service for Geodesy and Astrometry (IVS), the International DORIS Service (IDS), and the International Earth Rotation Service (IERS). The CDDIS provides easy and ready access to a variety of data sets, products, and information about these data. The specialized nature of the CDDIS lends itself well to enhancement and thus can accommodate diverse data sets and user requirements. All data sets and metadata extracted from these data sets are accessible to scientists through ftp and the web; general information about each data set is accessible via the web. The CDDIS, including background information about the system and its user communities, the computer architecture, archive contents, available metadata, and future plans will be discussed.
NASA Technical Reports Server (NTRS)
2002-01-01
The Goddard Earth Sciences Distributed Active Archive Center (DAAC) is the designated archive for all of the ocean color data produced by NASA satellite missions. The DAAC is a long-term, high volume, secure repository for many different kinds of environmental data. With respect to ocean color, the Goddard DAAC holds all the data obtained during the eight-year mission of the Coastal Zone Color Scanner (CZCS). The DAAC is currently receiving data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and the MODIS-Terra instrument. The DAAC recently received reformatted data from the Ocean Color and Temperature Scanner (OCTS) and will also archive MODIS-Aqua Ocean products. In addition to its archive and distribution services, the Goddard DAAC strives to improve data access, ease-of-use, and data applicability for a broad spectrum of customers. The DAAC's data support teams practice dual roles, both insuring the integrity of the DAAC data archive and serving the user community with answers to user inquiries, online and print documentation, and customized data services.
Life Sciences Data Archive (LSDA)
NASA Technical Reports Server (NTRS)
Fitts, M.; Johnson-Throop, Kathy; Thomas, D.; Shackelford, K.
2008-01-01
In the early days of spaceflight, space life sciences data were been collected and stored in numerous databases, formats, media-types and geographical locations. While serving the needs of individual research teams, these data were largely unknown/unavailable to the scientific community at large. As a result, the Space Act of 1958 and the Science Data Management Policy mandated that research data collected by the National Aeronautics and Space Administration be made available to the science community at large. The Biomedical Informatics and Health Care Systems Branch of the Space Life Sciences Directorate at JSC and the Data Archive Project at ARC, with funding from the Human Research Program through the Exploration Medical Capability Element, are fulfilling these requirements through the systematic population of the Life Sciences Data Archive. This program constitutes a formal system for the acquisition, archival and distribution of data for Life Sciences-sponsored experiments and investigations. The general goal of the archive is to acquire, preserve, and distribute these data using a variety of media which are accessible and responsive to inquiries from the science communities.
NASA Astrophysics Data System (ADS)
Pascoe, Stephen; Cinquini, Luca; Lawrence, Bryan
2010-05-01
The Phase 5 Coupled Model Intercomparison Project (CMIP5) will produce a petabyte scale archive of climate data relevant to future international assessments of climate science (e.g., the IPCC's 5th Assessment Report scheduled for publication in 2013). The infrastructure for the CMIP5 archive must meet many challenges to support this ambitious international project. We describe here the distributed software architecture being deployed worldwide to meet these challenges. The CMIP5 architecture extends the Earth System Grid (ESG) distributed architecture of Datanodes, providing data access and visualisation services, and Gateways providing the user interface including registration, search and browse services. Additional features developed for CMIP5 include a publication workflow incorporating quality control and metadata submission, data replication, version control, update notification and production of citable metadata records. Implementation of these features have been driven by the requirements of reliable global access to over 1Pb of data and consistent citability of data and metadata. Central to the implementation is the concept of Atomic Datasets that are identifiable through a Data Reference Syntax (DRS). Atomic Datasets are immutable to allow them to be replicated and tracked whilst maintaining data consistency. However, since occasional errors in data production and processing is inevitable, new versions can be published and users notified of these updates. As deprecated datasets may be the target of existing citations they can remain visible in the system. Replication of Atomic Datasets is designed to improve regional access and provide fault tolerance. Several datanodes in the system are designated replicating nodes and hold replicas of a portion of the archive expected to be of broad interest to the community. Gateways provide a system-wide interface to users where they can track the version history and location of replicas to select the most appropriate location for download. In addition to meeting the immediate needs of CMIP5 this architecture provides a basis for the Earth System Modeling e-infrastructure being further developed within the EU FP7 IS-ENES project.
NASA Technical Reports Server (NTRS)
Lynnes, C.
2014-01-01
Federated Giovanni is a NASA-funded ACCESS project to extend the scope of the GES DISC Giovanni online analysis tool to 4 other Distributed Active Archive Centers within EOSDIS: OBPG, LP-DAAC, MODAPS and PO.DAAC. As such, it represents a significant instance of sharing technology across the DAACs. We also touch on several sub-areas that are also sharable, such as Giovanni URLs, workflows and OGC-accessible services.
Benefits of cloud computing for PACS and archiving.
Koch, Patrick
2012-01-01
The goal of cloud-based services is to provide easy, scalable access to computing resources and IT services. The healthcare industry requires a private cloud that adheres to government mandates designed to ensure privacy and security of patient data while enabling access by authorized users. Cloud-based computing in the imaging market has evolved from a service that provided cost effective disaster recovery for archived data to fully featured PACS and vendor neutral archiving services that can address the needs of healthcare providers of all sizes. Healthcare providers worldwide are now using the cloud to distribute images to remote radiologists while supporting advanced reading tools, deliver radiology reports and imaging studies to referring physicians, and provide redundant data storage. Vendor managed cloud services eliminate large capital investments in equipment and maintenance, as well as staffing for the data center--creating a reduction in total cost of ownership for the healthcare provider.
Archive Management of NASA Earth Observation Data to Support Cloud Analysis
NASA Technical Reports Server (NTRS)
Lynnes, Christopher; Baynes, Kathleen; McInerney, Mark A.
2017-01-01
NASA collects, processes and distributes petabytes of Earth Observation (EO) data from satellites, aircraft, in situ instruments and model output, with an order of magnitude increase expected by 2024. Cloud-based web object storage (WOS) of these data can simplify the execution of such an increase. More importantly, it can also facilitate user analysis of those volumes by making the data available to the massively parallel computing power in the cloud. However, storing EO data in cloud WOS has a ripple effect throughout the NASA archive system with unexpected challenges and opportunities. One challenge is modifying data servicing software (such as Web Coverage Service servers) to access and subset data that are no longer on a directly accessible file system, but rather in cloud WOS. Opportunities include refactoring of the archive software to a cloud-native architecture; virtualizing data products by computing on demand; and reorganizing data to be more analysis-friendly.
NASA Astrophysics Data System (ADS)
2018-01-01
The large amount of data generated by modern space missions calls for a change of organization of data distribution and access procedures. Although long term archives exist for telescopic and space-borne observations, high-level functions need to be developed on top of these repositories to make Planetary Science and Heliophysics data more accessible and to favor interoperability. Results of simulations and reference laboratory data also need to be integrated to support and interpret the observations. Interoperable software and interfaces have recently been developed in many scientific domains. The Virtual Observatory (VO) interoperable standards developed for Astronomy by the International Virtual Observatory Alliance (IVOA) can be adapted to Planetary Sciences, as demonstrated by the VESPA (Virtual European Solar and Planetary Access) team within the Europlanet-H2020-RI project. Other communities have developed their own standards: GIS (Geographic Information System) for Earth and planetary surfaces tools, SPASE (Space Physics Archive Search and Extract) for space plasma, PDS4 (NASA Planetary Data System, version 4) and IPDA (International Planetary Data Alliance) for planetary mission archives, etc, and an effort to make them interoperable altogether is starting, including automated workflows to process related data from different sources.
Obstacles to the Access, Use and Transfer of Information from Archives: A RAMP Study.
ERIC Educational Resources Information Center
Duchein, Michel
This publication reviews means of access to information contained in the public archives (current administrative documents and archival records) and private archives (manuscripts of personal or family origin) of many countries and makes recommendations for improving access to archival information. Sections describe: (1) the origin and development…
Modifying the Heliophysics Data Policy to Better Enable Heliophysics Research
NASA Technical Reports Server (NTRS)
Hayes, Jeffrey; Roberts, D. Aaron; Bredekamp, Joseph
2008-01-01
The Heliophysics (HP) Science Data Management Policy, adopted by HP in June 2007, has helped to provide a structure for the HP data lifecycle. It provides guidelines for Project Data Management Plans and related documents, initiates Resident Archives to maintain data services after a mission ends, and outlines a route to the unification of data finding, access, and distribution through Virtual observatories. Recently we have filled in missing pieces that assure more coherence and a home for the VxOs (through the 'Heliophsyics Data and Model Consortium'), and provide greater clarity with respect to long term archiving. In particular, the new policy which has been vetted with many community members, details the 'Final Archives' that are to provide long-term data access. These are distinguished from RAs in that they provide little additional service beyond servicing data, but critical to their success is that the final archival materials include calibrated data in useful formats such as one finds in CDAWeb and various ASCII or FITS archives. Having a clear goal for legacy products, to be detailed as part of the Mission Archives Plans presented at Senior Reviews, will help to avoid the situation so common in the past of having archival products that preserve bits well but not readily usable information. We hope to avoid the need for the large numbers of 'data upgrade' projects that have been necessary in recent years.
NASA's SPICE System Models the Solar System
NASA Technical Reports Server (NTRS)
Acton, Charles
1996-01-01
SPICE is NASA's multimission, multidiscipline information system for assembling, distributing, archiving, and accessing space science geometry and related data used by scientists and engineers for mission design and mission evaluation, detailed observation planning, mission operations, and science data analysis.
An XML-based Generic Tool for Information Retrieval in Solar Databases
NASA Astrophysics Data System (ADS)
Scholl, Isabelle F.; Legay, Eric; Linsolas, Romain
This paper presents the current architecture of the `Solar Web Project' now in its development phase. This tool will provide scientists interested in solar data with a single web-based interface for browsing distributed and heterogeneous catalogs of solar observations. The main goal is to have a generic application that can be easily extended to new sets of data or to new missions with a low level of maintenance. It is developed with Java and XML is used as a powerful configuration language. The server, independent of any database scheme, can communicate with a client (the user interface) and several local or remote archive access systems (such as existing web pages, ftp sites or SQL databases). Archive access systems are externally described in XML files. The user interface is also dynamically generated from an XML file containing the window building rules and a simplified database description. This project is developed at MEDOC (Multi-Experiment Data and Operations Centre), located at the Institut d'Astrophysique Spatiale (Orsay, France). Successful tests have been conducted with other solar archive access systems.
Digital information management: a progress report on the National Digital Mammography Archive
NASA Astrophysics Data System (ADS)
Beckerman, Barbara G.; Schnall, Mitchell D.
2002-05-01
Digital mammography creates very large images, which require new approaches to storage, retrieval, management, and security. The National Digital Mammography Archive (NDMA) project, funded by the National Library of Medicine (NLM), is developing a limited testbed that demonstrates the feasibility of a national breast imaging archive, with access to prior exams; patient information; computer aids for image processing, teaching, and testing tools; and security components to ensure confidentiality of patient information. There will be significant benefits to patients and clinicians in terms of accessible data with which to make a diagnosis and to researchers performing studies on breast cancer. Mammography was chosen for the project, because standards were already available for digital images, report formats, and structures. New standards have been created for communications protocols between devices, front- end portal and archive. NDMA is a distributed computing concept that provides for sharing and access across corporate entities. Privacy, auditing, and patient consent are all integrated into the system. Five sites, Universities of Pennsylvania, Chicago, North Carolina and Toronto, and BWXT Y12, are connected through high-speed networks to demonstrate functionality. We will review progress, including technical challenges, innovative research and development activities, standards and protocols being implemented, and potential benefits to healthcare systems.
DICOM-compliant PACS with CD-based image archival
NASA Astrophysics Data System (ADS)
Cox, Robert D.; Henri, Christopher J.; Rubin, Richard K.; Bret, Patrice M.
1998-07-01
This paper describes the design and implementation of a low- cost PACS conforming to the DICOM 3.0 standard. The goal was to provide an efficient image archival and management solution on a heterogeneous hospital network as a basis for filmless radiology. The system follows a distributed, client/server model and was implemented at a fraction of the cost of a commercial PACS. It provides reliable archiving on recordable CD and allows access to digital images throughout the hospital and on the Internet. Dedicated servers have been designed for short-term storage, CD-based archival, data retrieval and remote data access or teleradiology. The short-term storage devices provide DICOM storage and query/retrieve services to scanners and workstations and approximately twelve weeks of 'on-line' image data. The CD-based archival and data retrieval processes are fully automated with the exception of CD loading and unloading. The system employs lossless compression on both short- and long-term storage devices. All servers communicate via the DICOM protocol in conjunction with both local and 'master' SQL-patient databases. Records are transferred from the local to the master database independently, ensuring that storage devices will still function if the master database server cannot be reached. The system features rules-based work-flow management and WWW servers to provide multi-platform remote data access. The WWW server system is distributed on the storage, retrieval and teleradiology servers allowing viewing of locally stored image data directly in a WWW browser without the need for data transfer to a central WWW server. An independent system monitors disk usage, processes, network and CPU load on each server and reports errors to the image management team via email. The PACS was implemented using a combination of off-the-shelf hardware, freely available software and applications developed in-house. The system has enabled filmless operation in CT, MR and ultrasound within the radiology department and throughout the hospital. The use of WWW technology has enabled the development of an intuitive we- based teleradiology and image management solution that provides complete access to image data.
NASA Astrophysics Data System (ADS)
Yu, E.; Bhaskaran, A.; Chen, S.; Chowdhury, F. R.; Meisenhelter, S.; Hutton, K.; Given, D.; Hauksson, E.; Clayton, R. W.
2010-12-01
Currently the SCEDC archives continuous and triggered data from nearly 5000 data channels from 425 SCSN recorded stations, processing and archiving an average of 12,000 earthquakes each year. The SCEDC provides public access to these earthquake parametric and waveform data through its website www.data.scec.org and through client applications such as STP and DHI. This poster will describe the most significant developments at the SCEDC in the past year. Updated hardware: ● The SCEDC has more than doubled its waveform file storage capacity by migrating to 2 TB disks. New data holdings: ● Waveform data: Beginning Jan 1, 2010 the SCEDC began continuously archiving all high-sample-rate strong-motion channels. All seismic channels recorded by SCSN are now continuously archived and available at SCEDC. ● Portable data from El Mayor Cucapah 7.2 sequence: Seismic waveforms from portable stations installed by researchers (contributed by Elizabeth Cochran, Jamie Steidl, and Octavio Lazaro-Mancilla) have been added to the archive and are accessible through STP either as continuous data or associated with events in the SCEDC earthquake catalog. This additional data will help SCSN analysts and researchers improve event locations from the sequence. ● Real time GPS solutions from El Mayor Cucapah 7.2 event: Three component 1Hz seismograms of California Real Time Network (CRTN) GPS stations, from the April 4, 2010, magnitude 7.2 El Mayor-Cucapah earthquake are available in SAC format at the SCEDC. These time series were created by Brendan Crowell, Yehuda Bock, the project PI, and Mindy Squibb at SOPAC using data from the CRTN. The El Mayor-Cucapah earthquake demonstrated definitively the power of real-time high-rate GPS data: they measure dynamic displacements directly, they do not clip and they are also able to detect the permanent (coseismic) surface deformation. ● Triggered data from the Quake Catcher Network (QCN) and Community Seismic Network (CSN): The SCEDC in cooperation with QCN and CSN is exploring ways to archive and distribute data from high density low cost networks. As a starting point the SCEDC will store a dataset from QCN and CSN and distribute it through a separate STP client. New archival methods: ● The SCEDC is exploring the feasibility of archiving and distributing waveform data using cloud computing such as Google Apps. A month of continuous data from the SCEDC archive will be stored in Google Apps and a client developed to access it in a manner similar to STP. XML formats: ● The SCEDC is now distributing earthquake parameter data through web services in QuakeML format. ● The SCEDC in collaboration with the Northern California Earthquake Data Center (NCEDC) and USGS Golden has reviewed and revised the StationXML format to produce version 2.0. The new version includes a rules on extending the schema, use of named complex types, and greater consistency in naming conventions. Based on this work we plan to develop readers and writers of the StationXML format.
Distributed Active Archive Center
NASA Technical Reports Server (NTRS)
Bodden, Lee; Pease, Phil; Bedet, Jean-Jacques; Rosen, Wayne
1993-01-01
The Goddard Space Flight Center Version 0 Distributed Active Archive Center (GSFC V0 DAAC) is being developed to enhance and improve scientific research and productivity by consolidating access to remote sensor earth science data in the pre-EOS time frame. In cooperation with scientists from the science labs at GSFC, other NASA facilities, universities, and other government agencies, the DAAC will support data acquisition, validation, archive and distribution. The DAAC is being developed in response to EOSDIS Project Functional Requirements as well as from requirements originating from individual science projects such as SeaWiFS, Meteor3/TOMS2, AVHRR Pathfinder, TOVS Pathfinder, and UARS. The GSFC V0 DAAC has begun operational support for the AVHRR Pathfinder (as of April, 1993), TOVS Pathfinder (as of July, 1993) and the UARS (September, 1993) Projects, and is preparing to provide operational support for SeaWiFS (August, 1994) data. The GSFC V0 DAAC has also incorporated the existing data, services, and functionality of the DAAC/Climate, DAAC/Land, and the Coastal Zone Color Scanner (CZCS) Systems.
OceanNOMADS: Real-time and retrospective access to operational U.S. ocean prediction products
NASA Astrophysics Data System (ADS)
Harding, J. M.; Cross, S. L.; Bub, F.; Ji, M.
2011-12-01
The National Oceanic and Atmospheric Administration (NOAA) National Operational Model Archive and Distribution System (NOMADS) provides both real-time and archived atmospheric model output from servers at the National Centers for Environmental Prediction (NCEP) and National Climatic Data Center (NCDC) respectively (http://nomads.ncep.noaa.gov/txt_descriptions/marRutledge-1.pdf). The NOAA National Ocean Data Center (NODC) with NCEP is developing a complementary capability called OceanNOMADS for operational ocean prediction models. An NCEP ftp server currently provides real-time ocean forecast output (http://www.opc.ncep.noaa.gov/newNCOM/NCOM_currents.shtml) with retrospective access through NODC. A joint effort between the Northern Gulf Institute (NGI; a NOAA Cooperative Institute) and the NOAA National Coastal Data Development Center (NCDDC; a division of NODC) created the developmental version of the retrospective OceanNOMADS capability (http://www.northerngulfinstitute.org/edac/ocean_nomads.php) under the NGI Ecosystem Data Assembly Center (EDAC) project (http://www.northerngulfinstitute.org/edac/). Complementary funding support for the developmental OceanNOMADS from U.S. Integrated Ocean Observing System (IOOS) through the Southeastern University Research Association (SURA) Model Testbed (http://testbed.sura.org/) this past year provided NODC the analogue that facilitated the creation of an NCDDC production version of OceanNOMADS (http://www.ncddc.noaa.gov/ocean-nomads/). Access tool development and storage of initial archival data sets occur on the NGI/NCDDC developmental servers with transition to NODC/NCCDC production servers as the model archives mature and operational space and distribution capability grow. Navy operational global ocean forecast subsets for U.S waters comprise the initial ocean prediction fields resident on the NCDDC production server. The NGI/NCDDC developmental server currently includes the Naval Research Laboratory Inter-America Seas Nowcast/Forecast System over the Gulf of Mexico from 2004-Mar 2011, the operational Naval Oceanographic Office (NAVOCEANO) regional USEast ocean nowcast/forecast system from early 2009 to present, and the NAVOCEANO operational regional AMSEAS (Gulf of Mexico/Caribbean) ocean nowcast/forecast system from its inception 25 June 2010 to present. AMSEAS provided one of the real-time ocean forecast products accessed by NOAA's Office of Response and Restoration from the NGI/NCDDC developmental OceanNOMADS during the Deep Water Horizon oil spill last year. The developmental server also includes archived, real-time Navy coastal forecast products off coastal Japan in support of U.S./Japanese joint efforts following the 2011 tsunami. Real-time NAVOCEANO output from regional prediction systems off Southern California and around Hawaii, currently available on the NCEP ftp server, are scheduled for archival on the developmental OceanNOMADS by late 2011 along with the next generation Navy/NOAA global ocean prediction output. Accession and archival of additional regions is planned as server capacities increase.
The Challenges Facing Science Data Archiving on Current Mass Storage Systems
NASA Technical Reports Server (NTRS)
Peavey, Bernard; Behnke, Jeanne (Editor)
1996-01-01
This paper discusses the desired characteristics of a tape-based petabyte science data archive and retrieval system required to store and distribute several terabytes (TB) of data per day over an extended period of time, probably more than 115 years, in support of programs such as the Earth Observing System Data and Information System (EOSDIS). These characteristics take into consideration not only cost effective and affordable storage capacity, but also rapid access to selected files, and reading rates that are needed to satisfy thousands of retrieval transactions per day. It seems that where rapid random access to files is not crucial, the tape medium, magnetic or optical, continues to offer cost effective data storage and retrieval solutions, and is likely to do so for many years to come. However, in environments like EOS these tape based archive solutions provide less than full user satisfaction. Therefore, the objective of this paper is to describe the performance and operational enhancements that need to be made to the current tape based archival systems in order to achieve greater acceptance by the EOS and similar user communities.
Intelligent Systems Technologies to Assist in Utilization of Earth Observation Data
NASA Technical Reports Server (NTRS)
Ramapriyan, Hampapuram K.; McConaughy, Gail; Lynnes, Christopher; McDonald, Kenneth; Kempler, Steven
2003-01-01
With the launch of several Earth observing satellites over the last decade, we are now in a data rich environment. From NASA's Earth Observing System (EOS) satellites alone, we are accumulating more than 3 TB per day of raw data and derived geophysical parameters. The data products are being distributed to a large user community comprising scientific researchers, educators and operational government agencies. Notable progress has been made in the last decade in facilitating access to data. However, to realize the full potential of the growing archives of valuable scientific data, further progress is necessary in the transformation of data into information, and information into knowledge that can be used in particular applications. Sponsored by NASA s Intelligent Systems Project within the Computing, Information and Communication Technology (CICT) Program, a conceptual architecture study has been conducted to examine ideas to improve data utilization through the addition of intelligence into the archives in the context of an overall knowledge building system. Potential Intelligent Archive concepts include: 1) Mining archived data holdings using Intelligent Data Understanding algorithms to improve metadata to facilitate data access and usability; 2) Building intelligence about transformations on data, information, knowledge, and accompanying services involved in a scientific enterprise; 3) Recognizing the value of results, indexing and formatting them for easy access, and delivering them to concerned individuals; 4) Interacting as a cooperative node in a web of distributed systems to perform knowledge building (i.e., the transformations from data to information to knowledge) instead of just data pipelining; and 5) Being aware of other nodes in the knowledge building system, participating in open systems interfaces and protocols for virtualization, and collaborative interoperability. This paper presents some of these concepts and identifies issues to be addressed by research in future intelligent systems technology.
Using and Distributing Spaceflight Data: The Johnson Space Center Life Sciences Data Archive
NASA Technical Reports Server (NTRS)
Cardenas, J. A.; Buckey, J. C.; Turner, J. N.; White, T. S.; Havelka,J. A.
1995-01-01
Life sciences data collected before, during and after spaceflight are valuable and often irreplaceable. The Johnson Space Center Life is hard to find, and much of the data (e.g. Sciences Data Archive has been designed to provide researchers, engineers, managers and educators interactive access to information about and data from human spaceflight experiments. The archive system consists of a Data Acquisition System, Database Management System, CD-ROM Mastering System and Catalog Information System (CIS). The catalog information system is the heart of the archive. The CIS provides detailed experiment descriptions (both written and as QuickTime movies), hardware descriptions, hardware images, documents, and data. An initial evaluation of the archive at a scientific meeting showed that 88% of those who evaluated the catalog want to use the system when completed. The majority of the evaluators found the archive flexible, satisfying and easy to use. We conclude that the data archive effectively provides key life sciences data to interested users.
Interoperability In The New Planetary Science Archive (PSA)
NASA Astrophysics Data System (ADS)
Rios, C.; Barbarisi, I.; Docasal, R.; Macfarlane, A. J.; Gonzalez, J.; Arviset, C.; Grotheer, E.; Besse, S.; Martinez, S.; Heather, D.; De Marchi, G.; Lim, T.; Fraga, D.; Barthelemy, M.
2015-12-01
As the world becomes increasingly interconnected, there is a greater need to provide interoperability with software and applications that are commonly being used globally. For this purpose, the development of the new Planetary Science Archive (PSA), by the European Space Astronomy Centre (ESAC) Science Data Centre (ESDC), is focused on building a modern science archive that takes into account internationally recognised standards in order to provide access to the archive through tools from third parties, for example by the NASA Planetary Data System (PDS), the VESPA project from the Virtual Observatory of Paris as well as other international institutions. The protocols and standards currently being supported by the new Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet-Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. The architecture of the PSA consists of a Geoserver (an open-source map server), the goal of which is to support use cases such as the distribution of search results, sharing and processing data through a OGC Web Feature Service (WFS) and a Web Map Service (WMS). This server also allows the retrieval of requested information in several standard output formats like Keyhole Markup Language (KML), Geography Markup Language (GML), shapefile, JavaScript Object Notation (JSON) and Comma Separated Values (CSV), among others. The provision of these various output formats enables end-users to be able to transfer retrieved data into popular applications such as Google Mars and NASA World Wind.
NASA Astrophysics Data System (ADS)
Silva, Augusto F. d.; Costa, Carlos; Abrantes, Pedro; Gama, Vasco; Den Boer, Ad
1998-07-01
This paper describes an integrated system designed to provide efficient means for DICOM compliant cardiac imaging archival, transmission and visualization based on a communications backbone matching recent enabling telematic technologies like Asynchronous Transfer Mode (ATM) and switched Local Area Networks (LANs). Within a distributed client-server framework, the system was conceived on a modality based bottom-up approach, aiming ultrafast access to short term archives and seamless retrieval of cardiac video sequences throughout review stations located at the outpatient referral rooms, intensive and intermediate care units and operating theaters.
Increasing Access to Archival Records in Library Online Public Access Catalogs.
ERIC Educational Resources Information Center
Gilmore, Matthew B.
1988-01-01
Looks at the use of online public access catalogs, the utility of subject and call-number searching, and possible archival applications. The Wallace Archives at the Claremont Colleges is used as an example of the availability of bibliographic descriptions of multiformat archival materials through the library catalog. Sample records and searches…
A Robust, Low-Cost Virtual Archive for Science Data
NASA Technical Reports Server (NTRS)
Lynnes, Christopher; Vollmer, Bruce
2005-01-01
Despite their expense tape silos are still often the only affordable option for petabytescale science data archives, particularly when other factors such as data reliability, floor space, power and cooling load are accounted for. However, the complexity, management software, hardware reliability and access latency of tape silos make online data storage ever more attractive. Drastic reductions in low-cost mass-market PC disk drivers help to make this more affordable (approx. 1$/GB), but are challenging to scale to the petabyte range and of questionable reliability for archival use, On the other hand, if much of the science archive could be "virtualized", i.e., produced on demand when requested by users, we would need store only a fraction of the data online, perhaps bringing an online-only system into in affordable range. Radiance data from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) instrument provides a good opportunity for such a virtual archive: the raw data amount to 140 GB/day, but these are small relative to the 550 GB/day making up the radiance products. These data are routinely processed as inputs for geophysical parameter products and then archived on tape at the Goddard Earth Sciences Distributed Active Archive (GES DAAC) for distributing to users. Virtualizing them would be an immediate and signifcant reduction in the amount of data being stored in the tape archives and provide more customizable products. A prototype of such a virtual archive is being developed to prove the concept and develop ways of incorporating the robustness that a science data archive requires.
Data Archive and Portal Thrust Area Strategy Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivaraman, Chitra; Stephan, Eric G.; Macduff, Matt C.
2014-09-01
This report describes the Data Archive and Portal (DAP), a key capability of the U.S. Department of Energy's Atmosphere to Electron (A2e) initiative. The DAP Thrust Area Planning Group was organized to develop a plan for deploying this capability. Primarily, the report focuses on a distributed system--a DOE Wind Cloud--that functions as a repository for all A2e data. The Wind Cloud will be accessible via an open, easy-to-navigate user interface that facilitates community data access, interaction, and collaboration. DAP management will work with the community, industry, and international standards bodies to develop standards for wind data and to capture importantmore » characteristics of all data in the Wind Cloud.« less
Improvements in Space Geodesy Data Discovery at the CDDIS
NASA Technical Reports Server (NTRS)
Noll, C.; Pollack, N.; Michael, P.
2011-01-01
The Crustal Dynamics Data Information System (CDDIS) supports data archiving and distribution activities for the space geodesy and geodynamics community. The main objectives of the system are to store space geodesy and geodynamics related data products in a central data bank. to maintain information about the archival of these data, and to disseminate these data and information in a timely manner to a global scientific research community. The archive consists of GNSS, laser ranging, VLBI, and DORIS data sets and products derived from these data. The CDDIS is one of NASA's Earth Observing System Data and Information System (EOSDIS) distributed data centers; EOSDIS data centers serve a diverse user community and arc tasked to provide facilities to search and access science data and products. Several activities are currently under development at the CDDIS to aid users in data discovery, both within the current community and beyond. The CDDIS is cooperating in the development of Geodetic Seamless Archive Centers (GSAC) with colleagues at UNAVCO and SIO. TIle activity will provide web services to facilitate data discovery within and across participating archives. In addition, the CDDIS is currently implementing modifications to the metadata extracted from incoming data and product files pushed to its archive. These enhancements will permit information about COOlS archive holdings to be made available through other data portals such as Earth Observing System (EOS) Clearinghouse (ECHO) and integration into the Global Geodetic Observing System (GGOS) portal.
NASA Astrophysics Data System (ADS)
Chen, S. E.; Yu, E.; Bhaskaran, A.; Chowdhury, F. R.; Meisenhelter, S.; Hutton, K.; Given, D.; Hauksson, E.; Clayton, R. W.
2011-12-01
Currently, the SCEDC archives continuous and triggered data from nearly 8400 data channels from 425 SCSN recorded stations, processing and archiving an average of 6.4 TB of continuous waveforms and 12,000 earthquakes each year. The SCEDC provides public access to these earthquake parametric and waveform data through its website www.data.scec.org and through client applications such as STP and DHI. This poster will describe the most significant developments at the SCEDC during 2011. New website design: ? The SCEDC has revamped its website. The changes make it easier for users to search the archive, discover updates and new content. These changes also improve our ability to manage and update the site. New data holdings: ? Post processing on El Mayor Cucapah 7.2 sequence continues. To date there have been 11847 events reviewed. Updates are available in the earthquake catalog immediately. ? A double difference catalog (Hauksson et. al 2011) spanning 1981 to 6/30/11 will be available for download at www.data.scec.org and available via STP. ? A focal mechanism catalog determined by Yang et al. 2011 is available for distribution at www.data.scec.org. ? Waveforms from Southern California NetQuake stations are now being stored in the SCEDC archive and available via STP as event associated waveforms. Amplitudes from these stations are also being stored in the archive and used by ShakeMap. ? As part of a NASA/AIST project in collaboration with JPL and SIO, the SCEDC will receive real time 1 sps streams of GPS displacement solutions from the California Real Time Network (http://sopac.ucsd.edu/projects/realtime; Genrich and Bock, 2006, J. Geophys. Res.). These channels will be archived at the SCEDC as miniSEED waveforms, which then can be distributed to the user community via applications such as STP. Improvements in the user tool STP: ? STP sac output now includes picks from the SCSN. New archival methods: ? The SCEDC is exploring the feasibility of archiving and distributing waveform data using cloud computing such as Google Apps. A month of continuous data from the SCEDC archive will be stored in Google Apps and a client developed to access it in a manner similar to STP. The data is stored in miniseed format with gzip compression. Time gaps between time series were padded with null values, which substantially increases search efficiency by make the records uniform in length.
Rendering an archive in three dimensions
NASA Astrophysics Data System (ADS)
Leiman, David A.; Twose, Claire; Lee, Teresa Y. H.; Fletcher, Alex; Yoo, Terry S.
2003-05-01
We examine the requirements for a publicly accessible, online collection of three-dimensional biomedical image data, including those yielded by radiological processes such as MRI, ultrasound and others. Intended as a repository and distribution mechanism for such medical data, we created the National Online Volumetric Archive (NOVA) as a case study aimed at identifying the multiple issues involved in realizing a large-scale digital archive. In the paper we discuss such factors as the current legal and health information privacy policy affecting the collection of human medical images, retrieval and management of information and technical implementation. This project culminated in the launching of a website that includes downloadable datasets and a prototype data submission system.
NASA participation in the 1980 PEPE/NEROS project: Data archive
NASA Technical Reports Server (NTRS)
Brewer, D. A.; Remsberg, E. E.; Loar, G. R.; Bendura, R. J.
1982-01-01
Eight experimental air quality measurement systems were investigated during July and August 1980 as part of the EPA PEPE/NEROS fiel measurement program. Data from those efforts have been entered into an archive that may be accessed by other researchers. The data sets consists of airborne measurements of regional mixed layer heights and aerosol and ozone distributions as well as point measurements of meteorological parameters and ozone obtained during diurnal transitions in the planetary boundary layer. This report gives a discussion of each measurement system, a preliminary assessment of data quality, a description of the archive format for each data set, and a summary of several proposed scientific studies which will utilize these data.
Archive Management of NASA Earth Observation Data to Support Cloud Analysis
NASA Technical Reports Server (NTRS)
Lynnes, Christopher; Baynes, Kathleen; McInerney, Mark
2017-01-01
NASA collects, processes and distributes petabytes of Earth Observation (EO) data from satellites, aircraft, in situ instruments and model output, with an order of magnitude increase expected by 2024. Cloud-based web object storage (WOS) of these data can simplify the execution of such an increase. More importantly, it can also facilitate user analysis of those volumes by making the data available to the massively parallel computing power in the cloud. However, storing EO data in cloud WOS has a ripple effect throughout the NASA archive system with unexpected challenges and opportunities. One challenge is modifying data servicing software (such as Web Coverage Service servers) to access and subset data that are no longer on a directly accessible file system, but rather in cloud WOS. Opportunities include refactoring of the archive software to a cloud-native architecture; virtualizing data products by computing on demand; and reorganizing data to be more analysis-friendly. Reviewed by Mark McInerney ESDIS Deputy Project Manager.
Lessons Learned while Exploring Cloud-Native Architectures for NASA EOSDIS Applications and Systems
NASA Astrophysics Data System (ADS)
Pilone, D.
2016-12-01
As new, high data rate missions begin collecting data, the NASA's Earth Observing System Data and Information System (EOSDIS) archive is projected to grow roughly 20x to over 300PBs by 2025. To prepare for the dramatic increase in data and enable broad scientific inquiry into larger time series and datasets, NASA has been exploring the impact of applying cloud technologies throughout EOSDIS. In this talk we will provide an overview of NASA's prototyping and lessons learned in applying cloud architectures to: Highly scalable and extensible ingest and archive of EOSDIS data Going "all-in" on cloud based application architectures including "serverless" data processing pipelines and evaluating approaches to vendor-lock in Rethinking data distribution and approaches to analysis in a cloud environment Incorporating and enforcing security controls while minimizing the barrier for research efforts to deploy to NASA compliant, operational environments. NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a multi-petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 6000 data products ranging from various types of science disciplines. EOSDIS has continually evolved to improve the discoverability, accessibility, and usability of high-impact NASA data spanning the multi-petabyte-scale archive of Earth science data products.
In-house access to PACS images and related data through World Wide Web
NASA Astrophysics Data System (ADS)
Mascarini, Christian; Ratib, Osman M.; Trayser, Gerhard; Ligier, Yves; Appel, R. D.
1996-05-01
The development of a hospital wide PACS is in progress at the University Hospital of Geneva and several archive modules are operational since 1992. This PACS is intended for wide distribution of images to clinical wards. As the PACS project and the number of archived images grow rapidly in the hospital, it was necessary to provide an easy, more widely accessible and convenient access to the PACS database for the clinicians in the different wards and clinical units of the hospital. An innovative solution has been developed using tools such as Netscape navigator and NCSA World Wide Web server as an alternative to conventional database query and retrieval software. These tools present the advantages of providing an user interface which is the same independently of the platform being used (Mac, Windows, UNIX, ...), and an easy integration of different types of documents (text, images, ...). A strict access control has been added to this interface. It allows user identification and access rights checking, as defined by the in-house hospital information system, before allowing the navigation through patient data records.
Online catalog access and distribution of remotely sensed information
NASA Astrophysics Data System (ADS)
Lutton, Stephen M.
1997-09-01
Remote sensing is providing voluminous data and value added information products. Electronic sensors, communication electronics, computer software, hardware, and network communications technology have matured to the point where a distributed infrastructure for remotely sensed information is a reality. The amount of remotely sensed data and information is making distributed infrastructure almost a necessity. This infrastructure provides data collection, archiving, cataloging, browsing, processing, and viewing for applications from scientific research to economic, legal, and national security decision making. The remote sensing field is entering a new exciting stage of commercial growth and expansion into the mainstream of government and business decision making. This paper overviews this new distributed infrastructure and then focuses on describing a software system for on-line catalog access and distribution of remotely sensed information.
NASA GHRC One of NASA's Distributed Active Archive Centers Access Data Dataset List (HyDRO) View a Advanced Microwave Sounding Unit (AMSU) on NASA's Aqua satellite. NASA Earthdata Search Earthdata is NASA's and Rapid Intensification Processes (GRIP) experiment was a NASA Earth science field experiment in
Cassini Archive Tracking System
NASA Technical Reports Server (NTRS)
Conner, Diane; Sayfi, Elias; Tinio, Adrian
2006-01-01
The Cassini Archive Tracking System (CATS) is a computer program that enables tracking of scientific data transfers from originators to the Planetary Data System (PDS) archives. Without CATS, there is no systematic means of locating products in the archive process or ensuring their completeness. By keeping a database of transfer communications and status, CATS enables the Cassini Project and the PDS to efficiently and accurately report on archive status. More importantly, problem areas are easily identified through customized reports that can be generated on the fly from any Web-enabled computer. A Web-browser interface and clearly defined authorization scheme provide safe distributed access to the system, where users can perform functions such as create customized reports, record a transfer, and respond to a transfer. CATS ensures that Cassini provides complete science archives to the PDS on schedule and that those archives are available to the science community by the PDS. The three-tier architecture is loosely coupled and designed for simple adaptation to multimission use. Written in the Java programming language, it is portable and can be run on any Java-enabled Web server.
NSSDC: Preserving time with technological advances
NASA Technical Reports Server (NTRS)
Perry, Charleen
1990-01-01
The National Space Science Data Center (NSSDC) has always striven to use the best methods and media currently available from data accessibility and archive management. The various advantages and disadvantages of four different media forms that have been used by NSSDC over 12 years of archiving and distributing of International Ultraviolet Explorer (IUE) data are discussed. The four media are nine track magnetic tape, IBM 3850 mass storage, Memorex 3480 18 track tape catridge, and the Sony 6.5 Gbyte Century optical disk. The CD-ROM medium is also discussed.
Remotely Sensed Imagery from USGS: Update on Products and Portals
NASA Astrophysics Data System (ADS)
Lamb, R.; Lemig, K.
2016-12-01
The USGS Earth Resources Observation and Science (EROS) Center has recently implemented a number of additions and changes to its existing suite of products and user access systems. Together, these changes will enhance the accessibility, breadth, and usability of the remotely sensed image products and delivery mechanisms available from USGS. As of late 2016, several new image products are now available for public download at no charge from USGS/EROS Center. These new products include: (1) global Level 1T (precision terrain-corrected) products from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), provided via NASA's Land Processes Distributed Active Archive Center (LP DAAC); and (2) Sentinel-2 Multispectral Instrument (MSI) products, available through a collaborative effort with the European Space Agency (ESA). Other new products are also planned to become available soon. In an effort to enable future scientific analysis of the full 40+ year Landsat archive, the USGS also introduced a new "Collection Management" strategy for all Landsat Level 1 products. This new archive and access schema involves quality-based tier designations that will support future time series analysis of the historic Landsat archive at the pixel level. Along with the quality tier designations, the USGS has also implemented a number of other Level 1 product improvements to support Landsat science applications, including: enhanced metadata, improved geometric processing, refined quality assessment information, and angle coefficient files. The full USGS Landsat archive is now being reprocessed in accordance with the new `Collection 1' specifications. Several USGS data access and visualization systems have also seen major upgrades. These user interfaces include a new version of the USGS LandsatLook Viewer which was released in Fall 2017 to provide enhanced functionality and Sentinel-2 visualization and access support. A beta release of the USGS Global Visualization Tool ("GloVis Next") was also released in Fall 2017, with many new features including data visualization at full resolution. The USGS also introduced a time-enabled web mapping service (WMS) to support time-based access to the existing LandsatLook "natural color" full-resolution browse image services.
Possibility of the market expansion of large capacity optical cold archive
NASA Astrophysics Data System (ADS)
Matsumoto, Ikuo; Sakata, Emiko
2017-08-01
The field, IoT and Big data, which is activated by the revolution of ICT, has caused rapid increase of distribution data of various business application. As a result, data with low access frequency has been rapidly increasing into a huge scale that human has never experienced before. This data with low access frequency is called "cold data", and the storage for cold data is called "cold storage". In this situation, the specifications of storage including access frequency, response speed and cost is determined by the application's request.
ERIC Educational Resources Information Center
Kolowitz, Brian J.
2012-01-01
Information Technology is changing the face of medicine. Prior research has shown many physicians believe access to the complete Personal Health Record (PHR) would be beneficial to patient care. Many times these medical records are distributed across system and organizational boundaries. International standards committees, healthcare…
The Path from Large Earth Science Datasets to Information
NASA Astrophysics Data System (ADS)
Vicente, G. A.
2013-12-01
The NASA Goddard Earth Sciences Data (GES) and Information Services Center (DISC) is one of the major Science Mission Directorate (SMD) for archiving and distribution of Earth Science remote sensing data, products and services. This virtual portal provides convenient access to Atmospheric Composition and Dynamics, Hydrology, Precipitation, Ozone, and model derived datasets (generated by GSFC's Global Modeling and Assimilation Office), the North American Land Data Assimilation System (NLDAS) and the Global Land Data Assimilation System (GLDAS) data products (both generated by GSFC's Hydrological Sciences Branch). This presentation demonstrates various tools and computational technologies developed in the GES DISC to manage the huge volume of data and products acquired from various missions and programs over the years. It explores approaches to archive, document, distribute, access and analyze Earth Science data and information as well as addresses the technical and scientific issues, governance and user support problem faced by scientists in need of multi-disciplinary datasets. It also discusses data and product metrics, user distribution profiles and lessons learned through interactions with the science communities around the world. Finally it demonstrates some of the most used data and product visualization and analyses tools developed and maintained by the GES DISC.
Water level ingest, archive and processing system - an integral part of NOAA's tsunami database
NASA Astrophysics Data System (ADS)
McLean, S. J.; Mungov, G.; Dunbar, P. K.; Price, D. J.; Mccullough, H.
2013-12-01
The National Oceanic and Atmospheric Administration (NOAA), National Geophysical Data Center (NGDC) and collocated World Data Service for Geophysics (WDS) provides long-term archive, data management, and access to national and global tsunami data. Archive responsibilities include the NOAA Global Historical Tsunami event and runup database, damage photos, as well as other related hazards data. Beginning in 2008, NGDC was given the responsibility of archiving, processing and distributing all tsunami and hazards-related water level data collected from NOAA observational networks in a coordinated and consistent manner. These data include the Deep-ocean Assessment and Reporting of Tsunami (DART) data provided by the National Data Buoy Center (NDBC), coastal-tide-gauge data from the National Ocean Service (NOS) network and tide-gauge data from the two National Weather Service (NWS) Tsunami Warning Centers (TWCs) regional networks. Taken together, this integrated archive supports tsunami forecast, warning, research, mitigation and education efforts of NOAA and the Nation. Due to the variety of the water level data, the automatic ingest system was redesigned, along with upgrading the inventory, archive and delivery capabilities based on modern digital data archiving practices. The data processing system was also upgraded and redesigned focusing on data quality assessment in an operational manner. This poster focuses on data availability highlighting the automation of all steps of data ingest, archive, processing and distribution. Examples are given from recent events such as the October 2012 hurricane Sandy, the Feb 06, 2013 Solomon Islands tsunami, and the June 13, 2013 meteotsunami along the U.S. East Coast.
Cardio-PACs: a new opportunity
NASA Astrophysics Data System (ADS)
Heupler, Frederick A., Jr.; Thomas, James D.; Blume, Hartwig R.; Cecil, Robert A.; Heisler, Mary
2000-05-01
It is now possible to replace film-based image management in the cardiac catheterization laboratory with a Cardiology Picture Archiving and Communication System (Cardio-PACS) based on digital imaging technology. The first step in the conversion process is installation of a digital image acquisition system that is capable of generating high-quality DICOM-compatible images. The next three steps, which are the subject of this presentation, involve image display, distribution, and storage. Clinical requirements and associated cost considerations for these three steps are listed below: Image display: (1) Image quality equal to film, with DICOM format, lossless compression, image processing, desktop PC-based with color monitor, and physician-friendly imaging software; (2) Performance specifications include: acquire 30 frames/sec; replay 15 frames/sec; access to file server 5 seconds, and to archive 5 minutes; (3) Compatibility of image file, transmission, and processing formats; (4) Image manipulation: brightness, contrast, gray scale, zoom, biplane display, and quantification; (5) User-friendly control of image review. Image distribution: (1) Standard IP-based network between cardiac catheterization laboratories, file server, long-term archive, review stations, and remote sites; (2) Non-proprietary formats; (3) Bidirectional distribution. Image storage: (1) CD-ROM vs disk vs tape; (2) Verification of data integrity; (3) User-designated storage capacity for catheterization laboratory, file server, long-term archive. Costs: (1) Image acquisition equipment, file server, long-term archive; (2) Network infrastructure; (3) Review stations and software; (4) Maintenance and administration; (5) Future upgrades and expansion; (6) Personnel.
Hierarchical storage of large volume of multidector CT data using distributed servers
NASA Astrophysics Data System (ADS)
Ratib, Osman; Rosset, Antoine; Heuberger, Joris; Bandon, David
2006-03-01
Multidector scanners and hybrid multimodality scanners have the ability to generate large number of high-resolution images resulting in very large data sets. In most cases, these datasets are generated for the sole purpose of generating secondary processed images and 3D rendered images as well as oblique and curved multiplanar reformatted images. It is therefore not essential to archive the original images after they have been processed. We have developed an architecture of distributed archive servers for temporary storage of large image datasets for 3D rendering and image processing without the need for long term storage in PACS archive. With the relatively low cost of storage devices it is possible to configure these servers to hold several months or even years of data, long enough for allowing subsequent re-processing if required by specific clinical situations. We tested the latest generation of RAID servers provided by Apple computers with a capacity of 5 TBytes. We implemented a peer-to-peer data access software based on our Open-Source image management software called OsiriX, allowing remote workstations to directly access DICOM image files located on the server through a new technology called "bonjour". This architecture offers a seamless integration of multiple servers and workstations without the need for central database or complex workflow management tools. It allows efficient access to image data from multiple workstation for image analysis and visualization without the need for image data transfer. It provides a convenient alternative to centralized PACS architecture while avoiding complex and time-consuming data transfer and storage.
VizieR Online Data Catalog: Jame Clerk Maxwell Telescope Science Archive (CADC, 2003)
NASA Astrophysics Data System (ADS)
Canadian Astronomy Data, Centre
2018-01-01
The JCMT Science Archive (JSA), a collaboration between the CADC and EOA, is the official distribution site for observational data obtained with the James Clerk Maxwell Telescope (JCMT) on Mauna Kea, Hawaii. The JSA search interface is provided by the CADC Search tool, which provides generic access to the complete set of telescopic data archived at the CADC. Help on the use of this tool is provided via tooltips. For additional information on instrument capabilities and data reduction, please consult the SCUBA-2 and ACSIS instrument pages provided on the JAC maintained JCMT pages. JCMT-specific help related to the use of the CADC AdvancedSearch tool is available from the JAC. (1 data file).
BIOME: A scientific data archive search-and-order system using browser-aware, dynamic pages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jennings, S.V.; Yow, T.G.; Ng, V.W.
1997-08-01
The Oak Ridge National Laboratory`s (ORNL) Distributed Active Archive Center (DAAC) is a data archive and distribution center for the National Air and Space Administration`s (NASA) Earth Observing System Data and Information System (EOSDIS). Both the Earth Observing System (EOS) and EOSDIS are components of NASA`s contribution to the US Global Change Research Program through its Mission to Planet Earth Program. The ORNL DAAC provides access to data used in ecological and environmental research such as global change, global warming, and terrestrial ecology. Because of its large and diverse data holdings, the challenge for the ORNL DAAC is to helpmore » users find data of interest from the hundreds of thousands of files available at the DAAC without overwhelming them. Therefore, the ORNL DAAC has developed the Biogeochemical Information Ordering Management Environment (BIOME), a customized search and order system for the World Wide Web (WWW). BIOME is a public system located at http://www-eosdis.ornl.gov/BIOME/biome.html.« less
BIOME: A scientific data archive search-and-order system using browser-aware, dynamic pages
NASA Technical Reports Server (NTRS)
Jennings, S. V.; Yow, T. G.; Ng, V. W.
1997-01-01
The Oak Ridge National Laboratory's (ORNL) Distributed Active Archive Center (DAAC) is a data archive and distribution center for the National Air and Space Administration's (NASA) Earth Observing System Data and Information System (EOSDIS). Both the Earth Observing System (EOS) and EOSDIS are components of NASA's contribution to the US Global Change Research Program through its Mission to Planet Earth Program. The ORNL DAAC provides access to data used in ecological and environmental research such as global change, global warming, and terrestrial ecology. Because of its large and diverse data holdings, the challenge for the ORNL DAAC is to help users find data of interest from the hundreds of thousands of files available at the DAAC without overwhelming them. Therefore, the ORNL DAAC has developed the Biogeochemical Information Ordering Management Environment (BIOME), a customized search and order system for the World Wide Web (WWW). BIOME is a public system located at http://www-eosdis. ornl.gov/BIOME/biome.html.
Social Science Data Archives and Libraries: A View to the Future.
ERIC Educational Resources Information Center
Clark, Barton M.
1982-01-01
Discusses factors militating against integration of social science data archives and libraries in near future, noting usage of materials, access requisite skills of librarians, economic stability of archives, existing structures which manage social science data archives. Role of librarians, data access tools, and cataloging of machine-readable…
Community archiving of imaging studies
NASA Astrophysics Data System (ADS)
Fritz, Steven L.; Roys, Steven R.; Munjal, Sunita
1996-05-01
The quantity of image data created in a large radiology practice has long been a challenge for available archiving technology. Traditional methods ofarchiving the large quantity of films generated in radiology have relied on warehousing in remote sites, with courier delivery of film files for historical comparisons. A digital community archive, accessible via a wide area network, represents a feasible solution to the problem of archiving digital images from a busy practice. In addition, it affords a physician caring for a patient access to imaging studies performed at a variety ofhealthcare institutions without the need to repeat studies. Security problems include both network security issues in the WAN environment and access control for patient, physician and imaging center. The key obstacle to developing a community archive is currently political. Reluctance to participate in a community archive can be reduced by appropriate design of the access mechanisms.
Increasing global accessibility and understanding of water column sonar data
NASA Astrophysics Data System (ADS)
Wall, C.; Anderson, C.; Mesick, S.; Parsons, A. R.; Boyer, T.; McLean, S. J.
2016-02-01
Active acoustic (sonar) technology is of increasing importance for research examining the water column. NOAA uses water column sonar data to map acoustic properties from the ocean surface to the seafloor - from bubbles to biology to bottom. Scientific echosounders aboard fishery survey vessels are used to estimate biomass, measure fish school morphology, and characterize habitat. These surveys produce large volumes of data that are costly and difficult to maintain due to their size, complexity, and proprietary format that require specific software and extensive knowledge. However, through proper management they can deliver valuable information beyond their original collection purpose. In order to maximize the benefit to the public, the data must be easily discoverable and accessible. Access to ancillary data is also needed for complete environmental context and ecosystem assessment. NOAA's National Centers for Environmental Information, in partnership with NOAA's National Marine Fisheries Service and the University of Colorado, created a national archive for the stewardship and distribution of water column sonar data collected on NOAA and academic vessels. A web-based access page allows users to query the metadata and access the raw sonar data. Visualization products being developed allow researchers and the public to understand the quality and content of large volumes of archived data more easily. Such products transform the complex data into a digestible image or graphic and are highly valuable for a broad audience of varying backgrounds. Concurrently collected oceanographic data and bathymetric data are being integrated into the data access web page to provide an ecosystem-wide understanding of the area ensonified. Benefits of the archive include global access to an unprecedented nationwide dataset and the increased potential for researchers to address cross-cutting scientific questions to advance the field of marine ecosystem acoustics.
Global Change Data Center: Mission, Organization, Major Activities, and 2001 Highlights
NASA Technical Reports Server (NTRS)
Wharton, Stephen W. (Technical Monitor)
2002-01-01
Rapid efficient access to Earth sciences data is fundamental to the Nation's efforts to understand the effects of global environmental changes and their implications for public policy. It becomes a bigger challenge in the future when data volumes increase further and missions with constellations of satellites start to appear. Demands on data storage, data access, network throughput, processing power, and database and information management are increased by orders of magnitude, while budgets remain constant and even shrink. The Global Change Data Center's (GCDC) mission is to provide systems, data products, and information management services to maximize the availability and utility of NASA's Earth science data. The specific objectives are (1) support Earth science missions be developing and operating systems to generate, archive, and distribute data products and information; (2) develop innovative information systems for processing, archiving, accessing, visualizing, and communicating Earth science data; and (3) develop value-added products and services to promote broader utilization of NASA Earth Sciences Enterprise (ESE) data and information. The ultimate product of GCDC activities is access to data and information to support research, education, and public policy.
Use of MCIDAS as an earth science information systems tool
NASA Technical Reports Server (NTRS)
Goodman, H. Michael; Karitani, Shogo; Parker, Karen G.; Stooksbury, Laura M.; Wilson, Gregory S.
1988-01-01
The application of the man computer interactive data access system (MCIDAS) to information processing is examined. The computer systems that interface with the MCIDAS are discussed. Consideration is given to the computer networking of MCIDAS, data base archival, and the collection and distribution of real-time special sensor microwave/imager data.
: + Advanced Search à Advanced Search All Fields: Title: Full Text: Bibliographic Data: Creator / Author: Name discoverable at no charge to users. DOE PAGES offers free public access to the best available full-text version and distributed content, with PAGES maintaining a permanent archive of all full text and metadata. In
NASA's EOSDIS: options for data providers
NASA Astrophysics Data System (ADS)
Khalsa, Siri J.; Ujhazy, John E.
1995-12-01
EOSDIS, the data and information system being developed by NASA to support interdisciplinary earth science research into the 21st century, will do more than manage and distribute data from EOS-era satellites. It will also promote the exchange of data, tools, and research results across disciplinary, agency, and national boundaries. This paper describes the options that data providers will have for interacting with the EOSDIS Core System (ECS), the infrastructure of EOSDIS. The options include: using the ECS advertising service to announce the availability of data at the provider's site; submitting a candidate data set to one of the Distributed Active Archive Centers (DAACs); establishing a data server that will make the data accessible via ECS and establishing Local Information Manager (LIM) which would make the data available for multi-site searches. One additional option is through custom gateway interfaces which would provide access to existing data archives. The gateway, data server, and LIM options require the implementation of ECS code at the provider site to insure proper protocols. The advertisement and ingest options require no part of ECS design to reside at the provider site.
The ISO Data Archive and Interoperability with Other Archives
NASA Astrophysics Data System (ADS)
Salama, Alberto; Arviset, Christophe; Hernández, José; Dowson, John; Osuna, Pedro
The ESA's Infrared Space Observatory (ISO), an unprecedented observatory for infrared astronomy launched in November 1995, successfully made nearly 30,000 scientific observations in its 2.5-year mission. The ISO data can be retrieved from the ISO Data Archive, available at ISO Data Archive , and comprised of about 150,000 observations, including parallel and serendipity mode observations. A user-friendly Java interface permits queries to the database and data retrieval. The interface currently offers a wide variety of links to other archives, such as name resolution with NED and SIMBAD, access to electronic articles from ADS and CDS/VizieR, and access to IRAS data. In the past year development has been focused on improving the IDA interoperability with other astronomical archives, either by accessing other relevant archives or by providing direct access to the ISO data for external services. A mechanism of information transfer has been developed, allowing direct query to the IDA via a Java Server Page, returning quick look ISO images and relevant, observation-specific information embedded in an HTML page. This method has been used to link from the CDS/Vizier Data Centre and ADS, and work with IPAC to allow access to the ISO Archive from IRSA, including display capabilities of the observed sky regions onto other mission images, is in progress. Prospects for further links to and from other archives and databases are also addressed.
New service interface for River Forecasting Center derived quantitative precipitation estimates
Blodgett, David L.
2013-01-01
For more than a decade, the National Weather Service (NWS) River Forecast Centers (RFCs) have been estimating spatially distributed rainfall by applying quality-control procedures to radar-indicated rainfall estimates in the eastern United States and other best practices in the western United States to producea national Quantitative Precipitation Estimate (QPE) (National Weather Service, 2013). The availability of archives of QPE information for analytical purposes has been limited to manual requests for access to raw binary file formats that are difficult for scientists who are not in the climatic sciences to work with. The NWS provided the QPE archives to the U.S. Geological Survey (USGS), and the contents of the real-time feed from the RFCs are being saved by the USGS for incorporation into the archives. The USGS has applied time-series aggregation and added latitude-longitude coordinate variables to publish the RFC QPE data. Web services provide users with direct (index-based) data access, rendered visualizations of the data, and resampled raster representations of the source data in common geographic information formats.
NASA Astrophysics Data System (ADS)
Xie, Jibo; Li, Guoqing
2015-04-01
Earth observation (EO) data obtained by air-borne or space-borne sensors has the characteristics of heterogeneity and geographical distribution of storage. These data sources belong to different organizations or agencies whose data management and storage methods are quite different and geographically distributed. Different data sources provide different data publish platforms or portals. With more Remote sensing sensors used for Earth Observation (EO) missions, different space agencies have distributed archived massive EO data. The distribution of EO data archives and system heterogeneity makes it difficult to efficiently use geospatial data for many EO applications, such as hazard mitigation. To solve the interoperable problems of different EO data systems, an advanced architecture of distributed geospatial data infrastructure is introduced to solve the complexity of distributed and heterogeneous EO data integration and on-demand processing in this paper. The concept and architecture of geospatial data service gateway (GDSG) is proposed to build connection with heterogeneous EO data sources by which EO data can be retrieved and accessed with unified interfaces. The GDSG consists of a set of tools and service to encapsulate heterogeneous geospatial data sources into homogenous service modules. The GDSG modules includes EO metadata harvesters and translators, adaptors to different type of data system, unified data query and access interfaces, EO data cache management, and gateway GUI, etc. The GDSG framework is used to implement interoperability and synchronization between distributed EO data sources with heterogeneous architecture. An on-demand distributed EO data platform is developed to validate the GDSG architecture and implementation techniques. Several distributed EO data achieves are used for test. Flood and earthquake serves as two scenarios for the use cases of distributed EO data integration and interoperability.
New Tools to Search for Data in the European Space Agency's Planetary Science Archive
NASA Astrophysics Data System (ADS)
Grotheer, E.; Macfarlane, A. J.; Rios, C.; Arviset, C.; Heather, D.; Fraga, D.; Vallejo, F.; De Marchi, G.; Barbarisi, I.; Saiz, J.; Barthelemy, M.; Docasal, R.; Martinez, S.; Besse, S.; Lim, T.
2016-12-01
The European Space Agency's (ESA) Planetary Science Archive (PSA), which can be accessed at http://archives.esac.esa.int/psa, provides public access to the archived data of Europe's missions to our neighboring planets. These datasets are compliant with the Planetary Data System (PDS) standards. Recently, a new interface has been released, which includes upgrades to make PDS4 data available from newer missions such as ExoMars and BepiColombo. Additionally, the PSA development team has been working to ensure that the legacy PDS3 data will be more easily accessible via the new interface as well. In addition to a new querying interface, the new PSA also allows access via the EPN-TAP and PDAP protocols. This makes the PSA data sets compatible with other archive-related tools and projects, such as the Virtual European Solar and Planetary Access (VESPA) project for creating a virtual observatory.
