Self-consistent radiation-based simulation of electric arcs: II. Application to gas circuit breakers
NASA Astrophysics Data System (ADS)
Iordanidis, A. A.; Franck, C. M.
2008-07-01
An accurate and robust method for radiative heat transfer simulation for arc applications was presented in the previous paper (part I). In this paper a self-consistent mathematical model based on computational fluid dynamics and a rigorous radiative heat transfer model is described. The model is applied to simulate switching arcs in high voltage gas circuit breakers. The accuracy of the model is proven by comparison with experimental data for all arc modes. The ablation-controlled arc model is used to simulate high current PTFE arcs burning in cylindrical tubes. Model accuracy for the lower current arcs is evaluated using experimental data on the axially blown SF6 arc in steady state and arc resistance measurements close to current zero. The complete switching process with the arc going through all three phases is also simulated and compared with the experimental data from an industrial circuit breaker switching test.
Method of center localization for objects containing concentric arcs
NASA Astrophysics Data System (ADS)
Kuznetsova, Elena G.; Shvets, Evgeny A.; Nikolaev, Dmitry P.
2015-02-01
This paper proposes a method for automatic center location of objects containing concentric arcs. The method utilizes structure tensor analysis and voting scheme optimized with Fast Hough Transform. Two applications of the proposed method are considered: (i) wheel tracking in video-based system for automatic vehicle classification and (ii) tree growth rings analysis on a tree cross cut image.
Signature of type-II Weyl semimetal phase in MoTe2
NASA Astrophysics Data System (ADS)
Jiang, J.; Liu, Z. K.; Sun, Y.; Yang, H. F.; Rajamathi, C. R.; Qi, Y. P.; Yang, L. X.; Chen, C.; Peng, H.; Hwang, C.-C.; Sun, S. Z.; Mo, S.-K.; Vobornik, I.; Fujii, J.; Parkin, S. S. P.; Felser, C.; Yan, B. H.; Chen, Y. L.
2017-01-01
Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leads to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe2 was discovered to be superconducting recently) and their topological order.
Signature of type-II Weyl semimetal phase in MoTe 2
Jiang, J.; Liu, Z. K.; Sun, Y.; ...
2017-01-13
Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe 2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leadsmore » to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe 2 was discovered to be superconducting recently) and their topological order.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, J.; Liu, Z. K.; Sun, Y.
Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe 2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leadsmore » to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe 2 was discovered to be superconducting recently) and their topological order.« less
Signature of Type-II Weyl Semimetal Phase in MoTe2
NASA Astrophysics Data System (ADS)
Jiang, Juan; Liu, Zhongkai; Yang, Haifeng; Yang, Lexian; Chen, Cheng; Peng, Han; Hwang, Chan-Cuk; Mo, Sung-Kwan; Chen, Yulin; ShanghaiTech University Collaboration; Oxford University Collaboration; Lawrence Berkeley National Lab Collaboration; Pohang University of Science; Technology Collaboration
Topological Weyl semimetal (TWS) is a new state of quantum matter, which has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. Here, by using angle-resolved photoemission spectroscopy, we directly visualize the electronic structure of MoTe2, a recently proposed type-II TWS, which do not respect Lorentz symmetry compared with type-I TWS. Furthermore, we unravel the unique surface Fermi arcs, in good agreement with our ab-initio calculations, which have non-trivial topological nature. Our work not only leads to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity and their topological order.
Rapid activity-induced transcription of arc and other IEGs relies on poised RNA polymerase II
Saha, Ramendra N.; Wissink, Erin M.; Bailey, Emma R.; Zhao, Meilan; Fargo, David C.; Hwang, Ji-yeon; Daigle, Kelly R.; Fenn, J. Daniel; Adelman, Karen; Dudek, Serena M.
2011-01-01
Summary Transcription of immediate early genes (IEGs) in neurons is exquisitely sensitive to neuronal activity, but the mechanism underlying these early transcription events is largely unknown. We demonstrate that several IEGs such as arc/arg3.1 are poised for near-instantaneous transcription by the stalling of RNA Polymerase II (Pol II) just downstream of the transcription start site in rat neurons. RNAi-depletion of Negative Elongation Factor, a mediator of Pol II stalling, reduces the Pol II occupancy of the arc promoter and compromises the rapid induction of arc and other IEGs. In contrast, reduction of Pol II stalling did not prevent transcription of IEGs that are expressed later and largely lack promoter proximal Pol II stalling. Together, our data strongly indicate that rapid induction of neuronal IEGs requires poised Pol II and suggest a role for this mechanism in a wide variety of transcription-dependent processes, including learning and memory. PMID:21623364
Trivial and topological Fermi arcs in the type-II Weyl semimetal candidate MoTe2
NASA Astrophysics Data System (ADS)
Tamai, Anna; Wu, Quansheng; Cucchi, Irene; Bruno, Flavio; Barreteau, Celine; Giannini, Enrico; Soluyanov, Alexey; Baumberger, Felix
Weyl semimetals are commonly identified by detecting their characteristic open surface state Fermi arcs in angle-resolved photoemission (ARPES) experiments. However, in type-II Weyl semimetals the Fermi arcs generally disappear in the bulk carrier pockets before reaching the Weyl points where they terminate - making it harder to unambiguously identify this new electronic state. Using laser-based ARPES, we have resolved multiple distinct Fermi arcs on the inequivalent top and bottom (001) surfaces of the candidate type-II Weyl semimetal MoTe2. By comparing our ARPES data with systematic electronic structure calculations simulating different Weyl point arrangements, we show that some of these arcs are false positives as they can be explained without Weyl points, while others are only reproduced in scenarios with at least eight Weyl points. Our results thus suggest that MoTe2 is the first experimental realisation of a type-II Weyl semimetal.
Detecting stellar-wind bubbles through infrared arcs in H II regions
NASA Astrophysics Data System (ADS)
Mackey, Jonathan; Haworth, Thomas J.; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert; Harries, Tim J.
2016-02-01
Mid-infrared arcs of dust emission are often seen near ionizing stars within H II regions. A possible explanations for these arcs is that they could show the outer edges of asymmetric stellar wind bubbles. We use two-dimensional, radiation-hydrodynamics simulations of wind bubbles within H II regions around individual stars to predict the infrared emission properties of the dust within the H II region. We assume that dust and gas are dynamically well-coupled and that dust properties (composition, size distribution) are the same in the H II region as outside it, and that the wind bubble contains no dust. We post-process the simulations to make synthetic intensity maps at infrared wavebands using the torus code. We find that the outer edge of a wind bubble emits brightly at 24 μm through starlight absorbed by dust grains and re-radiated thermally in the infrared. This produces a bright arc of emission for slowly moving stars that have asymmetric wind bubbles, even for cases where there is no bow shock or any corresponding feature in tracers of gas emission. The 24 μm intensity decreases exponentially from the arc with increasing distance from the star because the dust temperature decreases with distance. The size distribution and composition of the dust grains has quantitative but not qualitative effects on our results. Despite the simplifications of our model, we find good qualitative agreement with observations of the H II region RCW 120, and can provide physical explanations for any quantitative differences. Our model produces an infrared arc with the same shape and size as the arc around CD -38°11636 in RCW 120, and with comparable brightness. This suggests that infrared arcs around O stars in H II regions may be revealing the extent of stellar wind bubbles, although we have not excluded other explanations.
Sub aquatic 3D visualization and temporal analysis utilizing ArcGIS online and 3D applications
We used 3D Visualization tools to illustrate some complex water quality data we’ve been collecting in the Great Lakes. These data include continuous tow data collected from our research vessel the Lake Explorer II, and continuous water quality data collected from an autono...
Yi, Jason; Wu, Xufeng S.; Crites, Travis; Hammer, John A.
2012-01-01
Actin retrograde flow and actomyosin II contraction have both been implicated in the inward movement of T cell receptor (TCR) microclusters and immunological synapse formation, but no study has integrated and quantified their relative contributions. Using Jurkat T cells expressing fluorescent myosin IIA heavy chain and F-tractin—a novel reporter for F-actin—we now provide direct evidence that the distal supramolecular activation cluster (dSMAC) and peripheral supramolecular activation cluster (pSMAC) correspond to lamellipodial (LP) and lamellar (LM) actin networks, respectively, as hypothesized previously. Our images reveal concentric and contracting actomyosin II arcs/rings at the LM/pSMAC. Moreover, the speeds of centripetally moving TCR microclusters correspond very closely to the rates of actin retrograde flow in the LP/dSMAC and actomyosin II arc contraction in the LM/pSMAC. Using cytochalasin D and jasplakinolide to selectively inhibit actin retrograde flow in the LP/dSMAC and blebbistatin to selectively inhibit actomyosin II arc contraction in the LM/pSMAC, we demonstrate that both forces are required for centripetal TCR microcluster transport. Finally, we show that leukocyte function–associated antigen 1 clusters accumulate over time at the inner aspect of the LM/pSMAC and that this accumulation depends on actomyosin II contraction. Thus actin retrograde flow and actomyosin II arc contraction coordinately drive receptor cluster dynamics at the immunological synapse. PMID:22219382
A new supernova remnant candidate in the UWIFE [Fe II] line survey
NASA Astrophysics Data System (ADS)
Kim, Yesol; Koo, Bon-Chul
2016-06-01
We report the discovery of a new supernova remnant (SNR) candidate in the narrow-band [Fe II] 1.644 um line imaging survey UWIFE (UKIRT Widefield Infrared Survey for Fe). UWIFE covers the first quadrant of the Galactic plane (7degrees < l < 62degrees, |b| < 1.5degrees), and, by visual inspection, we have found ~300 extended Ionized Fe objects (IFOs) in the survey area. Most of IFOs are associated with SNRs, young stellar objects, HII regions, and planetary nebulae. But about 12% of IFOs are not associated with any known astronomical objects, and the SNR candidate, IFO J183740.829-061452.41 (hereafter IFO J183740) is one of those. IFO J183740 is a 6`-long, faint, arc-like filament with small-scale irregular structures. It appears to be a portion of a circular loop, but the rest of the loop is not seen in [Fe II] emission. It is found to coincide with a well-defined radio continuum arc. The radio arc has a complicated morphology, and IFO J183740 coincides with the bright inner part of the radio arc. Hydrogen recombination lines have been detected toward the radio arc from low-resolution surveys, so it has been known as an HII region (G25.8+0.2) at a kinematic distance of 6.5 kpc. But the inside of this radio arc is filled with soft X-rays, while, just outside the arc to the north, there is hard X-ray nebula harboring a young pulsar. Therefore, the nature of this arc-like structure seen in radio and [Fe II] emission is uncertain. In this presentation, we present the results of follow-up spectroscopic study of IFO J183740 using IGRINS (Immersion Grating Infrared Spectrograph) which is high spectral resolution (R~40,000) spectrograph covering H and K-bands, simultaneously. We have found that the [Fe II] filaments are both spatially and kinematically distinct from the HII filaments. The intensity ratios of [Fe II] to Brγ lines suggest that the HII filaments are photoionized while the [Fe II] filaments are shock-ionized, which supports the SNR origin for IFO J183740. We discuss the association of IFO J183740 with other sources in the region.
Arcing and its role in PFC erosion and dust production in DIII-D
NASA Astrophysics Data System (ADS)
Rudakov, D. L.; Chrobak, C. P.; Doerner, R. P.; Krasheninnikov, S. I.; Moyer, R. A.; Umstadter, K. R.; Wampler, W. R.; Wong, C. P. C.
2013-07-01
Two types of arc tracks are observed on the plasma-facing components (PFCs) in DIII-D. "Unmagnetized" random walk tracks are produced during glow discharges; they are rare and have no importance for PFC erosion but may degrade diagnostic mirrors. "Magnetized" scratch-like type II tracks are produced by unipolar arcs during plasma operations; they are formed by "retrograde BxJ" motion of the cathode spot and are roughly perpendicular to the local magnetic field. Type II arcs cause measurable erosion of graphite, but based on the evidence available they are relatively small contributors to the total erosion of carbon in DIII-D compared to other mechanisms such as physical and chemical sputtering and ablation from leading edges. Erosion by arcing of tungsten films deposited on graphite samples was observed in Divertor Material Evaluation System (DiMES) experiments. New DiMES experiments aimed at time-resolved arc measurements are proposed.
NASA Technical Reports Server (NTRS)
Genzel, R.; Harris, A. I.; Geis, N.; Stacey, G. J.; Townes, C. H.
1990-01-01
Results are presented from FIR, sub-mm, and mm spectroscopic observations of the radio arc and the +20/+50 km/s molecular clouds in the Galactic center. The results for the radio arc are analyzed, including the spatial distribution of C II forbidden line emission, the spatial distribution of CO emission, the luminosity and mass of C(+) regions, and the CO 7 - 6 emission and line profiles. Model calculations are used to study molecular gas in the radio arc. In addition, forbidden C II, CO 7 - 6, and C(O-18) mapping is presented for the +20/+50 km/x clouds. Consideration is given to the impact of the results on the interpretation of the physical conditions, excitation, and heating of the gas clouds in the arc and near the center.
Computation of Matrix Chain Products. Part I, Part II.
1981-09-01
vertex V in Corollary 4, not all the n-3 arcs gen - y erated by the algorithm are potential h-arcs. However, it is not difficult to verify that the...degenerated potential h-arc, V -V (V < V.). The upper subpolygon is a fanc i c 1 Fan(wlwd.... I .) and the lower subpolygon is a fan Fan(wI1w2 w,w i,w 3...arc hl, V12 as a degenerated arc h , and V as a degenerated arc h9 . The father-son relationship still holds for the h-arcs in a gen - eral polygon, and
The modelling of an SF6 arc in a supersonic nozzle: II. Current zero behaviour of the nozzle arc
NASA Astrophysics Data System (ADS)
Zhang, Q.; Liu, J.; Yan, J. D.; Fang, M. T. C.
2016-08-01
The present work (part II) forms the second part of an investigation into the behaviour of SF6 nozzle arc. It is concerned with the aerodynamic and electrical behaviour of a transient nozzle arc under a current ramp specified by a rate of current decay (di/dt) before current zero and a voltage ramp (dV/dt) after current zero. The five flow models used in part I [1] for cold gas flow and DC nozzle arcs have been applied to study the transient arc at three stagnation pressures (P 0) and two values of di/dt for the current ramp, representing a wide range of arcing conditions. An analysis of the physical mechanisms encompassed in each flow model is given with an emphasis on the adequacy of a particular model in describing the rapidly varying arc around current zero. The critical rate of rise of recovery voltage (RRRV) is found computationally and compared with test results of Benenson et al [2]. For transient nozzle arcs, the RRRV is proportional to the square of P 0, rather than to the square root of P 0 for DC nozzle arcs. The physical mechanisms responsible for the strong dependence of RRRV on P 0 have been investigated. The relative merits of the flow models employed are discussed.
NASA Astrophysics Data System (ADS)
Lisnyak, M.; Pipa, A. V.; Gorchakov, S.; Iseni, S.; Franke, St.; Khapour, A.; Methling, R.; Weltmann, K.-D.
2015-09-01
Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350-810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution was used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.
Everyday attention lapses and memory failures: the affective consequences of mindlessness.
Carriere, Jonathan S A; Cheyne, J Allan; Smilek, Daniel
2008-09-01
We examined the affective consequences of everyday attention lapses and memory failures. Significant associations were found between self-report measures of attention lapses (MAAS-LO), attention-related cognitive errors (ARCES), and memory failures (MFS), on the one hand, and boredom (BPS) and depression (BDI-II), on the other. Regression analyses confirmed previous findings that the ARCES partially mediates the relation between the MAAS-LO and MFS. Further regression analyses also indicated that the association between the ARCES and BPS was entirely accounted for by the MAAS-LO and MFS, as was that between the ARCES and BDI-II. Structural modeling revealed the associations to be optimally explained by the MAAS-LO and MFS influencing the BPS and BDI-II, contrary to current conceptions of attention and memory problems as consequences of affective dysfunction. A lack of conscious awareness of one's actions, signaled by the propensity to experience brief lapses of attention and related memory failures, is thus seen as having significant consequences in terms of long-term affective well-being.
Detection of the Compressed Primary Stellar Wind in eta Carinae
NASA Technical Reports Server (NTRS)
Teodoro, Mairan Macedo; Madura, Thomas I.; Gull, Theodore R.; Corcoran, Michael F.; Hamaguchi, K.
2014-01-01
A series of three HST/STIS spectroscopic mappings, spaced approximately one year apart, reveal three partial arcs in [Fe II] and [Ni II] emissions moving outward from eta Carinae. We identify these arcs with the shell-like structures, seen in the 3D hydrodynamical simulations, formed by compression of the primary wind by the secondary wind during periastron passages.
Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2
NASA Astrophysics Data System (ADS)
Deng, Ke; Wan, Guoliang; Deng, Peng; Zhang, Kenan; Ding, Shijie; Wang, Eryin; Yan, Mingzhe; Huang, Huaqing; Zhang, Hongyun; Xu, Zhilin; Denlinger, Jonathan; Fedorov, Alexei; Yang, Haitao; Duan, Wenhui; Yao, Hong; Wu, Yang; Fan, Shoushan; Zhang, Haijun; Chen, Xi; Zhou, Shuyun
2016-12-01
Weyl semimetal is a new quantum state of matter hosting the condensed matter physics counterpart of the relativistic Weyl fermions originally introduced in high-energy physics. The Weyl semimetal phase realized in the TaAs class of materials features multiple Fermi arcs arising from topological surface states and exhibits novel quantum phenomena, such as a chiral anomaly-induced negative magnetoresistance and possibly emergent supersymmetry. Recently it was proposed theoretically that a new type (type-II) of Weyl fermion that arises due to the breaking of Lorentz invariance, which does not have a counterpart in high-energy physics, can emerge as topologically protected touching between electron and hole pockets. Here, we report direct experimental evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe2 (refs ,,). The topological surface states are confirmed by directly observing the surface states using bulk- and surface-sensitive angle-resolved photoemission spectroscopy, and the quasi-particle interference pattern between the putative topological Fermi arcs in scanning tunnelling microscopy. By establishing MoTe2 as an experimental realization of a type-II Weyl semimetal, our work opens up opportunities for probing the physical properties of this exciting new state.
The Arcuate Nucleus: A Site of Fast Negative Feedback for Corticosterone Secretion in Male Rats
Kawata, Mitsuhiro; Escobar, Carolina
2017-01-01
Abstract Variations in circulating corticosterone (Cort) are driven by the paraventricular nucleus of the hypothalamus (PVN), mainly via the sympathetic autonomic nervous system (ANS) directly stimulating Cort release from the adrenal gland and via corticotropin-releasing hormone targeting the adenohypophysis to release adrenocorticotropic hormone (ACTH). Cort feeds back through glucocorticoid receptors (GRs). Here we show in male Wistar rats that PVN neurons projecting to the adrenal gland do not express GRs, leaving the question of how the ANS in the PVN gets information about circulating Cort levels to control the adrenal. Since the arcuate nucleus (ARC) shows a less restrictive blood–brain barrier, expresses GRs, and projects to the PVN, we investigated whether the ARC can detect and produce fast adjustments of circulating Cort. In low Cort conditions (morning), local microdialysis in the ARC with type I GR antagonist produced a fast and sustained increase of Cort. This was not observed with a type II antagonist. At the circadian peak levels of Cort (afternoon), a type II GR antagonist, but not a type I antagonist, increased Cort levels but not ACTH levels. Antagonist infusions in the PVN did not modify circulating Cort levels, demonstrating the specificity of the ARC to give Cort negative feedback. Furthermore, type I and II GR agonists in the ARC prevented the increase of Cort after stress, demonstrating the role of the ARC as sensor to modulate Cort release. Our findings show that the ARC may be essential to sense blood levels of Cort and adapt Cort secretion depending on such conditions as stress or time of day. PMID:28275717
Detection of the Compressed Primary Stellar Wind in eta Carinae*
NASA Technical Reports Server (NTRS)
Teodoro, M.; Madura, T. I.; Gull, T. R.; Corcoran, M. F.; Hamaguchi, K.
2013-01-01
A series of three Hubble Space Telescope Space Telescope Imaging Spectrograph (HST/STIS) spectroscopic mappings, spaced approximately one year apart, reveal three partial arcs in [Fe II] and [Ni II] emissions moving outward from ? Carinae. We identify these arcs with the shell-like structures, seen in the 3D hydrodynamical simulations, formed by compression of the primary wind by the secondary wind during periastron passages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisnyak, M.; Pipa, A. V.; Gorchakov, S., E-mail: gorchakov@inp-greifswald.de, E-mail: weltmann@inp-greifswald.de
2015-09-28
Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350–810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution wasmore » used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.« less
Testing the Archivas Cluster (Arc) for Ozone Monitoring Instrument (OMI) Scientific Data Storage
NASA Technical Reports Server (NTRS)
Tilmes, Curt
2005-01-01
The Ozone Monitoring Instrument (OMI) launched on NASA's Aura Spacecraft, the third of the major platforms of the EOS program on July 15,2004. In addition to the long term archive and distribution of the data from OM1 through the Goddard Earth Science Distributed Active Archive Center (GESDAAC), we are evaluating other archive mechanisms that can archive the data in a more immediately available method where it can be used for futher data production and analysis. In 2004, Archivas, Inc. was selected by NASA s Small Business Innovative Research (SBIR) program for the development of their Archivas Cluster (ArC) product. Arc is an online disk based system utilizing self-management and automation on a Linux cluster. Its goal is to produce a low cost solution coupled with the ease of management. The OM1 project is an application partner of the SBIR program, and has deployed a small cluster (5TB) based on the beta Archwas software. We performed extensive testing of the unit using production OM1 data since launch. In 2005, Archivas, Inc. was funded in SBIR Phase II for further development, which will include testing scalability with the deployment of a larger (35TB) cluster at Goddard. We plan to include Arc in the OM1 Team Leader Computing Facility (TLCF) hosting OM1 data for direct access and analysis by the OMI Science Team. This presentation will include a brief technical description of the Archivas Cluster, a summary of the SBIR Phase I beta testing results, and an overview of the OMI ground data processing architecture including its interaction with the Phase II Archivas Cluster and hosting of OMI data for the scientists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, Peter K.; Bayliss, Matthew B.; McDonald, Michael
2013-07-20
The process by which the mass density profile of certain galaxy clusters becomes centrally concentrated enough to produce high strong lensing (SL) cross-sections is not well understood. It has been suggested that the baryonic condensation of the intracluster medium (ICM) due to cooling may drag dark matter to the cores and thus steepen the profile. In this work, we search for evidence of ongoing ICM cooling in the first large, well-defined sample of SL selected galaxy clusters in the range 0.1 < z < 0.6. Based on known correlations between the ICM cooling rate and both optical emission line luminositymore » and star formation, we measure, for a sample of 89 SL clusters, the fraction of clusters that have [O II]{lambda}{lambda}3727 emission in their brightest cluster galaxy (BCG). We find that the fraction of line-emitting BCGs is constant as a function of redshift for z > 0.2 and shows no statistically significant deviation from the total cluster population. Specific star formation rates, as traced by the strength of the 4000 A break, D{sub 4000}, are also consistent with the general cluster population. Finally, we use optical imaging of the SL clusters to measure the angular separation, R{sub arc}, between the arc and the center of mass of each lensing cluster in our sample and test for evidence of changing [O II] emission and D{sub 4000} as a function of R{sub arc}, a proxy observable for SL cross-sections. D{sub 4000} is constant with all values of R{sub arc}, and the [O II] emission fractions show no dependence on R{sub arc} for R{sub arc} > 10'' and only very marginal evidence of increased weak [O II] emission for systems with R{sub arc} < 10''. These results argue against the ability of baryonic cooling associated with cool core activity in the cores of galaxy clusters to strongly modify the underlying dark matter potential, leading to an increase in SL cross-sections.« less
Gas Metal Arc Weld (GMAW) Qualification of 7020-T651 Aluminum
2015-11-01
ARL-TR-7515 ● NOV 2015 US Army Research Laboratory Gas Metal Arc Weld (GMAW) Qualification of 7020-T651 Aluminum by John F...Metal Arc Weld (GMAW) Qualification of 7020-T651 Aluminum by John F Chinella Weapons and Materials Research Directorate, ARL Nick Kapustka and...Seth Shira Edison Welding Institute, Columbus, Ohio Approved for public release; distribution is unlimited. ii REPORT
NASA Astrophysics Data System (ADS)
Wu, Mingliang; Yang, Fei; Rong, Mingzhe; Wu, Yi; Qi, Yang; Cui, Yufei; Liu, Zirui; Guo, Anxiang
2016-04-01
This paper focuses on the numerical investigation of arc characteristics in an air direct current circuit breaker (air DCCB). Using magneto-hydrodynamics (MHD) theory, 3D laminar model and turbulence model are constructed and calculated. The standard k-epsilon model is utilized to consider the turbulence effect in the arc chamber of the DCCB. Several important phenomena are found: the arc column in the turbulence-model case is more extensive, moves much more slowly than the counterpart in the laminar-model case, and shows stagnation at the entrance of the chamber, unlike in the laminar-model case. Moreover, the arc voltage in the turbulence-model case is much lower than in the laminar-model case. However, the results in the turbulence-model case show a much better agreement with the results of the breaking experiments under DC condition than in the laminar-model case, which is contradictory to the previous conclusions from the arc researches of both the low-voltage circuit breaker and the sulfur hexafluoride (SF6) nozzle. First, in the previous air-arc research of the low-voltage circuit breaker, it is assumed that the air plasma inside the chamber is in the state of laminar, and the laminar-model application gives quite satisfactory results compared with the experiments, while in this paper, the laminar-model application works badly. Second, the turbulence-model application in the arc research of the SF6-nozzle performs much better and gives higher arc voltage than the laminar-model application does, whereas in this paper, the turbulence-model application predicts lower arc voltage than the laminar-model application does. Based on the analysis of simulation results in detail, the mechanism of the above phenomena is revealed. The transport coefficients are strongly changed by turbulence, which will enhance the arc diffusion and make the arc volume much larger. Consequently, the arc appearance and the distribution of Lorentz force in the turbulence-model case substantially differ from the arc appearance and the distribution of Lorentz force in the laminar-model case. Thus, the moving process of the arc in the turbulence-model case is slowed down and slower than in the laminar-model case. Moreover, the more extensive arc column in the turbulence-model case reduces the total arc resistance, which results in a lower arc voltage, more consistent with the experimental results than the arc voltage in the laminar-model case. Therefore, the air plasma inside this air DCCB is believed to be in the turbulence state, and the turbulence model is more suitable than the laminar model for the arc simulation of this kind of air DCCB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Mingliang; Yang, Fei, E-mail: yfei2007@mail.xjtu.edu.cn; Rong, Mingzhe
This paper focuses on the numerical investigation of arc characteristics in an air direct current circuit breaker (air DCCB). Using magneto-hydrodynamics (MHD) theory, 3D laminar model and turbulence model are constructed and calculated. The standard k-epsilon model is utilized to consider the turbulence effect in the arc chamber of the DCCB. Several important phenomena are found: the arc column in the turbulence-model case is more extensive, moves much more slowly than the counterpart in the laminar-model case, and shows stagnation at the entrance of the chamber, unlike in the laminar-model case. Moreover, the arc voltage in the turbulence-model case ismore » much lower than in the laminar-model case. However, the results in the turbulence-model case show a much better agreement with the results of the breaking experiments under DC condition than in the laminar-model case, which is contradictory to the previous conclusions from the arc researches of both the low-voltage circuit breaker and the sulfur hexafluoride (SF6) nozzle. First, in the previous air-arc research of the low-voltage circuit breaker, it is assumed that the air plasma inside the chamber is in the state of laminar, and the laminar-model application gives quite satisfactory results compared with the experiments, while in this paper, the laminar-model application works badly. Second, the turbulence-model application in the arc research of the SF6-nozzle performs much better and gives higher arc voltage than the laminar-model application does, whereas in this paper, the turbulence-model application predicts lower arc voltage than the laminar-model application does. Based on the analysis of simulation results in detail, the mechanism of the above phenomena is revealed. The transport coefficients are strongly changed by turbulence, which will enhance the arc diffusion and make the arc volume much larger. Consequently, the arc appearance and the distribution of Lorentz force in the turbulence-model case substantially differ from the arc appearance and the distribution of Lorentz force in the laminar-model case. Thus, the moving process of the arc in the turbulence-model case is slowed down and slower than in the laminar-model case. Moreover, the more extensive arc column in the turbulence-model case reduces the total arc resistance, which results in a lower arc voltage, more consistent with the experimental results than the arc voltage in the laminar-model case. Therefore, the air plasma inside this air DCCB is believed to be in the turbulence state, and the turbulence model is more suitable than the laminar model for the arc simulation of this kind of air DCCB.« less
Evaluation of pyrolysis and arc tracking on candidate wire insulation designs for space applications
NASA Astrophysics Data System (ADS)
Stueber, Thomas J.; Hammoud, Ahmad; Stavnes, Mark W.; Hrovat, Kenneth
1994-05-01
Polyimide wire insulation has been found to be vulnerable to pyrolization and arc tracking due to momentary short circuit arcing events. This report compares arc tracking susceptibility of candidate insulation configurations for space wiring applications. The insulation types studied in this report were gauge 20 (0.81 mm dia.) hybrid wiring constructions using polyimide, tetrafluoroethylene (TFE), cross-linked ethylene tetrafluoroethylene (XL-ETFE) and/or polytetrafluoroethylene (PTFE) insulations. These constructions were manufactured according to military wiring standards for aerospace applications. Arc track testing was conducted under DC bias and vacuum (10(exp -6) torr). The tests were conducted to compare the various insulation constructions in terms of their resistance to arc tracking restrike. The results of the tests are presented.
Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2
Wu, Yun; Mou, Daixiang; Jo, Na Hyun; ...
2016-09-14
We use ultrahigh resolution, tunable, vacuum ultraviolet laser angle-resolved photoemission spectroscopy (ARPES) to study the electronic properties of WTe 2, a material that was predicted to be a type-II Weyl semimetal. The Weyl fermion states in WTe 2 were proposed to emerge at the crossing points of electron and hole pockets, and Fermi arcs connecting electron and hole pockets would be visible in the spectral function on (001) surface. Here we report the observation of such Fermi arcs in WTe 2 confirming the theoretical predictions. This provides strong evidence for type-II Weyl semimetallic states in WTe 2. Here, we alsomore » find that trivial and topological domains coexist on the same surface of the sample due to the presence of inhomogeneous strain detected by scanning electron microscopy data. This is in agreement with the theoretical prediction that strain can drive this system from topological Weyl to trivial semimetal. WTe 2 therefore provides a tunable playground for studying exotic topological quantum effects.« less
Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yun; Mou, Daixiang; Jo, Na Hyun
We use ultrahigh resolution, tunable, vacuum ultraviolet laser angle-resolved photoemission spectroscopy (ARPES) to study the electronic properties of WTe 2, a material that was predicted to be a type-II Weyl semimetal. The Weyl fermion states in WTe 2 were proposed to emerge at the crossing points of electron and hole pockets, and Fermi arcs connecting electron and hole pockets would be visible in the spectral function on (001) surface. Here we report the observation of such Fermi arcs in WTe 2 confirming the theoretical predictions. This provides strong evidence for type-II Weyl semimetallic states in WTe 2. Here, we alsomore » find that trivial and topological domains coexist on the same surface of the sample due to the presence of inhomogeneous strain detected by scanning electron microscopy data. This is in agreement with the theoretical prediction that strain can drive this system from topological Weyl to trivial semimetal. WTe 2 therefore provides a tunable playground for studying exotic topological quantum effects.« less
Investigation of the short argon arc with hot anode. II. Analytical model
NASA Astrophysics Data System (ADS)
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; Khodak, A.
2018-01-01
A short atmospheric pressure argon arc is studied numerically and analytically. In a short arc with an inter-electrode gap of several millimeters, non-equilibrium effects in plasma play an important role in operation of the arc. High anode temperature leads to electron emission and intensive radiation from its surface. A complete, self-consistent analytical model of the whole arc comprising of models for near-electrode regions, arc column, and a model of heat transfer in cylindrical electrodes was developed. The model predicts the width of non-equilibrium layers and arc column, voltages and plasma profiles in these regions, and heat and ion fluxes to the electrodes. Parametric studies of the arc have been performed for a range of the arc current densities, inter-electrode gap widths, and gas pressures. The model was validated against experimental data and verified by comparison with numerical solution. Good agreement between the analytical model and simulations and reasonable agreement with experimental data were obtained.
Investigation of the short argon arc with hot anode. II. Analytical model
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; ...
2018-01-22
A short atmospheric pressure argon arc is studied numerically and analytically. In a short arc with an inter-electrode gap of several millimeters, non-equilibrium effects in plasma play an important role in operation of the arc. High anode temperature leads to electron emission and intensive radiation from its surface. A complete, self-consistent analytical model of the whole arc comprising of models for near-electrode regions, arc column, and a model of heat transfer in cylindrical electrodes was developed. The model predicts the width of non-equilibrium layers and arc column, voltages and plasma profiles in these regions, and heat and ion fluxes tomore » the electrodes. Parametric studies of the arc have been performed for a range of the arc current densities, inter-electrode gap widths, and gas pressures. The model was validated against experimental data and verified by comparison with numerical solution. In conclusion, good agreement between the analytical model and simulations and reasonable agreement with experimental data were obtained.« less
Investigation of the short argon arc with hot anode. II. Analytical model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.
A short atmospheric pressure argon arc is studied numerically and analytically. In a short arc with an inter-electrode gap of several millimeters, non-equilibrium effects in plasma play an important role in operation of the arc. High anode temperature leads to electron emission and intensive radiation from its surface. A complete, self-consistent analytical model of the whole arc comprising of models for near-electrode regions, arc column, and a model of heat transfer in cylindrical electrodes was developed. The model predicts the width of non-equilibrium layers and arc column, voltages and plasma profiles in these regions, and heat and ion fluxes tomore » the electrodes. Parametric studies of the arc have been performed for a range of the arc current densities, inter-electrode gap widths, and gas pressures. The model was validated against experimental data and verified by comparison with numerical solution. In conclusion, good agreement between the analytical model and simulations and reasonable agreement with experimental data were obtained.« less
NASA Astrophysics Data System (ADS)
Nakano, Tomoyuki; Tanaka, Yasunori; Murai, K.; Uesugi, Y.; Ishijima, T.; Tomita, K.; Suzuki, K.; Shinkai, T.
2018-05-01
This paper focuses on a fundamental experimental approach to thermal arc re-ignition processes in a variety of gas flows in a nozzle. Using power semiconductor switches in the experimental system, the arc current and the voltage applied to the arc were controlled with precise timing. With this system, residual arcs were created in decaying phase under free recovery conditions; arc re-ignition was then intentionally instigated by application of artificial voltage—i.e. quasi-transient recovery voltage—to study the arc behaviour in both decaying and re-ignition phases. In this study, SF6, CO2, N2, O2, air and Ar arcs were intentionally re-ignited by quasi-TRV application at 20 μs delay time from initiation of free recovery condition. Through these experiments, the electron density at the nozzle throat was measured using a laser Thomson scattering method together with high speed video camera observation during the re-ignition process. Temporal variations in the electron density from the arc decaying to re-ignition phases were successfully obtained for each gas-blast arc at the nozzle throat. In addition, initial dielectric recovery properties of SF6, CO2, air and Ar arcs were measured under the same conditions. These data will be useful in the fundamental elucidation of thermal arc re-ignition processes.
NASA Astrophysics Data System (ADS)
Pulsani, B. R.
2017-11-01
Tank Information System is a web application which provides comprehensive information about minor irrigation tanks of Telangana State. As part of the program, a web mapping application using Flex and ArcGIS server was developed to make the data available to the public. In course of time as Flex be-came outdated, a migration of the client interface to the latest JavaScript based technologies was carried out. Initially, the Flex based application was migrated to ArcGIS JavaScript API using Dojo Toolkit. Both the client applications used published services from ArcGIS server. To check the migration pattern from proprietary to open source, the JavaScript based ArcGIS application was later migrated to OpenLayers and Dojo Toolkit which used published service from GeoServer. The migration pattern noticed in the study especially emphasizes upon the use of Dojo Toolkit and PostgreSQL database for ArcGIS server so that migration to open source could be performed effortlessly. The current ap-plication provides a case in study which could assist organizations in migrating their proprietary based ArcGIS web applications to open source. Furthermore, the study reveals cost benefits of adopting open source against commercial software's.
Lee, Gregory K.
2015-01-01
A digital elevation model (DEM) of the entire country of the Islamic Republic of Mauritania was produced using Shuttle Radar Topography Mission (SRTM) data as required for deliverable 65 of the contract. In addition, because of significant recent advancements of availability, seamlessness, and validity of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global elevation data, the U.S. Geological Survey (USGS) extended its efforts to include a higher resolution countrywide ASTER DEM as value added to the required Deliverable 63, which was limited to five areas within the country. Both SRTM and ASTER countrywide DEMs have been provided in ERDAS Imagine (.img) format that is also directly compatible with ESRI ArcMap, ArcGIS Explorer, and other GIS applications.
Golightly, D.W.; Dorrzapf, A.F.; Thomas, C.P.
1977-01-01
Sets of 5 Fe(I) lines and 3 Ti(I)Ti(II) line pairs have been characterized for precise spectrographic thermometry and manometry, respectively, in d.c. arcs of geologic materials. The recommended lines are free of spectral interferences, exhibit minimal self absorption within defined concentration intervals, and are useful for chemically-unaltered silicate rocks, arced in an argon-oxygen stream. The functional character of these lines in thermometry and manometry of d.c. arcs for evaluations of electrical parameter effects, for temporal studies, and for matrix-effect investigations on real samples is illustrated. ?? 1977.
NASA Astrophysics Data System (ADS)
Heywood, L. J.; DeBari, S. M.; Schindlbeck, J. C.; Escobar-Burciaga, R. D.
2015-12-01
The Izu Bonin rear arc represents a unique laboratory to study the development of continental crust precursors at an intraoceanic subduction zone., Volcanic output in the Izu Bonin rear arc is compositionally distinct from the Izu Bonin main volcanic front, with med- to high-K and LREE-enrichment similar to the average composition of the continental crust. Drilling at IODP Expedition 350 Site U1437 in the Izu Bonin rear arc obtained volcaniclastic material that was deposited from at least 13.5 Ma to present. IODP Expedition 350 represents the first drilling mission in the Izu Bonin rear arc region. This study presents fresh glass and mineral compositions (obtained via EMP and LA-ICP-MS) from unaltered tephra layers in mud/mudstone (Lithostratigraphic Unit I) and lapillistone (Lithostratigraphic Unit II) <4.5 Ma to examine the geochemical signature of Izu Bonin rear arc magmas. Unit II samples are coarse-grained tephras that are mainly rhyolitic in composition (72.1-77.5 wt. % SiO2, 3.2-3.9 wt. % K2O and average Mg# 24) and LREE-enriched. These rear-arc rhyolites have an average La/Sm of 2.6 with flat HREEs, average Th/La of 0.15, and Zr/Y of 4.86. Rear-arc rhyolite trace element signature is distinct from felsic eruptive products from the Izu Bonin main volcanic front, which have lower La/Sm and Th/La as well as significantly lower incompatible element concentrations. Rear arc rhyolites have similar trace element ratios to rhyolites from the adjacent but younger backarc knolls and actively-extending rift regions, but the latter is typified by lower K2O, as well as a smaller degree of enrichment in incompatible elements. Given these unique characteristics, we explore models for felsic magma formation and intracrustal differentiation in the Izu Bonin rear arc.
Arc-Ed Curriculum: Applicability for Severely Handicapped Pupils.
ERIC Educational Resources Information Center
Chaffin, Jerry D.
1982-01-01
The Arc Ed Curriculum uses video game formats to teach math and language arts content. Four motivational features (feedback, improvement, high response rates, and unlimited ceiling on performance along with adapted content could make the system applicable for use with severely handicapped learners. (CL)
NASA Astrophysics Data System (ADS)
Nikolaev, A. G.; Yushkov, G. Yu.; Oks, E. M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E. S.; Brown, I. G.
2014-08-01
Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal-gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the "inverse" concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.
NASA Astrophysics Data System (ADS)
Serbetci, Ilter; Nagamatsu, H. T.
1990-02-01
Steady-state low-current air arcs in a dual-flow nozzle system are studied experimentally. The cold flow field with no arc is investigated using a 12.7-mm diameter dual-flow nozzle in a steady-flow facility. Mach number and mass flux distributions are determined for various nozzle-pressure ratios and nozzle-gap spacing. It is found that the shock waves in the converging-diverging nozzles result in a decrease in overal resistance by about 15 percent. Also, Schlieren and differential interferometry techniques are used to visualize the density gradients within the arc plasma and thermal mantle. Both optical techniques reveal a laminar arc structure for a reservoir pressure of 1 atm at various current levels. Experimentally determined axial static pressure and cold-flow mass flux rate distributions and a channel-flow model with constant arc temperatre are used to solve the energy integral for the arc radius as a function of axial distance. The arc electric field strength, voltage, resistance, and power are determined with Ohm's law and the total heat transfer is related to arc power.
ERIC Educational Resources Information Center
Hourigan, Kristen Lee
2013-01-01
This article introduces a simple, flexible approach to engaging students within large classes, known as ARC (application, response, collaboration). ARC encourages each student's presence and engagement in class; creates a sense of excitement and anticipation; breaks down passivity and anonymity; effectively gains, maintains, and utilizes students'…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Hui; Wang, Jianhua; Liu, Zhiyuan, E-mail: liuzy@mail.xjtu.edu.cn
2016-06-15
The objective of this work is to reveal the effects of an axial magnetic field (AMF) on the vacuum arc characteristics between transverse magnetic field (TMF) contacts. These vacuum arc characteristics include the vacuum arcing behavior and the arc voltage waveform. In the experiments, an external AMF was applied to a pair of TMF contacts. The external AMF flux density B{sub AMF} can be adjusted from 0 to 110 mT. The arc current in the tests varied over a range from 0 to 20 kA rms at 45 Hz. The contact material was CuCr25 (25% Cr). A high-speed charge-coupled device video camera wasmore » used to record the vacuum arc evolution. The experimental results show that the application of the AMF effectively reduces the TMF arc voltage noise component and reduces the formation of liquid metal drops between the contacts. The diffuse arc duration increases linearly with increasing AMF flux density, but it also decreases linearly with increasing arc current under application of the external AMF. The results also indicate that the diffuse arc duration before the current zero is usually more than 1 ms under the condition that the value of the AMF per kiloampere is more than 2.0 mT/kA. Finally, under application of the AMF, the arc column of the TMF contacts may constrict and remain in the center region without transverse rotation. Therefore, the combined TMF–AMF contacts should be designed such that they guarantee that the AMF is not so strong as to oppose transverse rotation of the arc column.« less
Visualizing Type-II Weyl Points in Tungsten Ditelluride by Quasiparticle Interference.
Lin, Chun-Liang; Arafune, Ryuichi; Liu, Ro-Ya; Yoshimura, Masato; Feng, Baojie; Kawahara, Kazuaki; Ni, Zeyuan; Minamitani, Emi; Watanabe, Satoshi; Shi, Youguo; Kawai, Maki; Chiang, Tai-Chang; Matsuda, Iwao; Takagi, Noriaki
2017-11-28
Weyl semimetals (WSMs) are classified into two types, type I and II, according to the topology of the Weyl point, where the electron and hole pockets touch each other. Tungsten ditelluride (WTe 2 ) has garnered a great deal of attention as a strong candidate to be a type-II WSM. However, the Weyl points for WTe 2 are located above the Fermi level, which has prevented us from identifying the locations and the connection to the Fermi arc surface states by using angle-resolved photoemission spectroscopy. Here, we present experimental proof that WTe 2 is a type-II WSM. We measured energy-dependent quasiparticle interference patterns with a cryogenic scanning tunneling microscope, revealing the position of the Weyl point and its connection with the Fermi arc surface states, in agreement with prior theoretical predictions. Our results provide an answer to this crucial question and stimulate further exploration of the characteristics of WSMs.
NASA requirements and applications environments for electrical power wiring
NASA Technical Reports Server (NTRS)
Stavnes, Mark W.; Hammoud, Ahmad N.
1992-01-01
Serious problems can occur from insulation failures in the wiring harnesses of aerospace vehicles. In most recorded incidents, the failures have been identified to be the result of arc tracking, the propagation of an arc along wiring bundles through degradation of insulation. Propagation of the arc can lead to the loss of the entire wiring harness and the functions which it supports. While an extensive database of testing for arc track resistant wire insulations has been developed for aircraft applications, the counterpart requirements for spacecraft are very limited. The electrical, thermal, mechanical, chemical, and operational requirements for specification and testing of candidate wiring systems for spacecraft applications is presented.
Evaluation of pyrolysis and arc tracking on candidate wire insulation designs for space applications
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Hrovat, Kenneth
1994-01-01
The ability of wire insulation materials and constructions to resist arc tracking was determined and the damage caused by initial arcing and restrike events was assessed. Results of arc tracking tests on various insulation constructions are presented in view-graph format. Arc tracking tests conducted on Champlain, Filotex, and Teledyne Thermatics indicate the Filotex is least likely to arc track. Arc tracking occurs more readily in air than it does in vacuum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepard, Ron; Brozell, Scott R.; Gidofalvi, Gergely
2014-08-14
Practical algorithms are presented for the parameterization of orthogonal matrices Q ∈ R {sup m×n} in terms of the minimal number of essential parameters (φ). Both square n = m and rectangular n < m situations are examined. Two separate kinds of parameterizations are considered, one in which the individual columns of Q are distinct, and the other in which only Span(Q) is significant. The latter is relevant to chemical applications such as the representation of the arc factors in the multifacet graphically contracted function method and the representation of orbital coefficients in SCF and DFT methods. The parameterizations aremore » represented formally using products of elementary Householder reflector matrices. Standard mathematical libraries, such as LAPACK, may be used to perform the basic low-level factorization, reduction, and other algebraic operations. Some care must be taken with the choice of phase factors in order to ensure stability and continuity. The transformation of gradient arrays between the Q and (φ) parameterizations is also considered. Operation counts for all factorizations and transformations are determined. Numerical results are presented which demonstrate the robustness, stability, and accuracy of these algorithms.« less
Determination of GTA Welding Efficiencies
1993-03-01
continue on reverse if ncessary andidentify by block number) A method is developed for estimating welding efficiencies for moving arc GTAW processes...Dutta, Co-Advi r Department of Mechanical Engineering ii ABSTRACT A method is developed for estimating welding efficiencies for moving arc GTAW ...17 Figure 10. Miller Welding Equipment ............. ... 18 Figure 11. GTAW Torch Setup for Automatic Welding. . 19 Figure 12
Investigations Of A Pulsed Cathodic Vacuum Arc
NASA Astrophysics Data System (ADS)
Oates, T. W. H.; Pigott, J.; Denniss, P.; Mckenzie, D. R.; Bilek, M. M. M.
2003-06-01
Cathodic vacuum arcs are well established as a method for producing thin films for coatings and as a source of metal ions. Research into DC vacuum arcs has been going on for over ten years in the School of Physics at the University of Sydney. Recently a project was undertaken in the school to design and build a pulsed CVA for use in the investigation of plasma sheaths and plasma immersion ion implantation. Pulsed cathodic vacuum arcs generally have a higher current and plasma density and also provide a more stable and reproducible plasma density than their DC counterparts. Additionally it has been shown that if a high repetition frequency can be established the deposition rate of pulsed arcs is equal to or greater than that of DC arcs with a concomitant reduction in the rate of macro-particle formation. We present here results of our investigations into the building of a center-triggered pulsed cathodic vacuum arc. The design of the power supply and trigger mechanism and the geometry of the anode and cathode are examined. Observations of type I and II arc spots using a CCD camera, and cathode spot velocity dependence on arc current will be presented. The role of retrograde motion in a high current pulsed arc is discussed.
NASA Technical Reports Server (NTRS)
Petru, S.
1974-01-01
During the treatment of an electric welding arc with ultrasonic oscillations, an improvement was found in overall source-arc stability. Theoretical explanations are provided for this phenomenon and formulas of equivalence between the classical arc and the treated arc are derived, taking stability as their criterion. A knowledge of this phenomenon can be useful in extending the applications of ultrasounds to different forms of electric arcs.
ERIC Educational Resources Information Center
Harper, Eddie; Knapp, John
This document contains the teacher and student texts and student workbook for a secondary-level course in shielded metal arc welding (SMAW) and carbon arc cutting that consists of units on the following topics: SMAW safety; SMAW equipment, applications, and techniques; hardfacing; and carbon arc cutting--air. The teacher edition includes the…
Research Progress in Plasma arc welding of Magnesium Alloys and Magnesium Matrix Composites
NASA Astrophysics Data System (ADS)
Hui, Li; Yang, Zou; Yongbo, Li; Lei, Jiao; Ruijun, Hou
2017-11-01
Magnesium alloys and magnesium matrix composites by means of its excellent performance have wide application prospect in electronics, automotive, biotechnology, aerospace field, and welding technology has become a key of restricting its application. This paper describes the welding characteristics of magnesium, the obvious advantages in the application and the domestic and foreign research advance technology of plasma arc welding of magnesium, and summarizes the existing problems and development trends of plasma arc welding technology of magnesium.
Arc driver operation for either efficient energy transfer or high-current generator
NASA Technical Reports Server (NTRS)
Dannenberg, R. E.; Silva, A. F.
1972-01-01
An investigation is made to establish predictable electric arcs along triggered paths for research purposes, the intended application being the heating of the driver gas of a 1 MJ electrically driven shock tube. Trigger conductors consisting of wires, open tubes, and tubes pressurized with different gases were investigated either on the axis of the arc chamber or spiraled along the chamber walls. Design criteria are presented for successful arc initiation with reproducible voltage-current characteristics. Results are compared with other facilities and several application areas are discussed.
Multi-objective Optimization of Pulsed Gas Metal Arc Welding Process Using Neuro NSGA-II
NASA Astrophysics Data System (ADS)
Pal, Kamal; Pal, Surjya K.
2018-05-01
Weld quality is a critical issue in fabrication industries where products are custom-designed. Multi-objective optimization results number of solutions in the pareto-optimal front. Mathematical regression model based optimization methods are often found to be inadequate for highly non-linear arc welding processes. Thus, various global evolutionary approaches like artificial neural network, genetic algorithm (GA) have been developed. The present work attempts with elitist non-dominated sorting GA (NSGA-II) for optimization of pulsed gas metal arc welding process using back propagation neural network (BPNN) based weld quality feature models. The primary objective to maintain butt joint weld quality is the maximization of tensile strength with minimum plate distortion. BPNN has been used to compute the fitness of each solution after adequate training, whereas NSGA-II algorithm generates the optimum solutions for two conflicting objectives. Welding experiments have been conducted on low carbon steel using response surface methodology. The pareto-optimal front with three ranked solutions after 20th generations was considered as the best without further improvement. The joint strength as well as transverse shrinkage was found to be drastically improved over the design of experimental results as per validated pareto-optimal solutions obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belopolski, Ilya; Xu, Su-Yang; Ishida, Yukiaki
2016-08-15
It has recently been proposed that electronic band structures in crystals can give rise to a previously overlooked type of Weyl fermion, which violates Lorentz invariance and, consequently, is forbidden in particle physics. It was further predicted that Mo x W 1 - x Te 2 may realize such a type-II Weyl fermion. Here, we first show theoretically that it is crucial to access the band structure above the Fermi level ε F to show a Weyl semimetal in Mo x W 1 - x Te 2 . Then, we study Mo x W 1 - x Te 2 bymore » pump-probe ARPES and we directly access the band structure > 0.2 eV above ε F in experiment. By comparing our results with ab initio calculations, we conclude that we directly observe the surface state containing the topological Fermi arc. We propose that a future study of Mo x W 1 - x Te 2 by pump-probe ARPES may directly pinpoint the Fermi arc. Our work sets the stage for the experimental discovery of the first type-II Weyl semimetal in Mo x W 1 - x Te 2 .« less
NASA Astrophysics Data System (ADS)
Yu, Zhicong; Wunderlich, Adam; Dennerlein, Frank; Lauritsch, Günter; Noo, Frédéric
2011-06-01
Cone-beam imaging with C-arm systems has become a valuable tool in interventional radiology. Currently, a simple circular trajectory is used, but future applications should use more sophisticated source trajectories, not only to avoid cone-beam artifacts but also to allow extended volume imaging. One attractive strategy to achieve these two goals is to use a source trajectory that consists of two parallel circular arcs connected by a line segment, possibly with repetition. In this work, we address the question of R-line coverage for such a trajectory. More specifically, we examine to what extent R-lines for such a trajectory cover a central cylindrical region of interest (ROI). An R-line is a line segment connecting any two points on the source trajectory. Knowledge of R-line coverage is crucial because a general theory for theoretically exact and stable image reconstruction from axially truncated data is only known for the points in the scanned object that lie on R-lines. Our analysis starts by examining the R-line coverage for the elemental trajectories consisting of (i) two parallel circular arcs and (ii) a circular arc connected orthogonally to a line segment. Next, we utilize our understanding of the R-lines for the aforementioned elemental trajectories to determine the R-line coverage for the trajectory consisting of two parallel circular arcs connected by a tightly fit line segment. For this trajectory, we find that the R-line coverage is insufficient to completely cover any central ROI. Because extension of the line segment beyond the circular arcs helps to increase the R-line coverage, we subsequently propose a trajectory composed of two parallel circular arcs connected by an extended line. We show that the R-lines for this trajectory can fully cover a central ROI if the line extension is long enough. Our presentation includes a formula for the minimum line extension needed to achieve full R-line coverage of an ROI with a specified size, and also includes a preliminary study on the required detector size, showing that the R-lines added by the line extension are not constraining.
Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers.
Jiu, Yaming; Lehtimäki, Jaakko; Tojkander, Sari; Cheng, Fang; Jäälinoja, Harri; Liu, Xiaonan; Varjosalo, Markku; Eriksson, John E; Lappalainen, Pekka
2015-06-16
The actin cytoskeleton and cytoplasmic intermediate filaments contribute to cell migration and morphogenesis, but the interplay between these two central cytoskeletal elements has remained elusive. Here, we find that specific actin stress fiber structures, transverse arcs, interact with vimentin intermediate filaments and promote their retrograde flow. Consequently, myosin-II-containing arcs are important for perinuclear localization of the vimentin network in cells. The vimentin network reciprocally restricts retrograde movement of arcs and hence controls the width of flat lamellum at the leading edge of the cell. Depletion of plectin recapitulates the vimentin organization phenotype of arc-deficient cells without affecting the integrity of vimentin filaments or stress fibers, demonstrating that this cytoskeletal cross-linker is required for productive interactions between vimentin and arcs. Collectively, our results reveal that plectin-mediated interplay between contractile actomyosin arcs and vimentin intermediate filaments controls the localization and dynamics of these two cytoskeletal systems and is consequently important for cell morphogenesis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Role of the hypothalamic arcuate nucleus in cardiovascular regulation
Sapru, Hreday N.
2012-01-01
Recently the hypothalamic arcuate nucleus (Arc) has been implicated in cardiovascular regulation. Both pressor and depressor responses can be elicited by the chemical stimulation of the Arc. The direction of cardiovascular responses (increase or decrease) elicited from the Arc depends on the baseline blood pressure. The pressor responses are mediated via increase in sympathetic nerve activity and involve activation of the spinal ionotropic glutamate receptors. Arc-stimulation elicits tachycardic responses which are mediated via inhibition of vagal input and excitation of sympathetic input to the heart. The pathways within the brain mediating the pressor and tachycardic responses elicited from the Arc have not been delineated. The depressor responses to the Arc-stimulation are mediated via the hypothalamic paraventricular nucleus (PVN). Gamma aminobutyric acid type A receptors, neuropeptide Y1 receptors, and opiate receptors in the PVN mediate the depressor responses elicited from the Arc. Some circulating hormones (e.g., leptin and insulin) may reach the Arc via the leaky blood-brain barrier and elicit their cardiovascular effects. Although the Arc is involved in mediating the cardiovascular responses to intravenously injected angiotensin II and angiotensin-(1-12), these effects may not be due to leakage of these peptides across the blood-brain barrier in the Arc; instead, circulating angiotensins may act on neurons in the SFO and mediate cardiovascular actions via the projections of SFO neurons to the Arc. Cardiovascular responses elicited by acupuncture have been reported to be mediated by direct and indirect projections of the Arc to the RVLM. PMID:23260431
Wong, Wicger; Leung, Lucullus H.T.; Yu, Peter K.N.; So, Ronald W.K.; Cheng, Ashley C.K.
2012-01-01
The purpose of this study was to investigate the potential benefits of using triple‐arc volumetric‐intensity modulated arc radiotherapy (RapidArc (RA)) for the treatment of early‐stage nasopharyngeal carcinoma (NPC). A comprehensive evaluation was performed including plan quality, integral doses, and peripheral doses. Twenty cases of stage I or II NPC were selected for this study. Nine‐field sliding window IMRT, double‐arc, and triple‐arc RA treatment plans were compared with respect to target coverage, dose conformity, critical organ sparing, and integral doses. Measurement of peripheral doses was performed using thermoluminescent dosimeters in an anthropomorphic phantom. While similar conformity and target coverage were achieved by the three types of plans, triple‐arc RA produced better sparing of parotid glands and spinal cord than double‐arc RA or IMRT. Double‐arc RA plans produced slightly inferior parotid sparing and dose homogeneity than the other two delivery methods. The monitor units (MU) required for triple‐arc were about 50% less than those of IMRT plans, while there was no significant difference in the required MUs between triple‐arc and double‐arc RA plans. The peripheral dose in triple‐arc RA was found to be 50% less compared to IMRT near abdominal and pelvic region. Triple‐arc RA improves both the plan quality and treatment efficiency compared with IMRT for the treatment of early stage NPC. It has become the preferred choice of treatment delivery method for early stage NPC at our center. PACS numbers: 87.53.Bn, 87.55.D, 87.55.de, 87.55.dk, 87.56.ng PMID:23149781
Revisiting COIN Theory and Instruction
2009-03-13
Light ning II PE (12-24 Dec) B-10* Analy st Note book/ ARC GIS/ OP Dese rt Light ning II PE B-9...3 Mod B Final Test OP Deser t Light ning II PE (BUB 4) Mod B AAR B-16* Quiz 3 OP Deser t Light ning...Dec) (BUB 3 PMB) Quiz 3 Study Focus B-13* OP Desert Light ning II PE (BUB 2 Bn MB) B-11*
Maroney, Susan A; McCool, Mary Jane; Geter, Kenneth D; James, Angela M
2007-01-01
The internet is used increasingly as an effective means of disseminating information. For the past five years, the United States Department of Agriculture (USDA) Veterinary Services (VS) has published animal health information in internet-based map server applications, each oriented to a specific surveillance or outbreak response need. Using internet-based technology allows users to create dynamic, customised maps and perform basic spatial analysis without the need to buy or learn desktop geographic information systems (GIS) software. At the same time, access can be restricted to authorised users. The VS internet mapping applications to date are as follows: Equine Infectious Anemia Testing 1972-2005, National Tick Survey tick distribution maps, the Emergency Management Response System-Mapping Module for disease investigations and emergency outbreaks, and the Scrapie mapping module to assist with the control and eradication of this disease. These services were created using Environmental Systems Research Institute (ESRI)'s internet map server technology (ArcIMS). Other leading technologies for spatial data dissemination are ArcGIS Server, ArcEngine, and ArcWeb Services. VS is prototyping applications using these technologies, including the VS Atlas of Animal Health Information using ArcGIS Server technology and the Map Kiosk using ArcEngine for automating standard map production in the case of an emergency.
Tungsten erosion by unipolar arcing in DIII-D
NASA Astrophysics Data System (ADS)
Bykov, I.; Chrobak, C. P.; Abrams, T.; Rudakov, D. L.; Unterberg, E. A.; Wampler, W. R.; Hollmann, E. M.; Moyer, R. A.; Boedo, J. A.; Stahl, B.; Hinson, E. T.; Yu, J. H.; Lasnier, C. J.; Makowski, M.; McLean, A. G.
2017-12-01
Unipolar arcing was an important mechanism of metal surface erosion during the recently conducted Metal Rings Campaign in DIII-D when two toroidally continuous tile rings with 5 cm wide W-coated TZM inserts were installed in graphite tiles in the lower divertor, one on the floor and one on the shelf. Most of the arc damage occurred on the shelf ring. The total amount of W removed by arcing from the affected ˜4% of the shelf ring area was estimated ˜0.8 × 1021 at., about half of the total amount of W eroded and redeposited outside the inserts (1.8 ± 0.9)×1021 at. The rings were exposed for a total of ˜480 discharges, an equivalent of plasma time on W surfaces (with {{I}}{{p}}> 0.5 MA) ˜103 s. Arcing was monitored in situ with WI (400.9 nm) filtered camera and photomultipliers and showed that: (i) arcing only occurred during ELMs and disruptions, (ii) arcing rate was much lower on the floor than on the shelf ring, and (iii) arcing had a low cut off power flux density about 2 MW m-2. About half of arc tracks had large {10}\\circ pitch angle and probably were produced during disruptions. Such tracks were only found on the shelf. Moderate toroidal variation of the arc track density and W erosion with nearly n = 1 pattern has been measured.
Arc spray process for the aircraft and stationary gas turbine industry
NASA Astrophysics Data System (ADS)
Sampson, E. R.; Zwetsloot, M. P.
1997-06-01
Technological advances in arc spray have produced a system that competes favorably with other thermal spray processes. In the past, arc spray was thought of as a process for very large parts that need thick buildups. However, an attachment device known as the arc jet system has been developed that focuses the pattern and accelerates the particles. This attachment device, coupled with the in-troduction of metal-cored wires that provide the same chemistries as plasma-sprayed powders, pro-vides application engineers with a viable economic alternative to existing spray methods. A comparative evaluation of a standard production plasma spray system was conducted with the arc spray process using the attachment device. This evaluation was conducted by an airline company on four major parts coated with nickel-aluminum. Results show that, for these applications, the arc spray process offers several benefits.
Plasma Processes of Cutting and Welding
1976-02-01
TIG process. 2.2.2 Keyhole Welding In plasma arc welding , the term...Cutting 3 3 4 4 4 2.2 Plasma Arc Welding 5 2.2.1 Needle Arc Welding 2.2.2 Keyhole Welding 5 6 3. Applications 8 93.1 Economics 4. Environmental Aspects of...Arc Lengths III. Needle Arc Welding Conditions IV. Keyhole Welding Conditions v. Chemical Analyses of Plates Used - vii - 1. 2. 3. 4. 5. 6. 7. 8.
NASA Astrophysics Data System (ADS)
Obrebski, Mathias; Abers, Geoffrey A.; Foster, Anna
2015-01-01
The deep magmatic processes in volcanic arcs are often poorly understood. We analyze the shear wave velocity (VS) distribution in the crust and uppermost mantle below Mount Rainier, in the Cascades arc, resolving the main velocity contrasts based on converted phases within P coda via source normalization or receiver function (RF) analysis. To alleviate the trade-off between depth and velocity, we use long period phase velocities (25-100 s) obtained from earthquake surface waves, and at shorter period (7-21 s) we use seismic noise cross correlograms. We use a transdimensional Bayesian scheme to explore the model space (VS in each layer, number of interfaces and their respective depths, level of noise on data). We apply this tool to 15 broadband stations from permanent and Earthscope temporary stations. Most results fall into two groups with distinctive properties. Stations east of the arc (Group I) have comparatively slower middle-to-lower crust (VS = 3.4-3.8 km/s at 25 km depth), a sharp Moho and faster uppermost mantle (VS = 4.2-4.4 km/s). Stations in the arc (Group II) have a faster lower crust (VS = 3.7-4 km/s) overlying a slower uppermost mantle (VS = 4.0-4.3 km/s), yielding a weak Moho. Lower crustal velocities east of the arc (Group I) most likely represent ancient subduction mélanges mapped nearby. The lower crust for Group II ranges from intermediate to felsic. We propose that intermediate-felsic to felsic rocks represent the prearc basement, while intermediate composition indicates the mushy andesitic crustal magmatic system plus solidified intrusion along the volcanic conduits. We interpret the slow upper mantle as partial melt.
Design of two-dimensional channels with prescribed velocity distributions along the channel walls
NASA Technical Reports Server (NTRS)
Stanitz, John D
1953-01-01
A general method of design is developed for two-dimensional unbranched channels with prescribed velocities as a function of arc length along the channel walls. The method is developed for both compressible and incompressible, irrotational, nonviscous flow and applies to the design of elbows, diffusers, nozzles, and so forth. In part I solutions are obtained by relaxation methods; in part II solutions are obtained by a Green's function. Five numerical examples are given in part I including three elbow designs with the same prescribed velocity as a function of arc length along the channel walls but with incompressible, linearized compressible, and compressible flow. One numerical example is presented in part II for an accelerating elbow with linearized compressible flow, and the time required for the solution by a Green's function in part II was considerably less than the time required for the same solution by relaxation methods in part I.
Vanetti, Eugenio; Nicolini, Giorgia; Nord, Janne; Peltola, Jarkko; Clivio, Alessandro; Fogliata, Antonella; Cozzi, Luca
2011-11-01
The RapidArc volumetric modulated arc therapy (VMAT) planning process is based on a core engine, the so-called progressive resolution optimizer (PRO). This is the optimization algorithm used to determine the combination of field shapes, segment weights (with dose rate and gantry speed variations), which best approximate the desired dose distribution in the inverse planning problem. A study was performed to assess the behavior of two versions of PRO. These two versions mostly differ in the way continuous variables describing the modulated arc are sampled into discrete control points, in the planning efficiency and in the presence of some new features. The analysis aimed to assess (i) plan quality, (ii) technical delivery aspects, (iii) agreement between delivery and calculations, and (iv) planning efficiency of the two versions. RapidArc plans were generated for four groups of patients (five patients each): anal canal, advanced lung, head and neck, and multiple brain metastases and were designed to test different levels of planning complexity and anatomical features. Plans from optimization with PRO2 (first generation of RapidArc optimizer) were compared against PRO3 (second generation of the algorithm). Additional plans were optimized with PRO3 using new features: the jaw tracking, the intermediate dose and the air cavity correction options. Results showed that (i) plan quality was generally improved with PRO3 and, although not for all parameters, some of the scored indices showed a macroscopic improvement with PRO3. (ii) PRO3 optimization leads to simpler patterns of the dynamic parameters particularly for dose rate. (iii) No differences were observed between the two algorithms in terms of pretreatment quality assurance measurements and (iv) PRO3 optimization was generally faster, with a time reduction of a factor approximately 3.5 with respect to PRO2. These results indicate that PRO3 is either clinically beneficial or neutral in terms of dosimetric quality while it showed significant advantages in speed and technical aspects.
IODP Expedition 351 Izu-Bonin-Mariana Arc Origins: Preliminary Results
NASA Astrophysics Data System (ADS)
Ishizuka, O.; Arculus, R. J.; Bogus, K.
2014-12-01
Understanding how subduction zones initiate and continental crust forms in intraoceanic arcs requires knowledge of the inception and evolution of a representative intraoceanic arc, such as the Izu-Bonin-Mariana (IBM) Arc system. This can be obtained by exploring regions adjacent to an arc, where unequivocal pre-arc crust overlain by undisturbed arc-derived materials exists. IODP Exp. 351 (June-July 2014) specifically targeted evidence for the earliest evolution of the IBM system following inception. Site U1438 (4711 m water depth) is located in the Amami Sankaku Basin (ASB), west of the Kyushu-Palau Ridge (KPR), a paleo-IBM arc. Primary objectives of Exp. 351 were: 1) determine the nature of the crust and mantle pre-existing the IBM arc; 2) identify and model the process of subduction initiation and initial arc crust formation; 3) determine the compositional evolution of the IBM arc during the Paleogene; 4) establish geophysical properties of the ASB. Seismic reflection profiles indicate a ~1.3 km thick sediment layer overlying ~5.5 km thick igneous crust, presumed to be oceanic. This igneous crust seemed likely to be the basement of the IBM arc. Four holes were cored at Site U1438 spanning the entire sediment section and into basement. The cored interval comprises 5 units: uppermost Unit I is hemipelagic sediment with intercalated ash layers, presumably recording explosive volcanism mainly from the Ryukyu and Kyushu arcs; Units II and III host a series of volcaniclastic gravity-flow deposits, likely recording the magmatic history of the IBM Arc from arc initiation until 25 Ma; Siliceous pelagic sediment (Unit IV) underlies these deposits with minimal coarse-grained sediment input and may pre-date arc initiation. Sediment-basement contact occurs at 1461 mbsf. A basaltic lava flow section dominantly composed of plagioclase and clinopyroxene with rare chilled margins continues to the bottom of the Site (1611 mbsf). The expedition successfully recovered pre-IBM Arc basement, a volcanic and geologic record spanning pre-Arc, Arc initiation to remnant Arc stages, which permits testing for subduction initiation and subsequent Arc evolution.
Smith, Amos B.; Kim, Won-Suk
2011-01-01
In conjunction with the construction of a diversity-oriented synthesis library of 10-membered ring “natural product-like” macrolides, the design, synthesis, and validation of a unique class of bifunctional linchpins, uniting benzyne reactivity initiated by type II anion relay chemistry (ARC) has been achieved, permitting access to diverse [2+2], [3+2], and [4+2] cycloadducts. PMID:21245309
A unique power supply for the PEP II klystron at SLAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassel, R.; Nguyen, M.N.
1997-07-01
Each of the eight 1.2 MW RF klystrons for the PEP-II storage rings require a 2.5 MVA DC power supply of 83 Kv at 23 amps. The design for the supply was base on three factors, low cost, small size to fit existing substation pads, and good protection against damage to the klystron including klystron gun arcs. The supply uses a 12 pulse 12.5 KV primary thyristor star point controller with primary filter inductor to provide rapid voltage control, good voltage regulation, and fast turn off during klystron tube faults. The supply also uses a unique secondary rectifier, filter capacitormore » configuration to minimize the energy available under a klystron fault. The voltage control is from 0--90 KV with a regulation of < 0.1% and voltage ripple of < 1% P-P, (< 0.2% RMS) above 60 KV. The supply utilizes a thyristor crowbar, which under a klystron tube arc limits the energy in the klystron arc to < 5 joules. If the thyristor crowbar is disabled the energy supplied is < 40 joules into the arc. The size of the supply was reduced small enough to fit the existing PEP transformer yard pads. The cost of the power supply was < $140 per KVA.« less
ArcCN-Runoff: An ArcGIS tool for generating curve number and runoff maps
Zhan, X.; Huang, M.-L.
2004-01-01
The development and the application of ArcCN-Runoff tool, an extension of ESRI@ ArcGIS software, are reported. This tool can be applied to determine curve numbers and to calculate runoff or infiltration for a rainfall event in a watershed. Implementation of GIS techniques such as dissolving, intersecting, and a curve-number reference table improve efficiency. Technical processing time may be reduced from days, if not weeks, to hours for producing spatially varied curve number and runoff maps. An application example for a watershed in Lyon County and Osage County, Kansas, USA, is presented. ?? 2004 Elsevier Ltd. All rights reserved.
A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons.
Das, Sulagna; Moon, Hyungseok C; Singer, Robert H; Park, Hye Yoon
2018-06-01
Localized translation plays a crucial role in synaptic plasticity and memory consolidation. However, it has not been possible to follow the dynamics of memory-associated mRNAs in living neurons in response to neuronal activity in real time. We have generated a novel mouse model where the endogenous Arc/Arg3.1 gene is tagged in its 3' untranslated region with stem-loops that bind a bacteriophage PP7 coat protein (PCP), allowing visualization of individual mRNAs in real time. The physiological response of the tagged gene to neuronal activity is identical to endogenous Arc and reports the true dynamics of Arc mRNA from transcription to degradation. The transcription dynamics of Arc in cultured hippocampal neurons revealed two novel results: (i) A robust transcriptional burst with prolonged ON state occurs after stimulation, and (ii) transcription cycles continue even after initial stimulation is removed. The correlation of stimulation with Arc transcription and mRNA transport in individual neurons revealed that stimulus-induced Ca 2+ activity was necessary but not sufficient for triggering Arc transcription and that blocking neuronal activity did not affect the dendritic transport of newly synthesized Arc mRNAs. This mouse will provide an important reagent to investigate how individual neurons transduce activity into spatiotemporal regulation of gene expression at the synapse.
The ARC/INFO geographic information system
NASA Astrophysics Data System (ADS)
Morehouse, Scott
1992-05-01
ARC/INFO is a general-purpose system for processing geographic information. It is based on a relatively simple model of geographic space—the coverage—and contains an extensive set of geoprocessing tools which operate on coverages. ARC/INFO is used in a wide variety of applications areas, including: natural-resource inventory and planning, cadastral database development and mapping, urban and regional planning, and cartography. This paper is an overview of ARC/INFO and discusses the ARC/INFO conceptual architecture, data model, operators, and user interface.
Min, Yi; Ma, Jing-Zhi; Shen, Ya; Cheung, Gary Shun-Pan; Gao, Yuan
2016-11-01
The aim of this study was to investigate the clinical negotiation of various apical anatomic features of the mandibular first molars in a Chinese population using micro-computed tomography (micro-CT). A total of 152 mandibular first molars were scanned with micro-CT at 30 µm resolution. The apical 5 mm of root canal (ARC) was reconstructed three dimensionally and classified. Subsequently, the access cavity was prepared with the ARC anatomy blinded to the operator. The ARC was negotiated with a size 10 K file with or without precurve. Information on the ability to obtain a reproducible glide path was recorded. The anatomical classification of ARC was Type I with 68.45% in mandibular first molars. The negotiation result of ARC with Category i was 387 canals (74.00%). With a bent negotiating file, 96 canals were negotiated, including 88 reproducible glide paths (Category ii) and 8 irregular glide paths (Category iii). About 7.65% canals could not be negotiated with patency successfully (Category iv). The statistical analyze shown the anatomic feature of ARC had effect on the negotiation of ARC (p < 0.05). In conclusion, ARC anatomic variations had a strong potential impact on the negotiation. The category of negotiation in ARC would be helpful in the using of NiTi rotary instruments. Negotiation of ARC to the working length with patency should be careful and skillful because of the complexities of ARC. SCANNING 38:819-824, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
76 FR 15294 - Export Trade Certificate of Review
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-21
... DEPARTMENT OF COMMERCE International Trade Administration [Application No. 10-00005] Export Trade Certificate of Review ACTION: Notice of issuance of an Export Trade Certificate of Review to ARC Industries... issued an Export Trade Certificate of Review to ARC Industries Ltd. (``ARC''). This notice summarizes the...
Fukuchi, Mamoru; Nakashima, Fukumi; Tabuchi, Akiko; Shimotori, Masataka; Tatsumi, Saori; Okuno, Hiroyuki; Bito, Haruhiko; Tsuda, Masaaki
2015-03-13
We examined the transcriptional regulation of the activity-regulated cytoskeleton-associated protein gene (Arc), focusing on BDNF-induced Arc expression in cultured rat cortical cells. Although the synaptic activity-responsive element (SARE), located -7 kbp upstream of the Arc transcription start site, responded to NMDA, BDNF, or FGF2, the proximal region of the promoter (Arc/-1679) was activated by BDNF or FGF2, but not by NMDA, suggesting the presence of at least two distinct Arc promoter regions, distal and proximal, that respond to extracellular stimuli. Specificity protein 4 (SP4) and early growth response 1 (EGR1) controlled Arc/-1679 transcriptional activity via the region encompassing -169 to -37 of the Arc promoter. We found that trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, significantly enhanced the inductive effects of BDNF or FGF2, but not those of NMDA on Arc expression. Inhibitors of class I/IIb HDACs, SAHA, and class I HDACs, MS-275, but not of class II HDACs, MC1568, enhanced BDNF-induced Arc expression. The enhancing effect of TSA was mediated by the region from -1027 to -1000 bp, to which serum response factor (SRF) and HDAC1 bound. The binding of HDAC1 to this region was reduced by TSA. Thus, Arc expression was suppressed by class I HDAC-mediated mechanisms via chromatin modification of the proximal promoter whereas the inhibition of HDAC allowed Arc expression to be markedly enhanced in response to BDNF or FGF2. These results contribute to our understanding of the physiological role of Arc expression in neuronal functions such as memory consolidation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Heat transfer in GTA welding arcs
NASA Astrophysics Data System (ADS)
Huft, Nathan J.
Heat transfer characteristics of Gas Tungsten Arc Welding (GTAW) arcs with arc currents of 50 to 125 A and arc lengths of 3 to 11 mm were measured experimentally through wet calorimetry. The data collected were used to calculate how much heat reported to the cathode and anode and how much was lost from the arc column. A Visual Basic for Applications (VBA) macro was written to further analyze the data and account for Joule heating within the electrodes and radiation and convection losses from the arc, providing a detailed account of how heat was generated and dissipated within the system. These values were then used to calculate arc efficiencies, arc column voltages, and anode and cathode fall voltages. Trends were noted for variances in the arc column voltage, power dissipated from the arc column, and the total power dissipated by the system with changing arc length. Trends for variances in the anode and cathode fall voltages, total power dissipated, Joule heating within the torches and electrodes with changing arc current were also noted. In addition, the power distribution between the anode and cathode for each combination of arc length and arc current was examined. Keywords: Gas Tungsten Arc Welding, GTAW, anode fall, cathode fall, heat transfer, wet calorimetry
A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons
2018-01-01
Localized translation plays a crucial role in synaptic plasticity and memory consolidation. However, it has not been possible to follow the dynamics of memory-associated mRNAs in living neurons in response to neuronal activity in real time. We have generated a novel mouse model where the endogenous Arc/Arg3.1 gene is tagged in its 3′ untranslated region with stem-loops that bind a bacteriophage PP7 coat protein (PCP), allowing visualization of individual mRNAs in real time. The physiological response of the tagged gene to neuronal activity is identical to endogenous Arc and reports the true dynamics of Arc mRNA from transcription to degradation. The transcription dynamics of Arc in cultured hippocampal neurons revealed two novel results: (i) A robust transcriptional burst with prolonged ON state occurs after stimulation, and (ii) transcription cycles continue even after initial stimulation is removed. The correlation of stimulation with Arc transcription and mRNA transport in individual neurons revealed that stimulus-induced Ca2+ activity was necessary but not sufficient for triggering Arc transcription and that blocking neuronal activity did not affect the dendritic transport of newly synthesized Arc mRNAs. This mouse will provide an important reagent to investigate how individual neurons transduce activity into spatiotemporal regulation of gene expression at the synapse.
75 FR 40808 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-14
...; ER07-751-003; ER97-4084-012. Applicants: ArcLight Energy Marketing, LLC, Denver City Energy Associates LP, Lea Power Partners, LLC. Description: ArcLight Energy Marketing, LLC, et al., Notice of Non...: ER10-1714-000. Applicants: LG&E Energy Marketing Inc. Description: LG&E Energy Marketing Inc. submits...
Denby, Katie J.; Rolfe, Matthew D.; Crick, Ellen; Sanguinetti, Guido; Poole, Robert K.
2015-01-01
Summary Systematic analyses of transcriptional and metabolic changes occurring when E scherichia coli K‐12 switches from fermentative growth to anaerobic respiratory growth with trimethylamine‐N‐oxide (TMAO) as the terminal electron acceptor revealed: (i) the induction of torCAD, but not genes encoding alternative TMAO reductases; (ii) transient expression of frmRAB, encoding formaldehyde dehydrogenase; and (iii) downregulation of copper resistance genes. Simultaneous inference of 167 transcription factor (TF) activities implied that transcriptional re‐programming was mediated by 20 TFs, including the transient inactivation of the two‐component system ArcBA; a prediction validated by direct measurement of phosphorylated ArcA. Induction of frmRAB, detection of dimethylamine in culture medium and formaldehyde production when cell‐free extracts were incubated with TMAO suggested the presence of TMAO demethylase activity. Accordingly, the viability of an frmRAB mutant was compromised upon exposure to TMAO. Downregulation of genes involved in copper resistance could be accounted for by TMAO inhibition of Cu(II) reduction. The simplest interpretation of the data is that during adaptation to the presence of environmental TMAO, anaerobic fermentative cultures of E . coli respond by activating the TorTSR regulatory system with consequent induction of TMAO reductase activity, resulting in net oxidation of menaquinone and inhibition of Cu(II) reduction, responses that are sensed by ArcBA and CusRS respectively. PMID:25471524
Clinical Application of a Hybrid RapidArc Radiotherapy Technique for Locally Advanced Lung Cancer.
Silva, Scott R; Surucu, Murat; Steber, Jennifer; Harkenrider, Matthew M; Choi, Mehee
2017-04-01
Radiation treatment planning for locally advanced lung cancer can be technically challenging, as delivery of ≥60 Gy to large volumes with concurrent chemotherapy is often associated with significant risk of normal tissue toxicity. We clinically implemented a novel hybrid RapidArc technique in patients with lung cancer and compared these plans with 3-dimensional conformal radiotherapy and RapidArc-only plans. Hybrid RapidArc was used to treat 11 patients with locally advanced lung cancer having bulky mediastinal adenopathy. All 11 patients received concurrent chemotherapy. All underwent a 4-dimensional computed tomography planning scan. Hybrid RapidArc plans concurrently combined static (60%) and RapidArc (40%) beams. All cases were replanned using 3- to 5-field 3-dimensional conformal radiotherapy and RapidArc technique as controls. Significant reductions in dose were observed in hybrid RapidArc plans compared to 3-dimensional conformal radiotherapy plans for total lung V20 and mean (-2% and -0.6 Gy); contralateral lung mean (-2.92 Gy); and esophagus V60 and mean (-16.0% and -2.2 Gy; all P < .05). Contralateral lung doses were significantly lower for hybrid RapidArc plans compared to RapidArc-only plans (all P < .05). Compared to 3-dimensional conformal radiotherapy, heart V60 and mean dose were significantly improved with hybrid RapidArc (3% vs 5%, P = .04 and 16.32 Gy vs 16.65 Gy, P = .03). However, heart V40 and V45 and maximum spinal cord dose were significantly lower with RapidArc plans compared to hybrid RapidArc plans. Conformity and homogeneity were significantly better with hybrid RapidArc plans compared to 3-dimensional conformal radiotherapy plans ( P < .05). Treatment was well tolerated, with no grade 3+ toxicities. To our knowledge, this is the first report on the clinical application of hybrid RapidArc in patients with locally advanced lung cancer. Hybrid RapidArc permitted safe delivery of 60 to 66 Gy to large lung tumors with concurrent chemotherapy and demonstrated advantages for reduction in low-dose lung volumes, esophageal dose, and mean heart dose.
ARC SDK: A toolbox for distributed computing and data applications
NASA Astrophysics Data System (ADS)
Skou Andersen, M.; Cameron, D.; Lindemann, J.
2014-06-01
Grid middleware suites provide tools to perform the basic tasks of job submission and retrieval and data access, however these tools tend to be low-level, operating on individual jobs or files and lacking in higher-level concepts. User communities therefore generally develop their own application-layer software catering to their specific communities' needs on top of the Grid middleware. It is thus important for the Grid middleware to provide a friendly, well documented and simple to use interface for the applications to build upon. The Advanced Resource Connector (ARC), developed by NorduGrid, provides a Software Development Kit (SDK) which enables applications to use the middleware for job and data management. This paper presents the architecture and functionality of the ARC SDK along with an example graphical application developed with the SDK. The SDK consists of a set of libraries accessible through Application Programming Interfaces (API) in several languages. It contains extensive documentation and example code and is available on multiple platforms. The libraries provide generic interfaces and rely on plugins to support a given technology or protocol and this modular design makes it easy to add a new plugin if the application requires supporting additional technologies.The ARC Graphical Clients package is a graphical user interface built on top of the ARC SDK and the Qt toolkit and it is presented here as a fully functional example of an application. It provides a graphical interface to enable job submission and management at the click of a button, and allows data on any Grid storage system to be manipulated using a visual file system hierarchy, as if it were a regular file system.
Ufer, Friederike; Vargas, Pablo; Engler, Jan Broder; Tintelnot, Joseph; Schattling, Benjamin; Winkler, Hana; Bauer, Simone; Kursawe, Nina; Willing, Anne; Keminer, Oliver; Ohana, Ora; Salinas-Riester, Gabriela; Pless, Ole; Kuhl, Dietmar; Friese, Manuel A
2016-09-23
Skin-migratory dendritic cells (migDCs) are pivotal antigen-presenting cells that continuously transport antigens to draining lymph nodes and regulate immune responses. However, identification of migDCs is complicated by the lack of distinguishing markers, and it remains unclear which molecules determine their migratory capacity during inflammation. We show that, in the skin, the neuronal plasticity molecule activity-regulated cytoskeleton-associated protein/activity-regulated gene 3.1 (Arc/Arg3.1) was strictly confined to migDCs. Mechanistically, Arc/Arg3.1 was required for accelerated DC migration during inflammation because it regulated actin dynamics through nonmuscle myosin II. Accordingly, Arc/Arg3.1-dependent DC migration was critical for mounting T cell responses in experimental autoimmune encephalomyelitis and allergic contact dermatitis. Thus, Arc/Arg3.1 was restricted to migDCs in the skin and drove fast DC migration by exclusively coordinating cytoskeletal changes in response to inflammatory challenges. These findings commend Arc/Arg3.1 as a universal switch in migDCs that may be exploited to selectively modify immune responses. Copyright © 2016, American Association for the Advancement of Science.
Gas Tungsten Arc Welding. Welding Module 6. Instructor's Guide.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Instructional Materials Lab.
This guide is intended to assist vocational educators in teaching a three-unit module in gas tungsten arc welding. The module has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The basic principles involved in gas tungsten arc welding, supplies, and applications are covered. The materials included…
NASA Astrophysics Data System (ADS)
Tisdale, M.
2017-12-01
NASA's Atmospheric Science Data Center (ASDC) is operationally using the Esri ArcGIS Platform to improve data discoverability, accessibility and interoperability to meet the diversifying user requirements from government, private, public and academic communities. The ASDC is actively working to provide their mission essential datasets as ArcGIS Image Services, Open Geospatial Consortium (OGC) Web Mapping Services (WMS), and OGC Web Coverage Services (WCS) while leveraging the ArcGIS multidimensional mosaic dataset structure. Science teams at ASDC are utilizing these services through the development of applications using the Web AppBuilder for ArcGIS and the ArcGIS API for Javascript. These services provide greater exposure of ASDC data holdings to the GIS community and allow for broader sharing and distribution to various end users. These capabilities provide interactive visualization tools and improved geospatial analytical tools for a mission critical understanding in the areas of the earth's radiation budget, clouds, aerosols, and tropospheric chemistry. The presentation will cover how the ASDC is developing geospatial web services and applications to improve data discoverability, accessibility, and interoperability.
Hybrid laser arc welding: State-of-art review
NASA Astrophysics Data System (ADS)
Acherjee, Bappa
2018-02-01
Hybrid laser arc welding simultaneously utilizes the arc welding and the laser welding, in a common interaction zone. The synergic effects of laser beam and eclectic arc in the same weld pool results in an increase of welding speed and penetration depth along with the enhancement of gap bridging capability and process stability. This paper presents the current status of this hybrid technique in terms of research, developments and applications. Effort is made to present a comprehensive technical know-how about this process through a systematic review of research articles, industrial catalogues, technical notes, etc. In the introductory part of the review, an overview of the hybrid laser arc welding is presented, including operation principle, process requirements, historical developments, benefits and drawbacks of the process. This is followed by a detailed discussion on control parameters those govern the performance of hybrid laser arc welding process. Thereafter, a report of improvements of performance and weld qualities achieved by using hybrid welding process is presented based on review of several research papers. The succeeding sections furnish the examples of industrial applications and the concluding remarks.
Elements of EAF automation processes
NASA Astrophysics Data System (ADS)
Ioana, A.; Constantin, N.; Dragna, E. C.
2017-01-01
Our article presents elements of Electric Arc Furnace (EAF) automation. So, we present and analyze detailed two automation schemes: the scheme of electrical EAF automation system; the scheme of thermic EAF automation system. The application results of these scheme of automation consists in: the sensitive reduction of specific consummation of electrical energy of Electric Arc Furnace, increasing the productivity of Electric Arc Furnace, increase the quality of the developed steel, increasing the durability of the building elements of Electric Arc Furnace.