Integrated Stewardship of NASA Satellite and Field Campaign Data
NASA Astrophysics Data System (ADS)
Hausman, J.; Tsontos, V. M.; Hardman, S. H.
2016-02-01
The Physical Oceanography Distributed Active Archive Center (PO.DAAC) is NASA's archive, steward and distributor for physical oceanographic satellite data. Those data are typically organized along the lines of single parameters, such as Sea Surface Temperature, Ocean Winds, Salinity, etc. However there is a need supplement satellite data with in situ and various other remote sensing data to provide higher spatial and temporal sampling and information on physical processes that the satellites are not capable of measuring. This presentation will discuss how PO.DAAC is creating a stewardship and distribution plan that will accommodate satellite, in situ and other remote sensing data that can be used to solve a more integrated approach to data access and utilization along thematic lines in support of science and applications, specifically those posed by Salinity Processes in the Upper Ocean Regional Study (SPURS) and Oceans Melting Greenland (OMG) projects. SPURS used shipboard data, moorings and in situ instruments to investigate changes in salinity and how that information can be used in explaining the water cycle. OMG is studying ice melt in Greenland and how it contributes to changes in sea level through shipboard measurements, airborne and a variety of in situ instruments. PO.DAAC plans on adapting to stewarding and distributing these varieties of data through applications of file format and metadata standards (so data are discoverable and interoperable), extend the internal data system (to allow for better archiving, collection generation and querying of in situ and airborne data) and integration into tools (visualization and data access). We are also working on Virtual Collections with ESDWG, which could provide access to relevant data across DAACs/Agencies along thematic lines. These improvements will improve long-term data management and make it easier for users of various background, regardless if remote sensing or in situ, to discover and use the data.
NASA Astrophysics Data System (ADS)
Boler, F.; Meertens, C.
2012-04-01
The UNAVCO Data Center in Boulder, Colorado, archives for preservation and distributes geodesy data and products in the GNSS, InSAR, and LiDAR domains to the scientific and education community. The GNSS data, which in addition to geodesy are useful for tectonic, volcanologic, ice mass, glacial isostatic adjustment, meteorological and other studies, come from 2,500 continuously operating stations and 8000 survey-mode observation points around the globe that are operated by over 100 U.S. and international members of the UNAVCO consortium. SAR data, which are in many ways complementary to the GNSS data collection have been acquired in concert with the WInSAR Consortium activities and with EarthScope, with a focus on the western United States. UNAVCO also holds a growing collection of terrestrial laser scanning data. Several partner US geodesy data centers, along with UNAVCO, have developed and are in the process of implementing the Geodesy Seamless Archive Centers, a web services based technology to facilitate the exchange of metadata and delivery of data and products to users. These services utilize a repository layer implemented at each data center, and a service layer to identify and present any data center-specific services and capabilities, allowing simplified vertical federation of metadata from independent data centers. UNAVCO also has built web services for SAR data discovery and delivery, and will partner with other SAR data centers and institutions to provide access for the InSAR scientist to SAR data and ancillary data sets, web services to produce interferograms, and mechanisms to archive and distribute resulting higher level products. Improved access to LiDAR data from space-based, airborne, and terrestrial platforms through utilization of web services is similarly currently under development. These efforts in cyberinfrastructure, while initially aimed at intra-domain data sharing and providing products for research and education, are envisioned as potentially serving as the basis for leveraging integrated access across a broad set of Earth science domains.
NASA Astrophysics Data System (ADS)
Walker, D. A.; Breen, A. L.; Broderson, D.; Epstein, H. E.; Fisher, W.; Grunblatt, J.; Heinrichs, T.; Raynolds, M. K.; Walker, M. D.; Wirth, L.
2013-12-01
Abundant ground-based information will be needed to inform remote-sensing and modeling studies of NASA's Arctic-Boreal Vulnerability Experiment (ABoVE). A large body of plot and map data collected by the Alaska Geobotany Center (AGC) and collaborators from the Arctic regions of Alaska and the circumpolar Arctic over the past several decades is being archived and made accessible to scientists and the public via the Geographic Information Network of Alaska's (GINA's) 'Catalog' display and portal system. We are building two main types of data archives: Vegetation Plot Archive: For the plot information we use a Turboveg database to construct the Alaska portion of the international Arctic Vegetation Archive (AVA) http://www.geobotany.uaf.edu/ava/. High quality plot data and non-digital legacy datasets in danger of being lost have highest priority for entry into the archive. A key aspect of the database is the PanArctic Species List (PASL-1), developed specifically for the AVA to provide a standard of species nomenclature for the entire Arctic biome. A wide variety of reports, documents, and ancillary data are linked to each plot's geographic location. Geoecological Map Archive: This database includes maps and remote sensing products and links to other relevant data associated with the maps, mainly those produced by the Alaska Geobotany Center. Map data include GIS shape files of vegetation, land-cover, soils, landforms and other categorical variables and digital raster data of elevation, multispectral satellite-derived data, and data products and metadata associated with these. The map archive will contain all the information that is currently in the hierarchical Toolik-Arctic Geobotanical Atlas (T-AGA) in Alaska http://www.arcticatlas.org, plus several additions that are in the process of development and will be combined with GINA's already substantial holdings of spatial data from northern Alaska. The Geoecological Atlas Portal uses GINA's Catalog tool to develop a web interface to view and access the plot and map data. The mapping portal allows visualization of GIS data, sample-point locations and imagery and access to the map data. Catalog facilitates the discovery and dissemination of science-based information products in support of analysis and decision-making concerned with development and climate change and is currently used by GINA in several similar archive/distribution portals.
News from ESO Archive Services: Next Generation Request Handler and Data Access Delegation
NASA Astrophysics Data System (ADS)
Fourniol, N.; Lockhart, J.; Suchar, D.; Tacconi-Garman, L. E.; Moins, C.; Bierwirth, T.; Eglitis, P.; Vuong, M.; Micol, A.; Delmotte, N.; Vera, I.; Dobrzycki, A.; Forchì, V.; Lange, U.; Sogni, F.
2012-09-01
We present the new ESO Archive services which improve the electronic data access via the Download Manager and also provide PIs with the option to delegate data access to their collaborators via the Data Access Control.
Integration of EGA secure data access into Galaxy.
Hoogstrate, Youri; Zhang, Chao; Senf, Alexander; Bijlard, Jochem; Hiltemann, Saskia; van Enckevort, David; Repo, Susanna; Heringa, Jaap; Jenster, Guido; J A Fijneman, Remond; Boiten, Jan-Willem; A Meijer, Gerrit; Stubbs, Andrew; Rambla, Jordi; Spalding, Dylan; Abeln, Sanne
2016-01-01
High-throughput molecular profiling techniques are routinely generating vast amounts of data for translational medicine studies. Secure access controlled systems are needed to manage, store, transfer and distribute these data due to its personally identifiable nature. The European Genome-phenome Archive (EGA) was created to facilitate access and management to long-term archival of bio-molecular data. Each data provider is responsible for ensuring a Data Access Committee is in place to grant access to data stored in the EGA. Moreover, the transfer of data during upload and download is encrypted. ELIXIR, a European research infrastructure for life-science data, initiated a project (2016 Human Data Implementation Study) to understand and document the ELIXIR requirements for secure management of controlled-access data. As part of this project, a full ecosystem was designed to connect archived raw experimental molecular profiling data with interpreted data and the computational workflows, using the CTMM Translational Research IT (CTMM-TraIT) infrastructure http://www.ctmm-trait.nl as an example. Here we present the first outcomes of this project, a framework to enable the download of EGA data to a Galaxy server in a secure way. Galaxy provides an intuitive user interface for molecular biologists and bioinformaticians to run and design data analysis workflows. More specifically, we developed a tool -- ega_download_streamer - that can download data securely from EGA into a Galaxy server, which can subsequently be further processed. This tool will allow a user within the browser to run an entire analysis containing sensitive data from EGA, and to make this analysis available for other researchers in a reproducible manner, as shown with a proof of concept study. The tool ega_download_streamer is available in the Galaxy tool shed: https://toolshed.g2.bx.psu.edu/view/yhoogstrate/ega_download_streamer.
Integration of EGA secure data access into Galaxy
Hoogstrate, Youri; Zhang, Chao; Senf, Alexander; Bijlard, Jochem; Hiltemann, Saskia; van Enckevort, David; Repo, Susanna; Heringa, Jaap; Jenster, Guido; Fijneman, Remond J.A.; Boiten, Jan-Willem; A. Meijer, Gerrit; Stubbs, Andrew; Rambla, Jordi; Spalding, Dylan; Abeln, Sanne
2016-01-01
High-throughput molecular profiling techniques are routinely generating vast amounts of data for translational medicine studies. Secure access controlled systems are needed to manage, store, transfer and distribute these data due to its personally identifiable nature. The European Genome-phenome Archive (EGA) was created to facilitate access and management to long-term archival of bio-molecular data. Each data provider is responsible for ensuring a Data Access Committee is in place to grant access to data stored in the EGA. Moreover, the transfer of data during upload and download is encrypted. ELIXIR, a European research infrastructure for life-science data, initiated a project (2016 Human Data Implementation Study) to understand and document the ELIXIR requirements for secure management of controlled-access data. As part of this project, a full ecosystem was designed to connect archived raw experimental molecular profiling data with interpreted data and the computational workflows, using the CTMM Translational Research IT (CTMM-TraIT) infrastructure http://www.ctmm-trait.nl as an example. Here we present the first outcomes of this project, a framework to enable the download of EGA data to a Galaxy server in a secure way. Galaxy provides an intuitive user interface for molecular biologists and bioinformaticians to run and design data analysis workflows. More specifically, we developed a tool -- ega_download_streamer - that can download data securely from EGA into a Galaxy server, which can subsequently be further processed. This tool will allow a user within the browser to run an entire analysis containing sensitive data from EGA, and to make this analysis available for other researchers in a reproducible manner, as shown with a proof of concept study. The tool ega_download_streamer is available in the Galaxy tool shed: https://toolshed.g2.bx.psu.edu/view/yhoogstrate/ega_download_streamer. PMID:28232859
ISTP Science Data Systems and Products
NASA Astrophysics Data System (ADS)
Mish, William H.; Green, James L.; Reph, Mary G.; Peredo, Mauricio
1995-02-01
The International Solar-Terrestrial Physics (ISTP) program will provide simultaneous coordinated scientific measurements from most of the major areas of geospace including specific locations on the Earth's surface. This paper describes the comprehensive ISTP ground science data handling system which has been developed to promote optimal mission planning and efficient data processing, analysis and distribution. The essential components of this ground system are the ISTP Central Data Handling Facility (CDHF), the Information Processing Division's Data Distribution Facility (DDF), the ISTP/Global Geospace Science (GGS) Science Planning and Operations Facility (SPOF) and the NASA Data Archive and Distribution Service (NDADS). The ISTP CDHF is the one place in the program where measurements from this wide variety of geospace and ground-based instrumentation and theoretical studies are brought together. Subsequently, these data will be distributed, along with ancillary data, in a unified fashion to the ISTP Principal Investigator (PI) and Co-Investigator (CoI) teams for analysis on their local systems. The CDHF ingests the telemetry streams, orbit, attitude, and command history from the GEOTAIL, WIND, POLAR, SOHO, and IMP-8 Spacecraft; computes summary data sets, called Key Parameters (KPs), for each scientific instrument; ingests pre-computed KPs from other spacecraft and ground basel investigations; provides a computational platform for parameterized modeling; and provides a number of ‘data services” for the ISTP community of investigators. The DDF organizes the KPs, decommutated telemetry, and associated ancillary data into products for duistribution to the ISTP community on CD-ROMs. The SPOF is the component of the GGS program responsible for the development and coordination of ISTP science planning operations. The SPOF operates under the direction of the ISTP Project Scientist and is responsible for the development and coordination of the science plan for ISTP spacecraft. Instrument command requests for the WIND and POLAR investigations are submitted by the PIs to the SPOF where they are checked for science conflicts, forwarded to the GSFC Command Management Syntem/Payload Operations Control Center (CMS/POCC) for engineering conflict validation, and finally incorporated into the conflict-free science operations plan. Conflict resolution is accomplished through iteration between the PIs, SPOF and CMS and in consultation with the Project Scientist when necessary. The long term archival of ISTP KP and level-zero data will be undertaken by NASA's National Space Science Data Center using the NASA Data Archive and Distribution Service (NDADS). This on-line archive facility will provide rapid access to archived KPs and event data and includes security features to restrict access to the data during the time they are proprietary.
Using dCache in Archiving Systems oriented to Earth Observation
NASA Astrophysics Data System (ADS)
Garcia Gil, I.; Perez Moreno, R.; Perez Navarro, O.; Platania, V.; Ozerov, D.; Leone, R.
2012-04-01
The object of LAST activity (Long term data Archive Study on new Technologies) is to perform an independent study on best practices and assessment of different archiving technologies mature for operation in the short and mid-term time frame, or available in the long-term with emphasis on technologies better suited to satisfy the requirements of ESA, LTDP and other European and Canadian EO partners in terms of digital information preservation and data accessibility and exploitation. During the last phase of the project, a testing of several archiving solutions has been performed in order to evaluate their suitability. In particular, dCache, aimed to provide a file system tree view of the data repository exchanging this data with backend (tertiary) Storage Systems as well as space management, pool attraction, dataset replication, hot spot determination and recovery from disk or node failures. Connected to a tertiary storage system, dCache simulates unlimited direct access storage space. Data exchanges to and from the underlying HSM are performed automatically and invisibly to the user Dcache was created to solve the requirements of big computer centers and universities with big amounts of data, putting their efforts together and founding EMI (European Middleware Initiative). At the moment being, Dcache is mature enough to be implemented, being used by several research centers of relevance (e.g. LHC storing up to 50TB/day). This solution has been not used so far in Earth Observation and the results of the study are summarized in this article, focusing on the capacities over a simulated environment to get in line with the ESA requirements for a geographically distributed storage. The challenge of a geographically distributed storage system can be summarized as the way to provide a maximum quality for storage and dissemination services with the minimum cost.
Subject Access Points in the MARC Record and Archival Finding Aid: Enough or Too Many?
ERIC Educational Resources Information Center
Cox, Elizabeth; Czechowski, Leslie
2007-01-01
In this research project, the authors set out to discover the current practice in both the archival and cataloging worlds for usage of access points in descriptive records and to learn how archival descriptive practices fit into long-established library cataloging procedures and practices. A sample of archival finding aids and MARC records at 123…
ESA's Planetary Science Archive: International collaborations towards transparent data access
NASA Astrophysics Data System (ADS)
Heather, David
The European Space Agency's (ESA) Planetary Science Archive (PSA) is the central repository for science data returned by all ESA planetary missions. Current holdings include data from Giotto, SMART-1, Cassini-Huygens, Mars Express, Venus Express, and Rosetta. In addition to the basic management and distribution of these data to the community through our own interfaces, ESA has been working very closely with international partners to globalize the archiving standards used and the access to our data. Part of this ongoing effort is channelled through our participation in the International Planetary Data Alliance (IPDA), whose focus is on allowing transparent and interoperable access to data holdings from participating Agencies around the globe. One major focus of this work has been the development of the Planetary Data Access Protocol (PDAP) that will allow for the interoperability of archives and sharing of data. This is already used for transparent access to data from Venus Express, and ESA are currently working with ISRO and NASA to provide interoperable access to ISRO's Chandrayaan-1 data through our systems using this protocol. Close interactions are ongoing with NASA's Planetary Data System as the standards used for planetary data archiving evolve, and two of our upcoming missions are to be the first to implement the new 'PDS4' standards in ESA: BepiColombo and ExoMars. Projects have been established within the IPDA framework to guide these implementations to try and ensure interoperability and maximise the usability of the data by the community. BepiColombo and ExoMars are both international missions, in collaboration with JAXA and IKI respectively, and a strong focus has been placed on close interaction and collaboration throughout the development of each archive. For both of these missions there is a requirement to share data between the Agencies prior to public access, as well as providing complete open access globally once the proprietary periods have elapsed. This introduces a number of additional challenges in terms of managing different access rights to data throughout the mission lifetime. Both of these mission will have data pipelines running internally to our Science Ground Segment, in order to release the instrument teams to work more on science analyses. We have followed the IPDA recommendations of trying to start work on archiving with these missions very early in the life-cycle (especially on BepiColombo and now starting on JUICE), and endeavour to make sure that archiving requirements are clearly stated in official mission documentation at the time of selection. This has helped to ensure that adequate resources are available internally and within the instrument teams to support archive development. This year will also see major milestones for two of our operational missions. Venus Express will start an aerobraking phase in late spring / early summer, and will wind down science operations this year, while Rosetta will encounter the comet Churyamov-Gerasimenko, deploy the lander and start its main science phase. While these missions are at opposite ends of their science phases, many of the challenges from the archiving side are similar. Venus Express will have a full mission archive review this year and data pipelines will start to be updated / corrected where necessary in order to ensure long-term usability and interoperable access to the data. Rosetta will start to deliver science data in earnest towards the end of the year, and the focus will be on ensuring that data pipelines are ready and robust enough to maintain deliveries throughout the main science phase. For both missions, we aim to use the lessons learned and technologies developed through our international collaborations to maximise the availability and usability of the data delivered. In 2013, ESA established a Planetary Science Archive User Group (PSA-UG) to provide independent advice on ways to improve our services and our provision of data to the community. The PSA-UG will be a key link to the international planetary science community, providing requirements and recommendations that will allow us to better meet their needs, and promoting the use of the PSA and its data holdings. This presentation will outline the many international collaborations currently in place for the PSA, both for missions in operations and for those under development. There is a strong desire to provide full transparent science data access and improved services to the planetary science community around the world, and our continuing work with our international partners brings us ever closer to achieving this goal. Many challenges still remain, and these will be outlined in the presentation.
NASA Astrophysics Data System (ADS)
Candela, L.; Ruggieri, G.; Giancaspro, A.
2004-09-01
In the sphere of "Multi-Mission Ground Segment" Italian Space Agency project, some innovative technologies such as CORBA[1], Z39.50[2], XML[3], Java[4], Java server Pages[4] and C++ has been experimented. The SSPI system (Space Service Provider Infrastructure) is the prototype of a distributed environment aimed to facilitate the access to Earth Observation (EO) data. SSPI allows to ingests, archive, consolidate, visualize and evaluate these data. Hence, SSPI is not just a database of or a data repository, but an application that by means of a set of protocols, standards and specifications provides a unified access to multi-mission EO data.
Europlanet/IDIS: Combining Diverse Planetary Observations and Models
NASA Astrophysics Data System (ADS)
Schmidt, Walter; Capria, Maria Teresa; Chanteur, Gerard
2013-04-01
Planetary research involves a diversity of research fields from astrophysics and plasma physics to atmospheric physics, climatology, spectroscopy and surface imaging. Data from all these disciplines are collected from various space-borne platforms or telescopes, supported by modelling teams and laboratory work. In order to interpret one set of data often supporting data from different disciplines and other missions are needed while the scientist does not always have the detailed expertise to access and utilize these observations. The Integrated and Distributed Information System (IDIS) [1], developed in the framework of the Europlanet-RI project, implements a Virtual Observatory approach ([2] and [3]), where different data sets, stored in archives around the world and in different formats, are accessed, re-formatted and combined to meet the user's requirements without the need of familiarizing oneself with the different technical details. While observational astrophysical data from different observatories could already earlier be accessed via Virtual Observatories, this concept is now extended to diverse planetary data and related model data sets, spectral data bases etc. A dedicated XML-based Europlanet Data Model (EPN-DM) [4] was developed based on data models from the planetary science community and the Virtual Observatory approach. A dedicated editor simplifies the registration of new resources. As the EPN-DM is a super-set of existing data models existing archives as well as new spectroscopic or chemical data bases for the interpretation of atmospheric or surface observations, or even modeling facilities at research institutes in Europe or Russia can be easily integrated and accessed via a Table Access Protocol (EPN-TAP) [5] adapted from the corresponding protocol of the International Virtual Observatory Alliance [6] (IVOA-TAP). EPN-TAP allows to search catalogues, retrieve data and make them available through standard IVOA tools if the access to the archive is compatible with IVOA standards. For some major data archives with different standards adaptation tools are available to make the access transparent to the user. EuroPlaNet-IDIS has contributed to the definition of PDAP, the Planetary Data Access Protocol of the International Planetary Data Alliance (IPDA) [7] to access the major planetary data archives of NASA in the USA [8], ESA in Europe [9] and JAXA in Japan [10]. Acknowledgement: Europlanet-RI was funded by the European Commission under the 7th Framework Program, grant 228319 "Capacities Specific Programme" - Research Infrastructures Action. Reference: [1] Details to IDIS and the Europlanet-RI via Web-site: http://www.idis.europlanet-ri.eu/ [2] Demonstrator implementation for Plasma-VO AMDA: http://cdpp-amda.cesr.fr/DDHTML/index.html [3] Demonstrator implementation for the IDIS-VO: http://www.idis-dyn.europlanet-ri.eu/vodev.shtml [4] Europlanet Data Model EPN-DM: http://www.europlanet-idis.fi/documents/public_documents/EPN-DM-v2.0.pdf [5] Europlanet Table Access Protocol EPN-TAP: http://www.europlanet-idis.fi/documents/public_documents/EPN-TAPV_0.26.pdf [6] International Virtual Observatory Alliance IVOA: http://www.ivoa.net [7] International Planetary Data Alliance IPDA: http://planetarydata.org/ [8] NASA's Planetary Data System: http://pds.jpl.nasa.gov/ [9] ESA's Planetary Science Archive PSA: http://www.sciops.esa.int/index.php?project=PSA [10] JAXAs Data Archive and Transmission System DARTS: http://darts.isas.jaxa.jp/
STScI Archive Manual, Version 7.0
NASA Astrophysics Data System (ADS)
Padovani, Paolo
1999-06-01
The STScI Archive Manual provides information a user needs to know to access the HST archive via its two user interfaces: StarView and a World Wide Web (WWW) interface. It provides descriptions of the StarView screens used to access information in the database and the format of that information, and introduces the use to the WWW interface. Using the two interfaces, users can search for observations, preview public data, and retrieve data from the archive. Using StarView one can also find calibration reference files and perform detailed association searches. With the WWW interface archive users can access, and obtain information on, all Multimission Archive at Space Telescope (MAST) data, a collection of mainly optical and ultraviolet datasets which include, amongst others, the International Ultraviolet Explorer (IUE) Final Archive. Both interfaces feature a name resolver which simplifies searches based on target name.
Building a Trustworthy Environmental Science Data Repository: Lessons Learned from the ORNL DAAC
NASA Astrophysics Data System (ADS)
Wei, Y.; Santhana Vannan, S. K.; Boyer, A.; Beaty, T.; Deb, D.; Hook, L.
2017-12-01
The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC, https://daac.ornl.gov) for biogeochemical dynamics is one of NASA's Earth Observing System Data and Information System (EOSDIS) data centers. The mission of the ORNL DAAC is to assemble, distribute, and provide data services for a comprehensive archive of terrestrial biogeochemistry and ecological dynamics observations and models to facilitate research, education, and decision-making in support of NASA's Earth Science. Since its establishment in 1994, ORNL DAAC has been continuously building itself into a trustworthy environmental science data repository by not only ensuring the quality and usability of its data holdings, but also optimizing its data publication and management process. This paper describes the lessons learned from ORNL DAAC's effort toward this goal. ORNL DAAC has been proactively implementing international community standards throughout its data management life cycle, including data publication, preservation, discovery, visualization, and distribution. Data files in standard formats, detailed documentation, and metadata following standard models are prepared to improve the usability and longevity of data products. Assignment of a Digital Object Identifier (DOI) ensures the identifiability and accessibility of every data product, including the different versions and revisions of its life cycle. ORNL DAAC's data citation policy assures data producers receive appropriate recognition of use of their products. Web service standards, such as OpenSearch and Open Geospatial Consortium (OGC), promotes the discovery, visualization, distribution, and integration of ORNL DAAC's data holdings. Recently, ORNL DAAC began efforts to optimize and standardize its data archival and data publication workflows, to improve the efficiency and transparency of its data archival and management processes.
The COROT ground-based archive and access system
NASA Astrophysics Data System (ADS)
Solano, E.; González-Riestra, R.; Catala, C.; Baglin, A.
2002-01-01
A prototype of the COROT ground-based archive and access system is presented here. The system has been developed at LAEFF and it is based on the experience gained at Laboratorio de Astrofisica Espacial y Fisica Fundamental (LAEFF) with the INES (IUE Newly Extracted System) Archive.
U.S. Geological Survey, remote sensing, and geoscience data: Using standards to serve us all
Benson, Michael G.; Faundeen, John L.
2000-01-01
The U.S. Geological Survey (USGS) advocates the use of standards with geosciences and remotely sensed data and metadata for its own purposes and those of its customers. In activities that range from archiving data to making a product, the incorporation of standards makes these functions repeatable and understandable. More important, when accepted standards are followed, data discovery and sharing can be more efficient and the overall value to society can be expanded. The USGS archives many terabytes of digital geoscience and remotely sensed data. Several million photographs are also available to the research community. To manage these vast holdings and ensure that strict preservation and high usability criteria are observed, the USGS uses standards within the archival, data management, public access and ordering, and data distribution areas. The USGS uses Federal and international standards in performing its role as the U.S. National Satellite Land Remote Sensing Data Archive and in its mission as the long-term archive and production center for aerial photographs and cartographic data covering the United States.
NASA Astrophysics Data System (ADS)
Devarakonda, R.; Thornton, M.; Wei, Y.; Krishna, B.; Frame, M. T.; Zolly, L.; Records, R.; Palanisamy, G.
2016-12-01
Observational data should be collected and stored logical and scalable way. Most of the time, observation data capture variables or measurements at an exact point in time and are thus not reproducible. It is therefore imperative that initial data be captured and stored correctly the first time. In this paper, we will discuss how big federal data centers and repositories such as DOE's Atmospheric Radiation Measurement (ARM), NASA's Distributed Active Archive Center (DAAC) and the USGS's Science Data Catalog (SDC) at Oak Ridge National Laboratory are preparing, storing and distributing huge multi-dimensional scientific data. We will discuss tools and services, including data formats, that are being used within the ORNL DAAC for managing huge data sets such as Daymet, which provides gridded estimates of various daily weather parameters at a 1km x 1km resolution. Recently released, the Daymet version 3[1] data set covers the period from January 1, 1980 to December 31 2015 for North America and Hawaii: including Canada, Mexico, the United States of America, Puerto Rico, and Bermuda. We will also discuss the latest tools and services within ARM and SDC that are built on popular open source software such as Apache Solr 6, Cassandra, Spark, etc. The ARM Data center (http://www.archive.arm.gov/discovery) archives and distributes various data streams, which are collected through the routine operations and scientific field experiments of the ARM Climate Research Facility. The SDC (http://data.usgs.gov/datacatalog/) provides seamless access to USGS research and monitoring data from across the nation. Every month, tens of thousands of users download portions of these datasets totaling to several TBs/month. The popularity of the data result from many characteristics, but at the forefront is the careful consideration of community needs both in terms of data content and accessibility. Fundamental to this is adherence to data archive and distribution best practices providing open, standardized, and self-describing data which enables development of specialized tools and web services. References: [1] Thornton, P.E., M.M. Thornton, B.W. Mayer, Y. Wei, R. Devarakonda, R.S. Vose, and R.B. Cook. 2016. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 3. ORNL DAAC, Oak Ridge, Tennessee, USA.
NASA Technical Reports Server (NTRS)
Callicott, William M.
1993-01-01
The NOAA archives contain 150 terabytes of data in digital form, most of which are the high volume GOES satellite image data. There are 630 data bases containing 2,350 environmental variables. There are 375 million film records and 90 million paper records in addition to the digital data base. The current data accession rate is 10 percent per year and the number of users are increasing at a 10 percent annual rate. NOAA publishes 5,000 publications and distributes over one million copies to almost 41,000 paying customers. Each year, over six million records are key entered from manuscript documents and about 13,000 computer tapes and 40,000 satellite hardcopy images are entered into the archive. Early digital data were stored on punched cards and open reel computer tapes. In the late seventies, an advanced helical scan technology (AMPEX TBM) was implemented. Now, punched cards have disappeared, the TBM system was abandoned, most data stored on open reel tapes have been migrated to 3480 cartridges, many specialized data sets were distributed on CD ROM's, special archives are being copied to 12 inch optical WORM disks, 5 1/4 inch magneto-optical disks were employed for workstation applications, and 8 mm EXABYTE tapes are planned for major data collection programs. The rapid expansion of new data sets, some of which constitute large volumes of data, coupled with the need for vastly improved access mechanisms, portability, and improved longevity are factors which will influence NOAA's future systems approaches for data management.
Rejected Manuscripts in Publishers' Archives: Legal Rights and Access
ERIC Educational Resources Information Center
Hamburger, Susan
2011-01-01
This article focuses on an analysis of how various archival repositories deal with rejected manuscripts in publishers' archives as part of existing collections and as potential donations, and includes suggestions for ways to provide access while maintaining the author's legal rights. Viewpoints from the journal editor, author, archivist, and…
New Developments in NOAA's Comprehensive Large Array-Data Stewardship System
NASA Astrophysics Data System (ADS)
Ritchey, N. A.; Morris, J. S.; Carter, D. J.
2012-12-01
The Comprehensive Large Array-data Stewardship System (CLASS) is part of the NOAA strategic goal of Climate Adaptation and Mitigation that gives focus to the building and sustaining of key observational assets and data archives critical to maintaining the global climate record. Since 2002, CLASS has been NOAA's enterprise solution for ingesting, storing and providing access to a host of near real-time remote sensing streams such as the Polar and Geostationary Operational Environmental Satellites (POES and GOES) and the Defense Meteorological Satellite Program (DMSP). Since October, 2011 CLASS has also been the dedicated Archive Data Segment (ADS) of the Suomi National Polar-orbiting Partnership (S-NPP). As the ADS, CLASS receives raw and processed S-NPP records for archival and distribution to the broad user community. Moving beyond just remote sensing and model data, NOAA has endorsed a plan to migrate all archive holdings from NOAA's National Data Centers into CLASS while retiring various disparate legacy data storage systems residing at the National Climatic Data Center (NCDC), National Geophysical Data Center (NGDC) and the National Oceanographic Data Center (NODC). In parallel to this data migration, CLASS is evolving to a service-oriented architecture utilizing cloud technologies for dissemination in addition to clearly defined interfaces that allow better collaboration with partners. This evolution will require implementation of standard access protocols and metadata which will lead to cost effective data and information preservation.
The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. M. Pancerella; L. A. Rahn; C. Yang
2000-02-01
The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of themore » collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.« less
Mission Exploitation Platform PROBA-V
NASA Astrophysics Data System (ADS)
Goor, Erwin
2016-04-01
VITO and partners developed an end-to-end solution to drastically improve the exploitation of the PROBA-V EO-data archive (http://proba-v.vgt.vito.be/), the past mission SPOT-VEGETATION and derived vegetation parameters by researchers, service providers and end-users. The analysis of time series of data (+1PB) is addressed, as well as the large scale on-demand processing of near real-time data. From November 2015 an operational Mission Exploitation Platform (MEP) PROBA-V, as an ESA pathfinder project, will be gradually deployed at the VITO data center with direct access to the complete data archive. Several applications will be released to the users, e.g. - A time series viewer, showing the evolution of PROBA-V bands and derived vegetation parameters for any area of interest. - Full-resolution viewing services for the complete data archive. - On-demand processing chains e.g. for the calculation of N-daily composites. - A Virtual Machine will be provided with access to the data archive and tools to work with this data, e.g. various toolboxes and support for R and Python. After an initial release in January 2016, a research platform will gradually be deployed allowing users to design, debug and test applications on the platform. From the MEP PROBA-V, access to Sentinel-2 and landsat data will be addressed as well, e.g. to support the Cal/Val activities of the users. Users can make use of powerful Web based tools and can self-manage virtual machines to perform their work on the infrastructure at VITO with access to the complete data archive. To realise this, private cloud technology (openStack) is used and a distributed processing environment is built based on Hadoop. The Hadoop ecosystem offers a lot of technologies (Spark, Yarn, Accumulo, etc.) which we integrate with several open-source components. The impact of this MEP on the user community will be high and will completely change the way of working with the data and hence open the large time series to a larger community of users. The presentation will address these benefits for the users and discuss on the technical challenges in implementing this MEP.
Making SAR Data Accessible - ASF's ALOS PALSAR Radiometric Terrain Correction Project
NASA Astrophysics Data System (ADS)
Meyer, F. J.; Arko, S. A.; Gens, R.
2015-12-01
While SAR data have proven valuable for a wide range of geophysical research questions, so far, largely only the SAR-educated science communities have been able to fully exploit the information content of internationally available SAR archives. The main issues that have been preventing a more widespread utilization of SAR are related to (1) the diversity and complexity of SAR data formats, (2) the complexity of the processing flows needed to extract geophysical information from SAR, (3) the lack of standardization and automation of these processing flows, and (4) the often ignored geocoding procedures, leaving the data in image coordinate space. In order to improve upon this situation, ASF's radiometric terrain-correction (RTC) project is generating uniformly formatted and easily accessible value-added products from the ASF Distributed Active Archive Center's (DAAC) five-year archive of JAXA's ALOS PALSAR sensor. Specifically, the project applies geometric and radiometric corrections to SAR data to allow for an easy and direct combination of obliquely acquired SAR data with remote sensing imagery acquired in nadir observation geometries. Finally, the value-added data is provided to the user in the broadly accepted Geotiff format, in order to support the easy integration of SAR data into GIS environments. The goal of ASF's RTC project is to make SAR data more accessible and more attractive to the broader SAR applications community, especially to those users that currently have limited SAR expertise. Production of RTC products commenced October 2014 and will conclude late in 2015. As of July 2015, processing of 71% of ASF's ALOS PALSAR archive was completed. Adding to the utility of this dataset are recent changes to the data access policy that allow the full-resolution RTC products to be provided to the public, without restriction. In this paper we will introduce the processing flow that was developed for the RTC project and summarize the calibration and validation procedures that were implemented to determine and monitor system performance. The paper will also show the current progress of RTC processing, provide examples of generated data sets, and demonstrate the benefit of the RTC archives for applications such as land-use classification and change detection.
NASA Astrophysics Data System (ADS)
Alacid, J. Manuel; Solano, Enrique
2015-12-01
The Gran Telescopio Canarias (GTC) archive is operational since November 2011. The archive, maintained by the Data Archive Unit at CAB in the framework of the Spanish Virtual Observatory project, provides access to both raw and science ready data and has been designed in compliance with the standards defined by the International Virtual Observatory Alliance (IVOA) to guarantee a high level of data accessibility and handling. In this presentation I will describe the main capabilities the GTC archive offers to the community, in terms of functionalities and data collections, to carry out an efficient scientific exploitation of GTC data.
Tools, Services & Support of NASA Salinity Mission Data Archival Distribution through PO.DAAC
NASA Astrophysics Data System (ADS)
Tsontos, V. M.; Vazquez, J.
2017-12-01
The Physical Oceanography Distributed Active Center (PO.DAAC) serves as the designated NASA repository and distribution node for all Aquarius/SAC-D and SMAP sea surface salinity (SSS) mission data products in close collaboration with the projects. In addition to these official mission products, that by December 2017 will include the Aquarius V5.0 end-of-mission data, PO.DAAC archives and distributes high-value, principal investigator led satellite SSS products, and also datasets from NASA's "Salinity Processes in the Upper Ocean Regional Study" (SPURS 1 & 2) field campaigns in the N. Atlantic salinity maximum and high rainfall E. Tropical Pacific regions. Here we report on the status of these data holdings at PO.DAAC, and the range of data services and access tools that are provided in support of NASA salinity. These include user support and data discovery services, OPeNDAP and THREDDS web services for subsetting/extraction, and visualization via LAS and SOTO. Emphasis is placed on newer capabilities, including PODAAC's consolidated web services (CWS) and advanced L2 subsetting tool called HiTIDE.
The QuakeSim Project: Web Services for Managing Geophysical Data and Applications
NASA Astrophysics Data System (ADS)
Pierce, Marlon E.; Fox, Geoffrey C.; Aktas, Mehmet S.; Aydin, Galip; Gadgil, Harshawardhan; Qi, Zhigang; Sayar, Ahmet
2008-04-01
We describe our distributed systems research efforts to build the “cyberinfrastructure” components that constitute a geophysical Grid, or more accurately, a Grid of Grids. Service-oriented computing principles are used to build a distributed infrastructure of Web accessible components for accessing data and scientific applications. Our data services fall into two major categories: Archival, database-backed services based around Geographical Information System (GIS) standards from the Open Geospatial Consortium, and streaming services that can be used to filter and route real-time data sources such as Global Positioning System data streams. Execution support services include application execution management services and services for transferring remote files. These data and execution service families are bound together through metadata information and workflow services for service orchestration. Users may access the system through the QuakeSim scientific Web portal, which is built using a portlet component approach.
Moving Toward Real Time Data Handling: Data Management at the IRIS DMC
NASA Astrophysics Data System (ADS)
Ahern, T. K.; Benson, R. B.
2001-12-01
The IRIS Data Management Center at the University of Washington has become a major archive and distribution center for a wide variety of seismological data. With a mass storage system with a 360-terabyte capacity, the center is well positioned to manage the data flow, both inbound and outbound, from all anticipated seismic sources for the foreseeable future. As data flow in and out of the IRIS DMC at an increasing rate, new methods to deal with data using purely automated techniques are being developed. The on-line and self-service data repositories of SPYDERr and FARM are collections of seismograms for all larger events. The WWW tool WILBER and the client application WEED are examples of tools that provide convenient access to the 1/2 terabyte of SPYDERr and FARM data. The Buffer of Uniform Data (BUD) system provides access to continuous data available in real time from GSN, FDSN, US regional networks, and other globally distributed stations. Continuous data that have received quality control are always available from the archive of continuous data. This presentation will review current and future data access techniques supported at IRIS. One of the most difficult tasks at the DMC is the management of the metadata that describes all the stations, sensors, and data holdings. Demonstrations of tools that provide access to the metadata will be presented. This presentation will focus on the new techniques of data management now being developed at the IRIS DMC. We believe that these techniques are generally applicable to other types of geophysical data management as well.
"Different Strokes for Different Folks": Presenting EAD in Three UK Online Catalogues
ERIC Educational Resources Information Center
Hill, Amanda; Stockting, Bill; Higgins, Sarah
2005-01-01
This article discusses three different online services providing federated access to finding aids relating to archives found in a number of repositories: the Archives Hub, Access to Archives (A2A) and Navigational Aids for the History of Science, Technology and the Environment (NAHSTE). While the scale of the services is very different, a…
ERIC Educational Resources Information Center
Lippert, Margaret
2000-01-01
This abstract of a planned session on access to scientific and technical journals addresses policy and standard issues related to long-term archives; digital archiving models; economic factors; hardware and software issues; multi-publisher electronic journal content integration; format considerations; and future data migration needs. (LRW)
National Centers for Environmental Prediction
/NDAS Output Fields (contents, format, grid specs, output frequency, archive): The NWP model The horizontal output grid The vertical grid Access to fields Anonymous FTP Access Permanent Tape Archive
Building the European Seismological Research Infrastructure: results from 4 years NERIES EC project
NASA Astrophysics Data System (ADS)
van Eck, T.; Giardini, D.
2010-12-01
The EC Research Infrastructure (RI) project, Network of Research Infrastructures for European Seismology (NERIES), implemented a comprehensive European integrated RI for earthquake seismological data that is scalable and sustainable. NERIES opened a significant amount of additional seismological data, integrated different distributed data archives, implemented and produced advanced analysis tools and advanced software packages and tools. A single seismic data portal provides a single access point and overview for European seismological data available for the earth science research community. Additional data access tools and sites have been implemented to meet user and robustness requirements, notably those at the EMSC and ORFEUS. The datasets compiled in NERIES and available through the portal include among others: - The expanded Virtual European Broadband Seismic Network (VEBSN) with real-time access to more then 500 stations from > 53 observatories. This data is continuously monitored, quality controlled and archived in the European Integrated Distributed waveform Archive (EIDA). - A unique integration of acceleration datasets from seven networks in seven European or associated countries centrally accessible in a homogeneous format, thus forming the core comprehensive European acceleration database. Standardized parameter analysis and actual software are included in the database. - A Distributed Archive of Historical Earthquake Data (AHEAD) for research purposes, containing among others a comprehensive European Macroseismic Database and Earthquake Catalogue (1000 - 1963, M ≥5.8), including analysis tools. - Data from 3 one year OBS deployments at three sites, Atlantic, Ionian and Ligurian Sea within the general SEED format, thus creating the core integrated data base for ocean, sea and land based seismological observatories. Tools to facilitate analysis and data mining of the RI datasets are: - A comprehensive set of European seismological velocity reference model including a standardized model description with several visualisation tools currently adapted on a global scale. - An integrated approach to seismic hazard modelling and forecasting, a community accepted forecasting testing and model validation approach and the core hazard portal developed along the same technologies as the NERIES data portal. - Implemented homogeneous shakemap estimation tools at several large European observatories and a complementary new loss estimation software tool. - A comprehensive set of new techniques for geotechnical site characterization with relevant software packages documented and maintained (www.geopsy.org). - A set of software packages for data mining, data reduction, data exchange and information management in seismology as research and observatory analysis tools NERIES has a long-term impact and is coordinated with related US initiatives IRIS and EarthScope. The follow-up EC project of NERIES, NERA (2010 - 2014), is funded and will integrate the seismological and the earthquake engineering infrastructures. NERIES further provided the proof of concept for the ESFRI2008 initiative: the European Plate Observing System (EPOS). Its preparatory phase (2010 - 2014) is also funded by the EC.
The Cambridge Structural Database: a quarter of a million crystal structures and rising.
Allen, Frank H
2002-06-01
The Cambridge Structural Database (CSD) now contains data for more than a quarter of a million small-molecule crystal structures. The information content of the CSD, together with methods for data acquisition, processing and validation, are summarized, with particular emphasis on the chemical information added by CSD editors. Nearly 80% of new structural data arrives electronically, mostly in CIF format, and the CCDC acts as the official crystal structure data depository for 51 major journals. The CCDC now maintains both a CIF archive (more than 73,000 CIFs dating from 1996), as well as the distributed binary CSD archive; the availability of data in both archives is discussed. A statistical survey of the CSD is also presented and projections concerning future accession rates indicate that the CSD will contain at least 500,000 crystal structures by the year 2010.
NASA Astrophysics Data System (ADS)
Yu, E.; Chen, S.; Chowdhury, F.; Bhaskaran, A.; Hutton, K.; Given, D.; Hauksson, E.; Clayton, R. W.
2009-12-01
The SCEDC archives continuous and triggered data from nearly 3000 data channels from 375 SCSN recorded stations. The SCSN and SCEDC process and archive an average of 12,000 earthquakes each year, contributing to the southern California earthquake catalog that spans from 1932 to present. The SCEDC provides public, searchable access to these earthquake parametric and waveform data through its website www.data.scec.org and through client applications such as STP, NETDC and DHI. New data products: ● The SCEDC is distributing synthetic waveform data from the 2008 ShakeOut scenario (Jones et al., USGS Open File Rep., 2008-1150) and (Graves et al. 2008; Geophys. Res. Lett.) This is a M 7.8 earthquake on the southern San Andreas fault. Users will be able to download 40 sps velocity waveforms in SAC format from the SCEDC website. The SCEDC is also distributing synthetic GPS data (Crowell et al., 2009; Seismo. Res. Letters.) for this scenario as well. ● The SCEDC has added a new web page to show the latest tomographic model of Southern California. This model is based on Tape et al., 2009 Science. New data services: ● The SCEDC is exporting data in QuakeML format. This is an xml format that has been adopted by the Advanced National Seismic System (ANSS). This data will also be available as a web service. ● The SCEDC is exporting data in StationXML format. This is an xml format created by the SCEDC and adopted by ANSS to fully describe station metadata. This data will also be available as a web service. ● The stp 1.6 client can now access both the SCEDC and the Northern California Earthquake Data Center (NCEDC) earthquake and waveform archives. In progress - SCEDC to distribute 1 sps GPS data in miniSEED format: ● As part of a NASA Advanced Information Systems Technology project in collaboration with Jet Propulsion Laboratory and Scripps Institution of Oceanography, the SCEDC will receive real time 1 sps streams of GPS displacement solutions from the California Real Time Network (http://sopac.ucsd.edu/projects/realtime; Genrich and Bock, 2006, J. Geophys. Res.). These channels will be archived at the SCEDC as miniSEED waveforms, which then can be distributed to the user community via applications such as STP.
Atmospheric Science Data Center
2016-06-24
... data granules using a high resolution spatial metadata database and directly accessing the archived data granules. Subset results are ... data granules using a high resolution spatial metadata database and directly accessing the archived data granules. Subset results are ...
ERIC Educational Resources Information Center
Kurtz, Michael J.; Eichorn, Guenther; Accomazzi, Alberto; Grant, Carolyn S.; Demleitner, Markus; Murray, Stephen S.; Jones, Michael L. W.; Gay, Geri K.; Rieger, Robert H.; Millman, David; Bruggemann-Klein, Anne; Klein, Rolf; Landgraf, Britta; Wang, James Ze; Li, Jia; Chan, Desmond; Wiederhold, Gio; Pitti, Daniel V.
1999-01-01
Includes six articles that discuss a digital library for astronomy; comparing evaluations of digital collection efforts; cross-organizational access management of Web-based resources; searching scientific bibliographic databases based on content-based relations between documents; semantics-sensitive retrieval for digital picture libraries; and…
Implementing the HDF-EOS5 software library for data products in the UNAVCO InSAR archive
NASA Astrophysics Data System (ADS)
Baker, Scott; Meertens, Charles; Crosby, Christopher
2017-04-01
UNAVCO is a non-profit university-governed consortium that operates the U.S. National Science Foundation (NSF) Geodesy Advancing Geosciences and EarthScope (GAGE) facility and provides operational support to the Western North America InSAR Consortium (WInSAR). The seamless synthetic aperture radar archive (SSARA) is a seamless distributed access system for SAR data and higher-level data products. Under the NASA-funded SSARA project, a user-contributed InSAR archive for interferograms, time series, and other derived data products was developed at UNAVCO. The InSAR archive development has led to the adoption of the HDF-EOS5 data model, file format, and library. The HDF-EOS software library was designed to support NASA Earth Observation System (EOS) science data products and provides data structures for radar geometry (Swath) and geocoded (Grid) data based on the HDF5 data model and file format provided by the HDF Group. HDF-EOS5 inherits the benefits of HDF5 (open-source software support, internal compression, portability, support for structural data, self-describing file metadata enhanced performance, and xml support) and provides a way to standardize InSAR data products. Instrument- and datatype-independent services, such as subsetting, can be applied to files across a wide variety of data products through the same library interface. The library allows integration with GIS software packages such as ArcGIS and GDAL, conversion to other data formats like NetCDF and GeoTIFF, and is extensible with new data structures to support future requirements. UNAVCO maintains a GitHub repository that provides example software for creating data products from popular InSAR processing software packages like GMT5SAR and ISCE as well as examples for reading and converting the data products into other formats. Digital object identifiers (DOI) have been incorporated into the InSAR archive allowing users to assign a permanent location for their processed result and easily reference the final data products. A metadata attribute is added to the HDF-EOS5 file when a DOI is minted for a data product. These data products are searchable through the SSARA federated query providing access to processed data for both expert and non-expert InSAR users. The archive facilitates timely distribution of processed data with particular importance for geohazards and event response.
Medical image archive node simulation and architecture
NASA Astrophysics Data System (ADS)
Chiang, Ted T.; Tang, Yau-Kuo
1996-05-01
It is a well known fact that managed care and new treatment technologies are revolutionizing the health care provider world. Community Health Information Network and Computer-based Patient Record projects are underway throughout the United States. More and more hospitals are installing digital, `filmless' radiology (and other imagery) systems. They generate a staggering amount of information around the clock. For example, a typical 500-bed hospital might accumulate more than 5 terabytes of image data in a period of 30 years for conventional x-ray images and digital images such as Magnetic Resonance Imaging and Computer Tomography images. With several hospitals contributing to the archive, the storage required will be in the hundreds of terabytes. Systems for reliable, secure, and inexpensive storage and retrieval of digital medical information do not exist today. In this paper, we present a Medical Image Archive and Distribution Service (MIADS) concept. MIADS is a system shared by individual and community hospitals, laboratories, and doctors' offices that need to store and retrieve medical images. Due to the large volume and complexity of the data, as well as the diversified user access requirement, implementation of the MIADS will be a complex procedure. One of the key challenges to implementing a MIADS is to select a cost-effective, scalable system architecture to meet the ingest/retrieval performance requirements. We have performed an in-depth system engineering study, and developed a sophisticated simulation model to address this key challenge. This paper describes the overall system architecture based on our system engineering study and simulation results. In particular, we will emphasize system scalability and upgradability issues. Furthermore, we will discuss our simulation results in detail. The simulations study the ingest/retrieval performance requirements based on different system configurations and architectures for variables such as workload, tape access time, number of drives, number of exams per patient, number of Central Processing Units, patient grouping, and priority impacts. The MIADS, which could be a key component of a broader data repository system, will be able to communicate with and obtain data from existing hospital information systems. We will discuss the external interfaces enabling MIADS to communicate with and obtain data from existing Radiology Information Systems such as the Picture Archiving and Communication System (PACS). Our system design encompasses the broader aspects of the archive node, which could include multimedia data such as image, audio, video, and free text data. This system is designed to be integrated with current hospital PACS through a Digital Imaging and Communications in Medicine interface. However, the system can also be accessed through the Internet using Hypertext Transport Protocol or Simple File Transport Protocol. Our design and simulation work will be key to implementing a successful, scalable medical image archive and distribution system.
CDDIS: NASA's Archive of Space Geodesy Data and Products Supporting GGOS
NASA Technical Reports Server (NTRS)
Noll, Carey; Michael, Patrick
2016-01-01
The Crustal Dynamics Data Information System (CDDIS) supports data archiving and distribution activities for the space geodesy and geodynamics community. The main objectives of the system are to store space geodesy and geodynamics related data and products in a central archive, to maintain information about the archival of these data,to disseminate these data and information in a timely manner to a global scientific research community, and provide user based tools for the exploration and use of the archive. The CDDIS data system and its archive is a key component in several of the geometric services within the International Association of Geodesy (IAG) and its observing systemthe Global Geodetic Observing System (GGOS), including the IGS, the International DORIS Service (IDS), the International Laser Ranging Service (ILRS), the International VLBI Service for Geodesy and Astrometry (IVS), and the International Earth Rotation and Reference Systems Service (IERS). The CDDIS provides on-line access to over 17 Tbytes of dataand derived products in support of the IAG services and GGOS. The systems archive continues to grow and improve as new activities are supported and enhancements are implemented. Recently, the CDDIS has established a real-time streaming capability for GNSS data and products. Furthermore, enhancements to metadata describing the contents ofthe archive have been developed to facilitate data discovery. This poster will provide a review of the improvements in the system infrastructure that CDDIS has made over the past year for the geodetic community and describe future plans for the system.
Report on the Global Data Assembly Center (GDAC) to the 12th GHRSST Science Team Meeting
NASA Technical Reports Server (NTRS)
Armstrong, Edward M.; Bingham, Andrew; Vazquez, Jorge; Thompson, Charles; Huang, Thomas; Finch, Chris
2011-01-01
In 2010/2011 the Global Data Assembly Center (GDAC) at NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC) continued its role as the primary clearinghouse and access node for operational Group for High Resolution Sea Surface Temperature (GHRSST) datastreams, as well as its collaborative role with the NOAA Long Term Stewardship and Reanalysis Facility (LTSRF) for archiving. Here we report on our data management activities and infrastructure improvements since the last science team meeting in June 2010.These include the implementation of all GHRSST datastreams in the new PO.DAAC Data Management and Archive System (DMAS) for more reliable and timely data access. GHRSST dataset metadata are now stored in a new database that has made the maintenance and quality improvement of metadata fields more straightforward. A content management system for a revised suite of PO.DAAC web pages allows dynamic access to a subset of these metadata fields for enhanced dataset description as well as discovery through a faceted search mechanism from the perspective of the user. From the discovery and metadata standpoint the GDAC has also implemented the NASA version of the OpenSearch protocol for searching for GHRSST granules and developed a web service to generate ISO 19115-2 compliant metadata records. Furthermore, the GDAC has continued to implement a new suite of tools and services for GHRSST datastreams including a Level 2 subsetter known as Dataminer, a revised POET Level 3/4 subsetter and visualization tool, a Google Earth interface to selected daily global Level 2 and Level 4 data, and experimented with a THREDDS catalog of GHRSST data collections. Finally we will summarize the expanding user and data statistics, and other metrics that we have collected over the last year demonstrating the broad user community and applications that the GHRSST project continues to serve via the GDAC distribution mechanisms. This report also serves by extension to summarize the activities of the GHRSST Data Assembly and Systems Technical Advisory Group (DAS-TAG).
NASA's Earth Observing Data and Information System
NASA Technical Reports Server (NTRS)
Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.
2009-01-01
NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining needs of the user community including use of the American Customer Satisfaction Index and a broad metrics program.
The National Virtual Observatory
NASA Astrophysics Data System (ADS)
Hanisch, Robert J.
2001-06-01
The National Virtual Observatory is a distributed computational facility that will provide access to the ``virtual sky''-the federation of astronomical data archives, object catalogs, and associated information services. The NVO's ``virtual telescope'' is a common framework for requesting, retrieving, and manipulating information from diverse, distributed resources. The NVO will make it possible to seamlessly integrate data from the new all-sky surveys, enabling cross-correlations between multi-Terabyte catalogs and providing transparent access to the underlying image or spectral data. Success requires high performance computational systems, high bandwidth network services, agreed upon standards for the exchange of metadata, and collaboration among astronomers, astronomical data and information service providers, information technology specialists, funding agencies, and industry. International cooperation at the onset will help to assure that the NVO simultaneously becomes a global facility. .
The global Landsat archive: Status, consolidation, and direction
Wulder, Michael A.; White, Joanne C.; Loveland, Thomas; Woodcock, Curtis; Belward, Alan; Cohen, Warren B.; Fosnight, Eugene A.; Shaw, Jerad; Masek, Jeffery G.; Roy, David P.
2016-01-01
New and previously unimaginable Landsat applications have been fostered by a policy change in 2008 that made analysis-ready Landsat data free and open access. Since 1972, Landsat has been collecting images of the Earth, with the early years of the program constrained by onboard satellite and ground systems, as well as limitations across the range of required computing, networking, and storage capabilities. Rather than robust on-satellite storage for transmission via high bandwidth downlink to a centralized storage and distribution facility as with Landsat-8, a network of receiving stations, one operated by the U.S. government, the other operated by a community of International Cooperators (ICs), were utilized. ICs paid a fee for the right to receive and distribute Landsat data and over time, more Landsat data was held outside the archive of the United State Geological Survey (USGS) than was held inside, much of it unique. Recognizing the critical value of these data, the USGS began a Landsat Global Archive Consolidation (LGAC) initiative in 2010 to bring these data into a single, universally accessible, centralized global archive, housed at the Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota. The primary LGAC goals are to inventory the data held by ICs, acquire the data, and ingest and apply standard ground station processing to generate an L1T analysis-ready product. As of January 1, 2015 there were 5,532,454 images in the USGS archive. LGAC has contributed approximately 3.2 million of those images, more than doubling the original USGS archive holdings. Moreover, an additional 2.3 million images have been identified to date through the LGAC initiative and are in the process of being added to the archive. The impact of LGAC is significant and, in terms of images in the collection, analogous to that of having had twoadditional Landsat-5 missions. As a result of LGAC, there are regions of the globe that now have markedly improved Landsat data coverage, resulting in an enhanced capacity for mapping, monitoring change, and capturing historic conditions. Although future missions can be planned and implemented, the past cannot be revisited, underscoring the value and enhanced significance of historical Landsat data and the LGAC initiative. The aim of this paper is to report the current status of the global USGS Landsat archive, document the existing and anticipated contributions of LGAC to the archive, and characterize the current acquisitions of Landsat-7 and Landsat-8. Landsat-8 is adding data to the archive at an unprecedented rate as nearly all terrestrial images are now collected. We also offer key lessons learned so far from the LGAC initiative, plus insights regarding other critical elements of the Landsat program looking forward, such as acquisition, continuity, temporal revisit, and the importance of continuing to operationalize the Landsat program.
The EXOSAT database and archive
NASA Technical Reports Server (NTRS)
Reynolds, A. P.; Parmar, A. N.
1992-01-01
The EXOSAT database provides on-line access to the results and data products (spectra, images, and lightcurves) from the EXOSAT mission as well as access to data and logs from a number of other missions (such as EINSTEIN, COS-B, ROSAT, and IRAS). In addition, a number of familiar optical, infrared, and x ray catalogs, including the Hubble Space Telescope (HST) guide star catalog are available. The complete database is located at the EXOSAT observatory at ESTEC in the Netherlands and is accessible remotely via a captive account. The database management system was specifically developed to efficiently access the database and to allow the user to perform statistical studies on large samples of astronomical objects as well as to retrieve scientific and bibliographic information on single sources. The system was designed to be mission independent and includes timing, image processing, and spectral analysis packages as well as software to allow the easy transfer of analysis results and products to the user's own institute. The archive at ESTEC comprises a subset of the EXOSAT observations, stored on magnetic tape. Observations of particular interest were copied in compressed format to an optical jukebox, allowing users to retrieve and analyze selected raw data entirely from their terminals. Such analysis may be necessary if the user's needs are not accommodated by the products contained in the database (in terms of time resolution, spectral range, and the finesse of the background subtraction, for instance). Long-term archiving of the full final observation data is taking place at ESRIN in Italy as part of the ESIS program, again using optical media, and ESRIN have now assumed responsibility for distributing the data to the community. Tests showed that raw observational data (typically several tens of megabytes for a single target) can be transferred via the existing networks in reasonable time.
The Kanzelhöhe Online Data Archive
NASA Astrophysics Data System (ADS)
Pötzi, W.; Hirtenfellner-Polanec, W.; Temmer, M.
The Kanzelhöhe Observatory provides high-cadence full-disk observations of solar activity phenomena like sunspots, flares and prominence eruptions on a regular basis. The data are available for download from the KODA (Kanzelhöhe Observatory Data Archive) which is freely accessible. The archive offers sunspot drawings back to 1950 and high cadence H-α data back to 1973. Images from other instruments, like white-light and CaIIK, are available since 2007 and 2010, respectively. In the following we describe how to access the archive and the format of the data.
NASA Astrophysics Data System (ADS)
Anantharaj, V.; Mayer, B.; Wang, F.; Hack, J.; McKenna, D.; Hartman-Baker, R.
2012-04-01
The Oak Ridge Leadership Computing Facility (OLCF) facilitates the execution of computational experiments that require tens of millions of CPU hours (typically using thousands of processors simultaneously) while generating hundreds of terabytes of data. A set of ultra high resolution climate experiments in progress, using the Community Earth System Model (CESM), will produce over 35,000 files, ranging in sizes from 21 MB to 110 GB each. The execution of the experiments will require nearly 70 Million CPU hours on the Jaguar and Titan supercomputers at OLCF. The total volume of the output from these climate modeling experiments will be in excess of 300 TB. This model output must then be archived, analyzed, distributed to the project partners in a timely manner, and also made available more broadly. Meeting this challenge would require efficient movement of the data, staging the simulation output to a large and fast file system that provides high volume access to other computational systems used to analyze the data and synthesize results. This file system also needs to be accessible via high speed networks to an archival system that can provide long term reliable storage. Ideally this archival system is itself directly available to other systems that can be used to host services making the data and analysis available to the participants in the distributed research project and to the broader climate community. The various resources available at the OLCF now support this workflow. The available systems include the new Jaguar Cray XK6 2.63 petaflops (estimated) supercomputer, the 10 PB Spider center-wide parallel file system, the Lens/EVEREST analysis and visualization system, the HPSS archival storage system, the Earth System Grid (ESG), and the ORNL Climate Data Server (CDS). The ESG features federated services, search & discovery, extensive data handling capabilities, deep storage access, and Live Access Server (LAS) integration. The scientific workflow enabled on these systems, and developed as part of the Ultra-High Resolution Climate Modeling Project, allows users of OLCF resources to efficiently share simulated data, often multi-terabyte in volume, as well as the results from the modeling experiments and various synthesized products derived from these simulations. The final objective in the exercise is to ensure that the simulation results and the enhanced understanding will serve the needs of a diverse group of stakeholders across the world, including our research partners in U.S. Department of Energy laboratories & universities, domain scientists, students (K-12 as well as higher education), resource managers, decision makers, and the general public.