1987-06-01
Terrebonne Parish, La. Erosional 4 II Terrebonne-Jefferson Parishes, La. Erosional 5 111 Mississippi river delta front, La. Marsh/mud coast 6 I Chandeleur ...response along the transgressive Chandeleur barrier island arc southeast of the Mississippi Delta plain is variable because of local dif- ferences in...storms are the primary agents causing erosion and migration of this barrier arc. Frederic’s greatest impact was in the duneless southern Chandeleurs
The mirrors for the Extreme Ultraviolet Explorer
NASA Technical Reports Server (NTRS)
Finley, David S.; Green, James C.; Bowyer, Stuart; Malina, Roger F.
1986-01-01
Flight mirrors for the Extreme Ultraviolet Explorer satellite are currently under fabrication. The grazing incidence metal mirrors are Wolter-Schwarzschild Type I and II and are figured by diamond turning. Imaging performance is excellent, with the figure after polishing for the best mirror being such that the full width-half maximum is 1.0 arc seconds and the half energy width is 8 arc seconds measured at visible wavelengths. Surface finish, as determined from scattering measurements in the extreme ultraviolet, is about 20 A rms.
NASA Technical Reports Server (NTRS)
Moores, Greg; Heller, R. P.; Sutanto, Surja; Dugal-Whitehead, Norma R.
1992-01-01
Unexpected and undesirable arcing on dc power systems can produce hazardous situations aboard space flights. The potential for fire and shock might exist in a situation where there is a broken conductor, a loose power connection, or a break in the insulation of the power cable. Such arcing has been found to be reproducible in a laboratory environment. Arcing tests show that the phenomena can last for several seconds and yet be undetectable by present protection schemes used in classical power relaying and remote power controller applications. This paper characterizes the arcing phenomena and suggests future research that is needed.
Experimental observation of optical Weyl points and Fermi arcs
NASA Astrophysics Data System (ADS)
Rechtsman, Mikael
We directly observe the presence type-II Weyl points for optical photons in a three-dimensional dielectric structure comprising arrays of evanescently-coupled, single-mode, helical waveguides. We also observe the corresponding Fermi arc surface states emerging from Weyl points (despite the use of the `Fermi arc' terminology, we are referring to bosons rather than fermions). The Weyl points are manifested by the presence of conical diffraction at the Weyl frequency in the photonic band structure, and the Fermi arc states are manifested by the emergence of surface states as we scan in frequency past the Weyl point. We map the Weyl points to Dirac points of the isofrequency surface, and the Fermi arcs to chiral edge states of an anomalous Floquet insulator. In collaboration with: Jiho Noh, Sheng Huang, Daniel Leykam*, Y. D. Chong, Kevin Chen, and Mikael C. Rechtsman M.C.R. acknowledges the National Science Foundation under Award Number ECCS-1509546, the Penn State MRSEC, Center for Nanoscale Science, under Award Number NSF DMR-1420620, and the Alfred P. Sloan Foundation under fellowship number FG-2016-6418.
High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.
Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu
2008-02-01
A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.
Discharge Characteristics of DC Arc Water Plasma for Environmental Applications
NASA Astrophysics Data System (ADS)
Li, Tianming; Sooseok, Choi; Takayuki, Watanabe
2012-12-01
A water plasma was generated by DC arc discharge with a hafnium embedded rod-type cathode and a nozzle-type anode. The discharge characteristics were examined by changing the operation parameter of the arc current. The dynamic behavior of the arc discharge led to significant fluctuations in the arc voltage and its frequency. Analyses of the high speed image and the arc voltage waveform showed that the arc discharge was in the restrike mode and its frequency varied within several tens of kilohertz according to the operating conditions. The larger thermal plasma volume was generated by the higher flow from the forming steam with a higher restrike frequency in the higher arc current conditions. In addition, the characteristics of the water plasma jet were investigated by means of optical emission spectroscopy to identify the abundant radicals required in an efficient waste treatment process.
NASA Astrophysics Data System (ADS)
Pawar, Sumedh; Sharma, Atul
2018-01-01
This work presents mathematical model and solution methodology for a multiphysics engineering problem on arc formation during welding and inside a nozzle. A general-purpose commercial CFD solver ANSYS FLUENT 13.0.0 is used in this work. Arc formation involves strongly coupled gas dynamics and electro-dynamics, simulated by solution of coupled Navier-Stoke equations, Maxwell's equations and radiation heat-transfer equation. Validation of the present numerical methodology is demonstrated with an excellent agreement with the published results. The developed mathematical model and the user defined functions (UDFs) are independent of the geometry and are applicable to any system that involves arc-formation, in 2D axisymmetric coordinates system. The high-pressure flow of SF6 gas in the nozzle-arc system resembles arc chamber of SF6 gas circuit breaker; thus, this methodology can be extended to simulate arcing phenomenon during current interruption.
NASA Astrophysics Data System (ADS)
Johnson, K. E.; Marsaglia, K. M.
2015-12-01
The Izu-Bonin-Mariana (IBM) Arc System, south of Japan, hosts a multitude of active and extinct (remnant) arc volcanic sediment sources. Core extracted adjacent to the proto-IBM arc (Kyushu-Palau Ridge; KPR) in the Amami-Sankaku Basin on International Ocean Discovery Program (IODP) Expedition 351 contains evidence of the variety of sediment sources that have existed in the area as a result of changing tectonic regimes through arc development, backarc basin formation and remnant arc abandonment. Approximately 1000 meters of Eocene to Oligocene volcaniclastic sedimentary rocks were analyzed via shipboard core photos, core descriptions, and thin sections with the intention of understanding the depositional history at this site. These materials contain a crucial record of arc development complementary to the Neogene history preserved in the active reararc (Expedition 350) and compressed whole-arc record in the current forearc (Expedition 352). A database of stratigraphic columns was created to display grain size trends, facies changes, and bedding characteristics. Individual beds (depositional events) were classified using existing and slightly modified classification schemes for muddy, sandy and gravel-rich gravity flow deposits, as well as muddy debris flows and tuffs. Utilizing the deep marine facies classes presented by Pickering et al. (1986), up section changes are apparent. Through time, as the arc developed, facies and bedding types and their proportions change dramatically and relatively abruptly. Following arc initiation facies are primarily mud-rich with intercalated tuffaceous sand. In younger intervals, sand to gravel gravity-flow deposits dominate, becoming more mud-rich. Muddy gravity flow deposits, however, dominate farther upsection. The overall coarsening-upward pattern (Unit III) is consistent with building of the arc edifice. Farther upsection (Unit II) an abrupt fining-upward trend represents the onset of isolation of the KPR as backarc spreading in the Shikoku Basin was initiated. This information will be combined with volcanic provenance and geochemical information from other studies, ultimately creating a deep-marine facies model for intraoceanic arc systems.
Scintillation screen applications in a vacuum arc ion source with composite hydride cathode
NASA Astrophysics Data System (ADS)
Wang, X. H.; Tuo, X. G.; Yang, Z.; Peng, Y. F.; Li, J.; Lv, H. Y.; Li, J. H.; Long, J. D.
2018-05-01
Vacuum arc ion source with composite hydride cathode was developed to produce intense ion beams which can be applied in particle accelerator injections. Beam profile and beam composition are two fundamental parameters of the beam for the vacuum arc ion source in such specific applications. An aluminum-coated scintillation screen with an ICCD camera readout was used to show the space-time distribution of the beam directly. A simple magnetic analysis assembly with the scintillation screen shows the beam composition information of this kind ion source. Some physical and technical issues are discussed and analyzed in the text.
The MVP Model: Overview and Application
ERIC Educational Resources Information Center
Keller, John M.
2017-01-01
This chapter contains an overview of the MVP model that is used as a basis for the other chapters in this issue. It also contains a description of key steps in the ARCS-V design process that is derived from the MVP model and a summary of a design-based research study illustrating the application of the ARCS-V model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xianfeng; Yang, Yong; Jin, Fu
This article is aimed to compare the dosimetric differences between volumetric modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) for Stage I-II nasal natural killer/T-cell lymphoma (NNKTL). Ten patients with Stage I-II NNKTL treated with IMRT were replanned with VMAT (2 arcs). The prescribed dose of the planning target volume (PTV) was 50 Gy in 25 fractions. The VMAT plans with the Anisotropic Analytical Algorithm (Version 8.6.15) were based on an Eclipse treatment planning system; the monitor units (MUs) and treatment time (T) were scored to measure the expected treatment efficiency. All the 10 patients under the study were subjectmore » to comparisons regarding the quality of target coverage, the efficiency of delivery, and the exposure of normal adjacent organs at risk (OARs). The study shows that VMAT was associated with a better conformal index (CI) and homogeneity index (HI) (both p < 0.05) but slightly higher dose to OARs than IMRT. The MUs with VMAT (650.80 ± 24.59) were fewer than with IMRT (1300.10 ± 57.12) (relative reduction of 49.94%, p = 0.00) when using 2-Gy dose fractions. The treatment time with VMAT (3.20 ± 0.02 minutes) was shorter than with IMRT (7.38 ± 0.18 minutes) (relative reduction of 56.64%, p = 0.00). We found that VMAT and IMRT both provide satisfactory target dosimetric coverage and OARs sparing clinically. Likely to deliver a bit higher dose to OARs, VMAT in comparison with IMRT, is still a better choice for treatment of patients with Stage I-II NNKTL, thanks to better dose distribution, fewer MUs, and shorter delivery time.« less
Quasiparticle interference of surface states in the type-II Weyl semimetal WTe2
NASA Astrophysics Data System (ADS)
Zhang, Wenhan; Wu, Quansheng; Zhang, Lunyong; Cheong, Sang-Wook; Soluyanov, Alexey A.; Wu, Weida
2017-10-01
A topological Weyl semimetal (TWS) is a metal where low-energy excitations behave like Weyl fermions of high-energy physics. Recently, it was shown that, due to the lower symmetry of condensed-matter systems, they can realize two distinct types of Weyl fermions. The type-I Weyl fermion in a metal is formed by a linear crossing of two bands at a point in the crystalline momentum space—Brillouin zone. The second type of TWSs host type-II Weyl points appearing at the touching points of electron and hole pockets, which is a result of tilted linear dispersion. The type-II TWS was predicted to exist in several compounds, including WTe2. Several angle-resolved photoemission spectroscopy studies of WTe2 were reported so far, having contradictory conclusions on the topological nature of observed Fermi arcs. In this paper, we report the results of spectroscopic imaging with a scanning tunneling microscope and first-principles calculations, establishing clear quasiparticle interference features of the surface states of WTe2. Our paper provides strong evidence for surface-state scattering. Although the surface Fermi arcs clearly are observed, it is still difficult to prove the existence of predicted type-II Weyl points in the bulk.
Schurr, K.M.; Cox, S.E.
1994-01-01
The Pesticide-Application Data-Base Management System was created as a demonstration project and was tested with data submitted to the Washington State Department of Agriculture by pesticide applicators from a small geographic area. These data were entered into the Department's relational data-base system and uploaded into the system's ARC/INFO files. Locations for pesticide applica- tions are assigned within the Public Land Survey System grids, and ARC/INFO programs in the Pesticide-Application Data-Base Management System can subdivide each survey section into sixteen idealized quarter-quarter sections for display map grids. The system provides data retrieval and geographic information system plotting capabilities from a menu of seven basic retrieval options. Additionally, ARC/INFO coverages can be created from the retrieved data when required for particular applications. The Pesticide-Application Data-Base Management System, or the general principles used in the system, could be adapted to other applica- tions or to other states.
Mechanical properties of resin cements with different activation modes.
Braga, R R; Cesar, P F; Gonzaga, C C
2002-03-01
Dual-cured cements have been studied in terms of the hardness or degree of conversion achieved with different curing modes. However, little emphasis is given to the influence of the curing method on other mechanical properties. This study investigated the flexural strength, flexural modulus and hardness of four proprietary resin cements. Materials tested were: Enforce and Variolink II (light-, self- and dual-cured), RelyX ARC (self- and dual-cured) and C & B (self-cured). Specimens were fractured using a three-point bending test. Pre-failure loads corresponding to specific displacements of the cross-head were used for flexural modulus calculation. Knoop hardness (KHN) was measured on fragments obtained after the flexural test. Tests were performed after 24 h storage at 37 degrees C. RelyX ARC dual-cured showed higher flexural strength than the other groups. RelyX ARC and Variolink II depended upon photo-activation to achieve higher hardness values. Enforce showed similar hardness for dual- and self-curing modes. No correlation was found between flexural strength and hardness, indicating that other factors besides the degree of cure (e.g. filler content and monomer type) affect the flexural strength of composites. No statistical difference was detected in the flexural modulus among the different groups.
Pressure and current effects on the thermal efficiency of an MPD arc used as a plasma source
NASA Technical Reports Server (NTRS)
Pivirotto, T. J.
1972-01-01
Measurements of arc voltage and energy loss to the cooled electrodes of a magnetoplasmadynamic (MPD) arc, operating without an applied magnetic field, were made at chamber pressures of 26 to 950 torr, argon mass flow rates of 0.08 to 44 g/s and current of 200 to 2000 A. The resulting arc thermal efficiency varied from 22% at a chamber pressure of 26 torr to 88% at 950 torr. Thermal efficiency was only weakly dependent on arc current. It is concluded that the MPD arc operating without an applied magnetic field and at higher pressure than normally used in thruster applications is a reliable and efficient steady-state plasma source.
40 CFR 60.270a - Applicability and designation of affected facility.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...
40 CFR 60.270a - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...
40 CFR 60.270a - Applicability and designation of affected facility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...
40 CFR 60.270a - Applicability and designation of affected facility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...
40 CFR 60.270a - Applicability and designation of affected facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...
Denby, Katie J; Rolfe, Matthew D; Crick, Ellen; Sanguinetti, Guido; Poole, Robert K; Green, Jeffrey
2015-07-01
Systematic analyses of transcriptional and metabolic changes occurring when Escherichia coli K-12 switches from fermentative growth to anaerobic respiratory growth with trimethylamine-N-oxide (TMAO) as the terminal electron acceptor revealed: (i) the induction of torCAD, but not genes encoding alternative TMAO reductases; (ii) transient expression of frmRAB, encoding formaldehyde dehydrogenase; and (iii) downregulation of copper resistance genes. Simultaneous inference of 167 transcription factor (TF) activities implied that transcriptional re-programming was mediated by 20 TFs, including the transient inactivation of the two-component system ArcBA; a prediction validated by direct measurement of phosphorylated ArcA. Induction of frmRAB, detection of dimethylamine in culture medium and formaldehyde production when cell-free extracts were incubated with TMAO suggested the presence of TMAO demethylase activity. Accordingly, the viability of an frmRAB mutant was compromised upon exposure to TMAO. Downregulation of genes involved in copper resistance could be accounted for by TMAO inhibition of Cu(II) reduction. The simplest interpretation of the data is that during adaptation to the presence of environmental TMAO, anaerobic fermentative cultures of E. coli respond by activating the TorTSR regulatory system with consequent induction of TMAO reductase activity, resulting in net oxidation of menaquinone and inhibition of Cu(II) reduction, responses that are sensed by ArcBA and CusRS respectively. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Linley, Larry
1994-01-01
The objectives of these projects include the following: validate method used to screen wire insulation with arc tracking characteristics; determine damage resistance to arc as a function of source voltage and insulation thickness; investigate propagation characteristics of Kapton at low voltages; and investigate pyrolytic properties of polyimide insulated (Kapton) wire for low voltage (less than 35 VDC) applications. Supporting diagrams and tables are presented.
The design of broad band anti-reflection coatings for solar cell applications
NASA Astrophysics Data System (ADS)
Siva Rama Krishna, Angirekula; Sabat, Samrat Lagnajeet; Ghanashyam Krishna, Mamidipudi
2017-01-01
The design of broadband anti-reflection coatings (ARCs) for solar cell applications using multiobjective differential evolutionary (MODE) algorithms is reported. The effect of thickness and refractive index contrast within the layers of the ARC on the bandwidth of reflectance is investigated in detail. In the case of the hybrid plasmonic ARC structures the effect of size, shape and filling fraction of silver (Ag) nanoparticles on the reflectance is studied. Bandwidth is defined as the spectral region of wavelengths over which the reflectance is below 2%. Single, two and three layers ARCs (consisting of MgF2, Al2O3, Si3N4, TiO2 and ZnS or combinations of these materials) were simulated for performance evaluation on an a-Si photovoltaic cell. It is observed that the three layer ARC consisting of MgF2/Si3N4/TiO2(ZnTe) of 81/42/36 nm thicknesses, respectively, exhibited a weighted reflectance of 1.9% with a bandwidth of 450 nm over the wavelength range of 300-900 nm. The ARC bandwidth could be further improved by embedding randomly distributed Ag nanoparticles of size between 100 and 120 nm on a two layer ARC consisting of Al2O3/TiO2 with thickness of 42 nm and 56 nm respectively. This plasmon-dielectric hybrid ARC design exhibited a weighted reflectance of 0.6% with a bandwidth of 560 nm over the wavelength range of 300-900 nm.
Incoherent and Laser Photodeposition on Thin Films.
1980-09-01
wavelength, an incoherent Oriel Mercury arc lamp (model HR-l) with a 1000 watt u-v out- a put centered at 2537A was used. This source emitted o down...Royal Society of London Series A, 156: 108-129 (1936). 18. Gutowsky, H.S.. "The Infra-Red and Raman Spectra of Dimethyl Mercury and Dimethyl Zinc," The...II), - Cadmium (II) and - Mercury (II)," Spectrochimica Acta, 33A: 669-680 (1977). 20. Bakke, A.M.W.. "A Molecular Structure Study of Dimethylmercury
Automated reuseable components system study results
NASA Technical Reports Server (NTRS)
Gilroy, Kathy
1989-01-01
The Automated Reusable Components System (ARCS) was developed under a Phase 1 Small Business Innovative Research (SBIR) contract for the U.S. Army CECOM. The objectives of the ARCS program were: (1) to investigate issues associated with automated reuse of software components, identify alternative approaches, and select promising technologies, and (2) to develop tools that support component classification and retrieval. The approach followed was to research emerging techniques and experimental applications associated with reusable software libraries, to investigate the more mature information retrieval technologies for applicability, and to investigate the applicability of specialized technologies to improve the effectiveness of a reusable component library. Various classification schemes and retrieval techniques were identified and evaluated for potential application in an automated library system for reusable components. Strategies for library organization and management, component submittal and storage, and component search and retrieval were developed. A prototype ARCS was built to demonstrate the feasibility of automating the reuse process. The prototype was created using a subset of the classification and retrieval techniques that were investigated. The demonstration system was exercised and evaluated using reusable Ada components selected from the public domain. A requirements specification for a production-quality ARCS was also developed.
Just tooling around: Experiences with arctools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuttle, M.A.
1994-06-01
The three US Department of Energy (DOE) Installations on the Oak Ridge Reservation (Oak Ridge National Laboratory, Y-12 and K-25) were established during World War II as part of the Manhattan Project to build ``the bomb.`` In later years, the work at these facilities involved nuclear energy research, defense-related activities, and uranium enrichment, resulting in the generation of radioactive material and other toxic by-products. Work is now in progress to identify and clean up the environmental contamination from these and other wastes. Martin Marietta Energy Systems, Inc., which manages the Oak Ridge sites as well as DOE installations at Portsmouth,more » Ohio and Paducah, Kentucky, has been charged with creating and maintaining a comprehensive environmental information system in order to comply with the Federal Facility Agreement (FFA) for the Oak Ridge Reservation and the State of Tennessee Oversight Agreement between the US Department of Energy and the State of Tennessee. As a result, the Oak Ridge Environmental Information System (OREIS) was conceived and is currently being implemented. The tools chosen for the OREIS system are Oracle for the relational database, SAS for data analysis and graphical representation, and Arc/INFO and ArcView for the spatial analysis and display component. Within the broad scope of ESRI`s Arc/Info software, ArcTools was chosen as the graphic user interface for inclusion of Arc/Info into OREIS. The purpose of this paper is to examine in the advantages and disadvantages of incorporating ArcTools for the presentation of Arc/INFO in the OREIS system. The immediate and mid-term development goals of the OREIS system as they relate to ArcTools will be presented. A general discussion of our experiences with the ArcTools product is also included.« less
Diagnostics for a waste processing plasma arc furnace (invited) (abstract)a)
NASA Astrophysics Data System (ADS)
Woskov, P. P.
1995-01-01
Maintaining the quality of our environment has become an important goal of society. As part of this goal new technologies are being sought to clean up hazardous waste sites and to treat ongoing waste streams. A 1 MW pilot scale dc graphite electrode plasma arc furnace (Mark II) has been constructed at MIT under a joint program among Pacific Northwest Laboratory (PNL), MIT, and Electro-Pyrolysis, Inc. (EPI)c) for the remediation of buried wastes in the DOE complex. A key part of this program is the development of new and improved diagnostics to study, monitor, and control the entire waste remediation process for the optimization of this technology and to safeguard the environment. Continuous, real time diagnostics are needed for a variety of the waste process parameters. These parameters include internal furnace temperatures, slag fill levels, trace metals content in the off-gas stream, off-gas molecular content, feed and slag characterization, and off-gas particulate size, density, and velocity distributions. Diagnostics are currently being tested at MIT for the first three parameters. An active millimeter-wave radiometer with a novel, rotatable graphite waveguide/mirror antenna system has been implemented on Mark II for the measurement of surface emission and emissivity which can be used to determine internal furnace temperatures and fill levels. A microwave torch plasma is being evaluated for use as a excitation source in the furnace off-gas stream for continuous atomic emission spectroscopy of trace metals. These diagnostics should find applicability not only to waste remediation, but also to other high temperature processes such as incinerators, power plants, and steel plants.
77 FR 76021 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
... Corporation. Description: 2012-12-17 Compliance with November 5 Order on Western Antelope Blue Sky SGIA to be.... Applicants: ArcLight Capital Holdings, LLC. Description: Notice of Change in Facts of ArcLight Capital...
Proceedings of a conference on Cardiovascular Bioinstrumentation
NASA Technical Reports Server (NTRS)
Ballard, Rodney W.; Fuller, Charles A.; Mains, Richard; Finger, Herbert J.
1988-01-01
The Ames Research Center (ARC) has a long history in the development of cardiovascular (CV) instrumentation for human and animal research. The ARC Cardiovascular Research Lab under the Space Physiology Branch, Space Research Directorate, supports both ground-based and space-based animal and human research goals. The Cardiovascular Research Laboratory was established at ARC in the mid 1960's to conduct ground-based animal research and support development of advanced cardiovascular instrumentation applicable to spaceflight. The ARC Biomedical Research Program also conducts human studies with a CV instrumentation focus.
APPARATUS FOR PRODUCING IONS OF VAPORIZABLE MATERIALS
Starr, C.
1957-11-19
This patent relates to electronic discharge devices used as ion sources, and in particular describes an ion source for application in a calutron. The source utilizes two cathodes disposed at opposite ends of a longitudinal opening in an arc block fed with vaporized material. A magnetic field is provided parallel to the length of the arc block opening. The electrons from the cathodes are directed through slits in collimating electrodes into the arc block parallel to the magnetic field and cause an arc discharge to occur between the cathodes, as the arc block and collimating electrodes are at a positive potential with respect to the cathode. The ions are withdrawn by suitable electrodes disposed opposite the arc block opening. When such an ion source is used in a calutron, an arc discharge of increased length may be utilized, thereby increasing the efficiency and economy of operation.
Optical arc sensor using energy harvesting power source
NASA Astrophysics Data System (ADS)
Choi, Kyoo Nam; Rho, Hee Hyuk
2016-06-01
Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.
The variable polarity plasma arc welding process: Its application to the Space Shuttle external tank
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.; Bayless, O. E., Jr.; Jones, C. S., III; Munafo, A. P.; Wilson, W. A.
1983-01-01
The technical history of the variable polarity plasma arc (VPPA) welding process being introduced as a partial replacement for the gas shielded tungsten arc process in assembly welding of the space shuttle external tank is described. Interim results of the weld strength qualification studies, and plans for further work on the implementation of the VPPA process are included.
Lithium Abundance in M3 Red Giant
NASA Astrophysics Data System (ADS)
Givens, Rashad; Pilachowski, Catherine A.
2015-01-01
We present the abundance of lithium in the red giant star vZ 1050 (SK 291) in the globular cluster M3. A previous survey of giants in the cluster showed that like IV-101, vZ 1050 displays a prominent Li I 6707 Å feature. vZ 1050 lies on the blue side of the red giant branch about 1.3 magnitudes above the level of the horizontal branch, and may be an asymptotic giant branch star. A high resolution spectrum of M3 vZ1050 was obtained with the ARC 3.5m telescope and the ARC Echelle Spectrograph (ARCES). Atmospheric parameters were determined using Fe I and Fe II lines from the spectrum using the MOOG spectral analysis program, and the lithium abundance was determined using spectrum synthesis.
NASA Astrophysics Data System (ADS)
Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati
2013-06-01
Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.
NASA Astrophysics Data System (ADS)
Yokoyama, Seiji; Okazaki, Kohei; Sasano, Junji; Izaki, Masanobu
2014-02-01
Hexavalent chromium (Cr(VI)) is well-known to be a strong oxidizer, and is recognized as a carcinogen. Therefore, it is regulated for drinking water, soil, groundwater and sea by the environmental quality standards all over the world. In this study, it was attempted to remove Cr(VI) ion in a carbonic acid solution by the oxidizing slag that was discharged from the normal steelmaking process in an electric arc furnace. After the addition of the slag into the aqueous solution contained Cr(VI) ion, concentrations of Cr(VI) ion and total chromium (Cr(VI) + trivalent chromium (Cr(III)) ions decreased to lower detection limit of them. Therefore, the used slag could reduce Cr(VI) and fix Cr(III) ion on the slag. While Cr(VI) ion existed in the solution, iron did not dissolve from the slag. From the relation between predicted dissolution amount of iron(II) ion and amount of decrease in Cr(VI) ion, the Cr(VI) ion did not react with iron(II) ion dissolved from the slag. Therefore, Cr(VI) ion was removed by the reductive reaction between Cr(VI) ion and the iron(II) oxide (FeO) in the slag. This reaction progressed on the newly appeared surface of iron(II) oxide due to the dissolution of phase composed of calcium etc., which existed around iron(II) oxide grain in the slag.
Measurement Requirements for Improved Modeling of Arcjet Facility Flows
NASA Technical Reports Server (NTRS)
Fletcher, Douglas G.
2000-01-01
Current efforts to develop new reusable launch vehicles and to pursue low-cost robotic planetary missions have led to a renewed interest in understanding arc-jet flows. Part of this renewed interest is concerned with improving the understanding of arc-jet test results and the potential use of available computational-fluid- dynamic (CFD) codes to aid in this effort. These CFD codes have been extensively developed and tested for application to nonequilibrium, hypersonic flow modeling. It is envisioned, perhaps naively, that the application of these CFD codes to the simulation of arc-jet flows would serve two purposes: first. the codes would help to characterize the nonequilibrium nature of the arc-jet flows; and second. arc-jet experiments could potentially be used to validate the flow models. These two objectives are, to some extent, mutually exclusive. However, the purpose of the present discussion is to address what role CFD codes can play in the current arc-jet flow characterization effort, and whether or not the simulation of arc-jet facility tests can be used to eva1uate some of the modeling that is used to formu1ate these codes. This presentation is organized into several sections. In the introductory section, the development of large-scale, constricted-arc test facilities within NASA is reviewed, and the current state of flow diagnostics using conventional instrumentation is summarized. The motivation for using CFD to simulate arc-jet flows is addressed in the next section, and the basic requirements for CFD models that would be used for these simulations are briefly discussed. This section is followed by a more detailed description of experimental measurements that are needed to initiate credible simulations and to evaluate their fidelity in the different flow regions of an arc-jet facility. Observations from a recent combined computational and experiment.al investigation of shock-layer flows in a large-scale arc-jet facility are then used to illustrate the current state of development of diagnostic instrumentation, CFD simulations, and general knowledge in the field of arc-jet characterization. Finally, the main points are summarized and recommendations for future efforts are given.
Selective dry etching of silicon containing anti-reflective coating
NASA Astrophysics Data System (ADS)
Sridhar, Shyam; Nolan, Andrew; Wang, Li; Karakas, Erdinc; Voronin, Sergey; Biolsi, Peter; Ranjan, Alok
2018-03-01
Multi-layer patterning schemes involve the use of Silicon containing Anti-Reflective Coating (SiARC) films for their anti-reflective properties. Patterning transfer completion requires complete and selective removal of SiARC which is very difficult due to its high silicon content (>40%). Typically, SiARC removal is accomplished through a non-selective etch during the pattern transfer process using fluorine containing plasmas, or an ex-situ wet etch process using hydrofluoric acid is employed to remove the residual SiARC, post pattern transfer. Using a non-selective etch may result in profile distortion or wiggling, due to distortion of the underlying organic layer. The drawbacks of using wet etch process for SiARC removal are increased overall processing time and the need for additional equipment. Many applications may involve patterning of active structures in a poly-Si layer with an underlying oxide stopping layer. In such applications, SiARC removal selective to oxide using a wet process may prove futile. Removing SiARC selectively to SiO2 using a dry etch process is also challenging, due to similarity in the nature of chemical bonds (Si - O) in the two materials. In this work, we present highly selective etching of SiARC, in a plasma driven by a surface wave radial line slot antenna. The first step in the process involves an in-situ modification of the SiARC layer in O2 plasma followed by selective etching in a NF3/H2 plasma. Surface treatment in O2 plasma resulted in enhanced etching of the SiARC layer. For the right processing conditions, in-situ NF3/H2 dry etch process demonstrated selectivity values greater than 15:1 with respect to SiO2. The etching chemistry, however, was sensitive to NF3:H2 gas ratio. For dilute NF3 in H2, no SiARC etching was observed. Presumably, this is due to the deposition of ammonium fluorosilicate layer that occurs for dilute NF3/H2 plasmas. Additionally, challenges involved in selective SiARC removal (selective to SiO2, organic and Si layers) post pattern transfer, in a multi-layer structure will be discussed.
GIS based Cadastral level Forest Information System using World View-II data in Bir Hisar (Haryana)
NASA Astrophysics Data System (ADS)
Mothi Kumar, K. E.; Singh, S.; Attri, P.; Kumar, R.; Kumar, A.; Sarika; Hooda, R. S.; Sapra, R. K.; Garg, V.; Kumar, V.; Nivedita
2014-11-01
Identification and demarcation of Forest lands on the ground remains a major challenge in Forest administration and management. Cadastral forest mapping deals with forestlands boundary delineation and their associated characterization (forest/non forest). The present study is an application of high resolution World View-II data for digitization of Protected Forest boundary at cadastral level with integration of Records of Right (ROR) data. Cadastral vector data was generated by digitization of spatial data using scanned mussavies in ArcGIS environment. Ortho-images were created from World View-II digital stereo data with Universal Transverse Mercator coordinate system with WGS 84 datum. Cadastral vector data of Bir Hisar (Hisar district, Haryana) and adjacent villages was spatially adjusted over ortho-image using ArcGIS software. Edge matching of village boundaries was done with respect to khasra boundaries of individual village. The notified forest grids were identified on ortho-image and grid vector data was extracted from georeferenced cadastral data. Cadastral forest boundary vectors were digitized from ortho-images. Accuracy of cadastral data was checked by comparison of randomly selected geo-coordinates points, tie lines and boundary measurements of randomly selected parcels generated from image data set with that of actual field measurements. Area comparison was done between cadastral map area, the image map area and RoR area. The area covered under Protected Forest was compared with ROR data and within an accuracy of less than 1 % from ROR area was accepted. The methodology presented in this paper is useful to update the cadastral forest maps. The produced GIS databases and large-scale Forest Maps may serve as a data foundation towards a land register of forests. The study introduces the use of very high resolution satellite data to develop a method for cadastral surveying through on - screen digitization in a less time as compared to the old fashioned cadastral parcel boundaries surveying method.
NASA Astrophysics Data System (ADS)
Kassin, A.; Cody, R. P.; Barba, M.; Gaylord, A. G.; Manley, W. F.; Score, R.; Escarzaga, S. M.; Tweedie, C. E.
2016-12-01
The Arctic Research Mapping Application (ARMAP; http://armap.org/) is a suite of online applications and data services that support Arctic science by providing project tracking information (who's doing what, when and where in the region) for United States Government funded projects. In collaboration with 17 research agencies, project locations are displayed in a visually enhanced web mapping application. Key information about each project is presented along with links to web pages that provide additional information, including links to data where possible. The latest ARMAP iteration has i) reworked the search user interface (UI) to enable multiple filters to be applied in user-driven queries and ii) implemented ArcGIS Javascript API 4.0 to allow for deployment of 3D maps directly into a users web-browser and enhanced customization of popups. Module additions include i) a dashboard UI powered by a back-end Apache SOLR engine to visualize data in intuitive and interactive charts; and ii) a printing module that allows users to customize maps and export these to different formats (pdf, ppt, gif and jpg). New reference layers and an updated ship tracks layer have also been added. These improvements have been made to improve discoverability, enhance logistics coordination, identify geographic gaps in research/observation effort, and foster enhanced collaboration among the research community. Additionally, ARMAP can be used to demonstrate past, present, and future research effort supported by the U.S. Government.
A Definitive Work on Factors Impacting the Arming of Unmanned Vehicles
2005-05-01
making software, which can then adjust the system to compensate for unusual activity. Behavioral models that better predict how applications, networks ... network structure of nodes and arcs. The arcs describe relations between nodes, and nodes represent objects, concepts, or events. It uses the arc...tackling things that occur outside the known problem domain. There are some newer, natural-based approaches. One deals with neural networks . There is no
Equatorward moving arcs and substorm onset
NASA Astrophysics Data System (ADS)
Haerendel, Gerhard
2010-07-01
Key observations of phenomena during the growth phase of a substorm are being reviewed with particular attention to the equatorward motion of the hydrogen and electron arcs. The dynamic role of the electron, the so-called growth phase arc, is analyzed. It is part of a current system of type II that is instrumental in changing the dominantly equatorward convection from the polar cap into a sunward convection along the auroral oval. A quantitative model of the arc and associated current system allows determining the energy required for the flow change. It is suggested that high-β plasma outflow from the central current sheet of the tail creates the current generator. Assessment of the energy supplied in this process proves its sufficiency for driving the arc system. The equatorward motion of the arcs is interpreted as a manifestation of the shrinkage of the near-Earth transition region (NETR) between the dipolar magnetosphere and the highly stretched tail. This shrinkage is caused by returning magnetic flux to the dayside magnetosphere as partial replacement of the flux eroded by frontside reconnection. As the erosion of the NETR is proceeding, more and more magnetic flux is demanded from the central current sheet of the near-Earth tail until highly accelerated plasma outflow causes the current sheet to collapse. Propagation of the collapse along the tail triggers reconnection and initiates the substorm.
NASA Astrophysics Data System (ADS)
Du, Chang Ming; Wang, Jing; Zhang, Lu; Xia Li, Hong; Liu, Hui; Xiong, Ya
2012-01-01
Gliding arc discharge has been investigated in recent years as an innovative physicochemical technique for contaminated water treatment at atmospheric pressure and ambient temperature. In this study we tested a gas-liquid gliding arc discharge reactor, the bacterial suspension of which was treated circularly. When the bacterial suspension was passed through the electrodes and circulated at defined flow rates, almost 100% of the bacteria were killed in less than 3.0 min. Experimental results showed that it is possible to achieve an abatement of 7.0 decimal logarithm units within only 30 s. Circulation flow rates and types of feeding gas caused a certain impact on bacteria inactivation, but the influences are not obvious. So, under the promise of sterilization effect, industrial applications can select their appropriate operating conditions. All inactivation curves presented the same three-phase profile showing an apparent sterilization effect. Analysis of the scanning electron microscope images of bacterial cells supports the speculation that the gas-liquid gliding arc discharge plasma is acting under various mechanisms driven essentially by oxidation and the effect of electric field. These results enhance the possibility of applying gas-liquid gliding arc discharge decontamination systems to disinfect bacterial-contaminated water. Furthermore, correlational research indicates the potential applications of this technology in rapid sterilization of medical devices, spacecraft and food.
NASA Astrophysics Data System (ADS)
Borgohain, Rituraj
Carbon nano-onions (CNOs), concentrically multilayered fullerenes, are prepared by several different methods. We are studying the properties of two specific CNOs: A-CNOs and N-CNOs. A-CNOs are synthesized by underwater arc discharge, and N-CNOs are synthesized by high-temperature graphitization of commercial nanodiamond. In this study the synthesis of A-CNOs are optimized by designing an arc discharge aparatus to control the arc plasma. Moreover other synthesis parameters such as arc power, duty cycles, temperature, graphitic and metal impurities are controlled for optimum production of A-CNOs. Also, a very efficient purification method is developed to screen out A-CNOs from carboneseous and metal impurities. In general, A-CNOs are larger than N-CNOs (ca. 30 nm vs. 7 nm diameter). The high surface area, appropriate mesoporosity, high thermal stability and high electrical conductivity of CNOs make them a promising material for various applications. These hydrophobic materials are functionalized with organic groups on their outer layers to study their surface chemistry and to decorate with metal oxide nanoparticles. Both CNOs and CNO nanocomposites are investigated for application in electrochemical capacitors (ECs). The influences of pH, concentration and additives on the performance of the composites are studied. Electrochemical measurements demonstrate high specific capacitance and high cycling stability with high energy and power density of the composite materials in aqueous electrolyte. Key words: Carbon Nano-onions, Arc discharge, Purification, Functionalization, Supercapacitor.
Pardo-Montero, Juan; Fenwick, John D
2010-06-01
The purpose of this work is twofold: To further develop an approach to multiobjective optimization of rotational therapy treatments recently introduced by the authors [J. Pardo-Montero and J. D. Fenwick, "An approach to multiobjective optimization of rotational therapy," Med. Phys. 36, 3292-3303 (2009)], especially regarding its application to realistic geometries, and to study the quality (Pareto optimality) of plans obtained using such an approach by comparing them with Pareto optimal plans obtained through inverse planning. In the previous work of the authors, a methodology is proposed for constructing a large number of plans, with different compromises between the objectives involved, from a small number of geometrically based arcs, each arc prioritizing different objectives. Here, this method has been further developed and studied. Two different techniques for constructing these arcs are investigated, one based on image-reconstruction algorithms and the other based on more common gradient-descent algorithms. The difficulty of dealing with organs abutting the target, briefly reported in previous work of the authors, has been investigated using partial OAR unblocking. Optimality of the solutions has been investigated by comparison with a Pareto front obtained from inverse planning. A relative Euclidean distance has been used to measure the distance of these plans to the Pareto front, and dose volume histogram comparisons have been used to gauge the clinical impact of these distances. A prostate geometry has been used for the study. For geometries where a blocked OAR abuts the target, moderate OAR unblocking can substantially improve target dose distribution and minimize hot spots while not overly compromising dose sparing of the organ. Image-reconstruction type and gradient-descent blocked-arc computations generate similar results. The Pareto front for the prostate geometry, reconstructed using a large number of inverse plans, presents a hockey-stick shape comprising two regions: One where the dose to the target is close to prescription and trade-offs can be made between doses to the organs at risk and (small) changes in target dose, and one where very substantial rectal sparing is achieved at the cost of large target underdosage. Plans computed following the approach using a conformal arc and four blocked arcs generally lie close to the Pareto front, although distances of some plans from high gradient regions of the Pareto front can be greater. Only around 12% of plans lie a relative Euclidean distance of 0.15 or greater from the Pareto front. Using the alternative distance measure of Craft ["Calculating and controlling the error of discrete representations of Pareto surfaces in convex multi-criteria optimization," Phys. Medica (to be published)], around 2/5 of plans lie more than 0.05 from the front. Computation of blocked arcs is quite fast, the algorithms requiring 35%-80% of the running time per iteration needed for conventional inverse plan computation. The geometry-based arc approach to multicriteria optimization of rotational therapy allows solutions to be obtained that lie close to the Pareto front. Both the image-reconstruction type and gradient-descent algorithms produce similar modulated arcs, the latter one perhaps being preferred because it is more easily implementable in standard treatment planning systems. Moderate unblocking provides a good way of dealing with OARs which abut the PTV. Optimization of geometry-based arcs is faster than usual inverse optimization of treatment plans, making this approach more rapid than an inverse-based Pareto front reconstruction.
NASA Astrophysics Data System (ADS)
Campbell, David R.
Arc-heated wind tunnels are the primary test facility for screening and qualification of candidate materials for hypersonic thermal protection systems (TPS). Via an electric arc that largely augments the enthalpy (by tens of MJ/kg) of the working fluid (Air, Nitrogen, CO2 in case of Mars-entry studies) passed through a converging-diverging nozzle at specific stagnation conditions, different regimes encountered in entry and re-entry hypersonic aerothermodynamics can be simulated. Because of the high-enthalpies (and associated temperatures that generally exceed the limits required by the thermo-structural integrity of the facility) the active cooling of the arc-heated wind tunnel's parts exposed to the working gas is critical. This criticality is particularly severe in these facilities due to the time scales associated with their continuous operation capabilities (order of minutes). This research focuses on the design and the conjugate heat transfer and resultant thermo-structural analysis of a multi-segment nozzle and low-Reynolds, hypersonic diffuser for the new arc-heated wind tunnel (AHWT-II) of the University of Texas at Arlington. Nozzles and hypersonic diffusers are critical components that experience highly complex flows (non-equilibrium aerothermochemistry) and high (local and distributed) heat-flux loads which significantly augment the complexity of the problems associated with their thermal management. The proper design and thermo-mechanical analysis of these components are crucial elements for the operability of the new facility. This work is centered on the design considerations, methodologies and the detailed analysis of the aforementioned components which resulted in the definition of final parts and assemblies that are under manufacturing at this writing. The project is jointly sponsored by the Office of Naval Research (ONR) and the Defense Advanced Research Project Agency (DARPA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oden, L.L.; O`Conner, W.K.; Turner, P.C.
1993-11-19
This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc meltingmore » furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.« less
He, Longbiao; Yang, Ping; Li, Luming; Wu, Minsheng
2014-12-01
To solve the difficulty of introducing traditional ultrasonic transducers to welding molten pool, high frequency current is used to modulate plasma arc and ultrasonic wave is excited successfully. The characteristics of the excited ultrasonic field are studied. The results show that the amplitude-frequency response of the ultrasonic emission is flat. The modulating current is the main factor influencing the ultrasonic power and the sound pressure depends on the variation of arc plasma stream force. Experimental study of the welding structure indicates grain refinement by the ultrasonic emission of the modulated arc and the test results showed there should be an energy region for the arc ultrasonic to get best welding joints. Copyright © 2014 Elsevier B.V. All rights reserved.
Development and Application of Novel Diagnostics for Arc-Jet Characterization
NASA Technical Reports Server (NTRS)
Hanson, R. K.
2002-01-01
This NASA-Ames University Consortium Project has focused on the design and demonstration of optical absorption sensors using tunable diode laser to target atomic copper impurities from electrode erosion in thc arc-heater metastable electronic excited states of molecular nitrogen, atomic argon, aid atomic oxygen in the arcjet plume. Accomplishments during this project include: 1. Design, construction, and assembly of optical access to the arc-heater gas flow. 2. Design of diode laser sensor for copper impurities in the arc-heater flow. 3 . Diode laser sensor design and test in laboratory plasmas for metastable Ar(3P), O(5S), N(4P), and N2(A). 4. Diode laser sensor demonstration measurements in the test cell to monitor species in the arc-jet plume.
Kang, Ki-Noh; Jeong, Hyejeong; Lee, Jaehyeong; Park, Yong Seob
2018-09-01
A good medical guidewires are used to introduce stents, catheters, and other medical devices inside the human body. In this study, diamond-like carbon (DLC) film was proposed to solve the poor adhesion problem of guidewire and to improve the tribological performance of guidewire. DLC films were fabricated on Si substrate by using FVA (Filtered Vacuum Arc) method. In this work, the tribological, structural, and electrical properties of the fabricated DLC films with various arc currents were experimentally investigated. All DLC films showed smooth and uniform surface with increasing applied arc current. The rms surface roughness was increased and the value of contact angle on the film surface was decreased with increasing arc current. The hardness and elastic modulus of DLC films were improved, and the resistivity value of DLC films were decreased with increasing arc current. These results are associated with ion bombardment effects by the applied arc current and bias voltage.