OceanNOMADS: A New Distribution Node for Operational Ocean Model Output
NASA Astrophysics Data System (ADS)
Cross, S.; Vance, T.; Breckenridge, T.
2009-12-01
The NOAA National Operational Model Archive and Distribution System (NOMADS) is a distributed, web-services based project providing real-time and retrospective access to climate and weather model data and related datasets. OceanNOMADS is a new NOMADS node dedicated to ocean model and related data, with an initial focus on operational ocean models from NOAA and the U.S. Navy. The node offers data access through a Thematic Real-time Environmental Distributed Data Services (THREDDS) server via the commonly used OPeNDAP protocol. The primary server is operated by the National Coastal Data Development Center and hosted by the Northern Gulf Institute at Stennis Space Center, MS. In cooperation with the National Marine Fisheries Service and Mississippi State University (MSU), a duplicate server is being installed at MSU with a 1-gigabit connection to the National Lambda Rail. This setup will allow us to begin to quantify the benefit of high-speed data connections to scientists needing remote access to these large datasets. Work is also underway on the next generation of services from OceanNOMADS, including user-requested server-side data reformatting, regridding, and aggregation, as well as tools for model-data comparison.
Exploring New Methods of Displaying Bit-Level Quality and Other Flags for MODIS Data
NASA Technical Reports Server (NTRS)
Khalsa, Siri Jodha Singh; Weaver, Ron
2003-01-01
The NASA Distributed Active Archive Center (DAAC) at the National Snow and Ice Data Center (NSIDC) archives and distributes snow and sea ice products derived from the MODerate resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra and Aqua satellites. All MODIS standard products are in the Earth Observing System version of the Hierarchal Data Format (HDF-EOS). The MODIS science team has packed a wealth of information into each HDF-EOS file. In addition to the science data arrays containing the geophysical product, there are often pixel-level Quality Assurance arrays which are important for understanding and interpreting the science data. Currently, researchers are limited in their ability to access and decode information stored as individual bits in many of the MODIS science products. Commercial and public domain utilities give users access, in varying degrees, to the elements inside MODIS HDF-EOS files. However, when attempting to visualize the data, users are confronted with the fact that many of the elements actually represent eight different 1-bit arrays packed into a single byte array. This project addressed the need for researchers to access bit-level information inside MODIS data files. In an previous NASA-funded project (ESDIS Prototype ID 50.0) we developed a visualization tool tailored to polar gridded HDF-EOS data set. This tool,called the Polar researchers to access, geolocate, visualize, and subset data that originate from different sources and have different spatial resolutions but which are placed on a common polar grid. The bit-level visualization function developed under this project was added to PHDIS, resulting in a versatile tool that serves a variety of needs. We call this the EOS Imaging Tool.
Better Living Through Metadata: Examining Archive Usage
NASA Astrophysics Data System (ADS)
Becker, G.; Winkelman, S.; Rots, A.
2013-10-01
The primary purpose of an observatory's archive is to provide access to the data through various interfaces. User interactions with the archive are recorded in server logs, which can be used to answer basic questions like: Who has downloaded dataset X? When did she do this? Which tools did she use? The answers to questions like these fill in patterns of data access (e.g., how many times dataset X has been downloaded in the past three years). Analysis of server logs provides metrics of archive usage and provides feedback on interface use which can be used to guide future interface development. The Chandra X-ray Observatory is fortunate in that a database to track data access and downloads has been continuously recording such transactions for years; however, it is overdue for an update. We will detail changes we hope to effect and the differences the changes may make to our usage metadata picture. We plan to gather more information about the geographic location of users without compromising privacy; create improved archive statistics; and track and assess the impact of web “crawlers” and other scripted access methods on the archive. With the improvements to our download tracking we hope to gain a better understanding of the dissemination of Chandra's data; how effectively it is being done; and perhaps discover ideas for new services.
ESA Science Archives, VO tools and remote Scientific Data reduction in Grid Architectures
NASA Astrophysics Data System (ADS)
Arviset, C.; Barbarisi, I.; de La Calle, I.; Fajersztejn, N.; Freschi, M.; Gabriel, C.; Gomez, P.; Guainazzi, M.; Ibarra, A.; Laruelo, A.; Leon, I.; Micol, A.; Parrilla, E.; Ortiz, I.; Osuna, P.; Salgado, J.; Stebe, A.; Tapiador, D.
2008-08-01
This paper presents the latest functionalities of the ESA Science Archives located at ESAC, Spain, in particular, the following archives : the ISO Data Archive (IDA {http://iso.esac.esa.int/ida}), the XMM-Newton Science Archive (XSA {http://xmm.esac.esa.int/xsa}), the Integral SOC Science Data Archive (ISDA {http://integral.esac.esa.int/isda}) and the Planetary Science Archive (PSA {http://www.rssd.esa.int/psa}), both the classical and the map-based Mars Express interfaces. Furthermore, the ESA VOSpec {http://esavo.esac.esa.int/vospecapp} spectra analysis tool is described, which allows to access and display spectral information from VO resources (both real observational and theoretical spectra), including access to Lines database and recent analysis functionalities. In addition, we detail the first implementation of RISA (Remote Interface for Science Analysis), a web service providing remote users the ability to create fully configurable XMM-Newton data analysis workflows, and to deploy and run them on the ESAC Grid. RISA makes fully use of the inter-operability provided by the SIAP (Simple Image Access Protocol) services as data input, and at the same time its VO-compatible output can directly be used by general VO-tools.
NASA Astrophysics Data System (ADS)
McWhirter, J.; Boler, F. M.; Bock, Y.; Jamason, P.; Squibb, M. B.; Noll, C. E.; Blewitt, G.; Kreemer, C. W.
2010-12-01
Three geodesy Archive Centers, Scripps Orbit and Permanent Array Center (SOPAC), NASA's Crustal Dynamics Data Information System (CDDIS) and UNAVCO are engaged in a joint effort to define and develop a common Web Service Application Programming Interface (API) for accessing geodetic data holdings. This effort is funded by the NASA ROSES ACCESS Program to modernize the original GPS Seamless Archive Centers (GSAC) technology which was developed in the 1990s. A new web service interface, the GSAC-WS, is being developed to provide uniform and expanded mechanisms through which users can access our data repositories. In total, our respective archives hold tens of millions of files and contain a rich collection of site/station metadata. Though we serve similar user communities, we currently provide a range of different access methods, query services and metadata formats. This leads to a lack of consistency in the userís experience and a duplication of engineering efforts. The GSAC-WS API and its reference implementation in an underlying Java-based GSAC Service Layer (GSL) supports metadata and data queries into site/station oriented data archives. The general nature of this API makes it applicable to a broad range of data systems. The overall goals of this project include providing consistent and rich query interfaces for end users and client programs, the development of enabling technology to facilitate third party repositories in developing these web service capabilities and to enable the ability to perform data queries across a collection of federated GSAC-WS enabled repositories. A fundamental challenge faced in this project is to provide a common suite of query services across a heterogeneous collection of data yet enabling each repository to expose their specific metadata holdings. To address this challenge we are developing a "capabilities" based service where a repository can describe its specific query and metadata capabilities. Furthermore, the architecture of the GSL is based on a model-view paradigm that decouples the underlying data model semantics from particular representations of the data model. This will allow for the GSAC-WS enabled repositories to evolve their service offerings to incorporate new metadata definition formats (e.g., ISO-19115, FGDC, JSON, etc.) and new techniques for accessing their holdings. Building on the core GSAC-WS implementations the project is also developing a federated/distributed query service. This service will seamlessly integrate with the GSAC Service Layer and will support data and metadata queries across a collection of federated GSAC repositories.
Optical Properties of Aerosols from Long Term Ground-Based Aeronet Measurements
NASA Technical Reports Server (NTRS)
Holben, B. N.; Tanre, D.; Smirnov, A.; Eck, T. F.; Slutsker, I.; Dubovik, O.; Lavenu, F.; Abuhassen, N.; Chatenet, B.
1999-01-01
AERONET is an optical ground-based aerosol monitoring network and data archive supported by NASA's Earth Observing System and expanded by federation with many non-NASA institutions including AEROCAN (AERONET CANada) and PHOTON (PHOtometrie pour le Traiteinent Operatonnel de Normalisation Satellitaire). The network hardware consists of identical automatic sun-sky scanning spectral radiometers owned by national agencies and universities purchased for their own monitoring and research objectives. Data are transmitted hourly through the data collection system (DCS) on board the geostationary meteorological satellites GMS, GOES and METEOSAT and received in a common archive for daily processing utilizing a peer reviewed series of algorithms thus imposing a standardization and quality control of the product data base. Data from this collaboration provides globally distributed near real time observations of aerosol spectral optical depths, aerosol size distributions, and precipitable water in diverse aerosol regimes. Access to the AERONET data base has shifted from the interactive program 'demonstrat' (reserved for PI's) to the AERONET homepage allowing faster access and greater development for GIS object oriented retrievals and analysis with companion geocoded data sets from satellites, LIDAR and solar flux measurements for example. We feel that a significant yet under utilized component of the AERONET data base are inversion products made from hourly principal plane and almucanter measurements. The current inversions have been shown to retrieve aerosol volume size distributions. A significant enhancement to the inversion code has been developed and is presented in these proceedings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baum, B.A.; Barkstrom, B.R.
1993-04-01
The Earth Observing System (EOS) will collect data from a large number of satellite-borne instruments, beginning later in this decade, to make data accessible to the scientific community, NASA will build an EOS Data and Information System (EOSDIS). As an initial effort to accelerate the development of EOSDIS and to gain experience with such an information system, NASA and other agencies are working on a prototype system called Version O (VO). This effort will provide improved access to pre-EOS earth science data throughout the early EOSDIS period. Based on recommendations from the EOSDIS Science Advisory Panel, EOSDIS will have severalmore » distributed active archive centers (DAACs). Each DAAC will specialize in particular data sets. This paper describes work at the NASA Langley Research Center's (LaRC) DAAC. The Version 0 Langley DAAC began archiving and distributing existing data sets pertaining to the earth's radiation budget, clouds, aerosols, and tropospheric chemistry in late 1992. The primary goals of the LaRC VO effort are the following: (1) Enhance scientific use of existing data; (2) Develop institutional expertise in maintaining and distributing data; (3) Use institutional capability for processing data from previous missions such as the Earth Radiation Budget Experiment and the Stratospheric Aerosol and Gas Experiment to prepare for processing future EOS satellite data; (4) Encourage cooperative interagency and international involvement with data sets and research; and (5) Incorporate technological hardware and software advances quickly.« less
WebGeocalc and Cosmographia: Modern Tools to Access SPICE Archives
NASA Astrophysics Data System (ADS)
Semenov, B. V.; Acton, C. H.; Bachman, N. J.; Ferguson, E. W.; Rose, M. E.; Wright, E. D.
2017-06-01
The WebGeocalc (WGC) web client-server tool and the SPICE-enhanced Cosmographia visualization program are two new ways for accessing space mission geometry data provided in the PDS SPICE kernel archives and by mission operational SPICE kernel sets.
NASA Astrophysics Data System (ADS)
Moth, P.; Johnston, T.; Fowler, D. K.
2017-12-01
Working collaboratively, NASA and NOAA are producing data from the Visible Infrared Imaging Radiometer Suite (VIIRS). The National Snow and Ice Data Center (NSIDC), a NASA Distributed Active Archive Center (DAAC), is distributing VIIRS snow cover, ice surface temperature, and sea ice cover products. Data is available in .nc and HDF5 formats with a temporal coverage of 1 January 2012 and onward. VIIRS, NOAA's latest radiometer, was launched aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite on October 28, 2011. The instrument comprises 22 bands; five for high-resolution imagery, 16 at moderate resolution, and one panchromatic day/night band. VIIRS is a whiskbroom scanning radiometer that covers the spectrum between 0.412 μm and 12.01 μm and acquires spatial resolutions at nadir of 750 m, 375 m, and 750 m, respectively. One distinct advantage of VIIRS is to ensure continuity that will lead to the development of snow and sea ice climate data records with data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the NASA Earth Observing System (EOS) Aqua and Terra satellites. Combined with the Advanced Very-High-resolution Radiometer (AVHRR), the AVHRR-MODIS-VIIRS timeline will start in the early 1980s and span at least four decades-and perhaps beyond-enabling researchers to produce and gain valuable insight from long, high-quality Earth System Data Records (ESDRs). Several options are available to view and download VIIRS data: Direct download from NSIDC via HTTPS. Using NASA Earthdata Search, users can explore and download VIIRS data with temporal and/or spatial filters, re-format, re-project, and subset by spatial extent and parameter. API access is also available for all these options; Using NASA Worldview, users can view Global Imagery Browse Services (GIBS) from VIIRS data; Users can join a VIIRS subscription list to have new VIIRS data automatically ftp'd or staged on a local server as it is archived at NSIDC.
The NCAR Research Data Archive's Hybrid Approach for Data Discovery and Access
NASA Astrophysics Data System (ADS)
Schuster, D.; Worley, S. J.
2013-12-01
The NCAR Research Data Archive (RDA http://rda.ucar.edu) maintains a variety of data discovery and access capabilities for it's 600+ dataset collections to support the varying needs of a diverse user community. In-house developed and standards-based community tools offer services to more than 10,000 users annually. By number of users the largest group is external and access the RDA through web based protocols; the internal NCAR HPC users are fewer in number, but typically access more data volume. This paper will detail the data discovery and access services maintained by the RDA to support both user groups, and show metrics that illustrate how the community is using the services. The distributed search capability enabled by standards-based community tools, such as Geoportal and an OAI-PMH access point that serves multiple metadata standards, provide pathways for external users to initially discover RDA holdings. From here, in-house developed web interfaces leverage primary discovery level metadata databases that support keyword and faceted searches. Internal NCAR HPC users, or those familiar with the RDA, may go directly to the dataset collection of interest and refine their search based on rich file collection metadata. Multiple levels of metadata have proven to be invaluable for discovery within terabyte-sized archives composed of many atmospheric or oceanic levels, hundreds of parameters, and often numerous grid and time resolutions. Once users find the data they want, their access needs may vary as well. A THREDDS data server running on targeted dataset collections enables remote file access through OPENDAP and other web based protocols primarily for external users. In-house developed tools give all users the capability to submit data subset extraction and format conversion requests through scalable, HPC based delayed mode batch processing. Users can monitor their RDA-based data processing progress and receive instructions on how to access the data when it is ready. External users are provided with RDA server generated scripts to download the resulting request output. Similarly they can download native dataset collection files or partial files using Wget or cURL based scripts supplied by the RDA server. Internal users can access the resulting request output or native dataset collection files directly from centralized file systems.
NASA Astrophysics Data System (ADS)
Walker, R. J.; Beebe, R. F.
2017-12-01
One of the basic problems the NASA Science Mission Directorate (SMD) faces when dealing with preservation of scientific data is the variety of the data. This stems from the fact that NASA's involvement in the sciences spans a broad range of disciplines across the Science Mission Directorate: Astrophysics, Earth Sciences, Heliophysics and Planetary Science. As the ability of some missions to produce large data volumes has accelerated, the range of problems associated with providing adequate access to the data has demanded diverse approaches for data access. Although mission types, complexity and duration vary across the disciplines, the data can be characterized by four characteristics: velocity, veracity, volume, and variety. The rate of arrival of the data (velocity) must be addressed at the individual mission level, validation and documentation of the data (veracity), data volume and the wide variety of data products present huge challenges as the science disciplines strive to provide transparent access to their available data. Astrophysics, supports an integrated system of data archives based on frequencies covered (UV, visible, IR, etc.) or subject areas (extrasolar planets, extra galactic, etc.) and is accessed through the Astrophysics Data Center (https://science.nasa.gov/astrophysics/astrophysics-data-centers/). Earth Science supports the Earth Observing System (https://earthdata.nasa.gov/) that manages the earth science satellite data. The discipline supports 12 Distributed Active Archive Centers. Heliophysics provides the Space Physics Data Facility (https://spdf.gsfc.nasa.gov/) that supports the heliophysics community and Solar Data Analysis Center (https://umbra.nascom.nasa.gov/index.html) that allows access to the solar data. The Planetary Data System (https://pds.nasa.gov) is the main archive for planetary science data. It consists of science discipline nodes (Atmospheres, Geosciences, Cartography and Imaging Sciences, Planetary Plasma Interactions, Ring-Moon Systems, and Small Bodies) and supporting nodes (Engineering and the Navigation and Ancillary Information Facility). This presentation will address current efforts by the disciplines to face the demands of providing user access in the era of Big Data.
The HARPS-N archive through a Cassandra, NoSQL database suite?
NASA Astrophysics Data System (ADS)
Molinari, Emilio; Guerra, Jose; Harutyunyan, Avet; Lodi, Marcello; Martin, Adrian
2016-07-01
The TNG-INAF is developing the science archive for the WEAVE instrument. The underlying architecture of the archive is based on a non relational database, more precisely, on Apache Cassandra cluster, which uses a NoSQL technology. In order to test and validate the use of this architecture, we created a local archive which we populated with all the HARPSN spectra collected at the TNG since the instrument's start of operations in mid-2012, as well as developed tools for the analysis of this data set. The HARPS-N data set is two orders of magnitude smaller than WEAVE, but we want to demonstrate the ability to walk through a complete data set and produce scientific output, as valuable as that produced by an ordinary pipeline, though without accessing directly the FITS files. The analytics is done by Apache Solr and Spark and on a relational PostgreSQL database. As an example, we produce observables like metallicity indexes for the targets in the archive and compare the results with the ones coming from the HARPS-N regular data reduction software. The aim of this experiment is to explore the viability of a high availability cluster and distributed NoSQL database as a platform for complex scientific analytics on a large data set, which will then be ported to the WEAVE Archive System (WAS) which we are developing for the WEAVE multi object, fiber spectrograph.
Sentinel-1 Interferometry from the Cloud to the Scientist
NASA Astrophysics Data System (ADS)
Garron, J.; Stoner, C.; Johnston, A.; Arko, S. A.
2017-12-01
Big data problems and solutions are growing in the technological and scientific sectors daily. Cloud computing is a vertically and horizontally scalable solution available now for archiving and processing large volumes of data quickly, without significant on-site computing hardware costs. Be that as it may, the conversion of scientific data processors to these powerful platforms requires not only the proof of concept, but the demonstration of credibility in an operational setting. The Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC), in partnership with NASA's Jet Propulsion Laboratory, is exploring the functional architecture of Amazon Web Services cloud computing environment for the processing, distribution and archival of Synthetic Aperture Radar data in preparation for the NASA-ISRO Synthetic Aperture Radar (NISAR) Mission. Leveraging built-in AWS services for logging, monitoring and dashboarding, the GRFN (Getting Ready for NISAR) team has built a scalable processing, distribution and archival system of Sentinel-1 L2 interferograms produced using the ISCE algorithm. This cloud-based functional prototype provides interferograms over selected global land deformation features (volcanoes, land subsidence, seismic zones) and are accessible to scientists via NASA's EarthData Search client and the ASF DAACs primary SAR interface, Vertex, for direct download. The interferograms are produced using nearest-neighbor logic for identifying pairs of granules for interferometric processing, creating deep stacks of BETA products from almost every satellite orbit for scientists to explore. This presentation highlights the functional lessons learned to date from this exercise, including the cost analysis of various data lifecycle policies as implemented through AWS. While demonstrating the architecture choices in support of efficient big science data management, we invite feedback and questions about the process and products from the InSAR community.
NASA Astrophysics Data System (ADS)
Gutiérrez, R.; Solano, E.
2011-11-01
At present, data management in telescopes ofclass 8-10 meters is very inefficient. The Gran Telescopio Canarias(GTC) scientific archive that is being developed by the Centro deAstrobiología (CAB) in the framework of the Spanish Virtual Observatoryis aimed at avoiding this situation, providing the telescope with anarchive accessible via internet, guaranteeing the accessibility,efficiency, visibility and data security demanded by a telescope of itsentity. The GTC archive will also be adapted to the standards defined bythe International Virtual Observatory, maximizing the visibility of thedata produced by the telescope. The main characteristics of the GTCscientific archive are described in this poster.
NASA's Earth Science Data Systems - Lessons Learned and Future Directions
NASA Technical Reports Server (NTRS)
Ramapriyan, Hampapuram K.
2010-01-01
In order to meet the increasing demand for Earth Science data, NASA has significantly improved the Earth Science Data Systems over the last two decades. This improvement is reviewed in this slide presentation. Many Earth Science disciplines have been able to access the data that is held in the Earth Observing System (EOS) Data and Information System (EOSDIS) at the Distributed Active Archive Centers (DAACs) that forms the core of the data system.
Transportation plan repository and archive.
DOT National Transportation Integrated Search
2011-04-01
This project created a repository and archive for transportation planning documents in Texas within the : established Texas A&M Repository (http://digital.library.tamu.edu). This transportation planning archive : and repository provides ready access ...
NASA Technical Reports Server (NTRS)
Moore, Reagan W.; Jagatheesan, Arun; Rajasekar, Arcot; Wan, Michael; Schroeder, Wayne
2004-01-01
The "Grid" is an emerging infrastructure for coordinating access across autonomous organizations to distributed, heterogeneous computation and data resources. Data grids are being built around the world as the next generation data handling systems for sharing, publishing, and preserving data residing on storage systems located in multiple administrative domains. A data grid provides logical namespaces for users, digital entities and storage resources to create persistent identifiers for controlling access, enabling discovery, and managing wide area latencies. This paper introduces data grids and describes data grid use cases. The relevance of data grids to digital libraries and persistent archives is demonstrated, and research issues in data grids and grid dataflow management systems are discussed.
Synergy with HST and JWST Data Management Systems
NASA Astrophysics Data System (ADS)
Greene, Gretchen; Space Telescope Data Management Team
2014-01-01
The data processing and archive systems for the JWST will contain a petabyte of science data and the best news is that users will have fast access to the latest calibrations through a variety of new services. With a synergistic approach currently underway with the STScI science operations between the Hubble Space Telescope and James Webb Space Telescope data management subsystems (DMS), operational verification is right around the corner. Next year the HST archive will provide scientists on-demand fully calibrated data products via the Mikulski Archive for Space Telescopes (MAST), which takes advantage of an upgraded DMS. This enhanced system, developed jointly with the JWST DMS is based on a new CONDOR distributed processing system capable of reprocessing data using a prioritization queue which runs in the background. A Calibration Reference Data System manages the latest optimal configuration for each scientific instrument pipeline. Science users will be able to search and discover the growing MAST archive calibrated datasets from these missions along with the other multiple mission holdings both local to MAST and available through the Virtual Observatory. JWST data systems will build upon the successes and lessons learned from the HST legacy and move us forward into the next generation of multi-wavelength archive research.
Distributed PACS using distributed file system with hierarchical meta data servers.
Hiroyasu, Tomoyuki; Minamitani, Yoshiyuki; Miki, Mitsunori; Yokouchi, Hisatake; Yoshimi, Masato
2012-01-01
In this research, we propose a new distributed PACS (Picture Archiving and Communication Systems) which is available to integrate several PACSs that exist in each medical institution. The conventional PACS controls DICOM file into one data-base. On the other hand, in the proposed system, DICOM file is separated into meta data and image data and those are stored individually. Using this mechanism, since file is not always accessed the entire data, some operations such as finding files, changing titles, and so on can be performed in high-speed. At the same time, as distributed file system is utilized, accessing image files can also achieve high-speed access and high fault tolerant. The introduced system has a more significant point. That is the simplicity to integrate several PACSs. In the proposed system, only the meta data servers are integrated and integrated system can be constructed. This system also has the scalability of file access with along to the number of file numbers and file sizes. On the other hand, because meta-data server is integrated, the meta data server is the weakness of this system. To solve this defect, hieratical meta data servers are introduced. Because of this mechanism, not only fault--tolerant ability is increased but scalability of file access is also increased. To discuss the proposed system, the prototype system using Gfarm was implemented. For evaluating the implemented system, file search operating time of Gfarm and NFS were compared.
NASA Astrophysics Data System (ADS)
Benson, R. B.; Ahern, T. K.; Trabant, C.
2006-12-01
The IRIS Data Management System has long supported international collaboration for seismology by both deploying a global network of seismometers and creating and maintaining an open and accessible archive in Seattle, WA, known as the Data Management Center (DMC). With sensors distributed on a global scale spanning more than 30 years of digital data, the DMC provides a rich repository of observations across broad time and space domains. Primary seismological data types include strong motion and broadband seismometers, conventional and superconducting gravimeters, tilt and creep meters, GPS measurements, along with other similar sensors that record accurate and calibrated ground motion. What may not be as well understood is the volume of environmental data that accompanies typical seismological data these days. This poster will review the types of time-series data that are currently being collected, how they are collected, and made freely available for download at the IRIS DMC. Environmental sensor data that is often co-located with geophysical data sensors include temperature, barometric pressure, wind direction and speed, humidity, insolation, rain gauge, and sometimes hydrological data like water current, level, temperature and depth. As the primary archival institution of the International Federation of Digital Seismograph Networks (FDSN), the IRIS DMC collects approximately 13,600 channels of real-time data from 69 different networks, from close to 1600 individual stations, currently averaging 10Tb per year in total. A major contribution to the IRIS archive currently is the EarthScope project data, a ten-year science undertaking that is collecting data from a high-resolution, multi-variate sensor network. Data types include magnetotelluric, high-sample rate seismics from a borehole drilled into the San Andreas fault (SAFOD) and various types of strain data from the Plate Boundary Observatory (PBO). In addition to the DMC, data centers located in other countries are networked seamlessly, and are providing access for researchers to these data from national networks around the world utilizing the IRIS developed Data Handling Interface (DHI) system. This poster will highlight some of the DHI enabled clients that allow geophysical information to be directly transferred to the clients. This ability allows one to construct a virtual network of data centers providing the illusion of a single virtual observatory. Furthermore, some of the features that will be shown include direct connections to MATLAB and the ability to access globally distributed sensor data in real time. We encourage discussion and participation from network operators who would like to leverage existing technology, as well as enabling collaboration.
[Self-archiving of biomedical papers in open access repositories].
Abad-García, M Francisca; Melero, Remedios; Abadal, Ernest; González-Teruel, Aurora
2010-04-01
Open-access literature is digital, online, free of charge, and free of most copyright and licensing restrictions. Self-archiving or deposit of scholarly outputs in institutional repositories (open-access green route) is increasingly present in the activities of the scientific community. Besides the benefits of open access for visibility and dissemination of science, it is increasingly more often required by funding agencies to deposit papers and any other type of documents in repositories. In the biomedical environment this is even more relevant by the impact scientific literature can have on public health. However, to make self-archiving feasible, authors should be aware of its meaning and the terms in which they are allowed to archive their works. In that sense, there are some tools like Sherpa/RoMEO or DULCINEA (both directories of copyright licences of scientific journals at different levels) to find out what rights are retained by authors when they publish a paper and if they allow to implement self-archiving. PubMed Central and its British and Canadian counterparts are the main thematic repositories for biomedical fields. In our country there is none of similar nature, but most of the universities and CSIC, have already created their own institutional repositories. The increase in visibility of research results and their impact on a greater and earlier citation is one of the most frequently advance of open access, but removal of economic barriers to access to information is also a benefit to break borders between groups.
NASA Astrophysics Data System (ADS)
Macfarlane, A. J.; Docasal, R.; Rios, C.; Barbarisi, I.; Saiz, J.; Vallejo, F.; Besse, S.; Arviset, C.; Barthelemy, M.; De Marchi, G.; Fraga, D.; Grotheer, E.; Heather, D.; Lim, T.; Martinez, S.; Vallat, C.
2018-01-01
The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific data sets through various interfaces at http://psa.esa.int. Mostly driven by the evolution of the PDS standards which all new ESA planetary missions shall follow and the need to update the interfaces to the archive, the PSA has undergone an important re-engineering. In order to maximise the scientific exploitation of ESA's planetary data holdings, significant improvements have been made by utilising the latest technologies and implementing widely recognised open standards. To facilitate users in handling and visualising the many products stored in the archive which have spatial data associated, the new PSA supports Geographical Information Systems (GIS) by implementing the standards approved by the Open Geospatial Consortium (OGC). The modernised PSA also attempts to increase interoperability with the international community by implementing recognised planetary science specific protocols such as the PDAP (Planetary Data Access Protocol) and EPN-TAP (EuroPlanet-Table Access Protocol). In this paper we describe some of the methods by which the archive may be accessed and present the challenges that are being faced in consolidating data sets of the older PDS3 version of the standards with the new PDS4 deliveries into a single data model mapping to ensure transparent access to the data for users and services whilst maintaining a high performance.
NASA Technical Reports Server (NTRS)
Noll, Carey; Michael, Patrick; Dube, Maurice P.; Pollack, N.
2012-01-01
The Crustal Dynamics Data Inforn1ation System (CoorS) supports data archiving and distribution activities for the space geodesy and geodynamics community. The main objectives of the system are to store space geodesy and geodynamics related data products in a central data bank, to maintain infom1ation about the archival of these data, and to disseminate these data and information in a timely mam1er to a global scientific research community. The archive consists of GNSS, laser ranging, VLBI, and OORIS data sets and products derived from these data. The coors is one of NASA's Earth Observing System Oata and Infom1ation System (EOSorS) distributed data centers; EOSOIS data centers serve a diverse user community and are tasked to provide facilities to search and access science data and products. The coors data system and its archive have become increasingly important to many national and international science communities, in pal1icular several of the operational services within the International Association of Geodesy (lAG) and its project the Global Geodetic Observing System (GGOS), including the International OORIS Service (IDS), the International GNSS Service (IGS), the International Laser Ranging Service (ILRS), the International VLBI Service for Geodesy and Astrometry (IVS), and the International Earth Rotation Service (IERS). The coors has recently expanded its archive to supp011 the IGS Multi-GNSS Experiment (MGEX). The archive now contains daily and hourly 3D-second and subhourly I-second data from an additional 35+ stations in RINEX V3 fOm1at. The coors will soon install an Ntrip broadcast relay to support the activities of the IGS Real-Time Pilot Project (RTPP) and the future Real-Time IGS Service. The coors has also developed a new web-based application to aid users in data discovery, both within the current community and beyond. To enable this data discovery application, the CDDIS is currently implementing modifications to the metadata extracted from incoming data and product files pushed to its archive. This poster will include background information about the system and its user communities, archive contents and updates, enhancements for data discovery, new system architecture, and future plans.
Content Platforms Meet Data Storage, Retrieval Needs
NASA Technical Reports Server (NTRS)
2012-01-01
Earth is under a constant barrage of information from space. Whether from satellites orbiting our planet, spacecraft circling Mars, or probes streaking toward the far reaches of the Solar System, NASA collects massive amounts of data from its spacefaring missions each day. NASA s Earth Observing System (EOS) satellites, for example, provide daily imagery and measurements of Earth s atmosphere, oceans, vegetation, and more. The Earth Observing System Data and Information System (EOSDIS) collects all of that science data and processes, archives, and distributes it to researchers around the globe; EOSDIS recently reached a total archive volume of 4.5 petabytes. Try to store that amount of information in your standard, four-drawer file cabinet, and you would need 90 million to get the job done. To manage the flood of information, NASA has explored technologies to efficiently collect, archive, and provide access to EOS data for scientists today and for years to come. One such technology is now providing similar capabilities to businesses and organizations worldwide.
High resolution global gridded data for use in population studies
NASA Astrophysics Data System (ADS)
Lloyd, Christopher T.; Sorichetta, Alessandro; Tatem, Andrew J.
2017-01-01
Recent years have seen substantial growth in openly available satellite and other geospatial data layers, which represent a range of metrics relevant to global human population mapping at fine spatial scales. The specifications of such data differ widely and therefore the harmonisation of data layers is a prerequisite to constructing detailed and contemporary spatial datasets which accurately describe population distributions. Such datasets are vital to measure impacts of population growth, monitor change, and plan interventions. To this end the WorldPop Project has produced an open access archive of 3 and 30 arc-second resolution gridded data. Four tiled raster datasets form the basis of the archive: (i) Viewfinder Panoramas topography clipped to Global ADMinistrative area (GADM) coastlines; (ii) a matching ISO 3166 country identification grid; (iii) country area; (iv) and slope layer. Further layers include transport networks, landcover, nightlights, precipitation, travel time to major cities, and waterways. Datasets and production methodology are here described. The archive can be downloaded both from the WorldPop Dataverse Repository and the WorldPop Project website.
High resolution global gridded data for use in population studies.
Lloyd, Christopher T; Sorichetta, Alessandro; Tatem, Andrew J
2017-01-31
Recent years have seen substantial growth in openly available satellite and other geospatial data layers, which represent a range of metrics relevant to global human population mapping at fine spatial scales. The specifications of such data differ widely and therefore the harmonisation of data layers is a prerequisite to constructing detailed and contemporary spatial datasets which accurately describe population distributions. Such datasets are vital to measure impacts of population growth, monitor change, and plan interventions. To this end the WorldPop Project has produced an open access archive of 3 and 30 arc-second resolution gridded data. Four tiled raster datasets form the basis of the archive: (i) Viewfinder Panoramas topography clipped to Global ADMinistrative area (GADM) coastlines; (ii) a matching ISO 3166 country identification grid; (iii) country area; (iv) and slope layer. Further layers include transport networks, landcover, nightlights, precipitation, travel time to major cities, and waterways. Datasets and production methodology are here described. The archive can be downloaded both from the WorldPop Dataverse Repository and the WorldPop Project website.
Digitized Archival Primary Sources in STEM: A Selected Webliography
ERIC Educational Resources Information Center
Jankowski, Amy
2017-01-01
Accessibility and findability of digitized archival resources can be a challenge, particularly for students or researchers not familiar with archival formats and digital interfaces, which adhere to different descriptive standards than more widely familiar library resources. Numerous aggregate archival collection databases exist, which provide a…
NASA GES DISC support of CO2 Data from OCO-2, ACOS, and AIRS
NASA Technical Reports Server (NTRS)
Wei, Jennifer C; Vollmer, Bruce E.; Savtchenko, Andrey K.; Hearty, Thomas J; Albayrak, Rustem Arif; Deshong, Barbara E.
2013-01-01
NASA Goddard Earth Sciences Data and Information Services Centers (GES DISC) is the data center assigned to archive and distribute current AIRS, ACOS data and data from the upcoming OCO-2 mission. The GES DISC archives and supports data containing information on CO2 as well as other atmospheric composition, atmospheric dynamics, modeling and precipitation. Along with the data stewardship, an important mission of GES DISC is to facilitate access to and enhance the usability of data as well as to broaden the user base. GES DISC strives to promote the awareness of science content and novelty of the data by working with Science Team members and releasing news articles as appropriate. Analysis of events that are of interest to the general public, and that help in understanding the goals of NASA Earth Observing missions, have been among most popular practices.Users have unrestricted access to a user-friendly search interface, Mirador, that allows temporal, spatial, keyword and event searches, as well as an ontology-driven drill down. Variable subsetting, format conversion, quality screening, and quick browse, are among the services available in Mirador. The majority of the GES DISC data are also accessible through OPeNDAP (Open-source Project for a Network Data Access Protocol) and WMS (Web Map Service). These services add more options for specialized subsetting, format conversion, image viewing and contributing to data interoperability.
Which Subsystems used to produce archival science products?
Atmospheric Science Data Center
2014-12-08
... - Combine telemetry and ephemeris data to produce Earth location geometry and convert radiometric counts produced by the ... inversion techniques. Daily and Monthly Time/Space Averaging - Convert from time-ordered to regionally-accessible data ... Data Products - Generate well-documented science archival products in an easily accessible format. ...
Building a Virtual Solar Observatory: I Look Around and There's a Petabyte Following Me
NASA Technical Reports Server (NTRS)
Gurman, J. B.; Bogart, R.; Hill. F.; Martens, P.; Oergerle, William (Technical Monitor)
2002-01-01
The 2001 July NASA Senior Review of Sun-Earth Connections missions and data centers directed the Solar Data Analysis Center (SDAC) to proceed in studying and implementing a Virtual Solar Observatory (VSO) to ease the identification of and access to distributed archives of solar data. Any such design (cf. the National Virtual Observatory and NASA's Planetary Data System) consists of three elements: the distributed archives, a "broker" facility that translates metadata from all partner archives into a single standard for searches, and a user interface to allow searching, browsing, and download of data. Three groups are now engaged in a six-month study that will produce a candidate design and implementation roadmap for the VSO. We hope to proceed with the construction of a prototype VSO in US fiscal year 2003, with fuller deployment dependent on community reaction to and use of the capability. We therefore invite as broad as possible public comment and involvement, and invite interested parties to a "birds of a feather" session at this meeting. VSO is partnered with the European Grid of Solar Observations (EGSO), and if successful, we hope to be able to offer the VSO as the basis for the solar component of a Living With a Star data system.
Radiance Data Products at the GES DAAC
NASA Technical Reports Server (NTRS)
Savtchenko, A.; Ouzounov, D.; Acker, J.; Johnson, J.; Leptoukh, G.; Qin, J.; Rui, H.; Smith, P.; Teng, W.
2004-01-01
The Goddard Earth Sciences Distributed Active Archive Center (GES DAAC) has been archiving and distributing Radiance data, and serving science and application users of these data, for over 10 years now. The user-focused stewardship of the Radiance data from the AIRS, AVHRR, MODIS, SeaWiFS, SORCE, TOMS, TOVS, TRMM, and UARS instruments exemplifies the GES DAAC tradition and experience. Radiance data include raw radiance counts, onboard calibration data, geolocation products, radiometric calibrated and geolocated-calibrated radiance/reflectance. The number of science products archived at the GES DAAC is steadily increasing, as a result of more sophisticated sensors and new science algorithms. Thus, the main challenge for the GES DAAC is to guide users through the variety of Radiance data sets, provide tools to visualize and reduce the volume of the data, and provide uninterrupted access to the data. This presentation will describe the effort at the GES DAAC to build a bridge between multi-sensor data and the effective scientific use of the data, with an emphasis on the heritage of the science products. The intent is to inform users of the existence of this large collection of Radiance data; suggest starting points for cross-platform science projects and data mining activities; provide data services and tools information; and to give expert help in the science data formats and applications.
Ensuring Credit to Data Creators: A Case Study for Geodesy
NASA Astrophysics Data System (ADS)
Boler, F. M.; Gorman, A.
2011-12-01
UNAVCO, the NSF and NASA-funded facility that supports and promotes Earth science by advancing high-precision techniques for the measurement of crustal deformation, has operated a Global Navigation Satellite System (GNSS) Data Archive since 1992. For the GNSS domain, the UNAVCO Archive has established best practices for data and metadata preservation, and provides tools for openly tracking data provenance. The GNSS data collection at the UNAVCO Archive represents the efforts of over 400 principal investigators and uncounted years of effort by these individuals and their students in globally distributed field installations, sometimes in situations of significant danger, whether from geologic hazards or political/civil unrest. Our investigators also expend considerable effort in following best practices for data and metadata management. UNAVCO, with the support of its consortium membership, has committed to an open data policy for data in the Archive. Once the data and metadata are archived by UNAVCO, they are distributed by anonymous access to thousands of users who cannot be accurately identified. Consequently, the UNAVCO commitment to open data access was reached with a degree of trepidation on the part of a segment of the principal investigators who contribute their data with no guarantee that their colleagues (or competitors) will follow a code of ethics in their research and publications with respect to the data they have downloaded from the UNAVCO Archive. The UNAVCO community has recognized the need to develop, adopt, and follow a data citation policy among themselves and to advocate for data citation more generally within the science publication arena. The role of the UNAVCO Archive in this process has been to provide data citation guidance and to develop and implement mechanisms to assign digital object identifiers (DOIs) to data sets within the UNAVCO Archive. The UNAVCO community is interested in digital object identifiers primarily as a means to facilitate citation for the purpose of ensuring credit to the data creators. UNAVCO's archiving and metadata management systems are generally well-suited to assigning and maintaining DOIs for two styles of logical collections of data: campaigns, which are spatially and temporally well-defined; and stations, which represent ongoing collection at a single spatial position at the Earth's surface. These two styles form the basis for implementing approximately 3,000 DOIs that can encompass the current holdings in the UNAVCO Archive. In addition, aggregations of DOIs into a superset DOI is advantageous for numerous cases where groupings of stations are naturally used in research studies. There are about 100 such natural collections of stations. However, research using GNSS data can also utilize several hundred or more stations in unique combinations, where tallying the individual DOIs within a reference list is cumbersome. We are grappling with the complexities that inevitably crop up when assigning DOIs, including subsetting, versioning, and aggregating. We also foresee the need for mechanisms for users to go beyond our predefined collections and/or aggregations to define their own ad-hoc collections. Our goal is to create a system for DOI assignment and utilization that succeeds in facilitating data citation within our community of geodesy scientists.
Resources for Archives: Developing Collections, Constituents, Colleagues, and Capital
ERIC Educational Resources Information Center
Primer, Ben
2009-01-01
The essential element for archival success is to be found in the quality of management decisions made and public services provided. Archivists can develop first-class archives operations through understanding the organizational context; planning; hiring, retaining, and developing staff; meeting archival standards for storage and access; and…
Access to Land Data Products Through the Land Processes DAAC
NASA Astrophysics Data System (ADS)
Klaassen, A. L.; Gacke, C. K.
2004-12-01
The Land Processes Distributed Active Archive Center (LP DAAC) was established as part of NASA's Earth Observing System (EOS) Data and Information System (EOSDIS) initiative to process, archive, and distribute land-related data collected by EOS sensors, thereby promoting the inter-disciplinary study and understanding of the integrated Earth system. The LP DAAC is responsible for archiving, product development, distribution, and user support of Moderate Resolution Imaging Spectroradiometer (MODIS) land products derived from data acquired by the Terra and Aqua satellites and processing and distribution of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data products. These data are applied in scientific research, management of natural resources, emergency response to natural disaster, and Earth Science Education. There are several web interfaces by which the inventory may be searched and the products ordered. The LP DAAC web site (http://lpdaac.usgs.gov/) provides product-specific information and links to data access tools. The primary search and order tool is the EOS Data Gateway (EDG) (http://edcimswww.cr.usgs.gov/pub/imswelcome/) that allows users to search data holdings, retrieve descriptions of data sets, view browse images, and place orders. The EDG is the only tool to search the entire inventory of ASTER and MODIS products available from the LP DAAC. The Data Pool (http://lpdaac.usgs.gov/datapool/datapool.asp) is an online archive that provides immediate FTP access to selected LP DAAC data products. The data can be downloaded by going directly to the FTP site, where you can navigate to the desired granule, metadata file or browse image. It includes the ability to convert files from the standard HDF-EOS data format into GeoTIFF, to change the data projections, or perform spatial subsetting by using the HDF-EOS to GeoTIFF Converter (HEG) for selected data types. The Browse Tool also known as the USGS Global Visualization Viewer (http://lpdaac.usgs.gov/aster/glovis.asp) provides a easy online method to search, browse, and order the LP DAAC ASTER and MODIS land data by viewing browse images to define spatial and temporal queries. The LP DAAC User Services Office is the interface for support for the ASTER and MODIS data products and services. The user services representatives are available to answer questions, assist with ordering data, technical support and referrals, and provide information on a variety of tools available to assist in data preparation. The LP DAAC User Services contact information is: LP DAAC User Services U.S. Geological Survey EROS Data Center 47914 252nd Street Sioux Falls, SD 57198-0001 Voice: (605) 594-6116 Toll Free: 866-573-3222 Fax: 605-594-6963 E-mail: edc@eos.nasa.gov "This abstract was prepared under Contract number 03CRCN0001 between SAIC and U.S. Geological Survey. Abstract has not been reviewed for conformity with USGS editorial standards and has been submitted for approval by the USGS Director."
Data Access Tools And Services At The Goddard Distributed Active Archive Center (GDAAC)
NASA Technical Reports Server (NTRS)
Pham, Long; Eng, Eunice; Sweatman, Paul
2003-01-01
As one of the largest providers of Earth Science data from the Earth Observing System, GDAAC provides the latest data from the Moderate Resolution Imaging Spectroradiometer (MODIS), Atmospheric Infrared Sounder (AIRS), Solar Radiation and Climate Experiment (SORCE) data products via GDAAC's data pool (50TB of disk cache). In order to make this huge volume of data more accessible to the public and science communities, the GDAAC offers multiple data access tools and services: Open Source Project for Network Data Access Protocol (OPeNDAP), Grid Analysis and Display System (GrADS/DODS) (GDS), Live Access Server (LAS), OpenGlS Web Map Server (WMS) and Near Archive Data Mining (NADM). The objective is to assist users in retrieving electronically a smaller, usable portion of data for further analysis. The OPeNDAP server, formerly known as the Distributed Oceanographic Data System (DODS), allows the user to retrieve data without worrying about the data format. OPeNDAP is capable of server-side subsetting of HDF, HDF-EOS, netCDF, JGOFS, ASCII, DSP, FITS and binary data formats. The GrADS/DODS server is capable of serving the same data formats as OPeNDAP. GDS has an additional feature of server-side analysis. Users can analyze the data on the server there by decreasing the computational load on their client's system. The LAS is a flexible server that allows user to graphically visualize data on the fly, to request different file formats and to compare variables from distributed locations. Users of LAS have options to use other available graphics viewers such as IDL, Matlab or GrADS. WMS is based on the OPeNDAP for serving geospatial information. WMS supports OpenGlS protocol to provide data in GIs-friendly formats for analysis and visualization. NADM is another access to the GDAAC's data pool. NADM gives users the capability to use a browser to upload their C, FORTRAN or IDL algorithms, test the algorithms, and mine data in the data pool. With NADM, the GDAAC provides an environment physically close to the data source. NADM will benefit users with mining or offer data reduction algorithms by reducing large volumes of data before transmission over the network to the user.
Policy-based Distributed Data Management
NASA Astrophysics Data System (ADS)
Moore, R. W.
2009-12-01
The analysis and understanding of climate variability and change builds upon access to massive collections of observational and simulation data. The analyses involve distributed computing, both at the storage systems (which support data subsetting) and at compute engines (for assimilation of observational data into simulations). The integrated Rule Oriented Data System (iRODS) organizes the distributed data into collections to facilitate enforcement of management policies, support remote data processing, and enable development of reference collections. Currently at RENCI, the iRODS data grid is being used to manage ortho-photos and lidar data for the State of North Carolina, provide a unifying storage environment for engagement centers across the state, support distributed access to visualizations of weather data, and is being explored to manage and disseminate collections of ensembles of meteorological and hydrological model results. In collaboration with the National Climatic Data Center, an iRODS data grid is being established to support data transmission from NCDC to ORNL, and to integrate NCDC archives with ORNL compute services. To manage the massive data transfers, parallel I/O streams are used between High Performance Storage System tape archives and the supercomputers at ORNL. Further, we are exploring the movement and management of large RADAR and in situ datasets to be used for data mining between RENCI and NCDC, and for the distributed creation of decision support and climate analysis tools. The iRODS data grid supports all phases of the scientific data life cycle, from management of data products for a project, to sharing of data between research institutions, to publication of data in a digital library, to preservation of data for use in future research projects. Each phase is characterized by a broader user community, with higher expectations for more detailed descriptions and analysis mechanisms for manipulating the data. The higher usage requirements are enforced by management policies that define the required metadata, the required data formats, and the required analysis tools. The iRODS policy based data management system automates the creation of the community chosen data products, validates integrity and authenticity assessment criteria, and enforces management policies across all accesses of the system.
NASA and USGS ASTER Expedited Satellite Data Services for Disaster Situations
NASA Astrophysics Data System (ADS)
Duda, K. A.
2012-12-01
Significant international disasters related to storms, floods, volcanoes, wildfires and numerous other themes reoccur annually, often inflicting widespread human suffering and fatalities with substantial economic consequences. During and immediately after such events it can be difficult to access the affected areas and become aware of the overall impacts, but insight on the spatial extent and effects can be gleaned from above through satellite images. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on the Terra spacecraft has offered such views for over a decade. On short notice, ASTER continues to deliver analysts multispectral imagery at 15 m spatial resolution in near real-time to assist participating responders, emergency managers, and government officials in planning for such situations and in developing appropriate responses after they occur. The joint U.S./Japan ASTER Science Team has developed policies and procedures to ensure such ongoing support is accessible when needed. Processing and distribution of data products occurs at the NASA Land Processes Distributed Active Archive Center (LP DAAC) located at the USGS Earth Resources Observation and Science Center in South Dakota. In addition to current imagery, the long-term ASTER mission has generated an extensive collection of nearly 2.5 million global 3,600 km2 scenes since the launch of Terra in late 1999. These are archived and distributed by LP DAAC and affiliates at Japan Space Systems in Tokyo. Advanced processing is performed to create higher level products of use to researchers. These include a global digital elevation model. Such pre-event imagery provides a comparative basis for use in detecting changes associated with disasters and to monitor land use trends to portray areas of increased risk. ASTER imagery acquired via the expedited collection and distribution process illustrates the utility and relevancy of such data in crisis situations.
Best Practices for Preparing Interoperable Geospatial Data
NASA Astrophysics Data System (ADS)
Wei, Y.; Santhana Vannan, S.; Cook, R. B.; Wilson, B. E.; Beaty, T. W.
2010-12-01
Geospatial data is critically important for a wide scope of research and applications: carbon cycle and ecosystem, climate change, land use and urban planning, environmental protecting, etc. Geospatial data is created by different organizations using different methods, from remote sensing observations, field surveys, model simulations, etc., and stored in various formats. So geospatial data is diverse and heterogeneous, which brings a huge barrier for the sharing and using of geospatial data, especially when targeting a broad user community. Many efforts have been taken to address different aspects of using geospatial data by improving its interoperability. For example, the specification for Open Geospatial Consortium (OGC) catalog services defines a standard way for geospatial information discovery; OGC Web Coverage Services (WCS) and OPeNDAP define interoperable protocols for geospatial data access, respectively. But the reality is that only having the standard mechanisms for data discovery and access is not enough. The geospatial data content itself has to be organized in standard, easily understandable, and readily usable formats. The Oak Ridge National Lab Distributed Archived Data Center (ORNL DAAC) archives data and information relevant to biogeochemical dynamics, ecological data, and environmental processes. The Modeling and Synthesis Thematic Data Center (MAST-DC) prepares and distributes both input data and output data of carbon cycle models and provides data support for synthesis and terrestrial model inter-comparison in multi-scales. Both of these NASA-funded data centers compile and distribute a large amount of diverse geospatial data and have broad user communities, including GIS users, Earth science researchers, and ecosystem modeling teams. The ORNL DAAC and MAST-DC address this geospatial data interoperability issue by standardizing the data content and feeding them into a well-designed Spatial Data Infrastructure (SDI) which provides interoperable mechanisms to advertise, visualize, and distribute the standardized geospatial data. In this presentation, we summarize the experiences learned and the best practices for geospatial data standardization. The presentation will describe how diverse and historical data archived in the ORNL DAAC were converted into standard and non-proprietary formats; what tools were used to make the conversion; how the spatial and temporal information are properly captured in a consistent manor; how to name a data file or a variable to make it both human-friendly and semantically interoperable; how NetCDF file format and CF convention can promote the data usage in ecosystem modeling user community; how those standardized geospatial data can be fed into OGC Web Services to support on-demand data visualization and access; and how the metadata should be collected and organized so that they can be discovered through standard catalog services.
Making Archival and Special Collections More Accessible
ERIC Educational Resources Information Center
Renspie, Melissa, Comp.; Shepard, Linda, Comp.; Childress, Eric, Comp.
2015-01-01
Revealing hidden assets stewarded by research institutions so they can be made available for research and learning locally and globally is a prime opportunity for libraries to create and deliver new value. "Making Archival and Special Collections More Accessible" collects important work OCLC Research has done to help achieve the…
A Geospatial Database that Supports Derivation of Climatological Features of Severe Weather
NASA Astrophysics Data System (ADS)
Phillips, M.; Ansari, S.; Del Greco, S.
2007-12-01
The Severe Weather Data Inventory (SWDI) at NOAA's National Climatic Data Center (NCDC) provides user access to archives of several datasets critical to the detection and evaluation of severe weather. These datasets include archives of: · NEXRAD Level-III point features describing general storm structure, hail, mesocyclone and tornado signatures · National Weather Service Storm Events Database · National Weather Service Local Storm Reports collected from storm spotters · National Weather Service Warnings · Lightning strikes from Vaisala's National Lightning Detection Network (NLDN) SWDI archives all of these datasets in a spatial database that allows for convenient searching and subsetting. These data are accessible via the NCDC web site, Web Feature Services (WFS) or automated web services. The results of interactive web page queries may be saved in a variety of formats, including plain text, XML, Google Earth's KMZ, standards-based NetCDF and Shapefile. NCDC's Storm Risk Assessment Project (SRAP) uses data from the SWDI database to derive gridded climatology products that show the spatial distributions of the frequency of various events. SRAP also can relate SWDI events to other spatial data such as roads, population, watersheds, and other geographic, sociological, or economic data to derive products that are useful in municipal planning, emergency management, the insurance industry, and other areas where there is a need to quantify and qualify how severe weather patterns affect people and property.
Commercial imagery archive, management, exploitation, and distribution project development
NASA Astrophysics Data System (ADS)
Hollinger, Bruce; Sakkas, Alysa
1999-10-01
The Lockheed Martin (LM) team had garnered over a decade of operational experience on the U.S. Government's IDEX II (Imagery Dissemination and Exploitation) system. Recently, it set out to create a new commercial product to serve the needs of large-scale imagery archiving and analysis markets worldwide. LM decided to provide a turnkey commercial solution to receive, store, retrieve, process, analyze and disseminate in 'push' or 'pull' modes imagery, data and data products using a variety of sources and formats. LM selected 'best of breed' hardware and software components and adapted and developed its own algorithms to provide added functionality not commercially available elsewhere. The resultant product, Intelligent Library System (ILS)TM, satisfies requirements for (1) a potentially unbounded, data archive (5000 TB range) (2) automated workflow management for increased user productivity; (3) automatic tracking and management of files stored on shelves; (4) ability to ingest, process and disseminate data volumes with bandwidths ranging up to multi- gigabit per second; (5) access through a thin client-to-server network environment; (6) multiple interactive users needing retrieval of files in seconds from both archived images or in real time, and (7) scalability that maintains information throughput performance as the size of the digital library grows.
Commercial imagery archive, management, exploitation, and distribution product development
NASA Astrophysics Data System (ADS)
Hollinger, Bruce; Sakkas, Alysa
1999-12-01
The Lockheed Martin (LM) team had garnered over a decade of operational experience on the U.S. Government's IDEX II (Imagery Dissemination and Exploitation) system. Recently, it set out to create a new commercial product to serve the needs of large-scale imagery archiving and analysis markets worldwide. LM decided to provide a turnkey commercial solution to receive, store, retrieve, process, analyze and disseminate in 'push' or 'pull' modes imagery, data and data products using a variety of sources and formats. LM selected 'best of breed' hardware and software components and adapted and developed its own algorithms to provide added functionality not commercially available elsewhere. The resultant product, Intelligent Library System (ILS)TM, satisfies requirements for (a) a potentially unbounded, data archive (5000 TB range) (b) automated workflow management for increased user productivity; (c) automatic tracking and management of files stored on shelves; (d) ability to ingest, process and disseminate data volumes with bandwidths ranging up to multi- gigabit per second; (e) access through a thin client-to-server network environment; (f) multiple interactive users needing retrieval of files in seconds from both archived images or in real time, and (g) scalability that maintains information throughput performance as the size of the digital library grows.
Archiving and access systems for remote sensing: Chapter 6
Faundeen, John L.; Percivall, George; Baros, Shirley; Baumann, Peter; Becker, Peter H.; Behnke, J.; Benedict, Karl; Colaiacomo, Lucio; Di, Liping; Doescher, Chris; Dominguez, J.; Edberg, Roger; Ferguson, Mark; Foreman, Stephen; Giaretta, David; Hutchison, Vivian; Ip, Alex; James, N.L.; Khalsa, Siri Jodha S.; Lazorchak, B.; Lewis, Adam; Li, Fuqin; Lymburner, Leo; Lynnes, C.S.; Martens, Matt; Melrose, Rachel; Morris, Steve; Mueller, Norman; Navale, Vivek; Navulur, Kumar; Newman, D.J.; Oliver, Simon; Purss, Matthew; Ramapriyan, H.K.; Rew, Russ; Rosen, Michael; Savickas, John; Sixsmith, Joshua; Sohre, Tom; Thau, David; Uhlir, Paul; Wang, Lan-Wei; Young, Jeff
2016-01-01
Focuses on major developments inaugurated by the Committee on Earth Observation Satellites, the Group on Earth Observations System of Systems, and the International Council for Science World Data System at the global level; initiatives at national levels to create data centers (e.g. the National Aeronautics and Space Administration (NASA) Distributed Active Archive Centers and other international space agency counterparts), and non-government systems (e.g. Center for International Earth Science Information Network). Other major elements focus on emerging tool sets, requirements for metadata, data storage and refresh methods, the rise of cloud computing, and questions about what and how much data should be saved. The sub-sections of the chapter address topics relevant to the science, engineering and standards used for state-of-the-art operational and experimental systems.
Specifications of Standards in Systems and Synthetic Biology: Status and Developments in 2017.
Schreiber, Falk; Bader, Gary D; Gleeson, Padraig; Golebiewski, Martin; Hucka, Michael; Keating, Sarah M; Novère, Nicolas Le; Myers, Chris; Nickerson, David; Sommer, Björn; Waltemath, Dagmar
2018-03-29
Standards are essential to the advancement of Systems and Synthetic Biology. COMBINE provides a formal body and a centralised platform to help develop and disseminate relevant standards and related resources. The regular special issue of the Journal of Integrative Bioinformatics aims to support the exchange, distribution and archiving of these standards by providing unified, easily citable access. This paper provides an overview of existing COMBINE standards and presents developments of the last year.
The European Radiobiology Archives (ERA)--content, structure and use illustrated by an example.
Gerber, G B; Wick, R R; Kellerer, A M; Hopewell, J W; Di Majo, V; Dudoignon, N; Gössner, W; Stather, J
2006-01-01
The European Radiobiology Archives (ERA), supported by the European Commission and the European Late Effect Project Group (EULEP), together with the US National Radiobiology Archives (NRA) and the Japanese Radiobiology Archives (JRA) have collected all information still available on long-term animal experiments, including some selected human studies. The archives consist of a database in Microsoft Access, a website, databases of references and information on the use of the database. At present, the archives contain a description of the exposure conditions, animal strains, etc. from approximately 350,000 individuals; data on survival and pathology are available from approximately 200,000 individuals. Care has been taken to render pathological diagnoses compatible among different studies and to allow the lumping of pathological diagnoses into more general classes. 'Forms' in Access with an underlying computer code facilitate the use of the database. This paper describes the structure and content of the archives and illustrates an example for a possible analysis of such data.
Evolving the Living With a Star Data System Definition
NASA Astrophysics Data System (ADS)
Otranto, J.; Dijoseph, M.; Worrall, W.
2003-04-01
NASA’s Living With a Star (LWS) Program is a space weather-focused and applications-driven research program. The LWS Program is soliciting input from the solar, space physics, space weather, and climate science communities to develop a system that enables access to science data associated with these disciplines, and advances the development of discipline and interdisciplinary findings. The LWS Program will implement a data system that builds upon the existing and planned data capture, processing, and storage components put in place by individual spacecraft missions and also inter-project data management systems, such as active archives, deep archives, and multi-mission repositories. It is technically feasible for the LWS Program to integrate data from a broad set of resources, assuming they are either publicly accessible or access is permitted by the system’s administrators. The LWS Program data system will work in coordination with spacecraft mission data systems and science data repositories, integrating them into a common data representation. This common representation relies on a robust metadata definition that provides journalistic and technical data descriptions, plus linkages to supporting data products and tools. The LWS Program intends to become an enabling resource to PIs, interdisciplinary scientists, researchers, and students facilitating both access to a broad collection of science data, as well as the necessary supporting components to understand and make productive use of the data. For the LWS Program to represent science data that is physically distributed across various ground system elements, information about the data products stored on each system is collected through a series of LWS-created active agents. These active agents are customized to interface or interact with each one of these data systems, collect information, and forward updates to a single LWS-developed metadata broker. This broker, in turn, updates a centralized repository of LWS-specific metadata. A populated LWS metadata database is a single point-of-contact that can serve all users (the science community) with a “one-stop-shop” for data access. While data may not be physically stored in an LWS-specific repository, the LWS system enables data access from wherever the data are stored. Moreover, LWS provides the user access to information for understanding the data source, format, and calibration, enables access to ancillary and correlative data products, provides links to processing tools and models associated with the data, and any corresponding findings. The LWS may also support an active archive for solar, space physics, space weather, and climate data when these data would otherwise be discarded or archived off-line. This archive could potentially serve as a backup facility for LWS missions. This plan is developed based upon input already received from the science community; the architecture is based on system developed to date that have worked well on a smaller scale. The LWS Program continues to seek constructive input from the science community, examples of both successes and failures in dealing with science data systems, and insights regarding the obstacles between the current state-of-the-practice and this vision for the LWS Program data system.
Digital Archival Image Collections: Who Are the Users?
ERIC Educational Resources Information Center
Herold, Irene M. H.
2010-01-01
Archival digital image collections are a relatively new phenomenon in college library archives. Digitizing archival image collections may make them accessible to users worldwide. There has been no study to explore whether collections on the Internet lead to users who are beyond the institution or a comparison of users to a national or…
Citations to Web pages in scientific articles: the permanence of archived references.
Thorp, Andrea W; Schriger, David L
2011-02-01
We validate the use of archiving Internet references by comparing the accessibility of published uniform resource locators (URLs) with corresponding archived URLs over time. We scanned the "Articles in Press" section in Annals of Emergency Medicine from March 2009 through June 2010 for Internet references in research articles. If an Internet reference produced the authors' expected content, the Web page was archived with WebCite (http://www.webcitation.org). Because the archived Web page does not change, we compared it with the original URL to determine whether the original Web page had changed. We attempted to access each original URL and archived Web site URL at 3-month intervals from the time of online publication during an 18-month study period. Once a URL no longer existed or failed to contain the original authors' expected content, it was excluded from further study. The number of original URLs and archived URLs that remained accessible over time was totaled and compared. A total of 121 articles were reviewed and 144 Internet references were found within 55 articles. Of the original URLs, 15% (21/144; 95% confidence interval [CI] 9% to 21%) were inaccessible at publication. During the 18-month observation period, there was no loss of archived URLs (apart from the 4% [5/123; 95% CI 2% to 9%] that could not be archived), whereas 35% (49/139) of the original URLs were lost (46% loss; 95% CI 33% to 61% by the Kaplan-Meier method; difference between curves P<.0001, log rank test). Archiving a referenced Web page at publication can help preserve the authors' expected information. Copyright © 2010 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
McGlynn, Thomas; Fabbiano, Giuseppina; Accomazzi, Alberto; Smale, Alan; White, Richard L.; Donaldson, Thomas; Aloisi, Alessandra; Dower, Theresa; Mazzerella, Joseph M.; Ebert, Rick; Pevunova, Olga; Imel, David; Berriman, Graham B.; Teplitz, Harry I.; Groom, Steve L.; Desai, Vandana R.; Landry, Walter
2016-07-01
Since the turn of the millennium a constant concern of astronomical archives have begun providing data to the public through standardized protocols unifying data from disparate physical sources and wavebands across the electromagnetic spectrum into an astronomical virtual observatory (VO). In October 2014, NASA began support for the NASA Astronomical Virtual Observatories (NAVO) program to coordinate the efforts of NASA astronomy archives in providing data to users through implementation of protocols agreed within the International Virtual Observatory Alliance (IVOA). A major goal of the NAVO collaboration has been to step back from a piecemeal implementation of IVOA standards and define what the appropriate presence for the US and NASA astronomy archives in the VO should be. This includes evaluating what optional capabilities in the standards need to be supported, the specific versions of standards that should be used, and returning feedback to the IVOA, to support modifications as needed. We discuss a standard archive model developed by the NAVO for data archive presence in the virtual observatory built upon a consistent framework of standards defined by the IVOA. Our standard model provides for discovery of resources through the VO registries, access to observation and object data, downloads of image and spectral data and general access to archival datasets. It defines specific protocol versions, minimum capabilities, and all dependencies. The model will evolve as the capabilities of the virtual observatory and needs of the community change.
NASA Technical Reports Server (NTRS)
McGlynn, Thomas; Guiseppina, Fabbiano A; Accomazzi, Alberto; Smale, Alan; White, Richard L.; Donaldson, Thomas; Aloisi, Alessandra; Dower, Theresa; Mazzerella, Joseph M.; Ebert, Rick;
2016-01-01
Since the turn of the millennium a constant concern of astronomical archives have begun providing data to the public through standardized protocols unifying data from disparate physical sources and wavebands across the electromagnetic spectrum into an astronomical virtual observatory (VO). In October 2014, NASA began support for the NASA Astronomical Virtual Observatories (NAVO) program to coordinate the efforts of NASA astronomy archives in providing data to users through implementation of protocols agreed within the International Virtual Observatory Alliance (IVOA). A major goal of the NAVO collaboration has been to step back from a piecemeal implementation of IVOA standards and define what the appropriate presence for the US and NASA astronomy archives in the VO should be. This includes evaluating what optional capabilities in the standards need to be supported, the specific versions of standards that should be used, and returning feedback to the IVOA, to support modifications as needed. We discuss a standard archive model developed by the NAVO for data archive presence in the virtual observatory built upon a consistent framework of standards defined by the IVOA. Our standard model provides for discovery of resources through the VO registries, access to observation and object data, downloads of image and spectral data and general access to archival datasets. It defines specific protocol versions, minimum capabilities, and all dependencies. The model will evolve as the capabilities of the virtual observatory and needs of the community change.
VLBA Archive &Distribution Architecture
NASA Astrophysics Data System (ADS)
Wells, D. C.
1994-01-01
Signals from the 10 antennas of NRAO's VLBA [Very Long Baseline Array] are processed by a Correlator. The complex fringe visibilities produced by the Correlator are archived on magnetic cartridges using a low-cost architecture which is capable of scaling and evolving. Archive files are copied to magnetic media to be distributed to users in FITS format, using the BINTABLE extension. Archive files are labelled using SQL INSERT statements, in order to bind the DBMS-based archive catalog to the archive media.
Stewardship of very large digital data archives
NASA Technical Reports Server (NTRS)
Savage, Patric
1992-01-01
This paper addresses the problems foreseen by the author in stewarding the very large digital data archives that will accumulate during the mission of the Earth Orbiting Satellite (EOS). It focuses on the function of 'shepherding' archived digital data into an endless future. Stewardship entails a great deal more than storing and protecting the archive. It also includes all aspects of providing meaningful service to the community of users (scientists) who will want to access the data. The complete steward will be required to do the following: (1) provide against loss due to physical phenomena; (2) assure that data is not 'lost' due to storage technology obsolescence; (3) maintain data in a current formatting methodology with the additional requirement of being able to reconstitute the data to its original, as-received format; (4) secure against loss or pollution of data due to accidental, misguided, or willful software intrusion; (5) prevent unauthorized electronic access to the data, including unauthorized placement of data into the archive; (6) index the data in a metadatabase so that all anticipatable queries can be served without searching through the data itself; (7) provide responsive access to the metadatabase; (8) provide appropriately responsive access to the data; (9) incorporate additions and changes to the archive (and to the metadatabase) in a timely way; and (10) deliver only copies of data to clients - retain physical custody of the 'official' data. Items 1 through 4 are discussed in this paper.
Incorporating Oracle on-line space management with long-term archival technology
NASA Technical Reports Server (NTRS)
Moran, Steven M.; Zak, Victor J.
1996-01-01
The storage requirements of today's organizations are exploding. As computers continue to escalate in processing power, applications grow in complexity and data files grow in size and in number. As a result, organizations are forced to procure more and more megabytes of storage space. This paper focuses on how to expand the storage capacity of a Very Large Database (VLDB) cost-effectively within a Oracle7 data warehouse system by integrating long term archival storage sub-systems with traditional magnetic media. The Oracle architecture described in this paper was based on an actual proof of concept for a customer looking to store archived data on optical disks yet still have access to this data without user intervention. The customer had a requirement to maintain 10 years worth of data on-line. Data less than a year old still had the potential to be updated thus will reside on conventional magnetic disks. Data older than a year will be considered archived and will be placed on optical disks. The ability to archive data to optical disk and still have access to that data provides the system a means to retain large amounts of data that is readily accessible yet significantly reduces the cost of total system storage. Therefore, the cost benefits of archival storage devices can be incorporated into the Oracle storage medium and I/O subsystem without loosing any of the functionality of transaction processing, yet at the same time providing an organization access to all their data.
Data management and digital delivery of analog data
Miller, W.A.; Longhenry, Ryan; Smith, T.
2008-01-01
The U.S. Geological Survey's (USGS) data archive at the Earth Resources Observation and Science (EROS) Center is a comprehensive and impartial record of the Earth's changing land surface. USGS/EROS has been archiving and preserving land remote sensing data for over 35 years. This remote sensing archive continues to grow as aircraft and satellites acquire more imagery. As a world leader in preserving data, USGS/EROS has a reputation as a technological innovator in solving challenges and ensuring that access to these collections is available. Other agencies also call on the USGS to consider their collections for long-term archive support. To improve access to the USGS film archive, each frame on every roll of film is being digitized by automated high performance digital camera systems. The system robotically captures a digital image from each film frame for the creation of browse and medium resolution image files. Single frame metadata records are also created to improve access that otherwise involves interpreting flight indexes. USGS/EROS is responsible for over 8.6 million frames of aerial photographs and 27.7 million satellite images.
Characterizing the LANDSAT Global Long-Term Data Record
NASA Technical Reports Server (NTRS)
Arvidson, T.; Goward, S. N.; Williams, D. L.
2006-01-01
The effects of global climate change are fast becoming politically, sociologically, and personally important: increasing storm frequency and intensity, lengthening cycles of drought and flood, expanding desertification and soil salinization. A vital asset in the analysis of climate change on a global basis is the 34-year record of Landsat imagery. In recognition of its increasing importance, a detailed analysis of the Landsat observation coverage within the US archive was commissioned. Results to date indicate some unexpected gaps in the US-held archive. Fortunately, throughout the Landsat program, data have been downlinked routinely to International Cooperator (IC) ground stations for archival, processing, and distribution. These IC data could be combined with the current US holdings to build a nearly global, annual observation record over this 34-year period. Today, we have inadequate information as to which scenes are available from which IC archives. Our best estimate is that there are over four million digital scenes in the IC archives, compared with the nearly two million scenes held in the US archive. This vast pool of Landsat observations needs to be accurately documented, via metadata, to determine the existence of complementary scenes and to characterize the potential scope of the global Landsat observation record. Of course, knowing the extent and completeness of the data record is but the first step. It will be necessary to assure that the data record is easy to use, internally consistent in terms of calibration and data format, and fully accessible in order to fully realize its potential.
Policies and Procedures for Accessing Archived NASA Data via the Web
NASA Technical Reports Server (NTRS)
James, Nathan
2011-01-01
The National Space Science Data Center (NSSDC) was established by NASA to provide for the preservation and dissemination of scientific data from NASA missions. This white paper will address the NSSDC policies that govern data preservation and dissemination and the various methods of accessing NSSDC-archived data via the web.
Developing an EarthCube Governance Structure for Big Data Preservation and Access
NASA Astrophysics Data System (ADS)
Leetaru, H. E.; Leetaru, K. H.
2012-12-01
The underlying vision of the NSF EarthCube initiative is of an enduring resource serving the needs of the earth sciences for today and the future. We must therefore view this effort through the lens of what the earth sciences will need tomorrow and on how the underlying processes of data compilation, preservation, and access interplay with the scientific processes within the communities EarthCube will serve. Key issues that must be incorporated into the EarthCube governance structure include authentication, retrieval, and unintended use cases, the emerging role of whole-corpus data mining, and how inventory, citation, and archive practices will impact the ability of scientists to use EarthCube's collections into the future. According to the National Academies, the US federal government spends over $140 billion dollars a year in support of the nation's research base. Yet, a critical issue confronting all of the major scientific disciplines in building upon this investment is the lack of processes that guide how data are preserved for the long-term, ensuring that studies can be replicated and that experimental data remains accessible as new analytic methods become available or theories evolve. As datasets are used years or even decades after their creation, far richer metadata is needed to describe the underlying simulation, smoothing algorithms or bounding parameters of the data collection process. This is even truer as data are increasingly used outside their intended disciplines, as geoscience researchers apply algorithms from one discipline to datasets from another, where their analytical techniques may make extensive assumptions about the data. As science becomes increasingly interdisciplinary and emerging computational approaches begin applying whole-corpus methodologies and blending multiple archives together, we are facing new data access modalities distinct from the needs of the past, drawing into focus the question of centralized versus distributed architectures. In the past geoscience data have been distributed, with each site maintaining its own collections and centralized inventory metadata supporting discovery. This was based on the historical search-browse-download modality where access was primarily to download a copy to a researcher's own machine and datasets were measured in gigabytes. New "big data" approaches to the geosciences are already demonstrating the need to analyze the entirety of multiple collections from multiple sites totaling hundreds of terabytes in size. Yet, datasets are outpacing the ability of networks to share them, forcing a new paradigm in high-performance computing where computation must migrate to centralized data stores. The next generation of geoscientists are going to need a system designed for exploring and understanding data from multiple scientific domains and vantages where data are preserved for decades. We are not alone in this endeavor and there are many lessons we can learn from similar initiatives such as more than 40 years of governance policies for data warehouses and 15 years of open web archives, all of which face the same challenges. The entire EarthCube project will fail if the new governance structure does not account for the needs of integrated cyberinfrastructure that allows big data to stored, archived, analyzed, and made accessible to large numbers of scientists.
The Design of Archives Buildings.
ERIC Educational Resources Information Center
Faye, Bernard
1982-01-01
Studies specific problems arising from design of archives buildings and examines three main purposes of this type of building, namely conservation, classification and restoration of archives, and the provision of access to them by administrators and research workers. Three references are listed. (Author/EJS)
An Ontology Driven Information Architecture for Interoperable Disparate Data Sources
NASA Technical Reports Server (NTRS)
Hughes, J. Steven; Crichton, Dan; Hardman, Sean; Joyner, Ronald; Mattmann, Chris; Ramirez, Paul; Kelly, Sean; Castano, Rebecca
2011-01-01
The mission of the Planetary Data System is to facilitate achievement of NASA's planetary science goals by efficiently collecting, archiving, and making accessible digital data produced by or relevant to NASA's planetary missions, research programs, and data analysis programs. The vision is: (1) To gather and preserve the data obtained from exploration of the Solar System by the U.S. and other nations (2) To facilitate new and exciting discoveries by providing access to and ensuring usability of those data to the worldwide community (3) To inspire the public through availability and distribution of the body of knowledge reflected in the PDS data collection PDS is a federation of heterogeneous nodes including science and support nodes
Adams, Justin W; Olah, Angela; McCurry, Matthew R; Potze, Stephany
2015-01-01
Nearly a century of paleontological excavation and analysis from the cave deposits of the Cradle of Humankind UNESCO World Heritage Site in northeastern South Africa underlies much of our understanding of the evolutionary history of hominins, other primates and other mammal lineages in the late Pliocene and early Pleistocene of Africa. As one of few designated fossil repositories, the Plio-Pleistocene Palaeontology Section of the Ditsong National Museum of Natural History (DNMNH; the former Transvaal Museum) curates much of the mammalian faunas recovered from the fossil-rich deposits of major South African hominin-bearing localities, including the holotype and paratype specimens of many primate, carnivore, and other mammal species (Orders Primates, Carnivora, Artiodactyla, Eulipotyphla, Hyracoidea, Lagomorpha, Perissodactyla, and Proboscidea). Here we describe an open-access digital archive of high-resolution, full-color three-dimensional (3D) surface meshes of all 89 non-hominin holotype, paratype and significant mammalian specimens curated in the Plio-Pleistocene Section vault. Surface meshes were generated using a commercial surface scanner (Artec Spider, Artec Group, Luxembourg), are provided in formats that can be opened in both open-source and commercial software, and can be readily downloaded either via an online data repository (MorphoSource) or via direct request from the DNMNH. In addition to providing surface meshes for each specimen, we also provide tomographic data (both computerized tomography [CT] and microfocus [microCT]) for a subset of these fossil specimens. This archive of the DNMNH Plio-Pleistocene collections represents the first research-quality 3D datasets of African mammal fossils to be made openly available. This simultaneously provides the paleontological community with essential baseline information (e.g., updated listing and 3D record of specimens in their current state of preservation) and serves as a single resource of high-resolution digital data that improves collections accessibility, reduces unnecessary duplication of efforts by researchers, and encourages ongoing imaging-based paleobiological research across a range of South African non-hominin fossil faunas. Because the types, paratypes, and key specimens include globally-distributed mammal taxa, this digital archive not only provides 3D morphological data on taxa fundamental to Neogene and Quaternary South African palaeontology, but also lineages critical to research on African, other Old World, and New World paleocommunities. With such a broader impact of the DNMNH 3D data, we hope that establishing open access to this digital archive will encourage other researchers and institutions to provide similar resources that increase accessibility to paleontological collections and support advanced paleobiological analyses.
NASA Astrophysics Data System (ADS)
Benson, R. B.
2007-05-01
The IRIS Data Management Center, located in Seattle, WA, is the largest openly accessible geophysical archive in the world, and has a unique perspective on data management and operational practices that gets the most out of your network. Networks scale broad domains in time and space, from finite needs to monitor bridges and dams to national and international networks like the GSN and the FDSN that establish a baseline for global monitoring and research, the requirements that go into creating a well-tuned DMC archive treat these the same, building a collaborative network of networks that generations of users rely on and adds value to the data. Funded by the National Science Foundation through the Division of Earth Sciences, IRIS is operated through member universities and in cooperation with the USGS, and the DMS facility is a bridge between a globally distributed collaboration of seismic networks and an equally distributed network of users that demand a high standard for data quality, completeness, and ease of access. I will describe the role that a perpetual archive has in the life cycle of data, and how hosting real-time data performs a dual role of being a hub for continuous data from approximately 59 real-time networks, and distributing these (along with other data from the 40-year library of available time-series data) to researchers, while simultaneously providing shared data back to networks in real- time that benefits monitoring activities. I will describe aspects of our quality-assurance framework that are both passively and actively performed on 1100 seismic stations, generating over 6,000 channels of regularly sampled data arriving daily, that data providers can use as aids in operating their network, and users can likewise use when requesting suitable data for research purposes. The goal of the DMC is to eliminate bottlenecks in data discovery and shortening the steps leading to analysis. This includes many challenges, including keeping metadata current, tools for evaluating and viewing them, along with measuring and creating databases of other performance metrics and how monitoring them closer to real- time helps reduce operation costs, creates a richer repository, and eliminates problems over generations of duty cycles of data usage. I will describe a new resource, called the Nominal Response Library, which hopes to provide accurate and representative examples of sensor and data logger configurations that are hosted at the DMC and constitute a high-graded subset for crafting your own metadata. Finally, I want to encourage all network operators who do not currently submit SEED format data to an archive to consider these benefits, and briefly discuss how robust transfer mechanisms that include Earthworm, LISS, Antelope, NRTS and SeisComp, to name a few, can assist you in contributing your network data and help create this enabling virtual network of networks. In this era of high performance Internet capacity, the process that enables others to share your data and allows you to utilize external sources of data is nearly seamless with your current mission of network operation.
Interoperability at ESA Heliophysics Science Archives: IVOA, HAPI and other implementations
NASA Astrophysics Data System (ADS)
Martinez-Garcia, B.; Cook, J. P.; Perez, H.; Fernandez, M.; De Teodoro, P.; Osuna, P.; Arnaud, M.; Arviset, C.
2017-12-01
The data of ESA heliophysics science missions are preserved at the ESAC Science Data Centre (ESDC). The ESDC aims for the long term preservation of those data, which includes missions such as Ulysses, Soho, Proba-2, Cluster, Double Star, and in the future, Solar Orbiter. Scientists have access to these data through web services, command line and graphical user interfaces for each of the corresponding science mission archives. The International Virtual Observatory Alliance (IVOA) provides technical standards that allow interoperability among different systems that implement them. By adopting some IVOA standards, the ESA heliophysics archives are able to share their data with those tools and services that are VO-compatible. Implementation of those standards can be found in the existing archives: Ulysses Final Archive (UFA) and Soho Science Archive (SSA). They already make use of VOTable format definition and Simple Application Messaging Protocol (SAMP). For re-engineered or new archives, the implementation of services through Table Access Protocol (TAP) or Universal Worker Service (UWS) will leverage this interoperability. This will be the case for the Proba-2 Science Archive (P2SA) and the Solar Orbiter Archive (SOAR). We present here which IVOA standards were already used by the ESA Heliophysics archives in the past and the work on-going.
Application of Bayesian Classification to Content-Based Data Management
NASA Technical Reports Server (NTRS)
Lynnes, Christopher; Berrick, S.; Gopalan, A.; Hua, X.; Shen, S.; Smith, P.; Yang, K-Y.; Wheeler, K.; Curry, C.
2004-01-01
The high volume of Earth Observing System data has proven to be challenging to manage for data centers and users alike. At the Goddard Earth Sciences Distributed Active Archive Center (GES DAAC), about 1 TB of new data are archived each day. Distribution to users is also about 1 TB/day. A substantial portion of this distribution is MODIS calibrated radiance data, which has a wide variety of uses. However, much of the data is not useful for a particular user's needs: for example, ocean color users typically need oceanic pixels that are free of cloud and sun-glint. The GES DAAC is using a simple Bayesian classification scheme to rapidly classify each pixel in the scene in order to support several experimental content-based data services for near-real-time MODIS calibrated radiance products (from Direct Readout stations). Content-based subsetting would allow distribution of, say, only clear pixels to the user if desired. Content-based subscriptions would distribute data to users only when they fit the user's usability criteria in their area of interest within the scene. Content-based cache management would retain more useful data on disk for easy online access. The classification may even be exploited in an automated quality assessment of the geolocation product. Though initially to be demonstrated at the GES DAAC, these techniques have applicability in other resource-limited environments, such as spaceborne data systems.
Improving Access to NASA Earth Science Data through Collaborative Metadata Curation
NASA Astrophysics Data System (ADS)
Sisco, A. W.; Bugbee, K.; Shum, D.; Baynes, K.; Dixon, V.; Ramachandran, R.
2017-12-01
The NASA-developed Common Metadata Repository (CMR) is a high-performance metadata system that currently catalogs over 375 million Earth science metadata records. It serves as the authoritative metadata management system of NASA's Earth Observing System Data and Information System (EOSDIS), enabling NASA Earth science data to be discovered and accessed by a worldwide user community. The size of the EOSDIS data archive is steadily increasing, and the ability to manage and query this archive depends on the input of high quality metadata to the CMR. Metadata that does not provide adequate descriptive information diminishes the CMR's ability to effectively find and serve data to users. To address this issue, an innovative and collaborative review process is underway to systematically improve the completeness, consistency, and accuracy of metadata for approximately 7,000 data sets archived by NASA's twelve EOSDIS data centers, or Distributed Active Archive Centers (DAACs). The process involves automated and manual metadata assessment of both collection and granule records by a team of Earth science data specialists at NASA Marshall Space Flight Center. The team communicates results to DAAC personnel, who then make revisions and reingest improved metadata into the CMR. Implementation of this process relies on a network of interdisciplinary collaborators leveraging a variety of communication platforms and long-range planning strategies. Curating metadata at this scale and resolving metadata issues through community consensus improves the CMR's ability to serve current and future users and also introduces best practices for stewarding the next generation of Earth Observing System data. This presentation will detail the metadata curation process, its outcomes thus far, and also share the status of ongoing curation activities.
Davis, Brian N.; Werpy, Jason; Friesz, Aaron M.; Impecoven, Kevin; Quenzer, Robert; Maiersperger, Tom; Meyer, David J.
2015-01-01
Current methods of searching for and retrieving data from satellite land remote sensing archives do not allow for interactive information extraction. Instead, Earth science data users are required to download files over low-bandwidth networks to local workstations and process data before science questions can be addressed. New methods of extracting information from data archives need to become more interactive to meet user demands for deriving increasingly complex information from rapidly expanding archives. Moving the tools required for processing data to computer systems of data providers, and away from systems of the data consumer, can improve turnaround times for data processing workflows. The implementation of middleware services was used to provide interactive access to archive data. The goal of this middleware services development is to enable Earth science data users to access remote sensing archives for immediate answers to science questions instead of links to large volumes of data to download and process. Exposing data and metadata to web-based services enables machine-driven queries and data interaction. Also, product quality information can be integrated to enable additional filtering and sub-setting. Only the reduced content required to complete an analysis is then transferred to the user.
A VBA Desktop Database for Proposal Processing at National Optical Astronomy Observatories
NASA Astrophysics Data System (ADS)
Brown, Christa L.
National Optical Astronomy Observatories (NOAO) has developed a relational Microsoft Windows desktop database using Microsoft Access and the Microsoft Office programming language, Visual Basic for Applications (VBA). The database is used to track data relating to observing proposals from original receipt through the review process, scheduling, observing, and final statistical reporting. The database has automated proposal processing and distribution of information. It allows NOAO to collect and archive data so as to query and analyze information about our science programs in new ways.
Pain management discussion forum.
Breivik, Harald
2013-12-01
A query and response address comparative chronic pain management in European countries and the availability of psychotherapy services in pain management. This report is adapted from paineurope 2013; Issue 2, ©Haymarket Medical Publications Ltd., and is presented with permission. paineurope is provided as a service to pain management by Mundipharma International LTD. and is distributed free of charge to healthcare professionals in Europe. Archival issues can be accessed via the website: http://www.paineurope.com at which European health professionals can register online to receive copies of the quarterly publication.
Musica de la Frontera: Research Note on the UCLA Frontera Digital Archive
ERIC Educational Resources Information Center
Romero, Robert Chao
2005-01-01
The Frontera Digital Archive is an impressive and invaluable research tool for multidisciplinary scholars of Chicana/o studies and Latin American studies. The archive preserves rare Mexican vernacular musical recordings and provides convenient access to these recordings via Internet.
U.S.-China Military Contacts: Issues for Congress
2010-07-06
of Defense Dick Cheney, alleging that “several dozen” American military personnel captured in the Korean War (1950- 1953 ) were sent to a camp in the...request to access the archives .96 In March 2003, DPMO Director Jerry Jennings visited China and said that PRC records likely hold “the key” to...China finally agreed to allow access to the PLA archives on the Korean War. However, the PLA did not grant direct access to the records , as asked
Virtual Observatory Interfaces to the Chandra Data Archive
NASA Astrophysics Data System (ADS)
Tibbetts, M.; Harbo, P.; Van Stone, D.; Zografou, P.
2014-05-01
The Chandra Data Archive (CDA) plays a central role in the operation of the Chandra X-ray Center (CXC) by providing access to Chandra data. Proprietary interfaces have been the backbone of the CDA throughout the Chandra mission. While these interfaces continue to provide the depth and breadth of mission specific access Chandra users expect, the CXC has been adding Virtual Observatory (VO) interfaces to the Chandra proposal catalog and observation catalog. VO interfaces provide standards-based access to Chandra data through simple positional queries or more complex queries using the Astronomical Data Query Language. Recent development at the CDA has generalized our existing VO services to create a suite of services that can be configured to provide VO interfaces to any dataset. This approach uses a thin web service layer for the individual VO interfaces, a middle-tier query component which is shared among the VO interfaces for parsing, scheduling, and executing queries, and existing web services for file and data access. The CXC VO services provide Simple Cone Search (SCS), Simple Image Access (SIA), and Table Access Protocol (TAP) implementations for both the Chandra proposal and observation catalogs within the existing archive architecture. Our work with the Chandra proposal and observation catalogs, as well as additional datasets beyond the CDA, illustrates how we can provide configurable VO services to extend core archive functionality.
Interoperability in the Planetary Science Archive (PSA)
NASA Astrophysics Data System (ADS)
Rios Diaz, C.
2017-09-01
The protocols and standards currently being supported by the recently released new version of the Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet- Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. We explore these protocols in more detail providing scientifically useful examples of their usage within the PSA.
Archiving Microgravity Flight Data and Samples
NASA Technical Reports Server (NTRS)
1996-01-01
To obtain help in evaluating its current strategy for archiving data and samples obtained in microgravity research, NASA's Microgravity Science and Applications Division (MSAD) asked the Space Studies Board's Committee on Microgravity Research for guidance on the following questions: What data should be archived and where should it be kept? In what form should the data be maintained (electronic files, photographs, hard copy, samples)? What should the general format of the database be? To what extent should it be universally accessible and through what mechanisms? Should there be a period of time for which principal investigators have proprietary access? If so, how long should proprietary data be stored? What provisions should be made for data obtained from ground-based experiments? What should the deadline be for investigators placing their data in the archive? How long should data be saved? How long should data be easily accessible? As a prelude to making recommendations for optimum selection and storage of microgravity data and samples, the committee in this report briefly describes NASA's past archiving practices and outlines MSAD's current archiving strategy. Although the committee found that only a limited number of experiments have thus far been archived, it concluded that the general archiving strategy, characterized by MSAD as minimalist, appears viable. A central focus of attention is the Experiment Data Management Plan (EDMP), MSAD's recently instituted data management and archiving framework for flight experiments. Many of the report's recommendations are aimed at enhancing the effectiveness of the EDMP approach, which the committee regards as an appropriate data management method for MSAD. Other recommendations provide guidance on broader issues related to the questions listed above. This report does not address statutory or regulatory records retention requirements.
An environmental database for Venice and tidal zones
NASA Astrophysics Data System (ADS)
Macaluso, L.; Fant, S.; Marani, A.; Scalvini, G.; Zane, O.
2003-04-01
The natural environment is a complex, highly variable and physically non reproducible system (not in laboratory, nor in a confined territory). Environmental experimental studies are thus necessarily based on field measurements distributed in time and space. Only extensive data collections can provide the representative samples of the system behavior which are essential for scientific advancement. The assimilation of large data collections into accessible archives must necessarily be implemented in electronic databases. In the case of tidal environments in general, and of the Venice lagoon in particular, it is useful to establish a database, freely accessible to the scientific community, documenting the dynamics of such systems and their response to anthropic pressures and climatic variability. At the Istituto Veneto di Scienze, Lettere ed Arti in Venice (Italy) two internet environmental databases has been developed: one collects information regarding in detail the Venice lagoon; the other co-ordinate the research consortium of the "TIDE" EU RTD project, that attends to three different tidal areas: Venice Lagoon (Italy), Morecambe Bay (England), and Forth Estuary (Scotland). The archives may be accessed through the URL: www.istitutoveneto.it. The first one is freely available and applies to anyone is interested. It is continuously updated and has been structured in order to promote documentation concerning Venetian environment and disseminate this information for educational purposes (see "Dissemination" section). The second one is supplied by scientists and engineers working on this tidal system for various purposes (scientific, management, conservation purposes, etc.); it applies to interested researchers and grows with their own contributions. Both intend to promote scientific communication, to contribute to the realization of a distributed information system collecting homogeneous themes, and to initiate the interconnection among databases regarding different kinds of environment.
LIBS-LIF-Raman: a new tool for the future E-RIHS
NASA Astrophysics Data System (ADS)
Detalle, Vincent; Bai, Xueshi; Bourguignon, Elsa; Menu, Michel; Pallot-Frossard, Isabelle
2017-07-01
France is one of the countries involved in the future E-RIHS - European Research Infrastructure for Heritage Science. The research infrastructure dedicated to the study of materials of cultural and natural heritage will provide transnational access to state-of-the-art technologies (synchrotron, ion beams, lasers, portable methods, etc.) and scientific archives. E-RIHS addresses the experimental problems of knowledge and conservation of heritage materials (collections of art and natural museums, monuments, archaeological sites, archives, libraries, etc.). The cultural artefacts are characterized by complementary methods at multi-scales. The variety and the hybrid are specific of these artefacts and induce complex problems that are not expected in traditional Natural Science: paints, ceramics and glasses, metals, palaeontological specimens, lithic materials, graphic documents, etc. E-RIHS develops in that purpose transnational access to distributed platforms in many European countries. Five complementary accesses are in this way available: FIXLAB (access to fixed platforms for synchrotron, neutrons, ion beams, lasers, etc.), MOLAB (access to mobile examination and analytical methods to study the works in situ), ARCHLAB (access to scientific archives kept in the cultural institutions), DIGILAB (access to a digital infrastructure for the processing of quantitative data, implementing a policy on (re)use of data, choice of data formats, etc.) and finally EXPERTLAB (panels of experts for the implementation of collaborative and multidisciplinary projects for the study, the analysis and the conservation of heritage works).Thus E-RIHS is specifically involved in complex studies for the development of advanced high-resolution analytical and imaging tools. The privileged field of intervention of the infrastructure is that of the study of large corpora, collections and architectural ensembles. Based on previous I3 European program, and especially IPERION-CH program that support the creation of new mobile instrumentation, the French institutions are involved in the development of LIBS/LIF/RAMAN portable instrumentation. After a presentation of the challenge and the multiple advantages in building the European Infrastructure and of the French E-RIHS hub, the major interests of associating the three lasers based on analytical methods for a more global and precise characterization of the heritage objects taking into account their precious characters and their specific constraints. Lastly some preliminary results will be presented in order to give a first idea of the power of this analytical tool.
Farewell to a legendary mission : ESA to hand over the IUE archive to the world scientific community
NASA Astrophysics Data System (ADS)
2000-03-01
The IUE Archive, storing two decades of ultraviolet astronomy, has become a historical reference. It contains more than 110 000 spectra from observations that in most cases cannot be repeated, and is an excellent source for studying variable phenomena. The long time-lapse covered and the stability of the instrument have enabled astronomers to witness events they never thought they would, such as the metamorphosis of a very old star into a beautiful planetary nebula: a hot central star surrounded by glowing gas and dust. The IUE archive was the first astronomical archive accessible online -- back in 1985, when the World Wide Web did not even exist-- and has been a key catalyst for science: it has triggered the publication of 3 600 articles in refereed journals so far, and a whole generation of astrophysicists have used IUE data at some stage. During IUE's lifetime the archive was managed by ESA, from the Villafranca Satellite Tracking Station near Madrid (Spain). But not any longer. The IUE archive will now belong to the world scientific community. ESA has created INES (IUE Newly Extracted Spectra), a distribution system that allows IUE data to be accessed faster and more easily from non-ESA national hosts throughout the world, managed entirely by local experts. INES maintenance costs are minimal, and the system is designed for ready incorporation of whatever innovations might come in the future. "The INES system and its data guarantee that future generations of astronomers will be able to use IUE data as much as they want, regardless of whether they know about the technicalities of the mission or whether there is an improvement in archive technology. And the distributed structure is better adapted to changes in user needs than a single archive centre", says Antonio Talavera from the Laboratory for Space Astrophysics and Theoretical Physics (LAEFF), based at Villafranca. "ESA has created INES using a minimalist engineering approach for the world scientific community, and has made it to last. INES is easy to use and easy to upgrade, and LAEFF in Spain is proud to serve as the hub for the whole world". The INES Principal Centre is at the LAEFF, owned by INTA, the Spanish National Institute for Aerospace Technology. This centre, with a data mirror at the CADC in Victoria (Canada), holds the complete database and provides information not available from national hosts. So far 17 national hosts (listed below) have come online. Together they form with the Principal Centre an efficient and highly reliable distribution system for the community. The whole process of data retrieval is fully automated and totally transparent to the end user. This distributed structure avoids localised connectivity problems and guarantees availability of data. The release of INES will be celebrated on 21 March with a ceremony at the ESA/VILSPA Satellite Tracking Station in Villafranca near Madrid (see attached agenda and accreditation form). At various other national hosts the release of the INES system will also be celebrated by local academic and demonstration events on different dates. FOOTNOTE ON IUE SATELLITE The ESA/NASA/UK IUE spacecraft, launched in January 1978, became the first space observatory facility available to the whole astronomical community. It marked the beginning of UV astronomy, a field for which space telescopes are essential because UV light does not reach the Earth's surface. By the time IUE was switched off, in September 1996 --14 years later than originally planned -- IUE had changed the view astronomers had of the universe. Among many other findings, IUE discovered the auroras in Jupiter; detected for the first time the halo in our galaxy --a large amount of very hot matter in the outskirts of the Milky Way (the halo); and measured the size of a black hole in the core of an active galaxy.
Operational environmental satellite archives in the 21st Century
NASA Astrophysics Data System (ADS)
Barkstrom, Bruce R.; Bates, John J.; Privette, Jeff; Vizbulis, Rick
2007-09-01
NASA, NOAA, and USGS collections of Earth science data are large, federated, and have active user communities and collections. Our experience raises five categories of issues for long-term archival: *Organization of the data in the collections is not well-described by text-based categorization principles *Metadata organization for these data is not well-described by Dublin Core and needs attention to data access and data use patterns *Long-term archival requires risk management approaches to dealing with the unique threats to knowledge preservation specific to digital information *Long-term archival requires careful attention to archival cost management *Professional data stewards for these collections may require special training. This paper suggests three mechanisms for improving the quality of long-term archival: *Using a maturity model to assess the readiness of data for accession, for preservation, and for future data usefulness *Developing a risk management strategy for systematically dealing with threats of data loss *Developing a life-cycle cost model for continuously evolving the collections and the data centers that house them.
BIOME: A browser-aware search and order system
NASA Technical Reports Server (NTRS)
Grubb, Jon W.; Jennings, Sarah V.; Yow, Teresa G.; Daughterty, Patricia F.
1996-01-01
The Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC), which is associated with NASA's Earth Observing System Data and Information System (EOSDIS), provides access to a large number of tabular and imagery datasets used in ecological and environmental research. Because of its large and diverse data holdings, the challenge for the ORNL DAAC is to help users find data of interest from the hundreds of thousands of files available at the DAAC without overwhelming them. Therefore, the ORNL DAAC developed the Biogeochemical Information Ordering Management Environment (BIOME), a search and order system for the World Wide Web (WWW). The WWW provides a new vehicle that allows a wide range of users access to the data. This paper describes the specialized attributes incorporated into BIOME that allow researchers easy access to an otherwise bewildering array of data products.
Global Change Data Center: Mission, Organization, Major Activities, and 2003 Highlights
NASA Technical Reports Server (NTRS)
2004-01-01
Rapid, efficient access to Earth sciences data from satellites and ground validation stations is fundamental to the nation's efforts to understand the effects of global environmental changes and their implications for public policy. It becomes a bigger challenge in the future when data volumes increase from current levels to terabytes per day. Demands on data storage, data access, network throughput, processing power, and database and information management are increased by orders of magnitude, while budgets remain constant and even shrink.The Global Change Data Center's (GCDC) mission is to develop and operate data systems, generate science products, and provide archival and distribution services for Earth science data in support of the U.S. Global Change Program and NASA's Earth Sciences Enterprise. The ultimate product of the GCDC activities is access to data to support research, education, and public policy.
NASA Technical Reports Server (NTRS)
Sherman, Mark; Kodis, John; Bedet, Jean-Jacques; Wacker, Chris; Woytek, Joanne; Lynnes, Chris
1996-01-01
The Goddard Space Flight Center (GSFC) version 0 Distributed Active Archive Center (DAAC) has been developed to support existing and pre Earth Observing System (EOS) Earth science datasets, facilitate the scientific research, and test EOS data and information system (EOSDIS) concepts. To ensure that no data is ever lost, each product received at GSFC DAAC is archived on two different media, VHS and digital linear tape (DLT). The first copy is made on VHS tape and is under the control of UniTree. The second and third copies are made to DLT and VHS media under a custom built software package named 'Archer'. While Archer provides only a subset of the functions available with commercial software like UniTree, it supports migration between near-line and off-line media and offers much greater performance and flexibility to satisfy the specific needs of a data center. Archer is specifically designed to maximize total system throughput, rather than focusing on the turn-around time for individual files. The commercial off the shelf software (COTS) hierarchical storage management (HSM) products evaluated were mainly concerned with transparent, interactive, file access to the end-user, rather than a batch-orientated, optimizable (based on known data file characteristics) data archive and retrieval system. This is critical to the distribution requirements of the GSFC DAAC where orders for 5000 or more files at a time are received. Archer has the ability to queue many thousands of file requests and to sort these requests into internal processing schedules that optimize overall throughput. Specifically, mount and dismount, tape load and unload cycles, and tape motion are minimized. This feature did not seem to be available in many COTS pacages. Archer also uses a generic tar tape format that allows tapes to be read by many different systems rather than the proprietary format found in most COTS packages. This paper discusses some of the specific requirements at GSFC DAAC, the motivations for implementing the Archer system, and presents a discussion of the Archer design that resulted.
NASA Astrophysics Data System (ADS)
Moroni, D. F.; Armstrong, E. M.; Tauer, E.; Hausman, J.; Huang, T.; Thompson, C. K.; Chung, N.
2013-12-01
The Physical Oceanographic Distributed Active Archive Center (PO.DAAC) is one of 12 data centers sponsored by NASA's Earth Science Data and Information System (ESDIS) project. The PO.DAAC is tasked with archival and distribution of NASA Earth science missions specific to physical oceanography, many of which have interdisciplinary applications for weather forecasting/monitoring, ocean biology, ocean modeling, and climate studies. PO.DAAC has a 20-year history of cross-project and international collaborations with partners in Europe, Japan, Australia, and the UK. Domestically, the PO.DAAC has successfully established lasting partners with non-NASA institutions and projects including the National Oceanic and Atmospheric Administration (NOAA), United States Navy, Remote Sensing Systems, and Unidata. A key component of these partnerships is PO.DAAC's direct involvement with international working groups and science teams, such as the Group for High Resolution Sea Surface Temperature (GHRSST), International Ocean Vector Winds Science Team (IOVWST), Ocean Surface Topography Science Team (OSTST), and the Committee on Earth Observing Satellites (CEOS). To help bolster new and existing collaborations, the PO.DAAC has established a standardized approach to its internal Data Management and Archiving System (DMAS), utilizing a Data Dictionary to provide the baseline standard for entry and capture of dataset and granule metadata. Furthermore, the PO.DAAC has established an end-to-end Dataset Lifecycle Policy, built upon both internal and external recommendations of best practices toward data stewardship. Together, DMAS, the Data Dictionary, and the Dataset Lifecycle Policy provide the infrastructure to enable standardized data and metadata to be fully ingested and harvested to facilitate interoperability and compatibility across data access protocols, tools, and services. The Dataset Lifecycle Policy provides the checks and balances to help ensure all incoming HDF and netCDF-based datasets meet minimum compliance requirements with the Lawrence Livermore National Laboratory's actively maintained Climate and Forecast (CF) conventions with additional goals toward metadata standards provided by the Attribute Convention for Dataset Discovery (ACDD), the International Organization for Standardization (ISO) 19100-series, and the Federal Geographic Data Committee (FGDC). By default, DMAS ensures all datasets are compliant with NASA's Global Change Master Directory (GCMD) and NASA's Reverb data discovery clearinghouse (also known as ECHO). For data access, PO.DAAC offers several widely-used technologies, including File Transfer Protocol (FTP), Open-source Project for a Network Data Access Protocol (OPeNDAP), and Thematic Realtime Environmental Distributed Data Services (THREDDS). These access technologies are available directly to users or through PO.DAAC's web interfaces, specifically the High-level Tool for Interactive Data Extraction (HiTIDE), Live Access Server (LAS), and PO.DAAC's set of search, image, and Consolidated Web Services (CWS). Lastly, PO.DAAC's newly introduced, standards-based CWS provide singular endpoints for search, imaging, and extraction capabilities, respectively, across L2/L3/L4 datasets. Altogether, these tools, services and policies serve to provide flexible, interoperable functionality for both users and data providers.
Remotely Sensed Land Imagery and Access Systems: USGS Updates
NASA Astrophysics Data System (ADS)
Lamb, R.; Pieschke, R.; Lemig, K.
2017-12-01
The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center has implemented a number of updates to its suite of remotely sensed products and distribution systems. These changes will greatly expand the availability, accessibility, and usability of the image products from USGS. As of late 2017, several new datasets are available for public download at no charge from USGS/EROS Center. These products include Multispectral Instrument (MSI) Level-1C data from the Sentinel-2B satellite, which was launched in March 2017. Along with Sentinel-2A, the Sentinel-2B images are now being distributed through USGS systems as part of a collaborative effort with the European Space Agency (ESA). The Sentinel-2 imagery is highly complementary to multispectral data collected by the USGS Landsat 7 and 8 satellites. With these two missions operating together, the potential local revisit rate can be reduced to 2-4 days. Another product addition is Resourcesat-2 data acquired over the United States by the Indian Space Research Organisation (ISRO). The Resourcesat-2 products from USGS consist of Advanced Wide Field Sensor (AWiFS) and Linear Imaging Self-Scanning Sensor Three (LISS-3) images acquired August 2016 to present. In an effort to maximize future Landsat data interoperability, including time series analysis of the 45+ year archive, the reprocessing of Collection 1 for all historical Landsat Level 1 products is nearly complete. The USGS is now working on operational release of higher-level science products to support analysis of the Landsat archive at the pixel level. Major upgrades were also completed in 2017 for several USGS data discovery and access systems, including the LandsatLook Viewer (https://landsatlook.usgs.gov/) and GloVis Tool (https://glovis.usgs.gov/). Other options are now being developed to further enhance data access and overall user experience. These future options will be discussed and community feedback will be encouraged.
NASA Astrophysics Data System (ADS)
Leon, A.; Tanner, S.; Deems, J. S.
2017-12-01
The National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC), part of the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado Boulder, will archive and distribute all primary data sets collected during the NASA SnowEx campaigns. NSIDC DAAC's overarching goal for SnowEx data management is to steward the diverse SnowEx data sets to provide a reliable long-term archive, to enable effective data discovery, retrieval, and usage, and to support end user engagement. This goal will be achieved though coordination and collaboration with SnowEx project management and investigators. NSIDC DAAC's core functions for SnowEx data management include: Data Creation: Advise investigators on data formats and structure as well as metadata creation and content to enable preservation, usability, and discoverability. Data Documentation: Develop comprehensive data set documentation describing the instruments, data collection and derivation methods, and data file contents. Data Distribution: Provide discovery and access through NSIDC and NASA data portals to make SnowEx data available to a broad user community Data & User Support: Assist user communities with the selection and usage of SnowEx data products. In an effort to educate and broaden the SnowEx user community, we will present an overview of the SnowEx data products, tools, and services which will be available at the NSIDC DAAC. We hope to gain further insight into how the DAAC can enable the user community to seamlessly and effectively utilize SnowEx data in their research and applications.
NASA Technical Reports Server (NTRS)
Kempler, Steven; Lynnes, Christopher; Vollmer, Bruce; Alcott, Gary; Berrick, Stephen
2009-01-01
Increasingly sophisticated National Aeronautics and Space Administration (NASA) Earth science missions have driven their associated data and data management systems from providing simple point-to-point archiving and retrieval to performing user-responsive distributed multisensor information extraction. To fully maximize the use of remote-sensor-generated Earth science data, NASA recognized the need for data systems that provide data access and manipulation capabilities responsive to research brought forth by advancing scientific analysis and the need to maximize the use and usability of the data. The decision by NASA to purposely evolve the Earth Observing System Data and Information System (EOSDIS) at the Goddard Space Flight Center (GSFC) Earth Sciences (GES) Data and Information Services Center (DISC) and other information management facilities was timely and appropriate. The GES DISC evolution was focused on replacing the EOSDIS Core System (ECS) by reusing the In-house developed disk-based Simple, Scalable, Script-based Science Product Archive (S4PA) data management system and migrating data to the disk archives. Transition was completed in December 2007
High resolution global gridded data for use in population studies
Lloyd, Christopher T.; Sorichetta, Alessandro; Tatem, Andrew J.
2017-01-01
Recent years have seen substantial growth in openly available satellite and other geospatial data layers, which represent a range of metrics relevant to global human population mapping at fine spatial scales. The specifications of such data differ widely and therefore the harmonisation of data layers is a prerequisite to constructing detailed and contemporary spatial datasets which accurately describe population distributions. Such datasets are vital to measure impacts of population growth, monitor change, and plan interventions. To this end the WorldPop Project has produced an open access archive of 3 and 30 arc-second resolution gridded data. Four tiled raster datasets form the basis of the archive: (i) Viewfinder Panoramas topography clipped to Global ADMinistrative area (GADM) coastlines; (ii) a matching ISO 3166 country identification grid; (iii) country area; (iv) and slope layer. Further layers include transport networks, landcover, nightlights, precipitation, travel time to major cities, and waterways. Datasets and production methodology are here described. The archive can be downloaded both from the WorldPop Dataverse Repository and the WorldPop Project website. PMID:28140386
CruiseViewer: SIOExplorer Graphical Interface to Metadata and Archives.
NASA Astrophysics Data System (ADS)
Sutton, D. W.; Helly, J. J.; Miller, S. P.; Chase, A.; Clark, D.
2002-12-01
We are introducing "CruiseViewer" as a prototype graphical interface for the SIOExplorer digital library project, part of the overall NSF National Science Digital Library (NSDL) effort. When complete, CruiseViewer will provide access to nearly 800 cruises, as well as 100 years of documents and images from the archives of the Scripps Institution of Oceanography (SIO). The project emphasizes data object accessibility, a rich metadata format, efficient uploading methods and interoperability with other digital libraries. The primary function of CruiseViewer is to provide a human interface to the metadata database and to storage systems filled with archival data. The system schema is based on the concept of an "arbitrary digital object" (ADO). Arbitrary in that if the object can be stored on a computer system then SIOExplore can manage it. Common examples are a multibeam swath bathymetry file, a .pdf cruise report, or a tar file containing all the processing scripts used on a cruise. We require a metadata file for every ADO in an ascii "metadata interchange format" (MIF), which has proven to be highly useful for operability and extensibility. Bulk ADO storage is managed using the Storage Resource Broker, SRB, data handling middleware developed at the San Diego Supercomputer Center that centralizes management and access to distributed storage devices. MIF metadata are harvested from several sources and housed in a relational (Oracle) database. For CruiseViewer, cgi scripts resident on an Apache server are the primary communication and service request handling tools. Along with the CruiseViewer java application, users can query, access and download objects via a separate method that operates through standard web browsers, http://sioexplorer.ucsd.edu. Both provide the functionability to query and view object metadata, and select and download ADOs. For the CruiseViewer application Java 2D is used to add a geo-referencing feature that allows users to select basemap images and have vector shapes representing query results mapped over the basemap in the image panel. The two methods together address a wide range of user access needs and will allow for widespread use of SIOExplorer.
The 1990 annual statistics and highlights report
NASA Technical Reports Server (NTRS)
Green, James L.
1991-01-01
The National Space Science Data Center (NSSDC) has archived over 6 terabytes of space and Earth science data accumulated over nearly 25 years. It now expects these holdings to nearly double every two years. The science user community needs rapid access to this archival data and information about data. The NSSDC has been set on course to provide just that. Five years ago the NSSDC came on line, becoming easily reachable for thousands of scientists around the world through electronic networks it managed and other international electronic networks to which it connected. Since that time, the data center has developed and implemented over 15 interactive systems, operational nearly 24 hours per day, and is reachable through DECnet, TCP/IP, X25, and BITnet communication protocols. The NSSDC is a clearinghouse for the science user to find data needed through the Master Directory system whether it is at the NSSDC or deposited in over 50 other archives and data management facilities around the world. Over 13,000 users accessed the NSSDC electronic systems, during the past year. Thousands of requests for data have been satisfied, resulting in the NSSDC's sending out a volume of data last year that nearly exceeded a quarter of its holdings. This document reports on some of the highlights and distribution statistics for most of the basic NSSDC operational services for fiscal year 1990. It is intended to be the first of a series of annual reports on how well NSSDC is doing in supporting the space and Earth science user communities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... obtain copies of USIA audiovisual records transferred to the National Archives of the United States? 1256... United States Information Agency Audiovisual Materials in the National Archives of the United States § 1256.98 Can I get access to and obtain copies of USIA audiovisual records transferred to the National...
Online resources for news about toxicology and other environmental topics.
South, J C
2001-01-12
Technology has revolutionized researchers' ability to find and retrieve news stories and press releases. Thanks to electronic library systems and telecommunications--notably the Internet--computer users in seconds can sift through millions of articles to locate mainstream articles about toxicology and other environmental topics. But that does not mean it is easy to find what one is looking for. There is a confusing array of databases and services that archive news articles and press releases: (1) some are free; others cost thousands of dollars a year to access, (2) some include hundreds of newspaper and magazine titles; others cover only one publication, (3) some contain archives going back decades; others have just the latest news, (4) some offer only journalistically balanced reports from mainstream news sources; others mix news with opinions and advocacy and include reports from obscure or biased sources. This article explores ways to find news online - particularly news about toxicology, hazardous chemicals, environmental health and the environment in general. The article covers web sites devoted to environmental news; sites and search engines for general-interest news; newspaper archives; commercial information services; press release distribution services and archives; and other resources and strategies for finding articles in the popular press about toxicology and the environment.
Integrating a local database into the StarView distributed user interface
NASA Technical Reports Server (NTRS)
Silberberg, D. P.
1992-01-01
A distributed user interface to the Space Telescope Data Archive and Distribution Service (DADS) known as StarView is being developed. The DADS architecture consists of the data archive as well as a relational database catalog describing the archive. StarView is a client/server system in which the user interface is the front-end client to the DADS catalog and archive servers. Users query the DADS catalog from the StarView interface. Query commands are transmitted via a network and evaluated by the database. The results are returned via the network and are displayed on StarView forms. Based on the results, users decide which data sets to retrieve from the DADS archive. Archive requests are packaged by StarView and sent to DADS, which returns the requested data sets to the users. The advantages of distributed client/server user interfaces over traditional one-machine systems are well known. Since users run software on machines separate from the database, the overall client response time is much faster. Also, since the server is free to process only database requests, the database response time is much faster. Disadvantages inherent in this architecture are slow overall database access time due to the network delays, lack of a 'get previous row' command, and that refinements of a previously issued query must be submitted to the database server, even though the domain of values have already been returned by the previous query. This architecture also does not allow users to cross correlate DADS catalog data with other catalogs. Clearly, a distributed user interface would be more powerful if it overcame these disadvantages. A local database is being integrated into StarView to overcome these disadvantages. When a query is made through a StarView form, which is often composed of fields from multiple tables, it is translated to an SQL query and issued to the DADS catalog. At the same time, a local database table is created to contain the resulting rows of the query. The returned rows are displayed on the form as well as inserted into the local database table. Identical results are produced by reissuing the query to either the DADS catalog or to the local table. Relational databases do not provide a 'get previous row' function because of the inherent complexity of retrieving previous rows of multiple-table joins. However, since this function is easily implemented on a single table, StarView uses the local table to retrieve the previous row. Also, StarView issues subsequent query refinements to the local table instead of the DADS catalog, eliminating the network transmission overhead. Finally, other catalogs can be imported into the local database for cross correlation with local tables. Overall, it is believe that this is a more powerful architecture for distributed, database user interfaces.
Contents of the JPL Distributed Active Archive Center (DAAC) archive, version 2-91
NASA Technical Reports Server (NTRS)
Smith, Elizabeth A. (Editor); Lassanyi, Ruby A. (Editor)
1991-01-01
The Distributed Active Archive Center (DAAC) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea surface height, surface wind vector, sea surface temperature, atmospheric liquid water, and surface pigment concentration. The Jet Propulsion Laboratory DAAC is an element of the Earth Observing System Data and Information System (EOSDIS) and will be the United States distribution site for the Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.
Finding and Addressing the Gaps: Two Evaluations of Archival Reference Services
ERIC Educational Resources Information Center
Battley, Belinda; Wright, Alicia
2012-01-01
Regular evaluation of archival reference services is essential to ensure that users have appropriate access to the information they need. Archives New Zealand has been measuring customer satisfaction for many years using self-completion questionnaires but recently trialed two new methods of evaluation, using external research companies. One…
NASA Astrophysics Data System (ADS)
Nass, A.; D'Amore, M.; Helbert, J.
2018-04-01
An archiving structure and reference level of derived and already published data supports the scientific community significantly by a constant rise of knowledge and understanding based on recent discussions within Information Science and Management.
VESPA: Developing the Planetary Science Virtual Observatory in H2020
NASA Astrophysics Data System (ADS)
Erard, S.; Cecconi, B.; Le Sidaner, P.; Capria, T.; Rossi, A. P.; Schmitt, B.; André, N.; Vandaele, A.-C.; Scherf, M.; Hueso, R.; Maattanen, A.; Thuillot, W.; Achilleos, N.; Marmo, C.; Santolik, O.; Benson, K.; Bollard, Ph.
2015-10-01
The Europlanet H2020 programme will develop a research infrastructure in Horizon 2020. The programme includes a follow-on to the FP7 activity aimed at developing the Planetary Science Virtual Observatory (VO). This activity is called VESPA, which stands for Virtual European Solar and Planetary Access. Building on the IDIS activity of Europlanet FP7, VESPA will distribute more data, will improve the connected tools and infrastructure, and will help developing a community of both users and data providers. One goal of the Europlanet FP7 programme was to set the basis for a European Virtual Observatory in Planetary Science. A prototype has been set up during FP7, most of the activity being dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), plasma physics (SPASE), and space archive services (IPDA). It remains consistent with extensions of IVOA standards.
VESPA: developing the planetary science Virtual Observatory in H2020
NASA Astrophysics Data System (ADS)
Erard, Stéphane; Cecconi, Baptiste; Le Sidaner, Pierre; Capria, Teresa; Rossi, Angelo Pio
2016-04-01
The Europlanet H2020 programme will develop a research infrastructure in Horizon 2020. The programme includes a follow-on to the FP7 activity aimed at developing the Planetary Science Virtual Observatory (VO). This activity is called VESPA, which stands for Virtual European Solar and Planetary Access. Building on the IDIS activity of Europlanet FP7, VESPA will distribute more data, will improve the connected tools and infrastructure, and will help developing a community of both users and data providers. One goal of the Europlanet FP7 programme was to set the basis for a European Virtual Observatory in Planetary Science. A prototype has been set up during FP7, most of the activity being dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), plasma physics (SPASE), and space archive services (IPDA). It remains consistent with extensions of IVOA standards.
Human rights abuses, transparency, impunity and the Web.
Miles, Steven H
2007-01-01
This paper reviews how human rights advocates during the "war-on-terror" have found new ways to use the World Wide Web (Web) to combat human rights abuses. These include posting of human rights reports; creating large, open-access and updated archives of government documents and other data, tracking CIA rendition flights and maintaining blogs, e-zines, list-serves and news services that rapidly distribute information between journalists, scholars and human rights advocates. The Web is a powerful communication tool for human rights advocates. It is international, instantaneous, and accessible for uploading, archiving, locating and downloading information. For its human rights potential to be fully realized, international law must be strengthened to promote the declassification of government documents, as is done by various freedom of information acts. It is too early to assess the final impact of the Web on human rights abuses in the "war-on-terror". Wide dissemination of government documents and human rights advocates' reports has put the United States government on the defensive and some of its policies have changed in response to public pressure. Even so, the essential elements of secret prisons, detention without charges or trials, and illegal rendition remain intact.
The AmericaView Project - Putting the Earth into Your Hands
,
2005-01-01
The U.S. Geological Survey (USGS) is a leader in collecting, archiving, and distributing geospatial data and information about the Earth. Providing quick, reliable access to remotely sensed images and geospatial data is the driving principle behind the AmericaView Project. A national not-for-profit organization, AmericaView, Inc. was established and is supported by the USGS to coordinate the activities of a national network of university-led consortia with the primary objective of the advancement of the science of remote sensing. Individual consortia members include academic institutions, as well as state, local, and tribal government agencies. AmericaView's focus is to expand the understanding and use of remote sensing through education and outreach efforts and to provide affordable, integrated remote sensing information access and delivery to the American public. USGS's Landsat and NASA's Earth Observing System (EOS) satellite data are downlinked from satellites or transferred from other facilities to the USGS Center for Earth Resources Observation and Science (EROS) ground receiving station in Sioux Falls, South Dakota. The data can then be transferred over high-speed networks to consortium members, where it is archived and made available for public use.