Fermi arc mediated entropy transport in topological semimetals
NASA Astrophysics Data System (ADS)
McCormick, Timothy M.; Watzman, Sarah J.; Heremans, Joseph P.; Trivedi, Nandini
2018-05-01
The low-energy excitations of topological Weyl semimetals are composed of linearly dispersing Weyl fermions that act as monopoles of Berry curvature in the bulk momentum space. Furthermore, on the surface there exist topologically protected Fermi arcs at the projections of these Weyl points. We propose a pathway for entropy transport involving Fermi arcs on one surface connecting to Fermi arcs on the other surface via the bulk Weyl monopoles. We present results for the temperature and magnetic field dependence of the magnetothermal conductance of this conveyor belt channel. The circulating currents result in a net entropy transport without any net charge transport. We provide results for the Fermi arc mediated magnetothermal conductivity in the low-field semiclassical limit as well as in the high-field ultraquantum limit, where only chiral Landau levels are involved. Our work provides a proposed signature of Fermi arc mediated magnetothermal transport and sets the stage for utilizing and manipulating the topological Fermi arcs in thermal applications.
NASA Astrophysics Data System (ADS)
Niwa, Yoshimitsu; Kaneko, Eiji
Vacuum circuit breakers (VCB) have been widely used for power distribution systems. Vacuum Interrupters, which are the current interruption unit, have been increased its interruption capability with the development of vacuum arc control technology by magnetic field. There are three major type electrodes: disk shaped electrodes, radial magnetic field electrodes, axial magnetic field (AMF) electrodes. In the disk shaped electrode, the vacuum arc between the electrodes is not controlled. In the AMF electrode, the vacuum arc is diffused and stabilized by an axial magnetic field, which is parallel to the arc current. In the last type of electrodes, the vacuum arc column is rotated by magnetic force generated by the current flowing in the electrodes. The interruption current and the voltage of one break VCB is increased to 100 kA, 144 kV respectively. This paper describes basic configurations and functions of VCB, vacuum arc control technology in vacuum interrupters, recent researches and applications of VCB.
Raut, Hemant Kumar; Dinachali, Saman Safari; Ansah-Antwi, Kwadwo Konadu; Ganesh, V Anand; Ramakrishna, Seeram
2013-12-20
Despite recent progress in the fabrication of magnesium fluoride (MgF2) anti-reflective coatings (ARCs), simple, effective and scalable sol-gel fabrication of MgF2 ARCs for large-area glass substrates has prospective application in various optoelectronic devices. In this paper, a polymer-based sol-gel route was devised to fabricate highly uniform and porous MgF2 ARCs on large-area glass substrates. A sol-gel precursor made of polyvinyl acetate and magnesium trifluoroacetate assisted in the formation of uniformly mesoporous MgF2 ARCs on glass substrates, leading to the attainment of a refractive index of ~1.23. Systematic optimization of the thickness of the ARC in the sub-wavelength regime led to achieving ~99.4% transmittance in the case of the porous MgF2 ARC glass. Precise control of the thickness of porous MgF2 ARC glass also resulted in a mere ~0.1% reflection, virtually eliminating reflection off the glass surface at the target wavelength. Further manipulation of the thickness of the ARC on either side of the glass substrate led to the fabrication of relatively broadband, porous MgF2 ARC glass.
Operation and Applications of the Boron Cathodic Arc Ion Source
NASA Astrophysics Data System (ADS)
Williams, J. M.; Klepper, C. C.; Chivers, D. J.; Hazelton, R. C.; Freeman, J. H.
2008-11-01
The boron cathodic arc ion source has been developed with a view to several applications, particularly the problem of shallow junction doping in semiconductors. Research has included not only development and operation of the boron cathode, but other cathode materials as well. Applications have included a large deposition directed toward development of a neutron detector and another deposition for an orthopedic coating, as well as the shallow ion implantation function. Operational experience is described and information pertinent to commercial operation, extracted from these experiments, is presented.
NASA Technical Reports Server (NTRS)
Cain, Bruce L.
1990-01-01
The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.
Revealing the arc dynamics in a gliding arc plasmatron: a better insight to improve CO2 conversion
NASA Astrophysics Data System (ADS)
Ramakers, Marleen; Medrano, Jose A.; Trenchev, Georgi; Gallucci, Fausto; Bogaerts, Annemie
2017-12-01
A gliding arc plasmatron (GAP) is very promising for CO2 conversion into value-added chemicals, but to further improve this important application, a better understanding of the arc behavior is indispensable. Therefore, we study here for the first time the dynamic arc behavior of the GAP by means of a high-speed camera, for different reactor configurations and in a wide range of operating conditions. This allows us to provide a complete image of the behavior of the gliding arc. More specifically, the arc body shape, diameter, movement and rotation speed are analyzed and discussed. Clearly, the arc movement and shape relies on a number of factors, such as gas turbulence, outlet diameter, electrode surface, gas contraction and buoyance force. Furthermore, we also compare the experimentally measured arc movement to a state-of-the-art 3D-plasma model, which predicts the plasma movement and rotation speed with very good accuracy, to gain further insight in the underlying mechanisms. Finally, we correlate the arc dynamics with the CO2 conversion and energy efficiency, at exactly the same conditions, to explain the effect of these parameters on the CO2 conversion process. This work is important for understanding and optimizing the GAP for CO2 conversion.
Precambrian plate tectonic setting of Africa from multidimensional discrimination diagrams
NASA Astrophysics Data System (ADS)
Verma, Sanjeet K.
2017-01-01
New multi-dimensional discrimination diagrams have been used to identify plate tectonic setting of Precambrian terrains. For this work, nine sets of new discriminant-function based multi-dimensional discrimination diagrams were applied for thirteen case studies of Precambrian basic, intermediate and acid magmas from Africa to highlight the application of these diagrams and probability calculations. The applications of these diagrams indicated the following results: For northern Africa: to Wadi Ghadir ophiolite, Egypt indicated an arc setting for Neoproterozoic (746 ± 19 Ma). For South Africa: Zandspruit greenstone and Bulai pluton showed a collision and a transitional continental arc to collision setting at about Mesoarchaean and Neoarchaean (3114 ± 2.3 Ma and 2610-2577 Ma); Mesoproterozoic (1109 ± 0.6 Ma and 1100 Ma) ages for Espungabera and Umkondo sills were consistent with an island arc setting. For eastern Africa, Iramba-Sekenke greenstone belt and Suguti area, Tanzania showed an arc setting for Neoarchaean (2742 ± 27 Ma and 2755 ± 1 Ma). Chila, Bulbul-Kenticha domain, and Werri area indicated a continental arc setting at about Neoproterozoic (800-789 Ma); For western Africa, Sangmelima region and Ebolowa area, southern Cameroon indicated a collision and continental arc setting, respectively for Neoarchaean (∼2800-2900 Ma and 2687-2666 Ma); Finally, Paleoproterozoic (2232-2169 Ma) for Birimian supergroup, southern Ghana a continental arc setting; and Paleoproterozoic (2123-2108 Ma) for Katiola-Marabadiassa, Côte d'Ivoire a transitional continental arc to collision setting. Although there were some inconsistencies in the inferences, most cases showed consistent results of tectonic settings. These inconsistencies may be related to mixed ages, magma mixing, crustal contamination, degree of mantle melting, and mantle versus crustal origin.
Optical arc sensor using energy harvesting power source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr
Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arcmore » energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.« less
Simulations of Atmospheric Plasma Arcs
NASA Astrophysics Data System (ADS)
Pearcy, Jacob; Chopra, Nirbhav; Jaworski, Michael
2017-10-01
We present the results of computer simulation of cylindrical plasma arcs with characteristics similar to those predicted to be relevant in magnetohydrodynamic (MHD) power conversion systems. These arcs, with core temperatures on the order of 1 eV, place stringent limitations on the lifetime of conventional electrodes used in such systems, suggesting that a detailed analysis of arc characteristics will be crucial in designing more robust electrode systems. Simulations utilize results from NASA's Chemical Equilibrium with Applications (CEA) program to solve the Elenbaas-Heller equation in a variety of plasma compositions, including approximations of coal-burning plasmas as well as pure gas discharges. The effect of carbon dioxide injection on arc characteristics, emulating discharges from molten carbonate salt electrodes, is also analyzed. Results include radial temperature profiles, composition maps, and current-voltage (IV) characteristics of these arcs. Work supported by DOE contract DE-AC02-09CH11466.
Natural Inspired Intelligent Visual Computing and Its Application to Viticulture.
Ang, Li Minn; Seng, Kah Phooi; Ge, Feng Lu
2017-05-23
This paper presents an investigation of natural inspired intelligent computing and its corresponding application towards visual information processing systems for viticulture. The paper has three contributions: (1) a review of visual information processing applications for viticulture; (2) the development of natural inspired computing algorithms based on artificial immune system (AIS) techniques for grape berry detection; and (3) the application of the developed algorithms towards real-world grape berry images captured in natural conditions from vineyards in Australia. The AIS algorithms in (2) were developed based on a nature-inspired clonal selection algorithm (CSA) which is able to detect the arcs in the berry images with precision, based on a fitness model. The arcs detected are then extended to perform the multiple arcs and ring detectors information processing for the berry detection application. The performance of the developed algorithms were compared with traditional image processing algorithms like the circular Hough transform (CHT) and other well-known circle detection methods. The proposed AIS approach gave a Fscore of 0.71 compared with Fscores of 0.28 and 0.30 for the CHT and a parameter-free circle detection technique (RPCD) respectively.
Electron beam, laser beam and plasma arc welding studies
NASA Technical Reports Server (NTRS)
Banas, C. M.
1974-01-01
This program was undertaken as an initial step in establishing an evaluation framework which would permit a priori selection of advanced welding processes for specific applications. To this end, a direct comparison of laser beam, electron beam and arc welding of Ti-6Al-4V alloy was undertaken. Ti-6Al-4V was selected for use in view of its established welding characteristics and its importance in aerospace applications.
2013-05-23
simulation of the conventional Gas Metal Arc Welding (GMAW) process, and the application of the developed methods and tools for prediction of the...technology in many industries such as chemical, oil , aerospace, and shipbuilding construction. In fact, within the metal fabrication industry as a...Mechanical Properties of Low Alloy Steel Products. Hardenability Concepts with Applications to Steel, The Metallurgical Society of AIME, Chicago, 1978, p
Developing a Resource for Implementing ArcSWAT Using Global Datasets
NASA Astrophysics Data System (ADS)
Taggart, M.; Caraballo Álvarez, I. O.; Mueller, C.; Palacios, S. L.; Schmidt, C.; Milesi, C.; Palmer-Moloney, L. J.
2015-12-01
This project developed a comprehensive user manual outlining methods for adapting and implementing global datasets for use within ArcSWAT for international and worldwide applications. The Soil and Water Assessment Tool (SWAT) is a hydrologic model that looks at a number of hydrologic variables including runoff and the chemical makeup of water at a given location on the Earth's surface using Digital Elevation Models (DEM), land cover, soil, and weather data. However, the application of ArcSWAT for projects outside of the United States is challenging as there is no standard framework for inputting global datasets into ArcSWAT. This project aims to remove this obstacle by outlining methods for adapting and implementing these global datasets via the user manual. The manual takes the user through the processes of data conditioning while providing solutions and suggestions for common errors. The efficacy of the manual was explored using examples from watersheds located in Puerto Rico, Mexico and Western Africa. Each run explored the various options for setting up a ArcSWAT project as well as a range of satellite data products and soil databases. Future work will incorporate in-situ data for validation and calibration of the model and outline additional resources to assist future users in efficiently implementing the model for worldwide applications. The capacity to manage and monitor freshwater availability is of critical importance in both developed and developing countries. As populations grow and climate changes, both the quality and quantity of freshwater are affected resulting in negative impacts on the health of the surrounding population. The use of hydrologic models such as ArcSWAT can help stakeholders and decision makers understand the future impacts of these changes enabling informed and substantiated decisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Shuo; Zhu, Zong-Hong; Covone, Giovanni
We present a new analysis of Hubble Space Telescope, Spitzer Space Telescope, and Very Large Telescope imaging and spectroscopic data of a bright lensed galaxy at z = 1.0334 in the lensing cluster A2667. Using this high-resolution imaging, we present an updated lens model that allows us to fully understand the lensing geometry and reconstruct the lensed galaxy in the source plane. This giant arc gives a unique opportunity to view the structure of a high-redshift disk galaxy. We find that the lensed galaxy of A2667 is a typical spiral galaxy with a morphology similar to the structure of itsmore » counterparts at higher redshift, z ∼ 2. The surface brightness of the reconstructed source galaxy in the z {sub 850} band reveals the central surface brightness I(0) = 20.28 ± 0.22 mag arcsec{sup –2} and a characteristic radius r{sub s} = 2.01 ± 0.16 kpc at redshift z ∼ 1. The morphological reconstruction in different bands shows obvious negative radial color gradients for this galaxy. Moreover, the redder central bulge tends to contain a metal-rich stellar population, rather than being heavily reddened by dust due to high and patchy obscuration. We analyze the VIMOS/integral field unit spectroscopic data and find that, in the given wavelength range (∼1800-3200 Å), the combined arc spectrum of the source galaxy is characterized by a strong continuum emission with strong UV absorption lines (Fe II and Mg II) and shows the features of a typical starburst Wolf-Rayet galaxy, NGC 5253. More specifically, we have measured the equivalent widths of Fe II and Mg II lines in the A2667 spectrum, and obtained similar values for the same wavelength interval of the NGC 5253 spectrum. Marginal evidence for [C III] 1909 emission at the edge of the grism range further confirms our expectation.« less
Circuit transients due to negative bias arcs-II. [on solar cell power systems in low earth orbit
NASA Technical Reports Server (NTRS)
Metz, R. N.
1986-01-01
Two new models of negative-bias arcing on a solar cell power system in Low Earth Orbit are presented. One is an extended, analytical model and the other is a non-linear, numerical model. The models are based on an earlier analytical model in which the interactions between solar cell interconnects and the space plasma as well as the parameters of the power circuit are approximated linearly. Transient voltages due to arcs struck at the negative thermal of the solar panel are calculated in the time domain. The new models treat, respectively, further linear effects within the solar panel load circuit and non-linear effects associated with the plasma interactions. Results of computer calculations with the models show common-mode voltage transients of the electrically floating solar panel struck by an arc comparable to the early model but load transients that differ substantially from the early model. In particular, load transients of the non-linear model can be more than twice as great as those of the early model and more than twenty times as great as the extended, linear model.
Effect of intermittent hypoxia on arcuate nucleus in the leptin-deficient rat.
Ciriello, John; Moreau, Jason M; McCoy, Aaron; Jones, Douglas L
2016-07-28
Intermittent hypoxia (IH) is a major pathophysiological consequence of obstructive sleep apnea. Recently, it has been shown that IH results in changes in body energy balance, leptin secretion and concomitant alterations in arcuate nucleus (ARC). In this study, the role of leptin on these changes was investigated in leptin-deficient rats exposed to IH or normoxic control conditions. Body weights, consumatory and locomotor behaviours, and protein signaling in ARC were assessed immediately after IH exposure. Compared to normoxia, IH altered body weight, food intake, locomotor pattern, and the plasma concentration of leptin and angiotensin II in the wild-type rat. However, these changes were not observed in the leptin-deficient rat. Within ARC of wild-type animals, IH increased phosphorylated signal transducer and activator of transcription 3 and pro-opiomelanocortin protein expression, but not in the leptin-deficient rat. The long-form leptin receptor protein expression was not altered following IH in either rat strain. These data suggest that leptin is involved in mediating the alterations to body energy balance and ARC activity following IH. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sol-gel derived antireflective structures for applications in silicon solar cells
NASA Astrophysics Data System (ADS)
Karasiński, Paweł; Skolik, Marcin
2016-12-01
This work presents theoretical and experimental results of antireflective coatings (ARCs) obtained for applications in silicon solar cells. ARCs were derived from sol-gel process and dip-coated using silica (SiO2) and titania (TiO2). Theoretical results were obtained using 2×2 transfer matrix calculation method. Technological process of SiO2 and TiO2 thin film fabrication as well as measurement techniques are described in this paper. Strong correlation between theoretical and experimental data is demonstrated. It is shown, that weighted average reflection from a substrate can be reduced ten times with the use of SiO2/TiO2/Si double layer ARCs, when compared to a bare silica substrate.
Nestor, Casey C; Qiu, Jian; Padilla, Stephanie L.; Zhang, Chunguang; Bosch, Martha A.; Fan, Wei; Aicher, Sue A.; Palmiter, Richard D.
2016-01-01
Kisspeptin (Kiss1) neurons are essential for reproduction, but their role in the control of energy balance and other homeostatic functions remains unclear. Proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons, located in the arcuate nucleus (ARC) of the hypothalamus, integrate numerous excitatory and inhibitory inputs to ultimately regulate energy homeostasis. Given that POMC and AgRP neurons are contacted by Kiss1 neurons in the ARC (Kiss1ARC) and they express androgen receptors, Kiss1ARC neurons may mediate the orexigenic action of testosterone via POMC and/or AgRP neurons. Quantitative PCR analysis of pooled Kiss1ARC neurons revealed that mRNA levels for Kiss1 and vesicular glutamate transporter 2 were higher in castrated male mice compared with gonad-intact males. Single-cell RT-PCR analysis of yellow fluorescent protein (YFP) ARC neurons harvested from males injected with AAV1-EF1α-DIO-ChR2:YFP revealed that 100% and 88% expressed mRNAs for Kiss1 and vesicular glutamate transporter 2, respectively. Whole-cell, voltage-clamp recordings from nonfluorescent postsynaptic ARC neurons showed that low frequency photo-stimulation (0.5 Hz) of Kiss1-ChR2:YFP neurons elicited a fast glutamatergic inward current in POMC and AgRP neurons. Paired-pulse, photo-stimulation revealed paired-pulse depression, which is indicative of greater glutamate release, in the castrated male mice compared with gonad-intact male mice. Group I and group II metabotropic glutamate receptor agonists depolarized and hyperpolarized POMC and AgRP neurons, respectively, which was mimicked by high frequency photo-stimulation (20 Hz) of Kiss1ARC neurons. Therefore, POMC and AgRP neurons receive direct steroid- and frequency-dependent glutamatergic synaptic input from Kiss1ARC neurons in male mice, which may be a critical pathway for Kiss1 neurons to help coordinate energy homeostasis and reproduction. PMID:27093227
76 FR 19344 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-07
... Wind Energy Marketing, LLC Description: Supplemental Information to Triennial Market-Based Rate Update... Applicants: ArcLight Energy Marketing, LLC Description: ArcLight Energy Marketing, LLC Notice of Non-Material... filings, the notices of self-certification [or self-recertification] listed above, do not institute a...
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.
1985-01-01
The physics governing the applicability and limitations of gas tungsten arc (GTA), electron beam (EB), and laser beam (LB) welding are compared. An appendix on the selection of laser welding systems is included.
75 FR 71112 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-22
...: ArcLight Energy Marketing, LLC, Oak Creek Wind Power, LLC, Coso Geothermal Power Holdings, LLC.... Applicants: ArcLight Energy Marketing, LLC, Oak Creek Wind Power, LLC, Coso Geothermal Power Holdings, LLC... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 1 November 15...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Yong Chae; Sanderson, Samuel; Mahoney, Murray
Friction stir welding (FSW) has recently attracted attention as an alternative construction process for gas/oil transportation applications due to advantages compared to fusion welding techniques. A significant advantage is the ability of FSW to weld the entire or nearly the entire wall thickness in a single pass, while fusion welding requires multiple passes. However, when FSW is applied to a pipe or tube geometry, an internal back support anvil is required to resist the plunging forces exerted during FSW. Unfortunately, it may not be convenient or economical to use internal backing support due to limited access for some applications. Tomore » overcome this issue, ExxonMobil recently developed a new concept, combining root arc welding and FSW. That is, a root arc weld is made prior to FSW that supports the normal loads associated with FSW. In the present work, mechanical properties of a FSW + root arc welded pipe steel are reported including microstructure and microhardness.« less
NASA Astrophysics Data System (ADS)
Kang, Namhyun
The objective of the present work was to investigate effects of gravitational (acceleration) level and orientation on Ni 200 alloy (99.5% Ni purity), 304 stainless steel, and Al-4 wt.% Cu alloy during gas tungsten arc welding (GTAW) and laser beam welding (LBW). Main characterization was focused on the weld pool shape, microstructure, and solute distribution as a function of gravitational level and orientation. The welds were divided into two classes, i.e., 'stable' and 'unstable' welds, in view of the variation of weld pool shape as a function of gravitational level and orientation. In general, higher arc current and translational GTAW produced more significant effects of gravitational orientation on the weld pool shape than the case of lower arc current and spot welding. Cross-sectional area (CSA) was a secondary factor in determining the stability of weld pool shape. For the 'stable' weld of 304 stainless steel GTAW, the II-U weld showed less convexity in the pool bottom and more depression of the free surface, therefore producing deeper penetration (10--20%) than the case of II-D weld. The II-D weld of 304 stainless steel showed 31% deeper penetration, 28% narrower width, and more hemispherical shape of the weld pool than the case of II-U weld. For GTAW on 304 stainless steel, gravitational level variation from low gravity (LG ≈ 1.2 go) to high gravity (HG ≈ 1.8 go) caused 10% increase in width and 10% decrease in depth while maintaining the overall weld pool volume. Furthermore, LBW on 304 stainless steels showed mostly constant shape of weld pool as a function of gravitational orientation. GTAW on Ni showed similar trends of weld pool shape compared with GTAW on 304 stainless steel, i.e., the weld pool became unstable by showing more penetration in the II-D weld for slower arc translational velocity (V a) and larger weld pool size. However, the Ni weld pool shape had greater stability of the weld pool shape with respect to the gravitational orientation than the case of 304 stainless steel, i.e., higher current boundary and no humping. Regardless of the gravitational level, the ferrite content and the distribution of the solutes (Cr and Ni) remained constant for GTAW on 304 stainless steel. However, for GTAW on Al-4 wt.% Cu alloys, the gravitational orientation changed the weld pool shape associated with convection flows. In summary, gravity influenced the weld pool shape that was associated with convection flows and weld surface deformation for specific welding conditions. The variation of convection flows and weld pool shape played a role in modifying VS and GL. Solidification orientation and morphology were affected because VS and GL were changed as a function of gravity. Studies of gravity on the welding process are expected to play a significant role in the space-station construction and circumferential pipe welding on the earth. (Abstract shortened by UMI.)
The Neutral Gas Desorption and Breakdown on a Metal-Dielectric Junction Immersed in a Plasma
NASA Technical Reports Server (NTRS)
Vayner, Boris; Galofaro, Joel; Ferguson, Dale; Lyons, Valerie J. (Technical Monitor)
2002-01-01
New results are presented of an experimental study and theoretical analysis of arcing on metal-dielectric junctions immersed in a low-density plasma. Two samples of conventional solar arrays have been used to investigate the effects of arcing within a wide range of neutral gas pressures, ion currents, and electron number densities. All data (except video) were obtained in digital form that allowed us to study the correlation between external parameters (plasma density, additional capacitance, bias voltage, etc) and arc characteristics (arc rate, arc current pulse width and amplitude, gas species partial pressures, intensities of spectral lines, and so on). Arc sites were determined by employing a video-camera, and it is shown that the most probable sites for arc inception are trip le-junctions, even though some arcs were initiated in gaps between cells. The effect of surface conditioning (decrease of arc rate due to outgassing) was clearly demonstrated. Moreover, a considerable increase in arc rate due to absorption of molecules from atmospheric air has been confirmed. The analysis of optical spectra (240-800 nm) reveals intense narrow atomic lines (Ag, H) and wide molecular bands (OH, CH, SiH, SiN) that confirm a complicated mechanism of arc plasma generation. The rate of plasma contamination due to arcing was measured by employing a mass-spectrometer. These measurements provided quite reliable data for the development of a theoretical model of plasma contamination, In conclusion, the arc threshold was increased to above 350 V (from 190 V) by keeping a sample in vacuum (20 micronTorr) for seven days. The results obtained are important for the understanding of the arc inception mechanism, which is absolutely essential for progress toward the design of high voltage solar arrays for space applications.
Confinement time exceeding one second for a toroidal electron plasma.
Marler, J P; Stoneking, M R
2008-04-18
Nearly steady-state electron plasmas are trapped in a toroidal magnetic field for the first time. We report the first results from a new toroidal electron plasma experiment, the Lawrence Non-neutral Torus II, in which electron densities on the order of 10(7) cm(-3) are trapped in a 270-degree toroidal arc (670 G toroidal magnetic field) by application of trapping potentials to segments of a conducting shell. The total charge inferred from measurements of the frequency of the m=1 diocotron mode is observed to decay on a 3 s time scale, a time scale that approaches the predicted limit due to magnetic pumping transport. Three seconds represents approximately equal to 10(5) periods of the lowest frequency plasma mode, indicating that nearly steady-state conditions are achieved.
Quasiparticle interference of Fermi arc states in the type-II Weyl semimetal candidate WT e2
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Yang, Xing; Peng, Lang; Wang, Zhi-Jun; Li, Jian; Yi, Chang-Jiang; Xian, Jing-Jing; Shi, You-Guo; Fu, Ying-Shuang
2018-04-01
Weyl semimetals possess linear dispersions through pairs of Weyl nodes in three-dimensional momentum spaces, whose hallmark arclike surface states are connected to Weyl nodes with different chirality. WT e2 was recently predicted to be a new type of Weyl semimetal. Here, we study the quasiparticle interference (QPI) of its Fermi arc surface states by combined spectroscopic-imaging scanning tunneling spectroscopy and density functional theory calculations. We observed the electron scattering on two types of WT e2 surfaces unambiguously. Its scattering signal can be ascribed mainly to trivial surface states. We also address the QPI feature of nontrivial surface states from theoretical calculations. The experimental QPI patterns show some features that are likely related to the nontrivial Fermi arc states, whose existence is, however, not conclusive. Our study provides an indispensable clue for studying the Weyl semimetal phase in WT e2 .
Revealing Fermi arcs and Weyl nodes in MoTe2 by quasiparticle interference mapping
NASA Astrophysics Data System (ADS)
Deng, Peng; Xu, Zhilin; Deng, Ke; Zhang, Kenan; Wu, Yang; Zhang, Haijun; Zhou, Shuyun; Chen, Xi
2017-06-01
A Weyl semimetal exhibits unique properties with Weyl nodes in the bulk and Fermi arcs on the surface. Recently, MoTe2 was found to be a type-II Weyl semimetal, providing a platform for realizing these Weyl physics. Here, we report visualization of topological surface states on the surface of MoTe2 using a scanning tunneling microscope. Scattering between topological states forms quasiparticle interference (QPI) patterns in the Fourier transform of conductance maps. The complete existence of topological surface states in energy momentum space is revealed by d I /d V mapping. By comparing QPI results with a first-principles calculation, we further unveil the locations of Weyl nodes in the surface Brillouin zone. Our work provides spectroscopic information in the unoccupied states, especially those around the Weyl nodes energy, demonstrating the node-arc correlation in Weyl semimetals.
NASA Astrophysics Data System (ADS)
Samajpati, E.; Hickey-Vargas, R.
2017-12-01
The Kyushu-Palau Ridge (KPR) is a remnant of the early Izu-Bonin-Mariana (IBM) island arc, separated by arc rifting and seafloor spreading. We examine and compare volcanic materials from two sites where the transition from IBM arc building to rifting is well sampled: DSDP Site 296 on the northern KPR crest, and recent IODP Site U1438 in the adjacent Amami-Sankaku basin to the west. The purpose of the study is to understand the origin and depositional regime of volcaniclastic sediments during the arc rifting stage. Site 1438 sedimentary Unit II and the upper part of Unit III (300 and 453 mbsf) correlate in time with sedimentary Units 1G and 2 of DSDP Site 296 (160 and 300 mbsf). The upper part of Site U1438 Unit III and Site 296 Unit 2 consist of early to late Oligocene coarse volcaniclastic sedimentary rocks. These are overlain by late Oligocene nannofossil chalks with volcanic sand and ash-rich layers at Site 296 Unit 1G, and tuffaceous silt, sand, siltstone and sandstone at Site 1438 Unit II. The chemical composition of volcanic glass shards, pyroxenes with melt inclusions and amphiboles separated from volcaniclastic sediments were analyzed by EPMA and LA-ICPMS. Glasses are found at Site 296 only, range from medium-K basalt to rhyolite and have trace element patterns typical of arc volcanics. Clinopyroxene and orthopyroxene are found as detrital grains in sediments from both sites. Mg-numbers range from 58 to 94. Interestingly, the alumina content of pyroxene grain populations from both sites increase and then decrease with decreasing Mg-number. This probably reflects control of Al contents in magma and pyroxene by suppressed plagioclase saturation, which apparently was a consistent feature of KPR volcanoes. Melt-inclusions within the pyroxenes are typically small (30-50 microns) and have similar chemical compositions within one grain. The melt inclusions range from basalt to rhyolite with moderate alkali content. Amphibole is more prevalent in late Oligocene sequences and is mainly magnesiohornblende, with some more alkali-rich grains. Mantle normalized trace element patterns of the amphiboles show depletion in LREE and HFSE (Nb, Zr and Hf) and flat MREE and HREE. Downcore mineralogical and geochemical changes at these sites will be interpreted in the context of arc evolution.
Wang, Peng; Fang, Weining; Guo, Beiyuan
2017-04-01
This paper proposed a colored petri nets based workload evaluation model. A formal interpretation of workload was firstly introduced based on the process that reflection of petri nets components to task. A petri net based description of Multiple Resources theory was given by comprehending it from a new angle. A new application of VACP rating scales named V/A-C-P unit, and the definition of colored transitions were proposed to build a model of task process. The calculation of workload mainly has the following four steps: determine token's initial position and values; calculate the weight of directed arcs on the basis of the rules proposed; calculate workload from different transitions, and correct the influence of repetitive behaviors. Verify experiments were carried out based on Multi-Attribute Task Battery-II software. Our results show that there is a strong correlation between the model values and NASA -Task Load Index scores (r=0.9513). In addition, this method can also distinguish behavior characteristics between different people. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotareva, N.I.; Kuzyakov, Yu.Ya.; Khlystova, A.D.
1986-10-20
The authors have studied the effect of traditional halogenating additives, AgCl, CdF/sub 2/, PTFE and that of an effective additive they have selected, ZnF/sub 2/, on the volatility of impurity elements, viz. tungsten, molybdenum, titanium, and zirconium from nickel (II) oxide, and determined the constants for the average relative volatility of the elements by the method of Kantor and Pungor. The results have been used to lower the limits of detection of the impurities cited in nickel(II) oxide.
NASA Astrophysics Data System (ADS)
Tisdale, M.
2016-12-01
NASA's Atmospheric Science Data Center (ASDC) is operationally using the Esri ArcGIS Platform to improve data discoverability, accessibility and interoperability to meet the diversifying government, private, public and academic communities' driven requirements. The ASDC is actively working to provide their mission essential datasets as ArcGIS Image Services, Open Geospatial Consortium (OGC) Web Mapping Services (WMS), OGC Web Coverage Services (WCS) and leveraging the ArcGIS multidimensional mosaic dataset structure. Science teams and ASDC are utilizing these services, developing applications using the Web AppBuilder for ArcGIS and ArcGIS API for Javascript, and evaluating restructuring their data production and access scripts within the ArcGIS Python Toolbox framework and Geoprocessing service environment. These capabilities yield a greater usage and exposure of ASDC data holdings and provide improved geospatial analytical tools for a mission critical understanding in the areas of the earth's radiation budget, clouds, aerosols, and tropospheric chemistry.
Creating and Sharing Understanding: GEOSS and ArcGIS Online
NASA Astrophysics Data System (ADS)
White, C. E.; Hogeweg, M.; Foust, J.
2014-12-01
The GEOSS program brokers various forms of earth observation data and information via its online platform Discovery and Access Broker (DAB). The platform connects relevant information systems and infrastructures through the world. Esri and the National Research Council of Italy Institute of Atmospheric Pollution Research (CNR-IIA) are building two-way technology between DAB framework and ArcGIS Online using the ArcGIS Online API. Developers will engineer Esri and DAB interfaces and build interoperable web services that connect the two systems. This collaboration makes GEOSS earth observation data and services available to the ArcGIS Online community, and ArcGIS Online a significant part of the GEOSS DAB infrastructure. ArcGIS Online subscribers can discover and access the resources published by GEOSS, use GEOSS data services, and build applications. Making GEOSS content available in ArcGIS Online increases opportunities for scientists in other communities to visualize information in greater context. Moreover, because the platform supports authoritative and crowd-sourcing information, GEOSS members can build networks into other disciplines. This talk will discuss the power of interoperable service architectures that make such a collaboration possible, and the results thus far.
Constraints on the Locations of Volcanic Arcs (August Love Medal Lecture)
NASA Astrophysics Data System (ADS)
England, Philip
2010-05-01
Partial melting of the mantle in subduction zones is a leading mechanism of chemical differentiation of the Earth. Whereas the broad outlines of Earth's other major system of partial melting - the oceanic ridges - seem clear, the greater dynamic and thermodynamic complexities of subduction zones obscure fundamental aspects of the system, in particular the conditions under which melting initiates and the pathways by which the melt travels towards the Earth's surface. The vast majority of studies of these problems rest on interrogation of petrological and/or geochemical data on rocks erupted at the volcanic arcs, but this approach has resulted in the co-existence of mutually incompatible explanations for the locations of the volcanic arcs. An alternative to the complexity of petrological and geochemical argument is to focus on the geometrical simplicity of volcanic arcs. The observations (i) that the fronts to volcanic arcs fit small circles to within about 10 km and (ii) that the depth to the slab beneath the arc fronts correlates negatively with the descent speed of the slab provide a strong clue to the melting processes occurring at depth. Localized release of fluids by reactions taking place near the top of the slab are incapable of explaining this correlation. However, scaling analysis based on the physics of heat transfer in the wedge shows that such a correlation is predicted if the location of the arcs is controlled by a temperature-critical process taking place in the mantle wedge above the slab. Numerical experiments using realistic physical properties for the mantle in subduction zones support the scaling analysis and, when combined with the observed positions of the arcs, strongly imply that the arcs are localized above the places where the mantle wedge reaches a critical temperature of ~1250o-1300oC. Therefore, despite the importance of hydrous fluids for the overall magmatic budget in subduction zones, it is melting in the region above the anhydrous solidus that determines the location of the arcs. Heat carried by magma rising from this region is sufficient to modify the thermal structure of the wedge and determine the pathway through which both wet and dry melts reach the surface.
29 CFR 1910.254 - Arc welding and cutting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... adequate current collecting devices. (v) All ground connections shall be checked to determine that they are mechanically strong and electrically adequate for the required current. (3) Supply connections and conductors... for connection to a portable welding machine. (ii) For individual welding machines, the rated current...
Code of Federal Regulations, 2010 CFR
2010-07-01
... thoroughly dry before welding is performed on them. (ii) Employees in areas not protected from the arc by... against radiant energy. (1) Employees shall be protected from radiant energy eye hazards by spectacles...
Code of Federal Regulations, 2010 CFR
2010-07-01
... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...
Code of Federal Regulations, 2013 CFR
2013-07-01
... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...
Code of Federal Regulations, 2011 CFR
2011-07-01
... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...
Code of Federal Regulations, 2014 CFR
2014-07-01
... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...
Code of Federal Regulations, 2012 CFR
2012-07-01
... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...
Spectrochemical determination of thorium in monazite by the powder-d.c. arc technique
Dutra, C.V.; Murata, K.J.
1954-01-01
Thorium in monazite is determined by a d.c. carbon-arc technique using zirconium as the internal standard. The analytical curve for Th II 2870.413 A??/Zr II 2844-579 A?? is established by means of synthetic standards containing graduated amounts of thoria and 0.500 per cent zirconia in pegmatite base (60 parts quartz, 40 parts microchne, and 1 part ferric oxide). Monazite samples are diluted 14-fold with pegmatite base that contains 0.538 per cent ZrO2, so that the zirconia content of the resulting mixture is also 0.500 per cent. In addition, both the standards and the diluted monazites are mixed with one-half their weight of powdered graphite. Approximately 25 mg of the prepared samples are arced to completion at 15.5 to 17.5 amperes. With the 14-fold dilution employed, the accurate range of the method is 3 to 20 per cent thoria in the original monazite. The coefficient of variation for a single determination is 4 per cent at the 7 per cent thoria level. Tests with synthetic unknowns and chemically analyzed monazites show a maximum error of ??10 per cent of the thoria content. If niobium is substituted for zirconium as the internal standard, there is a loss of precision. Platinum as the internal standard gives results of good precision but introduces a marked sensitivity to matrix effects. ?? 1954.
Johnson, Michaela R.; Clark, Jimmy M.; Dickinson, Ross G.; Sanocki, Chris A.; Tranmer, Andrew W.
2009-01-01
This data set was developed as part of the National Water-Quality Assessment (NAWQA) Program, Nutrient Enrichment Effects Topical (NEET) study. This report is concerned with three of the eight NEET study units distributed across the United States: Ozark Plateaus, Upper Mississippi River Basin, and Upper Snake River Basin, collectively known as Group II of the NEET study. Ninety stream reaches were investigated during 2006-08 in these three study units. Stream segments, with lengths equal to the base-10 logarithm of the basin area, were delineated upstream from the stream reaches through the use of digital orthophoto quarter-quadrangle (DOQQ) imagery. The analysis area for each stream segment was defined by a streamside buffer extending laterally to 250 meters from the stream segment. Delineation of landuse and land-cover (LULC) map units within stream-segment buffers was completed using on-screen digitizing of riparian LULC classes interpreted from the DOQQ. LULC units were classified using a strategy consisting of nine classes. National Wetlands Inventory (NWI) data were used to aid in wetland classification. Longitudinal riparian transects (lines offset from the stream segments) were generated digitally, used to sample the LULC maps, and partitioned in accord with the intersected LULC map-unit types. These longitudinal samples yielded the relative linear extent and sequence of each LULC type within the riparian zone at the segment scale. The resulting areal and linear estimates of LULC extent filled in the spatial-scale gap between the 30-meter resolution of the 1990s National Land Cover Dataset and the reach-level habitat assessment data collected onsite routinely for NAWQA ecological sampling. The resulting data consisted of 12 geospatial data sets: LULC within 25 meters of the stream reach (polygon); LULC within 50 meters of the stream reach (polygon); LULC within 50 meters of the stream segment (polygon); LULC within 100 meters of the stream segment (polygon); LULC within 150 meters of the stream segment (polygon); LULC within 250 meters of the stream segment (polygon); frequency of gaps in woody vegetation at the reach scale (arc); stream reaches (arc); longitudinal LULC transect sample at the reach scale (arc); frequency of gaps in woody vegetation at the segment scale (arc); stream segments (arc); and longitudinal LULC transect sample at the segment scale (arc).
Ultra high resolution stepper motors design, development, performance and application
NASA Technical Reports Server (NTRS)
Moll, H.; Roeckl, G.
1979-01-01
The design and development of stepper motors with steps in the 10 arc sec to 2 arc min range is described. Some of the problem areas, e.g. rotor suspension, tribology aspects and environmental conditions are covered. A summary of achieved test results and the employment in different mechanisms already developed and tested is presented to give some examples of the possible use of this interesting device. Adaptations to military and commercial requirements are proposed and show the wide range of possible applications.
New Methods for Improved Double Circular-Arc Helical Gears
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Lu, Jian
1997-01-01
The authors have extended the application of double circular-arc helical gears for internal gear drives. The geometry of the pinion and gear tooth surfaces has been determined. The influence of errors of alignment on the transmission errors and the shift of the bearing contact have been investigated. Application of a predesigned parabolic function for the reduction of transmission errors was proposed. Methods of grinding of the pinion-gear tooth surfaces by a disk-shaped tool and a grinding worm were proposed.
Onai, M; Etoh, H; Aoki, Y; Shibata, T; Mattei, S; Fujita, S; Hatayama, A; Lettry, J
2016-02-01
Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H(-) production. The modelling results reasonably explains the dependence of the H(-) extraction current on the arc-discharge power in the experiments.
Pulsed metallic-plasma generators.
NASA Technical Reports Server (NTRS)
Gilmour, A. S., Jr.; Lockwood, D. L.
1972-01-01
A pulsed metallic-plasma generator is described which utilizes a vacuum arc as the plasma source. The arc is initiated on the surface of a consumable cathode which can be any electrically conductive material. Ignition is accomplished by using a current pulse to vaporize a portion of a conductive film on the surface of an insulator separating the cathode from the ignition electrode. The film is regenerated during the ensuing arc. Over 100 million ignition cycles have been accomplished by using four 0.125-in. diameter zinc cathodes operating in parallel and high-density aluminum-oxide insulators. Among the applications being investigated for the generator are metal deposition, vacuum pumping, electric propulsion, and high-power dc arc interruption.
Electric Arc and Electrochemical Surface Texturing Technologies
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Snyder, Scott A.
1997-01-01
Surface texturing of conductive materials can readily be accomplished by means of a moving electric arc which produces a plasma from the environmental gases as well as from the vaporized substrate and arc electrode materials. As the arc is forced to move across the substrate surface, a condensate from the plasma re-deposits an extremely rough surface which is intimately mixed and attached to the substrate material. The arc textured surfaces produce greatly enhanced thermal emittance and hold potential for use as high temperature radiator surfaces in space, as well as in systems which use radiative heat dissipation such as computer assisted tomography (CAT) scan systems. Electrochemical texturing of titanium alloys can be accomplished by using sodium chloride solutions along with ultrasonic agitation to produce a random distribution of craters on the surface. The crater size and density can be controlled to produce surface craters appropriately sized for direct bone in-growth of orthopaedic implants. Electric arc texturing and electrochemical texturing techniques, surface properties and potential applications will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Audet, Chantal; Poffenbarger, Brett A.; Chang, Pauling
2011-11-15
Purpose: To evaluate a commercial volumetric modulated arc therapy (VMAT), using multiple noncoplanar arcs, for linac-based cranial radiosurgery, as well as evaluate the combined accuracy of the VMAT dose calculations and delivery. Methods: Twelve patients with cranial lesions of variable size (0.1-29 cc) and two multiple metastases patients were planned (Eclipse RapidArc AAA algorithm, v8.6.15) using VMAT (1-6 noncoplanar arcs), dynamic conformal arc (DCA, {approx}4 arcs), and IMRT (nine static fields). All plans were evaluated according to a conformity index (CI), healthy brain tissue doses and volumes, and the dose to organs at risk. A 2D dose distribution was measuredmore » (Varian Novalis Tx, HD120 MLC, 1000 MU/min, 6 MV beam) for the {approx}4 arc VMAT treatment plans using calibrated film dosimetry. Results: The CI (0-1 best) average for all plans was best for {approx}4 noncoplanar arc VMAT at 0.86 compared with {approx}0.78 for IMRT and a single arc VMAT and 0.68 for DCA. The volumes of healthy brain receiving 50% of the prescribed target coverage dose or more (V{sub 50%}) were lowest for the four arc VMAT [RA(4)] and DCA plans. The average ratio of the V{sub 50%} for the other plans to the RA(4) V{sub 50%} were 1.9 for a single noncoplanar arc VMAT [RA(1nc)], 1.4 for single full coplanar arc VMAT [RA(1f)] and 1.3 for IMRT. The V{sub 50%} improved significantly for single isocenter multiple metastases plan when two noncoplanar VMAT arcs were added to a full single coplanar one. The maximum dose to 5 cc of the outer 1 cm rim of healthy brain which one may want to keep below nonconsequential doses of 300-400 cGy, was 2-3 times greater for IMRT, RA(1nc) and RA(1f) plans compared with the multiple noncoplanar arc DCA and RA(4) techniques. Organs at risk near (0-4 mm) to targets were best spared by (i) single noncoplanar arcs when the targets are lateral to the organ at risk and (ii) by skewed nonvertical planes of IMRT fields when the targets are not lateral to the organ at risk. The highest dose gradient observed between an organ at risk and a target at the edge of a VMAT arc plane or plane of IMRT fields was 17%/mm. The average absolute percent difference between the measured and calculated central axis dose for all the VMAT plans was 3.6 {+-} 2.2%. The measured perpendicular profile widths and shifts were on average within 0.5 mm of planned values. The average total MUs for VMAT plans was double the DCA average and similar to the IMRT average. Conclusions: For the aforementioned planning and delivery system and cranial lesions greater than 7 mm in diameter, multiple noncoplanar arc VMAT consistently provides accurate and high quality cranial radiosurgery dose distributions with low doses to healthy brain tissue and high dose conformity to the target. These qualities may make multiple noncoplanar arc VMAT suitable for a greater range of prescription doses or larger and more irregular lesions. For smaller and/or rounder lesions there are other clinically acceptable treatment techniques that may involve fewer couch angles or arcs and reduce treatment times.« less
Developing an Acquisition Strategy for the Colombian Navy’s New Strategic Surface Ships
2007-06-01
37 Departamento Nacional de Planeacion (2006), “Visión Colombia II Centenario: 2019.” Retrieved 14 May 2007 from http...40 Jefatura Oficina Planeacion A.R.C. (July 2006), Plan de Desarrollo 2007–2010, conference presented at Dirección General Marítima, Bogota...Departamento Nacional de Planeacion (2006). “Visión Colombia II Centenario: 2019”. Retrieved 14 May 2007 from http://www.dnp.gov.co/paginas_detalle.aspx?idp=888
A Novel Arc Fault Detector for Early Detection of Electrical Fires
Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang
2016-01-01
Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618
Integrated arc suppression unit for defect reduction in PVD applications
NASA Astrophysics Data System (ADS)
Li, Jason; Narasimhan, Murali K.; Pavate, Vikram; Loo, David; Rosenblum, Steve; Trubell, Larry; Scholl, Richard; Seamons, Scott; Hagerty, Chris; Ramaswami, Sesh
1997-09-01
Arcing between the target and plasma during PVD deposition causes substantial damage to the target and splats and other contamination on the deposited films. Arc-related damages and defects are frequently encountered in microelectronics manufacturing and contributes largely to reduced wafer yields. Arcing is caused largely by the charge buildup at the contaminated sites on the target surface that contains either nonconducting inclusions or nodules. Arc suppression is a key issue for defect reduction, yield improvement and for reliable high quality metallization. An Integrated Arc Suppression Unit (IASU) has been designed for Endura HP PVDTM sputtering sources. The integrated design reduces cable length from unit to source and reduces electrical energy stored in the cable. Active arc handling mode, proactive arc prevention mode, and passive by-pass arc counting mode are incorporated into the same unit. The active mode is designed to quickly respond to chamber conditions, like a large chamber voltage drop, that signals a arc. The self run mode is designed to proactively prevent arc formation by pulsing and reversing target voltage at 50 kHz. The design of the IASU, also called mini small package arc repression circuit--low energy unit (mini Sparc-le), has been optimized for various DC magnetron sources, plasma stability, chamber impedance, power matching, CE MARK test, and power dissipation. Process characterization with Ti, TiN and Al sputtering indicates that the unit has little adverse impact on film properties. Mini Sparc-le unit has been shown here to significantly reduce splats occurrence in Al sputtering. Marathon test of the unit with Ti/TiN test demonstrated the unit's reliability and its ability to reduce sensitivity of defects to target characteristics.
SU-E-T-125: Application of Jaw-Tracking Function in VMAT for Upper Thoracic Esophageal Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W; Chen, J; Zhai, T
2015-06-15
Purpose: To explore the effect of the Jaw-tracking with RapidArc(JT-RapidArc) plans for upper thoracic esophageal cancer. Methods: Treatment planning was designed by using RapidArc and JT-RapidArc techniques for 11 consecutive patients. The dose-volume histogram parameters of PTV and the organs at risk(OAR), conformity index(CI), heterogeneity index(HI), low dose volume of normal tissue(B-P) and monitor units(MUs) were compared between the different techniques. Results: JT-RapidArc plans provided the better coverage of PTV1(64) D98 and HI(P<0.05), lower MLD, D2 of PTV1(64) and PTV2(54), but no statistically difference in CI(P>0.05), which comparison with RapidArc plans. Plans with JT- RapidArc had lower Lung of V5,more » V10, V13, V20, V30, MLD(P<0.05); heart of V20, MLD(P<0.05); and B-P of V5, V10, V15, V20, V30(P<0.05); but no significantly different in Spinal cord and SC-PRV as compared with RapidArc plans. JT-RapidArc plans increaseed the MUs by 1%(P>0.05) as compared with RapidArc plans. Conclusion: All of the plans had met the requirements of clinical dosimetry. JT-RapidArc plans as compared with RapidArc plans, showing better part of target coverage, part of OARS(lung and heart) and heart and B-P sparing, which MUs was slightly increased. This work was sponsored by Shantou University Medical College Clinical Research Enhancement Initiative(NO.201424)« less
Space telescope phase B definition study. Volume 2A: Science instruments, f24 field camera
NASA Technical Reports Server (NTRS)
Grosso, R. P.; Mccarthy, D. J.
1976-01-01
The analysis and design of the F/24 field camera for the space telescope are discussed. The camera was designed for application to the radial bay of the optical telescope assembly and has an on axis field of view of 3 arc-minutes by 3 arc-minutes.
An Evaluation of Former Soviet Union Welding Processes on Commercially Pure Titanium
2001-12-01
welding (GTAW), gas metal arc welding ( GMAW ), and plasma arc welding (PAW) being the most widely used techniques. Of these, the GTAW process is much...quality welds, is free of the spatter that may occur with GMAW , and can be used with or without filler material, depending on the specific application
UCam: universal camera controller and data acquisition system
NASA Astrophysics Data System (ADS)
McLay, S. A.; Bezawada, N. N.; Atkinson, D. C.; Ives, D. J.
2010-07-01
This paper describes the software architecture and design concepts used in the UKATC's generic camera control and data acquisition software system (UCam) which was originally developed for use with the ARC controller hardware. The ARC detector control electronics are developed by Astronomical Research Cameras (ARC), of San Diego, USA. UCam provides an alternative software solution programmed in C/C++ and python that runs on a real-time Linux operating system to achieve critical speed performance for high time resolution instrumentation. UCam is a server based application that can be accessed remotely and easily integrated as part of a larger instrument control system. It comes with a user friendly client application interface that has several features including a FITS header editor and support for interfacing with network devices. Support is also provided for writing automated scripts in python or as text files. UCam has an application centric design where custom applications for different types of detectors and read out modes can be developed, downloaded and executed on the ARC controller. The built-in de-multiplexer can be easily reconfigured to readout any number of channels for almost any type of detector. It also provides support for numerous sampling modes such as CDS, FOWLER, NDR and threshold limited NDR. UCam has been developed over several years for use on many instruments such as the Wide Field Infra Red Camera (WFCAM) at UKIRT in Hawaii, the mid-IR imager/spectrometer UIST and is also used on instruments at SUBARU, Gemini and Palomar.
Development of arcjet and ion propulsion for spacecraft stationkeeping
NASA Technical Reports Server (NTRS)
Sovey, James S.; Curran, Francis M.; Haag, Thomas W.; Patterson, Michael J.; Pencil, Eric J.; Rawlin, Vincent K.; Sankovic, John M.
1992-01-01
Near term flight applications of arc jet and ion thruster satellite station-keeping systems as well as development activities in Europe, Japan, and the United States are reviewed. At least two arc jet and three ion propulsion flights are scheduled during the 1992-1995 period. Ground demonstration technology programs are focusing on the development of kW-class hydrazine and ammonia arc jets and xenon ion thrusters. Recent work at NASA LeRC on electric thruster and system integration technologies relating to satellite station keeping and repositioning will also be summarized.
Temperature-driven Topological Phase Transition in MoTe2
NASA Astrophysics Data System (ADS)
Notis Berger, Ayelet; Andrade, Erick; Kerelsky, Alex; Cheong, Sang-Wook; Li, Jian; Bernevig, B. Andrei; Pasupathy, Abhay
The discovery of several candidates predicted to be weyl semimetals has made it possible to experimentally study weyl fermions and their exotic properties. One example is MoTe2, a transition metal dichalcogenide. At temperatures below 240 K it is predicted to be a type II Weyl semimetal with four Weyl points close to the fermi level. As with most weyl semimetals, the complicated band structure causes difficulty in distinguishing features related to bulk states and those related to topological fermi arc surface states characteristic of weyl semimetals. MoTe2 is unique because of its temperature-driven phase change. At high temperatures, MoTe2 is monoclinic, with trivial surface states. When cooled below 240K, it undergoes a first order phase transition to become an orthorhombic weyl semimetal with topologically protected fermi arc surface states. We present STM and STS measurements on MoTe2 crystals in both states. In the orthorhombic phase, we observe scattering that is consistent with the presence of the Fermi-arc surface states. Upon warming into the monoclinic phase, these features disappear in the observed interference patterns, providing direct evidence of the topological nature of the fermi arcs in the Weyl phase
Cold starting of fluorescent lamps - part II: experiments on glow times and electrode damaging
NASA Astrophysics Data System (ADS)
Langer, Reinhard; Paul, Irina; Hilscher, Achim; Horn, Siegfried; Tidecks, Reinhard
2017-01-01
In the present work we present experiments on cold start and the resulting electrode damaging (reducing lamp life) of AC driven fluorescent lamps. The crucial parameter is the glow time, determined from time resolved measurements of lamp voltage and current. The relation between the energy consumed during glow phase and the glow time is studied. It turns out that there is no common threshold of energy until the glow-to-arc transition takes place, but strong energy input into the lamp yields short glow times. The transient behaviour from the glow to the arc regime is investigated and the stable operation points of the arc discharge are determined, yielding an arc discharge voltage-current characteristics of the lamp type investigated. The electrode damage is investigated as a function of the open source voltage and the ballast resistance. Subsequent cold starts lead to an increase of the glow time due to electrode damaging, i.e., the electrode damage accumulates. Different regeneration procedures and their effectiveness are compared. Regeneration burning turns out to be more effective than heating up the electrode. A criterion for avoiding high electrode damage is obtained, indicating that the average power during glow time should exceed 20 W.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keum,J.; Burger, C.; Zuo, F.
2007-01-01
By utilizing synchrotron rheo-WAXD (wide-angle X-ray diffraction) and rheo-SAXS (small-angle X-ray scattering) techniques, the nucleation and growth behavior of twisted kebabs from the shear-induced shish scaffold in entangled high-density polyethylene (HDPE) melts were investigated. The evolution of the (110) reflection intensity in WAXD at the early stages of crystallization could be described by a simplified Avrami equation, while the corresponding long period of kebabs determined by SAXS was found to decrease with time. The combined SAXS and WAXD results indicate that the kebab growth in sheared HDPE melts consists of two-dimensional geometry with thermal (sporadic) nucleation. The WAXD data clearlymore » exhibited the transformations of (110) reflection from equatorial 2-arc to off-axis 4-arc and of (200) reflection from off-axis 4-arc to meridional 2-arc, which can be explained by the rotation of crystallographic a-axis around the b-axis during twisted kebab growth. This observation is also consistent with the orientation mode changes from 'Keller/Machin II' to 'intermediate' and then to 'Keller/Machin I'.« less
Arcing time analysis of liquid nitrogen with respect to electrode materials
NASA Astrophysics Data System (ADS)
Junaid, Muhammad; Yang, Kun; Ge, Hanming; Wang, Jianhua
2018-03-01
Unlike sulphur hexafluoride (SF6), liquid nitrogen (LN2) is cost effective, environment friendly and cryogenic dielectric. It has astounding insulating properties with the potential to decrease power loss in switchgear applications due to its remarkably low temperatures. The basic research is however a necessity to observe the performance of LN2 subjected to high luminance arcs. So far, there are no findings that refer to the arcing time inside the LN2 environment. The objective of this work was to investigate the arcing times in LN2 and compare the results with open air conditions using different electrode materials. Experiments were conducted on different DC voltages and their arcing times were measured. Three different kinds of electrode materials, namely: pure copper (Cu), stainless used steel (SUS) and aluminium alloy (Al 6061) were tested under 1 atmospheric pressure. The results revealed that LN2 extinguishes arc in almost half the amount of time required by the open air insulation. With Al 6061 has the shortest arcing time, whilst Cu, the second best choice and SUS places last in the evaluation. It was encapsulated from the findings that LN2 is a better choice than air insulation in terms of arc quenching and a better alternative to SF6 when environment is the priority.
Kumbuloglu, Ovul; Özcan, Mutlu
2015-06-01
This prospective clinical study evaluated the performance of indirect, anterior, surface-retained, fibre-reinforced-composite restorations (ISFRCR). Between June-2003 and January-2011, a total of 134 patients (83 females, 51 males, 16-68 years old) received 175 ISFRCRs (local ethical registration number: 14/9/4). All restorations were made indirectly on a plaster model using unidirectional E-glass fibres (everStick C&B, StickTech) in combination with a laboratory resin composite (Dialogue, Schütz Dental) and cemented according to the instructions of 4 resin cements [(RelyX ARC, 3M-ESPE, n=61), Bifix DC, VOCO, n=45), Variolink II (Ivoclar Vivadent, n=32) and Multilink (Ivoclar Vivadent, n=37)]. After baseline recordings, patients were followed at 6 months and thereafter annually up to 7.5 years. The evaluation protocol involved technical (chipping, debonding or fracture of tooth/restoration) and biological failures (caries). Mean observation period was 58 months. Altogether, 13 failures were observed [survival rate: 97.7%] (Kaplan-Meier). One catastrophic fracture [(cement: RelyX ARC), eight partial debonding (cement: Bifix DC (5), Multilink (1), RelyX ARC (1), Variolink II (1)] and four delaminations of veneering composite [(cement: Bifix DC (2), RelyX ARC (1), Multilink (1)] were observed. Except one replacement, all defective restorations were repaired or recemented. Annual failure rate of ISFRCRs was 1.73%. The survival rates with the four resin cements did not show significant differences (RelyX ARC: 98.3%; Bifix DC: 93.5%; Variolink 2: 100%; Multilink: 100%) (p=0.114). Secondary caries did not occur in any of the teeth. The 3-unit anterior indirect surface-retained resin-bonded FRC FDPs showed similar clinical survival rate when cemented with the resin cements tested. Experienced failures in general were due to debonding of the restoration or delamination of the veneering composite. 3-unit surface retained resin-bonded FRC FDPs could be considered minimal invasive and cost-effective alternatives to conventional tooth- or implant-borne FDPs. Failures were mainly repairable in the form of chipping or debonding depending on the resin cement type. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, B; Lu, J; Chen, J
2014-06-15
Purpose: The full arcs strategy used in SBRT with RapidArc and unflattened (FFF) beams in large and heterogeneous peripheral non-smallcell lung cancer (NSCLC) appears to be suboptimal as it increases the disadvantageous dose to the contralateral lung, which potentially increases the toxicity to surrounding tissues. In this study, we investigated, for the first time, the dose delivery strategies using partial arcs (PA) and the fully rotational arcs with avoidance sectors (FAAS) for SBRT with FFF beams in peripheral NSCLC patients. Methods: Eighteen patients with NSCLC (stage I and II) were selected for this study. Nine patients with a GTV <=more » 10cc were designated as the small tumor group. The remaining nine patients with a GTV between 10 cc and 44 cc were assigned to the large tumor group. The treatment plans were generated in eighteen patients using PA and FAAS, respectively, and delivered with a Varian TrueBeam Linac. Dosimetry of the target and organs at risk (OAR), total MU, out-of-field dose, and delivery time were analyzed. Delta4 and Portal dosimetry were employed to evaluate the delivery accuracy. Results: or the small tumor group, the FAAS plans significantly achieved a better conformity index, the lower total MU and out-of-field dose, a shorter treatment time, and the reduced doses to cord, heart, and lung (p < 0.05). But the target doses were slightly higher than that delivered by PA plans. For the large tumor group, the PA plans significantly attained a better conformity index and a shorter treatment time (p < 0.05). Furthermore, all plans achieved a high pass rate, with all the gamma indices greater than 97% at the Γ{sub 3mm,} {sub 3%} threshold. Conclusion: This study suggests that FAAS strategy is more beneficial for small tumor patients undergoing lung SBRT with FFF beams. However, for large tumor patients, PA strategy is recommended. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship.« less
Driven motion and instability of an atmospheric pressure arc
NASA Astrophysics Data System (ADS)
Karasik, Max
Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental are furnace is constructed and operated in air with graphite cathode and steel anode at currents 100--250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes. Experiments are carried out on the response of the are to applied transverse DC and AC (up to ≈1 kHz) magnetic fields. The arc is found to deflect parabolically for DC field and assumes a growing sinusoidal structure for AC field. A simple analytic two-parameter fluid model of the are dynamics is derived, in which the inertia of the magnetically pumped cathode jet balances the applied J⃗xB⃗ force. Time variation of the applied field allows evaluation of the parameters individually. A fit of the model to the experimental data gives a value for the average jet speed an order of magnitude below Maecker's estimate of the maximum jet speed. A spontaneous instability of the same arc is investigated experimentally and modeled analytically. The presence of the instability is found to depend critically on cathode dimensions. For cylindrical cathodes, instability occurs only for a narrow range of cathode diameters. Cathode spot motion is proposed as the mechanism of the instability. A simple fluid model combining the effect of the cathode spot motion and the inertia of the cathode jet successfully describes the arc shape during low amplitude instability. The amplitude of cathode spot motion required by the model is in agreement with measurements. The average jet velocity required is approximately equal to that inferred from the transverse magnetic field experiments. Reasons for spot motion and for cathode geometry dependence are discussed. An exploratory study of the instability of the arc in applied axial magnetic field is also described. Applicability of the results of the thesis to an industrial steelmaking furnace is considered.
Application and study of land-reclaim based on Arc/Info
NASA Astrophysics Data System (ADS)
Zhao, Jun; Zhang, Ruiju; Wang, Zhian; Li, Shiyong
2005-10-01
This paper firstly puts forward the evaluation models of land-reclaim, which is derived from the thoery of Fuzzy associative memory nerve network and corresponding supplemental CASE tools, based on the model the mode of land reclaim can determined, and then the elements of land-reclaim are displayed and synthesized visually and virtually by virtue of Arc/Info software. In the process of land reclaim, it is particularly important to build the model of land-reclaim and to map the distribution of soil elements. In this way rational and feasible schemes are adopted in order to instruct the project of land reclaim. This thesis mainly takes the fourth mining area of East Beach as an example and puts this model into practice. Based on Arc/Info software the application of land-reclaim is studied and good results are achieved.
High voltage AC plasma torches with long electric arcs for plasma-chemical applications
NASA Astrophysics Data System (ADS)
Surov, A. V.; Popov, S. D.; Serba, E. O.; Pavlov, A. V.; Nakonechny, Gh V.; Spodobin, V. A.; Nikonov, A. V.; Subbotin, D. I.; Borovskoy, A. M.
2017-04-01
Powerful AC plasma torches are in demand for a number of advanced plasma chemical applications, they can provide high enthalpy of the working gas. IEE RAS specialists have developed a number of models of stationary thermal plasma torches for continuous operation on air with the power from 5 to 500 kW, and on mixture of H2O, CO2 and CH4 up to 150 kW. AC plasma torches were tested on the pilot plasmachemical installations. Powerful AC plasma torch with hollow electrodes and the gas vortex stabilization of arc in cylindrical channels and its operation characteristics are presented. Lifetime of its continuous operation on air is 2000 hours and thermal efficiency is about 92%, the electric arc length between two electrodes of the plasma torch exceeds 2 m.
Properties of the welded joints of manganese steel made by low-frequency pulsed arc welding
NASA Astrophysics Data System (ADS)
Saraev, Yu. N.; Bezborodov, V. P.; Gladovskii, S. V.; Golikov, N. I.
2017-04-01
The structure, the mechanical properties, the impact toughness, and the fracture mechanisms of the welded joints made of steel 09G2S plates by direct current welding and pulsed arc welding with a modulated arc current in the frequency range 0.25-5.0 Hz are studied. The application of low-frequency pulsed arc welding allowed us to form welded joints with a fine-grained structure in the weld metal and the heat-affected zone and to achieve a higher impact toughness and a longer cyclic fatigue life as compared to the welded joints fabricated by direct current welding. The achieved effect manifests itself over the entire testing range from 20 to-60°C.
Note: Triggering behavior of a vacuum arc plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan, C. H., E-mail: lanchaohui@163.com; Long, J. D.; Zheng, L.
2016-08-15
Axial symmetry of discharge is very important for application of vacuum arc plasma. It is discovered that the triggering method is a significant factor that would influence the symmetry of arc discharge at the final stable stage. Using high-speed multiframe photography, the transition processes from cathode-trigger discharge to cathode-anode discharge were observed. It is shown that the performances of the two triggering methods investigated are quite different. Arc discharge triggered by independent electric source can be stabilized at the center of anode grid, but it is difficult to achieve such good symmetry through resistance triggering. It is also found thatmore » the triggering process is highly correlated to the behavior of emitted electrons.« less
Distribution of Argon Arc Contaminated with Nitrogen as Function of Frequency in Pulsed TIG Welding
NASA Astrophysics Data System (ADS)
Takahashi, Hiroki; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru
2016-09-01
TIG arc welding is the high-quality and much applicable material joining technology. However, the current has to be small because the cathode melting should be prevented. In this case, the heat input to the welding pool becomes low, then, the welding defect sometimes occurs. The pulsed TIG arc welding is used to improve this disadvantage This welding can be controlled by some current parameters such as frequency However, few report has reported the distribution of argon arc contaminated with nitrogen It is important to prevent the contamination of nitrogen because the melting depth increases in order to prevent the welding defects. In this paper, the distribution of argon arc contaminated as function of frequency with nitrogen in pulsed TIG welding is elucidated. The nitrogen concentration, the radial flow velocity, the arc temperature were calculated using the EMTF simulation when the time reached at the base current. As a result, the nitrogen concentration into the arc became low with increasing the frequency The diffusion coefficient decreased because of the decrement of temperature over 4000 K. In this case, the nitrogen concentration became low near the anode. Therefore, the nitrogen concentration became low because the frequency is high.
Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions
Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim
2016-01-01
Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands. We find that, as opposed to nontopological states, the Fermi arc wave function is weakly affected by the surface potential: it spreads rather uniformly within the unit cell and penetrates deeper into the bulk. Fermi arcs reside predominantly on tantalum sites, from which the topological bulk bands are derived. Furthermore, we identify a correspondence between the Fermi arc dispersion and the energy and momentum of the bulk Weyl nodes that classify this material as topological. We obtain these results by introducing an analysis based on the role the Bloch wave function has in shaping quantum electronic interference patterns. It thus carries broader applicability to the study of other electronic systems and other physical processes. PMID:27551687
IRAS 18153-1651: an H II region with a possible wind bubble blown by a young main-sequence B star
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Mackey, J.; Kniazev, A. Y.; Langer, N.; Chené, A.-N.; Castro, N.; Haworth, T. J.; Grebel, E. K.
2017-04-01
We report the results of spectroscopic observations and numerical modelling of the H II region IRAS 18153-1651. Our study was motivated by the discovery of an optical arc and two main-sequence stars of spectral type B1 and B3 near the centre of IRAS 18153-1651. We interpret the arc as the edge of the wind bubble (blown by the B1 star), whose brightness is enhanced by the interaction with a photoevaporation flow from a nearby molecular cloud. This interpretation implies that we deal with a unique case of a young massive star (the most massive member of a recently formed low-mass star cluster) caught just tens of thousands of years after its stellar wind has begun to blow a bubble into the surrounding dense medium. Our 2D, radiation-hydrodynamics simulations of the wind bubble and the H II region around the B1 star provide a reasonable match to observations, both in terms of morphology and absolute brightness of the optical and mid-infrared emission, and verify the young age of IRAS 18153-1651. Taken together our results strongly suggest that we have revealed the first example of a wind bubble blown by a main-sequence B star.
NASA Astrophysics Data System (ADS)
Crăciun, R. C.; Stanciu, S.; Geantă, V.; Voiculescu, I.; Manole, V.; Gârneţ, I. A.; Alexandru, A.; Cimpoesu, N.; Săndulache, F.
2017-06-01
Abstract Iron based materials still represent a high percentage from metallic materials used in industry, in general, and in automotive industry, in particular. In this case we used a duplex process in order to obtain the FeMnSiAl experimental alloy for a more efficient use of various units. In the first stage iron, manganese, silicon and aluminum were melted and mixed together using arc melting technology and for the second stage the alloy was re-melt for homogeneity in an induction furnace. Chemical composition, after each melting step, was analyzed using EDS Bruker detector for various areas and microstructural characterization using SEM, VegaTescan LMH II with SE detector, equipment. This alloy is proposed as a metallic approach of mechanical dumpers used in automotive industry for low and medium impact contacts.
Quasiparticle scattering in type-II Weyl semimetal MoTe2
NASA Astrophysics Data System (ADS)
Lin, Chun-Liang; Arafune, Ryuichi; Minamitani, Emi; Kawai, Maki; Takagi, Noriaki
2018-03-01
The electronic structure of type-II Weyl semimetal molybdenum ditelluride (MoTe2) is studied by using scanning tunneling microscopy and density functional theory calculations. Through measuring energy-dependent quasiparticle interference (QPI) patterns with a cryogenic scanning tunneling microscope, several characteristic features are found in the QPI patterns. Two of them arise from the Weyl semimetal nature; one is the topological Fermi arc surface state and the other can be assigned to be a Weyl point. The remaining structures are derived from the scatterings relevant to the bulk electronic states. The findings lead to further understanding of the topological electronic structure of type-II Weyl semimetal MoTe2.
Quasiparticle scattering in type-II Weyl semimetal MoTe2.
Lin, Chun-Liang; Arafune, Ryuichi; Minamitani, Emi; Kawai, Maki; Takagi, Noriaki
2018-02-15
The electronic structure of type-II Weyl semimetal molybdenum ditelluride (MoTe 2 ) is studied by using scanning tunneling microscopy and density functional theory calculations. Through measuring energy-dependent quasiparticle interference (QPI) patterns with a cryogenic scanning tunneling microscope, several characteristic features are found in the QPI patterns. Two of them arise from the Weyl semimetal nature; one is the topological Fermi arc surface state and the other can be assigned to be a Weyl point. The remaining structures are derived from the scatterings relevant to the bulk electronic states. The findings lead to further understanding of the topological electronic structure of type-II Weyl semimetal MoTe 2 .
ERIC Educational Resources Information Center
Espy, John; Selleck, Ben
This second in a series of ten modules for a course titled Welding Inspection describes the key features of the oxyacetylene and shielded metal arc welding process. The apparatus, process techniques, procedures, applications, associated defects, and inspections are presented. The module follows a typical format that includes the following…
DIY visualizations: opportunities for story-telling with esri tools
Charles H. Perry; Barry T. Wilson
2015-01-01
The Forest Service and Esri recently entered into a partnership: (1) to distribute FIA and other Forest Service data with the public and stakeholders through ArcGIS Online, and (2) to facilitate the application of the ArcGIS platform within the Forest Service to develop forest management and landscape management plans, and support their scientific research activities....
Plasma-Arc Torch For Welding Ducts In Place
NASA Technical Reports Server (NTRS)
Gangl, Kenneth J.; Bayless, Ernest; Looney, Alan
1991-01-01
Plasma-arc-welding torch redesigned, more suitable for applications in which moved in circular or other orbits about stationary cylindrical workpieces. Preserves elements of original design critical to performance and endurance, but modifies other elements to decrease overall size of torch. Electrode collet and collet nut installed and removed through hole in top; makes installation and removal easier.
Arc tracking of cables for space applications
NASA Technical Reports Server (NTRS)
Koenig, D.; Frontzek, F. R.; Hanson, J.; Reher, H. J.; Judd, M. D.; Bryant, D.
1995-01-01
The main objective of this study is to develop a new test method that is suitable for the assessment of the resistance of aerospace cables to arc tracking for different specific environmental and network conditions of spacecrafts. This paper reports the purpose, test conditions, test specimen, test procedure, and test acceptance criteria of seven different (200-250 mm long) cables.
Methods for georectification and spectral scaling of remote imagery using ArcView, ArcGIS, and ENVI
USDA-ARS?s Scientific Manuscript database
Remote sensing images can be used to support variable-rate (VR) application of material from aircraft. Geographic coordinates must be assigned to an image (georeferenced) so that the variable-rate system can determine where in the field to apply these inputs and adjust the system when a zone has bee...
Methods for Georeferencing and Spectral Scaling of Remote Imagery using ArcView, ArcGIS, and ENVI
USDA-ARS?s Scientific Manuscript database
Remote sensing images can be used to support variable-rate (VR) application of material from aircraft. Geographic coordinates must be assigned to an image (georeferenced) so that the variable-rate system can determine where in the field to apply these inputs and adjust the system when a zone has bee...
Method for removal of phosgene from boron trichloride. [DOE patent application; mercury arc lamp
Freund, S.M.
1981-09-03
Selective ultraviolet photolysis using an unfiltered mercury arc lamp has been used to substantially reduce the phosgene impurity in a mixture of boron trichloride and phosgene. Infrared spectrophotometric analysis of the sample before and after irradiation shows that it is possible to highly purify commercially available boron trichloride with this method.
Analytical Modeling of Weld Bead Shape in Dry Hyperbaric GMAW Using Ar-He Chamber Gas Mixtures
NASA Astrophysics Data System (ADS)
Azar, Amin S.; Ås, Sigmund K.; Akselsen, Odd M.
2013-03-01
Hyperbaric arc welding is a special application of joining the pipeline steels under seawater. In order to analyze the behavior of the arc under ambient pressure, a model is required to estimate the arc efficiency. A distributed point heat source model was employed. The simulated isotherms were calibrated iteratively to fit the actual bead cross section. Basic gas mixture rules and models were used to calculate the thermal properties of the low-temperature shielding gas under the ambient pressure of 10 bar. Nine bead-on-plate welds were deposited each of which under different Ar-He chamber gas compositions. The well-known correlation between arc efficiency (delivered heat) and the thermal conductivity was established for different gas mixtures. The arc efficiency was considered separately for the transverse and perpendicular heat sources. It was found that assigning single heat efficiency factor for the entire arc, which is usually below unity, causes a noticeable underestimation for the heat transfer in the perpendicular direction and a little overestimation in the transverse direction.
NASA Technical Reports Server (NTRS)
Jaeckel, Louis A.
1989-01-01
To study the problems of encoding visual images for use with a Sparse Distributed Memory (SDM), I consider a specific class of images- those that consist of several pieces, each of which is a line segment or an arc of a circle. This class includes line drawings of characters such as letters of the alphabet. I give a method of representing a segment of an arc by five numbers in a continuous way; that is, similar arcs have similar representations. I also give methods for encoding these numbers as bit strings in an approximately continuous way. The set of possible segments and arcs may be viewed as a five-dimensional manifold M, whose structure is like a Mobious strip. An image, considered to be an unordered set of segments and arcs, is therefore represented by a set of points in M - one for each piece. I then discuss the problem of constructing a preprocessor to find the segments and arcs in these images, although a preprocessor has not been developed. I also describe a possible extension of the representation.
NASA Astrophysics Data System (ADS)
Mo, Zhao-Hua; Luo, Zheng; Huang, Qiang; Deng, Jian-Ping; Wu, Yi-Xian
2018-05-01
Grafting single end-tethered polymer chains on the surface of graphene is a conventional way to modify the surface properties of graphene oxide. However, grafting arc-like macromolecular bridges on graphene surfaces has been barely reported. Herein, a novel arc-like polydimethylsiloxane (PDMS) macromolecular bridges grafted graphene sheets (GO-g-Arc PDMS) was successfully synthesized via a confined interface reaction at 90 °C. Both the hydrophilic α- and ω-amino groups of linear hydrophobic NH2-PDMS-NH2 macromolecular chains rapidly reacted with epoxy and carboxyl groups on the surfaces of graphene oxide in water suspension to form arc-like PDMS macromolecular bridges on graphene sheets. The grafting density of arc-like PDMS bridges on graphene sheets can reach up to 0.80 mmol g-1 or 1.32 arc-like bridges per nm2 by this confined interface reaction. The water contact angle (WCA) of the hybrid membrane could be increased with increasing both the grafting density and content of covalent arc-like bridges architecture. The superhydrophobic hybrid membrane with a WCA of 153.4° was prepared by grinding of the above arc-like PDMS bridges grafted graphene hybrid, dispersing in ethanol and filtrating by organic filter membrane. This superhydrophobic hybrid membrane shows good self-cleaning and complete oil-water separation properties, which provides potential applications in anticontamination coating and oil-water separation. To the best of our knowledge, this is the first report on the synthesis of functional hybrid membranes by grafting arc-like PDMS macromolecular bridges on graphene sheets via a confined interface reaction.
Effect of temporary cements on the shear bond strength of luting cements
FIORI-JÚNIOR, Marco; MATSUMOTO, Wilson; SILVA, Raquel Assed Bezerra; PORTO-NETO, Sizenando Toledo; SILVA, Jaciara Miranda Gomes
2010-01-01
Objective The purpose of this study was to evaluate, by shear bond strength (SBS) testing, the influence of different types of temporary cements on the final cementation using conventional and self-etching resin-based luting cements. Material and Methods Forty human teeth divided in two halves were assigned to 8 groups (n=10): I and V (no temporary cementation); II and VI: Ca(OH)2-based cement; III and VII: zinc oxide (ZO)based cement; IV and VIII: ZO-eugenol (ZOE)-based cement. Final cementation was done with RelyX ARC cement (groups I to IV) and RelyX Unicem cement (groups V to VIII). Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. Results Means were (MPa): I - 3.80 (±1.481); II - 5.24 (±2.297); III - 6.98 (±1.885); IV - 6.54 (±1.459); V - 5.22 (±2.465); VI - 4.48 (±1.705); VII - 6.29 (±2.280); VIII - 2.47 (±2.076). Comparison of the groups that had the same temporary cementation (Groups II and VI; III and VII; IV and VIII) showed statistically significant difference (p<0.001) only between Groups IV and VIII, in which ZOE-based cements were used. The use of either Ca(OH)2 based (Groups II and VI) or ZO-based (Groups III and VII) cements showed no statistically significant difference (p>0.05) for the different luting cements (RelyXTM ARC and RelyXTM Unicem). The groups that had no temporary cementation (Groups I and V) did not differ significantly from each other either (p>0.05). Conclusion When temporary cementation was done with ZO- or ZOE-based cements and final cementation was done with RelyX ARC, there was an increase in the SBS compared to the control. In the groups cemented with RelyX Unicem, however, the use of a ZOE-based temporary cement affected negatively the SBS of the luting agent used for final cementation. PMID:20379679
Mazzola, Rosario; Ricchetti, Francesco; Fiorentino, Alba; Levra, Niccolò Giaj; Fersino, Sergio; Di Paola, Gioacchino; Ruggieri, Ruggero; Alongi, Filippo
2017-06-01
To evaluate the feasibility and clinical preliminary results of weekly cisplatin and volumetric-modulated arc therapy to the pelvis with simultaneous integrated boost to macroscopic disease in a cohort of elderly patients. Inclusion criteria of this prospective study were age ≥70 years, Karnofsky performance status 70 to 100, locally advanced histologically proven squamous cervical carcinoma, and patients unable to undergo brachytherapy. Radiation doses prescribed were 66 Gy to the macroscopic disease and 54 Gy to the pelvic nodes in 30 fractions. Weekly cisplatin dose was 40 mg/mq. A total of 30 patients were recruited. Median follow-up was 32 months (range: 8-48 months). Median age was 72 years (range: 70-84 years). The 3-year overall survival and local control were 93% and 80%, respectively. The median time to progression was 24 months (range: 6-30 months). Analyzing clinical outcome grouping based on the stage of disease, II versus III, the 3-year overall survival was 100% and 85%, respectively. The 3-year local control was 91% for stage II and 67% for stage III. Acute and late toxicities were acceptable without severe events. Weekly cisplatin and volumetric-modulated arc therapy-simultaneous integrated boost for radical treatment of advanced cervical cancer in the current cohort of elderly patients were feasible. Long-term results and prospective randomized trials are advocated.
Mazzola, Rosario; Ricchetti, Francesco; Fiorentino, Alba; Levra, Niccolò Giaj; Fersino, Sergio; Di Paola, Gioacchino; Ruggieri, Ruggero
2016-01-01
Background: To evaluate the feasibility and clinical preliminary results of weekly cisplatin and volumetric-modulated arc therapy to the pelvis with simultaneous integrated boost to macroscopic disease in a cohort of elderly patients. Materials and Methods: Inclusion criteria of this prospective study were age ≥70 years, Karnofsky performance status 70 to 100, locally advanced histologically proven squamous cervical carcinoma, and patients unable to undergo brachytherapy. Radiation doses prescribed were 66 Gy to the macroscopic disease and 54 Gy to the pelvic nodes in 30 fractions. Weekly cisplatin dose was 40 mg/mq. Results: A total of 30 patients were recruited. Median follow-up was 32 months (range: 8-48 months). Median age was 72 years (range: 70-84 years). The 3-year overall survival and local control were 93% and 80%, respectively. The median time to progression was 24 months (range: 6-30 months). Analyzing clinical outcome grouping based on the stage of disease, II versus III, the 3-year overall survival was 100% and 85%, respectively. The 3-year local control was 91% for stage II and 67% for stage III. Acute and late toxicities were acceptable without severe events. Conclusion: Weekly cisplatin and volumetric-modulated arc therapy–simultaneous integrated boost for radical treatment of advanced cervical cancer in the current cohort of elderly patients were feasible. Long-term results and prospective randomized trials are advocated. PMID:27402633
Alexeeva, Svetlana; de Kort, Bart; Sawers, Gary; Hellingwerf, Klaas J.; de Mattos, M. Joost Teixeira
2000-01-01
The capacity of Escherichia coli to adapt its catabolism to prevailing redox conditions resides mainly in three catabolic branch points involving (i) pyruvate formate-lyase (PFL) and the pyruvate dehydrogenase complex (PDHc), (ii) the exclusively fermentative enzymes and those of the Krebs cycle, and (iii) the alternative terminal cytochrome bd and cytochrome bo oxidases. A quantitative analysis of the relative catabolic fluxes through these pathways is presented for steady-state glucose-limited chemostat cultures with controlled oxygen availability ranging from full aerobiosis to complete anaerobiosis. Remarkably, PFL contributed significantly to the catabolic flux under microaerobic conditions and was found to be active simultaneously with PDHc and cytochrome bd oxidase-dependent respiration. The synthesis of PFL and cytochrome bd oxidase was found to be maximal in the lower microaerobic range but not in a ΔArcA mutant, and we conclude that the Arc system is more active with respect to regulation of these two positively regulated operons during microaerobiosis than during anaerobiosis. PMID:10940038
Acoustic Type-II Weyl Nodes from Stacking Dimerized Chains
NASA Astrophysics Data System (ADS)
Yang, Zhaoju; Zhang, Baile
2016-11-01
Lorentz-violating type-II Weyl fermions, which were missed in Weyl's prediction of nowadays classified type-I Weyl fermions in quantum field theory, have recently been proposed in condensed matter systems. The semimetals hosting type-II Weyl fermions offer a rare platform for realizing many exotic physical phenomena that are different from type-I Weyl systems. Here we construct the acoustic version of a type-II Weyl Hamiltonian by stacking one-dimensional dimerized chains of acoustic resonators. This acoustic type-II Weyl system exhibits distinct features in a finite density of states and unique transport properties of Fermi-arc-like surface states. In a certain momentum space direction, the velocity of these surface states is determined by the tilting direction of the type-II Weyl nodes rather than the chirality dictated by the Chern number. Our study also provides an approach of constructing acoustic topological phases at different dimensions with the same building blocks.
Sedimentary architecture of a Plio-Pleistocene proto-back-arc basin: Wanganui Basin, New Zealand
NASA Astrophysics Data System (ADS)
Proust, Jean-Noël; Lamarche, Geoffroy; Nodder, Scott; Kamp, Peter J. J.
2005-11-01
The sedimentary architecture of active margin basins, including back-arc basins, is known only from a few end-members that barely illustrate the natural diversity of such basins. Documenting more of these basins types is the key to refining our understanding of the tectonic evolution of continental margins. This paper documents the sedimentary architecture of an incipient back-arc basin 200 km behind the active Hikurangi subduction margin, North Island, New Zealand. The Wanganui Basin (WB) is a rapidly subsiding, Plio-Pleistocene sedimentary basin located at the southern termination of the extensional back-arc basin of the active Central Volcanic Region (TVZ). The WB is asymmetric with a steep, thrust-faulted, outer (arc-ward) margin and a gentle inner (craton-ward) margin. It contains a 4-km-thick succession of Plio-Pleistocene sediments, mostly lying offshore, composed of shelf platform sediments. It lacks the late molasse-like deposits derived from erosion of a subaerial volcanic arc and basement observed in classical back-arc basins. Detailed seismic stratigraphic interpretations from an extensive offshore seismic reflection data grid show that the sediment fill comprises two basin-scale mega-sequences: (1) a Pliocene (3.8 to 1.35 Ma), sub-parallel, regressive "pre-growth" sequence that overtops the uplifted craton-ward margin above the reverse Taranaki Fault, and (2) a Pleistocene (1.35 Ma to present), divergent, transgressive, "syn-growth" sequence that onlaps: (i) the craton-ward high to the west, and (ii) uplifted basement blocks associated with the high-angle reverse faults of the arc-ward margin to the east. Along strike, the sediments offlap first progressively southward (mega-sequence 1) and then southeastward (mega-sequence 2), with sediment transport funnelled between the craton- and arc-ward highs, towards the Hikurangi Trough through the Cook Strait. The change in offlap direction corresponds to the onset of arc-ward thrust faulting and the rise of the Axial Ranges at ca 1.75 Ma, resulting in 5100-5700 m of differential subsidence across the fault system. Sedimentation has propagated south- to southeast-ward over the last 4 Myrs at the tip of successive back-arc graben, volcanic arcs and the associated thermally uplifted parts of the North Island, following the southward migration of the Hikurangi subduction margin. Subsidence occurred by mantle flow-driven flexure, the result of active down-drag of the lithosphere by locking of the Hikurangi subduction interface and sediment loading. The WB is considered to be a proto-back-arc basin that represents the intermediate stage of evolution of an epicratonic shelf platform, impacted by active margin processes.
73rd American Welding Society annual meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
The volume includes the abstracts of papers presented at the 73rd American Welding Society Annual Meeting. Detailed summaries are given for 118 technical sessions papers discussing computer and control applications in welding, stainless steel, nickel and nickel alloys, weld metal microstructure, shipbuilding, consumables, structural welding, investigations in arc welding and cutting, arc welding processes, weldability testing, piping and tubing, high energy beam welding processes, welding metallurgy of structural steels, new applications, weld metal behavior, NDT certification, aluminum welding, submerged arc welding, modeling studies, resistance welding, friction welding, and safety and health. The 23rd International AWS Brazing and Soldering Conference wasmore » also held during this meeting. The topics presented in 24 papers included recent developments in soldering technology, brazing of stainless steel, brazing of ceramics and nickel material, filler metal developments for torch brazing, and developments in diffusion and induction brazing.« less
Arc4nix: A cross-platform geospatial analytical library for cluster and cloud computing
NASA Astrophysics Data System (ADS)
Tang, Jingyin; Matyas, Corene J.
2018-02-01
Big Data in geospatial technology is a grand challenge for processing capacity. The ability to use a GIS for geospatial analysis on Cloud Computing and High Performance Computing (HPC) clusters has emerged as a new approach to provide feasible solutions. However, users lack the ability to migrate existing research tools to a Cloud Computing or HPC-based environment because of the incompatibility of the market-dominating ArcGIS software stack and Linux operating system. This manuscript details a cross-platform geospatial library "arc4nix" to bridge this gap. Arc4nix provides an application programming interface compatible with ArcGIS and its Python library "arcpy". Arc4nix uses a decoupled client-server architecture that permits geospatial analytical functions to run on the remote server and other functions to run on the native Python environment. It uses functional programming and meta-programming language to dynamically construct Python codes containing actual geospatial calculations, send them to a server and retrieve results. Arc4nix allows users to employ their arcpy-based script in a Cloud Computing and HPC environment with minimal or no modification. It also supports parallelizing tasks using multiple CPU cores and nodes for large-scale analyses. A case study of geospatial processing of a numerical weather model's output shows that arcpy scales linearly in a distributed environment. Arc4nix is open-source software.