NASA Astrophysics Data System (ADS)
Civera Lorenzo, Tamara
2017-10-01
Brief presentation about the J-PLUS EDR data access web portal (http://archive.cefca.es/catalogues/jplus-edr) where the different services available to retrieve images and catalogues data have been presented.J-PLUS Early Data Release (EDR) archive includes two types of data: images and dual and single catalogue data which include parameters measured from images. J-PLUS web portal offers catalogue data and images through several different online data access tools or services each suited to a particular need. The different services offered are: Coverage map Sky navigator Object visualization Image search Cone search Object list search Virtual observatory services: Simple Cone Search Simple Image Access Protocol Simple Spectral Access Protocol Table Access Protocol
Toward a Virtual Solar Observatory: Starting Before the Petabytes Fall
NASA Technical Reports Server (NTRS)
Gurman, J. B.; Fisher, Richard R. (Technical Monitor)
2002-01-01
NASA is currently engaged in the study phase of a modest effort to establish a Virtual Solar Observatory (VSO). The VSO would serve ground- and space-based solar physics data sets from a distributed network of archives through a small number of interfaces to the scientific community. The basis of this approach, as of all planned virtual observatories, is the translation of metadata from the various sources via source-specific dictionaries so the user will not have to distinguish among keyword usages. A single Web interface should give access to all the distributed data. We present the current status of the VSO, its initial scope, and its relation to the European EGSO effort.
A portal for the ocean biogeographic information system
Zhang, Yunqing; Grassle, J. F.
2002-01-01
Since its inception in 1999 the Ocean Biogeographic Information System (OBIS) has developed into an international science program as well as a globally distributed network of biogeographic databases. An OBIS portal at Rutgers University provides the links and functional interoperability among member database systems. Protocols and standards have been established to support effective communication between the portal and these functional units. The portal provides distributed data searching, a taxonomy name service, a GIS with access to relevant environmental data, biological modeling, and education modules for mariners, students, environmental managers, and scientists. The portal will integrate Census of Marine Life field projects, national data archives, and other functional modules, and provides for network-wide analyses and modeling tools.
The PO.DAAC Portal and its use of the Drupal Framework
NASA Astrophysics Data System (ADS)
Alarcon, C.; Huang, T.; Bingham, A.; Cosic, S.
2011-12-01
The Physical Oceanography Distributed Active Archive Center portal (http://podaac.jpl.nasa.gov) is the primary interface for discovering and accessing oceanographic datasets collected from the vantage point of space. In addition, it provides information about NASA's satellite missions and operational activities at the data center. Recently the portal underwent a major redesign and deployment utilizing the Drupal framework. The Drupal framework was chosen as the platform for the portal due to its flexibility, open source community, and modular infrastructure. The portal features efficient content addition and management, mailing lists, forums, role based access control, and a faceted dataset browse capability. The dataset browsing was built as a custom Drupal module and integrates with a SOLR search engine.
Accessing Suomi NPP OMPS Products through the GES DISC Online Data Services
NASA Technical Reports Server (NTRS)
Johnson, J.; Wei, J.; Gerasimov, I.; Vollmer, Bruce E.
2017-01-01
This presentation will provide an overview of the OMPS products available at the GES DISC archive, as well as demonstrate the various data services provided by the GES DISC. Since the TOMS, SBUV, and EOS Aura (OMI, MLS, HIRDLS) data products are also available from the GES DISC archive, these can be easily accessed and compared with the OMPS data.
Evolving the Living With a Star Data System Definition
NASA Astrophysics Data System (ADS)
Otranto, J. F.; Dijoseph, M.
2003-12-01
NASA's Living With a Star (LWS) Program is a space weather-focused and applications-driven research program. The LWS Program is soliciting input from the solar, space physics, space weather, and climate science communities to develop a system that enables access to science data associated with these disciplines, and advances the development of discipline and interdisciplinary findings. The LWS Program will implement a data system that builds upon the existing and planned data capture, processing, and storage components put in place by individual spacecraft missions and also inter-project data management systems, including active and deep archives, and multi-mission data repositories. It is technically feasible for the LWS Program to integrate data from a broad set of resources, assuming they are either publicly accessible or allow access by permission. The LWS Program data system will work in coordination with spacecraft mission data systems and science data repositories, integrating their holdings using a common metadata representation. This common representation relies on a robust metadata definition that provides journalistic and technical data descriptions, plus linkages to supporting data products and tools. The LWS Program intends to become an enabling resource to PIs, interdisciplinary scientists, researchers, and students facilitating both access to a broad collection of science data, as well as the necessary supporting components to understand and make productive use of these data. For the LWS Program to represent science data that are physically distributed across various ground system elements, information will be collected about these distributed data products through a series of LWS Program-created agents. These agents will be customized to interface or interact with each one of these data systems, collect information, and forward any new metadata records to a LWS Program-developed metadata library. A populated LWS metadata library will function as a single point-of-contact that serves the entire science community as a first stop for data availability, whether or not science data are physically stored in an LWS-operated repository. Further, this metadata library will provide the user access to information for understanding these data including descriptions of the associated spacecraft and instrument, data format, calibration and operations issues, links to ancillary and correlative data products, links to processing tools and models associated with these data, and any corresponding findings produced using these data. The LWS may also support an active archive for solar, space physics, space weather, and climate data when these data would otherwise be discarded or archived off-line. This archive could potentially serve also as a data storage backup facility for LWS missions. The plan for the LWS Program metadata library is developed based upon input received from the solar and geospace science communities; the library's architecture is based on existing systems developed for serving science metadata. The LWS Program continues to seek constructive input from the science community, examples of both successes and failures in dealing with science data systems, and insights regarding the obstacles between the current state-of-the-practice and this vision for the LWS Program metadata library.
The design of a petabyte archive and distribution system for the NASA ECS project
NASA Technical Reports Server (NTRS)
Caulk, Parris M.
1994-01-01
The NASA EOS Data and Information System (EOSDIS) Core System (ECS) will contain one of the largest data management systems ever built - the ECS Science and Data Processing System (SDPS). SDPS is designed to support long term Global Change Research by acquiring, producing, and storing earth science data, and by providing efficient means for accessing and manipulating that data. The first two releases of SDPS, Release A and Release B, will be operational in 1997 and 1998, respectively. Release B will be deployed at eight Distributed Active Archiving Centers (DAAC's). Individual DAAC's will archive different collections of earth science data, and will vary in archive capacity. The storage and management of these data collections is the responsibility of the SDPS Data Server subsystem. It is anticipated that by the year 2001, the Data Server subsystem at the Goddard DAAC must support a near-line data storage capacity of one petabyte. The development of SDPS is a system integration effort in which COTS products will be used in favor of custom components in very possible way. Some software and hardware capabilities required to meet ECS data volume and storage management requirements beyond 1999 are not yet supported by available COTS products. The ECS project will not undertake major custom development efforts to provide these capabilities. Instead, SDPS and its Data Server subsystem are designed to support initial implementations with current products, and provide an evolutionary framework that facilitates the introduction of advanced COTS products as they become available. This paper provides a high-level description of the Data Server subsystem design from a COTS integration standpoint, and discussed some of the major issues driving the design. The paper focuses on features of the design that will make the system scalable and adaptable to changing technologies.
Testing the Archivas Cluster (Arc) for Ozone Monitoring Instrument (OMI) Scientific Data Storage
NASA Technical Reports Server (NTRS)
Tilmes, Curt
2005-01-01
The Ozone Monitoring Instrument (OMI) launched on NASA's Aura Spacecraft, the third of the major platforms of the EOS program on July 15,2004. In addition to the long term archive and distribution of the data from OM1 through the Goddard Earth Science Distributed Active Archive Center (GESDAAC), we are evaluating other archive mechanisms that can archive the data in a more immediately available method where it can be used for futher data production and analysis. In 2004, Archivas, Inc. was selected by NASA s Small Business Innovative Research (SBIR) program for the development of their Archivas Cluster (ArC) product. Arc is an online disk based system utilizing self-management and automation on a Linux cluster. Its goal is to produce a low cost solution coupled with the ease of management. The OM1 project is an application partner of the SBIR program, and has deployed a small cluster (5TB) based on the beta Archwas software. We performed extensive testing of the unit using production OM1 data since launch. In 2005, Archivas, Inc. was funded in SBIR Phase II for further development, which will include testing scalability with the deployment of a larger (35TB) cluster at Goddard. We plan to include Arc in the OM1 Team Leader Computing Facility (TLCF) hosting OM1 data for direct access and analysis by the OMI Science Team. This presentation will include a brief technical description of the Archivas Cluster, a summary of the SBIR Phase I beta testing results, and an overview of the OMI ground data processing architecture including its interaction with the Phase II Archivas Cluster and hosting of OMI data for the scientists.
Accessing and Understanding MODIS Data
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Jenkerson, Calli B.; Jodha, Siri
2003-01-01
The National Aeronautics and Space Administration (NASA) launched the Terra satellite in December 1999, as part of the Earth Science Enterprise promotion of interdisciplinary studies of the integrated Earth system. Aqua, the second satellite from the series of EOS constellation, was launched in May 2002. Both satellites carry the MODerate resolution Imaging Spectroradiometer (MODIS) instrument. MODIS data are processed at the Goddard Space Flight Center, Greenbelt, MD, and then archived and distributed by the Distributed Active Archive Centers (DAACs). Data products from the MODIS sensors present new challenges to remote sensing scientists due to specialized production level, data format, and map projection. MODIS data are distributed as calibrated radiances and as higher level products such as: surface reflectance, water-leaving radiances, ocean color and sea surface temperature, land surface kinetic temperature, vegetation indices, leaf area index, land cover, snow cover, sea ice extent, cloud mask, atmospheric profiles, aerosol properties, and many other geophysical parameters. MODIS data are stored in HDF- EOS format in both swath format and in several different map projections. This tutorial guides users through data set characteristics as well as search and order interfaces, data unpacking, data subsetting, and potential applications of the data. A CD-ROM with sample data sets, and software tools for working with the data will be provided to the course participants.
36 CFR 1275.46 - Segregation and review; Senior Archival Panel; Presidential Materials Review Board.
Code of Federal Regulations, 2010 CFR
2010-07-01
...; Senior Archival Panel; Presidential Materials Review Board. 1275.46 Section 1275.46 Parks, Forests, and... Access by the Public § 1275.46 Segregation and review; Senior Archival Panel; Presidential Materials... a panel of senior archivists selected by the Archivist. The Panel shall then have the sole...
36 CFR 1275.46 - Segregation and review; Senior Archival Panel; Presidential Materials Review Board.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Segregation and review; Senior Archival Panel; Presidential Materials Review Board. 1275.46 Section 1275.46 Parks, Forests, and... Access by the Public § 1275.46 Segregation and review; Senior Archival Panel; Presidential Materials...
ERIC Educational Resources Information Center
Gilliland-Swetland, Anne J.
This report examines the experiences and contributions of the archival community--practicing archivists, manuscript curators, archival academics, and policy makers who work to define and promote the social utility of records and to identify, preserve, and provide access to documentary heritage regardless of format. The report addresses how the…
Digital data preservation for scholarly publications in astronomy
NASA Astrophysics Data System (ADS)
Choudhury, Sayeed; di Lauro, Tim; Szalay, Alex; Vishniac, Ethan; Hanisch, Robert; Steffen, Julie; Milkey, Robert; Ehling, Teresa; Plante, Ray
2007-11-01
Astronomy is similar to other scientific disciplines in that scholarly publication relies on the presentation and interpretation of data. But although astronomy now has archives for its primary research telescopes and associated surveys, the highly processed data that is presented in the peer-reviewed journals and is the basis for final analysis and interpretation is generally not archived and has no permanent repository. We have initiated a project whose goal is to implement an end-to-end prototype system which, through a partnership of a professional society, that society's scholarly publications/publishers, research libraries, and an information technology substrate provided by the Virtual Observatory, will capture high-level digital data as part of the publication process and establish a distributed network of curated, permanent data repositories. The data in this network will be accessible through the research journals, astronomy data centers, and Virtual Observatory data discovery portals.
Passive microwave remote sensing for sea ice research
NASA Technical Reports Server (NTRS)
1984-01-01
Techniques for gathering data by remote sensors on satellites utilized for sea ice research are summarized. Measurement of brightness temperatures by a passive microwave imager converted to maps of total sea ice concentration and to the areal fractions covered by first year and multiyear ice are described. Several ancillary observations, especially by means of automatic data buoys and submarines equipped with upward looking sonars, are needed to improve the validation and interpretation of satellite data. The design and performance characteristics of the Navy's Special Sensor Microwave Imager, expected to be in orbit in late 1985, are described. It is recommended that data from that instrument be processed to a form suitable for research applications and archived in a readily accessible form. The sea ice data products required for research purposes are described and recommendations for their archival and distribution to the scientific community are presented.
Specification for the U.S. Geological Survey Historical Topographic Map Collection
Allord, Gregory J.; Walter, Jennifer L.; Fishburn, Kristin A.; Shea, Gale A.
2014-01-01
This document provides the detailed requirements for producing, archiving, and disseminating a comprehensive digital collection of topographic maps for the U.S. Geological Survey (USGS) Historical Topographic Map Collection (HTMC). The HTMC is a digital archive of about 190,000 printed topographic maps published by the USGS from the inception of the topographic mapping program in 1884 until the last paper topographic map using lithographic printing technology was published in 2006. The HTMC provides a comprehensive digital repository of all scales and all editions of USGS printed topographic maps that is easily discovered, browsed, and downloaded by the public at no cost. The HTMC provides ready access to maps that are no longer available for distribution in print. A digital file representing the original paper historical topographic map is produced for each historical map in the HTMC in georeferenced PDF (GeoPDF) format (a portable document format [PDF] with a geospatial extension).
Expanding understanding of optical variability in Lake Superior with a 4-year dataset
NASA Astrophysics Data System (ADS)
Mouw, Colleen B.; Ciochetto, Audrey B.; Grunert, Brice; Yu, Angela
2017-07-01
Lake Superior is one of the largest freshwater lakes on our planet, but few optical observations have been made to allow for the development and validation of visible spectral satellite remote sensing products. The dataset described here focuses on coincidently observing inherent and apparent optical properties along with biogeochemical parameters. Specifically, we observe remote sensing reflectance, absorption, scattering, backscattering, attenuation, chlorophyll concentration, and suspended particulate matter over the ice-free months of 2013-2016. The dataset substantially increases the optical knowledge of the lake. In addition to visible spectral satellite algorithm development, the dataset is valuable for characterizing the variable light field, particle, phytoplankton, and colored dissolved organic matter distributions, and helpful in food web and carbon cycle investigations. The compiled data can be freely accessed at https://seabass.gsfc.nasa.gov/archive/URI/Mouw/LakeSuperior/.
Databases and archiving for cryoEM
Patwardhan, Ardan; Lawson, Catherine L.
2017-01-01
Cryo-EM in structural biology is currently served by three public archives – EMDB for 3DEM reconstructions, PDB for models built from 3DEM reconstructions and EMPIAR for the raw 2D image data used to obtain the 3DEM reconstructions. These archives play a vital role for both the structural community and the wider biological community in making the data accessible so that results may be reused, reassessed and integrated with other structural and bioinformatics resources. The important role of the archives is underpinned by the fact that many journals mandate the deposition of data to PDB and EMDB on publication. The field is currently undergoing transformative changes where on the one hand high-resolution structures are becoming a routine occurrence while on the other hand electron tomography is enabling the study of macromolecules in the cellular context. Concomitantly the archives are evolving to best serve their stakeholder communities. In this chapter we describe the current state of the archives, resources available for depositing, accessing, searching, visualising and validating data, on-going community-wide initiatives and opportunities and challenges for the future. PMID:27572735
Creating a web-based digital photographic archive: one hospital library's experience.
Marshall, Caroline; Hobbs, Janet
2017-04-01
Cedars-Sinai Medical Center is a nonprofit community hospital based in Los Angeles. Its history spans over 100 years, and its growth and development from the merging of 2 Jewish hospitals, Mount Sinai and Cedars of Lebanon, is also part of the history of Los Angeles. The medical library collects and maintains the hospital's photographic archive, to which retiring physicians, nurses, and an active Community Relations Department have donated photographs over the years. The collection was growing rapidly, it was impossible to display all the materials, and much of the collection was inaccessible to patrons. The authors decided to make the photographic collection more accessible to medical staff and researchers by purchasing a web-based digital archival package, Omeka. We decided what material should be digitized by analyzing archival reference requests and considering the institution's plan to create a Timeline Wall documenting and celebrating the history of Cedars-Sinai. Within 8 months, we digitized and indexed over 500 photographs. The digital archive now allows patrons and researchers to access the history of the hospital and enables the library to process archival references more efficiently.
Adaptability in the Development of Data Archiving Services at Johns Hopkins University
NASA Astrophysics Data System (ADS)
Petters, J.; DiLauro, T.; Fearon, D.; Pralle, B.
2015-12-01
Johns Hopkins University (JHU) Data Management Services provides archiving services for institutional researchers through the JHU Data Archive, thereby increasing the access to and use of their research data. From its inception our unit's archiving service has evolved considerably. While some of these changes have been internally driven so that our unit can archive quality data collections more efficiently, we have also developed archiving policies and procedures on the fly in response to researcher needs. Providing our archiving services for JHU research groups from a variety of research disciplines have surfaced different sets of expectations and needs. We have used each interaction to help us refine our services and quickly satisfy the researchers we serve (following the first agile principle). Here we discuss the development of our newest archiving service model, its implementation over the past several months, and the processes by which we have continued to refine and improve our archiving services since its implementation. Through this discussion we will illustrate the benefits of planning, structure and flexibility in development of archiving services that maximize the potential value of research data. We will describe interactions with research groups, including those from environmental engineering and international health, and how we were able to rapidly modify and develop our archiving services to meet their needs (e.g. in an 'agile' way). For example, our interactions with both of these research groups led first to discussion in regular standing meetings and eventually development of new archiving policies and procedures. These policies and procedures centered on limiting access to archived research data while associated manuscripts progress through peer-review and publication.
Contents of the NASA ocean data system archive, version 11-90
NASA Technical Reports Server (NTRS)
Smith, Elizabeth A. (Editor); Lassanyi, Ruby A. (Editor)
1990-01-01
The National Aeronautics and Space Administration (NASA) Ocean Data System (NODS) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea-surface height, surface-wind vector, sea-surface temperature, atmospheric liquid water, and surface pigment concentration. NODS will become the Data Archive and Distribution Service of the JPL Distributed Active Archive Center for the Earth Observing System Data and Information System (EOSDIS) and will be the United States distribution site for Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.
The NAS Computational Aerosciences Archive
NASA Technical Reports Server (NTRS)
Miceli, Kristina D.; Globus, Al; Lasinski, T. A. (Technical Monitor)
1995-01-01
In order to further the state-of-the-art in computational aerosciences (CAS) technology, researchers must be able to gather and understand existing work in the field. One aspect of this information gathering is studying published work available in scientific journals and conference proceedings. However, current scientific publications are very limited in the type and amount of information that they can disseminate. Information is typically restricted to text, a few images, and a bibliography list. Additional information that might be useful to the researcher, such as additional visual results, referenced papers, and datasets, are not available. New forms of electronic publication, such as the World Wide Web (WWW), limit publication size only by available disk space and data transmission bandwidth, both of which are improving rapidly. The Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Ames Research Center is in the process of creating an archive of CAS information on the WWW. This archive will be based on the large amount of information produced by researchers associated with the NAS facility. The archive will contain technical summaries and reports of research performed on NAS supercomputers, visual results (images, animations, visualization system scripts), datasets, and any other supporting meta-information. This information will be available via the WWW through the NAS homepage, located at http://www.nas.nasa.gov/, fully indexed for searching. The main components of the archive are technical summaries and reports, visual results, and datasets. Technical summaries are gathered every year by researchers who have been allotted resources on NAS supercomputers. These summaries, together with supporting visual results and references, are browsable by interested researchers. Referenced papers made available by researchers can be accessed through hypertext links. Technical reports are in-depth accounts of tools and applications research projects performed by NAS staff members and collaborators. Visual results, which may be available in the form of images, animations, and/or visualization scripts, are generated by researchers with respect to a certain research project, depicting dataset features that were determined important by the investigating researcher. For example, script files for visualization systems (e.g. FAST, PLOT3D, AVS) are provided to create visualizations on the user's local workstation to elucidate the key points of the numerical study. Users can then interact with the data starting where the investigator left off. Datasets are intended to give researchers an opportunity to understand previous work, 'mine' solutions for new information (for example, have you ever read a paper thinking "I wonder what the helicity density looks like?"), compare new techniques with older results, collaborate with remote colleagues, and perform validation. Supporting meta-information associated with the research projects is also important to provide additional context for research projects. This may include information such as the software used in the simulation (e.g. grid generators, flow solvers, visualization). In addition to serving the CAS research community, the information archive will also be helpful to students, visualization system developers and researchers, and management. Students (of any age) can use the data to study fluid dynamics, compare results from different flow solvers, learn about meshing techniques, etc., leading to better informed individuals. For these users it is particularly important that visualization be integrated into dataset archives. Visualization researchers can use dataset archives to test algorithms and techniques, leading to better visualization systems, Management can use the data to figure what is really going on behind the viewgraphs. All users will benefit from fast, easy, and convenient access to CFD datasets. The CAS information archive hopes to serve as a useful resource to those interested in computational sciences. At present, only information that may be distributed internationally is made available via the archive. Studies are underway to determine security requirements and solutions to make additional information available. By providing access to the archive via the WWW, the process of information gathering can be more productive and fruitful due to ease of access and ability to manage many different types of information. As the archive grows, additional resources from outside NAS will be added, providing a dynamic source of research results.
BIOME: A browser-aware search and order system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grubb, J.W.; Jennings, S.V.; Yow, T.G.
1996-05-01
The Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC), which is associated with NASA`s Earth Observing System Data and Information System (EOSDIS), provides access to a large number of tabular and imagery datasets used in ecological and environmental research. Because of its large and diverse data holdings, the challenge for the ORNL DAAC is to help users find data of interest from the hundreds of thousands of files available at the DAAC without overwhelming them. Therefore, the ORNL DAAC developed the Biogeochemical Information Ordering Management Environment (BIOME), a search and order system for the World Wide Web (WWW).more » The WWW provides a new vehicle that allows a wide range of users access to the data. This paper describes the specialized attributes incorporated into BIOME that allow researchers easy access to an otherwise bewildering array of data products.« less
Are referring doctors ready for enterprise and community wide immediate image and report access?
Wadley, Brian D; Hayward, Ulrike; Trambert, Michael; Kywi, Alberto; Hartzman, Steve
2002-01-01
At most medical centers film-based radiology requires that single or multiple copies of patient exams and reports be distributed for results communication. A successful picture archiving and communication system (PACS) should provide a means to improve upon this inefficient paradigm, with universal access to imagery and exam results on demand at the user's convenience. Enterprise and community-wide experience with universal PACS access is reviewed. Referring physicians were surveyed about their experience with PACS, with regard to acceptance, productivity, frequency of usage, and impact on patient care. Web audit trails were used to assess physician usage. Film printing logs were reviewed. The filmless paradigm was highly regarded and frequently used by nearly all users. Significant productivity benefits were gleaned by all of the referring physicians. Patient quality of care benefitted from more efficient communication of results. Very small quantities of film were used for printing of exams, typically for patient copies.
NASA Astrophysics Data System (ADS)
Meyer, D. J.; Gallo, K. P.
2009-12-01
The NASA Earth Observation System (EOS) is a long-term, interdisciplinary research mission to study global-scale processes that drive Earth systems. This includes a comprehensive data and information system to provide Earth science researchers with easy, affordable, and reliable access to the EOS and other Earth science data through the EOS Data and Information System (EOSDIS). Data products from EOS and other NASA Earth science missions are stored at Distributed Active Archive Centers (DAACs) to support interactive and interoperable retrieval and distribution of data products. ¶ The Land Processes DAAC (LP DAAC), located at the US Geological Survey’s (USGS) Earth Resources Observation and Science (EROS) Center is one of the twelve EOSDIS data centers, providing both Earth science data and expertise, as well as a mechanism for interaction between EOS data investigators, data center specialists, and other EOS-related researchers. The primary mission of the LP DAAC is stewardship for land data products from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua observation platforms. The co-location of the LP DAAC at EROS strengthens the relationship between the EOSDIS and USGS Earth science activities, linking the basic research and technology development mission of NASA to the operational mission requirements of the USGS. This linkage, along with the USGS’ role as steward of land science data such as the Landsat archive, will prove to be especially beneficial when extending both USGS and EOSDIS data records into the Decadal Survey era. ¶ This presentation provides an overview of the evolution of LP DAAC efforts over the years to improve data discovery, retrieval and preparation services, toward a future of integrated data interoperability between EOSDIS data centers and data holdings of the USGS and its partner agencies. Historical developmental case studies are presented, including the MODIS Reprojection Tool (MRT), the scheduling of ASTER for emergency response, the inclusion of Landsat metadata in the EOS Clearinghouse (ECHO), and the distribution of a global digital elevation model (GDEM) developed from ASTER. A software re-use case study describes integrating the MRT and the USGS Global Visualization tool (GloVis) into the MRTWeb service, developed to provide on-the-fly reprojection and reformatting of MODIS land products. Current LP DAAC activities are presented, such as the Open geographic information systems (GIS) Consortium (OGC) services provided in support of NASA’s Making Earth Science Data Records for Use in Research Environments (MEaSUREs). Near-term opportunities are discussed, such as the design and development of services in support of the soon-to-be completed on-line archive of all LP DAAC ASTER and MODIS data products. Finally, several case studies for future tools are services are explored, such as bringing algorithms to data centers, using the North American ASTER Land Emissivity Database as an example, as well as the potential for integrating data discovery and retrieval services for LP DAAC, Landsat and USGS Long-term Archive holdings.
NASA Astrophysics Data System (ADS)
Oswald, Helmut; Mueller-Jones, Kay; Builtjes, Jan; Fleck, Eckart
1998-07-01
The developments in information technologies -- computer hardware, networking and storage media -- has led to expectations that these advances make it possible to replace 35 mm film completely by digital techniques in the catheter laboratory. Besides the role of an archival medium, cine film is used as the major image review and exchange medium in cardiology. None of the today technologies can fulfill completely the requirements to replace cine film. One of the major drawbacks of cine film is the single access in time and location. For the four catheter laboratories in our institutions we have designed a complementary concept combining the CD-R, also called CD-medical, as a single patient storage and exchange medium, and a digital archive for on-line access and image review of selected frames or short sequences on adequate medical workstations. The image data from various modalities as well as all digital documents regarding to a patient are part of an electronic patient record. The access, the processing and the display of documents is supported by an integrated medical application.
The Post-Soviet Archives: Organization, Access, and Declassification
1993-01-01
attempting to place these files under Poskeirkhlv but has had limited success . The successors to the 503-the Ninistry of Security and the Foreign...their transfer to Roakomazkbiv. Pikhoia was able to take over these archives with some success ; yet, comp~lete control over the RO= archives has alluded...key 1Mironenko interview, May 27, 1992. - 20 - players are involved in the management of the Russian Presidential Archive. First, the director of the
ERIC Educational Resources Information Center
Belsunce, Cesar A. Garcia
1983-01-01
Examination of the situation of archives in four Latin American countries--Argentina, Brazil, Colombia, and Costa Rica--highlights national systems, buildings, staff, processing of documents, accessibility and services to the public and publications and extension services. (EJS)
GHRC: NASAs Hazardous Weather Distributed Active Archive Center
NASA Technical Reports Server (NTRS)
Ramachandran, Rahul; Bugbee, Kaylin
2016-01-01
The Global Hydrology Resource Center (GHRC; ghrc.nsstc.nasa.gov) is one of NASA's twelve Distributed Active Archive Centers responsible for providing access to NASA's Earth science data to users worldwide. Each of NASA's twelve DAACs focuses on a specific science discipline within Earth science, provides data stewardship services and supports its research community's needs. Established in 1991 as the Marshall Space Flight Center DAAC and renamed GHRC in 1997, the data center's original mission focused on the global hydrologic cycle. However, over the years, data holdings, tools and expertise of GHRC have gradually shifted. In 2014, a User Working Group (UWG) was established to review GHRC capabilities and provide recommendations to make GHRC more responsive to the research community's evolving needs. The UWG recommended an update to the GHRC mission, as well as a strategic plan to move in the new direction. After a careful and detailed analysis of GHRC's capabilities, research community needs and the existing data landscape, a new mission statement for GHRC has been crafted: to provide a comprehensive active archive of both data and knowledge augmentation services with a focus on hazardous weather, its governing dynamical and physical processes, and associated applications. Within this broad mandate, GHRC will focus on lightning, tropical cyclones and storm-induced hazards through integrated collections of satellite, airborne, and in-situ data sets. The new mission was adopted at the recent 2015 UWG meeting. GHRC will retain its current name until such time as it has built substantial data holdings aligned with the new mission.
NASA'S Earth Science Data Stewardship Activities
NASA Technical Reports Server (NTRS)
Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram
2015-01-01
NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.
The Prevalence of PCR-Confirmed Pertussis Cases in Palestine From Archived Nasopharyngeal Samples.
Dumaidi, Kamal; Al-Jawabreh, Amer
2018-05-01
Pertussis caused by Bordetella pertussis is a vaccine-preventable disease causing whooping cough in humans of all ages. This study reports infection rate of pertussis in Palestine between the years 2004-2008 from archived nasopharyngeal samples collected from clinically- suspected cases. A convenience archived DNA samples collected from 267 clinically-suspected pertussis cases were investigated for B. pertussis. Laboratory diagnosis was done by examining all DNA samples using polymerase chain reaction (PCR). Approximately 49% (130/267) were confirmed by PCR. A pertussis peak was shown to occur in 2008 with 77% (100/130) of PCR-confirmed cases isolated in that year. PCR-confirmed cases existed in all Palestinian districts with highest rate in Ramallah, Bethlehem, Jenin and Al-Khalil. Half of the PCR-confirmed cases (68/130) were less than 2 months old. The positivity rate among who had three doses of vaccine (at 2, 4 and 6 months) was 38%, and became 50% with the fourth dose at 12 months. The prevalence of pertussis was found to be significantly high among infants less than 2 months old. Active pertussis surveillance using rapid PCR assays is essential, as it is helpful in prompt diagnosis and treatment of patients with pertussis. © 2018 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
EAC and the Development of National and European Gateways to Archives
ERIC Educational Resources Information Center
Ottosson, Per-Gunnar
2005-01-01
In the development of gateways to archives there are two different approaches, one focusing on the descriptions of the material and the other on the creators. Search and retrieval with precision and quality require controlled access points and name authority control. National registries of private archives have a long tradition in implementing the…
NASA Technical Reports Server (NTRS)
Young, Millennia; Van Baalen, Mary
2016-01-01
This session is intended to provide to HRP IWS attendees instant feedback on archived astronaut data, including such topics as content of archives, access, request processing, and data format. Members of the LSAH and LSDA teams will be available at a 'help desk' during the poster sessions to answer questions from researchers.
Evaluating the Benefits of Providing Archived Online Lectures to In-Class Math Students
ERIC Educational Resources Information Center
Cascaval, Radu C.; Fogler, Kethera A.; Abrams, Gene D.; Durham, Robert L.
2008-01-01
The present study examines the impact of a novel online video lecture archiving system on in-class students enrolled in traditional math courses at a mid-sized, primarily undergraduate, university in the West. The archiving system allows in-class students web access to complete video recordings of the actual classroom lectures, and sometimes of…
NASA Astrophysics Data System (ADS)
Mitchell, A. E.; Lowe, D. R.; Murphy, K. J.; Ramapriyan, H. K.
2011-12-01
Initiated in 1990, NASA's Earth Observing System Data and Information System (EOSDIS) is currently a petabyte-scale archive of data designed to receive, process, distribute and archive several terabytes of science data per day from NASA's Earth science missions. Comprised of 12 discipline specific data centers collocated with centers of science discipline expertise, EOSDIS manages over 6800 data products from many science disciplines and sources. NASA supports global climate change research by providing scalable open application layers to the EOSDIS distributed information framework. This allows many other value-added services to access NASA's vast Earth Science Collection and allows EOSDIS to interoperate with data archives from other domestic and international organizations. EOSDIS is committed to NASA's Data Policy of full and open sharing of Earth science data. As metadata is used in all aspects of NASA's Earth science data lifecycle, EOSDIS provides a spatial and temporal metadata registry and order broker called the EOS Clearing House (ECHO) that allows efficient search and access of cross domain data and services through the Reverb Client and Application Programmer Interfaces (APIs). Another core metadata component of EOSDIS is NASA's Global Change Master Directory (GCMD) which represents more than 25,000 Earth science data set and service descriptions from all over the world, covering subject areas within the Earth and environmental sciences. With inputs from the ECHO, GCMD and Soil Moisture Active Passive (SMAP) mission metadata models, EOSDIS is developing a NASA ISO 19115 Best Practices Convention. Adoption of an international metadata standard enables a far greater level of interoperability among national and international data products. NASA recently concluded a 'Metadata Harmony Study' of EOSDIS metadata capabilities/processes of ECHO and NASA's Global Change Master Directory (GCMD), to evaluate opportunities for improved data access and use, reduce efforts by data providers and improve metadata integrity. The result was a recommendation for EOSDIS to develop a 'Common Metadata Repository (CMR)' to manage the evolution of NASA Earth Science metadata in a unified and consistent way by providing a central storage and access capability that streamlines current workflows while increasing overall data quality and anticipating future capabilities. For applications users interested in monitoring and analyzing a wide variety of natural and man-made phenomena, EOSDIS provides access to near real-time products from the MODIS, OMI, AIRS, and MLS instruments in less than 3 hours from observation. To enable interactive exploration of NASA's Earth imagery, EOSDIS is developing a set of standard services to deliver global, full-resolution satellite imagery in a highly responsive manner. EOSDIS is also playing a lead role in the development of the CEOS WGISS Integrated Catalog (CWIC), which provides search and access to holdings of participating international data providers. EOSDIS provides a platform to expose and share information on NASA Earth science tools and data via Earthdata.nasa.gov while offering a coherent and interoperable system for the NASA Earth Science Data System (ESDS) Program.
NASA Astrophysics Data System (ADS)
Mitchell, A. E.; Lowe, D. R.; Murphy, K. J.; Ramapriyan, H. K.
2013-12-01
Initiated in 1990, NASA's Earth Observing System Data and Information System (EOSDIS) is currently a petabyte-scale archive of data designed to receive, process, distribute and archive several terabytes of science data per day from NASA's Earth science missions. Comprised of 12 discipline specific data centers collocated with centers of science discipline expertise, EOSDIS manages over 6800 data products from many science disciplines and sources. NASA supports global climate change research by providing scalable open application layers to the EOSDIS distributed information framework. This allows many other value-added services to access NASA's vast Earth Science Collection and allows EOSDIS to interoperate with data archives from other domestic and international organizations. EOSDIS is committed to NASA's Data Policy of full and open sharing of Earth science data. As metadata is used in all aspects of NASA's Earth science data lifecycle, EOSDIS provides a spatial and temporal metadata registry and order broker called the EOS Clearing House (ECHO) that allows efficient search and access of cross domain data and services through the Reverb Client and Application Programmer Interfaces (APIs). Another core metadata component of EOSDIS is NASA's Global Change Master Directory (GCMD) which represents more than 25,000 Earth science data set and service descriptions from all over the world, covering subject areas within the Earth and environmental sciences. With inputs from the ECHO, GCMD and Soil Moisture Active Passive (SMAP) mission metadata models, EOSDIS is developing a NASA ISO 19115 Best Practices Convention. Adoption of an international metadata standard enables a far greater level of interoperability among national and international data products. NASA recently concluded a 'Metadata Harmony Study' of EOSDIS metadata capabilities/processes of ECHO and NASA's Global Change Master Directory (GCMD), to evaluate opportunities for improved data access and use, reduce efforts by data providers and improve metadata integrity. The result was a recommendation for EOSDIS to develop a 'Common Metadata Repository (CMR)' to manage the evolution of NASA Earth Science metadata in a unified and consistent way by providing a central storage and access capability that streamlines current workflows while increasing overall data quality and anticipating future capabilities. For applications users interested in monitoring and analyzing a wide variety of natural and man-made phenomena, EOSDIS provides access to near real-time products from the MODIS, OMI, AIRS, and MLS instruments in less than 3 hours from observation. To enable interactive exploration of NASA's Earth imagery, EOSDIS is developing a set of standard services to deliver global, full-resolution satellite imagery in a highly responsive manner. EOSDIS is also playing a lead role in the development of the CEOS WGISS Integrated Catalog (CWIC), which provides search and access to holdings of participating international data providers. EOSDIS provides a platform to expose and share information on NASA Earth science tools and data via Earthdata.nasa.gov while offering a coherent and interoperable system for the NASA Earth Science Data System (ESDS) Program.
NASA Astrophysics Data System (ADS)
Rutledge, G. K.; Karl, T. R.; Easterling, D. R.; Buja, L.; Stouffer, R.; Alpert, J.
2001-05-01
A major transition in our ability to evaluate transient Global Climate Model (GCM) simulations is occurring. Real-time and retrospective numerical weather prediction analysis, model runs, climate simulations and assessments are proliferating from a handful of national centers to dozens of groups across the world. It is clear that it is no longer sufficient for any one national center to develop its data services alone. The comparison of transient GCM results with the observational climate record is difficult for several reasons. One limitation is that the global distributions of a number of basic climate quantities, such as precipitation, are not well known. Similarly, observational limitations exist with model re-analysis data. Both the NCEP/NCAR, and the ECMWF, re-analysis eliminate the problems of changing analysis systems but observational data also contain time-dependant biases. These changes in input data are blended with the natural variability making estimates of true variability uncertain. The need for data homogeneity is critical to study questions related to the ability to evaluate simulation of past climate. One approach to correct for time-dependant biases and data sparse regions is the development and use of high quality 'reference' data sets. The primary U.S. National responsibility for the archive and service of weather and climate data rests with the National Climatic Data Center (NCDC). However, as supercomputers increase the temporal and spatial resolution of both Numerical Weather Prediction (NWP) and GCM models, the volume and varied formats of data presented for archive at NCDC, using current communications technologies and data management techniques is limiting the scientific access of these data. To address this ever expanding need for climate and NWP information, NCDC along with the National Center's for Environmental Prediction (NCEP) have initiated the NOAA Operational Model Archive and Distribution System (NOMADS). NOMADS is a collaboration between the Center for Ocean-Land-Atmosphere studies (COLA); the Geophysical Fluid Dynamics Laboratory (GFDL); the George Mason University (GMU); the National Center for Atmospheric Research (NCAR); the NCDC; NCEP; the Pacific Marine Environmental Laboratory (PMEL); and the University of Washington. The objective of the NOMADS is to preserve and provide retrospective access to GCM's and reference quality long-term observational and high volume three dimensional data as well as NCEP NWP models and re-start and re-analysis information. The creation of the NOMADS features a data distribution, format independent, methodology enabling scientific collaboration between researchers. The NOMADS configuration will allow a researcher to transparently browse, extract and intercompare retrospective observational and model data products from any of the participating centers. NOMADS will provide the ability to easily initialize and compare the results of ongoing climate model assessments and NWP output. Beyond the ingest and access capability soon to be implemented with NOMADS is the challenge of algorithm development for the inter-comparison of large-array data (e.g., satellite and radar) with surface, upper-air, and sub-surface ocean observational data. The implementation of NOMADS should foster the development of new quality control processes by taking advantage of distributed data access.
Building a COTS archive for satellite data
NASA Technical Reports Server (NTRS)
Singer, Ken; Terril, Dave; Kelly, Jack; Nichols, Cathy
1994-01-01
The goal of the NOAA/NESDIS Active Archive was to provide a method of access to an online archive of satellite data. The archive had to manage and store the data, let users interrogate the archive, and allow users to retrieve data from the archive. Practical issues of the system design such as implementation time, cost and operational support were examined in addition to the technical issues. There was a fixed window of opportunity to create an operational system, along with budget and staffing constraints. Therefore, the technical solution had to be designed and implemented subject to constraint imposed by the practical issues. The NOAA/NESDIS Active Archive came online in July of 1994, meeting all of its original objectives.
NASA Technical Reports Server (NTRS)
Teng, William; Maidment, David; Rodell, Matthew; Strub, Richard; Arctur, David; Ames, Daniel; Rui, Hualan; Vollmer, Bruce; Seiler, Edward
2014-01-01
An ongoing NASA-funded Data Rods (time series) project has demonstrated the removal of a longstanding barrier to accessing NASA data (i.e., accessing archived time-step array data as point-time series) for selected variables of the North American and Global Land Data Assimilation Systems (NLDAS and GLDAS, respectively) and other NASA data sets. Data rods are pre-generated or generated on-the-fly (OTF), leveraging the NASA Simple Subset Wizard (SSW), a gateway to NASA data centers. Data rods Web services are accessible through the CUAHSI Hydrologic Information System (HIS) and the Goddard Earth Sciences Data and Information Services Center (GES DISC) but are not easily discoverable by users of other non-NASA data systems. An ongoing GEOSS Water Services project aims to develop a distributed, global registry of water data, map, and modeling services cataloged using the standards and procedures of the Open Geospatial Consortium and the World Meteorological Organization. Preliminary work has shown GEOSS can be leveraged to help provide access to data rods. A new NASA-funded project is extending this early work.
Data catalog for JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC)
NASA Technical Reports Server (NTRS)
Digby, Susan
1995-01-01
The Physical Oceanography Distributed Active Archive Center (PO.DAAC) archive at the Jet Propulsion Laboratory contains satellite data sets and ancillary in-situ data for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Geophysical parameters available from the archive include sea-surface height, surface-wind vector, surface-wind speed, surface-wind stress vector, sea-surface temperature, atmospheric liquid water, integrated water vapor, phytoplankton pigment concentration, heat flux, and in-situ data. PO.DAAC is an element of the Earth Observing System Data and Information System and is the United States distribution site for TOPEX/POSEIDON data and metadata.
Sharing Responsibility for Data Stewardship Between Scientists and Curators
NASA Astrophysics Data System (ADS)
Hedstrom, M. L.
2012-12-01
Data stewardship is becoming increasingly important to support accurate conclusions from new forms of data, integration of and computation across heterogeneous data types, interactions between models and data, replication of results, data governance and long-term archiving. In addition to increasing recognition of the importance of data management, data science, and data curation by US and international scientific agencies, the National Academies of Science Board on Research Data and Information is sponsoring a study on Data Curation Education and Workforce Issues. Effective data stewardship requires a distributed effort among scientists who produce data, IT staff and/or vendors who provide data storage and computational facilities and services, and curators who enhance data quality, manage data governance, provide access to third parties, and assume responsibility for long-term archiving of data. The expertise necessary for scientific data management includes a mix of knowledge of the scientific domain; an understanding of domain data requirements, standards, ontologies and analytical methods; facility with leading edge information technology; and knowledge of data governance, standards, and best practices for long-term preservation and access that rarely are found in a single individual. Rather than developing data science and data curation as new and distinct occupations, this paper examines the set of tasks required for data stewardship. The paper proposes an alternative model that embeds data stewardship in scientific workflows and coordinates hand-offs between instruments, repositories, analytical processing, publishers, distributors, and archives. This model forms the basis for defining knowledge and skill requirements for specific actors in the processes required for data stewardship and the corresponding educational and training needs.
NASA Technical Reports Server (NTRS)
Vollmer, Bruce; Kempler, Steven J.; Ramapriyan, Hampapuram K.
2009-01-01
A major need stated by the NASA Earth science research strategy is to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. (NASA Solicitation for Making Earth System data records for Use in Research Environments (MEaSUREs) 2006-2010) Selected projects create long term records of a given parameter, called Earth Science Data Records (ESDRs), based on mature algorithms that bring together continuous multi-sensor data. ESDRs, associated algorithms, vetted by the appropriate community, are archived at a NASA affiliated data center for archive, stewardship, and distribution. See http://measures-projects.gsfc.nasa.gov/ for more details. This presentation describes the NASA GSFC Earth Science Data and Information Services Center (GES DISC) approach to managing the MEaSUREs ESDR datasets assigned to GES DISC. (Energy/water cycle related and atmospheric composition ESDRs) GES DISC will utilize its experience to integrate existing and proven reusable data management components to accommodate the new ESDRs. Components include a data archive system (S4PA), a data discovery and access system (Mirador), and various web services for data access. In addition, if determined to be useful to the user community, the Giovanni data exploration tool will be made available to ESDRs. The GES DISC data integration methodology to be used for the MEaSUREs datasets is presented. The goals of this presentation are to share an approach to ESDR integration, and initiate discussions amongst the data centers, data managers and data providers for the purpose of gaining efficiencies in data management for MEaSUREs projects.
Astronomical Archive at Tartu Observatory
NASA Astrophysics Data System (ADS)
Annuk, K.
2007-10-01
Archiving astronomical data is important task not only at large observatories but also at small observatories. Here we describe the astronomical archive at Tartu Observatory. The archive consists of old photographic plate images, photographic spectrograms, CCD direct--images and CCD spectroscopic data. The photographic plate digitizing project was started in 2005. An on-line database (based on MySQL) was created. The database includes CCD data as well photographic data. A PHP-MySQL interface was written for access to all data.
NASA Astrophysics Data System (ADS)
Miller, C. J.; Gasson, D.; Fuentes, E.
2007-10-01
The NOAO NVO Portal is a web application for one-stop discovery, analysis, and access to VO-compliant imaging data and services. The current release allows for GUI-based discovery of nearly a half million images from archives such as the NOAO Science Archive, the Hubble Space Telescope WFPC2 and ACS instruments, XMM-Newton, Chandra, and ESO's INT Wide-Field Survey, among others. The NOAO Portal allows users to view image metadata, footprint wire-frames, FITS image previews, and provides one-click access to science quality imaging data throughout the entire sky via the Firefox web browser (i.e., no applet or code to download). Users can stage images from multiple archives at the NOAO NVO Portal for quick and easy bulk downloads. The NOAO NVO Portal also provides simplified and direct access to VO analysis services, such as the WESIX catalog generation service. We highlight the features of the NOAO NVO Portal (http://nvo.noao.edu).
NASA Astrophysics Data System (ADS)
Yaqoob, T.
2005-12-01
We describe a public WWW archive (HotGAS) containing data products from Chandra observations using the High Energy Grating Spectrometer (HETGS). Spectral products are available from the archive in various formats and are suitable for use by non-experts and experts alike. Lightcurves and cross-dispersion profiles are also available. Easy and user-friendly access for non X-ray astronomers to reprocessed, publishable quality grating data products should help to promote inter-disciplinary and multi-wavelength research on active galactic nuclei (AGN). The archive will also be useful to X-ray astronomers who have not yet had experience with high resolution X-ray spectroscopy, as well as experienced X-ray astronomers who need quick access to clean and ready-to-go data products. Theoreticians may find the archive useful for testing their models without having to deal with the fine details of data processing and reduction. We also anticipate that the archive will be useful for training graduate students in high-resolution X-ray spectroscopy and for providing a resource for projects for high-school and graduate students. We plan to eventually expand the archive to include AGN data from the Chandra Low Energy Grating Spectrometer (LETGS), and the XMM-Newton Reflection-Grating Spectrometer (RGS). Further in the future we plan to extend the archive to include data from other astrophysical sources aside from AGN. The project thus far is funded by an archival Chandra grant.
A global distributed storage architecture
NASA Technical Reports Server (NTRS)
Lionikis, Nemo M.; Shields, Michael F.
1996-01-01
NSA architects and planners have come to realize that to gain the maximum benefit from, and keep pace with, emerging technologies, we must move to a radically different computing architecture. The compute complex of the future will be a distributed heterogeneous environment, where, to a much greater extent than today, network-based services are invoked to obtain resources. Among the rewards of implementing the services-based view are that it insulates the user from much of the complexity of our multi-platform, networked, computer and storage environment and hides its diverse underlying implementation details. In this paper, we will describe one of the fundamental services being built in our envisioned infrastructure; a global, distributed archive with near-real-time access characteristics. Our approach for adapting mass storage services to this infrastructure will become clear as the service is discussed.
The Montage architecture for grid-enabled science processing of large, distributed datasets
NASA Technical Reports Server (NTRS)
Jacob, Joseph C.; Katz, Daniel S .; Prince, Thomas; Berriman, Bruce G.; Good, John C.; Laity, Anastasia C.; Deelman, Ewa; Singh, Gurmeet; Su, Mei-Hui
2004-01-01
Montage is an Earth Science Technology Office (ESTO) Computational Technologies (CT) Round III Grand Challenge investigation to deploy a portable, compute-intensive, custom astronomical image mosaicking service for the National Virtual Observatory (NVO). Although Montage is developing a compute- and data-intensive service for the astronomy community, we are also helping to address a problem that spans both Earth and Space science, namely how to efficiently access and process multi-terabyte, distributed datasets. In both communities, the datasets are massive, and are stored in distributed archives that are, in most cases, remote from the available Computational resources. Therefore, state of the art computational grid technologies are a key element of the Montage portal architecture. This paper describes the aspects of the Montage design that are applicable to both the Earth and Space science communities.
PDS: A Performance Database Server
Berry, Michael W.; Dongarra, Jack J.; Larose, Brian H.; ...
1994-01-01
The process of gathering, archiving, and distributing computer benchmark data is a cumbersome task usually performed by computer users and vendors with little coordination. Most important, there is no publicly available central depository of performance data for all ranges of machines from personal computers to supercomputers. We present an Internet-accessible performance database server (PDS) that can be used to extract current benchmark data and literature. As an extension to the X-Windows-based user interface (Xnetlib) to the Netlib archival system, PDS provides an on-line catalog of public domain computer benchmarks such as the LINPACK benchmark, Perfect benchmarks, and the NAS parallelmore » benchmarks. PDS does not reformat or present the benchmark data in any way that conflicts with the original methodology of any particular benchmark; it is thereby devoid of any subjective interpretations of machine performance. We believe that all branches (research laboratories, academia, and industry) of the general computing community can use this facility to archive performance metrics and make them readily available to the public. PDS can provide a more manageable approach to the development and support of a large dynamic database of published performance metrics.« less
Digital Scholarship and Open Access
ERIC Educational Resources Information Center
Losoff, Barbara; Pence, Harry E.
2010-01-01
Open access publications provide scholars with unrestricted access to the "conversation" that is the basis for the advancement of knowledge. The large number of open access journals, archives, and depositories already in existence demonstrates the technical and economic viability of providing unrestricted access to the literature that is the…
The IRIS Data Management Center: Enabling Access to Observational Time Series Spanning Decades
NASA Astrophysics Data System (ADS)
Ahern, T.; Benson, R.; Trabant, C.
2009-04-01
The Incorporated Research Institutions for Seismology (IRIS) is funded by the National Science Foundation (NSF) to operate the facilities to generate, archive, and distribute seismological data to research communities in the United States and internationally. The IRIS Data Management System (DMS) is responsible for the ingestion, archiving, curation and distribution of these data. The IRIS Data Management Center (DMC) manages data from more than 100 permanent seismic networks, hundreds of temporary seismic deployments as well as data from other geophysical observing networks such as magnetotelluric sensors, ocean bottom sensors, superconducting gravimeters, strainmeters, surface meteorological measurements, and in-situ atmospheric pressure measurements. The IRIS DMC has data from more than 20 different types of sensors. The IRIS DMC manages approximately 100 terabytes of primary observational data. These data are archived in multiple distributed storage systems that insure data availability independent of any single catastrophic failure. Storage systems include both RAID systems of greater than 100 terabytes as well as robotic tape robots of petabyte capacity. IRIS performs routine transcription of the data to new media and storage systems to insure the long-term viability of the scientific data. IRIS adheres to the OAIS Data Preservation Model in most cases. The IRIS data model requires the availability of metadata describing the characteristics and geographic location of sensors before data can be fully archived. IRIS works with the International Federation of Digital Seismographic Networks (FDSN) in the definition and evolution of the metadata. The metadata insures that the data remain useful to both current and future generations of earth scientists. Curation of the metadata and time series is one of the most important activities at the IRIS DMC. Data analysts and an automated quality assurance system monitor the quality of the incoming data. This insures data are of acceptably high quality. The formats and data structures used by the seismological community are esoteric. IRIS and its FDSN partners are developing web services that can transform the data holdings to structures that are more easily used by broader scientific communities. For instance, atmospheric scientists are interested in using global observations of microbarograph data but that community does not understand the methods of applying instrument corrections to the observations. Web processing services under development at IRIS will transform these data in a manner that allows direct use within such analysis tools as MATLAB® already in use by that community. By continuing to develop web-service based methods of data discovery and access, IRIS is enabling broader access to its data holdings. We currently support data discovery using many of the Open Geospatial Consortium (OGC) web mapping services. We are involved in portal technologies to support data discovery and distribution for all data from the EarthScope project. We are working with computer scientists at several universities including the University of Washington as part of a DataNet proposal and we intend to enhance metadata, further develop ontologies, develop a Registry Service to aid in the discovery of data sets and services, and in general improve the semantic interoperability of the data managed at the IRIS DMC. Finally IRIS has been identified as one of four scientific organizations that the External Research Division of Microsoft wants to work with in the development of web services and specifically with the development of a scientific workflow engine. More specific details of current and future developments at the IRIS DMC will be included in this presentation.
NASA Technical Reports Server (NTRS)
Hilland, Jeffrey E.; Collins, Donald J.; Nichols, David A.
1991-01-01
The Distributed Active Archive Center (DAAC) at the Jet Propulsion Laboratory will support scientists specializing in physical oceanography and air-sea interaction. As part of the NASA Earth Observing System Data and Information System Version 0 the DAAC will build on existing capabilities to provide services for data product generation, archiving, distribution and management of information about data. To meet scientist's immediate needs for data, existing data sets from missions such as Seasat, Geosat, the NOAA series of satellites and the Global Positioning Satellite system will be distributed to investigators upon request. In 1992, ocean topography, wave and surface roughness data from the Topex/Poseidon radar altimeter mission will be archived and distributed. New data products will be derived from Topex/Poseidon and other sensor systems based on recommendations of the science community. In 1995, ocean wind field measurements from the NASA Scatterometer will be supported by the DAAC.
VizieR Online Data Catalog: Spectroscopic Indicators in SeisMic Archive (SISMA) (Rainer+, 2016)
NASA Astrophysics Data System (ADS)
Rainer, M.; Poretti, E.; Misto, A.; Panzera, M. R.; Molinaro, M.; Cepparo, F.; Roth, M.; Michel, E.; Monteiro, M. J. P. F. G.
2017-02-01
We created a large database of physical parameters and variability indicators by fully reducing and analyzing the large number of spectra taken to complement the asteroseismic observations of the COnvection, ROtation and planetary Transits (CoRoT) satellite. CoRoT was launched on 2006 December 27 and it was retired on 2013 June 24. 7103 spectra of 261 stars obtained with the ESO echelle spectrograph High Accuracy Radial velocity Planet Searcher (HARPS) have been stored in the VO-compliant database Spectroscopic Indicators in a SeisMic Archive (SISMA; http://sisma.brera.inaf.it/), along with the CoRoT photometric data of the 72 CoRoT asteroseismic targets. The ground-based activities started with the Large Programme 178.D-0361 using the FEROS spectrograph at the 2.2m telescope of the ESO-La Silla Observatory, and continued with the Large Programmes LP182.D-0356 and LP185.D-0056 using the HARPS instrument at the 3.6m ESO telescope. In the framework of the awarded two HARPS Large Programmes, 15 nights were allocated each semester over nine semesters, from 2008 December to 2013 January, for a total of 135 nights. The HARPS spectrograph covers the spectral range from 3780 to 6910Å, distributed over echelle orders 89-161. We usually used it in the high-efficiency mode EGGS, with resolving power R=80000 to obtain high signal-to-noise ratio (S/N) spectroscopic time series. All of the data (reduced spectra, indicators, and photometric series) are stored as either FITS or PDF files in the SISMA archive and can be accessed at http://sisma.brera.inaf.it/. The data can also be accessed through the Seismic Plus portal (http://voparis-spaceinn.obspm.fr/seismic-plus/), developed in the framework of the SpaceInn project in order to gather and help coordinated access to several different solar and stellar seismic data sources. (1 data file).
SeaDataNet Pan-European infrastructure for Ocean & Marine Data Management
NASA Astrophysics Data System (ADS)
Manzella, G. M.; Maillard, C.; Maudire, G.; Schaap, D.; Rickards, L.; Nast, F.; Balopoulos, E.; Mikhailov, N.; Vladymyrov, V.; Pissierssens, P.; Schlitzer, R.; Beckers, J. M.; Barale, V.
2007-12-01
SEADATANET is developing a Pan-European data management infrastructure to insure access to a large number of marine environmental data (i.e. temperature, salinity current, sea level, chemical, physical and biological properties), safeguard and long term archiving. Data are derived from many different sensors installed on board of research vessels, satellite and the various platforms of the marine observing system. SeaDataNet allows to have information on real time and archived marine environmental data collected at a pan-european level, through directories on marine environmental data and projects. SeaDataNet allows the access to the most comprehensive multidisciplinary sets of marine in-situ and remote sensing data, from about 40 laboratories, through user friendly tools. The data selection and access is operated through the Common Data Index (CDI), XML files compliant with ISO standards and unified dictionaries. Technical Developments carried out by SeaDataNet includes: A library of Standards - Meta-data standards, compliant with ISO 19115, for communication and interoperability between the data platforms. Software of interoperable on line system - Interconnection of distributed data centres by interfacing adapted communication technology tools. Off-Line Data Management software - software representing the minimum equipment of all the data centres is developed by AWI "Ocean Data View (ODV)". Training, Education and Capacity Building - Training 'on the job' is carried out by IOC-Unesco in Ostende. SeaDataNet Virtual Educational Centre internet portal provides basic tools for informal education
ERIC Educational Resources Information Center
Lash, Jeffrey N.
This paper presents a summary of the policies and practices that have governed the accessioning and use of artifacts in the National Archives chiefly over the last decade, and it offers recommendations for the prospective relocation and utilization of artifacts at Archives II. The report is organized around three major headings: a treatment of the…
Building a Digital Library for Multibeam Data, Images and Documents
NASA Astrophysics Data System (ADS)
Miller, S. P.; Staudigel, H.; Koppers, A.; Johnson, C.; Cande, S.; Sandwell, D.; Peckman, U.; Becker, J. J.; Helly, J.; Zaslavsky, I.; Schottlaender, B. E.; Starr, S.; Montoya, G.
2001-12-01
The Scripps Institution of Oceanography, the UCSD Libraries and the San Diego Supercomputing Center have joined forces to establish a digital library for accessing a wide range of multibeam and marine geophysical data, to a community that ranges from the MGG researcher to K-12 outreach clients. This digital library collection will include 233 multibeam cruises with grids, plots, photographs, station data, technical reports, planning documents and publications, drawn from the holdings of the Geological Data Center and the SIO Archives. Inquiries will be made through an Ocean Exploration Console, reminiscent of a cockpit display where a multitude of data may be displayed individually or in two or three-dimensional projections. These displays will provide access to cruise data as well as global databases such as Global Topography, crustal age, and sediment thickness, thus meeting the day-to-day needs of researchers as well as educators, students, and the public. The prototype contains a few selected expeditions, and a review of the initial approach will be solicited from the user community during the poster session. The search process can be focused by a variety of constraints: geospatial (lat-lon box), temporal (e.g., since 1996), keyword (e.g., cruise, place name, PI, etc.), or expert-level (e.g., K-6 or researcher). The Storage Resource Broker (SRB) software from the SDSC manages the evolving collection as a series of distributed but related archives in various media, from shipboard data through processing and final archiving. The latest version of MB-System provides for the systematic creation of standard metadata, and for the harvesting of metadata from multibeam files. Automated scripts will be used to load the metadata catalog to enable queries with an Oracle database management system. These new efforts to bridge the gap between libraries and data archives are supported by the NSF Information Technology and National Science Digital Library (NSDL) programs, augmented by UC funds, and closely coordinated with Digital Library for Earth System Education (DLESE) activities.
Visualization of GPM Standard Products at the Precipitation Processing System (PPS)
NASA Astrophysics Data System (ADS)
Kelley, O.