Process stability during fiber laser-arc hybrid welding of thick steel plates
NASA Astrophysics Data System (ADS)
Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F. H.
2018-03-01
Thick steel plates are frequently used in shipbuilding, pipelines and other related heavy industries, and are usually joined by arc welding. Deep penetration laser-arc hybrid welding could increase productivity but has not been thoroughly investigated, and is therefore usually limited to applications with medium thickness (5-15 mm) sections. A major concern is process stability, especially when using modern welding consumables such as metal-cored wire and advanced welding equipment. High speed imaging allows direct observation of the process so that process behavior and phenomena can be studied. In this paper, 45 mm thick high strength steel was welded (butt joint double-sided) using the fiber laser-MAG hybrid process utilizing a metal-cored wire without pre-heating. Process stability was monitored under a wide range of welding parameters. It was found that the technique can be used successfully to weld thick sections with appropriate quality when the parameters are optimized. When comparing conventional pulsed and the more advanced cold metal transfer pulse (CMT+P) arc modes, it was found that both can provide high quality welds. CMT+P arc mode can provide more stable droplet transfer over a limited range of travel speeds. At higher travel speeds, an unstable metal transfer mechanism was observed. Comparing leading arc and trailing arc arrangements, the leading arc configuration can provide higher quality welds and more stable processing at longer inter-distances between the heat sources.
Development of a 20 mA negative hydrogen ion source for cyclotrons
NASA Astrophysics Data System (ADS)
Etoh, H.; Onai, M.; Arakawa, Y.; Aoki, Y.; Mitsubori, H.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Yajima, S.; Hatayama, A.; Okumura, Y.
2017-08-01
A cesiated DC negative ion source has been developed for proton cyclotrons in medical applications. A continuous H- beam of 23 mA was stably extracted at an arc power of 3 kW. The beam current gradually decreases with a constant arc power and without additional Cs injection and the decay rate was about 0.03 mA (0.14%) per hour. A feed-back control system that automatically adjusts the arc power to stabilize the beam current is able to keep the beam current constant at ±0.04 mA (±0.2%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onai, M., E-mail: onai@ppl.appi.keio.ac.jp; Fujita, S.; Hatayama, A.
2016-02-15
Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H{sup −} production. The modelling results reasonably explains the dependence of the H{sup −} extraction current on the arc-discharge powermore » in the experiments.« less
High-bandwidth continuous-flow arc furnace
Hardt, David E.; Lee, Steven G.
1996-01-01
A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.
High-bandwidth continuous-flow arc furnace
Hardt, D.E.; Lee, S.G.
1996-08-06
A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.
NASA Astrophysics Data System (ADS)
Micheuz, Peter; Quandt, Dennis; Kurz, Walter
2017-04-01
International Ocean Discovery Program (IODP) expeditions 352 and 351 drilled through oceanic crust of the Philippine Sea plate. The two study areas are located near the outer Izu-Bonin-Mariana (IBM) fore arc and in the Amami Sankaku Basin. The primary objective was to improve our understanding of supra-subduction zones (SSZ) and the process of subduction initiation. The recovered drill cores during IODP expedition 352 represent approximately 50 Ma old fore arc basalts (FAB) and boninites revealing an entire volcanic sequence of a SSZ. Expedition 351 drilled FAB like oceanic crust similar in age to the FABs of expedition 352. In this study we present data on vein microstructures, geochemical data and isotopic signatures of vein precipitates to give new insights into fluid flow and precipitation processes and deformation within the Izu-Bonin fore arc. Veins formed predominantly as a consequence of hydrofracturing resulting in the occurrence of branched vein systems and brecciated samples. Along these hydrofractures the amount of altered host rock fragments varies and locally alters the host rock completely to zeolites and carbonates. Subordinately extensional veins released after the formation of the host rocks. Cross-cutting relationships of different vein types point to multiple fracturing events subsequently filled with minerals originating from a fluid with isotopic seawater signature. Based on vein precipitates, their morphology and their growth patterns four vein types have been defined. Major vein components are (Mg-) calcite and various zeolites determined by Raman spectra and electron microprobe analyses. Zeolites result from alteration of volcanic glass during interaction with a seawaterlike fluid. Type I veins which are characterized by micritic infill represent neptunian dykes. They predominantly occur in the upper levels of drill cores being the result of an initial volume change subsequently to crystallization of the host rocks. Type II veins are characterized by blocky carbonates and idiomorphic to blocky zeolites. Blocky carbonates locally exhibit zonation patterns. Type III and type IV veins are both assumed to be extensional veins. Type III is characterized by syntaxial growth and elongate blocky carbonate minerals. They predominantly occur as asymmetric syntaxial veins, locally exhibiting more than one crack-seal event. Type IV veins are defined as antitaxial fibrous carbonates. Type II veins commonly show deformation microstructures like twinning (type I/II twins), slightly curved twins, and subgrain boundaries indicative of incipient plastic deformation. Based on these observations differential stresses around 50 MPa were needed to deform vein minerals, presumably related to IBM fore arc extension due to the retreat of the subducted Pacific plate. We acknowledge financial support by the Austrian Research Fund (P27982-N29) to W. Kurz
On measurement of the isotropy of the speed of light
Wojtsekhowski, B.
2014-10-22
Three experimental concepts investigating possible anisotropy of the speed of light are presented. They are based on i) beam deflection in a 180° magnetic arc, ii) narrow resonance production in an electron-positron collider, and iii) the ratio of magnetic moments of an electron and a positron moving in opposite directions.
Discovery of a New Classical Nova Shell Around a Nova-like Cataclysmic Variable
NASA Astrophysics Data System (ADS)
Guerrero, Martín A.; Sabin, Laurence; Tovmassian, Gagik; Santamaría, Edgar; Michel, Raul; Ramos-Larios, Gerardo; Alarie, Alexandre; Morisset, Christophe; Bermúdez Bustamante, Luis C.; González, Chantal P.; Wright, Nicholas J.
2018-04-01
The morphology and optical spectrum of IPHASX J210204.7+471015, a nebula classified as a possible planetary nebula are, however, strikingly similar to those of AT Cnc, a classical nova shell around a dwarf nova. To investigate its true nature, we have obtained high-resolution narrowband [O III] and [N II] images and deep optical spectra. The nebula shows an arc of [N II]-bright knots notably enriched in nitrogen, while an [O III]-bright bow shock is progressing throughout the ISM. Diagnostic line ratios indicate that shocks are associated with the arc and bow shock. The central star of this nebula has been identified by its photometric variability. Time-resolved photometric and spectroscopic data of this source reveal a period of 4.26 hr, which is attributed to a binary system. The optical spectrum is notably similar to that of RW Sex, a cataclysmic variable star (CV) of the UX UMa nova-like (NL) type. Based on these results, we propose that IPHASX J210204.7 + 471015 is a classical nova shell observed around a CV-NL system in quiescence.
Evaluation of a new VMAT QA device, or the "X" and "O" array geometries.
Feygelman, Vladimir; Zhang, Geoffrey; Stevens, Craig; Nelms, Benjamin E
2011-01-31
We introduce a logical process of three distinct phases to begin the evaluation of a new 3D dosimetry array. The array under investigation is a hollow cylinder phantom with diode detectors fixed in a helical shell forming an "O" axial detector cross section (ArcCHECK), with comparisons drawn to a previously studied 3D array with diodes fixed in two crossing planes forming an "X" axial cross section (Delta⁴). Phase I testing of the ArcCHECK establishes: robust relative calibration (response equalization) of the individual detectors, minor field size dependency of response not present in a 2D predecessor, and uncorrected angular response dependence in the axial plane. Phase II testing reveals vast differences between the two devices when studying fixed-width full circle arcs. These differences are primarily due to arc discretization by the TPS that produces low passing rates for the peripheral detectors of the ArcCHECK, but high passing rates for the Delta⁴. Similar, although less pronounced, effects are seen for the test VMAT plans modeled after the AAPM TG119 report. The very different 3D detector locations of the two devices, along with the knock-on effect of different percent normalization strategies, prove that the analysis results from the devices are distinct and noninterchangeable; they are truly measuring different things. The value of what each device measures, namely their correlation with--or ability to predict--clinically relevant errors in calculation and/or delivery of dose is the subject of future Phase III work.
ERIC Educational Resources Information Center
Angelo, Thomas A.
2017-01-01
This chapter applies John Keller's MVP model and, specifically, adapts the ARCS-V components of that model--defined and described in Chapter 1 of this issue of "New Directions for Teaching and Learning"--as a frame for exploring practical, research-based assessment, and feedback strategies and tools teachers can use to help students…
The WC-130 Meteorological System and Its Utilization in Operational Weather Reconnaissance.
1980-08-01
wather reconnais)arc, Jiiesir)n!. Tt,-’ ql i t! \\.: t ,,h, wilt. it’ mphasis: on operator manual rrouction ot primary ’idta (usiri; l.nAr ii ’u" f.x-r...variou.: customer: . ,ome of the, assessments have providrd the basin for planned systen improvement.’ or ptox.:,,l, for totally ne%. wather reconnaissance...1Ua:"n ,- ar1, taken. Also, the, numl)er )f oixrational squadron!- anmi the nulber f wather r ,,cici airriaft iav,, hbeen rejuc’r ii; tru, :,cil ie, t
Stereoacuity of preschool children with and without vision disorders.
Ciner, Elise B; Ying, Gui-Shuang; Kulp, Marjean Taylor; Maguire, Maureen G; Quinn, Graham E; Orel-Bixler, Deborah; Cyert, Lynn A; Moore, Bruce; Huang, Jiayan
2014-03-01
To evaluate associations between stereoacuity and presence, type, and severity of vision disorders in Head Start preschool children and determine testability and levels of stereoacuity by age in children without vision disorders. Stereoacuity of children aged 3 to 5 years (n = 2898) participating in the Vision in Preschoolers (VIP) Study was evaluated using the Stereo Smile II test during a comprehensive vision examination. This test uses a two-alternative forced-choice paradigm with four stereoacuity levels (480 to 60 seconds of arc). Children were classified by the presence (n = 871) or absence (n = 2027) of VIP Study-targeted vision disorders (amblyopia, strabismus, significant refractive error, or unexplained reduced visual acuity), including type and severity. Median stereoacuity between groups and among severity levels of vision disorders was compared using Wilcoxon rank sum and Kruskal-Wallis tests. Testability and stereoacuity levels were determined for children without VIP Study-targeted disorders overall and by age. Children with VIP Study-targeted vision disorders had significantly worse median stereoacuity than that of children without vision disorders (120 vs. 60 seconds of arc, p < 0.001). Children with the most severe vision disorders had worse stereoacuity than that of children with milder disorders (median 480 vs. 120 seconds of arc, p < 0.001). Among children without vision disorders, testability was 99.6% overall, increasing with age to 100% for 5-year-olds (p = 0.002). Most of the children without vision disorders (88%) had stereoacuity at the two best disparities (60 or 120 seconds of arc); the percentage increasing with age (82% for 3-, 89% for 4-, and 92% for 5-year-olds; p < 0.001). The presence of any VIP Study-targeted vision disorder was associated with significantly worse stereoacuity in preschool children. Severe vision disorders were more likely associated with poorer stereopsis than milder or no vision disorders. Testability was excellent at all ages. These results support the validity of the Stereo Smile II for assessing random-dot stereoacuity in preschool children.
The Exact Art and Subtle Science of DC Smelting: Practical Perspectives on the Hot Zone
NASA Astrophysics Data System (ADS)
Geldenhuys, Isabel J.
2017-02-01
Increasingly, sustainable smelting requires technology that can process metallurgically complex, low-grade, ultra-fine and waste materials. It is likely that more applications for direct current (DC) technology will inevitably follow in the future as DC open-arc furnaces have some wonderful features that facilitate processing of a variety of materials in an open-arc open-bath configuration. A DC open-arc furnace allows for optimization and choice of chemistry to benefit the process, rather than being constrained by the electrical or physical properties of the material. In a DC configuration, the power is typically supplied by an open arc, providing relative independence and thus an extra degree of freedom. However, if the inherent features of the technology are misunderstood, much of the potential may never be realised. It is thus important to take cognisance of the freedom an operator will have as a result of the open arc and ensure that operating strategies are implemented. This extra degree of freedom hands an operator a very flexible tool, namely virtually unlimited power. Successful open-arc smelting is about properly managing the balance between power and feed, and practical perspectives on the importance of power and feed balance are presented to highlight this aspect as the foundation of proper open-arc furnace control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Chengyu, E-mail: shicy1974@yahoo.com; Chen, Yong; Fang, Deborah
2015-04-01
Liver stereotactic body radiation therapy (SBRT) is a feasible treatment method for the nonoperable, patient with early-stage liver cancer. Treatment planning for the SBRT is very important and has to consider the simulation accuracy, planning time, treatment efficiency effects etc. The modified dynamic conformal arc (MDCA) technique is a 3-dimensional conformal arc planning method, which has been proposed for liver SBRT planning at our center. In this study, we compared the MDCA technique with the RapidArc technique in terms of planning target volume (PTV) coverage and sparing of organs at risk (OARs). The results show that the MDCA technique hasmore » comparable plan quality to RapidArc considering PTV coverage, hot spots, heterogeneity index, and effective liver volume. For the 5 PTVs studied among 4 patients, the MDCA plan, when compared with the RapidArc plan, showed 9% more hot spots, more heterogeneity effect, more sparing of OARs, and lower liver effective volume. The monitor unit (MU) number for the MDCA plan is much lower than for the RapidArc plans. The MDCA plan has the advantages of less planning time, no-collision treatment, and a lower MU number.« less
A neural network gravitational arc finder based on the Mediatrix filamentation method
NASA Astrophysics Data System (ADS)
Bom, C. R.; Makler, M.; Albuquerque, M. P.; Brandt, C. H.
2017-01-01
Context. Automated arc detection methods are needed to scan the ongoing and next-generation wide-field imaging surveys, which are expected to contain thousands of strong lensing systems. Arc finders are also required for a quantitative comparison between predictions and observations of arc abundance. Several algorithms have been proposed to this end, but machine learning methods have remained as a relatively unexplored step in the arc finding process. Aims: In this work we introduce a new arc finder based on pattern recognition, which uses a set of morphological measurements that are derived from the Mediatrix filamentation method as entries to an artificial neural network (ANN). We show a full example of the application of the arc finder, first training and validating the ANN on simulated arcs and then applying the code on four Hubble Space Telescope (HST) images of strong lensing systems. Methods: The simulated arcs use simple prescriptions for the lens and the source, while mimicking HST observational conditions. We also consider a sample of objects from HST images with no arcs in the training of the ANN classification. We use the training and validation process to determine a suitable set of ANN configurations, including the combination of inputs from the Mediatrix method, so as to maximize the completeness while keeping the false positives low. Results: In the simulations the method was able to achieve a completeness of about 90% with respect to the arcs that are input into the ANN after a preselection. However, this completeness drops to 70% on the HST images. The false detections are on the order of 3% of the objects detected in these images. Conclusions: The combination of Mediatrix measurements with an ANN is a promising tool for the pattern-recognition phase of arc finding. More realistic simulations and a larger set of real systems are needed for a better training and assessment of the efficiency of the method.
Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis
Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew
2017-01-01
One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon–plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented. PMID:28336884
Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis.
Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew
2017-02-23
One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon-plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.
A simple 2-D model for the evolution of an island-arc system
NASA Astrophysics Data System (ADS)
Zharinov, S. E.; Demin, S. S.
1990-07-01
Slow seismotectonic movements along inclined deep fault planes under compressive horizontal stresses are supposed to be the principal mechanism controlling the structure and processes in island-arc systems. In order to treat the stress variations caused by this mechanism, a simple geomechanical model is investigated. We consider a shearing surface crack embedded in a homogeneous elastic half-space. The key element of the model is viscous interaction between the sides of the crack, the viscosity varying with depth. The model differs from the classical steady-state mode of subduction by nonstationary creep processes on deep faults and possibly by cyclical evolution of island-arc systems. The results of our numerical analysis are in good agreement with geological, geophysical and seismological data. (i) Vertical displacements of the free surface in the model fit well with the typical topography of a trench—arc-basement rise—back-arc basin system. (ii) The Benioff seismic zone is supposed to be formed due to the concentration of shear stresses near the fault plane. The characteristic patterns of seismicity, the fine geometry of Benioff zones, and their double-planed structure can be explained in terms of our model. (iii) A zone of considerable heat generation caused by viscous dissipation along the fault plane is found within a narrow area in the depth range 100-200 km. Moreover, the island-arc basement rise is characterized in the model by a relative tension of a few tens or even hundreds of bars, while at depths of 100-150 km below the surface, additional compression of the same order of magnitude acts. The magmatic plumbing system may be visualised as a "toothpaste tube" or a sponge filled with magma which is squeezed from the depths to the surface due to the redistribution of the tectonic stresses only. This can explain the physical origin of island-arc magmatism and the typical position of volcanic belts.
NASA Astrophysics Data System (ADS)
Luo, Xiaotao; Smith, Gregory M.; Sampath, Sanjay
2018-02-01
In this two-part study, uniaxial tensile testing was used to evaluate coating/substrate bonding and compared with traditional ASTM C633 bond pull test results for thermal spray (TS) coated steel laminates. In Part I, the rationale, methodology, and applicability of the test to high-velocity TS coatings were demonstrated. In this Part II, the method was investigated for low-velocity TS processes (air plasma spray and arc spray) on equivalent materials. Ni and Ni-5wt.%Al coatings were deposited on steel substrates with three different roughness levels and tested using both uniaxial tensile and ASTM C633 methods. The results indicate the uniaxial tensile approach provides useful information about the nature of the coating/substrate bonding and goes beyond the traditional bond pull test in providing insightful information on the load sharing processes across the interface. Additionally, this proposed methodology alleviates some of the longstanding shortcomings and potentially reduces error associated with the traditional ASTM C633 test. The mechanisms governing the load transfer between the substrate and the coating were investigated, and the influence of Al in the coating material evaluated.
Chandra, Saket; Kazmi, Andaleeb Z; Ahmed, Zainab; Roychowdhury, Gargi; Kumari, Veena; Kumar, Manish; Mukhopadhyay, Kunal
2017-07-01
NB-ARC domain-containing resistance genes from the wheat genome were identified, characterized and localized on chromosome arms that displayed differential yet positive response during incompatible and compatible leaf rust interactions. Wheat (Triticum aestivum L.) is an important cereal crop; however, its production is affected severely by numerous diseases including rusts. An efficient, cost-effective and ecologically viable approach to control pathogens is through host resistance. In wheat, high numbers of resistance loci are present but only few have been identified and cloned. A comprehensive analysis of the NB-ARC-containing genes in complete wheat genome was accomplished in this study. Complete NB-ARC encoding genes were mined from the Ensembl Plants database to predict 604 NB-ARC containing sequences using the HMM approach. Genome-wide analysis of orthologous clusters in the NB-ARC-containing sequences of wheat and other members of the Poaceae family revealed maximum homology with Oryza sativa indica and Brachypodium distachyon. The identification of overlap between orthologous clusters enabled the elucidation of the function and evolution of resistance proteins. The distributions of the NB-ARC domain-containing sequences were found to be balanced among the three wheat sub-genomes. Wheat chromosome arms 4AL and 7BL had the most NB-ARC domain-containing contigs. The spatio-temporal expression profiling studies exemplified the positive role of these genes in resistant and susceptible wheat plants during incompatible and compatible interaction in response to the leaf rust pathogen Puccinia triticina. Two NB-ARC domain-containing sequences were modelled in silico, cloned and sequenced to analyze their fine structures. The data obtained in this study will augment isolation, characterization and application NB-ARC resistance genes in marker-assisted selection based breeding programs for improving rust resistance in wheat.
A review of vacuum ARC ion source research at ANSTO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, P.J.; Noorman, J.T.; Watt, G.C.
1996-08-01
The authors talk briefly describes the history and current status of vacuum arc ion source research at the Australian Nuclear Science and Technology Organization (ANSTO). In addition, the author makes some mention of the important role of previous Vacuum Arc Ion Source Workshops in fostering the development of this research field internationally. During the period 1986 - 89, a type of plasma centrifuge known as a vacuum arc centrifuge was developed at ANSTO as part of a research project on stable isotope separation. In this device, a high current vacuum arc discharge was used to produce a metal plasma whichmore » was subsequently rotated in an axial magnetic field. The high rotational speeds (10{sup 5} - 10{sup 6} rad sec{sup {minus}1}) achievable with this method produce centrifugal separation of ions with different mass:charge ratios such as isotopic species. The first portent of things to come occurred in 1985 when Dr. Ian Brown visited ANSTO`s Lucas Heights Research Laboratories and presented a talk on the metal vapour vacuum arc (MEVVA) ion source which had only recently been invented by Brown and co-workers, J. Galvin and R. MacGill, at Lawrence Berkeley Laboratory. For those of us involved in vacuum arc centrifuge research, this was an exciting development primarily because the metal vapour vacuum arc plasma source was common to both devices. Thus, a type of arc, which had since the 1930`s been extensively investigated as a means of switching high current loads, had found wider application as a useful plasma source.« less
Hertig, C M; Butz, S; Koch, S; Eppenberger-Eberhardt, M; Kemler, R; Eppenberger, H M
1996-01-01
The spatio-temporal appearance and distribution of proteins forming the intercalated disc were investigated in adult rat cardiomyocytes (ARC). The 'redifferentiation model' of ARC involves extensive remodelling of the plasma membrane and of the myofibrillar apparatus. It represents a valuable system to elucidate the formation of cell-cell contact between cardiomyocytes and to assess the mechanisms by which different proteins involved in the cell-cell adhesion process are sorted in a precise manner to the sites of function. Appearance of N-cadherin, the catenins and connexin43 within newly formed adherens and gap junctions was studied. Here first evidence is provided for a formation of two distinct and separable N-cadherin/catenin complexes in cardiomyocytes. Both complexes are composed of N-cadherin and alpha-catenin which bind to either beta-catenin or plakoglobin in a mutually exclusive manner. The two N-cadherin/catenin complexes are assumed to be functionally involved in the formation of cell-cell contacts in ARC; however, the differential appearance and localization of the two types of complexes may also point to a specific role during ARC differentiation. The newly synthesized beta-catenin containing complex is more abundant during the first stages in culture after ARC isolation, while the newly synthesized plakoglobin containing complex progressively accumulates during the morphological changes of ARC. ARC formed a tissue-like pattern in culture whereby the new cell-cell contacts could be dissolved through Ca2+ depletion. Presence of cAMP and replenishment of Ca2+ content in the culture medium not only allowed reformation of cell-cell contacts but also affected the relative protein ratio between the two N-cadherin/catenin complexes, increasing the relative amount of newly synthesized beta-catenin over plakoglobin at a particular stage of ARC differentiation. The clustered N-cadherin/catenin complexes at the plasma membrane appear to be a prerequisite for the following gap junction formation; a temporal sequence of the appearance of adherens junction proteins and of gap junctions forming connexin-43 is suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y; Ozawa, S; Tsegmed, U
2014-06-01
Purpose: To verify volumetric modulated arc therapy (VMAT) using flattening filter free (FFF) mode with jaw tracking (JT) feature for single breath hold as long as 15 s per arc in liver stereotactic body radiation therapy (SBRT) against intensity modulated radiation therapy (IMRT) FFF-JT. Methods: Ten hepatocellular carcinoma (HCC) cases were planned with 10 MV FFF using Pinnacle3 treatment planning system which delivered by TrueBeam to administer 48 Gy/ 4 fractions. Eight non-coplanar beams were assigned to IMRT using step-and-shoot technique. For VMAT, two or three non-coplanar partial arcs (up to 180 degrees) were further divided into subarcs with gantrymore » rotation less than 80 degrees to limit delivery time within 15 s. Dose distributions were verified using OCTAVIUS II system and pass rates were evaluated using gamma analysis with criteria of 3%/3 mm at threshold of 5% to the maximum dose. The actual irradiation time was measured. Results: The VMAT-FFF-JT of partial-arcs with sub-divided arcs was able to produce a highly conformal plan as well as IMRT-FFF-JT. Isodose lines and DVH showed slight improvement in dosimetry when JT was employed for both IMRT and VMAT. Consequently, VMAT-FFF-JT was superior in reducing the dose to liver minus gross tumor volume. VMAT-FFF-JT has shorter total treatment time compared with 3D conformal radiation therapy (3D-CRT) FFF because the gantry was rotated simultaneously with the beam delivery in VMAT. Moreover, due to the small and regular shape of HCC, VMAT-FFF-JT offered less multileaf collimator motion, thus the interplay effect is expected to be reduced. The patient specific QA of IMRT and VMAT acquired the pass rates higher than 90%. Conclusion: VMAT-FFF-JT could be a promising technique for liver SBRT as the sub-divided arcs method was able to accommodate a single breath hold irradiation time of less than 15 s without deterioration of the dose distribution compared with IMRT-FFF-JT.« less
NASA Astrophysics Data System (ADS)
Busby, Cathy; Fackler Adams, Benjamin; Mattinson, James; Deoreo, Stephen
2006-01-01
The Alisitos arc is an approximately 300 × 30 km oceanic arc terrane that lies in the western wall of the Peninsular Ranges batholith south of the modern Agua Blanca fault zone in Baja California. We have completed detailed mapping and dating of a 50 × 30 km segment of this terrane in the El Rosario to Mission San Fernando areas, as well as reconnaissance mapping and dating in the next 50 × 30 km segment to the north, in the San Quintin area. We recognize two evolutionary phases in this part of the arc terrane: (I) extensional oceanic arc, characterized by intermediate to silicic explosive and effusive volcanism, culminating in caldera-forming silicic ignimbrite eruptions at the onset of arc rifting, and (II) rifted oceanic arc, characterized by mafic effusive and hydroclastic rocks and abundant dike swarms. Two types of units are widespread enough to permit tentative stratigraphic correlation across much of this 100-km-long segment of the arc: a welded dacite ignimbrite (tuff of Aguajito), and a deepwater debris-avalanche deposit. New U-Pb zircon data from the volcanic and plutonic rocks of both phases indicate that the entire 4000-m-thick section accumulated in about 1.5 MY, at 111-110 MY. Southwestern North American sources for two zircon grains with Proterozoic 206Pb / 207Pb ages support the interpretation that the oceanic arc fringed North America rather than representing an exotic terrane. The excellent preservation and exposure of the Alistos arc terrane makes it ideal for three-dimensional study of the structural, stratigraphic and intrusive history of an oceanic arc terrane. The segment mapped and dated in detail has a central major subaerial edifice, flanked by a down-faulted deepwater marine basin to the north, and a volcano-bounded shallow-water marine basin to the south. The rugged down-faulted flank of the edifice produced mass wasting, plumbed large-volume eruptions to the surface, and caused pyroclastic flows to disintegrate into turbulent suspensions that mixed completely with water. In contrast, gentler slopes on the opposite flank allowed pyroclastic flows to enter the sea with integrity, and supported extensive buildups of bioherms. Caldera collapse on the major subaerial edifice ponded the tuff of Aguajito to a thickness of at least 3 km. The outflow ignimbrite forms a marker in nonmarine to shallow marine sections, and in deepwater sections it occurs as blocks up to 150 m long in a debris-avalanche deposit. These welded ignimbrite blocks were deposited hot enough to deform plastically and form peperite with the debris-avalanche matrix. The debris avalanche was likely triggered by injection of feeder dikes along the basin-bounding fault zone during the caldera-forming eruption. Intra-arc extension controlled very high subsidence rates, followed shortly thereafter by accretion through back-arc basin closure by 105 Ma. Accretion of the oceanic arc may have been accomplished by detachment of the upper crust along a still hot, thick middle crustal tonalitic layer, during subduction of mafic-ultramafic substrate.
Decomposition of naphthalene by dc gliding arc gas discharge.
Yu, Liang; Li, Xiaodong; Tu, Xin; Wang, Yu; Lu, Shengyong; Yan, Jianhua
2010-01-14
Gliding arc discharge has been proved to be effective in treatment of gas and liquid contaminants. In this study, physical characteristics of dc gliding arc discharge and its application to naphthalene destruction are investigated with different external resistances and carrier gases. The decomposition rate increases with increasing of oxygen concentration and decreases with external resistance. This value can be achieved up to 92.3% at the external resistance of 50 kOmega in the oxygen discharge, while the highest destruction energy efficiency reaches 3.6 g (kW h)(-1) with the external resistance of 93 kOmega. Possible reaction pathways and degradation mechanisms in the plasma with different gases are proposed by qualitative analysis of postdestructed products. In the air and oxygen gliding arc discharges, the naphthalene degradation is mainly governed by reactions with oxygen-derived radicals.
Process Simulation of Gas Metal Arc Welding Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Paul E.
2005-09-06
ARCWELDER is a Windows-based application that simulates gas metal arc welding (GMAW) of steel and aluminum. The software simulates the welding process in an accurate and efficient manner, provides menu items for process parameter selection, and includes a graphical user interface with the option to animate the process. The user enters the base and electrode material, open circuit voltage, wire diameter, wire feed speed, welding speed, and standoff distance. The program computes the size and shape of a square-groove or V-groove weld in the flat position. The program also computes the current, arc voltage, arc length, electrode extension, transfer ofmore » droplets, heat input, filler metal deposition, base metal dilution, and centerline cooling rate, in English or SI units. The simulation may be used to select welding parameters that lead to desired operation conditions.« less
A Hybrid Ant Colony Optimization Algorithm for the Extended Capacitated Arc Routing Problem.
Li-Ning Xing; Rohlfshagen, P; Ying-Wu Chen; Xin Yao
2011-08-01
The capacitated arc routing problem (CARP) is representative of numerous practical applications, and in order to widen its scope, we consider an extended version of this problem that entails both total service time and fixed investment costs. We subsequently propose a hybrid ant colony optimization (ACO) algorithm (HACOA) to solve instances of the extended CARP. This approach is characterized by the exploitation of heuristic information, adaptive parameters, and local optimization techniques: Two kinds of heuristic information, arc cluster information and arc priority information, are obtained continuously from the solutions sampled to guide the subsequent optimization process. The adaptive parameters ease the burden of choosing initial values and facilitate improved and more robust results. Finally, local optimization, based on the two-opt heuristic, is employed to improve the overall performance of the proposed algorithm. The resulting HACOA is tested on four sets of benchmark problems containing a total of 87 instances with up to 140 nodes and 380 arcs. In order to evaluate the effectiveness of the proposed method, some existing capacitated arc routing heuristics are extended to cope with the extended version of this problem; the experimental results indicate that the proposed ACO method outperforms these heuristics.
Antireflection coating on metallic substrates for solar energy and display applications
NASA Astrophysics Data System (ADS)
Hsiao, Wei-Yuan; Tang, Chien-Jen; Lee, Kun-Hsien; Jaing, Cheng-Chung; Kuo, Chien-Cheng; Chen, Hsi-Chao; Chang, Hsing-Hua; Lee, Cheng-Chung
2010-08-01
Normally metallic films are required for solar energy and display related coatings. To increase the absorbing efficiency or contrast, it is necessary to apply an antireflection coating (ARC) on the metal substrate. However, the design of a metal substrate is very different from the design of a dielectric substrate, since the optical constant of metallic thin film is very dependent on its thickness and microstructure. In this study, we design and fabricate ARCs on Al substrates using SiO2 and Nb2O5 as the dielectric materials and Nb for the metal films. The ARC successfully deposited on the Al substrate had the following structure: air/SiO2/Nb2O5/Metal/Nb2O5/Al. The measured average reflectance of the ARC is less than 1% in the visible region. We found that it is better to use a highly refractive material than a low refractive material. The thickness of the metallic film can be thicker with the result that it is easier to control and has a lesser total thickness. The total thickness of the ARC is less than 200 nm. We successfully fabricated a solar absorber and OLED device with the ARC structure were successfully fabricated.
Organic antireflective coatings for 193-nm lithography
NASA Astrophysics Data System (ADS)
Trefonas, Peter, III; Blacksmith, Robert F.; Szmanda, Charles R.; Kavanagh, Robert J.; Adams, Timothy G.; Taylor, Gary N.; Coley, Suzanne; Pohlers, Gerd
1999-06-01
Organic anti-reflective coatings (ARCs) continue to play an important role in semiconductor manufacturing. These materials provide a convenient means of greatly reducing the resist photospeed swing and reflective notching. In this paper, we describe a novel class of ARC materials optimized for lithographic applications using 193 nm exposure tools. These ARCs are based upon polymers containing hydroxyl-alkyl methacrylate monomers for crosslinkable sites, styrene for a chromophore at 193 nm, and additional alkyl-methacrylate monomers as property modifiers. A glycouril crosslinker and a thermally-activated acidic catalyst provide a route to forming an impervious crosslinked film activate data high bake temperatures. ARC compositions can be adjusted to optimize the film's real and imaginary refractive indices. Selection of optimal target indices for 193 nm lithographic processing through simulations is described. Potential chromophores for 193 nm were explored using ZNDO modeling. We show how these theoretical studies were combined with material selection criteria to yield a versatile organic anti-reflectant film, Shipley 193 G0 ARC. Lithographic process data indicates the materials is capable of supporting high resolution patterning, with the line features displaying a sharp resist/ARC interface with low line edge roughness. The resist Eo swing is successfully reduced from 43 percent to 6 percent.
Development of a Catalytic Coating for a Shuttle Flight Experiment
NASA Technical Reports Server (NTRS)
Stewart, David A.; Goekcen, Tahir; Sepka, Steven E.; Leiser, Daniel B.; Rezin, Marc D.
2010-01-01
A spray-on coating was developed for use on the shuttle wing tiles to obtain data that could be correlated with computational fluid dynamics (CFD) solutions to better understand the effect of chemical heating on a fore-body heat shield having a turbulent boundary layer during planetary entry at hypersonic speed. The selection of a spray-on coating was conducted in two Phases 1) screening tests to select the catalytic coating formulation and 2) surface property determination using both arc-jet and side-arm facilities at NASA Ames Research Center. Comparison of the predicted surface temperature profile over a flat-plate with measured values obtained during arc-jet exposure (Phase I study) was used to validate the surface properties obtained during Phase II.
NASA Astrophysics Data System (ADS)
Zöhrer, Siegfried; Anders, André; Franz, Robert
2018-05-01
Cathodic arcs have been utilized in various applications including the deposition of thin films and coatings, ion implantation, and high current switching. Despite substantial progress in recent decades, the physical mechanisms responsible for the observed plasma properties are still a matter of dispute, particularly for multi-element cathodes, which can play an essential role in applications. The analysis of plasma properties is complicated by the generally occurring neutral background of metal atoms, which perturbs initial ion properties. By using a time-resolved method in combination with pulsed arcs and a comprehensive Nb‑Al cathode model system, we investigate the influence of cathode composition on the plasma, while making the influence of neutrals visible for the observed time frame. The results visualize ion detections of 600 μs plasma pulses, extracted 0.27 m from the cathode, resolved in mass-per-charge, energy-per-charge and time. Ion properties are found to be strongly dependent on the cathode material in a way that cannot be deduced by simple linear extrapolation. Subsequently, current hypotheses in cathodic arc physics applying to multi-element cathodes, like the so-called ‘velocity rule’ or the ‘cohesive energy rule’, are tested for early and late stages of the pulse. Apart from their fundamental character, the findings could be useful in optimizing or designing plasma properties for applications, by actively utilizing effects on ion distributions caused by composite cathode materials and charge exchange with neutrals.
ERIC Educational Resources Information Center
Espy, John
This third in a series of ten modules for a course titled Welding Inspection presents the apparatus, process techniques, procedures, applications, associated defects, and inspection for the tungsten inert gas, metal inert gas, and submerged arc welding processes. The module follows a typical format that includes the following sections: (1)…
The Variable Polarity Plasma Arc Welding Process: Its Application to the Space Shuttle External Tank
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.; Bayless, E. O., Jr.; Wilson, W. A.
1984-01-01
This report describes progress in the implementation of the Variable Polarity Plasma Arc Welding (VPPAW) process at the External Tank (ET) assembly facility. Design allowable data has been developed for thicknesses up to 1.00 in. More than 24,000 in. of welding on liquid oxygen and liquid hydrogen cylinders has been made without an internal defect.
Real time computer controlled weld skate
NASA Technical Reports Server (NTRS)
Wall, W. A., Jr.
1977-01-01
A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.
Lidar arc scan uncertainty reduction through scanning geometry optimization
NASA Astrophysics Data System (ADS)
Wang, H.; Barthelmie, R. J.; Pryor, S. C.; Brown, G.
2015-10-01
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation when arc scans are used for wind resource assessment.
Effectiveness of recycling light in ultra-bright short-arc discharge lamps.
Malul, Asher; Nakar, Doron; Feuermann, Daniel; Gordon, Jeffrey M
2007-10-17
Recycling light back into a plasma lamp's radiant zone can enhance its radiance. Measurements are reported for the effectiveness, spectral properties and modified plasma radiance maps that result from light recycling with a specular hemispherical mirror in commercial 150 W ultrabright Xenon short-arc discharge lamps, motivated by projection, biomedical and high-temperature furnace applications. For certain spectral windows and plasma arc regions, radiance can be heightened by up to 70%. However, the overall light recycling efficiency is reduced to about half this value due to lamp geometry. The manner in which light-plasma interactions affect light recycling efficacy is also elucidated.
Extending SQL to Support Privacy Policies
NASA Astrophysics Data System (ADS)
Ghazinour, Kambiz; Pun, Sampson; Majedi, Maryam; Chinaci, Amir H.; Barker, Ken
Increasing concerns over Internet applications that violate user privacy by exploiting (back-end) database vulnerabilities must be addressed to protect both customer privacy and to ensure corporate strategic assets remain trustworthy. This chapter describes an extension onto database catalogues and Structured Query Language (SQL) for supporting privacy in Internet applications, such as in social networks, e-health, e-governmcnt, etc. The idea is to introduce new predicates to SQL commands to capture common privacy requirements, such as purpose, visibility, generalization, and retention for both mandatory and discretionary access control policies. The contribution is that corporations, when creating the underlying databases, will be able to define what their mandatory privacy policies arc with which all application users have to comply. Furthermore, each application user, when providing their own data, will be able to define their own privacy policies with which other users have to comply. The extension is supported with underlying catalogues and algorithms. The experiments demonstrate a very reasonable overhead for the extension. The result is a low-cost mechanism to create new systems that arc privacy aware and also to transform legacy databases to their privacy-preserving equivalents. Although the examples arc from social networks, one can apply the results to data security and user privacy of other enterprises as well.
Wind bubbles within H ii regions around slowly moving stars
NASA Astrophysics Data System (ADS)
Mackey, Jonathan; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert
2015-01-01
Interstellar bubbles around O stars are driven by a combination of the star's wind and ionizing radiation output. The wind contribution is uncertain because the boundary between the wind and interstellar medium is difficult to observe. Mid-infrared observations (e.g., of the H ii region RCW 120) show arcs of dust emission around O stars, contained well within the H ii region bubble. These arcs could indicate the edge of an asymmetric stellar wind bubble, distorted by density gradients and/or stellar motion. We present two-dimensional, radiation-hydrodynamics simulations investigating the evolution of wind bubbles and H ii regions around massive stars moving through a dense (nH = 3000 cm-3), uniform medium with velocities ranging from 4 to 16 km s-1. The H ii region morphology is strongly affected by stellar motion, as expected, but the wind bubble is also very aspherical from birth, even for the lowest space velocity considered. Wind bubbles do not fill their H ii regions (we find filling factors of 10-20 per cent), at least for a main sequence star with mass M⋆ ~ 30 M⊙. Furthermore, even for supersonic velocities the wind bow shock does not significantly trap the ionization front. X-ray emission from the wind bubble is soft, faint, and comes mainly from the turbulent mixing layer between the wind bubble and the H ii region. The wind bubble radiates <1 per cent of its energy in X-rays; it loses most of its energy by turbulent mixing with cooler photoionized gas. Comparison of the simulations with the H ii region RCW 120 shows that its dynamical age is ≲0.4 Myr and that stellar motion ≲4 km s-1 is allowed, implying that the ionizing source is unlikely to be a runaway star but more likely formed in situ. The region's youth, and apparent isolation from other O or B stars, makes it very interesting for studies of massive star formation and of initial mass functions. Movies are available in electronic form at http://www.aanda.org
1980-06-05
N-231 High Reynolds Number Channel II Facility In this timeframe the test section was designed specifically to test two-dimensional airfoil models. It is equipped with 'through-the-wall' turntables that remotely position the airfoil, with flexible upper and lower walls that can be adjusted to minimize wall interference. Porous side-wall panels provide boundary-layer removal.
14 CFR 29.1545 - Airspeed indicator.
Code of Federal Regulations, 2013 CFR
2013-01-01
... markings must be made: (1) A red radial line— (i) For rotorcraft other than helicopters, at VNE; and (ii) For helicopters, at a VNE (power-on). (2) A red, cross-hatched radial line at VNE (power-off) for helicopters, if VNE (power-off) is less than VNE (power-on). (3) For the caution range, a yellow arc. (4) For...
14 CFR 29.1545 - Airspeed indicator.
Code of Federal Regulations, 2012 CFR
2012-01-01
... markings must be made: (1) A red radial line— (i) For rotorcraft other than helicopters, at VNE; and (ii) For helicopters, at a VNE (power-on). (2) A red, cross-hatched radial line at VNE (power-off) for helicopters, if VNE (power-off) is less than VNE (power-on). (3) For the caution range, a yellow arc. (4) For...
14 CFR 29.1545 - Airspeed indicator.
Code of Federal Regulations, 2014 CFR
2014-01-01
... markings must be made: (1) A red radial line— (i) For rotorcraft other than helicopters, at VNE; and (ii) For helicopters, at a VNE (power-on). (2) A red, cross-hatched radial line at VNE (power-off) for helicopters, if VNE (power-off) is less than VNE (power-on). (3) For the caution range, a yellow arc. (4) For...
Winteler, H V; Schneidinger, B; Jaeger, K E; Haas, D
1996-01-01
The anaerobically inducible arcDABC operon encodes the enzymes of the arginine deiminase pathway in Pseudomonas aeruginosa. Upon induction, the arcAB mRNAs and proteins reach high intracellular levels, because of a strong anaerobically controlled promoter and mRNA processing in arcD, leading to stable downstream transcripts. We explored the usefulness of this system for the construction of expression vectors. The lacZ gene of Escherichia coli was expressed to the highest levels when fused close to the arc promoter. Insertion of lacZ further downstream into arcA or arcB did not stabilize the intrinsically unstable lacZ mRNA. On the contrary, lacZ mRNA appeared to be a vulnerable endonuclease target destabilizing arcAB mRNAs in the 5'-to-3' direction in P. aeruginosa. The native arc promoter was modified for optional expression in the -10 sequence and in the -40 region, which is a binding site for the anaerobic regulator ANR. In P. aeruginosa grown either anaerobically or with oxygen limitation in unshaken cultures, this promoter was stronger than the induced tac promoter. The P. aeruginosa lipAH genes, which encode extracellular lipase and lipase foldase, respectively, were fused directly to the modified arc promoter in an IncQ vector plasmid. Semianaerobic static cultures of P. aeruginosa PAO1 carrying this recombinant plasmid overproduced extracellular lipase 30-fold during stationary phase compared with the production by strain PAO1 without the plasmid. Severe oxygen limitation, in contrast, resulted in poor lipase productivity despite effective induction of the ANR-dependent promoter, suggesting that secretion of active lipase is blocked by the absence of oxygen. In conclusion, the modified arc promoter is useful for driving the expression of cloned genes in P. aeruginosa during oxygen-limited growth and stationary phase. PMID:8795231
Sunda-Banda Arc Transition: Marine Multichannel Seismic Profiling
NASA Astrophysics Data System (ADS)
Lueschen, E.; Mueller, C.; Kopp, H.; Djajadihardja, Y.; Ehrhardt, A.; Engels, M.; Lutz, R.; Planert, L.; Shulgin, A.; Working Group, S.
2008-12-01
After the Indian Ocean Mw 9.3 earthquake and tsunami on December 26, 2004, intensive research activities focussed on the Sunda Arc subduction system offshore Sumatra. For this area a broad database is now available interpreted in terms of plate segmentation and outer arc high evolution. In contrast, the highly active easternmost part of this subduction system, as indicated by the south of Java Mw 7.7 earthquake and tsunami on July 17, 2006, has remained almost unexplored until recently. During RV SONNE cruise SO190 from October until December 2006 almost 5000 km of marine geophysical profiles have been acquired at the eastern Sunda Arc and the transition to the Banda Arc. The SINDBAD project (Seismic and Geoacoustic Investigations along the Sunda-Banda Arc Transition) comprises 30-fold multichannel reflection seismics with a 3-km streamer, wide-angle OBH/OBS refraction seismics for deep velocity control (see poster of Shulgin et al. in this session), swath bathymetry, sediment echosounder, gravimetric and geomagnetic measurements. We present data and interpretations of several 250-380 km long, prestack depth-migrated seismic sections, perpendicular to the deformation front, based on velocity models from focussing analysis and inversion of OBH/OBS refraction data. We focus on the variability of the lower plate and the tectonic response of the overriding plate in terms of outer arc high formation and evolution, forearc basin development, accretion and erosion processes at the base of the overriding plate. The subducting Indo-Australian Plate is characterized by three segments: i) the Roo Rise with rough topography offshore eastern Java ii) the Argo Abyssal Plain with smooth oceanic crust offshore Bali, Lombok, and Sumbawa, and iii) the Scott Plateau with continental crust colliding with the Banda island arc. The forearc responds to differences in the incoming oceanic plate with the absence of a pronounced forearc basin offshore eastern Java and with development of the 4000 m deep forearc Lombok Basin offshore Bali, Lombok, and Sumbawa. The eastern termination of the Lombok Basin is formed by Sumba Island, which shows evidence for recent uplift, probably associated with the collision of the island arc with the continental Scott Plateau. The Sumba area represents the transition from subduction to collision. Our seismic profiles image the bending of the oceanic crust seaward of the trench and associated normal faulting. Landward of the trench, they image the subducting slab beneath the outer arc high, where the former bending-related normal faults appear to be reactivated as reverse faults introducing vertical displacements in the subducting slab. The accretionary prism and the outer arc high are characterized by an ocean-verging system of imbricate thrust sheets with major thrust faults connecting seafloor and detachment. Compression results in shortening and steepening of the imbricated thrust sheets building up the outer arc high. Tilted piggy-back basins and downlaps of tilted sediments in the southern Lombok forearc basin indicate ongoing uplift of the entire outer arc high, abrupt displacements, and recent tectonic activity.
40 CFR 420.40 - Applicability; description of the steelmaking subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... are applicable to discharges and to the introduction of pollutants into publicly owned treatment works resulting from steelmaking operations conducted in basic oxygen and electric arc furnaces. [67 FR 64267, Oct...
40 CFR 420.40 - Applicability; description of the steelmaking subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... are applicable to discharges and to the introduction of pollutants into publicly owned treatment works resulting from steelmaking operations conducted in basic oxygen and electric arc furnaces. [67 FR 64267, Oct...
40 CFR 420.40 - Applicability; description of the steelmaking subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... are applicable to discharges and to the introduction of pollutants into publicly owned treatment works resulting from steelmaking operations conducted in basic oxygen and electric arc furnaces. [67 FR 64267, Oct...
40 CFR 420.40 - Applicability; description of the steelmaking subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... are applicable to discharges and to the introduction of pollutants into publicly owned treatment works resulting from steelmaking operations conducted in basic oxygen and electric arc furnaces. [67 FR 64267, Oct...
Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance.
Quiñones, Mar; Al-Massadi, Omar; Gallego, Rosalía; Fernø, Johan; Diéguez, Carlos; López, Miguel; Nogueiras, Ruben
2015-12-01
Glucagon receptor antagonists and humanized glucagon antibodies are currently studied as promising therapies for obesity and type II diabetes. Among its variety of actions, glucagon reduces food intake, but the molecular mechanisms mediating this effect as well as glucagon resistance are totally unknown. Glucagon and adenoviral vectors were administered in specific hypothalamic nuclei of lean and diet-induced obese rats. The expression of neuropeptides controlling food intake was performed by in situ hybridization. The regulation of factors of the glucagon signaling pathway was assessed by western blot. The central injection of glucagon decreased feeding through a hypothalamic pathway involving protein kinase A (PKA)/Ca(2+)-calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMP-activated protein kinase (AMPK)-dependent mechanism. More specifically, the central injection of glucagon increases PKA activity and reduces protein levels of CaMKKβ and its downstream target phosphorylated AMPK in the hypothalamic arcuate nucleus (ARC). Consistently, central glucagon significantly decreased AgRP expression. Inhibition of PKA and genetic activation of AMPK in the ARC blocked glucagon-induced anorexia in lean rats. Genetic down-regulation of glucagon receptors in the ARC stimulates fasting-induced hyperphagia. Although glucagon was unable to decrease food intake in DIO rats, glucagon sensitivity was restored after inactivation of CaMKKβ, specifically in the ARC. Thus, glucagon decreases food intake acutely via PKA/CaMKKβ/AMPK dependent pathways in the ARC, and CaMKKβ mediates its obesity-induced hypothalamic resistance. This work reveals the molecular underpinnings by which glucagon controls feeding that may lead to a better understanding of disease states linked to anorexia and cachexia.
A method for predicting optimized processing parameters for surfacing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupont, J.N.; Marder, A.R.
1994-12-31
Welding is used extensively for surfacing applications. To operate a surfacing process efficiently, the variables must be optimized to produce low levels of dilution with the substrate while maintaining high deposition rates. An equation for dilution in terms of the welding variables, thermal efficiency factors, and thermophysical properties of the overlay and substrate was developed by balancing energy and mass terms across the welding arc. To test the validity of the resultant dilution equation, the PAW, GTAW, GMAW, and SAW processes were used to deposit austenitic stainless steel onto carbon steel over a wide range of parameters. Arc efficiency measurementsmore » were conducted using a Seebeck arc welding calorimeter. Melting efficiency was determined based on knowledge of the arc efficiency. Dilution was determined for each set of processing parameters using a quantitative image analysis system. The pertinent equations indicate dilution is a function of arc power (corrected for arc efficiency), filler metal feed rate, melting efficiency, and thermophysical properties of the overlay and substrate. With the aid of the dilution equation, the effect of processing parameters on dilution is presented by a new processing diagram. A new method is proposed for determining dilution from welding variables. Dilution is shown to depend on the arc power, filler metal feed rate, arc and melting efficiency, and the thermophysical properties of the overlay and substrate. Calculated dilution levels were compared with measured values over a large range of processing parameters and good agreement was obtained. The results have been applied to generate a processing diagram which can be used to: (1) predict the maximum deposition rate for a given arc power while maintaining adequate fusion with the substrate, and (2) predict the resultant level of dilution with the substrate.« less
Application of ARC/INFO to regional scale hydrogeologic modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurstner, S.K.; McWethy, G.; Devary, J.L.
1993-05-01
Geographic Information Systems (GIS) can be a useful tool in data preparation for groundwater flow modeling, especially when studying large regional systems. ARC/INFO is being used in conjunction with GRASS to support data preparation for input to the CFEST (Coupled Fluid, Energy, and Solute Transport) groundwater modeling code. Simulations will be performed with CFEST to model three-dimensional, regional, groundwater flow in the West Siberian Basin.
Mirapeix, J; Cobo, A; González, D A; López-Higuera, J M
2007-02-19
A new plasma spectroscopy analysis technique based on the generation of synthetic spectra by means of optimization processes is presented in this paper. The technique has been developed for its application in arc-welding quality assurance. The new approach has been checked through several experimental tests, yielding results in reasonably good agreement with the ones offered by the traditional spectroscopic analysis technique.
NASA Technical Reports Server (NTRS)
Barrientos, Francesca; Castle, Joseph; McIntosh, Dawn; Srivastava, Ashok
2007-01-01
This document presents a preliminary evaluation the utility of the FAA Safety Analytics Thesaurus (SAT) utility in enhancing automated document processing applications under development at NASA Ames Research Center (ARC). Current development efforts at ARC are described, including overviews of the statistical machine learning techniques that have been investigated. An analysis of opportunities for applying thesaurus knowledge to improving algorithm performance is then presented.
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Yan, Jerry
1999-01-01
We present an HPF (High Performance Fortran) implementation of ARC3D code along with the profiling and performance data on SGI Origin 2000. Advantages and limitations of HPF as a parallel programming language for CFD applications are discussed. For achieving good performance results we used the data distributions optimized for implementation of implicit and explicit operators of the solver and boundary conditions. We compare the results with MPI and directive based implementations.
Carbon Coating Of Copper By Arc-Discharge Pyrolysis
NASA Technical Reports Server (NTRS)
Ebihara, Ben T.; Jopek, Stanley
1988-01-01
Adherent, abrasion-resistant coat deposited with existing equipment. Carbon formed and deposited as coating on copper substrate by pyrolysis of hydrocarbon oil in electrical-arc discharges. Technique for producing carbon deposits on copper accomplished with electrical-discharge-machining equipment used for cutting metals. Applications for new coating technique include the following: solar-energy-collecting devices, coating of metals other than copper with carbon, and carburization of metal surfaces.
Archuleta, Christy-Ann M.; Gonzales, Sophia L.; Maltby, David R.
2012-01-01
The U.S. Geological Survey (USGS), in cooperation with the Texas Commission on Environmental Quality, developed computer scripts and applications to automate the delineation of watershed boundaries and compute watershed characteristics for more than 3,000 surface-water-quality monitoring stations in Texas that were active during 2010. Microsoft Visual Basic applications were developed using ArcGIS ArcObjects to format the source input data required to delineate watershed boundaries. Several automated scripts and tools were developed or used to calculate watershed characteristics using Python, Microsoft Visual Basic, and the RivEX tool. Automated methods were augmented by the use of manual methods, including those done using ArcMap software. Watershed boundaries delineated for the monitoring stations are limited to the extent of the Subbasin boundaries in the USGS Watershed Boundary Dataset, which may not include the total watershed boundary from the monitoring station to the headwaters.
In-liquid arc plasma jet and its application to phenol degradation
NASA Astrophysics Data System (ADS)
Liu, Jing-Lin; Park, Hyun-Woo; Hamdan, Ahmad; Cha, Min Suk
2018-03-01
We present a new method for achieving chemical reactions induced by plasmas with liquids—an in-liquid arc plasma jet system—designed to have a few advantages over the existing methods. High-speed imaging and optical emission spectroscopy were adopted to highlight the physical aspects of the in-liquid arc plasma jet system, and the feasibility of the system was investigated in a wastewater treatment case with phenol as the model contaminant. We found that the specific energy input is a reasonable parameter by which to characterize the overall process. The phenol removal reaction could be modeled as a pseudo-first-order reaction, and the reaction constant became smaller as the phenol concentration increased. However, complete decomposition of the phenol into water and carbon dioxide required very high energy because the final intermediate, oxalic acid, is relatively stable. Detailed chemical and physical analyses, including byproducts, ions, solution acidity, and conductivity, were conducted to evaluate this new method for use in the appropriate applications.
Sonenshein, R.S.
1996-01-01
A technique has been developed to determine a wetlands hydroperiod by comparing simulated water levels from a ground-water flow model and land- surface elevation data through a geographic information system. The simulated water levels are compared with the land-surface elevation data to determine the height of the water surface above or below land surface for the area of interest. Finally, the hydroperiod is determined for established time periods using criteria specified by the user. The program application requires the use of geographic information system software (ARC/INFO), including the TIN and GRID subsystems of the software. The application consists of an ANSI compatible C program to translate ground- water data output from the U.S. Geological Survey modular three-dimensional, finite-difference, ground-water flow model (MODFLOW) into a format that can be used as input for the geographic information system programs (AML's). The application uses ARC/INFO AML programs and ARC/INFO menu interface programs to create digital spatial data layers of the land surface and water surface and to determine the hydroperiod. The technique can be used to evaluate and manage wetlands hydrology.
Electroslag Strip Cladding of Steam Generators With Alloy 690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consonni, M.; Maggioni, F.; Brioschi, F.
2006-07-01
The present paper details the results of electroslag cladding and tube-to-tubesheet welding qualification tests conducted by Ansaldo-Camozzi ESC with Alloy 690 (Alloy 52 filler metal) on steel for nuclear power stations' steam generators shell, tubesheet and head; the possibility of submerged arc cladding on first layer was also considered. Test results, in terms of chemical analysis, mechanical properties and microstructure are reproducible and confidently applicable to production cladding and show that electroslag process can be used for Alloy 52 cladding with exceptionally stable and regular operation and high productivity. The application of submerged arc cladding process to the first layermore » leads to a higher base metal dilution, which should be avoided. Moreover, though the heat affected zone is deeper with electroslag cladding, in both cases no coarsened grain zone is found due to recrystallization effect of second cladding layer. Finally, the application of electroslag process to cladding of Alloy 52 with modified chemical composition, was proved to be highly beneficial as it strongly reduces hot cracking sensitivity, which is typical of submerged arc cladded Alloy 52, both during tube-to-tubesheet welding and first re-welding. (authors)« less
Reflex limb dilatation following norepinephrine and angiotensin II in conscious dogs
NASA Technical Reports Server (NTRS)
Vatner, S. F.; Mcritchie, R. J.
1976-01-01
The extent to which norepinephrine (NE) and angiotensin II (AN) constrict the mesenteric, renal, and iliac beds in conscious dogs is evaluated with a view to elicit opposing reflex actions tempering the vasoconstriction in the limb of the animals tested. The afferent and efferent mechanisms mediating this reflex are analyzed. It is shown that intravenous NE and AN cause striking reflex iliac dilatation in the limb of the conscious dog. The afferent arc of this reflex involves both arterial baroreceptor and vagal path-ways, whereas the efferent mechanism involves an interaction of alpha-adrenergic and histaminergic receptors.
Design and construction of a home-made and cheaper argon arc lamp
NASA Astrophysics Data System (ADS)
Sabaeian, Mohammad; Nazari-Tarkarani, Zeinab; Ebrahimzadeh, Azadeh
2018-05-01
The authors report on the design and construction of an argon arc lamp which provides noticeably a cheaper instrument for laser and medical applications. Cesium-doped tungsten and pure tungsten rods were used, respectively, for the lamp cathode and anode. To seal the glassy tube, a 50-50 Fe-Ni alloy was successfully used as a medium to attach the tungsten electrodes to the borosilicate glass tube. Starting voltage of the lamp versus the gas pressure, operation voltage-current diagram at various gas pressures, and lamp spectrum in the various pressures were measured. A comparison was made with krypton arc lamp. The lamp operation was satisfactory without any crack or fracture during lightening operation. The results showed that the lamp-lightening threshold voltage depends linearly on the pressure and arc length in such a way that there is an increase in the voltage by raising these two parameters. We have also observed that by increasing the argon pressure, there is a shifting in emission spectrum from the ultraviolet to the visible region. Comparison with krypton arc lamp indicated that argon lamp needs a higher threshold lightening voltage.
Analysis of Optical Emission Spectroscopy from a Long Transferred Arc for Waste Remediation
NASA Astrophysics Data System (ADS)
Giuliani, J. L.; Rogerson, J. E.; Clark, R. W.; Kepple, P.; Shamamian, V.; Sartwell, B.; Counts, D.
1997-10-01
The Naval Research Laboratory is investigating the application of plasma arc technology for the on-board remediation of waste material generated by sea faring ships. Part of the research component is to determine the plasma characteristics and radiation production in and near the arc under various operating conditions. In this work we present an analysis of the temperature profile in a 100 kW, 20cm long DC transferred arc for currents between 300 and 360Amps and air flow rates from 60 to 90slpm at atmospheric pressure. The working gas was seeded with hydrogen as a diagnostic. Assuming the temperature peaks at the center of the arc and LTE, the emission ratio H_α/H_β should increase radially outward, contrary to the observations. A collisional radiative equilibrium model for H and N was was developed to calculate synthetic spectra. Comparison with the data using various temperature profiles indicates that photo-pumping from the hot core leads to non-LTE populations and an inversion in the emission ratio, similar to the observed data.
Optical emission from a small scale model electric arc furnace in 250-600 nm region.
Mäkinen, A; Niskanen, J; Tikkala, H; Aksela, H
2013-04-01
Optical emission spectroscopy has been for long proposed for monitoring and studying industrial steel making processes. Whereas the radiative decay of thermal excitations is always taking place in high temperatures needed in steel production, one of the most promising environment for such studies are electric arc furnaces, creating plasma in excited electronic states that relax with intense characteristic emission in the optical regime. Unfortunately, large industrial scale electric arc furnaces also present a challenging environment for optical emission studies and application of the method is not straightforward. To study the usability of optical emission spectroscopy in real electric arc furnaces, we have developed a laboratory scale DC electric arc furnace presented in this paper. With the setup, optical emission spectra of Fe, Cr, Cr2O3, Ni, SiO2, Al2O3, CaO, and MgO were recorded in the wavelength range 250-600 nm and the results were analyzed with the help of reference data. The work demonstrates that using characteristic optical emission, obtaining in situ chemical information from oscillating plasma of electric arc furnaces is indeed possible. In spite of complications, the method could possibly be applied to industrial scale steel making process in order to improve its efficiency.
Code of Federal Regulations, 2014 CFR
2014-07-01
... reflective surfaces. (iv) Inert-gas metal-arc welding on stainless steel shall not be performed unless..., fumes and smoke below a hazardous level. (ii) Local exhaust ventilation shall consist of movable hoods... not exposed to hazardous levels of fumes: (A) Lead base metals; (B) Cadmium-bearing filler materials...
Code of Federal Regulations, 2013 CFR
2013-07-01
... reflective surfaces. (iv) Inert-gas metal-arc welding on stainless steel shall not be performed unless..., fumes and smoke below a hazardous level. (ii) Local exhaust ventilation shall consist of movable hoods... not exposed to hazardous levels of fumes: (A) Lead base metals; (B) Cadmium-bearing filler materials...
Code of Federal Regulations, 2012 CFR
2012-07-01
... reflective surfaces. (iv) Inert-gas metal-arc welding on stainless steel shall not be performed unless..., fumes and smoke below a hazardous level. (ii) Local exhaust ventilation shall consist of movable hoods... not exposed to hazardous levels of fumes: (A) Lead base metals; (B) Cadmium-bearing filler materials...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clem, John R
2011-02-17
I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Pérez-Rodríguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting (ρ{sub ∥}) and flux flow (ρ{sub ⊥}), and their ratio r=ρ{sub ∥}/ρ{sub ⊥}. When r<1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magneticmore » moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle Φ. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density J{sub c}(Φ) that makes the vortex arc unstable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clem, John R.
2011-02-17
I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Perez-Rodriguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting ({rho}{parallel}) and flux flow ({rho}{perpendicular}), and their ratio r = {rho}{parallel}/{rho}{perpendicular}. When r < 1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magneticmore » moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle {phi}. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density J{sub c}({phi}) that makes the vortex arc unstable.« less
NASA Astrophysics Data System (ADS)
Clem, John R.
2011-06-01
I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Pérez-Rodríguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting (ρ∥) and flux flow (ρ⊥), and their ratio r=ρ∥/ρ⊥. When r<1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magnetic moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle ϕ. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density Jc(ϕ) that makes the vortex arc unstable.
Jainta, S; Hoormann, J; Jaschinski, W
2009-03-01
Measuring vergence eye movements with dichoptic nonius lines (subjectively) usually leads to an overestimation of the vergence state after a step response: a subjective vergence overestimation (SVO). We tried to reduce this SVO by presenting a vergence stimulus that decoupled vergence and accommodation during the step response, i.e. reduced the degree of 'forced vergence'. In a mirror-stereoscope, we estimated convergence step responses with nonius lines presented at 1000 ms after a disparity step-stimulus and compared it to objective recordings (EyeLink II; n = 6). We presented a vertical line, a cross/rectangle stimulus and a difference-of-gaussians (DOG) pattern. For 180 min arc step stimuli, the subjective measures revealed a larger final vergence response than the objective measure; for the vertical line this SVO was 20 min arc, while it was significantly smaller for the DOG (12 min arc). For 60 min arc step-responses, no overestimation was observed. Additionally, we measured accommodation, which changed more for the DOG-pattern compared with the line-stimulus; this relative increase correlated with the corresponding relative change of SVO (r = 0.77). Both findings (i.e. no overestimation for small steps and a weaker one for the DOG-pattern) reflect lesser conflicting demand on accommodation and vergence under 'forced-vergence' viewing; consequently, sensory compensation is reduced and subjective and objective measures of vergence step responses tend to agree.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldib, A; Al-Azhar University, Cairo; Jin, L
2014-06-15
Purpose: Electron arc therapy has long been proposed as the most suitable technique for the treatment of superficial tumors that follow circularly curved surfaces. However it was challenged by unsuitability of the conventional applicators and the lack of adequate 3-D dose calculation tools for arc electron beams in the treatment planning systems (TPS). Now with the availability of an electron specific multi-leaf collimator (eMLC) and an in-house Monte Carlo (MC) based TPS, we were motivated to investigate more advanced modulated electron arc (MeARC) therapy and its beneficial outcome. Methods: We initiated the study by a film measurement conducted in amore » head and neck phantom, where we delivered electron arcs in a step and shoot manner using the light field as a guide to avoid fields abutments. This step was done to insure enough clearance for the arcs with eMLC. MCBEAM and MCPLAN MC codes were used for the treatment head simulation and phantom dose calculation, respectively. Treatment plans were generated for targets drawn in real patient CTs and head and neck phantom. We utilized beams eye view available from a commercial planning system to create beamlets having same isocenter and adjoined at the scalp surface. Then dose-deposition coefficients from those beamlets were calculated for all electron energies using MCPLAN. An in-house optimization code was then used to find the optimum weights needed from individual beamlets. Results: MeARC showed a nicely tailored dose distribution around the circular curved target on the scalp. Some hot spots were noticed and could be attributed to fields abutment problem owing to the bulging nature of electron profiles. Brain dose was shown to be at lower levels compared to photon treatment. Conclusion: MeARC was shown to be a promising modality for treating scalp cases and could be beneficial to all superficial tumors with a circular curvature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eley, J; Mehta, M; Molitoris, J
Purpose: The purpose of this study was to propose a method to implement arc therapy that is compatible with existing particle therapy systems having gantries and pencil-beam scanning capacities. Furthermore, we sought to demonstrate expected benefits of this method for selected clival chordoma patients. Methods: We propose that a desired particle arc treatment plan can be discretized into a finite number of fixed beams and that only one (or a subset) of these beams be delivered in any single treatment fraction; the target should receive uniform dose during each fraction. For 3 clival-chordoma patients, robust-optimized, scanned proton beams were simulatedmore » to deliver 78 Gy (RBE) to clinical target volumes (CTVs), using either a single-field plan with a posterior-anterior (PA) beam or a discrete-arc plan with 16 beams that were equally spaced throughout a 360-degree axial arc. Dose-volume metrics were compared with emphasis on the brainstem, since risk of radiation necrosis there can often restrict application of tumoricidal doses for chordomas. Results: The mean volume of brainstem receiving a dose of 60 Gy (RBE) or higher (V60Gy) was 10.3±0.9 cm{sup 3} for the single-field plan and 4.7±1.8 cm{sup 3} for the discrete-arc plan, a reduction of 55% in favor of arcs. The mean dose to the brainstem was also reduced using arcs, by 18%, while the maximum dose was nearly identical for both methods. For the whole brain, V60Gy was reduced by 23%, in favor of arcs. Mean dose to the CTVs were nearly identical for both strategies, within 0.3%. Conclusion: Discrete arc treatments can be implemented using existing scanned particle-beam facilities. Aside from the physical advantages, the biological uncertainties of particle therapy, particularly high in the distal edge, can be reduced by arc therapy via rotational smearing, which may be of benefit for tumors near the brainstem.« less
NASA Astrophysics Data System (ADS)
Rutberg, Ph G.; Popov, S. D.; Surov, A. V.; Serba, E. O.; Nakonechny, Gh V.; Spodobin, V. A.; Pavlov, A. V.; Surov, A. V.
2012-12-01
The comparison of conductivity obtained in experiments with calculated values is made in this paper. Powerful stationary plasma torches with prolonged period of continuous work are popular for modern plasmachemical applications. The maximum electrode lifetime with the minimum erosion can be reached while working on rather low currents. Meanwhile it is required to provide voltage arc drop for the high power achievement. Electric field strength in the arc column of the high-voltage plasma torch, using air as a plasma-forming gas, does not exceed 15 V/cm. It is possible to obtain the high voltage drop in the long arc stabilized in the channel by the intensive gas flow under given conditions. Models of high voltage plasma torches with rod electrodes with power up to 50 kW have been developed and investigated. The plasma torch arcs are burning in cylindrical channels. Present investigations are directed at studying the possibility of developing long arc plasma torches with higher power. The advantage of AC power supplies usage is the possibility of the loss minimization due to the reactive power compensation. The theoretical maximum of voltage arc drop for power supplies with inductive current limitations is about 50 % of the no-load voltage for a single-phase circuit and about 30 % for the three-phase circuit. Burning of intensively blown arcs in the long cylindrical channel using the AC power supply with 10 kV no-load voltage is experimentally investigated in the work. Voltage drops close to the maximum possible had been reached in the examined arcs in single-phase and three-phase modes. Operating parameters for single-phase mode were: current -30 A, voltage drop -5 kV, air flow rate 35 g/s; for three-phase mode: current (40-85) A, voltage drop (2.5-3.2) kV, air flow rate (60-100) g/s. Arc length in the installations exceeded 2 m.
NASA Astrophysics Data System (ADS)
Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat
2015-03-01
Magnesium (Mg) alloys have been recently introduced as a biodegradable implant for orthopedic applications. However, their fast corrosion, low bioactivity, and mechanical integrity have limited their clinical applications. The main aim of this research was to improve such properties of the AZ91 Mg alloy through surface modifications. For this purpose, nanostructured fluoridated hydroxyapatite (FHA) was coated on AZ91 Mg alloy by micro-arc oxidation and electrophoretic deposition method. The coated alloy was characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, in vitro corrosion tests, mechanical tests, and cytocompatibility evaluation. The results confirmed the improvement of the corrosion resistance, in vitro bioactivity, mechanical integrity, and the cytocompatibility of the coated Mg alloy. Therefore, the nanostructured FHA coating can offer a promising way to improve the properties of the Mg alloy for orthopedic applications.
Testbed-based Performance Evaluation of Attack Resilient Control for AGC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashok, Aditya; Sridhar, Siddharth; McKinnon, Archibald D.
The modern electric power grid is a complex cyber-physical system whose reliable operation is enabled by a wide-area monitoring and control infrastructure. This infrastructure, supported by an extensive communication backbone, enables several control applications functioning at multiple time scales to ensure the grid is maintained within stable operating limits. Recent events have shown that vulnerabilities in this infrastructure may be exploited to manipulate the data being exchanged. Such a scenario could cause the associated control application to mis-operate, potentially causing system-wide instabilities. There is a growing emphasis on looking beyond traditional cybersecurity solutions to mitigate such threats. In this papermore » we perform a testbed-based validation of one such solution - Attack Resilient Control (ARC) - on Iowa State University's \\textit{PowerCyber} testbed. ARC is a cyber-physical security solution that combines domain-specific anomaly detection and model-based mitigation to detect stealthy attacks on Automatic Generation Control (AGC). In this paper, we first describe the implementation architecture of the experiment on the testbed. Next, we demonstrate the capability of stealthy attack templates to cause forced under-frequency load shedding in a 3-area test system. We then validate the performance of ARC by measuring its ability to detect and mitigate these attacks. Our results reveal that ARC is efficient in detecting stealthy attacks and enables AGC to maintain system operating frequency close to its nominal value during an attack. Our studies also highlight the importance of testbed-based experimentation for evaluating the performance of cyber-physical security and control applications.« less
Gurdak, Jason J.; Qi, Sharon L.; Geisler, Michael L.
2009-01-01
The U.S. Geological Survey Raster Error Propagation Tool (REPTool) is a custom tool for use with the Environmental System Research Institute (ESRI) ArcGIS Desktop application to estimate error propagation and prediction uncertainty in raster processing operations and geospatial modeling. REPTool is designed to introduce concepts of error and uncertainty in geospatial data and modeling and provide users of ArcGIS Desktop a geoprocessing tool and methodology to consider how error affects geospatial model output. Similar to other geoprocessing tools available in ArcGIS Desktop, REPTool can be run from a dialog window, from the ArcMap command line, or from a Python script. REPTool consists of public-domain, Python-based packages that implement Latin Hypercube Sampling within a probabilistic framework to track error propagation in geospatial models and quantitatively estimate the uncertainty of the model output. Users may specify error for each input raster or model coefficient represented in the geospatial model. The error for the input rasters may be specified as either spatially invariant or spatially variable across the spatial domain. Users may specify model output as a distribution of uncertainty for each raster cell. REPTool uses the Relative Variance Contribution method to quantify the relative error contribution from the two primary components in the geospatial model - errors in the model input data and coefficients of the model variables. REPTool is appropriate for many types of geospatial processing operations, modeling applications, and related research questions, including applications that consider spatially invariant or spatially variable error in geospatial data.
Bottom-Up Syntheses and Characterization of One Dimensional Nanomaterials
NASA Astrophysics Data System (ADS)
Yeh, Yao-Wen
Nanomaterials, materials having at least one dimension below 100 nm, have been creating exciting opportunities for fundamental quantum confinement studies and applications in electronic devices and energy technologies. One obvious and important aspect of nanomaterials is their production. Although nanostructures can be obtained by top-down reductive e-beam lithography and focused ion beam processes, further development of these processes is needed before these techniques can become practical routes to large scale production. On the other hand, bottom-up syntheses, with advantages in material diversity, throughput, and the potential for large volume production, may provide an alternative strategy for creating nanostructures. In this work, we explore syntheses of one dimensional nanostructures based on hydrothermal and arc discharge methods. The first project presented in this thesis involves syntheses of technologically important nanomaterials and their potential application in energy harvesting. In particular, it was demonstrated that single crystal ferroelectric lead magnesium niobate lead titanate (PMN-PT) nanowires can be synthesized by a hydrothermal route. The chemical composition of the synthesized nanowires is near the rhombohedral-monoclinic boundary of PMN-PT, which leads to a high piezoelectric coefficient of 381 pm/V. Finally, the potential use of PMN-PT nanowires in energy harvesting applications was also demonstrated. The second part of this thesis involves the synthesis of carbon and boron nitride nanotubes by dc arc discharges. In particular, we investigated how local plasma related properties affected the synthesis of carbon nanostructures. Finally, we investigated the anodic nature of the arc and how a dc arc discharge can be applied to synthesize boron nitride nanotubes.
Analytical methods development for supramolecular design in solar hydrogen production
NASA Astrophysics Data System (ADS)
Brown, J. R.; Elvington, M.; Mongelli, M. T.; Zigler, D. F.; Brewer, K. J.
2006-08-01
In the investigation of alternative energy sources, specifically, solar hydrogen production from water, the ability to perform experiments with a consistent and reproducible light source is key to meaningful photochemistry. The design, construction, and evaluation of a series of LED array photolysis systems for high throughput photochemistry have been performed. Three array systems of increasing sophistication are evaluated using calorimetric measurements and potassium tris(oxalato)ferrate(II) chemical actinometry and compared with a traditional 1000 W Xe arc lamp source. The results are analyzed using descriptive statistics and analysis of variance (ANOVA). The third generation array is modular, and controllable in design. Furthermore, the third generation array system is shown to be comparable in both precision and photonic output to a 1000 W Xe arc lamp.
Computational study of arc discharges: Spark plug and railplug ignitors
NASA Astrophysics Data System (ADS)
Ekici, Ozgur
A theoretical study of electrical arc discharges that focuses on the discharge processes in spark plug and railplug ignitors is presented. The aim of the study is to gain a better understanding of the dynamics of electrical discharges, more specifically the transfer of electrical energy into the gas and the effect of this energy transfer on the flow physics. Different levels of computational models are presented to investigate the types of arc discharges seen in spark plugs and railplugs (i.e., stationary and moving arc discharges). Better understanding of discharge physics is important for a number of applications. For example, improved fuel economy under the constraint of stricter emissions standards and improved plug durability are important objectives of current internal combustion engine designs. These goals can be achieved by improving the existing systems (spark plug) and introducing more sophisticated ignition systems (railplug). In spite of the fact spark plug and railplug ignitors are the focus of this work, the methods presented in this work can be extended to study the discharges found in other applications such as plasma torches, laser sparks, and circuit breakers. The system of equations describing the physical processes in an air plasma is solved using computational fluid dynamics codes to simulate thermal and flow fields. The evolution of the shock front, temperature, pressure, density, and flow of a plasma kernel were investigated for both stationary and moving arcs. Arc propagation between the electrodes under the effects of gas dynamics and electromagnetic processes was studied for moving arcs. The air plasma is regarded as a continuum, single substance material in local thermal equilibrium. Thermophysical properties of high temperature air are used to take into consideration the important processes such as dissociation and ionization. The different mechanisms and the relative importance of several assumptions in gas discharges and thermal plasma modeling were investigated. Considering the complex nature of the studied problem, the computational models aid in analyzing the analytical theory and serve as relatively inexpensive tools when compared to experiments in design process.
Investigating Discharge Ignition Fundamentals of Micro-Cathode Arc Thrusters
NASA Astrophysics Data System (ADS)
Teel, George Lewis
This dissertation is a compilation of studies of the volatile process that vacuum arcs undergo, known as breakdown. Breakdown is a transfer of electrons from one electrode to another. These electrons typically bombard the electrode surfaces causing secondary electron emission and ionization. This expulsion of ions and electrons then proceed to cause arc discharge, is what most people associate as ``the spark.'' This field-emission to breakdown process induces localized heating, which then causes this explosive ionization to occur. Once plasma is formed, high temperatures and pressures are forced on the surrounding surfaces. This initiation process, the effects of this process, and the manipulation of these effects have all been studied and described in this work. A series of initial observations of the before and after effects of discharge have been made through various equipment such as a Scanning Electron Microscope, Energy Dispersive X-Ray, and Confocal Microscope. Methods to develop a resistance measurement scheme provided a means to characterize the thruster's operation over its lifetime. Further characterization of the plasma plume was done through the use of Langmuir probes. Temperature and density distributions were also measured. An entirely new and miniaturized design of the thrusters were developed and initially tested. Last, a new application for these vacuum arc thrusters was studied for use in an underwater environment. The purpose of this work was to further develop a vacuum arc thruster, known as the Micro-Cathode Arc Thruster (muCAT), which has been developed at the George Washington University's Micro Propulsion and Nanotechnology Lab. The muCAT has been developed over the past decade, and in the last 5 years has gone from simple lab circuitry to space flown hardware. Therefore it is imperative to fully understand every aspect of this technology to achieve precisely what missions require. The results of this dissertation have allowed a new thruster concept to be developed, which is more robust and smaller than previous designed muCAT with erosion control built into the design. A new application for these vacuum arc thrusters has also been tested as underwater propulsion. This research has allowed us to come closer to a more perfected piece of propulsion technology.
Application of Plasma Arcs to the to the Remediation of Shipboard Waste(Supported by ONR and NSWC.)
NASA Astrophysics Data System (ADS)
Giuliani, John L.
1996-10-01
The Naval Research Laboratory (B. Sartwell, (Chemistry Division NRL); J. Apruzese, (Plasma Physics Division NRL); S. Peterson, D. Counts, (Geo-Centers Inc.),and Q. Han (U. Minn.)) (NRL) is investigating the application of plasma arc technology for the on-board remediation of waste material generated by sea faring ships. A 150kW DC arc torch within a 1 meter diameter chamber has been used for the pyrolysis of liquid and solid material which simulate the waste stream from a naval ship. A general discussion of the materials treated and the associated problems arising from their pyrolysis in a plasma torch will be presented. The greatest challenge for a shipboard plasma remediation, including any exhaust gas treatment, is the overall size of the system imposed by the limited confines of a ship. Connected with this issue are choices of the arc configuration: transfered vs non-transfered; and the feed stock gas: reducing vs oxidizing. The research component of NRL's program is to characterize the gaseous by-products, the remnant slag, and the plasma arc through systematic experiments, as well as to model the plasma dynamics and chemistry within the chamber. The environment within the chamber is primarily defined by several temperature measurements. Two color pyrometry is used to determine the molten slag temperature ( ~2200 degK) and a suite of thermocouples within the chamber indicate a slighter cooler gas phase temperature. Synthetic spectra were generated from radiation transport calculations and compared with optical emission spectroscopy to map the gas temperature around the plasma arc itself ( ~ 5000 degK). Spectroscopy offers the potential of a non-invasive diagnostic to eventually be used for on-line process control, a necessary feature for an operating system due to the heterogeneous waste stream. Other studies will be described including the addition of O2 through a ring to achieve combustion of hydrocarbon wastes, residual gas analysis of the exhaust for different waste material, the voltage-current characteristic at various plasma arc lengths to estimate plasma conductivity, and the surface shape of the molten slag given the pitch and roll of a ship.
Miniature pulsed vacuum arc plasma gun and apparatus for thin-film fabrication
Brown, Ian G.; MacGill, Robert A.; Galvin, James E.; Ogletree, David F.; Salmeron, Miquel
1998-01-01
A miniature (dime-size in cross-section) vapor vacuum arc plasma gun is described for use in an apparatus to produce thin films. Any conductive material can be layered as a film on virtually any substrate. Because the entire apparatus can easily be contained in a small vacuum chamber, multiple dissimilar layers can be applied without risk of additional contamination. The invention has special applications in semiconductor manufacturing.
Wiring for aerospace applications
NASA Astrophysics Data System (ADS)
Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.
1992-07-01
In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.
Miniature pulsed vacuum arc plasma gun and apparatus for thin-film fabrication
Brown, I.G.; MacGill, R.A.; Galvin, J.E.; Ogletree, D.F.; Salmeron, M.
1998-11-24
A miniature (dime-size in cross-section) vapor vacuum arc plasma gun is described for use in an apparatus to produce thin films. Any conductive material can be layered as a film on virtually any substrate. Because the entire apparatus can easily be contained in a small vacuum chamber, multiple dissimilar layers can be applied without risk of additional contamination. The invention has special applications in semiconductor manufacturing. 8 figs.
Wiring for aerospace applications
NASA Technical Reports Server (NTRS)
Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.
1992-01-01
In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.
Collisional-Radiative Modeling of Free-Burning Arc Plasma in Argon
2013-06-01
temeratures of electrons and heavy particles was demonstrated. The plasma chemistry is important but yet just one element of the complex arc...description. Therefore, the present work is aimed at the analysis of the plasma chemistry in a way that the model enables a deeper look into the polulations... PLASMA CHEMISTRY The present study aims at analyzing the collisional and radiative processes in argon with a view toward application to non
Simulation and Implementation of Moth-eye Structures as a Broadband Anti-Reflective Layer
NASA Astrophysics Data System (ADS)
Deshpande, Ketan S.
Conventional single layer thin anti-reflective coatings (ARCs) are only suitable for narrowband applications. A multilayer film stack is often employed for broadband applications. A coating of multiple layers with alternating low and high refractive index materials increases the overall cost of the system. This makes multilayer ARCs unsuitable for low-cost broadband applications. Since the discovery of moth-eye corneal nipple patterns and their potential applicability in the field of broadband ARCs, many studies have been carried out to fabricate these bio-inspired nanostructures with available manufacturing processes. Plasma etching processes used in microelectronic manufacturing are applied for creating these nanostructures at the Rochester Institute of Technology's Semiconductor & Microsystems Fabrication Laboratory (SMFL). Atomic Force Microscope (AFM) scanned surfaces of the nanostructure layer are simulated and characterized for their optical properties using a Finite-Difference Time Domain (FDTD) simulator from Lumerical Solutions, Inc. known as FDTD Solutions. Simulation results show that the layer is anti-reflective over 50 to 350 nm broadband of wavelengths at 0° angle of incidence. These simulation results were supported by ellipsometer reflection measurements off the actual samples at multiple angles of light incidence, which show a 10% to 15% decrease in reflection for 240 to 400 nm wavelengths. Further improvements in the optical efficiency of these structures can be achieved through simulation-fabrication-characterization cycles performed for this project. The optimized nanostructures can then serve the purpose of low-cost anti-reflective coatings for solar cells and similar applications.
The Sunda-Banda Arc Transition: New Insights from Marine Multichannel Seismic Data
NASA Astrophysics Data System (ADS)
Mueller, C.; Kopp, H.; Djajadihardja, Y.; Engels, M.; Flueh, E.; Gaedicke, C.; Lueschen, E.; Lutz, R.; Planert, L.; Shulgin, A.; Soemantri, D. D.
2007-12-01
After the Indian Ocean Mw 9.3 earthquake and tsunami on December 26, 2004, intensive research activities focussed on the Sunda Arc subduction system offshore Sumatra. For this area a broad database is now available interpreted in terms of plate segmentation and outer arc high evolution. In contrast, the highly active easternmost part of this subduction system, as indicated by the south of Java Mw 7.7 earthquake and tsunami on July 17, 2006, has remained almost unexplored until recently. During RV SONNE cruise SO190 from October until December 2006 almost 5000 km of marine geophysical profiles have been acquired at the eastern Sunda Arc and the transition to the Banda Arc. The SINDBAD project (Seismic and Geoacoustic Investigations along the Sunda-Banda Arc Transition) comprises 30-fold multichannel reflection seismics with a 3-km streamer, wide-angle OBH/OBS refraction seismics for deep velocity control (see poster of Planert et al. in this session), swath bathymetry, sediment echosounder, gravimetric and geomagnetic measurements. We present data and interpretations of several 250-380 km long, prestack depth-migrated seismic sections, perpendicular to the deformation front, based on velocity models from focussing analysis and inversion of OBH/OBS refraction data. We focus on the variability of the lower plate and the tectonic response of the overriding plate in terms of outer arc high formation and evolution, forearc basin development, accretion and erosion processes at the base of the overriding plate. The subducting Indo-Australian Plate is characterized by three segments: i) the Roo Rise with rough topography offshore eastern Java ii) the Argo Abyssal Plain with smooth oceanic crust offshore Bali, Lombok, and Sumbawa, and iii) the Scott Plateau with continental crust colliding with the Banda island arc. The forearc responds to differences in the incoming oceanic plate with the absence of a pronounced forearc basin offshore eastern Java and with development of the 4000 m deep forearc Lombok Basin offshore Bali, Lombok, and Sumbawa. The eastern termination of the Lombok Basin is formed by Sumba Island, which shows evidence for recent uplift, probably associated with the collision of the island arc with the continental Scott Plateau. The Sumba area represents the transition from subduction to collision. Our seismic profiles image the bending of the oceanic crust seaward of the trench and associated normal faulting. Landward of the trench, they image the subducting slab beneath the outer arc high, where the former bending-related normal faults appear to be reactivated as reverse faults introducing vertical displacements in the subducting slab. The accretionary prism and the outer arc high are characterized by an ocean-verging system of imbricate thrust sheets with major thrust faults connecting seafloor and detachment. Compression results in shortening and steepening of the imbricated thrust sheets building up the outer arc high. Tilted piggy-back basins and downlaps of tilted sediments in the southern Lombok forearc basin indicate ongoing uplift of the entire outer arc high, abrupt displacements, and recent tectonic activity.