2010-12-01
Many of the standard data products for the Global Precipitation Measurement (GPM) constellation of satellites will be generated at and distributed by the Precipitation Processing System (PPS) at NASA Goddard. PPS will provide several means to visualize these data products. These visualization tools will be used internally by PPS analysts to investigate potential anomalies in the data files, and these tools will also be made available to researchers. Currently, a free data viewer called THOR, the Tool for High-resolution Observation Review, can be downloaded and installed on Linux, Windows, and Mac OS X systems. THOR can display swath and grid products, and to a limited degree, the low-level data packets that the satellite itself transmits to the ground system. Observations collected since the 1997 launch of the Tropical Rainfall Measuring Mission (TRMM) satellite can be downloaded from the PPS FTP archive, and in the future, many of the GPM standard products will also be available from this FTP site. To provide easy access to this 80 terabyte and growing archive, PPS currently operates an on-line ordering tool called STORM that provides geographic and time searches, browse-image display, and the ability to order user-specified subsets of standard data files. Prior to the anticipated 2013 launch of the GPM core satellite, PPS will expand its visualization tools by integrating an on-line version of THOR within STORM to provide on-the-fly image creation of any portion of an archived data file at a user-specified degree of magnification. PPS will also provide OpenDAP access to the data archive and OGC WMS image creation of both swath and gridded data products. During the GPM era, PPS will continue to provide realtime globally-gridded 3-hour rainfall estimates to the public in a compact binary format (3B42RT) and in a GIS format (2-byte TIFF images + ESRI WorldFiles).
Code of Federal Regulations, 2010 CFR
2010-07-01
... actions and decisions in a manner that facilitates archival processing for public access. Central agency... Defense Other Regulations Relating to National Defense INFORMATION SECURITY OVERSIGHT OFFICE, NATIONAL ARCHIVES AND RECORDS ADMINISTRATION CLASSIFIED NATIONAL SECURITY INFORMATION Declassification § 2001.34...
Current status of the international Halley Watch infrared net archive
NASA Technical Reports Server (NTRS)
Mcguinness, Brian B.
1988-01-01
The primary purposes of the Halley Watch have been to promote Halley observations, coordinate and standardize the observing where useful, and to archive the results in a database readily accessible to cometary scientists. The intention of IHW is to store the observations themselves, along with any information necessary to allow users to understand and use the data, but to exclude interpretations of these data. Each of the archives produced by the IHW will appear in two versions: a printed archive and a digital archive on CD-ROMs. The archive is expected to have a very long lifetime. The IHW has already produced an archive for P/Crommelin. This consists of one printed volume and two 1600 bpi tapes. The Halley archive will contain at least twenty gigabytes of information.
Kalvelage, T.; Willems, Jennifer
2003-01-01
The design of the EOS Data and Information Systems (EOSDIS) to acquire, archive, manage and distribute Earth observation data to the broadest possible user community was discussed. A number of several integrated retrieval, processing and distribution capabilities have been explained. The value of these functions to the users were described and potential future improvements were laid out for the users. The users were interested in acquiring the retrieval, processing and archiving systems integrated so that they can get the data they want in the format and delivery mechanism of their choice.
Mars Observer data production, transfer, and archival: The data production assembly line
NASA Technical Reports Server (NTRS)
Childs, David B.
1993-01-01
This paper describes the data production, transfer, and archival process designed for the Mars Observer Flight Project. It addresses the developmental and operational aspects of the archive collection production process. The developmental aspects cover the design and packaging of data products for archival and distribution to the planetary community. Also discussed is the design and development of a data transfer and volume production process capable of handling the large throughput and complexity of the Mars Observer data products. The operational aspects cover the main functions of the process: creating data and engineering products, collecting the data products and ancillary products in a central repository, producing archive volumes, validating volumes, archiving, and distributing the data to the planetary community.
NASA Technical Reports Server (NTRS)
Hinke, Thomas H.
2004-01-01
Grid technology consists of middleware that permits distributed computations, data and sensors to be seamlessly integrated into a secure, single-sign-on processing environment. In &is environment, a user has to identify and authenticate himself once to the grid middleware, and then can utilize any of the distributed resources to which he has been,panted access. Grid technology allows resources that exist in enterprises that are under different administrative control to be securely integrated into a single processing environment The grid community has adopted commercial web services technology as a means for implementing persistent, re-usable grid services that sit on top of the basic distributed processing environment that grids provide. These grid services can then form building blocks for even more complex grid services. Each grid service is characterized using the Web Service Description Language, which provides a description of the interface and how other applications can access it. The emerging Semantic grid work seeks to associates sufficient semantic information with each grid service such that applications wii1 he able to automatically select, compose and if necessary substitute available equivalent services in order to assemble collections of services that are most appropriate for a particular application. Grid technology has been used to provide limited support to various Earth and space science applications. Looking to the future, this emerging grid service technology can provide a cyberinfrastructures for both the Earth and space science communities. Groups within these communities could transform those applications that have community-wide applicability into persistent grid services that are made widely available to their respective communities. In concert with grid-enabled data archives, users could easily create complex workflows that extract desired data from one or more archives and process it though an appropriate set of widely distributed grid services discovered using semantic grid technology. As required, high-end computational resources could be drawn from available grid resource pools. Using grid technology, this confluence of data, services and computational resources could easily be harnessed to transform data from many different sources into a desired product that is delivered to a user's workstation or to a web portal though which it could be accessed by its intended audience.
Picture archiving and communication in radiology.
Napoli, Marzia; Nanni, Marinella; Cimarra, Stefania; Crisafulli, Letizia; Campioni, Paolo; Marano, Pasquale
2003-01-01
After over 80 years of exclusive archiving of radiologic films, at present, in Radiology, digital archiving is increasingly gaining ground. Digital archiving allows a considerable reduction in costs and space saving, but most importantly, immediate or remote consultation of all examinations and reports in the hospital clinical wards, is feasible. The RIS system, in this case, is the starting point of the process of electronic archiving which however is the task of PACS. The latter can be used as radiologic archive in accordance with the law provided that it is in conformance with some specifications as the use of optical long-term storage media or with electronic track of change. PACS archives, in a hierarchical system, all digital images produced by each diagnostic imaging modality. Images and patient data can be retrieved and used for consultation or remote consultation by the reporting radiologist who requires images and reports of previous radiologic examinations or by the referring physician of the ward. Modern PACS owing to the WEB server allow remote access to extremely simplified images and data however ensuring the due regulations and access protections. Since the PACS enables a simpler data communication within the hospital, security and patient privacy should be protected. A secure and reliable PACS should be able to minimize the risk of accidental data destruction, and should prevent non authorized access to the archive with adequate security measures in relation to the acquired knowledge and based on the technological advances. Archiving of data produced by modern digital imaging is a problem now present also in small Radiology services. The technology is able to readily solve problems which were extremely complex up to some years ago as the connection between equipment and archiving system owing also to the universalization of the DICOM 3.0 standard. The evolution of communication networks and the use of standard protocols as TCP/IP can minimize problems of data and image remote transmission within the healthcare enterprise as well as over the territory. However, new problems are appearing as that of digital data security profiles and of the different systems which should ensure it. Among these, algorithms of electronic signature should be mentioned. In Italy they are validated by law and therefore can be used in digital archives in accordance with the law.
Introducing the PRIDE Archive RESTful web services.
Reisinger, Florian; del-Toro, Noemi; Ternent, Tobias; Hermjakob, Henning; Vizcaíno, Juan Antonio
2015-07-01
The PRIDE (PRoteomics IDEntifications) database is one of the world-leading public repositories of mass spectrometry (MS)-based proteomics data and it is a founding member of the ProteomeXchange Consortium of proteomics resources. In the original PRIDE database system, users could access data programmatically by accessing the web services provided by the PRIDE BioMart interface. New REST (REpresentational State Transfer) web services have been developed to serve the most popular functionality provided by BioMart (now discontinued due to data scalability issues) and address the data access requirements of the newly developed PRIDE Archive. Using the API (Application Programming Interface) it is now possible to programmatically query for and retrieve peptide and protein identifications, project and assay metadata and the originally submitted files. Searching and filtering is also possible by metadata information, such as sample details (e.g. species and tissues), instrumentation (mass spectrometer), keywords and other provided annotations. The PRIDE Archive web services were first made available in April 2014. The API has already been adopted by a few applications and standalone tools such as PeptideShaker, PRIDE Inspector, the Unipept web application and the Python-based BioServices package. This application is free and open to all users with no login requirement and can be accessed at http://www.ebi.ac.uk/pride/ws/archive/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Giardini, D.; van Eck, T.; Bossu, R.; Wiemer, S.
2009-04-01
The EC Research infrastructure project NERIES, an Integrated Infrastructure Initiative in seismology for 2006-2010 has passed its mid-term point. We will present a short concise overview of the current state of the project, established cooperation with other European and global projects and the planning for the last year of the project. Earthquake data archiving and access within Europe has dramatically improved during the last two years. This concerns earthquake parameters, digital broadband and acceleration waveforms and historical data. The Virtual European Broadband Seismic Network (VEBSN) consists currently of more then 300 stations. A new distributed data archive concept, the European Integrated Waveform Data Archive (EIDA), has been implemented in Europe connecting the larger European seismological waveform data. Global standards for earthquake parameter data (QuakeML) and tomography models have been developed and are being established. Web application technology has been and is being developed to make a jump start to the next generation data services. A NERIES data portal provides a number of services testing the potential capacities of new open-source web technologies. Data application tools like shakemaps, lossmaps, site response estimation and tools for data processing and visualisation are currently available, although some of these tools are still in an alpha version. A European tomography reference model will be discussed at a special workshop in June 2009. Shakemaps, coherent with the NEIC application, are implemented in, among others, Turkey, Italy, Romania, Switzerland, several countries. The comprehensive site response software is being distributed and used both inside and outside the project. NERIES organises several workshops inviting both consortium and non-consortium participants and covering a wide range of subjects: ‘Seismological observatory operation tools', ‘Tomography', ‘Ocean bottom observatories', 'Site response software training', ‘Historical earthquake catalogues', ‘Distribution of acceleration data', etc. Some of these workshops are coordinated with other organisations/projects, like ORFEUS, ESONET, IRIS, etc. NERIES still offers grants to individual researchers or groups to work at facilities such as the Swiss national seismological network (SED/ETHZ, Switzerland), the CEA/DASE facilities in France, the data scanning facilities at INGV (SISMOS), the array facilities of NORSAR (Norway) and the new Conrad Facility in Austria.
NASA Astrophysics Data System (ADS)
Nettles, J. J.; Bowring, J. F.
2014-12-01
NSF requires data management plans as part of funding proposals and geochronologists, among other scientists, are archiving their data and results to the public cloud archives managed by the NSF-funded Integrated Earth Data Applications, or IEDA. GeoChron is a database for geochronology housed within IEDA. The software application U-Pb_Redux developed at the Cyber Infrastructure Research and Development Lab for the Earth Sciences (CIRDLES.org) at the College of Charleston provides seamless connectivity to GeoChron for uranium-lead (U-Pb) geochronologists to automatically upload and retrieve their data and results. U-Pb_Redux also manages publication-quality documents including report tables and graphs. CHRONI is a lightweight mobile application for Android devices that provides easy access to these archived data and results. With CHRONI, U-Pb geochronologists can view archived data and analyses downloaded from the Geochron database, or any other location, in a customizable format. CHRONI uses the same extensible markup language (XML) schema and documents used by U-Pb_Redux and GeoChron. Report Settings are special XML files that can be customized in U-Pb_Redux, stored in the cloud, and then accessed and used in CHRONI to create the same customized data display on the mobile device. In addition to providing geologists effortless and mobile access to archived data and analyses, CHRONI allows users to manage their GeoChron credentials, quickly download private and public files via a specified IEDA International Geo Sample Number (IGSN) or URL, and view specialized graphics associated with particular IGSNs. Future versions of CHRONI will be developed to support iOS compatible devices. CHRONI is an open source project under the Apache 2 license and is hosted at https://github.com/CIRDLES/CHRONI. We encourage community participation in its continued development.
Tools for Integrating Data Access from the IRIS DMC into Research Workflows
NASA Astrophysics Data System (ADS)
Reyes, C. G.; Suleiman, Y. Y.; Trabant, C.; Karstens, R.; Weertman, B. R.
2012-12-01
Web service interfaces at the IRIS Data Management Center (DMC) provide access to a vast archive of seismological and related geophysical data. These interfaces are designed to easily incorporate data access into data processing workflows. Examples of data that may be accessed include: time series data, related metadata, and earthquake information. The DMC has developed command line scripts, MATLAB® interfaces and a Java library to support a wide variety of data access needs. Users of these interfaces do not need to concern themselves with web service details, networking, or even (in most cases) data conversion. Fetch scripts allow access to the DMC archive and are a comfortable fit for command line users. These scripts are written in Perl and are well suited for automation and integration into existing workflows on most operating systems. For metdata and event information, the Fetch scripts even parse the returned data into simple text summaries. The IRIS Java Web Services Library (IRIS-WS Library) allows Java developers the ability to create programs that access the DMC archives seamlessly. By returning the data and information as native Java objects the Library insulates the developer from data formats, network programming and web service details. The MATLAB interfaces leverage this library to allow users access to the DMC archive directly from within MATLAB (r2009b or newer), returning data into variables for immediate use. Data users and research groups are developing other toolkits that use the DMC's web services. Notably, the ObsPy framework developed at LMU Munich is a Python Toolbox that allows seamless access to data and information via the DMC services. Another example is the MATLAB-based GISMO and Waveform Suite developments that can now access data via web services. In summary, there now exist a host of ways that researchers can bring IRIS DMC data directly into their workflows. MATLAB users can use irisFetch.m, command line users can use the various Fetch scripts, Java users can use the IRIS-WS library, and Python users may request data through ObsPy. To learn more about any of these clients see http://www.iris.edu/ws/wsclients/.
A communication efficient and scalable distributed data mining for the astronomical data
NASA Astrophysics Data System (ADS)
Govada, A.; Sahay, S. K.
2016-07-01
In 2020, ∼60PB of archived data will be accessible to the astronomers. But to analyze such a paramount data will be a challenging task. This is basically due to the computational model used to download the data from complex geographically distributed archives to a central site and then analyzing it in the local systems. Because the data has to be downloaded to the central site, the network BW limitation will be a hindrance for the scientific discoveries. Also analyzing this PB-scale on local machines in a centralized manner is challenging. In this, virtual observatory is a step towards this problem, however, it does not provide the data mining model (Zhang et al., 2004). Adding the distributed data mining layer to the VO can be the solution in which the knowledge can be downloaded by the astronomers instead the raw data and thereafter astronomers can either reconstruct the data back from the downloaded knowledge or use the knowledge directly for further analysis. Therefore, in this paper, we present Distributed Load Balancing Principal Component Analysis for optimally distributing the computation among the available nodes to minimize the transmission cost and downloading cost for the end user. The experimental analysis is done with Fundamental Plane (FP) data, Gadotti data and complex Mfeat data. In terms of transmission cost, our approach performs better than Qi et al. and Yue et al. The analysis shows that with the complex Mfeat data ∼90% downloading cost can be reduced for the end user with the negligible loss in accuracy.
Bike-Ped Portal : development of an online nonmotorized traffic count archive.
DOT National Transportation Integrated Search
2017-05-01
Robust bicycle and pedestrian data on a national scale would serve numerous purposes. Access to a centralized nonmotorized traffic count : archive can open the door for innovation through research, design and planning; provide safety researchers with...
[Open access :an opportunity for biomedical research].
Duchange, Nathalie; Autard, Delphine; Pinhas, Nicole
2008-01-01
Open access within the scientific community depends on the scientific context and the practices of the field. In the biomedical domain, the communication of research results is characterised by the importance of the peer reviewing process, the existence of a hierarchy among journals and the transfer of copyright to the editor. Biomedical publishing has become a lucrative market and the growth of electronic journals has not helped lower the costs. Indeed, it is difficult for today's public institutions to gain access to all the scientific literature. Open access is thus imperative, as demonstrated through the positions taken by a growing number of research funding bodies, the development of open access journals and efforts made in promoting open archives. This article describes the setting up of an Inserm portal for publication in the context of the French national protocol for open-access self-archiving and in an international context.
Huh, Sun
2013-01-01
ScienceCentral, a free or open access, full-text archive of scientific journal literature at the Korean Federation of Science and Technology Societies, was under test in September 2013. Since it is a Journal Article Tag Suite-based full text database, extensible markup language files of all languages can be presented, according to Unicode Transformation Format 8-bit encoding. It is comparable to PubMed Central: however, there are two distinct differences. First, its scope comprises all science fields; second, it accepts all language journals. Launching ScienceCentral is the first step for free access or open access academic scientific journals of all languages to leap to the world, including scientific journals from Croatia.
NASA Technical Reports Server (NTRS)
Andres, Vince; Walter, David; Hallal, Charles; Jones, Helene; Callac, Chris
2004-01-01
The SSC Multimedia Archive is an automated electronic system to manage images, acquired both by film and digital cameras, for the Public Affairs Office (PAO) at Stennis Space Center (SSC). Previously, the image archive was based on film photography and utilized a manual system that, by today s standards, had become inefficient and expensive. Now, the SSC Multimedia Archive, based on a server at SSC, contains both catalogs and images for pictures taken both digitally and with a traditional, film-based camera, along with metadata about each image. After a "shoot," a photographer downloads the images into the database. Members of the PAO can use a Web-based application to search, view and retrieve images, approve images for publication, and view and edit metadata associated with the images. Approved images are archived and cross-referenced with appropriate descriptions and information. Security is provided by allowing administrators to explicitly grant access privileges to personnel to only access components of the system that they need to (i.e., allow only photographers to upload images, only PAO designated employees may approve images).
The Gran Telescopio Canarias and Calar Alto Virtual Observatory Compliant Archives
NASA Astrophysics Data System (ADS)
Alacid, J. M.; Solano, E.; Jiménez-Esteban, F. M.; Velasco, A.
2014-05-01
The Gran Telescopio Canarias and Calar Alto archives are the result of the collaboration agreements between the Centro de Astrobiología and two entities: GRANTECAN S.A. and the Centro Astronómico Hispano Alemán (CAHA). The archives have been developed in the framework of the Spanish Virtual Observatory and are maintained by the Data Archive Unit at Centro de Astrobiología. The archives contain both raw and science ready data and have been designed in compliance with the standards defined by the International Virtual Observatory Alliance, which guarantees a high level of data accessibility and handling. In this paper we describe the main characteristics and functionalities of both archives.
The Gran Telescopio Canarias and Calar Alto Virtual Observatory compliant archives
NASA Astrophysics Data System (ADS)
Solano, Enrique; Gutiérrez, Raúl; Alacid, José Manuel; Jiménez-Esteban, Francisco; Velasco Trasmonte, Almudena
2012-09-01
The Gran Telescopio Canarias (GTC) and Calar Alto archives are the result of the collaboration agreements between the Centro de Astrobiología (CAB, INTA-CSIC)) and two entities: GRANTECAN S.A. and the Centro Astronómico Hispano Alemán (CAHA). The archives have been developed in the framework of the Spanish Virtual Observatory and are maintained by the Data Archive Unit at CAB. The archives contain both raw and science ready data and have been designed in compliance with the standards defined by the International Virtual Observatory Alliance (IVOA) which guarantees a high level of data accessibility and handling. In this paper we describe the main characteristics and functionalities of both archives.
ERIC Educational Resources Information Center
Jenkins, Celia; Probets, Steve; Oppenheim, Charles; Hubbard, Bill
2007-01-01
Purpose: The purpose of this research is to show how the self-archiving of journal papers is a major step towards providing open access to research. However, copyright transfer agreements (CTAs) that are signed by an author prior to publication often indicate whether, and in what form, self-archiving is allowed. The SHERPA/RoMEO database enables…
High-performance mass storage system for workstations
NASA Technical Reports Server (NTRS)
Chiang, T.; Tang, Y.; Gupta, L.; Cooperman, S.
1993-01-01
Reduced Instruction Set Computer (RISC) workstations and Personnel Computers (PC) are very popular tools for office automation, command and control, scientific analysis, database management, and many other applications. However, when using Input/Output (I/O) intensive applications, the RISC workstations and PC's are often overburdened with the tasks of collecting, staging, storing, and distributing data. Also, by using standard high-performance peripherals and storage devices, the I/O function can still be a common bottleneck process. Therefore, the high-performance mass storage system, developed by Loral AeroSys' Independent Research and Development (IR&D) engineers, can offload a RISC workstation of I/O related functions and provide high-performance I/O functions and external interfaces. The high-performance mass storage system has the capabilities to ingest high-speed real-time data, perform signal or image processing, and stage, archive, and distribute the data. This mass storage system uses a hierarchical storage structure, thus reducing the total data storage cost, while maintaining high-I/O performance. The high-performance mass storage system is a network of low-cost parallel processors and storage devices. The nodes in the network have special I/O functions such as: SCSI controller, Ethernet controller, gateway controller, RS232 controller, IEEE488 controller, and digital/analog converter. The nodes are interconnected through high-speed direct memory access links to form a network. The topology of the network is easily reconfigurable to maximize system throughput for various applications. This high-performance mass storage system takes advantage of a 'busless' architecture for maximum expandability. The mass storage system consists of magnetic disks, a WORM optical disk jukebox, and an 8mm helical scan tape to form a hierarchical storage structure. Commonly used files are kept in the magnetic disk for fast retrieval. The optical disks are used as archive media, and the tapes are used as backup media. The storage system is managed by the IEEE mass storage reference model-based UniTree software package. UniTree software will keep track of all files in the system, will automatically migrate the lesser used files to archive media, and will stage the files when needed by the system. The user can access the files without knowledge of their physical location. The high-performance mass storage system developed by Loral AeroSys will significantly boost the system I/O performance and reduce the overall data storage cost. This storage system provides a highly flexible and cost-effective architecture for a variety of applications (e.g., realtime data acquisition with a signal and image processing requirement, long-term data archiving and distribution, and image analysis and enhancement).
[Wish and reality in installation of a clinic-wide system for image and documentation access].
Rau, W S; Schwabe, C
1999-04-01
This report describes the problems that can occur in the representation of the radiological workplace in a digital environment. On one hand the radiologist can sometimes access good equipment in "stand-alone" surroundings (CT, laser printer, workstations,...); on the other hand, the existing insufficient communication between different components is only rarely qualified to support the radiological workflow. This unsatisfactory framework handicaps the required clinic-wide distribution of radiological information. From the beginning we defined user groups requiring different radiological data closely associated with specific hard- and software: The radiological workstation in the department for reporting and image processing. The demonstration workstation in wards/outpatient departments for clinicians involved in treatment. Standard PCs with access to the digital medical document for clinicians involved in treatment. At all workstations the medical as well as the legal unity of digital radiological images and the corresponding report is ensured. Only the first two user groups have unrestricted access to the RIS database and to the PACS archive. We have decided that the RIS should be the master of the RIS/PACS-System. For an effective master/slave relationship between RIS and PACS archive and PACS workstations we suggest to mark images and/or series of images. The third user group depends on the information exported by the radiologist from PACS. After the report is written and signed by the radiologist, the digital report is transferred from the RIS to the HIS. The report is automatically attached to these images. Authorized personnel at the wards and outpatient are able to read the combination of validated report and exported radiological images as part of the digital medical record with an intranet browser on standard PCs.
DIDBase: Intelligent, Interactive Archiving Technology for Ionogram Data
NASA Astrophysics Data System (ADS)
Reinisch, B. W.; Khmyrov, G.; Galkin, I. A.; Kozlov, A.
2004-12-01
Vertical ionospheric sounding data have been used in a variety of scenarios for ionospheric now-casting. Growing need for an accurate real-time specification of vertical electron density distribution at multiple locations stimulates interest to intelligent data management systems that can arrange concurrent, remote access to the acquired data. This type of data access requires high level of interaction and organization to support routing of data between ionosondes, data analysts, quality validation experts, end user applications, data managers, and online data repositories such as the World Data Centers. Digital Ionogram Database (DIDBase) is a pilot project started at UMASS Lowell in 2001, sponsored in part by the Air Force Research Laboratory, for management of real-time and retro data from a network of 50 digisondes. The DIDBase archives hold both raw and derived digisonde data under management of a commerical strength DBMS, providing convenient means for automated ingestion of real-time data from online digisondes (40 locations worldwide as of September 2004), remote read access to the data over HTTP Web protocol (http://ulcar.uml.edu/DIDBase/), remote read/write access from SAO Explorer workstations used for data visualization and interactive editing, and an ADRES subsystem for automated management of data requests. DIDBase and ADRES employ cross-platform solutions for all involved software, exchange protocols, and data. The paper briefly describes the DIDBase operations during a recent Cal/Val campaign for the SSUSI/SSULI instruments on the DMSP F16 spacecraft. Here 26 online digisondes provided ground-truth NmF2 data for the overhead and limb passes of the spacecraft. Since the start of the campaign in December 2003, the total number of the ADRES requests exceeded 9,000 by summer 2004.
MODIS land data at the EROS data center DAAC
Jenkerson, Calli B.; Reed, B.C.
2001-01-01
The US Geological Survey's (USGS) Earth Resources Observation Systems (EROS) Data Center (EDC) in Sioux Falls, SD, USA, is the primary national archive for land processes data and one of the National Aeronautics and Space Administration's (NASA) Distributed Active Archive Centers (DAAC) for the Earth Observing System (EOS). One of EDC's functions as a DAAC is the archival and distribution of Moderate Resolution Spectroradiometer (MODIS) Land Data collected from the Earth Observing System (EOS) satellite Terra. More than 500,000 publicly available MODIS land data granules totaling 25 Terabytes (Tb) are currently stored in the EDC archive. This collection is managed, archived, and distributed by EOS Data and Information System (EOSDIS) Core System (ECS) at EDC. EDC User Services support the use of MODIS Land data, which include land surface reflectance/albedo, temperature/emissivity, vegetation characteristics, and land cover, by responding to user inquiries, constructing user information sites on the EDC web page, and presenting MODIS materials worldwide.
NASA Astrophysics Data System (ADS)
Petitjean, Gilles; de Hauteclocque, Bertrand
2004-06-01
EADS Defence and Security Systems (EADS DS SA) have developed an expertise as integrator of archive management systems for both their commercial and defence customers (ESA, CNES, EC, EUMETSAT, French MOD, US DOD, etc.), especially in Earth Observation and in Meteorology fields.The concern of valuable data owners is both their long-term preservation but also the integration of the archive in their information system with in particular an efficient access to archived data for their user community. The system integrator answers to this requirement by a methodology combining understanding of user needs, exhaustive knowledge of the existing solutions both for hardware and software elements and development and integration ability. The system integrator completes the facility development by support activities.The long-term preservation of archived data obviously involves a pertinent selection of storage media and archive library. This selection relies on storage technology survey but the selection criteria depend on the analysis of the user needs. The system integrator will recommend the best compromise for implementing an archive management facility, thanks to its knowledge and its independence of storage market and through the analysis of the user requirements. He will provide a solution, which is able to evolve to take advantage of the storage technology progress.But preserving the data for long-term is not only a question of storage technology. Some functions are required to secure the archive management system against contingency situation: multiple data set copies using operational procedures, active quality control of the archived data, migration policy optimising the cost of ownership.
Global distribution of moisture, evaporation-precipitation, and diabatic heating rates
NASA Technical Reports Server (NTRS)
Christy, John R.
1989-01-01
Global archives were established for ECMWF 12-hour, multilevel analysis beginning 1 January 1985; day and night IR temperatures, and solar incoming and solar absorbed. Routines were written to access these data conveniently from NASA/MSFC MASSTOR facility for diagnostic analysis. Calculations of diabatic heating rates were performed from the ECMWF data using 4-day intervals. Calculations of precipitable water (W) from 1 May 1985 were carried out using the ECMWF data. Because a major operational change on 1 May 1985 had a significant impact on the moisture field, values prior to that date are incompatible with subsequent analyses.
Mergers, Acquisitions, and Access: STM Publishing Today
NASA Astrophysics Data System (ADS)
Robertson, Kathleen
Electronic publishing is changing the fundamentals of the entire printing/delivery/archive system that has served as the distribution mechanism for scientific research over the last century and a half. The merger-mania of the last 20 years, preprint pools, and publishers' licensing and journals-bundling plans are among the phenomena impacting the scientific information field. Science-Technology-Medical (STM) publishing is experiencing a period of intense consolidation and reorganization. This paper gives an overview of the economic factors fueling these trends, the major STM publishers, and the government regulatory bodies that referee this industry in Europe, Canada, and the USA.
Documentation of the U.S. Geological Survey Oceanographic Time-Series Measurement Database
Montgomery, Ellyn T.; Martini, Marinna A.; Lightsom, Frances L.; Butman, Bradford
2008-01-02
This report describes the instrumentation and platforms used to make the measurements; the methods used to process, apply quality-control criteria, and archive the data; the data storage format, and how the data are released and distributed. The report also includes instructions on how to access the data from the online database at http://stellwagen.er.usgs.gov/. As of 2016, the database contains about 5,000 files, which may include observations of current velocity, wave statistics, ocean temperature, conductivity, pressure, and light transmission at one or more depths over some duration of time.
A Framework for WWW Query Processing
NASA Technical Reports Server (NTRS)
Wu, Binghui Helen; Wharton, Stephen (Technical Monitor)
2000-01-01
Query processing is the most common operation in a DBMS. Sophisticated query processing has been mainly targeted at a single enterprise environment providing centralized control over data and metadata. Submitting queries by anonymous users on the web is different in such a way that load balancing or DBMS' accessing control becomes the key issue. This paper provides a solution by introducing a framework for WWW query processing. The success of this framework lies in the utilization of query optimization techniques and the ontological approach. This methodology has proved to be cost effective at the NASA Goddard Space Flight Center Distributed Active Archive Center (GDAAC).
Tapering and discontinuation of methadone for chronic pain.
Breivik, Harald
2015-06-01
How to taper and discontinue methadone therapy for chronic pain management is illustrated through a case report. This report is adapted from paineurope 2014; Issue 4, ©Haymarket Medical Publications Ltd, and is presented with permission. paineurope is provided as a service to pain management by Mundipharma International, LTD and is distributed free of charge to healthcare professionals in Europe. Archival issues can be viewed via the website: www.paineurope.com at which health professionals can find links to the original articles and request copies of the quarterly publication and access additional pain education and pain management resources.
Cervicobrachialgia after spinal surgery.
Breivik, Harald
2014-12-01
A case of cervicobrachialgia is presented in which the patient expressed fear of becoming addicted to opioids. Alternative analgesic approaches including anticonvulsants, transcutaneous electrical nerve stimulation (TENS), and physical therapy are discussed. This report is adapted from paineurope 2014; Issue 2, ©Haymarket Medical Publications Ltd, and is presented with permission. Paineurope is provided as a service to pain management by Mundipharma International, LTD and is distributed free of charge to healthcare professionals in Europe. Archival issues can be accessed via the website: http://www.paineurope.com at which European health professionals can register online to receive copies of the quarterly publication.
HepSim: A repository with predictions for high-energy physics experiments
Chekanov, S. V.
2015-02-03
A file repository for calculations of cross sections and kinematic distributions using Monte Carlo generators for high-energy collisions is discussed. The repository is used to facilitate effective preservation and archiving of data from theoretical calculations and for comparisons with experimental data. The HepSim data library is publicly accessible and includes a number of Monte Carlo event samples with Standard Model predictions for current and future experiments. The HepSim project includes a software package to automate the process of downloading and viewing online Monte Carlo event samples. Data streaming over a network for end-user analysis is discussed.
The Cancer Digital Slide Archive - TCGA
Dr. David Gutman and Dr. Lee Cooper developed The Cancer Digital Slide Archive (CDSA), a web platform for accessing pathology slide images of TCGA samples. Find out how they did it and how to use the CDSA website in this Case Study.
NCTN/NCORP Data Archive: Expanding Access to Clinical Trial Data
NCI is launching the NCTN/NCORP Data Archive, a centralized repository of patient-level data from phase III clinical trials conducted by NCI’s NCTN and NCORP trials programs and the National Cancer Institute of Canada-Clinical Trials Group.
Science information systems: Archive, access, and retrieval
NASA Technical Reports Server (NTRS)
Campbell, William J.
1991-01-01
The objective of this research is to develop technology for the automated characterization and interactive retrieval and visualization of very large, complex scientific data sets. Technologies will be developed for the following specific areas: (1) rapidly archiving data sets; (2) automatically characterizing and labeling data in near real-time; (3) providing users with the ability to browse contents of databases efficiently and effectively; (4) providing users with the ability to access and retrieve system independent data sets electronically; and (5) automatically alerting scientists to anomalies detected in data.
2003-04-01
such repositories containing electronic information sources that can be used for academic research. The Los Alamos Physics Archive, providing access to...Pinfield, Gardner and MacColl. 2002). The first e-print server was the Los Alamos Physics Archive, presently known as arXiv.org, which was created in 1991...by Ginsparg (Ginsparg 1996; Luce 2001; McKiernan 2000) at the Los Alamos National Laboratory, to give access to pre-prints in the domain of high
The EOSDIS Products Usability for Disaster Response.
NASA Astrophysics Data System (ADS)
Kafle, D. N.; Wanchoo, L.; Won, Y. I.; Michael, K.
2016-12-01
The Earth Observing System (EOS) Data and Information System (EOSDIS) is a key core capability in NASA's Earth Science Data System Program. The EOSDIS science operations are performed within a distributed system of interconnected nodes: the Science Investigator-led Processing Systems (SIPS), and the distributed, discipline-specific, Earth science Distributed Active Archive Centers (DAACs), which have specific responsibilities for the production, archiving, and distribution of Earth science data products. NASA also established the Land, Atmosphere Near real-time Capability for EOS (LANCE) program through which near real-time (NRT) products are produced and distributed within a latency of no more than 3 hours. These data, including NRT, have been widely used by scientists and researchers for studying Earth system science, climate change, natural variability, and enhanced climate predictions including disaster assessments. The Subcommittee on Disaster Reduction (SDR) has defined 15 major types of disasters such as flood, hurricane, earthquake, volcano, tsunami, etc. The focus of the study is to categorize both NRT and standard data products based on applicability to the SDR-defined disaster types. This will identify which datasets from current NASA satellite missions/instruments are best suited for disaster response. The distribution metrics of the products that have been used for studying various selected disasters that have occurred over last 5 years will be analyzed that include volume, number of files, number of users, user domains, user country, etc. This data usage analysis will provide information to the data centers' staff that can help them develop the functionality and allocate the resources needed for enhanced access and timely availability of the data products that are critical for the time-sensitive analyses.
Proba-V Mission Exploitation Platform
NASA Astrophysics Data System (ADS)
Goor, E.
2017-12-01
VITO and partners developed the Proba-V Mission Exploitation Platform (MEP) as an end-to-end solution to drastically improve the exploitation of the Proba-V (an EC Copernicus contributing mission) EO-data archive, the past mission SPOT-VEGETATION and derived vegetation parameters by researchers, service providers (e.g. the EC Copernicus Global Land Service) and end-users. The analysis of time series of data (PB range) is addressed, as well as the large scale on-demand processing of near real-time data on a powerful and scalable processing environment. New features are still developed, but the platform is yet fully operational since November 2016 and offers A time series viewer (browser web client and API), showing the evolution of Proba-V bands and derived vegetation parameters for any country, region, pixel or polygon defined by the user. Full-resolution viewing services for the complete data archive. On-demand processing chains on a powerfull Hadoop/Spark backend. Virtual Machines can be requested by users with access to the complete data archive mentioned above and pre-configured tools to work with this data, e.g. various toolboxes and support for R and Python. This allows users to immediately work with the data without having to install tools or download data, but as well to design, debug and test applications on the platform. Jupyter Notebooks is available with some examples python and R projects worked out to show the potential of the data. Today the platform is already used by several international third party projects to perform R&D activities on the data, and to develop/host data analysis toolboxes. From the Proba-V MEP, access to other data sources such as Sentinel-2 and landsat data is also addressed. Selected components of the MEP are also deployed on public cloud infrastructures in various R&D projects. Users can make use of powerful Web based tools and can self-manage virtual machines to perform their work on the infrastructure at VITO with access to the complete data archive. To realise this, private cloud technology (openStack) is used and a distributed processing environment is built based on Hadoop. The Hadoop ecosystem offers a lot of technologies (Spark, Yarn, Accumulo) which we integrate with several open-source components (e.g. Geotrellis).
NASA Technical Reports Server (NTRS)
1994-01-01
The Physical Oceanography Distributed Active Archive Center (PO.DAAC) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea-surface height, surface-wind vector, sea-surface temperature, atmospheric liquid water, and integrated water vapor. The JPL PO.DAAC is an element of the Earth Observing System Data and Information System (EOSDIS) and is the United States distribution site for Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.
NASA Astrophysics Data System (ADS)
Baru, C.; Lin, K.
2009-04-01
The Geosciences Network project (www.geongrid.org) has been developing cyberinfrastructure for data sharing in the Earth Science community based on a service-oriented architecture. The project defines a standard "software stack", which includes a standardized set of software modules and corresponding service interfaces. The system employs Grid certificates for distributed user authentication. The GEON Portal provides online access to these services via a set of portlets. This service-oriented approach has enabled the GEON network to easily expand to new sites and deploy the same infrastructure in new projects. To facilitate interoperation with other distributed geoinformatics environments, service standards are being defined and implemented for catalog services and federated search across distributed catalogs. The need arises because there may be multiple metadata catalogs in a distributed system, for example, for each institution, agency, geographic region, and/or country. Ideally, a geoinformatics user should be able to search across all such catalogs by making a single search request. In this paper, we describe our implementation for such a search capability across federated metadata catalogs in the GEON service-oriented architecture. The GEON catalog can be searched using spatial, temporal, and other metadata-based search criteria. The search can be invoked as a Web service and, thus, can be imbedded in any software application. The need for federated catalogs in GEON arises because, (i) GEON collaborators at the University of Hyderabad, India have deployed their own catalog, as part of the iGEON-India effort, to register information about local resources for broader access across the network, (ii) GEON collaborators in the GEO Grid (Global Earth Observations Grid) project at AIST, Japan have implemented a catalog for their ASTER data products, and (iii) we have recently deployed a search service to access all data products from the EarthScope project in the US (http://es-portal.geongrid.org), which are distributed across data archives at IRIS in Seattle, Washington, UNAVCO in Boulder, Colorado, and at the ICDP archives in GFZ, Potsdam, Germany. This service implements a "virtual" catalog--the actual/"physical" catalogs and data are stored at each of the remote locations. A federated search across all these catalogs would enable GEON users to discover data across all of these environments with a single search request. Our objective is to implement this search service via the OGC Catalog Services for the Web (CS-W) standard by providing appropriate CSW "wrappers" for each metadata catalog, as necessary. This paper will discuss technical issues in designing and deploying such a multi-catalog search service in GEON and describe an initial prototype of the federated search capability.
Proba-V Mission Exploitation Platform
NASA Astrophysics Data System (ADS)
Goor, Erwin; Dries, Jeroen
2017-04-01
VITO and partners developed the Proba-V Mission Exploitation Platform (MEP) as an end-to-end solution to drastically improve the exploitation of the Proba-V (a Copernicus contributing mission) EO-data archive (http://proba-v.vgt.vito.be/), the past mission SPOT-VEGETATION and derived vegetation parameters by researchers, service providers and end-users. The analysis of time series of data (+1PB) is addressed, as well as the large scale on-demand processing of near real-time data on a powerful and scalable processing environment. Furthermore data from the Copernicus Global Land Service is in scope of the platform. From November 2015 an operational Proba-V MEP environment, as an ESA operation service, is gradually deployed at the VITO data center with direct access to the complete data archive. Since autumn 2016 the platform is operational and yet several applications are released to the users, e.g. - A time series viewer, showing the evolution of Proba-V bands and derived vegetation parameters from the Copernicus Global Land Service for any area of interest. - Full-resolution viewing services for the complete data archive. - On-demand processing chains on a powerfull Hadoop/Spark backend e.g. for the calculation of N-daily composites. - Virtual Machines can be provided with access to the data archive and tools to work with this data, e.g. various toolboxes (GDAL, QGIS, GrassGIS, SNAP toolbox, …) and support for R and Python. This allows users to immediately work with the data without having to install tools or download data, but as well to design, debug and test applications on the platform. - A prototype of jupyter Notebooks is available with some examples worked out to show the potential of the data. Today the platform is used by several third party projects to perform R&D activities on the data, and to develop/host data analysis toolboxes. In parallel the platform is further improved and extended. From the MEP PROBA-V, access to Sentinel-2 and landsat data will be available as well soon. Users can make use of powerful Web based tools and can self-manage virtual machines to perform their work on the infrastructure at VITO with access to the complete data archive. To realise this, private cloud technology (openStack) is used and a distributed processing environment is built based on Hadoop. The Hadoop ecosystem offers a lot of technologies (Spark, Yarn, Accumulo, etc.) which we integrate with several open-source components (e.g. Geotrellis). The impact of this MEP on the user community will be high and will completely change the way of working with the data and hence open the large time series to a larger community of users. The presentation will address these benefits for the users and discuss on the technical challenges in implementing this MEP. Furthermore demonstrations will be done. Platform URL: https://proba-v-mep.esa.int/
Archiving and Distributing Seismic Data at the Southern California Earthquake Data Center (SCEDC)
NASA Astrophysics Data System (ADS)
Appel, V. L.
2002-12-01
The Southern California Earthquake Data Center (SCEDC) archives and provides public access to earthquake parametric and waveform data gathered by the Southern California Seismic Network and since January 1, 2001, the TriNet seismic network, southern California's earthquake monitoring network. The parametric data in the archive includes earthquake locations, magnitudes, moment-tensor solutions and phase picks. The SCEDC waveform archive prior to TriNet consists primarily of short-period, 100-samples-per-second waveforms from the SCSN. The addition of the TriNet array added continuous recordings of 155 broadband stations (20 samples per second or less), and triggered seismograms from 200 accelerometers and 200 short-period instruments. Since the Data Center and TriNet use the same Oracle database system, new earthquake data are available to the seismological community in near real-time. Primary access to the database and waveforms is through the Seismogram Transfer Program (STP) interface. The interface enables users to search the database for earthquake information, phase picks, and continuous and triggered waveform data. Output is available in SAC, miniSEED, and other formats. Both the raw counts format (V0) and the gain-corrected format (V1) of COSMOS (Consortium of Organizations for Strong-Motion Observation Systems) are now supported by STP. EQQuest is an interface to prepackaged waveform data sets for select earthquakes in Southern California stored at the SCEDC. Waveform data for large-magnitude events have been prepared and new data sets will be available for download in near real-time following major events. The parametric data from 1981 to present has been loaded into the Oracle 9.2.0.1 database system and the waveforms for that time period have been converted to mSEED format and are accessible through the STP interface. The DISC optical-disk system (the "jukebox") that currently serves as the mass-storage for the SCEDC is in the process of being replaced with a series of inexpensive high-capacity (1.6 Tbyte) magnetic-disk RAIDs. These systems are built with PC-technology components, using 16 120-Gbyte IDE disks, hot-swappable disk trays, two RAID controllers, dual redundant power supplies and a Linux operating system. The system is configured over a private gigabit network that connects to the two Data Center servers and spans between the Seismological Lab and the USGS. To ensure data integrity, each RAID disk system constantly checks itself against its twin and verifies file integrity using 128-bit MD5 file checksums that are stored separate from the system. The final level of data protection is a Sony AIT-3 tape backup of the files. The primary advantage of the magnetic-disk approach is faster data access because magnetic disk drives have almost no latency. This means that the SCEDC can provide better "on-demand" interactive delivery of the seismograms in the archive.
The combined EarthScope data set at the IRIS DMC
NASA Astrophysics Data System (ADS)
Trabant, C.; Sharer, G.; Benson, R.; Ahern, T.
2007-12-01
The IRIS Data Management Center (DMC) is the perpetual archive and access point for an ever-increasing variety of geophysical data in terms of volume, geographic distribution and scientific value. A particular highlight is the combined data set produced by the EarthScope project. The DMC archives data from each of the primary components: USArray, the Plate Boundary Observatory (PBO) & the San Andreas Fault Observatory at Depth (SAFOD). Growing at over 4.6 gigabytes per day, the USArray data set currently totals approximately 5 terabytes. Composed of four separate sub-components: the Permanent, Transportable, Flexible and Magnetotelluric Arrays, the USArray data set provides a multi-scale view of the western United States at present and the conterminous United States when it is completed. The primary data from USArray are in the form of broadband and short-period seismic recordings and magnetotelluric measurements. Complementing the data from USArray are the short- period, borehole seismic data and borehole and laser strain data from PBO. The DMC also archives the high- resolution seismic data from instruments in the SAFOD main and pilot drill holes. The SAFOD seismic data is available in two forms: lower-rate monitoring channels sampled at 250 hertz and full resolution channels varying between 1 and 4 kilohertz. Beyond data collection and archive management the DMC performs value-added functions. All data arriving at the DMC as real-time data streams are processed by QUACK, an automated Quality Control (QC) system. All the measurements made by this system are stored in a database and made available to data contributors and users via a web interface including customized report generation. In addition to the automated QC measurements, quality control is performed on USArray data at the DMC by a team of analysts. The primary functions of the analysts are to routinely report data quality assessment to the respective network operators and log serious, unfixable data issues for reference by data users. All of these data are managed in a unified SEED format archive and are seamlessly available to data users via the DMC's&pstandard data access methods along with all the other data managed by the DMC. The only exception is high resolution, special case SAFOD seismic data that is retained in its original SEG-2 format as an assembled data set. A data user can choose between a handful of data access methods ranging from simple email requests to technologically advanced CORBA-based access, streamlining the "information into application" philosophy. Currently totally over 8.5 terabytes and growing, the combined EarthScope data at the DMC provides an unparalleled, multi-measurement record of geophysical information ideal for determining Earth structure and processes in the United States and beyond. A website is maintained to provide current information regarding EarthScope data at the DMC: http://www.iris.edu/earthscope/.
NASA Astrophysics Data System (ADS)
Viegas, F.; Malon, D.; Cranshaw, J.; Dimitrov, G.; Nowak, M.; Nairz, A.; Goossens, L.; Gallas, E.; Gamboa, C.; Wong, A.; Vinek, E.
2010-04-01
The TAG files store summary event quantities that allow a quick selection of interesting events. This data will be produced at a nominal rate of 200 Hz, and is uploaded into a relational database for access from websites and other tools. The estimated database volume is 6TB per year, making it the largest application running on the ATLAS relational databases, at CERN and at other voluntary sites. The sheer volume and high rate of production makes this application a challenge to data and resource management, in many aspects. This paper will focus on the operational challenges of this system. These include: uploading the data from files to the CERN's and remote sites' databases; distributing the TAG metadata that is essential to guide the user through event selection; controlling resource usage of the database, from the user query load to the strategy of cleaning and archiving of old TAG data.
Mass-storage management for distributed image/video archives
NASA Astrophysics Data System (ADS)
Franchi, Santina; Guarda, Roberto; Prampolini, Franco
1993-04-01
The realization of image/video database requires a specific design for both database structures and mass storage management. This issue has addressed the project of the digital image/video database system that has been designed at IBM SEMEA Scientific & Technical Solution Center. Proper database structures have been defined to catalog image/video coding technique with the related parameters, and the description of image/video contents. User workstations and servers are distributed along a local area network. Image/video files are not managed directly by the DBMS server. Because of their wide size, they are stored outside the database on network devices. The database contains the pointers to the image/video files and the description of the storage devices. The system can use different kinds of storage media, organized in a hierarchical structure. Three levels of functions are available to manage the storage resources. The functions of the lower level provide media management. They allow it to catalog devices and to modify device status and device network location. The medium level manages image/video files on a physical basis. It manages file migration between high capacity media and low access time media. The functions of the upper level work on image/video file on a logical basis, as they archive, move and copy image/video data selected by user defined queries. These functions are used to support the implementation of a storage management strategy. The database information about characteristics of both storage devices and coding techniques are used by the third level functions to fit delivery/visualization requirements and to reduce archiving costs.
The archiving and dissemination of biological structure data.
Berman, Helen M; Burley, Stephen K; Kleywegt, Gerard J; Markley, John L; Nakamura, Haruki; Velankar, Sameer
2016-10-01
The global Protein Data Bank (PDB) was the first open-access digital archive in biology. The history and evolution of the PDB are described, together with the ways in which molecular structural biology data and information are collected, curated, validated, archived, and disseminated by the members of the Worldwide Protein Data Bank organization (wwPDB; http://wwpdb.org). Particular emphasis is placed on the role of community in establishing the standards and policies by which the PDB archive is managed day-to-day. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Real-time data archiving for GTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, R.A.; Atkins, W.H.
1992-09-01
The architecture of the GTA control system, the nature of a typical GTA commissioning activity, and the varied interests of those analyzing the data make it challenging to develop a general-purpose scheme for archiving data and making the data available to those who will use it. Addressing the needs of those who develop and trouble-shoot hardware and software increases the challenge. This paper describes the aspects of GTA that affect archiving operations and discusses how the features of the EPICS archiving module meet a variety of needs for storing and accessing data.
Real-time data archiving for GTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, R.A.; Atkins, W.H.
1992-01-01
The architecture of the GTA control system, the nature of a typical GTA commissioning activity, and the varied interests of those analyzing the data make it challenging to develop a general-purpose scheme for archiving data and making the data available to those who will use it. Addressing the needs of those who develop and trouble-shoot hardware and software increases the challenge. This paper describes the aspects of GTA that affect archiving operations and discusses how the features of the EPICS archiving module meet a variety of needs for storing and accessing data.
NASA Astrophysics Data System (ADS)
Verma, R. V.
2018-04-01
The Archive Inventory Management System (AIMS) is a software package for understanding the distribution, characteristics, integrity, and nuances of files and directories in large file-based data archives on a continuous basis.
Henri, C J; Cox, R D; Bret, P M
1997-08-01
This article details our experience in developing and operating an ultrasound mini-picture archiving and communication system (PACS). Using software developed in-house, low-end Macintosh computers (Apple Computer Co. Cupertino, CA) equipped with framegrabbers coordinate the entry of patient demographic information, image acquisition, and viewing on each ultrasound scanner. After each exam, the data are transmitted to a central archive server where they can be accessed from anywhere on the network. The archive server also provides web-based access to the data and manages pre-fetch and other requests for data that may no longer be on-line. Archival is fully automatic and is performed on recordable compact disk (CD) without compression. The system has been filmless now for over 18 months. In the meantime, one film processor has been eliminated and the position of one film clerk has been reallocated. Previously, nine ultrasound machines produced approximately 150 sheets of laser film per day (at 14 images per sheet). The same quantity of data are now archived without compression onto a single CD. Start-up costs were recovered within six months, and the project has been extended to include computed tomography (CT) and magnetic resonance imaging (MRI).
[Spanish funded paediatric research: Contribution of Anales de Pediatría to its dissemination].
Abad-García, María Francisca; González-Teruel, Aurora; Solís Sánchez, Gonzalo
2017-06-01
To identify Spanish funded paediatric research published in general paediatric journals included in the Web of Science (WoS) from 2010 to 2014) and those published in the Anales de Pediatría. To examine the relationship between funding and the prestige of the journals. To describe the journal conditions to meet the open access criteria. Spanish funded paediatric articles (FA) were identified by using the WoS Funding Agency field, and by reviewing the original documents for the Anales de Pediatria (AP). For the FA published in AP the number and kind of funding agencies were identified. The possible differences in citations between FA and non-funded was assessed for articles published in this journal using the Kruskal-Wallis non-parametric test. For general journals, the patterns of distribution of FA and non-FA were investigated according to the quartile of the journal. The journal's self-archiving conditions were described using Sherpa/romeo database. Funding was received for 27.5%, being 16.6% for those published in AP. In these, 105 funding agencies were identified, with 80% being national. The FA published in AP did not receive significantly more citations. In general journals, the presence of FA is greater in Q1 and Q2 journals. More than half (56%) of articles were published in subscription journals. All journals that publish FA allow self-archiving in repositories, but with embargos of at least 12 months. The role of AP in the dissemination of FA is still limited. Embargos in self-archiving permits compliance of Spanish open access mandate, but may hinder compliance in Europe. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.
The Archives of the Department of Terrestrial Magnetism: Documenting 100 Years of Carnegie Science
NASA Astrophysics Data System (ADS)
Hardy, S. J.
2005-12-01
The archives of the Department of Terrestrial Magnetism (DTM) of the Carnegie Institution of Washington document more than a century of geophysical and astronomical investigations. Primary source materials available for historical research include field and laboratory notebooks, equipment designs, plans for observatories and research vessels, scientists' correspondence, and thousands of expedition and instrument photographs. Yet despite its history, DTM long lacked a systematic approach to managing its documentary heritage. A preliminary records survey conducted in 2001 identified more than 1,000 linear feet of historically-valuable records languishing in dusty, poorly-accessible storerooms. Intellectual control at that time was minimal. With support from the National Historical Publications and Records Commission, the "Carnegie Legacy Project" was initiated in 2003 to preserve, organize, and facilitate access to DTM's archival records, as well as those of the Carnegie Institution's administrative headquarters and Geophysical Laboratory. Professional archivists were hired to process the 100-year backlog of records. Policies and procedures were established to ensure that all work conformed to national archival standards. Records were appraised, organized, and rehoused in acid-free containers, and finding aids were created for the project web site. Standardized descriptions of each collection were contributed to the WorldCat bibliographic database and the AIP International Catalog of Sources for History of Physics. Historic photographs and documents were digitized for online exhibitions to raise awareness of the archives among researchers and the general public. The success of the Legacy Project depended on collaboration between archivists, librarians, historians, data specialists, and scientists. This presentation will discuss key aspects (funding, staffing, preservation, access, outreach) of the Legacy Project and is aimed at personnel in observatories, research institutes, and other organizations interested in establishing their own archival programs.
Huh, Sun
2013-01-01
ScienceCentral, a free or open access, full-text archive of scientific journal literature at the Korean Federation of Science and Technology Societies, was under test in September 2013. Since it is a Journal Article Tag Suite-based full text database, extensible markup language files of all languages can be presented, according to Unicode Transformation Format 8-bit encoding. It is comparable to PubMed Central: however, there are two distinct differences. First, its scope comprises all science fields; second, it accepts all language journals. Launching ScienceCentral is the first step for free access or open access academic scientific journals of all languages to leap to the world, including scientific journals from Croatia. PMID:24266292
Migration Stories: Upgrading a PDS Archive to PDS4
NASA Astrophysics Data System (ADS)
Kazden, D. P.; Walker, R. J.; Mafi, J. N.; King, T. A.; Joy, S. P.; Moon, I. S.
2015-12-01
Increasing bandwidth, storage capacity and computational capabilities have greatly increased our ability to access data and use them. A significant challenge, however, is to make data archived under older standards useful in the new data environments. NASA's Planetary Data System (PDS) recently released version 4 of its information model (PDS4). PDS4 is an improvement and has advantages over previous versions. PDS4 adopts the XML standard for metadata and expresses structural requirements with XML Schema and content constraints by using Schematron. This allows for thorough validation by using off the shelf tools. This is a substantial improvement over previous PDS versions. PDS4 was designed to improve discoverability of products (resources) in a PDS archive. These additions allow for more uniform metadata harvesting from the collection level to the product level. New tools and services are being deployed that depend on the data adhering to the PDS4 model. However, the PDS has been an operational archive since 1989 and has large holdings that are compliant with previous versions of the PDS information model. The challenge is the make the older data accessible and useable with the new PDS4 based tools. To provide uniform utility and access to the entire archive the older data must be migrated to the PDS4 model. At the Planetary Plasma Interactions (PPI) Node of the PDS we've been actively planning and preparing to migrate our legacy archive to the new PDS4 standards for several years. With the release of the PDS4 standards we have begun the migration of our archive. In this presentation we will discuss the preparation of the data for the migration and how we are approaching this task. The presentation will consist of a series of stories to describe our experiences and the best practices we have learned.
NASA Astrophysics Data System (ADS)
Smale, Alan P.
2018-06-01
The High Energy Astrophysics Science Archive Research Center (HEASARC) is NASA's primary archive for high energy astrophysics and cosmic microwave background (CMB) data, supporting the broad science goals of NASA's Physics of the Cosmos theme. It provides vital scientific infrastructure to the community by standardizing science data formats and analysis programs, providing open access to NASA resources, and implementing powerful archive interfaces. These enable multimission studies of key astronomical targets, and deliver a major cost savings to NASA and proposing mission teams in terms of a reusable science infrastructure, as well as a time savings to the astronomical community through not having to learn a new analysis system for each new mission. The HEASARC archive holdings are currently in excess of 100 TB, supporting seven active missions (Chandra, Fermi, INTEGRAL, NICER, NuSTAR, Swift, and XMM-Newton), and providing continuing access to data from over 40 missions that are no longer in operation. HEASARC scientists are also engaged with the upcoming IXPE and XARM missions, and with many other Probe, Explorer, SmallSat, and CubeSat proposing teams. Within the HEASARC, the LAMBDA CMB thematic archive provides a permanent archive for NASA mission data from WMAP, COBE, IRAS, SWAS, and a wide selection of suborbital missions and experiments, and hosts many other CMB-related datasets, tools, and resources. In this talk I will summarize the current activities of the HEASARC and our plans for the coming decade. In addition to mission support, we will expand our software and user interfaces to provide astronomers with new capabilities to access and analyze HEASARC data, and continue to work with our Virtual Observatory partners to develop and implement standards to enable improved interrogation and analysis of data regardless of wavelength regime, mission, or archive boundaries. The future looks bright for high energy astrophysics, and the HEASARC looks forward to continuing its central role in the community.
NASA Astrophysics Data System (ADS)
Zhu, F.; Yu, H.; Rilee, M. L.; Kuo, K. S.; Yu, L.; Pan, Y.; Jiang, H.
2017-12-01
Since the establishment of data archive centers and the standardization of file formats, scientists are required to search metadata catalogs for data needed and download the data files to their local machines to carry out data analysis. This approach has facilitated data discovery and access for decades, but it inevitably leads to data transfer from data archive centers to scientists' computers through low-bandwidth Internet connections. Data transfer becomes a major performance bottleneck in such an approach. Combined with generally constrained local compute/storage resources, they limit the extent of scientists' studies and deprive them of timely outcomes. Thus, this conventional approach is not scalable with respect to both the volume and variety of geoscience data. A much more viable solution is to couple analysis and storage systems to minimize data transfer. In our study, we compare loosely coupled approaches (exemplified by Spark and Hadoop) and tightly coupled approaches (exemplified by parallel distributed database management systems, e.g., SciDB). In particular, we investigate the optimization of data placement and movement to effectively tackle the variety challenge, and boost the popularization of parallelization to address the volume challenge. Our goal is to enable high-performance interactive analysis for a good portion of geoscience data analysis exercise. We show that tightly coupled approaches can concentrate data traffic between local storage systems and compute units, and thereby optimizing bandwidth utilization to achieve a better throughput. Based on our observations, we develop a geoscience data analysis system that tightly couples analysis engines with storages, which has direct access to the detailed map of data partition locations. Through an innovation data partitioning and distribution scheme, our system has demonstrated scalable and interactive performance in real-world geoscience data analysis applications.
The Computing and Data Grid Approach: Infrastructure for Distributed Science Applications
NASA Technical Reports Server (NTRS)
Johnston, William E.
2002-01-01
With the advent of Grids - infrastructure for using and managing widely distributed computing and data resources in the science environment - there is now an opportunity to provide a standard, large-scale, computing, data, instrument, and collaboration environment for science that spans many different projects and provides the required infrastructure and services in a relatively uniform and supportable way. Grid technology has evolved over the past several years to provide the services and infrastructure needed for building 'virtual' systems and organizations. We argue that Grid technology provides an excellent basis for the creation of the integrated environments that can combine the resources needed to support the large- scale science projects located at multiple laboratories and universities. We present some science case studies that indicate that a paradigm shift in the process of science will come about as a result of Grids providing transparent and secure access to advanced and integrated information and technologies infrastructure: powerful computing systems, large-scale data archives, scientific instruments, and collaboration tools. These changes will be in the form of services that can be integrated with the user's work environment, and that enable uniform and highly capable access to these computers, data, and instruments, regardless of the location or exact nature of these resources. These services will integrate transient-use resources like computing systems, scientific instruments, and data caches (e.g., as they are needed to perform a simulation or analyze data from a single experiment); persistent-use resources. such as databases, data catalogues, and archives, and; collaborators, whose involvement will continue for the lifetime of a project or longer. While we largely address large-scale science in this paper, Grids, particularly when combined with Web Services, will address a broad spectrum of science scenarios. both large and small scale.
NASA Technical Reports Server (NTRS)
Stevens, Grady H.
1992-01-01
The Data Distribution Satellite (DDS), operating in conjunction with the planned space network, the National Research and Education Network and its commercial derivatives, would play a key role in networking the emerging supercomputing facilities, national archives, academic, industrial, and government institutions. Centrally located over the United States in geostationary orbit, DDS would carry sophisticated on-board switching and make use of advanced antennas to provide an array of special services. Institutions needing continuous high data rate service would be networked together by use of a microwave switching matrix and electronically steered hopping beams. Simultaneously, DDS would use other beams and on board processing to interconnect other institutions with lesser, low rate, intermittent needs. Dedicated links to White Sands and other facilities would enable direct access to space payloads and sensor data. Intersatellite links to a second generation ATDRS, called Advanced Space Data Acquisition and Communications System (ASDACS), would eliminate one satellite hop and enhance controllability of experimental payloads by reducing path delay. Similarly, direct access would be available to the supercomputing facilities and national data archives. Economies with DDS would be derived from its ability to switch high rate facilities amongst users needed. At the same time, having a CONUS view, DDS would interconnect with any institution regardless of how remote. Whether one needed high rate service or low rate service would be immaterial. With the capability to assign resources on demand, DDS will need only carry a portion of the resources needed if dedicated facilities were used. Efficiently switching resources to users as needed, DDS would become a very feasible spacecraft, even though it would tie together the space network, the terrestrial network, remote sites, 1000's of small users, and those few who need very large data links intermittently.
Comprehensive planning of data archive in Japanese planetary missions
NASA Astrophysics Data System (ADS)
Yamamoto, Yukio; Shinohara, Iku; Hoshino, Hirokazu; Tateno, Naoki; Hareyama, Makoto; Okada, Naoki; Ebisawa, Ken
Comprehensive planning of data archive in Japanese planetary missions Japan Aerospace Exploration Agency (JAXA) provides HAYABUSA and KAGUYA data as planetary data archives. These data archives, however, were prepared independently. Therefore the inconsistency of data format has occurred, and the knowledge of data archiving activity is not inherited. Recently, the discussion of comprehensive planning of data archive has started to prepare up-coming planetary missions, which indicates the comprehensive plan of data archive is required in several steps. The framework of the comprehensive plan is divided into four items: Preparation, Evaluation, Preservation, and Service. 1. PREPARATION FRAMEWORK Data is classified into several types: raw data, level-0, 1, 2 processing data, ancillary data, and etc. The task of mission data preparation is responsible for instrument teams, but preparations beside mission data and support of data management are essential to make unified conventions and formats over instruments in a mission, and over missions. 2. EVALUATION FRAMEWORK There are two meanings of evaluation: format and quality. The format evaluation is often discussed in the preparation framework. The data quality evaluation which is often called quality assurance (QA) or quality control (QC) must be performed by third party apart from preparation teams. An instrument team has the initiative for the preparation itself, and the third-party group is organized to evaluate the instrument team's activity. 3. PRESERVATION FRAMEWORK The main topic of this framework is document management, archiving structure, and simple access method. The mission produces many documents in the process of the development. Instrument de-velopment is no exception. During long-term development of a mission, many documents are obsoleted and updated repeatedly. A smart system will help instrument team to reduce some troubles of document management and archiving task. JAXA attempts to follow PDS manners to do this management since PDS has highly sophisticated archiving structure. In addition, the access method to archived data must be simple and standard well over a decade. 4. SERVICE FRAMEWORK The service framework including planetary data access protocol, PDAP, has been developed to share a stored data effectively. The sophisticated service framework will work not only for publication data, but also for low-level data. JAXA's data query services is under developed based on PDAP, which means that the low-level data can be published in the same manner as level 2 data. In this presentation, we report the detail structure of these four frameworks adopting upcoming Planet-C, Venus Climate Orbiter, mission.
Appraisal of the papers of biomedical scientists and physicians for a medical archives.
Anderson, P G
1985-01-01
Numerous medical libraries house archival collections. This article discusses criteria for selecting personal papers of biomedical scientists and physicians for a medical archives and defines key terms, such as appraisal, manuscripts, papers, records, and series. Appraisal focuses on both collection and series levels. Collection-level criteria include the significance of a scientist's career and the uniqueness, coverage, and accessibility of the manuscripts. Series frequently found among medically related manuscripts are enumerated and discussed. Types of organizational records and the desirability of accessioning them along with manuscripts are considered. Advantages of direct communication with creators of manuscripts are described. The initial appraisal process is not the last word: reevaluation of materials must take place during processing and can be resumed long afterwards. PMID:4052673
NASA Technical Reports Server (NTRS)
2002-01-01
TRMM has acquired more than four years of data since its launch in November 1997. All TRMM standard products are processed by the TRMM Science Data and Information System (TSDIS) and archived and distributed to general users by the GES DAAC. Table 1 shows the total archive and distribution as of February 28, 2002. The Utilization Ratio (UR), defined as the ratio of the number of distributed files to the number of archived files, of the TRMM standard products has been steadily increasing since 1998 and is currently at 6.98.
Implementation of data citations and persistent identifiers at the ORNL DAAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Robert B.; Vannan, Suresh K. S.; McMurry, Benjamin F.
A requirement of data archives is that data holdings can be easily discovered, accessed, and used. One approach to improving data discovery and access is through data citations coupled with Digital Object Identifiers (DOI). The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) since 1998 has issued data citations that have been accepted and used in peer-reviewed journals. Citation elements established by the ORNL DAAC are similar to those used for journal articles (authors, year, product title, and information to locate), and beginning in 2007 included a DOI that is persistent, actionable, specific, and complete. The approach usedmore » at the ORNL DAAC also allows for referring to subsets of the data, by including within the citation the temporal and spatial extent, and parameters used. Data citations allow readers to find data and reproduce the results of the research article, and also use those data to test new hypotheses, design new sample collections, or construct or evaluate models. The ORNL DAAC uses a manual method to compile data citations and has developed a database that links research articles and their use of specific ORNL DAAC data products. Automation of the data citation compilation process, as is the case for articles, will enable data citations to become a more common practice. In addition to enhancing discovery and access of the data used in a research article, the citation gives credit to data generators, data centers and their funders, and, through citation indices, determine the scientific impact of a data set.« less
Implementation of data citations and persistent identifiers at the ORNL DAAC
Cook, Robert B.; Vannan, Suresh K. S.; McMurry, Benjamin F.; ...
2016-03-08
A requirement of data archives is that data holdings can be easily discovered, accessed, and used. One approach to improving data discovery and access is through data citations coupled with Digital Object Identifiers (DOI). The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) since 1998 has issued data citations that have been accepted and used in peer-reviewed journals. Citation elements established by the ORNL DAAC are similar to those used for journal articles (authors, year, product title, and information to locate), and beginning in 2007 included a DOI that is persistent, actionable, specific, and complete. The approach usedmore » at the ORNL DAAC also allows for referring to subsets of the data, by including within the citation the temporal and spatial extent, and parameters used. Data citations allow readers to find data and reproduce the results of the research article, and also use those data to test new hypotheses, design new sample collections, or construct or evaluate models. The ORNL DAAC uses a manual method to compile data citations and has developed a database that links research articles and their use of specific ORNL DAAC data products. Automation of the data citation compilation process, as is the case for articles, will enable data citations to become a more common practice. In addition to enhancing discovery and access of the data used in a research article, the citation gives credit to data generators, data centers and their funders, and, through citation indices, determine the scientific impact of a data set.« less
... Litch's Law Log HIPAA Forms Practice Management and Marketing Newsletter Webinar Materials Member Resources 2017 General Assembly ... Archives Access Pediatric Dentistry Today Practice Management and Marketing Newsletter Pediatric Dentistry Journal Open Access Articles Oral ...
Aircraft scanner data availability via the version 0 Information Management System
NASA Technical Reports Server (NTRS)
Mah, G. R.
1995-01-01
As part of the Earth Observing System Data and Information System (EOSDIS) development, NASA and other government agencies have developed an operational prototype of the Information Management System (IMS). The IMS provides access to the data archived at the Distributed Active Archive Centers (DAAC's) that allows users to search through metadata describing the (image) data. Criteria based on sensor name or type, date and time, and geographic location are used to search the archive. Graphical representations of coverage and browse images are available to further refine a user's selection. previously, the EROS Data Center (EDC) DAAC had identified the Advanced SOlid-state Array Spectrometer (ASAS), Airborne Visible and infrared Imaging Spectrometer (AVIRIS), NS-001, and Thermal Infrared Multispectral Scanner (TIMS) as precursor data sets similar to those the DAAC will handle in the Earth Observing System era. Currently, the EDC DAAC staff, in cooperation with NASA, has transcribed TIMS, NS-001, and Thematic Mapper Simulation (TMS) data from Ames Research Center and also TIMS data from Stennis Space Center. During the transcription process, the IMS metadata and browse images were created to populate the inventory at the EDC DAAC. These data sets are now available in the IMS and may be requested from the any of the DAAC's via the IMS.
New Archiving Distributed InfrastructuRe (NADIR): Status and Evolution
NASA Astrophysics Data System (ADS)
De Marco, M.; Knapic, C.; Smareglia, R.
2015-09-01
The New Archiving Distributed InfrastructuRe (NADIR) has been developed at INAF-OATs IA2 (Italian National Institute for Astrophysics - Astronomical Observatory of Trieste, Italian center of Astronomical Archives), as an evolution of the previous archiving and distribution system, used on several telescopes (LBT, TNG, Asiago, etc.) to improve performance, efficiency and reliability. At the present, NADIR system is running on LBT telescope and Vespa (Italian telescopes network for outreach) Ramella et al. (2014), and will be used on TNG, Asiago and IRA (Istituto Radio Astronomia) archives of Medicina, Noto and SRT radio telescopes Zanichelli et al. (2014) as the data models for radio data will be ready. This paper will discuss the progress status, the architectural choices and the solutions adopted, during the development and the commissioning phase of the project. A special attention will be given to the LBT case, due to some critical aspect of data flow and policies and standards compliance, adopted by the LBT organization.
Next-generation sequencing provides unprecedented access to genomic information in archival FFPE tissue samples. However, costs and technical challenges related to RNA isolation and enrichment limit use of whole-genome RNA-sequencing for large-scale studies of FFPE specimens. Rec...
ERIC Educational Resources Information Center
Fredette, Michelle
2012-01-01
With faculty balking at the price of academic journals, can other digital publishing options get traction? University libraries are no strangers to one of the most popular online alternatives, the open-access archive. These archives enable scholars to upload work--including drafts of articles that are published later in subscription journals--so…
Medical workstation design: enhancing graphical interface with 3D anatomical atlas
NASA Astrophysics Data System (ADS)
Hoo, Kent S., Jr.; Wong, Stephen T. C.; Grant, Ellen
1997-05-01
The huge data archive of the UCSF Hospital Integrated Picture Archiving and Communication System gives healthcare providers access to diverse kinds of images and text for diagnosis and patient management. Given the mass of information accessible, however, conventional graphical user interface (GUI) approach overwhelms the user with forms, menus, fields, lists, and other widgets and causes 'information overloading.' This article describes a new approach that complements the conventional GUI with 3D anatomical atlases and presents the usefulness of this approach with a clinical neuroimaging application.
Software for Optical Archive and Retrieval (SOAR) user's guide, version 4.2
NASA Technical Reports Server (NTRS)
Davis, Charles
1991-01-01
The optical disk is an emerging technology. Because it is not a magnetic medium, it offers a number of distinct advantages over the established form of storage, advantages that make it extremely attractive. They are as follows: (1) the ability to store much more data within the same space; (2) the random access characteristics of the Write Once Read Many optical disk; (3) a much longer life than that of traditional storage media; and (4) much greater data access rate. Software for Optical Archive and Retrieval (SOAR) user's guide is presented.
Implementation of an EPN-TAP Service to Improve Accessibility to the Planetary Science Archive
NASA Astrophysics Data System (ADS)
Macfarlane, A.; Barabarisi, I.; Docasal, R.; Rios, C.; Saiz, J.; Vallejo, F.; Martinez, S.; Arviset, C.; Besse, S.; Vallat, C.
2017-09-01
The re-engineered PSA has a focus on improved access and search-ability to ESA's planetary science data. In addition to the new web interface released in January 2017, the new PSA supports several common planetary protocols in order to increase the visibility and ways in which the data may be queried and retrieved. Work is on-going to provide an EPN-TAP service covering as wide a range of parameters as possible to facilitate the discovery of scientific data and interoperability of the archive.
Troubleshooting Public Data Archiving: Suggestions to Increase Participation
Roche, Dominique G.; Lanfear, Robert; Binning, Sandra A.; Haff, Tonya M.; Schwanz, Lisa E.; Cain, Kristal E.; Kokko, Hanna; Jennions, Michael D.; Kruuk, Loeske E. B.
2014-01-01
An increasing number of publishers and funding agencies require public data archiving (PDA) in open-access databases. PDA has obvious group benefits for the scientific community, but many researchers are reluctant to share their data publicly because of real or perceived individual costs. Improving participation in PDA will require lowering costs and/or increasing benefits for primary data collectors. Small, simple changes can enhance existing measures to ensure that more scientific data are properly archived and made publicly available: (1) facilitate more flexible embargoes on archived data, (2) encourage communication between data generators and re-users, (3) disclose data re-use ethics, and (4) encourage increased recognition of publicly archived data. PMID:24492920
The Cluster Science Archive: from Time Period to Physics Based Search
NASA Astrophysics Data System (ADS)
Masson, A.; Escoubet, C. P.; Laakso, H. E.; Perry, C. H.
2015-12-01
Since 2000, the Cluster spacecraft relay the most detailed information on how the solar wind affects our geospace in three dimensions. Science output from Cluster is a leap forward in our knowledge of space plasma physics: the science behind space weather. It has been key in improving the modeling of the magnetosphere and understanding its various physical processes. Cluster data have enabled the publication of more than 2000 refereed papers and counting. This substantial scientific return is often attributed to the online availability of the Cluster data archive, now called the Cluster Science Archive (CSA). It is being developed by the ESAC Science Data Center (ESDC) team and maintained alongside other science ESA archives at ESAC (ESA Space Astronomy Center, Madrid, Spain). CSA is a public archive, which contains the entire set of Cluster high-resolution data, and other related products in a standard format and with a complete set of metadata. Since May 2015, it also contains data from the CNSA/ESA Double Star mission (2003-2008), a mission operated in conjunction with Cluster. The total amount of data format now exceeds 100 TB. Accessing CSA requires to be registered to enable user profiles and CSA accounts more than 1,500 users. CSA provides unique tools for visualizing its data including - on-demand particle distribution functions visualization - fast data browsing with more than 15TB of pre-generated plots - inventory plots It also offers command line capabilities (e.g. data access via Matlab or IDL softwares, data streaming). Despite its reliability, users can only request data for a specific time period while scientists often focus on specific regions or data signatures. For these reasons, a data-mining tool is being developed to do just that. It offers an interface to select data based not only on a time period but on various criteria including: key physical parameters, regions of space and spacecraft constellation geometry. The output of this tool is a list of time periods that fits the criteria imposed by the user. Such a list enables to download any bunch of datasets for all these time periods in one go. We propose to present the state of development of this tool and interact with the scientific community to better fit its needs.
HST archive primer, version 4.1
NASA Technical Reports Server (NTRS)
Fruchter, A. (Editor); Baum, S. (Editor)
1994-01-01
This version of the HST Archive Primer provides the basic information a user needs to know to access the HST archive via StarView the new user interface to the archive. Using StarView, users can search for observations interest, find calibration reference files, and retrieve data from the archive. Both the terminal version of StarView and the X-windows version feature a name resolver which simplifies searches of the HST archive based on target name. In addition, the X-windows version of StarView allows preview of all public HST data; compressed versions of public images are displayed via SAOIMAGE, while spectra are plotted using the public plotting package, XMGR. Finally, the version of StarView described here features screens designed for observers preparing Cycle 5 HST proposals.
The Joy of Playing with Oceanographic Data
NASA Astrophysics Data System (ADS)
Smith, A. T.; Xing, Z.; Armstrong, E. M.; Thompson, C. K.; Huang, T.
2013-12-01
The web is no longer just an after thought. It is no longer just a presentation layer filled with HTML, CSS, JavaScript, Frameworks, 3D, and more. It has become the medium of our communication. It is the database of all databases. It is the computing platform of all platforms. It has transformed the way we do science. Web service is the de facto method for communication between machines over the web. Representational State Transfer (REST) has standardized the way we architect services and their interfaces. In the Earth Science domain, we are familiar with tools and services such as Open-Source Project for Network Data Access Protocol (OPeNDAP), Thematic Realtime Environmental Distributed Data Services (THREDDS), and Live Access Server (LAS). We are also familiar with various data formats such as NetCDF3/4, HDF4/5, GRIB, TIFF, etc. One of the challenges for the Earth Science community is accessing information within these data. There are community-accepted readers that our users can download and install. However, the Application Programming Interface (API) between these readers is not standardized, which leads to non-portable applications. Webification (w10n) is an emerging technology, developed at the Jet Propulsion Laboratory, which exploits the hierarchical nature of a science data artifact to assign a URL to each element within the artifact. (e.g. a granule file). By embracing standards such as JSON, XML, and HTML5 and predictable URL, w10n provides a simple interface that enables tool-builders and researchers to develop portable tools/applications to interact with artifacts of various formats. The NASA Physical Oceanographic Distributed Active Archive Center (PO.DAAC) is the designated data center for observational products relevant to the physical state of the ocean. Over the past year PO.DAAC has been evaluating w10n technology by webifying its archive holdings to provide simplified access to oceanographic science artifacts and as a service to enable future tools and services development. In this talk, we will focus on a w10n-based system called Distributed Oceanographic Webification Service (DOWS) being developed at PO.DAAC to provide a newer and simpler method for working with observational data artifacts. As a continued effort at PO.DAAC to provide better tools and services to visualize our data, the talk will discuss the latest in web-based data visualization tools/frameworks (such as d3.js, Three.js, Leaflet.js, and more) and techniques for working with webified oceanographic science data in both a 2D and 3D web approach.
Archive & Data Management Activities for ISRO Science Archives
NASA Astrophysics Data System (ADS)
Thakkar, Navita; Moorthi, Manthira; Gopala Krishna, Barla; Prashar, Ajay; Srinivasan, T. P.
2012-07-01
ISRO has kept a step ahead by extending remote sensing missions to planetary and astronomical exploration. It has started with Chandrayaan-1 and successfully completed the moon imaging during its life time in the orbit. Now, in future ISRO is planning to launch Chandrayaan-2 (next moon mission), Mars Mission and Astronomical mission ASTROSAT. All these missions are characterized by the need to receive process, archive and disseminate the acquired science data to the user community for analysis and scientific use. All these science missions will last for a few months to a few years but the data received are required to be archived, interoperable and requires a seamless access to the user community for the future. ISRO has laid out definite plans to archive these data sets in specified standards and develop relevant access tools to be able to serve the user community. To achieve this goal, a Data Center is set up at Bangalore called Indian Space Science Data Center (ISSDC). This is the custodian of all the data sets of the current and future science missions of ISRO . Chandrayaan-1 is the first among the planetary missions launched/to be launched by ISRO and we had taken the challenge and developed a system for data archival and dissemination of the payload data received. For Chandrayaan-1 the data collected from all the instruments are processed and is archived in the archive layer in the Planetary Data System (PDS 3.0) standards, through the automated pipeline. But the dataset once stored is of no use unless it is made public, which requires a Web-based dissemination system that can be accessible to all the planetary scientists/data users working in this field. Towards this, a Web- based Browse and Dissemination system has been developed, wherein users can register and search for their area of Interest and view the data archived for TMC & HYSI with relevant Browse chips and Metadata of the data. Users can also order the data and get it on their desktop in the PDS. For other AO payloads users can view the metadata and the data is available through FTP site. This same archival and dissemination strategy will be extended for the next moon mission Chandrayaan-2. ASTROSAT is going to be the first multi-wavelength astronomical mission for which the data is archived at ISSDC. It consists of five astronomical payloads that would allow simultaneous multi-wavelengths observations from X-ray to Ultra-Violet (UV) of astronomical objects. It is planned to archive the data sets in FITS. The archive of the ASTROSAT will be done in the Archive Layer at ISSDC. The Browse of the Archive will be available through the ISDA (Indian Science Data Archive) web site. The Browse will be IVOA compliant with a search mechanism using VOTable. The data will be available to the users only on request basis via a FTP site after the lock in period is over. It is planned that the Level2 pipeline software and various modules for processing the data sets will be also available on the web site. This paper, describes the archival procedure of Chandrayaan-1 and archive plan for the ASTROSAT, Chandrayaan-2 and other future mission of ISRO including the discussion on data management activities.
A System for Distributing Real-Time Customized (NEXRAD-Radar) Geosciences Data
NASA Astrophysics Data System (ADS)
Singh, Satpreet; McWhirter, Jeff; Krajewski, Witold; Kruger, Anton; Goska, Radoslaw; Seo, Bongchul; Domaszczynski, Piotr; Weber, Jeff
2010-05-01
Hydrometeorologists and hydrologists can benefit from (weather) radar derived rain products, including rain rates and accumulations. The Hydro-NEXRAD system (HNX1) has been in operation since 2006 at IIHR-Hydroscience and Engineering at The University of Iowa. It provides rapid and user-friendly access to such user-customized products, generated using archived Weather Surveillance Doppler Radar (WSR-88D) data from the NEXRAD weather radar network in the United States. HNX1 allows researchers to deal directly with radar-derived rain products, without the burden of the details of radar data collection, quality control, processing, and format conversion. A number of hydrologic applications can benefit from a continuous real-time feed of customized radar-derived rain products. We are currently developing such a system, Hydro-NEXRAD 2 (HNX2). HNX2 collects real-time, unprocessed data from multiple NEXRAD radars as they become available, processes them through a user-configurable pipeline of data-processing modules, and then publishes processed products at regular intervals. Modules in the data processing pipeline encapsulate algorithms such as non-meteorological echo detection, range correction, radar-reflectivity-rain rate (Z-R) conversion, advection correction, merging products from multiple radars, and grid transformations. HNX2's implementation presents significant challenges, including quality-control, error-handling, time-synchronization of data from multiple asynchronous sources, generation of multiple-radar metadata products, distribution of products to a user base with diverse needs and constraints, and scalability. For content management and distribution, HNX2 uses RAMADDA (Repository for Archiving, Managing and Accessing Diverse Data), developed by the UCAR/Unidata Program Center in the Unites States. RAMADDA allows HNX2 to publish products through automation and gives users multiple access methods to the published products, including simple web-browser based access, and OpenDAP access. The latter allows a user to set up automation at his/her end, and fetch new data from HNX2 at regular intervals. HNX2 uses a two-dimensional metadata structure called a mosaic for managing metadata of the rain products. Currently, HNX2 is in pre-production state and is serving near real-time rain-rate map data-products for individual radars and merged data-products from seven radars covering the state of Iowa in the United States. These products then drive a rainfall-runoff model called CUENCAS, which is used as part of the Iowa Flood Center (housed at The University of Iowa) real-time flood forecasting system. We are currently developing a generalized scalable framework that will run on inexpensive hardware and will provide products for basins anywhere in the continental United States.
ERIC Educational Resources Information Center
Jackson, Anthony
2012-01-01
With this issue, "RiDE" begins a new occasional series of short informational pieces on archives in the field of drama and theatre education and applied theatre and performance. Each instalment will include summaries of several collections of significant material in the field. Over time this will build into a readily accessible annotated directory…
Operationalizing Counter Threat Finance Strategies
2014-12-01
paying with cash, check, or credit cards, a consumer can use a mobile phone to pay for a wide range of services, as well as for digital or hard...archive/publications-archive/tackling-wicked- problems, accessed on March 3, 2014. 3. Huns were a nomadic horse people migrating from Cen- tral Asia
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
NCO Production Management Branch
Climate Climate Prediction Climate Archives Weather Safety Storm Ready NOAA Central Library Photo Library Management Branch Production Management Branch About the Production Management Branch NCO REQUEST FOR CHANGE (RFC) DATABASE ACCESS NCO Request For Change (RFC) Archive [For INTERNAL Use Only] NCO Request For
NASA Astrophysics Data System (ADS)
Besse, S.; Vallat, C.; Geiger, B.; Grieger, B.; Costa, M.; Barbarisi, I.
2017-06-01
The Planetary Science Archive (PSA) is the European Space Agency’s (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int.
NASA Astrophysics Data System (ADS)
Tsvetkov, M. K.; Stavrev, K. Y.; Tsvetkova, K. P.; Semkov, E. H.; Mutatov, A. S.
The Wide-Field Plate Database (WFPDB) and the possibilities for its application as a research tool in observational astronomy are presented. Currently the WFPDB comprises the descriptive data for 400 000 archival wide field photographic plates obtained with 77 instruments, from a total of 1 850 000 photographs stored in 269 astronomical archives all over the world since the end of last century. The WFPDB is already accessible for the astronomical community, now only in batch mode through user requests sent by e-mail. We are working on on-line interactive access to the data via INTERNET from Sofia and parallel from the Centre de Donnees Astronomiques de Strasbourg. (Initial information can be found on World Wide Web homepage URL http://www.wfpa.acad.bg.) The WFPDB may be useful in studies of a variety of astronomical objects and phenomena, andespecially for long-term investigations of variable objects and for multi-wavelength research. We have analysed the data in the WFPDB in order to derive the overall characteristics of the totality of wide-field observations, such as the sky coverage, the distributions by observation time and date, by spectral band, and by object type. We have also examined the totality of wide-field observations from point of view of their quality, availability and digitisation. The usefulness of the WFPDB is demonstrated by the results of identification and investigation of the photometrical behaviour of optical analogues of gamma-ray bursts.
36 CFR 1208.150 - Program accessibility: Existing facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OR ACTIVITIES CONDUCTED BY THE NATIONAL ARCHIVES AND RECORDS ADMINISTRATION § 1208.150 Program accessibility: Existing facilities. (a) General. The agency shall operate each program or activity so that the program or activity, when viewed in its entirety, is readily accessible to and usable by individuals with...
The ESA Gaia Archive: Data Release 1
NASA Astrophysics Data System (ADS)
Salgado, J.; González-Núñez, J.; Gutiérrez-Sánchez, R.; Segovia, J. C.; Durán, J.; Hernández, J. L.; Arviset, C.
2017-10-01
The ESA Gaia mission is producing the most accurate source catalogue in astronomy to date. This represents a challenge in archiving to make the information and data accessible to astronomers in an efficient way, due to the size and complexity of the data. Also, new astronomical missions, taking larger and larger volumes of data, are reinforcing this change in the development of archives. Archives, as simple applications to access data, are evolving into complex data centre structures where computing power services are available for users and data mining tools are integrated into the server side. In the case of astronomy missions that involve the use of large catalogues, such as Gaia (or Euclid to come), the common ways to work on the data need to be changed to the following paradigm: "move the code close to the data". This implies that data mining functionalities are becoming a must to allow for the maximum scientific exploitation of the data. To enable these capabilities, a TAP+ interface, crossmatch capabilities, full catalogue histograms, serialisation of intermediate results in cloud resources, such as VOSpace etc., have been implemented for the Gaia Data Release 1 (DR1), to enable the exploitation of these science resources by the community without any bottlenecks in the connection bandwidth. We present the architecture, infrastructure and tools already available in the Gaia Archive DR1 (http://archives.esac.esa.int/gaia/) and we describe the capabilities and infrastructure.
Applications For Real Time NOMADS At NCEP To Disseminate NOAA's Operational Model Data Base
NASA Astrophysics Data System (ADS)
Alpert, J. C.; Wang, J.; Rutledge, G.
2007-05-01
A wide range of environmental information, in digital form, with metadata descriptions and supporting infrastructure is contained in the NOAA Operational Modeling Archive Distribution System (NOMADS) and its Real Time (RT) project prototype at the National Centers for Environmental Prediction (NCEP). NOMADS is now delivering on its goal of a seamless framework, from archival to real time data dissemination for NOAA's operational model data holdings. A process is under way to make NOMADS part of NCEP's operational production of products. A goal is to foster collaborations among the research and education communities, value added retailers, and public access for science and development. In the National Research Council's "Completing the Forecast", Recommendation 3.4 states: "NOMADS should be maintained and extended to include (a) long-term archives of the global and regional ensemble forecasting systems at their native resolution, and (b) re-forecast datasets to facilitate post-processing." As one of many participants of NOMADS, NCEP serves the operational model data base using data application protocol (Open-DAP) and other services for participants to serve their data sets and users to obtain them. Using the NCEP global ensemble data as an example, we show an Open-DAP (also known as DODS) client application that provides a request-and-fulfill mechanism for access to the complex ensemble matrix of holdings. As an example of the DAP service, we show a client application which accesses the Global or Regional Ensemble data set to produce user selected weather element event probabilities. The event probabilities are easily extended over model forecast time to show probability histograms defining the future trend of user selected events. This approach insures an efficient use of computer resources because users transmit only the data necessary for their tasks. Data sets are served by OPeN-DAP allowing commercial clients such as MATLAB or IDL as well as freeware clients such as GrADS to access the NCEP real time database. We will demonstrate how users can use NOMADS services to repackage area subsets and select levels and variables that are sent to a users selected ftp site. NOMADS can also display plots on demand for area subsets, selected levels, time series and selected variables.
Oceans 2.0: a Data Management Infrastructure as a Platform
NASA Astrophysics Data System (ADS)
Pirenne, B.; Guillemot, E.
2012-04-01
Oceans 2.0: a Data Management Infrastructure as a Platform Benoît Pirenne, Associate Director, IT, NEPTUNE Canada Eric Guillemot, Manager, Software Development, NEPTUNE Canada The Data Management and Archiving System (DMAS) serving the needs of a number of undersea observing networks such as VENUS and NEPTUNE Canada was conceived from the beginning as a Service-Oriented Infrastructure. Its core functional elements (data acquisition, transport, archiving, retrieval and processing) can interact with the outside world using Web Services. Those Web Services can be exploited by a variety of higher level applications. Over the years, DMAS has developed Oceans 2.0: an environment where these techniques are implemented. The environment thereby becomes a platform in that it allows for easy addition of new and advanced features that build upon the tools at the core of the system. The applications that have been developed include: data search and retrieval, including options such as data product generation, data decimation or averaging, etc. dynamic infrastructure description (search all observatory metadata) and visualization data visualization, including dynamic scalar data plots, integrated fast video segment search and viewing Building upon these basic applications are new concepts, coming from the Web 2.0 world that DMAS has added: They allow people equipped only with a web browser to collaborate and contribute their findings or work results to the wider community. Examples include: addition of metadata tags to any part of the infrastructure or to any data item (annotations) ability to edit and execute, share and distribute Matlab code on-line, from a simple web browser, with specific calls within the code to access data ability to interactively and graphically build pipeline processing jobs that can be executed on the cloud web-based, interactive instrument control tools that allow users to truly share the use of the instruments and communicate with each other and last but not least: a public tool in the form of a game, that crowd-sources the inventory of the underwater video archive content, thereby adding tremendous amounts of metadata Beyond those tools that represent the functionality presently available to users, a number of the Web Services dedicated to data access are being exposed for anyone to use. This allows not only for ad hoc data access by individuals who need non-interactive access, but will foster the development of new applications in a variety of areas.
Imaged document information location and extraction using an optical correlator
NASA Astrophysics Data System (ADS)
Stalcup, Bruce W.; Dennis, Phillip W.; Dydyk, Robert B.
1999-12-01
Today, the paper document is fast becoming a thing of the past. With the rapid development of fast, inexpensive computing and storage devices, many government and private organizations are archiving their documents in electronic form (e.g., personnel records, medical records, patents, etc.). Many of these organizations are converting their paper archives to electronic images, which are then stored in a computer database. Because of this, there is a need to efficiently organize this data into comprehensive and accessible information resources and provide for rapid access to the information contained within these imaged documents. To meet this need, Litton PRC and Litton Data Systems Division are developing a system, the Imaged Document Optical Correlation and Conversion System (IDOCCS), to provide a total solution to the problem of managing and retrieving textual and graphic information from imaged document archives. At the heart of IDOCCS, optical correlation technology provide a means for the search and retrieval of information from imaged documents. IDOCCS can be used to rapidly search for key words or phrases within the imaged document archives and has the potential to determine the types of languages contained within a document. In addition, IDOCCS can automatically compare an input document with the archived database to determine if it is a duplicate, thereby reducing the overall resources required to maintain and access the document database. Embedded graphics on imaged pages can also be exploited, e.g., imaged documents containing an agency's seal or logo can be singled out. In this paper, we present a description of IDOCCS as well as preliminary performance results and theoretical projections.
NASA Technical Reports Server (NTRS)
Teng, William; Rui, Hualan; Strub, Richard; Vollmer, Bruce
2016-01-01
A long-standing "Digital Divide" in data representation exists between the preferred way of data access by the hydrology community and the common way of data archival by earth science data centers. Typically, in hydrology, earth surface features are expressed as discrete spatial objects (e.g., watersheds), and time-varying data are contained in associated time series. Data in earth science archives, although stored as discrete values (of satellite swath pixels or geographical grids), represent continuous spatial fields, one file per time step. This Divide has been an obstacle, specifically, between the Consortium of Universities for the Advancement of Hydrologic Science, Inc. and NASA earth science data systems. In essence, the way data are archived is conceptually orthogonal to the desired method of access. Our recent work has shown an optimal method of bridging the Divide, by enabling operational access to long-time series (e.g., 36 years of hourly data) of selected NASA datasets. These time series, which we have termed "data rods," are pre-generated or generated on-the-fly. This optimal solution was arrived at after extensive investigations of various approaches, including one based on "data curtains." The on-the-fly generation of data rods uses "data cubes," NASA Giovanni, and parallel processing. The optimal reorganization of NASA earth science data has significantly enhanced the access to and use of the data for the hydrology user community.
Centralized mouse repositories.
Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T
2012-10-01
Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.
Centralized Mouse Repositories
Donahue, Leah Rae; de Angelis, Martin Hrabe; Hagn, Michael; Franklin, Craig; Lloyd, K. C. Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T.
2013-01-01
Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world. PMID:22945696
Feng, Dai; Baumgartner, Richard; Svetnik, Vladimir
2018-04-05
The concordance correlation coefficient (CCC) is a widely used scaled index in the study of agreement. In this article, we propose estimating the CCC by a unified Bayesian framework that can (1) accommodate symmetric or asymmetric and light- or heavy-tailed data; (2) select model from several candidates; and (3) address other issues frequently encountered in practice such as confounding covariates and missing data. The performance of the proposal was studied and demonstrated using simulated as well as real-life biomarker data from a clinical study of an insomnia drug. The implementation of the proposal is accessible through a package in the Comprehensive R Archive Network.
Earth Science Informatics Comes of Age
NASA Technical Reports Server (NTRS)
Jodha, Siri; Khalsa, S.; Ramachandran, Rahul
2014-01-01
The volume and complexity of Earth science data have steadily increased, placing ever-greater demands on researchers, software developers and data managers tasked with handling such data. Additional demands arise from requirements being levied by funding agencies and governments to better manage, preserve and provide open access to data. Fortunately, over the past 10-15 years significant advances in information technology, such as increased processing power, advanced programming languages, more sophisticated and practical standards, and near-ubiquitous internet access have made the jobs of those acquiring, processing, distributing and archiving data easier. These advances have also led to an increasing number of individuals entering the field of informatics as it applies to Geoscience and Remote Sensing. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of data, information, and knowledge. Informatics also encompasses the use of computers and computational methods to support decisionmaking and other applications for societal benefits.
Toward a Virtual Solar Observatory: Starting Before the Petabytes Fall
NASA Technical Reports Server (NTRS)
Gurman, Joseph; Fisher, Richard R. (Technical Monitor)
2001-01-01
Although a few, large, space- and groundbased solar physics databases exist at selected locations, there is as yet only limited standardization or interoperability. I describe the outline of a plan to facilitate access to a distributed network of online solar data archives, both large and small. The underlying principle is that the user need not know where- the data are, only how to specify which data are desired. At the least, such an approach could considerably simplify the scientific user's access to the enormous amount of solar physics data to be obtained in the next decade. At best, it might mean the withering away of traditional data centers, and all the bureaucracy they entail. This work is supported by the Sun-Earth Connections Division of NASA Office of Space Science, thanks to an anomalous act of largess on the part of the 2001 SEC Senior Review.
Toward a Virtual Solar Observatory: Starting Before the Petabytes Fall
NASA Astrophysics Data System (ADS)
Gurman, J. B.
2001-12-01
Although a few, large, space- and groundbased solar physics databases exist at selected locations, there is as yet only limited standardization or interoperability. I describe the outline of a plan to facilitate access to a distributed network of online solar data archives, both large and small. The underlying principle is that the user need not know where the data are, only how to specify which data are desired. At the least, such an approach could considerably simplify the scientific user's access to the enormous amount of solar physics data to be obtained in the next decade. At best, it might mean the withering away of traditional data centers, and all the bureaucracy they entail. This work is supported by the Sun-Earth Connections Division of NASA Office of Space Science, thanks to an anomalous act of largess on the part of the 2001 SEC Senior Review.
Implementation of a Campuswide Distributed Mass Storage Service: the Dream Versus Reality
NASA Technical Reports Server (NTRS)
Prahst, Stephen; Armstead, Betty Jo
1996-01-01
In 1990, a technical team at NASA Lewis Research Center, Cleveland, Ohio, began defining a Mass Storage Service to pro- wide long-term archival storage, short-term storage for very large files, distributed Network File System access, and backup services for critical data dw resides on workstations and personal computers. Because of software availability and budgets, the total service was phased in over dm years. During the process of building the service from the commercial technologies available, our Mass Storage Team refined the original vision and learned from the problems and mistakes that occurred. We also enhanced some technologies to better meet the needs of users and system administrators. This report describes our team's journey from dream to reality, outlines some of the problem areas that still exist, and suggests some solutions.
NASA Technical Reports Server (NTRS)
Lee, L. R.; Montague, K. A.; Charvat, J. M.; Wear, M. L.; Thomas, D. M.; Van Baalen, M.
2016-01-01
Since the 2010 NASA directive to make the Life Sciences Data Archive (LSDA) and Lifetime Surveillance of Astronaut Health (LSAH) data archives more accessible by the research and operational communities, demand for astronaut medical data has increased greatly. LSAH and LSDA personnel are working with Human Research Program on many fronts to improve data access and decrease lead time for release of data. Some examples include the following: Feasibility reviews for NASA Research Announcement (NRA) data mining proposals; Improved communication, support for researchers, and process improvements for retrospective Institutional Review Board (IRB) protocols; Supplemental data sharing for flight investigators versus purely retrospective studies; Work with the Multilateral Human Research Panel for Exploration (MHRPE) to develop acceptable data sharing and crew consent processes and to organize inter-agency data coordinators to facilitate requests for international crewmember data. Current metrics on data requests crew consenting will be presented, along with limitations on contacting crew to obtain consent. Categories of medical monitoring data available for request will be presented as well as flow diagrams detailing data request processing and approval steps.
E-Book versus Printed Materials: Preferences of University Students
ERIC Educational Resources Information Center
Cumaoglu, Gonca; Sacici, Esra; Torun, Kerem
2013-01-01
Reading habits, accessing resources, and material preferences change rapidly in a digital world. University students, as digital natives, are accessing countless resources, from lecture notes to research papers electronically. The change of reading habits with a great scale has led to differentiation on accessibility of resources, archiving them…
MIDG-Emerging grid technologies for multi-site preclinical molecular imaging research communities.
Lee, Jasper; Documet, Jorge; Liu, Brent; Park, Ryan; Tank, Archana; Huang, H K
2011-03-01
Molecular imaging is the visualization and identification of specific molecules in anatomy for insight into metabolic pathways, tissue consistency, and tracing of solute transport mechanisms. This paper presents the Molecular Imaging Data Grid (MIDG) which utilizes emerging grid technologies in preclinical molecular imaging to facilitate data sharing and discovery between preclinical molecular imaging facilities and their collaborating investigator institutions to expedite translational sciences research. Grid-enabled archiving, management, and distribution of animal-model imaging datasets help preclinical investigators to monitor, access and share their imaging data remotely, and promote preclinical imaging facilities to share published imaging datasets as resources for new investigators. The system architecture of the Molecular Imaging Data Grid is described in a four layer diagram. A data model for preclinical molecular imaging datasets is also presented based on imaging modalities currently used in a molecular imaging center. The MIDG system components and connectivity are presented. And finally, the workflow steps for grid-based archiving, management, and retrieval of preclincial molecular imaging data are described. Initial performance tests of the Molecular Imaging Data Grid system have been conducted at the USC IPILab using dedicated VMware servers. System connectivity, evaluated datasets, and preliminary results are presented. The results show the system's feasibility, limitations, direction of future research. Translational and interdisciplinary research in medicine is increasingly interested in cellular and molecular biology activity at the preclinical levels, utilizing molecular imaging methods on animal models. The task of integrated archiving, management, and distribution of these preclinical molecular imaging datasets at preclinical molecular imaging facilities is challenging due to disparate imaging systems and multiple off-site investigators. A Molecular Imaging Data Grid design, implementation, and initial evaluation is presented to demonstrate the secure and novel data grid solution for sharing preclinical molecular imaging data across the wide-area-network (WAN).
NASA Astrophysics Data System (ADS)
Healey, S. P.; Oduor, P.; Cohen, W. B.; Yang, Z.; Ouko, E.; Gorelick, N.; Wilson, S.
2017-12-01
Every country's land is distributed among different cover types, such as: agriculture; forests; rangeland; urban areas; and barren lands. Changes in the distribution of these classes can inform us about many things, including: population pressure; effectiveness of preservation efforts; desertification; and stability of the food supply. Good assessment of these changes can also support wise planning, use, and preservation of natural resources. We are using the Landsat archive in two ways to provide needed information about land cover change since the year 2000 in seven East African countries (Ethiopia, Kenya, Malawi, Rwanda, Tanzania, Uganda, and Zambia). First, we are working with local experts to interpret historical land cover change from historical imagery at a probabilistic sample of 2000 locations in each country. This will provide a statistical estimate of land cover change since 2000. Second, we will use the same data to calibrate and validate annual land cover maps for each country. Because spatial context can be critical to development planning through the identification of hot spots, these maps will be a useful complement to the statistical, country-level estimates of change. The Landsat platform is an ideal tool for mapping land cover change because it combines a mix of appropriate spatial and spectral resolution with unparalleled length of service (Landsat 1 launched in 1972). Pilot tests have shown that time series analysis accessing the entire Landsat archive (i.e., many images per year) improves classification accuracy and stability. It is anticipated that this project will meet the civil needs of both governmental and non-governmental users across a range of disciplines.
Digital Image Support in the ROADNet Real-time Monitoring Platform
NASA Astrophysics Data System (ADS)
Lindquist, K. G.; Hansen, T. S.; Newman, R. L.; Vernon, F. L.; Nayak, A.; Foley, S.; Fricke, T.; Orcutt, J.; Rajasekar, A.
2004-12-01
The ROADNet real-time monitoring infrastructure has allowed researchers to integrate geophysical monitoring data from a wide variety of signal domains. Antelope-based data transport, relational-database buffering and archiving, backup/replication/archiving through the Storage Resource Broker, and a variety of web-based distribution tools create a powerful monitoring platform. In this work we discuss our use of the ROADNet system for the collection and processing of digital image data. Remote cameras have been deployed at approximately 32 locations as of September 2004, including the SDSU Santa Margarita Ecological Reserve, the Imperial Beach pier, and the Pinon Flats geophysical observatory. Fire monitoring imagery has been obtained through a connection to the HPWREN project. Near-real-time images obtained from the R/V Roger Revelle include records of seafloor operations by the JASON submersible, as part of a maintenance mission for the H2O underwater seismic observatory. We discuss acquisition mechanisms and the packet architecture for image transport via Antelope orbservers, including multi-packet support for arbitrarily large images. Relational database storage supports archiving of timestamped images, image-processing operations, grouping of related images and cameras, support for motion-detect triggers, thumbnail images, pre-computed video frames, support for time-lapse movie generation and storage of time-lapse movies. Available ROADNet monitoring tools include both orbserver-based display of incoming real-time images and web-accessible searching and distribution of images and movies driven by the relational database (http://mercali.ucsd.edu/rtapps/rtimbank.php). An extension to the Kepler Scientific Workflow System also allows real-time image display via the Ptolemy project. Custom time-lapse movies may be made from the ROADNet web pages.
The Planetary Data System— Archiving Planetary Data for the use of the Planetary Science Community
NASA Astrophysics Data System (ADS)
Morgan, Thomas H.; McLaughlin, Stephanie A.; Grayzeck, Edwin J.; Vilas, Faith; Knopf, William P.; Crichton, Daniel J.
2014-11-01
NASA’s Planetary Data System (PDS) archives, curates, and distributes digital data from NASA’s planetary missions. PDS provides the planetary science community convenient online access to data from NASA’s missions so that they can continue to mine these rich data sets for new discoveries. The PDS is a federated system consisting of nodes for specific discipline areas ranging from planetary geology to space physics. Our federation includes an engineering node that provides systems engineering support to the entire PDS.In order to adequately capture complete mission data sets containing not only raw and reduced instrument data, but also calibration and documentation and geometry data required to interpret and use these data sets both singly and together (data from multiple instruments, or from multiple missions), PDS personnel work with NASA missions from the initial AO through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented. PDS makes the data in PDS easily searchable so that members of the planetary community can both query the archive to find data relevant to specific scientific investigations and easily retrieve the data for analysis. To ensure long-term preservation of data and to make data sets more easily searchable with the new capabilities in Information Technology now available (and as existing technologies become obsolete), the PDS (together with the COSPAR sponsored IPDA) developed and deployed a new data archiving system known as PDS4, released in 2013. The LADEE, MAVEN, OSIRIS REx, InSight, and Mars2020 missions are using PDS4. ESA has adopted PDS4 for the upcoming BepiColumbo mission. The PDS is actively migrating existing data records into PDS4 and developing tools to aid data providers and users. The PDS is also incorporating challenge-based competitions to rapidly and economically develop new tools for both users and data providers.Please visit our User Support Area at the meeting (Booth #114) if you have questions accessing our data sets or providing data to the PDS.
TERRA/MODIS Data Products and Data Management at the GES-DAAC
NASA Astrophysics Data System (ADS)
Sharma, A. K.; Ahmad, S.; Eaton, P.; Koziana, J.; Leptoukh, G.; Ouzounov, D.; Savtchenko, A.; Serafino, G.; Sikder, M.; Zhou, B.
2001-05-01
Since February 2000, the Earth Sciences Distributed Active Archive Center (GES-DAAC) at the NASA/Goddard Space Flight Center has been successfully ingesting, processing, archiving, and distributing the Moderate Resolution Imaging Spectroradiometer (MODIS) data. MODIS is the key instrument aboard the Terra satellite, viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 channels in the visible and infrared spectral bands (0.4 to 14.4 microns). Higher resolution (250m, 500m, and 1km pixel) data are improving our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere and will play a vital role in the future development of validated, global, interactive Earth-system models. MODIS calibrated and uncalibrated radiances, and geolocation products were released to the public in April 2000, and a suite of oceans products and an entire suite of atmospheric products were released by early January 2001. The suite of ocean products is grouped into three categories Ocean Color, SST and Primary Productivity. The suite of atmospheric products includes Aerosol, Total Precipitable Water, Cloud Optical and Physical properties, Atmospheric Profiles and Cloud Mask. The MODIS Data Support Team (MDST) at the GES-DAAC has been providing support for enabling basic scientific research and assistance in accessing the scientific data and information to the Earth Science User Community. Support is also provided for data formats (HDF-EOS), information on visualization tools, documentation for data products, information on the scientific content of products and metadata. Visit the MDST website at http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/MODIS/index.html The task to process archive and distribute enormous volumes of MODIS data to users (more than 0.5 TB a day) has led to the development of an unique world wide web based GES DAAC Search and Order system http://acdisx.gsfc.nasa.gov/data/, data handling software and tools, as well as a FTP site that contains sample of browse images and MODIS data products. This paper is intended to inform the user community about the data system and services available at the GES-DAAC in support of these information-rich data products. MDST provides support to MODIS data users to access and process data and information for research, applications and educational purposes. This paper will present an overview of the MODIS data products released to public including the suite of atmosphere and oceans data products that can be ordered from the GES-DAAC. Different mechanisms for search and ordering the data, determining data product sizes, data distribution policy, User Assistance System (UAS), and data subscription services will be described.
Sea Level Station Metadata for Tsunami Detection, Warning and Research
NASA Astrophysics Data System (ADS)
Stroker, K. J.; Marra, J.; Kari, U. S.; Weinstein, S. A.; Kong, L.
2007-12-01
The devastating earthquake and tsunami of December 26, 2004 has greatly increased recognition of the need for water level data both from the coasts and the deep-ocean. In 2006, the National Oceanic and Atmospheric Administration (NOAA) completed a Tsunami Data Management Report describing the management of data required to minimize the impact of tsunamis in the United States. One of the major gaps defined in this report is the access to global coastal water level data. NOAA's National Geophysical Data Center (NGDC) and National Climatic Data Center (NCDC) are working cooperatively to bridge this gap. NOAA relies on a network of global data, acquired and processed in real-time to support tsunami detection and warning, as well as high-quality global databases of archived data to support research and advanced scientific modeling. In 2005, parties interested in enhancing the access and use of sea level station data united under the NOAA NCDC's Integrated Data and Environmental Applications (IDEA) Center's Pacific Region Integrated Data Enterprise (PRIDE) program to develop a distributed metadata system describing sea level stations (Kari et. al., 2006; Marra et.al., in press). This effort started with pilot activities in a regional framework and is targeted at tsunami detection and warning systems being developed by various agencies. It includes development of the components of a prototype sea level station metadata web service and accompanying Google Earth-based client application, which use an XML-based schema to expose, at a minimum, information in the NOAA National Weather Service (NWS) Pacific Tsunami Warning Center (PTWC) station database needed to use the PTWC's Tide Tool application. As identified in the Tsunami Data Management Report, the need also exists for long-term retention of the sea level station data. NOAA envisions that the retrospective water level data and metadata will also be available through web services, using an XML-based schema. Five high-priority metadata requirements identified at a water level workshop held at the XXIV IUGG Meeting in Perugia will be addressed: consistent, validated, and well defined numbers (e.g. amplitude); exact location of sea level stations; a complete record of sea level data stored in the archive; identifying high-priority sea level stations; and consistent definitions. NOAA's National Geophysical Data Center (NGDC) and co-located World Data Center for Solid Earth Geophysics (including tsunamis) would hold the archive of the sea level station data and distribute the standard metadata. Currently, NGDC is also archiving and distributing the DART buoy deep-ocean water level data and metadata in standards based formats. Kari, Uday S., John J. Marra, Stuart A. Weinstein, 2006 A Tsunami Focused Data Sharing Framework For Integration of Databases that Describe Water Level Station Specifications. AGU Fall Meeting, 2006. San Francisco, California. Marra, John, J., Uday S. Kari, and Stuart A. Weinstein (in press). A Tsunami Detection and Warning-focused Sea Level Station Metadata Web Service. IUGG XXIV, July 2-13, 2007. Perugia, Italy.
Production of Previews and Advanced Data Products for the ESO Science Archive
NASA Astrophysics Data System (ADS)
Rité, C.; Slijkhuis, R.; Rosati, P.; Delmotte, N.; Rino, B.; Chéreau, F.; Malapert, J.-C.
2008-08-01
We present a project being carried out by the Virtual Observatory Systems Department/Advanced Data Products group in order to populate the ESO Science Archive Facility with image previews and advanced data products. The main goal is to provide users of the ESO Science Archive Facility with the possibility of viewing pre-processed images associated with instruments like WFI, ISAAC and SOFI before actually retrieving the data for full processing. The image processing is done by using the ESO/MVM image reduction software developed at ESO, to produce astrometrically calibrated FITS images, ranging from simple previews of single archive images, to fully stacked mosaics. These data products can be accessed via the ESO Science Archive Query Form and also be viewed with the browser VirGO {http://archive.eso.org/cms/virgo}.
USGS Releases Landsat Orthorectified State Mosaics
,
2005-01-01
The U.S. Geological Survey (USGS) National Remote Sensing Data Archive, located at the USGS Center for Earth Resources Observation and Science (EROS) in Sioux Falls, South Dakota, maintains the Landsat orthorectified data archive. Within the archive are Landsat Enhanced Thematic Mapper Plus (ETM+) data that have been pansharpened and orthorectified by the Earth Satellite Corporation. This imagery has acquisition dates ranging from 1999 to 2001 and was created to provide users with access to quality-screened, high-resolution satellite images with global coverage over the Earth's landmasses.
NASA Astrophysics Data System (ADS)
Wilson, Dennis L.; Glicksman, Robert A.
1994-05-01
A Picture Archiving and Communications System (PACS) must be able to support the image rate of the medical treatment facility. In addition the PACS must have adequate working storage and archive storage capacity required. The calculation of the number of images per minute and the capacity of working storage and of archiving storage is discussed. The calculation takes into account the distribution of images over the different size of radiological images, the distribution between inpatient and outpatient, and the distribution over plain film CR images and other modality images. The support of the indirect clinical image load is difficult to estimate and is considered in some detail. The result of the exercise for a particular hospital is an estimate of the average size of the images and exams on the system, of the number of gigabytes of working storage, of the number of images moved per minute, of the size of the archive in gigabytes, and of the number of images that are to be moved by the archive per minute. The types of storage required to support the image rates and the capacity required are discussed.
LBT Distributed Archive: Status and Features
NASA Astrophysics Data System (ADS)
Knapic, C.; Smareglia, R.; Thompson, D.; Grede, G.
2011-07-01
After the first release of the LBT Distributed Archive, this successful collaboration is continuing within the LBT corporation. The IA2 (Italian Center for Astronomical Archive) team had updated the LBT DA with new features in order to facilitate user data retrieval while abiding by VO standards. To facilitate the integration of data from any new instruments, we have migrated to a new database, developed new data distribution software, and enhanced features in the LBT User Interface. The DBMS engine has been changed to MySQL. Consequently, the data handling software now uses java thread technology to update and synchronize the main storage archives on Mt. Graham and in Tucson, as well as archives in Trieste and Heidelberg, with all metadata and proprietary data. The LBT UI has been updated with additional features allowing users to search by instrument and some of the more important characteristics of the images. Finally, instead of a simple cone search service over all LBT image data, new instrument specific SIAP and cone search services have been developed. They will be published in the IVOA framework later this fall.
DefenseLink Special: Faces of Afghanistan
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
Military Appreciation Day at RFK stadium
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
DefenseLink.mil - Staying Power
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
George Washington Birthday Parade
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
DefenseLink Feature: Travels with Gates
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
DefenseLink Special: Faces of Iraq
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
DefenseLink.mil - 2008 Year in Pictures
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
Just Kids - Department of Defense
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
Recon - Citizens in Service - March 19, 2007 - U.S. Department of Defense
Official Website You have reached a collection of archived material. The content available is /or administration. If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov
DefenseLink Special: Center for the Intrepid
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
The Convergence of Information Technology, Data, and Management in a Library Imaging Program
ERIC Educational Resources Information Center
France, Fenella G.; Emery, Doug; Toth, Michael B.
2010-01-01
Integrating advanced imaging and processing capabilities in libraries, archives, and museums requires effective systems and information management to ensure that the large amounts of digital data about cultural artifacts can be readily acquired, stored, archived, accessed, processed, and linked to other data. The Library of Congress is developing…
Archive and Database as Metaphor: Theorizing the Historical Record
ERIC Educational Resources Information Center
Manoff, Marlene
2010-01-01
Digital media increase the visibility and presence of the past while also reshaping our sense of history. We have extraordinary access to digital versions of books, journals, film, television, music, art and popular culture from earlier eras. New theoretical formulations of database and archive provide ways to think creatively about these changes…
The USA PATRIOT Act: Archival Implications
ERIC Educational Resources Information Center
Trinkaus-Randall, Gregor
2005-01-01
In October 2001, Congress passed the USA PATRIOT Act to strengthen the ability of the U.S. government to combat terrorism. Unfortunately, some sections of the Act strike at core values and practices of libraries and archives, especially in the areas of record keeping, privacy, confidentiality, security, and access to the collections. This article…
Opportunistic Collaboration: Unlocking the Archives of the Birmingham Institute of Art and Design
ERIC Educational Resources Information Center
Everitt, Sian
2005-01-01
Purpose: To review a small specialist repository's strategic and opportunistic approach to utilising collaborative regional and national digital initiatives to increase access. The Birmingham Institute of Art and Design (BIAD) Archives activity is evaluated to determine whether a project-based approach recognises and meets the needs of historians,…
Developing a Living Archive of Aboriginal Languages
ERIC Educational Resources Information Center
Bow, Catherine; Christie, Michael; Devlin, Brian
2014-01-01
The fluctuating fortunes of Northern Territory bilingual education programs in Australian languages and English have put at risk thousands of books developed for these programs in remote schools. In an effort to preserve such a rich cultural and linguistic heritage, the Living Archive of Aboriginal Languages project is establishing an open access,…
Kodama, Yuichi; Mashima, Jun; Kaminuma, Eli; Gojobori, Takashi; Ogasawara, Osamu; Takagi, Toshihisa; Okubo, Kousaku; Nakamura, Yasukazu
2012-01-01
The DNA Data Bank of Japan (DDBJ; http://www.ddbj.nig.ac.jp) maintains and provides archival, retrieval and analytical resources for biological information. The central DDBJ resource consists of public, open-access nucleotide sequence databases including raw sequence reads, assembly information and functional annotation. Database content is exchanged with EBI and NCBI within the framework of the International Nucleotide Sequence Database Collaboration (INSDC). In 2011, DDBJ launched two new resources: the 'DDBJ Omics Archive' (DOR; http://trace.ddbj.nig.ac.jp/dor) and BioProject (http://trace.ddbj.nig.ac.jp/bioproject). DOR is an archival database of functional genomics data generated by microarray and highly parallel new generation sequencers. Data are exchanged between the ArrayExpress at EBI and DOR in the common MAGE-TAB format. BioProject provides an organizational framework to access metadata about research projects and the data from the projects that are deposited into different databases. In this article, we describe major changes and improvements introduced to the DDBJ services, and the launch of two new resources: DOR and BioProject.
Operation of the Planetary Plasma Interactions Node of the Planetary Data System
NASA Technical Reports Server (NTRS)
Walker, Raymond J.
1997-01-01
Five years ago NASA selected the Planetary Plasma Interactions (PPI) Node at UCLA to help the scientific community locate, access and preserve particles and fields data from planetary missions. We propose to continue to serve for 5 more years. During the first five years we have served the scientific community by providing them with high quality data products. We worked with missions and individual scientists to secure the highest quality data possible and to thoroughly document it. We validated the data, placed it on long lasting media and made sure it was properly archived for future use. So far we have prepared and archived over 10(exp 11) bytes of data from 26 instruments on 4 spacecraft. We have produced 106 CD-ROMs with peer reviewed data. In so doing, we have developed an efficient system to prepare and archive the data and thereby have been able to steadily increase the rate at which the data are produced. Although we produced a substantial archive during the initial five years, we have an even larger amount of work in progress. This includes preparing CD-ROM data sets with all of the Voyager, Pioneer and Ulysses data at Jupiter and Saturn. We will have the Jupiter data ready for the Galileo encounter in December, 1995. We are also completing the Pioneer Venus data restoration. The Galileo Venus archive and radio science data from Magellan will be prepared early in the next period. We are assisting the Small Bodies Node of PDS in the preparation of comet data and will be archiving the asteroid data from Galileo. We will be moving in several new directions as well. We will archive the PPI Node's first Earth based data with data from the International Jupiter Watch and Hubble data taken in support of Ulysses particles and field observations. We will work with the Cassini mission in archive planning efforts. For the inner planets we will begin an archive of Mars data starting with Phobos data and will support the US and Russian Mars missions in the late 1990's. We will restore the Mercury data from Mariner 10 and prepare the lunar data from Clementine in time for the lunar data analysis program in 1995. We will work with the Discovery mission teams to plan their archive and have already started with one, NEAR. Finally we will begin archiving our first heliospheric data from Voyager, Galileo, and Mars observers. We will continue to serve the science community by providing access to the data products. During the past 19 months we have filled nearly 6000 requests for on-line and CD-ROM data. The data delivered directly by the PPI Node has been - 5 x 10(exp 11) bytes. In addition to providing the data, we have provided users with software tools to manage and read the data which are computer, operating system and format independent. We have developed scalable systems so that the same software we use to manage and access the data for the entire PPI Node can be used by individual investigators to manage the data on a single CD-ROM, thereby greatly reducing the software development effort for both the PPI Node and users. We deliver this software with the disks. Recent technical advances have made it possible for us to serve a broader community than before. In the next five year period we plan to extend our outreach to the general public and in particular to increase our support for education. Since planetary plasma data are varied and require expertise in many areas the PPI Node will continue to be distributed. In addition to the primary node at UCLA, the PPI Node has three subnodes with an Outer Planets Subnode at the University of Iowa, an Inner Planets Subnode at UCLA, and a Radio Science Subnode at Stanford University. During the first two years of the renewal period there will be a Radio Astronomy Data Node at GSFC. These organizations will provide scientific expertise on the data, participate in node data selection activities and help with data restoration and mission activities.
HRP Data Accessibility Current Status
NASA Technical Reports Server (NTRS)
Sams, Clarence
2009-01-01
Overview of talk: a) Content of Human Life Science data; b) Data archive structure; c) Applicable legal documents and policies; and d) Methods for data access. Life Science Data Archive (LSDA) contains research data from NASA-funded experiments, primarily data from flight experiments and ground analog data collected at NASA facilities. Longitudinal Study of Astronaut Health (LSAH) contains electronic health records (medical data) of all astronauts, including mission data. Data are collected for clinical purposes. Clinical data are analyzed by LSAH epidemiologists to identify trends in crew health and implement changes in pre-, in-, or post-flight medical care.
Exploring Digisonde Ionogram Data with SAO-X and DIDBase
NASA Astrophysics Data System (ADS)
Khmyrov, Grigori M.; Galkin, Ivan A.; Kozlov, Alexander V.; Reinisch, Bodo W.; McElroy, Jonathan; Dozois, Claude
2008-02-01
A comprehensive suite of software tools for ionogram data analysis and archiving has been developed at UMLCAR to support the exploration of raw and processed data from the worldwide network of digisondes in a low-latency, user-friendly environment. Paired with the remotely accessible Digital Ionogram Data Base (DIDBase), the SAO Explorer software serves as an example of how an academic institution conscientiously manages its resident data archive while local experts continue to work on design of new and improved data products, all in the name of free public access to the full roster of acquired ionospheric sounding data.
NASA Technical Reports Server (NTRS)
Graves, Sara J.
1994-01-01
Work on this project was focused on information management techniques for Marshall Space Flight Center's EOSDIS Version 0 Distributed Active Archive Center (DAAC). The centerpiece of this effort has been participation in EOSDIS catalog interoperability research, the result of which is a distributed Information Management System (IMS) allowing the user to query the inventories of all the DAAC's from a single user interface. UAH has provided the MSFC DAAC database server for the distributed IMS, and has contributed to definition and development of the browse image display capabilities in the system's user interface. Another important area of research has been in generating value-based metadata through data mining. In addition, information management applications for local inventory and archive management, and for tracking data orders were provided.
NASA Plan for Increasing Access to the Results of Scientific Research
NASA Technical Reports Server (NTRS)
2014-01-01
This plan is issued in response to the Executive Office of the President's February 22, 2013, Office of Science and Technology Policy (OSTP) Memorandum for the Heads of Executive Departments and Agencies, "Increasing Access to the Results of Federally Funded Scientific Research." Through this memorandum, OSTP directed all agencies with more than $100 million in annual research and development expenditures to prepare a plan for improving the public's access to the results of federally funded research. The National Aeronautics and Space Administration (NASA) invests on the order of $3 billion annually in fundamental and applied research and technology development1 across a broad range of topics, including space and Earth sciences, life and physical sciences, human health, aeronautics, and technology. Promoting the full and open sharing of data with research communities, private industry, academia, and the general public is one of NASA's longstanding core values. For example, NASA's space and suborbital mission personnel routinely process, archive, and distribute their data to researchers around the globe. This plan expands the breadth of NASA's open-access culture to include data and publications for all of the scientific research that the Agency sponsors.
The International Planetary Data Alliance (IPDA): Activities in 2010-2012
NASA Astrophysics Data System (ADS)
Crichton, Daniel; Beebe, Reta; Kasaba, Yasumasa; Sarkissian, Alain; Capria, Maria Teresa; Hughes, Steven; Osuna, Pedro
2012-07-01
The IPDA is an international collaboration of space agencies with a mission of providing access to scientific data returned from solar system missions archived at international data centers. In order to improve access and share scientific data, the IPDA was founded to develop data and software standards. The IPDA has focused on promoting standards that drive common methods for collecting and describing planetary science data. An initial starting point for developing such a standard has been the internationalization of NASA's Planetary Data System (PDS) standard, which has become a de-facto standard. The IPDA has also focused on developing software standards that promote interoperability through the use of common software protocols allowing agencies to link their systems together. The IPDA has made significant progress since its inaugural meeting in 2006 adopting standards and developing collaborations across agencies to ensure data is captured in common formats. It has also grown to approximately eight agencies represented by a number of different groups through the IPDA Steering Committee [1]. The IPDA Steering Committee oversees the execution of projects. Over the past two years, the IPDA Steering Committee has conducted a number of focused projects around the development of these standards to enable interoperability, construction of compatible archives, and the operation of the IPDA as a whole. These projects have helped to establish the IPDA and to bring together the collaboration. Two key projects have been: development of a common protocol for data exchange, the Planetary Data Access Protocol (PDAP); and collaboration with the NASA Planetary Data System (PDS) on the next generation PDS standards, PDS4.. Both of these are progressing well and have draft standards that are now being tested. More recently, the IPDA has formed a Technical Experts Group (TEG) that is responsible for the technical architecture and implementation of the projects. As agencies implement archive systems, it is essential that the standards and software support exists and provide guidance to ensure that agencies can develop IPDA compatible archives. This talk will cover the results of the IPDA projects over the 2010-2012 timeframe. It will also discuss the plans for the next two years including the focus on ensuring that the IPDA standards for both the system and data are accessible for use by the international planetary science community. Finally, it will discuss progress on linking planetary archive systems together so scientists can access archived data regardless of the location. [1] http://planetarydata.org/members
NASA's Earth Observing System Data and Information System - Many Mechanisms for On-Going Evolution
NASA Astrophysics Data System (ADS)
Ramapriyan, H. K.
2012-12-01
NASA's Earth Observing System Data and Information System has been serving a broad user community since August 1994. As a long-lived multi-mission system serving multiple scientific disciplines and a diverse user community, EOSDIS has been evolving continuously. It has had and continues to have many forms of community input to help with this evolution. Early in its history, it had inputs from the EOSDIS Advisory Panel, benefited from the reviews by various external committees and evolved into the present distributed architecture with discipline-based Distributed Active Archive Centers (DAACs), Science Investigator-led Processing Systems and a cross-DAAC search and data access capability. EOSDIS evolution has been helped by advances in computer technology, moving from an initially planned supercomputing environment to SGI workstations to Linux Clusters for computation and from near-line archives of robotic silos with tape cassettes to RAID-disk-based on-line archives for storage. The network capacities have increased steadily over the years making delivery of data on media almost obsolete. The advances in information systems technologies have been having an even greater impact on the evolution of EOSDIS. In the early days, the advent of the World Wide Web came as a game-changer in the operation of EOSDIS. The metadata model developed for the EOSDIS Core System for representing metadata from EOS standard data products has had an influence on the Federal Geographic Data Committee's metadata content standard and the ISO metadata standards. The influence works both ways. As ISO 19115 metadata standard has developed in recent years, EOSDIS is reviewing its metadata to ensure compliance with the standard. Improvements have been made in the cross-DAAC search and access of data using the centralized metadata clearing house (EOS Clearing House - ECHO) and the client Reverb. Given the diversity of the Earth science disciplines served by the DAACs, the DAACs have developed a number of software tools tailored to their respective user communities. Web services play an important part in improved access to data products including some basic analysis and visualization capabilities. A coherent view into all capabilities available from EOSDIS is evolving through the "Coherent Web" effort. Data are being made available in near real-time for scientific research as well as time-critical applications. On-going community inputs for infusion for maintaining vitality of EOSDIS come from technology developments by NASA-sponsored community data system programs - Advancing Collaborative Connections for Earth System Science (ACCESS), Making Earth System Data Records for Use in Research Environments (MEaSUREs) and Applied Information System Technology (AIST), as well as participation in Earth Science Data System Working Groups, the Earth Science Information Partners Federation and other interagency/international activities. An important source of community needs is the annual American Customer Satisfaction Index survey of EOSDIS users. Some of the key areas in which improvements are required and incremental progress is being made are: ease of discovery and access; cross-organizational interoperability; data inter-use; ease of collaboration; ease of citation of datasets; preservation of provenance and context and making them conveniently available to users.
Historical Time-Domain: Data Archives, Processing, and Distribution
NASA Astrophysics Data System (ADS)
Grindlay, Jonathan E.; Griffin, R. Elizabeth
2012-04-01
The workshop on Historical Time-Domain Astronomy (TDA) was attended by a near-capacity gathering of ~30 people. From information provided in turn by those present, an up-to-date overview was created of available plate archives, progress in their digitization, the extent of actual processing of those data, and plans for data distribution. Several recommendations were made for prioritising the processing and distribution of historical TDA data.
NASA Astrophysics Data System (ADS)
Agarwal, D.; Varadharajan, C.; Cholia, S.; Snavely, C.; Hendrix, V.; Gunter, D.; Riley, W. J.; Jones, M.; Budden, A. E.; Vieglais, D.
2017-12-01
The ESS-DIVE archive is a new U.S. Department of Energy (DOE) data archive designed to provide long-term stewardship and use of data from observational, experimental, and modeling activities in the earth and environmental sciences. The ESS-DIVE infrastructure is constructed with the long-term vision of enabling broad access to and usage of the DOE sponsored data stored in the archive. It is designed as a scalable framework that incentivizes data providers to contribute well-structured, high-quality data to the archive and that enables the user community to easily build data processing, synthesis, and analysis capabilities using those data. The key innovations in our design include: (1) application of user-experience research methods to understand the needs of users and data contributors; (2) support for early data archiving during project data QA/QC and before public release; (3) focus on implementation of data standards in collaboration with the community; (4) support for community built tools for data search, interpretation, analysis, and visualization tools; (5) data fusion database to support search of the data extracted from packages submitted and data available in partner data systems such as the Earth System Grid Federation (ESGF) and DataONE; and (6) support for archiving of data packages that are not to be released to the public. ESS-DIVE data contributors will be able to archive and version their data and metadata, obtain data DOIs, search for and access ESS data and metadata via web and programmatic portals, and provide data and metadata in standardized forms. The ESS-DIVE archive and catalog will be federated with other existing catalogs, allowing cross-catalog metadata search and data exchange with existing systems, including DataONE's Metacat search. ESS-DIVE is operated by a multidisciplinary team from Berkeley Lab, the National Center for Ecological Analysis and Synthesis (NCEAS), and DataONE. The primarily data copies are hosted at DOE's NERSC supercomputing facility with replicas at DataONE nodes.
Lessons Learned in over Two Decades of GPS/GNSS Data Center Support
NASA Astrophysics Data System (ADS)
Boler, F. M.; Estey, L. H.; Meertens, C. M.; Maggert, D.
2014-12-01
The UNAVCO Data Center in Boulder, Colorado, curates, archives, and distributes geodesy data and products, mainly GPS/GNSS data from 3,000 permanent stations and 10,000 campaign sites around the globe. Although now having core support from NSF and NASA, the archive began around 1992 as a grass-roots effort of a few UNAVCO staff and community members to preserve data going back to 1986. Open access to this data is generally desired, but the Data Center in fact operates under an evolving suite of data access policies ranging from open access to nondisclosure for special cases. Key to processing this data is having the correct equipment metadata; reliably obtaining this metadata continues to be a challenge, in spite of modern cyberinfrastructure and tools, mostly due to human errors or lack of consistent operator training. New metadata problems surface when trying to design and publish modern Digital Object Identifiers for data sets where PIs, funding sources, and historical project names now need to be corrected and verified for data sets going back almost three decades. Originally, the data was GPS-only based on three signals on two carrier frequencies. Modern GNSS covers GPS modernization (three more signals and one additional carrier) as well as open signals and carriers of additional systems such as GLONASS, Galileo, BeiDou, and QZSS, requiring ongoing adaptive strategies to assess the quality of modern datasets. Also, new scientific uses of these data benefit from higher data rates than was needed for early tectonic applications. In addition, there has been a migration from episodic campaign sites (hence sparse data) to continuously operating stations (hence dense data) over the last two decades. All of these factors make it difficult to realistically plan even simple data center functions such as on-line storage capacity.
Harmonize Pipeline and Archiving Aystem: PESSTO@IA2 Use Case
NASA Astrophysics Data System (ADS)
Smareglia, R.; Knapic, C.; Molinaro, M.; Young, D.; Valenti, S.
2013-10-01
Italian Astronomical Archives Center (IA2) is a research infrastructure project that aims at coordinating different national and international initiatives to improve the quality of astrophysical data services. IA2 is now also involved in the PESSTO (Public ESO Spectroscopic Survey of Transient Objects) collaboration, developing a complete archiving system to store calibrated post processed data (including sensitive intermediate products), a user interface to access private data and Virtual Observatory (VO) compliant web services to access public fast reduction data via VO tools. The archive system shall rely on the PESSTO Marshall to provide file data and its associated metadata output by the PESSTO data-reduction pipeline. To harmonize the object repository, data handling and archiving system, new tools are under development. These systems must have a strong cross-interaction without increasing the complexities of any single task, in order to improve the performances of the whole system and must have a sturdy logic in order to perform all operations in coordination with the other PESSTO tools. MySQL Replication technology and triggers are used for the synchronization of new data in an efficient, fault tolerant manner. A general purpose library is under development to manage data starting from raw observations to final calibrated ones, open to the overriding of different sources, formats, management fields, storage and publication policies. Configurations for all the systems are stored in a dedicated schema (no configuration files), but can be easily updated by a planned Archiving System Configuration Interface (ASCI).
NASA Astrophysics Data System (ADS)
Ostrenga, D.; Liu, Z.; Kempler, S. J.; Vollmer, B.; Teng, W. L.
2013-12-01
The Precipitation Data and Information Services Center (PDISC) (http://disc.gsfc.nasa.gov/precipitation or google: NASA PDISC), located at the NASA Goddard Space Flight Center (GSFC) Earth Sciences (GES) Data and Information Services Center (DISC), is home of the Tropical Rainfall Measuring Mission (TRMM) data archive. For over 15 years, the GES DISC has served not only TRMM, but also other space-based, airborne-based, field campaign and ground-based precipitation data products to the precipitation community and other disciplinary communities as well. The TRMM Multi-Satellite Precipitation Analysis (TMPA) products are the most popular products in the TRMM product family in terms of data download and access through Mirador, the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) and other services. The next generation of TMPA, the Integrated Multi-satellitE Retrievals for GPM (IMERG) to be released in 2014 after the launch of GPM, will be significantly improved in terms of spatial and temporal resolutions. To better serve the user community, we are preparing data services and samples are listed below. To enable scientific exploration of Earth science data products without going through complicated and often time consuming processes, such as data downloading, data processing, etc., the GES DISC has developed Giovanni in consultation with members of the user community, requesting quick search, subset, analysis and display capabilities for their specific data of interest. For example, the TRMM Online Visualization and Analysis System (TOVAS, http://disc2.nascom.nasa.gov/Giovanni/tovas/) has proven extremely popular, especially as additional datasets have been added upon request. Giovanni will continue to evolve to accommodate GPM data and the multi-sensor data inter-comparisons that will be sure to follow. Additional PDISC tool and service capabilities being adapted for GPM data include: An on-line PDISC Portal (includes user guide, etc.); Data ingest, processing, distribution from on-line archive; Google-like Mirador data search and access engine; electronic distribution, Subscriptions; Uses semantic technology to help manage large amounts of multi-sensor data and their relationships; Data drill down and search capabilities; Data access through various web services, i.e., OPeNDAP, GDS, WMS, WCS; Conversion into various formats, e.g., netCDF, HDF, KML (for Google Earth), ascii; Exploration, visualization and statistical online analysis through Giovanni; Visualization and analysis of L2 data profiles and maps; Generation of derived products, such as, daily products; Parameter and spatial subsetting; Time and temporal aggregation; Regridding; Data version control and provenance; Data Stewardship - Continuous archive verification; Documentation; Science support for proper data usage, help desk; Monitoring services for applications; Expertise in data related standards and interoperability. This presentation will further describe the data services at the PDISC that are currently being utilized by precipitation science and application researchers, and the preparation plan for IMERG. Comments and feedback are welcome.
The Open Data Repositorys Data Publisher
NASA Technical Reports Server (NTRS)
Stone, N.; Lafuente, B.; Downs, R. T.; Blake, D.; Bristow, T.; Fonda, M.; Pires, A.
2015-01-01
Data management and data publication are becoming increasingly important components of researcher's workflows. The complexity of managing data, publishing data online, and archiving data has not decreased significantly even as computing access and power has greatly increased. The Open Data Repository's Data Publisher software strives to make data archiving, management, and publication a standard part of a researcher's workflow using simple, web-based tools and commodity server hardware. The publication engine allows for uploading, searching, and display of data with graphing capabilities and downloadable files. Access is controlled through a robust permissions system that can control publication at the field level and can be granted to the general public or protected so that only registered users at various permission levels receive access. Data Publisher also allows researchers to subscribe to meta-data standards through a plugin system, embargo data publication at their discretion, and collaborate with other researchers through various levels of data sharing. As the software matures, semantic data standards will be implemented to facilitate machine reading of data and each database will provide a REST application programming interface for programmatic access. Additionally, a citation system will allow snapshots of any data set to be archived and cited for publication while the data itself can remain living and continuously evolve beyond the snapshot date. The software runs on a traditional LAMP (Linux, Apache, MySQL, PHP) server and is available on GitHub (http://github.com/opendatarepository) under a GPLv2 open source license. The goal of the Open Data Repository is to lower the cost and training barrier to entry so that any researcher can easily publish their data and ensure it is archived for posterity.
Spatial data standards meet meteorological data - pushing the boundaries
NASA Astrophysics Data System (ADS)
Wagemann, Julia; Siemen, Stephan; Lamy-Thepaut, Sylvie
2017-04-01
The data archive of the European Centre for Medium-Range Weather Forecasts (ECMWF) holds around 120 PB of data and is world's largest archive of meteorological data. This information is of great value for many Earth Science disciplines, but the complexity of the data (up to five dimensions and different time axis domains) and its native data format GRIB, while being an efficient archive format, limits the overall data uptake especially from users outside the MetOcean domain. ECMWF's MARS WebAPI is a very efficient and flexible system for expert users to access and retrieve meteorological data, though challenging for users outside the MetOcean domain. With the help of web-based standards for data access and processing, ECMWF wants to make more than 1 PB of meteorological and climate data easier accessible to users across different Earth Science disciplines. As climate data provider for the H2020 project EarthServer-2, ECMWF explores the feasibility to give on-demand access to it's MARS archive via the OGC standard interface Web Coverage Service (WCS). Despite the potential a WCS for climate and meteorological data offers, the standards-based modelling of meteorological and climate data entails many challenges and reveals the boundaries of the current Web Coverage Service 2.0 standard. Challenges range from valid semantic data models for meteorological data to optimal and efficient data structures for a scalable web service. The presentation reviews the applicability of the current Web Coverage Service 2.0 standard to meteorological and climate data and discusses challenges that are necessary to overcome in order to achieve real interoperability and to ensure the conformant sharing and exchange of meteorological data.
The Hubble Spectroscopic Legacy Archive
NASA Astrophysics Data System (ADS)
Peeples, M.; Tumlinson, J.; Fox, A.; Aloisi, A.; Fleming, S.; Jedrzejewski, R.; Oliveira, C.; Ayres, T.; Danforth, C.; Keeney, B.; Jenkins, E.
2017-04-01
With no future space ultraviolet instruments currently planned, the data from the UV spectrographs aboard the Hubble Space Telescope have a legacy value beyond their initial science goals. The goal of the Hubble Spectroscopic Legacy Archive(HSLA) is to provide to the community new science-grade combined spectra for all publicly available data obtained by the Cosmic Origins Spectrograph (COS)and the Space Telescope Imaging Spectrograph (STIS). These data are packaged into "smart archives" according to target type and scientific themes to facilitate the construction of archival samples for common science uses. A new "quick look" capability makes the data easy for users to quickly access, assess the quality of,and download for archival science. The first generation of these products for the far-ultraviolet (FUV) modes of COS was made available online via the Mikulski Archive for Space Telescopes (MAST) in early 2016 and updated in early 2017; future releases will include COS/NUV and STIS/UV data.
The archive of the History of Psychology at the University of Rome, Sapienza.
Bartolucci, Chiara; Fox Lee, Shayna
2016-02-01
The History of Psychology Archive at the University of Rome, Sapienza was founded in 2008 in the Department of Dynamic and Clinical Psychology. The archive aspires to become an indispensable tool to (a) understand the currents, schools, and research traditions that have marked the path of Italian psychology, (b) focus on issues of general and applied psychology developed in each university, (c) identify experimental and clinical-differential methodologies specific to each lab, (d) reconstruct the genesis and consolidation of psychology institutions and, ultimately, (e) write a "story," set according to the most recent historiographical criteria. The archive is designed according to scholarship on the history of Italian psychology from the past two decades. The online archive is divided into five sections for ease of access. The Sapienza archive is a work in progress and it has plans for expansion. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
The Growth of the User Community of the La Silla Paranal Observatory Science Archive
NASA Astrophysics Data System (ADS)
Romaniello, M.; Arnaboldi, M.; Da Rocha, C.; De Breuck, C.; Delmotte, N.; Dobrzycki, A.; Fourniol, N.; Freudling, W.; Mascetti, L.; Micol, A.; Retzlaff, J.; Sterzik, M.; Sequeiros, I. V.; De Breuck, M. V.
2016-03-01
The archive of the La Silla Paranal Observatory has grown steadily into a powerful science resource for the ESO astronomical community. Established in 1998, the Science Archive Facility (SAF) stores both the raw data generated by all ESO instruments and selected processed (science-ready) data. The growth of the SAF user community is analysed through access and publication statistics. Statistics are presented for archival users, who do not contribute to observing proposals, and contrasted with regular and archival users, who are successful in competing for observing time. Archival data from the SAF contribute to about one paper out of four that use data from ESO facilities. This study reveals that the blend of users constitutes a mixture of the traditional ESO community making novel use of the data and of a new community being built around the SAF.
The Hubble Spectroscopic Legacy Archive
NASA Astrophysics Data System (ADS)
Peeples, Molly S.; Tumlinson, Jason; Fox, Andrew; Aloisi, Alessandra; Ayres, Thomas R.; Danforth, Charles; Fleming, Scott W.; Jenkins, Edward B.; Jedrzejewski, Robert I.; Keeney, Brian A.; Oliveira, Cristina M.
2016-01-01
With no future space ultraviolet instruments currently planned, the data from the UV spectrographs aboard the Hubble Space Telescope have a legacy value beyond their initial science goals. The Hubble Spectroscopic Legacy Archive will provide to the community new science-grade combined spectra for all publicly available data obtained by the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS). These data will be packaged into "smart archives" according to target type and scientific themes to facilitate the construction of archival samples for common science uses. A new "quick look" capability will make the data easy for users to quickly access, assess the quality of, and download for archival science starting in Cycle 24, with the first generation of these products for the FUV modes of COS available online via MAST in early 2016.
U.S. Department of Defense Official Website - Battle for Iwo Jima
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
Recon - Inventing for the Future - U.S. Department of Defense Official
Website You have reached a collection of archived material. The content available is no longer administration. If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the
Afghanistan Today: A Photo Essay by U.S. Army National Guard Staff Sgt.
Russell Lee Klika You have reached a collection of archived material. The content available is /or administration. If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov
DefenseLink Special: 30th Anniversary of the Fall of Saigon
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
DefenseLink.mil - Special Report - Flag Day - June 14, 2008
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
U.S. Department of Defense: Year in Pictures 2009
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
Defense.gov - Special Report - Training for the Fight
You have reached a collection of archived material. The content available is no longer being . If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the DoD Section 508
Relevant Repositories of Public Knowledge? Libraries, Museums and Archives in "The Information Age"
ERIC Educational Resources Information Center
Usherwood, Bob; Wilson, Kerry; Bryson, Jared
2005-01-01
In a project funded by the AHRB, researchers at the University of Sheffield used a combination of quantitative and qualitative research methods to examine the perceived contemporary relevance of archives, libraries and museums. The research sought to discern how far the British people value access to these established repositories of public…
Searching Internet Archive Sites with Archie: Why, What, Where, and How.
ERIC Educational Resources Information Center
Simmonds, Curtis
1993-01-01
Describes Archie, an online catalog of electronic holdings of anonymous FTP (File Transfer Protocol) archive sites on the Internet. Accessing Archie through e-mail and using it in a telnet session are discussed. The Internet Gopher and Whatis, which can be used with Archie, are also explained, and search examples are included. (four references)…
36 CFR 1254.1 - What kinds of archival materials may I use for research?
Code of Federal Regulations, 2010 CFR
2010-07-01
... materials may I use for research? 1254.1 Section 1254.1 Parks, Forests, and Public Property NATIONAL... MATERIALS General Information § 1254.1 What kinds of archival materials may I use for research? (a) The... information about records and we make them available to the public for research unless they have access...
36 CFR 1254.1 - What kinds of archival materials may I use for research?
Code of Federal Regulations, 2011 CFR
2011-07-01
... materials may I use for research? 1254.1 Section 1254.1 Parks, Forests, and Public Property NATIONAL... MATERIALS General Information § 1254.1 What kinds of archival materials may I use for research? (a) The... information about records and we make them available to the public for research unless they have access...
36 CFR 1254.1 - What kinds of archival materials may I use for research?
Code of Federal Regulations, 2012 CFR
2012-07-01
... materials may I use for research? 1254.1 Section 1254.1 Parks, Forests, and Public Property NATIONAL... MATERIALS General Information § 1254.1 What kinds of archival materials may I use for research? (a) The... information about records and we make them available to the public for research unless they have access...
36 CFR 1254.1 - What kinds of archival materials may I use for research?
Code of Federal Regulations, 2014 CFR
2014-07-01
... materials may I use for research? 1254.1 Section 1254.1 Parks, Forests, and Public Property NATIONAL... MATERIALS General Information § 1254.1 What kinds of archival materials may I use for research? (a) The... information about records and we make them available to the public for research unless they have access...
Cluster Ion Spectrometry (CIS) Data Archiving in the CAA
NASA Astrophysics Data System (ADS)
Dandouras, I. S.; Barthe, A.; Penou, E.; Brunato, S.; Reme, H.; Kistler, L. M.; Blagau, A.; Facsko, G.; Kronberg, E.; Laakso, H. E.
2009-12-01
The Cluster Active Archive (CAA) aims at preserving the four Cluster spacecraft data, so that they are usable in the long-term by the scientific community as well as by the instrument team PIs and Co-Is. This implies that the data are filed together with the descriptive and documentary elements making it possible to select and interpret them. The CIS (Cluster Ion Spectrometry) experiment is a comprehensive ionic plasma spectrometry package onboard the four Cluster spacecraft, capable of obtaining full three-dimensional ion distributions (about 0 to 40 keV/e) with a time resolution of one spacecraft spin (4 sec) and with mass-per-charge composition determination. The CIS package consists of two different instruments, a Hot Ion Analyser (HIA) and a time-of-flight ion Composition Distribution Function (CODIF) analyser. For the archival of the CIS data a multi-level approach has been adopted. The CAA archival includes processed raw data (Level 1 data), moments of the ion distribution functions (Level 2 data), and calibrated high-resolution data in a variety of physical units (Level 3 data). The latter are 3-D ion distribution functions and 2-D pitch-angle distributions. In addition, a software package has been developed to allow the CAA user to interactively calculate partial or total moments of the ion distributions. Instrument cross-calibration has been an important activity in preparing the data for archival. The CIS data archive includes also experiment documentation, graphical products for browsing through the data, and data caveats. In addition, data quality indexes are under preparation, to help the user. Given the complexity of an ion spectrometer, and the variety of its operational modes, each one being optimised for a different magnetospheric region or measurement objective, consultation of the data caveats by the end user will always be a necessary step in the data analysis.
The challenge of archiving and preserving remotely sensed data
Faundeen, John L.
2003-01-01
Few would question the need to archive the scientific and technical (S&T) data generated by researchers. At a minimum, the data are needed for change analysis. Likewise, most people would value efforts to ensure the preservation of the archived S&T data. Future generations will use analysis techniques not even considered today. Until recently, archiving and preserving these data were usually accomplished within existing infrastructures and budgets. As the volume of archived data increases, however, organizations charged with archiving S&T data will be increasingly challenged (U.S. General Accounting Office, 2002). The U.S. Geological Survey has had experience in this area and has developed strategies to deal with the mountain of land remote sensing data currently being managed and the tidal wave of expected new data. The Agency has dealt with archiving issues, such as selection criteria, purging, advisory panels, and data access, and has met with preservation challenges involving photographic and digital media. That experience has allowed the USGS to develop management approaches, which this paper outlines.
Land processes distributed active archive center product lifecycle plan
Daucsavage, John C.; Bennett, Stacie D.
2014-01-01
The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the National Aeronautics and Space Administration (NASA) Earth Science Data System Program worked together to establish, develop, and operate the Land Processes (LP) Distributed Active Archive Center (DAAC) to provide stewardship for NASA’s land processes science data. These data are critical science assets that serve the land processes science community with potential value beyond any immediate research use, and therefore need to be accounted for and properly managed throughout their lifecycle. A fundamental LP DAAC objective is to enable permanent preservation of these data and information products. The LP DAAC accomplishes this by bridging data producers and permanent archival resources while providing intermediate archive services for data and information products.
Enhancing Discovery, Search, and Access of NASA Hydrological Data by Leveraging GEOSS
NASA Technical Reports Server (NTRS)
Teng, William L.
2015-01-01
An ongoing NASA-funded project has removed a longstanding barrier to accessing NASA data (i.e., accessing archived time-step array data as point-time series) for selected variables of the North American and Global Land Data Assimilation Systems (NLDAS and GLDAS, respectively) and other EOSDIS (Earth Observing System Data Information System) data sets (e.g., precipitation, soil moisture). These time series (data rods) are pre-generated. Data rods Web services are accessible through the CUAHSI Hydrologic Information System (HIS) and the Goddard Earth Sciences Data and Information Services Center (GES DISC) but are not easily discoverable by users of other non-NASA data systems. The Global Earth Observation System of Systems (GEOSS) is a logical mechanism for providing access to the data rods. An ongoing GEOSS Water Services project aims to develop a distributed, global registry of water data, map, and modeling services cataloged using the standards and procedures of the Open Geospatial Consortium and the World Meteorological Organization. The ongoing data rods project has demonstrated the feasibility of leveraging the GEOSS infrastructure to help provide access to time series of model grid information or grids of information over a geographical domain for a particular time interval. A recently-begun, related NASA-funded ACCESS-GEOSS project expands on these prior efforts. Current work is focused on both improving the performance of the generation of on-the-fly (OTF) data rods and the Web interfaces from which users can easily discover, search, and access NASA data.
Managing IceBridge Airborne Mission Data at the National Snow and Ice Data Center
NASA Astrophysics Data System (ADS)
Brodzik, M.; Kaminski, M. L.; Deems, J. S.; Scambos, T. A.
2010-12-01
Operation IceBridge (OIB) is a NASA airborne geophysical survey mission conducting laser altimetry, ice-penetrating radar profiling, gravimetry and other geophysical measurements to monitor and characterize the Earth's cryosphere. The IceBridge mission will operate from 2009 until after the launch of ICESat-II (currently planned for 2015), and provides continuity of measurements between that mission and its predecessor. Data collection sites include the Greenland and Antarctic Ice Sheets and the sea ice pack regions of both poles. These regions include some of the most rapidly changing areas of the cryosphere. IceBridge is also collecting data in East Antarctica via the University of Texas ICECAP program and in Alaska via the University of Alaska, Fairbanks glacier mapping program. The NSIDC Distributed Active Archive Center at the University of Colorado at Boulder provides data archive and distribution support for the IceBridge mission. Our IceBridge work is based on two guiding principles: ensuring preservation of the data, and maximizing usage of the data. This broadens our work beyond the typical scope of a data archive. In addition to the necessary data management, discovery, distribution, and outreach functions, we are also developing tools that will enable broader use of the data, and integrating diverse data types to enable new science research. Researchers require expeditious access to data collected from the IceBridge missions; our archive approach balances that need with our long-term preservation goal. We have adopted a "fast-track" approach to publish data quickly after collection and make it available via FTP download. Subsequently, data sets are archived in the NASA EOSDIS ECS system, which enables data discovery and distribution with the appropriate backup, documentation, and metadata to assure its availability for future research purposes. NSIDC is designing an IceBridge data portal to allow interactive data search, exploration, and subsetting via a map-based interface. This portal will provide flight line rendering and multi-instrument data previewing capabilities to facilitate use of the wide array of data types, resolutions, and configurations in this dynamic airborne mission. Together with the IceBridge Science Team and Ice Bridge Science Working Groups, NSIDC is generating value-added products from the Ice Bridge data streams and other ancillary data. These products will provide simple, useful combinations of Ice Bridge products and regional maps of important geophysical parameters from other sources. Planned value-added products include: (1) gridded products in which new profiles from Ice Bridge (e.g. elevation or ice thickness) are combined with existing DEMs or bed maps to produce revised grids and (2) flight-profile multi-instrument products in which data from several instruments are combined into ice sheet profiles (surface elevation, ice thickness, internal reflection data, bed reflection intensity, and gravimetry), sea ice profiles (freeboard, snow cover, and thickness), and surface data profiles (elevation, slope, roughness, near-surface layering, and imagery).
Evolution of data stewardship over two decades at a NASA data center
NASA Astrophysics Data System (ADS)
Armstrong, E. M.; Moroni, D. F.; Hausman, J.; Tsontos, V. M.
2013-12-01
Whether referred to as data science or data engineering, the technical nature and practice of data curation has seen a noticeable shift in the last two decades. The majority of this has been driven by factors of increasing data volumes and complexity, new data structures, and data virtualization through internet access that have themselves spawned new fields or advances in semantic ontologies, metadata, advanced distributed computing and new file formats. As a result of this shifting landscape, the role of the data scientist/engineer has also evolved.. We will discuss the key elements of this evolutionary shift from the perspective of data curation at the NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC), which is one of 12 NASA Earth Science data centers responsible for archiving and distributing oceanographic satellite data since 1993. Earlier responsibilities of data curation in the history of the PO.DAAC focused strictly on data archiving, low-level data quality assessments, understanding and building read software for terse binary data or limited applications of self-describing file formats and metadata. Data discovery was often word of mouth or based on perusing simple web pages built for specific products. At that time the PO.DAAC served only a few tens of datasets. A single data engineer focused on a specific mission or suite of datasets from a specific physical parameter (e.g., ocean topography measurements). Since that time the number of datasets in the PO.DAAC has grown to approach one thousand, with increasing complexity of data and metadata structures in self-describing formats. Advances in ontologies, metadata, applications of MapReduce distributed computing and "big data", improvements in data discovery, data mining, and tools for visualization and analysis have all required new and evolving skill sets. The community began requiring more rigorous assessments of data quality and uncertainty. Although the expert knowledge of the physical domain was still critical, especially relevant to assessments of data quality, additional skills in computer science, statistics and system engineering also became necessary. Furthermore, the level of effort to implement data curation has not expanded linearly either. Management of ongoing data operations demands increased productivity on a continual basis and larger volumes of data, with constraints on funding, must be managed with proportionately less human resources. The role of data curation has also changed within the perspective of satellite missions. In many early missions, data management and curation was an afterthought (since there were no explicit data management plans written into the proposals), while current NASA mission proposals must have explicit data management plans to identify resources and funds for archiving, distribution and implementing overall data stewardship. In conclusion, the role of the data scientist/engineer at the PO.DAAC has shifted from supporting singular missions and primarily representing a point of contact for the science community to complete end-to-end stewardship through the implementation of a robust set of dataset lifecycle policies from ingest, to archiving, including data quality assessment for a broad swath of parameter based datasets that can number in the hundreds.
Expansion of the On-line Archive "Statistically Downscaled WCRP CMIP3 Climate Projections"
NASA Astrophysics Data System (ADS)
Brekke, L. D.; Pruitt, T.; Maurer, E. P.; Das, T.; Duffy, P.; White, K.
2009-12-01
Presentation highlights status and plans for a public-access archive of downscaled CMIP3 climate projections. Incorporating climate projection information into long-term evaluations of water and energy resources requires analysts to have access to projections at "basin-relevant" resolution. Such projections would ideally be bias-corrected to account for climate model tendencies to systematically simulate historical conditions different than observed. In 2007, the U.S. Bureau of Reclamation, Santa Clara University and Lawrence Livermore National Laboratory (LLNL) collaborated to develop an archive of 112 bias-corrected and spatially disaggregated (BCSD) CMIP3 temperature and precipitation projections. These projections were generated using 16 CMIP3 models to simulate three emissions pathways (A2, A1b, and B1) from one or more initializations (runs). Projections are specified on a monthly time step from 1950-2099 and at 0.125 degree spatial resolution within the North American Land Data Assimilation System domain (i.e. contiguous U.S., southern Canada and northern Mexico). Archive data are freely accessible at LLNL Green Data Oasis (url). Since being launched, the archive has served over 3500 data requests by nearly 500 users in support of a range of planning, research and educational activities. Archive developers continue to look for ways to improve the archive and respond to user needs. One request has been to serve the intermediate datasets generated during the BCSD procedure, helping users to interpret the relative influences of the bias-correction and spatial disaggregation on the transformed CMIP3 output. This request has been addressed with intermediate datasets now posted at the archive web-site. Another request relates closely to studying hydrologic and ecological impacts under climate change, where users are asking for projected diurnal temperature information (e.g., projected daily minimum and maximum temperature) and daily time step resolution. In response, archive developers are adding content in 2010, teaming with Scripps Institution of Oceanography (through their NOAA-RISA California-Nevada Applications Program and the California Climate Change Center) to apply a new daily downscaling technique to a sub-ensemble of the archive’s CMIP3 projections. The new technique, Bias-Corrected Constructed Analogs, combines the BC part of BCSD with a recently developed technique that preserves the daily sequencing structure of CMIP3 projections (Constructed Analogs, or CA). Such data will more easily serve hydrologic and ecological impacts assessments, and offer an opportunity to evaluate projection uncertainty associated with downscaling technique. Looking ahead to the arrival CMIP5 projections, archive collaborators have plans apply both BCSD and BCCA over the contiguous U.S. consistent with CMIP3 applications above, and also apply BCSD globally at a 0.5 degree spatial resolution. The latter effort involves collaboration with U.S. Army Corps of Engineers (USACE) and Climate Central.
U.S. Government Open Internet Access to Sub-meter Satellite Data
NASA Technical Reports Server (NTRS)
Neigh, Christopher S. R>
2012-01-01
The National Geospatial-Intelligence Agency (NGA) has contracted United States commercial remote sensing companies GeoEye and Digital Globe to provide very high resolution commercial quality satellite imagery to federal/state government agencies and those projects/people who support government interests. Under NextView contract terms, those engaged in official government programs/projects can gain online access to NGA's vast global archive. Additionally, data from vendor's archives of IKONOS-2 (IK-2), OrbView-3 (OB-3), GeoEye-1 (GE-1), QuickBird-1 (QB-1), WorldView-1 (WV-1), and WorldView-2 (WV-2), sensors can also be requested under these agreements. We report here the current extent of this archive, how to gain access, and the applications of these data by Earth science investigators to improve discoverability and community use of these data. Satellite commercial quality imagery (CQI) at very high resolution (< 1 m) (here after referred to as CQI) over the past decade has become an important data source to U.S. federal, state, and local governments for many different purposes. The rapid growth of free global CQI data has been slow to disseminate to NASA Earth Science community and programs such as the Land-Cover Land-Use Change (LCLUC) program which sees potential benefit from unprecedented access. This article evolved from a workshop held on February 23rd, 2012 between representatives from NGA, NASA, and NASA LCLUC Scientists discussion on how to extend this resource to a broader license approved community. Many investigators are unaware of NGA's archive availability or find it difficult to access CQI data from NGA. Results of studies, both quality and breadth, could be improved with CQI data by combining them with other moderate to coarse resolution passive optical Earth observation remote sensing satellites, or with RADAR or LiDAR instruments to better understand Earth system dynamics at the scale of human activities. We provide the evolution of this effort, a guide for qualified user access, and describe current to potential use of these data in earth science.
U.S. Geological Survey archived data recovery in Texas, 2008-11
Wehmeyer, Loren L.; Reece, Brian D.
2011-01-01
The 2008–11 data rescue and recovery efforts by the U.S. Geological Survey (USGS) Texas Water Science Center resulted in an efficient workflow process, database, and Web user interface for scientists and citizens to access archived environmental information with practical applications. Much of this information is unique and has never been readily available to the public. The methods developed and lessons learned during this effort are now being applied to facilitate recovering archived information requested by USGS scientists, cooperators, and the general public.
Records and history of the United States Geological Survey
Nelson, Clifford M.
2000-01-01
This publication contains two presentations in Portable Document Format (PDF). The first is Renee M. Jaussaud's inventory of the documents accessioned by the end of 1997 into Record Group 57 (Geological Survey) at the National Archives and Records Administration's (NARA) Archives II facility in College Park, Md., but not the materials in NARA's regional archives. The second is Mary C. Rabbitt's 'The United States Geological Survey 1879-1989,' which appeared in 1989 as USGS Circular 1050. Additionally, USGS Circular 1050 is also presented in Hyper Text Markup Language (HTML) format.
MECDAS: A distributed data acquisition system for experiments at MAMI
NASA Astrophysics Data System (ADS)
Krygier, K. W.; Merle, K.
1994-02-01
For the coincidence experiments with the three spectrometer setup at MAMI an experiment control and data acquisition system has been built and was put successfully into final operation in 1992. MECDAS is designed as a distributed system using communication via Ethernet and optical links. As the front end, VME bus systems are used for real time purposes and direct hardware access via CAMAC, Fastbus or VMEbus. RISC workstations running UNIX are used for monitoring, data archiving and online and offline analysis of the experiment. MECDAS consists of several fixed programs and libraries, but large parts of readout and analysis can be configured by the user. Experiment specific configuration files are used to generate efficient and powerful code well adapted to special problems without additional programming. The experiment description is added to the raw collection of partially analyzed data to get self-descriptive data files.
LSST communications middleware implementation
NASA Astrophysics Data System (ADS)
Mills, Dave; Schumacher, German; Lotz, Paul
2016-07-01
The LSST communications middleware is based on a set of software abstractions; which provide standard interfaces for common communications services. The observatory requires communication between diverse subsystems, implemented by different contractors, and comprehensive archiving of subsystem status data. The Service Abstraction Layer (SAL) is implemented using open source packages that implement open standards of DDS (Data Distribution Service1) for data communication, and SQL (Standard Query Language) for database access. For every subsystem, abstractions for each of the Telemetry datastreams, along with Command/Response and Events, have been agreed with the appropriate component vendor (such as Dome, TMA, Hexapod), and captured in ICD's (Interface Control Documents).The OpenSplice (Prismtech) Community Edition of DDS provides an LGPL licensed distribution which may be freely redistributed. The availability of the full source code provides assurances that the project will be able to maintain it over the full 10 year survey, independent of the fortunes of the original providers.
NASA Astrophysics Data System (ADS)
Kroll, Peter
The real heritage of Sonneberg Observatory consists of several buildings with seven domes, a number of telescopes for photographic and photoelectric measurements, a plate archive - which is the second-largest in the world - and a scientific library. While the instruments are today mainly used for public observing tours and to a limited degree for continuing sky patrol, the plate archive is systematically scanned in order to make the whole information stored in the emulsion of the plates accessible to the astronomical community and to allow the scientific study of all stars ever recorded. First pilot studies give a taste of what output can be expected from the digitized plate archive.
Ancillary Data Services of NASA's Planetary Data System
NASA Technical Reports Server (NTRS)
Acton, C.
1994-01-01
JPL's Navigation and Ancillary Information Facility (NAIF) has primary responsibility for design and implementation of the SPICE ancillary information system, supporting a wide range of space science mission design, observation planning and data analysis functions/activities. NAIF also serves as the geometry and ancillary data node of the Planetary Data System (PDS). As part of the PDS, NAIF archives SPICE and other ancillary data produced by flight projects. NAIF then distributes these data, and associated data access software and high-level tools, to researchers funded by NASA's Office of Space Science. Support for a broader user community is also offered to the extent resources permit. This paper describes the SPICE system and customer support offered by NAIF.
A land-surface Testbed for EOSDIS
NASA Technical Reports Server (NTRS)
Emery, William; Kelley, Tim
1994-01-01
The main objective of the Testbed project was to deliver satellite images via the Internet to scientific and educational users free of charge. The main method of operations was to store satellite images on a low cost tape library system, visually browse the raw satellite data, access the raw data filed, navigate the imagery through 'C' programming and X-Windows interface software, and deliver the finished image to the end user over the Internet by means of file transfer protocol methods. The conclusion is that the distribution of satellite imagery by means of the Internet is feasible, and the archiving of large data sets can be accomplished with low cost storage systems allowing multiple users.
Pain management discussion forum: prevention of chronic postoperative pain.
Breivik, Harald
2014-09-01
ABSTRACT A case of a 35-year-old woman scheduled for removal of a painful breast tumor is discussed. Ways to reduce risk of chronic pain developing postoperatively are described. Preoperative medications, nerve blocks, local anesthetics, and postoperative epidural pharmacotherapy are described. This report is adapted from paineurope 2014; Issue 1, Haymarket Medical Publications Ltd., and is presented with permission. paineurope is provided as a service to pain management by Mundipharma International, Ltd., and is distributed free of charge to health care professionals in Europe. Archival issues can be accessed via the Web site: http://www.paineurope.com, at which European health professionals can register online to receive copies of the quarterly publication.
Pain education policies and initiatives in Europe.
Fragemann, Kirstin; Wiese, Christoph
2014-12-01
Curriculum development processes and guidelines in Europe are discussed. Both medical and nursing education are addressed and the goals of interprofessional education are described. The need to involve other professional liaison groups is described. Integration of research findings into education and multidisciplinary educational strategies are encouraged. This report is adapted from paineurope 2014; Issue 2, ©Haymarket Medical Publications Ltd, and is presented with permission. Paineurope is provided as a service to pain management by Mundipharma International, LTD and is distributed free of charge to healthcare professionals in Europe. Archival issues can be accessed via the website: http://www.paineurope.com at which European health professionals can register online to receive copies of the quarterly publication.
36 CFR 1270.42 - Denial of access to public; right to appeal.
Code of Federal Regulations, 2010 CFR
2010-07-01
...; right to appeal. 1270.42 Section 1270.42 Parks, Forests, and Public Property NATIONAL ARCHIVES AND... Denial of access to public; right to appeal. (a) Any person denied access to a Presidential record... library director at the address cited in part 1253 of this chapter. (b) All appeals must be received by...
NASA Astrophysics Data System (ADS)
Cole, M.; Bambacus, M.; Lynnes, C.; Sauer, B.; Falke, S.; Yang, W.
2007-12-01
NASA's vast array of scientific data within its Distributed Active Archive Centers (DAACs) is especially valuable to both traditional research scientists as well as the emerging market of Earth Science Information Partners. For example, the air quality science and management communities are increasingly using satellite derived observations in their analyses and decision making. The Air Quality Cluster in the Federation of Earth Science Information Partners (ESIP) uses web infrastructures of interoperability, or Service Oriented Architecture (SOA), to extend data exploration, use, and analysis and provides a user environment for DAAC products. In an effort to continually offer these NASA data to the broadest research community audience, and reusing emerging technologies, both NASA's Goddard Earth Science (GES) and Land Process (LP) DAACs have engaged in a web services pilot project. Through these projects both GES and LP have exposed data through the Open Geospatial Consortiums (OGC) Web Services standards. Reusing several different existing applications and implementation techniques, GES and LP successfully exposed a variety data, through distributed systems to be ingested into multiple end-user systems. The results of this project will enable researchers world wide to access some of NASA's GES & LP DAAC data through OGC protocols. This functionality encourages inter-disciplinary research while increasing data use through advanced technologies. This paper will concentrate on the implementation and use of OGC Web Services, specifically Web Map and Web Coverage Services (WMS, WCS) at GES and LP DAACs, and the value of these services within scientific applications, including integration with the DataFed air quality web infrastructure and in the development of data analysis web applications.
NASA Astrophysics Data System (ADS)
Martin, C.; Dye, M. J.; Daniels, M. D.; Keiser, K.; Maskey, M.; Graves, S. J.; Kerkez, B.; Chandrasekar, V.; Vernon, F.
2015-12-01
The Cloud-Hosted Real-time Data Services for the Geosciences (CHORDS) project tackles the challenges of collecting and disseminating geophysical observational data in real-time, especially for researchers with limited IT budgets and expertise. The CHORDS Portal is a component that allows research teams to easily configure and operate a cloud-based service which can receive data from dispersed instruments, manage a rolling archive of the observations, and serve these data to any client on the Internet. The research group (user) creates a CHORDS portal simply by running a prepackaged "CHORDS appliance" on Amazon Web Services. The user has complete ownership and management of the portal. Computing expenses are typically very small. RESTful protocols are employed for delivering and fetching data from the portal, which means that any system capable of sending an HTTP GET message is capable of accessing the portal. A simple API is defined, making it straightforward for non-experts to integrate a diverse collection of field instruments. Languages with network access libraries, such as Python, sh, Matlab, R, IDL, Ruby and JavaScript (and most others) can retrieve structured data from the portal with just a few lines of code. The user's private portal provides a browser-based system for configuring, managing and monitoring the health of the integrated real-time system. This talk will highlight the design goals, architecture and agile development of the CHORDS Portal. A running portal, with operational data feeds from across the country, will be presented.
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory
2006-01-01
The presentation describes the recently awarded ACCESS project to provide data management of NASA remote sensing data for the Northern Eurasia Earth Science Partnership Initiative (NEESPI). The project targets integration of remote sensing data from MODIS, and other NASA instruments on board US-satellites (with potential expansion to data from non-US satellites), customized data products from climatology data sets (e.g., ISCCP, ISLSCP) and model data (e.g., NCEP/NCAR) into a single, well-architected data management system. It will utilize two existing components developed by the Goddard Earth Sciences Data & Information Services Center (GES DISC) at the NASA Goddard Space Flight Center: (1) online archiving and distribution system, that allows collection, processing and ingest of data from various sources into the online archive, and (2) user-friendly intelligent web-based online visualization and analysis system, also known as Giovanni. The former includes various kinds of data preparation for seamless interoperability between measurements by different instruments. The latter provides convenient access to various geophysical parameters measured in the Northern Eurasia region without any need to learn complicated remote sensing data formats, or retrieve and process large volumes of NASA data. Initial implementation of this data management system will concentrate on atmospheric data and surface data aggregated to coarse resolution to support collaborative environment and climate change studies and modeling, while at later stages, data from NASA and non-NASA satellites at higher resolution will be integrated into the system.
Near-line Archive Data Mining at the Goddard Distributed Active Archive Center
NASA Astrophysics Data System (ADS)
Pham, L.; Mack, R.; Eng, E.; Lynnes, C.
2002-12-01
NASA's Earth Observing System (EOS) is generating immense volumes of data, in some cases too much to provide to users with data-intensive needs. As an alternative to moving the data to the user and his/her research algorithms, we are providing a means to move the algorithms to the data. The Near-line Archive Data Mining (NADM) system is the Goddard Earth Sciences Distributed Active Archive Center's (GES DAAC) web data mining portal to the EOS Data and Information System (EOSDIS) data pool, a 50-TB online disk cache. The NADM web portal enables registered users to submit and execute data mining algorithm codes on the data in the EOSDIS data pool. A web interface allows the user to access the NADM system. The users first develops personalized data mining code on their home platform and then uploads them to the NADM system. The C, FORTRAN and IDL languages are currently supported. The user developed code is automatically audited for any potential security problems before it is installed within the NADM system and made available to the user. Once the code has been installed the user is provided a test environment where he/she can test the execution of the software against data sets of the user's choosing. When the user is satisfied with the results, he/she can promote their code to the "operational" environment. From here the user can interactively run his/her code on the data available in the EOSDIS data pool. The user can also set up a processing subscription. The subscription will automatically process new data as it becomes available in the EOSDIS data pool. The generated mined data products are then made available for FTP pickup. The NADM system uses the GES DAAC-developed Simple Scalable Script-based Science Processor (S4P) to automate tasks and perform the actual data processing. Users will also have the option of selecting a DAAC-provided data mining algorithm and using it to process the data of their choice.
PDS4: Current Status and Future Vision
NASA Astrophysics Data System (ADS)
Crichton, D. J.; Hughes, J. S.; Hardman, S. H.; Law, E. S.; Beebe, R. F.
2017-12-01
In 2010, the Planetary Data System began the largest standards and software upgrade in its history called "PDS4". PDS4 was architected with core principles, applying years of experience and lessons learned working with scientific data returned from robotic solar system missions. In addition to applying those lessons learned, the PDS team was able to take advantage of modern software and data architecture approaches and emerging information technologies which has enabled the capture, management, discovery, and distribution of data from planetary science archives world-wide. What has emerged is a foundational set of standards, services, and common tools to construct and enable interoperability of planetary science archives from distributed repositories. Early in the PDS4 development, PDS selected two missions as drivers to be used to validate the PDS4 approach: LADEE and MAVEN. Additionally, PDS partnered with international agencies to begin discussing the architecture, design, and implementation to ensure that PDS4 would be architected as a world-wide standard and platform for archive development and interoperability. Given the evolving requirements, an agile software development methodology known as the "Evolutionary Software Development Lifecycle" was chosen. This led to incremental releases of increasing capability over time which were matched against emerging mission and user needs. To date, PDS has now performed 16 releases of PDS4 with adoption of over 12 missions world-wide. PDS has also increased from approximately 200 TBs in 2010 to approximately 1.3 PBs of data today, bringing it into the era of big data. The development of PDS4 has not only focused on the construction of compatible archives, but also on increasing access and use of the data in the big data era. As PDS looks forward, it is focused on achieving the recommendations of the Planetary Science Decadal Survey (2013-2022): "support the ongoing effort to evolve the Planetary Data System to an effective online resource for the NASA and international communities". The foundation laid by the standards, software services, and tools positions PDS to develop and adopt new approaches and technologies to enable users to effectively search, extract, integrate, and analyze with the wealth of observational data across international boundaries.
NASA Technical Reports Server (NTRS)
Hearty, Thomas; Savtchenko, Andrey; Vollmer, Bruce; Albayrak, Arif; Theobald, Mike; Esfandiari, Ed; Wei, Jennifer
2015-01-01
This talk will describe the support and distribution of CO2 data products from OCO-2, AIRS, and ACOS, that are archived and distributed from the Goddard Earth Sciences Data and Information Services Center. We will provide a brief summary of the current online archive and distribution metrics for the OCO-2 Level 1 products and plans for the Level 2 products. We will also describe collaborative data sets and services (e.g., matchups with other sensors) and solicit feedback for potential future services.
Web tools for large-scale 3D biological images and atlases
2012-01-01
Background Large-scale volumetric biomedical image data of three or more dimensions are a significant challenge for distributed browsing and visualisation. Many images now exceed 10GB which for most users is too large to handle in terms of computer RAM and network bandwidth. This is aggravated when users need to access tens or hundreds of such images from an archive. Here we solve the problem for 2D section views through archive data delivering compressed tiled images enabling users to browse through very-large volume data in the context of a standard web-browser. The system provides an interactive visualisation for grey-level and colour 3D images including multiple image layers and spatial-data overlay. Results The standard Internet Imaging Protocol (IIP) has been extended to enable arbitrary 2D sectioning of 3D data as well a multi-layered images and indexed overlays. The extended protocol is termed IIP3D and we have implemented a matching server to deliver the protocol and a series of Ajax/Javascript client codes that will run in an Internet browser. We have tested the server software on a low-cost linux-based server for image volumes up to 135GB and 64 simultaneous users. The section views are delivered with response times independent of scale and orientation. The exemplar client provided multi-layer image views with user-controlled colour-filtering and overlays. Conclusions Interactive browsing of arbitrary sections through large biomedical-image volumes is made possible by use of an extended internet protocol and efficient server-based image tiling. The tools open the possibility of enabling fast access to large image archives without the requirement of whole image download and client computers with very large memory configurations. The system was demonstrated using a range of medical and biomedical image data extending up to 135GB for a single image volume. PMID:22676296
Archiving 40+ Years of Planetary Mission Data - Lessons Learned
NASA Astrophysics Data System (ADS)
Simmons, K. E.
2012-12-01
NASA has invested billions of dollars and millions of man-hours in obtaining information about our planet and its neighbors. Will the data obtained from those investments be accessible in 50 years, nae 20 or even 10? Will scientists be able to look back at the record and understand what stayed the same or has changed? Saving the data is critical, we all understand that, and keeping it reformatted to maintain usability is a given. But what is easily more critical is saving the information that allows a future person to use these data. This work explores the difficul-ties, costs and heartaches encountered with archiving data from six major NASA missions spanning 40+ years: Mariner 6, 7 and 9, Pioneer Venus, Voyager and Galileo. Some of these lessons are a) a central archive for Mission documents needs to be established, b) metadata from the early stages of a mission are frequntly poorly recorded, c) instrument microprocessors improve science flexibility but make documenting harder, d) archiving observation de-signs improves data recovery, e) more post mission time and dollars need to be allocated to archiving, f) additional PDS node funding would support more timely data ingestion, faster peer review and quicker public access and g) trained archivists should be part of mission teams at all levels. This work is supported from ROSES grant NNX09AM04GS04.
NADIR: A Flexible Archiving System Current Development
NASA Astrophysics Data System (ADS)
Knapic, C.; De Marco, M.; Smareglia, R.; Molinaro, M.
2014-05-01
The New Archiving Distributed InfrastructuRe (NADIR) is under development at the Italian center for Astronomical Archives (IA2) to increase the performances of the current archival software tools at the data center. Traditional softwares usually offer simple and robust solutions to perform data archive and distribution but are awkward to adapt and reuse in projects that have different purposes. Data evolution in terms of data model, format, publication policy, version, and meta-data content are the main threats to re-usage. NADIR, using stable and mature framework features, answers those very challenging issues. Its main characteristics are a configuration database, a multi threading and multi language environment (C++, Java, Python), special features to guarantee high scalability, modularity, robustness, error tracking, and tools to monitor with confidence the status of each project at each archiving site. In this contribution, the development of the core components is presented, commenting also on some performance and innovative features (multi-cast and publisher-subscriber paradigms). NADIR is planned to be developed as simply as possible with default configurations for every project, first of all for LBT and other IA2 projects.
Defense.gov Special Report: Pearl Harbor - Anniversary of the Attack on
Pearl Harbor You have reached a collection of archived material. The content available is no administration. If you wish to see the latest content, please visit the current version of the site. For persons with disabilities experiencing difficulties accessing content on archive.defense.gov, please use the
The Protein Data Bank archive as an open data resource
Berman, Helen M.; Kleywegt, Gerard J.; Nakamura, Haruki; ...
2014-07-26
The Protein Data Bank archive was established in 1971, and recently celebrated its 40th anniversary (Berman et al. in Structure 20:391, 2012). Here, an analysis of interrelationships of the science, technology and community leads to further insights into how this resource evolved into one of the oldest and most widely used open-access data resources in biology.
The Protein Data Bank archive as an open data resource.
Berman, Helen M; Kleywegt, Gerard J; Nakamura, Haruki; Markley, John L
2014-10-01
The Protein Data Bank archive was established in 1971, and recently celebrated its 40th anniversary (Berman et al. in Structure 20:391, 2012). An analysis of interrelationships of the science, technology and community leads to further insights into how this resource evolved into one of the oldest and most widely used open-access data resources in biology.