Impairment of TrkB-PSD-95 Signaling in Angelman Syndrome
Cao, Cong; Rioult-Pedotti, Mengia S.; Migani, Paolo; Yu, Crystal J.; Tiwari, Rakesh; Parang, Keykavous; Spaller, Mark R.; Goebel, Dennis J.; Marshall, John
2013-01-01
Angelman syndrome (AS) is a neurodevelopment disorder characterized by severe cognitive impairment and a high rate of autism. AS is caused by disrupted neuronal expression of the maternally inherited Ube3A ubiquitin protein ligase, required for the proteasomal degradation of proteins implicated in synaptic plasticity, such as the activity-regulated cytoskeletal-associated protein (Arc/Arg3.1). Mice deficient in maternal Ube3A express elevated levels of Arc in response to synaptic activity, which coincides with severely impaired long-term potentiation (LTP) in the hippocampus and deficits in learning behaviors. In this study, we sought to test whether elevated levels of Arc interfere with brain-derived neurotrophic factor (BDNF) TrkB receptor signaling, which is known to be essential for both the induction and maintenance of LTP. We report that TrkB signaling in the AS mouse is defective, and show that reduction of Arc expression to control levels rescues the signaling deficits. Moreover, the association of the postsynaptic density protein PSD-95 with TrkB is critical for intact BDNF signaling, and elevated levels of Arc were found to impede PSD-95/TrkB association. In Ube3A deficient mice, the BDNF-induced recruitment of PSD-95, as well as PLCγ and Grb2-associated binder 1 (Gab1) with TrkB receptors was attenuated, resulting in reduced activation of PLCγ-α-calcium/calmodulin-dependent protein kinase II (CaMKII) and PI3K-Akt, but leaving the extracellular signal-regulated kinase (Erk) pathway intact. A bridged cyclic peptide (CN2097), shown by nuclear magnetic resonance (NMR) studies to uniquely bind the PDZ1 domain of PSD-95 with high affinity, decreased the interaction of Arc with PSD-95 to restore BDNF-induced TrkB/PSD-95 complex formation, signaling, and facilitate the induction of LTP in AS mice. We propose that the failure of TrkB receptor signaling at synapses in AS is directly linked to elevated levels of Arc associated with PSD-95 and PSD-95 PDZ-ligands may represent a promising approach to reverse cognitive dysfunction. PMID:23424281
Impairment of TrkB-PSD-95 signaling in Angelman syndrome.
Cao, Cong; Rioult-Pedotti, Mengia S; Migani, Paolo; Yu, Crystal J; Tiwari, Rakesh; Parang, Keykavous; Spaller, Mark R; Goebel, Dennis J; Marshall, John
2013-01-01
Angelman syndrome (AS) is a neurodevelopment disorder characterized by severe cognitive impairment and a high rate of autism. AS is caused by disrupted neuronal expression of the maternally inherited Ube3A ubiquitin protein ligase, required for the proteasomal degradation of proteins implicated in synaptic plasticity, such as the activity-regulated cytoskeletal-associated protein (Arc/Arg3.1). Mice deficient in maternal Ube3A express elevated levels of Arc in response to synaptic activity, which coincides with severely impaired long-term potentiation (LTP) in the hippocampus and deficits in learning behaviors. In this study, we sought to test whether elevated levels of Arc interfere with brain-derived neurotrophic factor (BDNF) TrkB receptor signaling, which is known to be essential for both the induction and maintenance of LTP. We report that TrkB signaling in the AS mouse is defective, and show that reduction of Arc expression to control levels rescues the signaling deficits. Moreover, the association of the postsynaptic density protein PSD-95 with TrkB is critical for intact BDNF signaling, and elevated levels of Arc were found to impede PSD-95/TrkB association. In Ube3A deficient mice, the BDNF-induced recruitment of PSD-95, as well as PLCγ and Grb2-associated binder 1 (Gab1) with TrkB receptors was attenuated, resulting in reduced activation of PLCγ-α-calcium/calmodulin-dependent protein kinase II (CaMKII) and PI3K-Akt, but leaving the extracellular signal-regulated kinase (Erk) pathway intact. A bridged cyclic peptide (CN2097), shown by nuclear magnetic resonance (NMR) studies to uniquely bind the PDZ1 domain of PSD-95 with high affinity, decreased the interaction of Arc with PSD-95 to restore BDNF-induced TrkB/PSD-95 complex formation, signaling, and facilitate the induction of LTP in AS mice. We propose that the failure of TrkB receptor signaling at synapses in AS is directly linked to elevated levels of Arc associated with PSD-95 and PSD-95 PDZ-ligands may represent a promising approach to reverse cognitive dysfunction.
Lidar arc scan uncertainty reduction through scanning geometry optimization
NASA Astrophysics Data System (ADS)
Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.
2016-04-01
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.
Retrieval-induced NMDA receptor-dependent Arc expression in two models of cocaine-cue memory.
Alaghband, Yasaman; O'Dell, Steven J; Azarnia, Siavash; Khalaj, Anna J; Guzowski, John F; Marshall, John F
2014-12-01
The association of environmental cues with drugs of abuse results in persistent drug-cue memories. These memories contribute significantly to relapse among addicts. While conditioned place preference (CPP) is a well-established paradigm frequently used to examine the modulation of drug-cue memories, very few studies have used the non-preference-based model conditioned activity (CA) for this purpose. Here, we used both experimental approaches to investigate the neural substrates of cocaine-cue memories. First, we directly compared, in a consistent setting, the involvement of cortical and subcortical brain regions in cocaine-cue memory retrieval by quantifying activity-regulated cytoskeletal-associated (Arc) protein expression in both the CPP and CA models. Second, because NMDA receptor activation is required for Arc expression, we investigated the NMDA receptor dependency of memory persistence using the CA model. In both the CPP and CA models, drug-paired animals showed significant increases in Arc immunoreactivity in regions of the frontal cortex and amygdala compared to unpaired controls. Additionally, administration of a NMDA receptor antagonist (MK-801 or memantine) immediately after cocaine-CA memory reactivation impaired the subsequent conditioned locomotion associated with the cocaine-paired environment. The enhanced Arc expression evident in a subset of corticolimbic regions after retrieval of a cocaine-context memory, observed in both the CPP and CA paradigms, likely signifies that these regions: (i) are activated during retrieval of these memories irrespective of preference-based decisions, and (ii) undergo neuroplasticity in order to update information about cues previously associated with cocaine. This study also establishes the involvement of NMDA receptors in maintaining memories established using the CA model, a characteristic previously demonstrated using CPP. Overall, these results demonstrate the utility of the CA model for studies of cocaine-context memory and suggest the involvement of an NMDA receptor-dependent Arc induction pathway in drug-cue memory interference. Copyright © 2014 Elsevier Inc. All rights reserved.
Retrieval-induced NMDA receptor-dependent Arc expression in two models of cocaine-cue memory
Alaghband, Yasaman; O'Dell, Steven J.; Azarnia, Siavash; Khalaj, Anna J.; Guzowski, John F.; Marshall, John F.
2014-01-01
The association of environmental cues with drugs of abuse results in persistent drug-cue memories. These memories contribute significantly to relapse among addicts. While conditioned place preference (CPP) is a well-established paradigm frequently used to examine the modulation of drug-cue memories, very few studies have used the non-preference-based model conditioned activity (CA) for this purpose. Here, we used both experimental approaches to investigate the neural substrates of cocaine-cue memories. First, we directly compared, in a consistent setting, the involvement of cortical and subcortical brain regions in cocaine-cue memory retrieval by quantifying activity-regulated cytoskeletal associated gene (Arc) protein expression in both the CPP and CA models. Second, because NMDA receptor activation is required for Arc expression, we investigated the NMDA receptor dependency of memory persistence using the CA model. In both the CPP and CA models, drug-paired animals showed significant increases in Arc immunoreactivity in regions of the frontal cortex and amygdala compared to unpaired controls. Additionally, administration of a NMDA receptor antagonist (MK-801 or memantine) immediately after cocaine-CA memory reactivation impaired the subsequent conditioned locomotion associated with the cocaine-paired environment. The enhanced Arc expression evident in a subset of corticolimbic regions after retrieval of a cocaine-context memory, observed in both the CPP and CA paradigms, likely signifies that these regions: (i) are activated during retrieval of these memories irrespective of preference-based decisions, and (ii) undergo neuroplasticity in order to update information about cues previously associated with cocaine. This study also establishes the involvement of NMDA receptors in maintaining memories established using the CA model, a characteristic previously demonstrated using CPP. Overall, these results demonstrate the utility of the CA model for studies of cocaine-context memory and suggest the involvement of an NMDA receptor-dependent Arc induction pathway in drug-cue memory interference. PMID:25225165
Code of Federal Regulations, 2010 CFR
2010-07-01
... best available technology economically achievable. (a) Electric arc furnace steelmaking—semi-wet. No... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in 40 CFR 125...
Code of Federal Regulations, 2010 CFR
2010-07-01
... best practicable control technology currently available. (a) Electric arc furnace steelmaking—semi-wet... degree of effluent reduction attainable by the application of the best practicable control technology... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Code of Federal Regulations, 2012 CFR
2012-07-01
... best practicable control technology currently available. (a) Electric arc furnace steelmaking—semi-wet... degree of effluent reduction attainable by the application of the best practicable control technology... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Code of Federal Regulations, 2011 CFR
2011-07-01
... best practicable control technology currently available. (a) Electric arc furnace steelmaking—semi-wet... degree of effluent reduction attainable by the application of the best practicable control technology... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Code of Federal Regulations, 2013 CFR
2013-07-01
... best practicable control technology currently available. (a) Electric arc furnace steelmaking—semi-wet... degree of effluent reduction attainable by the application of the best practicable control technology... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Code of Federal Regulations, 2014 CFR
2014-07-01
... best practicable control technology currently available. (a) Electric arc furnace steelmaking—semi-wet... degree of effluent reduction attainable by the application of the best practicable control technology... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Code of Federal Regulations, 2013 CFR
2013-07-01
... best available technology economically achievable. (a) Electric arc furnace steelmaking—semi-wet. No... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in 40 CFR 125...
Improving the Accessibility and Use of NASA Earth Science Data
NASA Technical Reports Server (NTRS)
Tisdale, Matthew; Tisdale, Brian
2015-01-01
Many of the NASA Langley Atmospheric Science Data Center (ASDC) Distributed Active Archive Center (DAAC) multidimensional tropospheric and atmospheric chemistry data products are stored in HDF4, HDF5 or NetCDF format, which traditionally have been difficult to analyze and visualize with geospatial tools. With the rising demand from the diverse end-user communities for geospatial tools to handle multidimensional products, several applications, such as ArcGIS, have refined their software. Many geospatial applications now have new functionalities that enable the end user to: Store, serve, and perform analysis on each individual variable, its time dimension, and vertical dimension. Use NetCDF, GRIB, and HDF raster data formats across applications directly. Publish output within REST image services or WMS for time and space enabled web application development. During this webinar, participants will learn how to leverage geospatial applications such as ArcGIS, OPeNDAP and ncWMS in the production of Earth science information, and in increasing data accessibility and usability.
Sarem, Melika; Arya, Neha; Heizmann, Miriam; Neffe, Axel T; Barbero, Andrea; Gebauer, Tim P; Martin, Ivan; Lendlein, Andreas; Shastri, V Prasad
2018-03-15
The limited capacity of cartilage to heal large lesions through endogenous mechanisms has led to extensive effort to develop materials to facilitate chondrogenesis. Although physical-chemical properties of biomaterials have been shown to impact in vitro chondrogenesis, whether these findings are translatable in vivo is subject of debate. Herein, architectured 3D hydrogel scaffolds (ArcGel) (produced by crosslinking gelatin with ethyl lysine diisocyanate (LDI)) were used as a model system to investigate the interplay between scaffold mechanical properties and degradation on matrix deposition by human articular chondrocytes (HAC) from healthy donors in vitro and in vivo. Using ArcGel scaffolds of different tensile and shear modulus, and degradation behavior; in this study, we compared the fate of ex vivo engineered ArcGels-chondrocytes constructs, i.e. the traditional tissue engineering approach, with thede novoformation of cartilaginous tissue in HAC laden ArcGels in an ectopic nude mouse model. While the softer and fast degrading ArcGel (LNCO3) was more efficient at promoting chondrogenic differentiation in vitro, upon ectopic implantation, the stiffer and slow degrading ArcGel (LNCO8) was superior in maintaining chondrogenic phenotype in HAC and retention of cartilaginous matrix. Furthermore, surprisingly the de novo formation of cartilage tissue was promoted only in LNCO8. Since HAC cultured for only three days in the LNCO8 environment showed upregulation of hypoxia-associated genes, this suggests a potential role for hypoxia in the observed in vivo outcomes. In summary, this study sheds light on how immediate environment (in vivo versus in vitro) can significantly impact the outcomes of cell-laden biomaterials. In this study, 3D architectured hydrogels (ArcGels) with different mechanical and biodegradation properties were investigated for their potential to promote formation of cartilaginous matrix by human articular chondrocytes in vitro and in vivo. Two paradigms were explored (i) ex vivo engineering followed by in vivo implantation in ectopic site of nude mice and (ii) short in vitro culture (3 days) followed by implantation to induce de novo cartilage formation. Softer and fast degrading ArcGel were better at promoting chondrogenesis in vitro, while stiffer and slow degrading ArcGel were strikingly superior in both maintaining chondrogenesis in vivo and inducing de novo formation of cartilage. Our findings highlight the importance of the interplay between scaffold mechanics and degradation in chondrogenesis. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Sub-micrometer particles produced by a low-powered AC electric arc in liquids.
Jaworski, Jacek A; Fleury, Eric
2012-01-01
The article presents the report of the production of composites of sub-micrometer metal particles in matrix consisted of the metal compounds by means of an AC electric arc in water and paraffin solutions using electrodes carbon-metal and metal-metal (metal: Ni, Fe, Co, Cu). The advantage of this method is the low electric power (from 5 to 10 W) needed in comparison to standard DC arc-discharge methods (0.8 to 3 kW). This method enables the production of particles from conductive material also in wide range of temperature and in solvent which could be either transparent to light or opaque. Moreover the solvent can be electrolyte or insulating liquid. The microstructure of the composite layer was investigated by scanning electron microscopy (SEM), Electron Probe Microanalysis (EPMA) and X-ray. During particles production in water metal oxides were created. Additionally using cobalt-copper, nickel-copper as couple electrodes, insoluble in water copper (II) hydroxide crystal grains were created additionally which crystals shape was depended on transition metal. For iron-copper couple electrodes system the copper (II) hydroxide was not formed. Experiments with sequence production of Ni and Fe particles with C electrode assisting in molten paraffin let to obtain both Ni and Fe particles surrounded by paraffin. After solidification the material was insulator but if locally magnetic field influenced on the liquid solution in that place after solidification a new composite was created which was electric current conductor with resistivity around 0.1 omega x m, was attracted by magnetic field and presented magneto resistance around 0.4% in changing magnetic field in a range 150 mT. After mixing the concentrated paraffin with normal paraffin resistivity of the mixture increased and it became photosensitive and created small voltage under light influence.
Detecting slab structure beneath the Banda Arc from waveform analysis of deep focus earthquakes
NASA Astrophysics Data System (ADS)
Miller, M. S.; Sun, D.; Holt, A. F.
2017-12-01
We investigate the structure of the subducting Australian slab by utilizing 30 recently installed, temporary broadband seismometers (YS network) in the Banda Arc region of the Indonesia archipelago. This region is of particular tectonic interest as it is the archetypal example of a young arc-continent collision along with known varied lithospheric structure of the incoming Australian plate. Previous (e.g. Widiyantoro et al. 2011) and preliminary body wave tomography (Harris et al., this session) indicate complex subducted slab structures, where gaps in fast velocity anomalies in the upper mantle are interpreted as slab tears and are linked to the variation in the incoming plate structures. The detailed shape and location of these tears are important for kinematic reconstructions and for understanding the evolution of the entire subduction system. However, tomographic images are inherently smooth due to being produced with damped inversions and therefore underestimate the sharpness of these structures. We investigate possible sharp-sided structures within and at the edges of the subducted plate from deep focus earthquakes beneath the Banda Arc that occur beneath the seismic stations. Preliminary results show that the energy associated with the P-wave first arrival exhibits large variability between waveforms recorded at different stations along the arc, both in terms of frequency content and maximum amplitudes. Three main observations are shown with these initial results: (i) Variation in frequency content along strike from the deep events; (ii) There are two "regions" that have low frequency signals which possibly correspond to subducted continental lithosphere; (iii) There are two "regions" that have high frequency signals which possibly correspond to subducted oceanic lithosphere.
Crustal accretion and exhumation of the Rio de la Plata Craton
NASA Astrophysics Data System (ADS)
Girelli, T. J.; Chemale, F., Jr.; Lavina, E.; Laux, J. H.; Bongiolo, E.; Lana, C.
2017-12-01
The Rio de la Plata is one key area for the reconstruction of the Paleoproterozoic Supercontinent in Western Gondwana. We present U-Pb-Hf isotopes, chemistry on minerals and whole-rock geochemistry from para and orthogneisses of the Santa Maria Chico Granulite Complex, one of the Rio de la Plata fragments partially affected by the Brasiliano Orogeny. U-Pb and Lu-Hf isotopes allowed the characterization of two main events: an oceanic juvenile crustal accretion (i) 2430 - 2290 Ma (ɛHf(t) -3.17 to +7.00); a continental arc (ii) 2240 - 2120 Ma (ɛHf(t)= -4 to +2.4). We recognized two main high-grade metamorphic events in the region linked to an arc volcanic setting (830 - 870 °C - 6.7 - 7.2 kbar, 2.3 Ga) and later to continent-continent collision (770 - 790 °C and 8.7 - 9.1 kbar, 2.1 - 2.0 Ga). The development of orogenic sedimentary basins (fore-arc and intra-arc) occurred during the last cycle with the maximum depositional age of 2.12 Ga and were metamorphosed during 2.06 Ga main granulitic event. The granulitic rocks were cut by 1.8 Ga alkaline granitic dikes related to crustal extension recognized in the different segments of the craton and widespread in the adjacent paleoplates at the time. The present data point to that Paleoproterozoic granulitic rocks of the Santa Maria Chico Granulite Complex and adjacent Nico Pérez and Rivera terranes, formed in a multi-stage volcanic arc to continental collision environment along 370 Ma (2430 to 2060 Ma). These terranes were amalgamated during the Paleoproterozoic to the core of the Rio de la Plata Craton as part of Columbia Supercontinent and later partially reworked during the amalgamation of Western Gondwana in the Neoproterozoic.
Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance
Quiñones, Mar; Al-Massadi, Omar; Gallego, Rosalía; Fernø, Johan; Diéguez, Carlos; López, Miguel; Nogueiras, Ruben
2015-01-01
Objective Glucagon receptor antagonists and humanized glucagon antibodies are currently studied as promising therapies for obesity and type II diabetes. Among its variety of actions, glucagon reduces food intake, but the molecular mechanisms mediating this effect as well as glucagon resistance are totally unknown. Methods Glucagon and adenoviral vectors were administered in specific hypothalamic nuclei of lean and diet-induced obese rats. The expression of neuropeptides controlling food intake was performed by in situ hybridization. The regulation of factors of the glucagon signaling pathway was assessed by western blot. Results The central injection of glucagon decreased feeding through a hypothalamic pathway involving protein kinase A (PKA)/Ca2+-calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMP-activated protein kinase (AMPK)-dependent mechanism. More specifically, the central injection of glucagon increases PKA activity and reduces protein levels of CaMKKβ and its downstream target phosphorylated AMPK in the hypothalamic arcuate nucleus (ARC). Consistently, central glucagon significantly decreased AgRP expression. Inhibition of PKA and genetic activation of AMPK in the ARC blocked glucagon-induced anorexia in lean rats. Genetic down-regulation of glucagon receptors in the ARC stimulates fasting-induced hyperphagia. Although glucagon was unable to decrease food intake in DIO rats, glucagon sensitivity was restored after inactivation of CaMKKβ, specifically in the ARC. Thus, glucagon decreases food intake acutely via PKA/CaMKKβ/AMPK dependent pathways in the ARC, and CaMKKβ mediates its obesity-induced hypothalamic resistance. Conclusions This work reveals the molecular underpinnings by which glucagon controls feeding that may lead to a better understanding of disease states linked to anorexia and cachexia. PMID:26909312
Experimental Study of Arcing on High-voltage Solar Arrays
NASA Technical Reports Server (NTRS)
Vayner, Boris; Galofaro, Joel; Ferguson, Dale
2005-01-01
The main obstacle to the implementation of a high-voltage solar array in space is arcing on the conductor-dielectric junctions exposed to the surrounding plasma. One obvious solution to this problem would be the installation of fully encapsulated solar arrays which were not having exposed conductors at all. However, there are many technological difficulties that must be overcome before the employment of fully encapsulated arrays will turn into reality. An alternative solution to raise arc threshold by modifications of conventionally designed solar arrays looks more appealing, at least in the nearest future. A comprehensive study of arc inception mechanism [1-4] suggests that such modifications can be done in the following directions: i) to insulate conductor-dielectric junction from a plasma environment (wrapthrough interconnects); ii) to change a coverglass geometry (overhang); iii) to increase a coverglass thickness; iiii) to outgas areas of conductor-dielectric junctions. The operation of high-voltage array in LEO produces also the parasitic current power drain on the electrical system. Moreover, the current collected from space plasma by solar arrays determines the spacecraft floating potential that is very important for the design of spacecraft and its scientific apparatus. In order to verify the validity of suggested modifications and to measure current collection five different solar array samples have been tested in large vacuum chamber. Each sample (36 silicon based cells) consists of three strings containing 12 cells connected in series. Thus, arc rate and current collection can be measured on every string independently, or on a whole sample when strings are connected in parallel. The heater installed in the chamber provides the possibility to test samples under temperature as high as 80 C that simulates the LEO operational temperature. The experimental setup is described below.
Screening for primary aldosteronism in an argentinian population: a multicenter prospective study.
Leal Reyna, Mariela; Gómez, Reynaldo M; Lupi, Susana N; Belli, Susana H; Fenili, Cecilia A; Martínez, Marcela S; Ruibal, Gabriela F; Rossi, María A; Chervin, Raúl A; Cornaló, Dora; Contreras, Liliana N; Costa, Liliana; Nofal, María T; Damilano, Sergio A; Pardes, Ester M
2015-10-01
Primary aldosteronism (PA) is characterized by the autonomous overproduction of aldosterone. Its prevalence has increased since the use of the aldosterone (ALD)/plasma renin activity (PRA) ratio (ARR). The objective of this study is to determine ARR and ARC (ALD/plasma renin concentration ratio) cut-off values (COV) and their diagnostic concordance (DC%) in the screening for PA in an Argentinian population.Design multicenter prospective study. We studied 353 subjects (104 controls and 249 hypertensive patients). Serum aldosterone, PRA and ARR were determined. In 220 randomly selected subjects, 160 hypertensive patients and 60 controls, plasma renin concentration (PRC) was simultaneously measured and ARC was determined. According to the 95th percentile of controls, we determined a COV of 36 for ARR and 2.39 for ARC, with ALD ≥ 15 ng/dL. In 31/249 hypertensive patients, ARR was ≥ 36. PA diagnosis was established in 8/31 patients (23/31 patients did not complete confirmatory tests). DC% between ARR and ARC was calculated. A significant correlation between ARR and ARC (r = 0.742; p < 0.0001) was found only with PRA > 0.3 ng/mL/h and PRC > 5 pg/mL. DC% for ARR and ARC above or below 36 and 2.39 was 79.1%, respectively. This first Argentinian multicenter study determined a COV of 36 for ARR and 2.39 for ARC. Applying an ARR ≥ 36 in the hypertensive group, we confirmed PA in a higher percentage of patients than the previously reported one in our population. As for ARC, further studies are needed for its clinical application, since DC% is acceptable only for medium range renin values.
High-Melt Carbon-Carbon Coating for Nozzle Extensions
NASA Technical Reports Server (NTRS)
Thompson, James
2015-01-01
Carbon-Carbon Advanced Technologies, Inc. (C-CAT), has developed a high-melt coating for use in nozzle extensions in next-generation spacecraft. The coating is composed primarily of carbon-carbon, a carbon-fiber and carbon-matrix composite material that has gained a spaceworthy reputation due to its ability to withstand ultrahigh temperatures. C-CAT's high-melt coating embeds hafnium carbide (HfC) and zirconium diboride (ZrB2) within the outer layers of a carbon-carbon structure. The coating demonstrated enhanced high-temperature durability and suffered no erosion during a test in NASA's Arc Jet Complex. (Test parameters: stagnation heat flux=198 BTD/sq ft-sec; pressure=.265 atm; temperature=3,100 F; four cycles totaling 28 minutes) In Phase I of the project, C-CAT successfully demonstrated large-scale manufacturability with a 40-inch cylinder representing the end of a nozzle extension and a 16-inch flanged cylinder representing the attach flange of a nozzle extension. These demonstrators were manufactured without spalling or delaminations. In Phase II, C-CAT worked with engine designers to develop a nozzle extension stub skirt interfaced with an Aerojet Rocketdyne RL10 engine. All objectives for Phase II were successfully met. Additional nonengine applications for the coating include thermal protection systems (TPS) for next-generation spacecraft and hypersonic aircraft.
Development of an Ultralight Pulse Gas Metal ARC Welding System for Shipyard Applications
2007-07-27
efficient PGMAW process. The need was also identified to provide or develop a compact, light- weight GMAW torch to maximize the number of welds that could...NO. TITLE PAGE 1 Illustration of GMAW -P Equipment, State-of-the Art 5 Years Ago and 25 Years Ago 1...MP “Ultralight” System With Typical Setting Displayed for PGMAW and Shielded Metal Arc 13 4 Original Prototype Ultralight GMAW Torch With 8 Inch
Designing and Implementation of River Classification Assistant Management System
NASA Astrophysics Data System (ADS)
Zhao, Yinjun; Jiang, Wenyuan; Yang, Rujun; Yang, Nan; Liu, Haiyan
2018-03-01
In an earlier publication, we proposed a new Decision Classifier (DCF) for Chinese river classification based on their structures. To expand, enhance and promote the application of the DCF, we build a computer system to support river classification named River Classification Assistant Management System. Based on ArcEngine and ArcServer platform, this system implements many functions such as data management, extraction of river network, river classification, and results publication under combining Client / Server with Browser / Server framework.
NASA Astrophysics Data System (ADS)
Stepanov, V. A.; Krakht, L. N.; Merker, E. E.; Sazonov, A. V.; Chermenev, E. A.
2015-12-01
The problems of increasing the efficiency of electric steelmaking using fuel-oxygen burners to supply oxygen for the afterburning of effluent gases in an arc furnace are considered. The application of a new energy-saving regime based on a proposed technology of electric melting is shown to intensify the processes of slag formation, heating, and metal decarburization.
Thermal runaway of metal nano-tips during intense electron emission
NASA Astrophysics Data System (ADS)
Kyritsakis, A.; Veske, M.; Eimre, K.; Zadin, V.; Djurabekova, F.
2018-06-01
When an electron emitting tip is subjected to very high electric fields, plasma forms even under ultra high vacuum conditions. This phenomenon, known as vacuum arc, causes catastrophic surface modifications and constitutes a major limiting factor not only for modern electron sources, but also for many large-scale applications such as particle accelerators, fusion reactors etc. Although vacuum arcs have been studied thoroughly, the physical mechanisms that lead from intense electron emission to plasma ignition are still unclear. In this article, we give insights to the atomic scale processes taking place in metal nanotips under intense field emission conditions. We use multi-scale atomistic simulations that concurrently include field-induced forces, electron emission with finite-size and space-charge effects, Nottingham and Joule heating. We find that when a sufficiently high electric field is applied to the tip, the emission-generated heat partially melts it and the field-induced force elongates and sharpens it. This initiates a positive feedback thermal runaway process, which eventually causes evaporation of large fractions of the tip. The reported mechanism can explain the origin of neutral atoms necessary to initiate plasma, a missing key process required to explain the ignition of a vacuum arc. Our simulations provide a quantitative description of in the conditions leading to runaway, which shall be valuable for both field emission applications and vacuum arc studies.
Open Source GIS Connectors to NASA GES DISC Satellite Data
NASA Technical Reports Server (NTRS)
Kempler, Steve; Pham, Long; Yang, Wenli
2014-01-01
The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) houses a suite of high spatiotemporal resolution GIS data including satellite-derived and modeled precipitation, air quality, and land surface parameter data. The data are valuable to various GIS research and applications at regional, continental, and global scales. On the other hand, many GIS users, especially those from the ArcGIS community, have difficulties in obtaining, importing, and using our data due to factors such as the variety of data products, the complexity of satellite remote sensing data, and the data encoding formats. We introduce a simple open source ArcGIS data connector that significantly simplifies the access and use of GES DISC data in ArcGIS.
Research on configuration of railway self-equipped tanker based on minimum cost maximum flow model
NASA Astrophysics Data System (ADS)
Yang, Yuefang; Gan, Chunhui; Shen, Tingting
2017-05-01
In the study of the configuration of the tanker of chemical logistics park, the minimum cost maximum flow model is adopted. Firstly, the transport capacity of the park loading and unloading area and the transportation demand of the dangerous goods are taken as the constraint condition of the model; then the transport arc capacity, the transport arc flow and the transport arc edge weight are determined in the transportation network diagram; finally, the software calculations. The calculation results show that the configuration issue of the tankers can be effectively solved by the minimum cost maximum flow model, which has theoretical and practical application value for tanker management of railway transportation of dangerous goods in the chemical logistics park.
Quasiparticle Scattering in Type-II Weyl semimetal MoTe2.
Lin, Chun-Liang; Arafune, Ryuichi; Minamitani, Emi; Kawai, Maki; Takagi, Noriaki
2018-01-30
The electronic structure of type-II Weyl semimetal molybdenum ditelluride (MoTe<sub>2</sub>) is studied by using scanning tunneling microscopy and density functional theory calculations. Through measuring energy-dependent quasiparticle interference (QPI) patterns with a cryogenic scanning tunneling microscope, several characteristic features are found in the QPI patterns. Two of them arise from the Weyl semimetal nature; one is the topological Fermi arc surface state and the other can be assigned to be a Weyl point. The remaining structures are derived from the scatterings relevant to the bulk electronic states. The findings lead to thorough understanding of the topological electronic structure of type-II Weyl semimetal MoTe<sub>2</sub>. © 2018 IOP Publishing Ltd.
Code of Federal Regulations, 2011 CFR
2011-07-01
... bars or by hitting the valve with a tool; (ix) Shall not be thawed by boiling water; (x) Shall not be... provide electrical contact. Exposed metal parts shall be insulated. (3) Ground returns and machine... the vicinity from the direct rays and sparks of the arc. (ii) Employees in areas not protected from...
Detection of recycled marine sediment components in crater lake fluids using 129I
NASA Astrophysics Data System (ADS)
Fehn, U.; Snyder, G. T.; Varekamp, J. C.
2002-06-01
Crater lakes provide time-integrated samples of volcanic fluids, which may carry information on source components. We tested under what circumstances 129I concentrations can be used for the detection of a signal derived from the recycling of marine sediments in subduction zone magmatism. The 129I system has been successfully used to determine origin and pathways in other volcanic fluids, but the application of this system to crater lakes is complicated by the presence of anthropogenic 129I, related to recent nuclear activities. Results are reported from four crater lakes, associated with subducting crust varying in age between 23 and 98 Ma. The 129I/I ratios determined for Copahue, Argentina, (129I/I=700×10-15) and White Island, New Zealand, (129I/I=284×10-15) demonstrate the presence of iodine in the crater lakes that was derived from recycled marine sediments. A comparison to the ages of the subducted sediments in these two cases indicates that the ratios likely reflect iodine remobilization from the entire sediment column that was undergoing subduction. While the 129I signals in Poás and Rincón de la Vieja, Costa Rica also demonstrate the presence of recycled iodine, the relatively high percentage of meteoric water in these lakes prevents a reliable determination of source ages. The observed high concentrations of iodine and 129I/I ratios substantially below current surface values strongly argue for the presence of recycled marine components in the arc magmas of all four cases. Components from subducted marine sediments can be quantified and related to specific parts of the sediment column in cases where the iodine concentration in the lake waters exceeds 5 μM.
Precise satellite orbit determination with particular application to ERS-1
NASA Astrophysics Data System (ADS)
Fernandes, Maria Joana Afonso Pereira
The motivation behind this study is twofold. First to assess the accuracy of ERS-1 long arc ephemerides using state of the art models. Second, to develop improved methods for determining precise ERS-1 orbits using either short or long arc techniques. The SATAN programs, for the computation of satellite orbits using laser data were used. Several facilities were added to the original programs: the processing of PRARE range and altimeter data, and a number of algorithms that allow more flexible solutions by adjusting a number of additional parameters. The first part of this study, before the launch of ERS-1, was done with SEAS AT data. The accuracy of SEASAT orbits computed with PRARE simulated data has been determined. The effect of temporal distribution of tracking data along the arc and the extent to which altimetry can replace range data have been investigated. The second part starts with the computation of ERS-1 long arc solutions using laser data. Some aspects of modelling the two main forces affecting ERS-l's orbit are investigated. With regard to the gravitational forces, the adjustment of a set of geopotential coefficients has been considered. With respect to atmospheric drag, extensive research has been carried out on determining the influence on orbit accuracy of the measurements of solar fluxes (P10.7 indices) and geomagnetic activity (Kp indices) used by the atmospheric model in the computation of atmospheric density at satellite height. Two new short arc methods have been developed: the Constrained and the Bayesian method. Both methods are dynamic and consist of solving for the 6 osculating elements. Using different techniques, both methods overcome the problem of normal matrix ill- conditioning by constraining the solution. The accuracy and applicability of these methods are discussed and compared with the traditional non-dynamic TAR method.
Arc-heated gas flow experiments for hypersonic propulsion applications
NASA Astrophysics Data System (ADS)
Roseberry, Christopher Matthew
Although hydrogen is an attractive fuel for a hypersonic air-breathing vehicle in terms of reaction rate, flame temperature, and energy content per unit mass, the substantial tank volume required to store hydrogen imposes a drag penalty to performance that tends to offset these advantages. An alternative approach is to carry a hydrocarbon fuel and convert it on-board into a hydrogen-rich gas mixture to be injected into the engine combustors. To investigate this approach, the UTA Arc-Heated Wind Tunnel facility was modified to run on methane rather than the normally used nitrogen. Previously, this facility was extensively developed for the purpose of eventually performing experiments simulating scramjet engine flow along a single expansion ramp nozzle (SERN) in addition to more generalized applications. This formidable development process, which involved modifications to every existing subsystem along with the incorporation of new subsystems, is described in detail. Fortunately, only a minor plumbing reconfiguration was required to prepare the facility for the fuel reformation research. After a failure of the arc heater power supply, a 5.6 kW plasma-cutting torch was modified in order to continue the arc pyrolysis experiments. The outlet gas flow from the plasma torch was sampled and subsequently analyzed using gas chromatography. The experimental apparatus converted the methane feedstock almost completely into carbon, hydrogen and acetylene. A high yield of hydrogen, consisting of a product mole fraction of roughly 0.7, was consistently obtained. Unfortunately, the energy consumption of the apparatus was too excessive to be feasible for a flight vehicle. However, other researchers have pyrolyzed hydrocarbons using electric arcs with much less power input per unit mass.
NASA Astrophysics Data System (ADS)
Lebouvier, A.; Iwarere, S. A.; Ramjugernath, D.; Fulcheri, L.
2013-04-01
This paper deals with a three-dimensional (3D) time-dependent magnetohydrodynamic (MHD) model under peculiar conditions of very high pressures (from 2 MPa up to 10 MPa) and low currents (<1 A). Studies on plasma arc working under these unusual conditions remain almost unexplored because of the technical and technological challenges to develop a reactor able to sustain a plasma at very high pressures. The combined effect of plasma reactivity and high pressure would probably open the way towards new promising applications in various fields: chemistry, lightning, materials or nanomaterial synthesis. A MHD model helps one to understand the complex and coupled phenomena surrounding the plasma which cannot be understood by simply experimentation. The model also provides data which are difficult to directly determine experimentally. The model simulates an experimental-based batch reactor working with helium. The particular reactor in question was used to investigate the Fischer-Tropsch application, fluorocarbon production and CO2 retro-conversion. However, as a first approach in terms of MHD, the model considers the case for helium as a non-reactive working gas. After a detailed presentation of the model, a reference case has been fully analysed (P = 8 MPa, I = 0.35 A) in terms of physical properties. The results show a bending of the arc and displacement of the anodic arc root towards the top of the reactor, due to the combined effects of convection, gravity and electromagnetic forces. A parametric study on the pressure (2-10 MPa) and current (0.25-0.4 A) was then investigated. The operating pressure does not show an influence on the contraction of the arc but higher pressures involve a higher natural convection in the reactor, driven by the density gradients between the cold and hot gas.
2016-01-01
Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p-type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination. PMID:28066690
Hölz, K; Lietard, J; Somoza, M M
2017-01-03
Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p -type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination.
Dimensionless factors for an alternating-current non-thermal arc plasma
NASA Astrophysics Data System (ADS)
Zhang, Si-Yuan; Li, Xiao-Song; Liu, Jin-Bao; Liu, Jing-Lin; Li, He-Ping; Zhu, Ai-Min
2016-12-01
A gliding arc discharge, as a source of warm plasma combining advantages of both thermal and cold plasmas, would have promising application prospects in the fields of fuel conversion, combustion enhancement, material synthesis, surface modifications, pollution control, etc. In order to gain insight into the features of an alternating-current gliding arc discharge plasma, three dimensionless factors, i.e., the extinction span (ψ), current lag (δ), and heating lag (χ) factors are proposed in this letter based on the measured waveforms of the discharge voltage and current in an AC gliding arc discharge plasma. The influences of the driving frequency of the power supply (f) on these three dimensionless parameters are investigated experimentally with the explanations on the physical meanings of these factors. The experimental results show that a higher value of f would lead to the lower values of ψ and δ, as well as a higher value of χ. These experimental phenomena indicate a lower threshold ignition voltage of the discharges, a lower current-growth inertia of the gliding arcs and a larger relative thermal inertia of the plasmas with increase the driving frequency of the power supply in the operating parameter range studied in this letter.
Sensewheel: an adjunct to wheelchair skills training
Taylor, Stephen J.G.; Holloway, Catherine
2016-01-01
The purpose of this Letter was to investigate the influence of real-time verbal feedback to optimise push arc during over ground manual wheelchair propulsion. Ten healthy non-wheelchair users pushed a manual wheelchair for a distance of 25 m on level paving, initially with no feedback and then with real-time verbal feedback aimed at controlling push arc within a range of 85°–100°. The real-time feedback was provided by a physiotherapist walking behind the wheelchair, viewing real-time data on a tablet personal computer received from the Sensewheel, a lightweight instrumented wheelchair wheel. The real-time verbal feedback enabled the participants to significantly increase their push arc. This increase in push arc resulted in a non-significant reduction in push rate and a significant increase in peak force application. The intervention enabled participants to complete the task at a higher mean velocity using significantly fewer pushes. This was achieved via a significant increase in the power generated during the push phase. This Letter identifies that a lightweight instrumented wheelchair wheel such as the Sensewheel is a useful adjunct to wheelchair skills training. Targeting the optimisation of push arc resulted in beneficial changes in propulsion technique. PMID:28008362
The Moments and Distributions of Some Quantities Arising from Random Arcs on the Circle.
1982-09-28
HUFFER 28 SEP 82 TR-326 UNCLASSIFIED NOO814-76-C-9475 F/G 12/ 1 Nu’_umu1rnuimhhh00hhh00hh0hE smhhhhhhhhhhh Iml Lr I M-O 021I Wj In" I .O wi IlII M 12.2...L =- - limoI .=.IIe 211 1 . 11.6- MROMICROCOPY REEOOLION TEST CNT MICROCOPY RESOLUTION TEST CHART INAIONX. SROO OFT TESTU-1CA-A NATOOOAL BUREAU OF...8217 - i l ..- 1 "’II -t . -. - - ACKNOLEDGMENT I wish to thank my adviser, Professor Herbert Solomon, for his guidance and patience. I am also very grateful
Atomic-Scale Visualization of Quasiparticle Interference on a Type-II Weyl Semimetal Surface.
Zheng, Hao; Bian, Guang; Chang, Guoqing; Lu, Hong; Xu, Su-Yang; Wang, Guangqiang; Chang, Tay-Rong; Zhang, Songtian; Belopolski, Ilya; Alidoust, Nasser; Sanchez, Daniel S; Song, Fengqi; Jeng, Horng-Tay; Yao, Nan; Bansil, Arun; Jia, Shuang; Lin, Hsin; Hasan, M Zahid
2016-12-23
We combine quasiparticle interference simulation (theory) and atomic resolution scanning tunneling spectromicroscopy (experiment) to visualize the interference patterns on a type-II Weyl semimetal Mo_{x}W_{1-x}Te_{2} for the first time. Our simulation based on first-principles band topology theoretically reveals the surface electron scattering behavior. We identify the topological Fermi arc states and reveal the scattering properties of the surface states in Mo_{0.66}W_{0.34}Te_{2}. In addition, our result reveals an experimental signature of the topology via the interconnectivity of bulk and surface states, which is essential for understanding the unusual nature of this material.
Li, Jian; Shashurin, Alexey; Kundrapu, Madhusudhan; Keidar, Michael
2012-02-02
Carbon nanostructures such as single-walled carbon nanotubes (SWCNT) and graphene attract a deluge of interest of scholars nowadays due to their very promising application for molecular sensors, field effect transistor and super thin and flexible electronic devices(1-4). Anodic arc discharge supported by the erosion of the anode material is one of the most practical and efficient methods, which can provide specific non-equilibrium processes and a high influx of carbon material to the developing structures at relatively higher temperature, and consequently the as-synthesized products have few structural defects and better crystallinity. To further improve the controllability and flexibility of the synthesis of carbon nanostructures in arc discharge, magnetic fields can be applied during the synthesis process according to the strong magnetic responses of arc plasmas. It was demonstrated that the magnetically-enhanced arc discharge can increase the average length of SWCNT (5), narrow the diameter distribution of metallic catalyst particles and carbon nanotubes (6), and change the ratio of metallic and semiconducting carbon nanotubes (7), as well as lead to graphene synthesis (8). Furthermore, it is worthwhile to remark that when we introduce a non-uniform magnetic field with the component normal to the current in arc, the Lorentz force along the J×B direction can generate the plasmas jet and make effective delivery of carbon ion particles and heat flux to samples. As a result, large-scale graphene flakes and high-purity single-walled carbon nanotubes were simultaneously generated by such new magnetically-enhanced anodic arc method. Arc imaging, scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy were employed to analyze the characterization of carbon nanostructures. These findings indicate a wide spectrum of opportunities to manipulate with the properties of nanostructures produced in plasmas by means of controlling the arc conditions.
Li, Jian; Shashurin, Alexey; Kundrapu, Madhusudhan; Keidar, Michael
2012-01-01
Carbon nanostructures such as single-walled carbon nanotubes (SWCNT) and graphene attract a deluge of interest of scholars nowadays due to their very promising application for molecular sensors, field effect transistor and super thin and flexible electronic devices1-4. Anodic arc discharge supported by the erosion of the anode material is one of the most practical and efficient methods, which can provide specific non-equilibrium processes and a high influx of carbon material to the developing structures at relatively higher temperature, and consequently the as-synthesized products have few structural defects and better crystallinity. To further improve the controllability and flexibility of the synthesis of carbon nanostructures in arc discharge, magnetic fields can be applied during the synthesis process according to the strong magnetic responses of arc plasmas. It was demonstrated that the magnetically-enhanced arc discharge can increase the average length of SWCNT 5, narrow the diameter distribution of metallic catalyst particles and carbon nanotubes 6, and change the ratio of metallic and semiconducting carbon nanotubes 7, as well as lead to graphene synthesis 8. Furthermore, it is worthwhile to remark that when we introduce a non-uniform magnetic field with the component normal to the current in arc, the Lorentz force along the J×B direction can generate the plasmas jet and make effective delivery of carbon ion particles and heat flux to samples. As a result, large-scale graphene flakes and high-purity single-walled carbon nanotubes were simultaneously generated by such new magnetically-enhanced anodic arc method. Arc imaging, scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy were employed to analyze the characterization of carbon nanostructures. These findings indicate a wide spectrum of opportunities to manipulate with the properties of nanostructures produced in plasmas by means of controlling the arc conditions. PMID:22330847
Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes
NASA Technical Reports Server (NTRS)
Agapakis, John E.; Bolstad, Jon
1993-01-01
Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed.
Precise regional baseline estimation using a priori orbital information
NASA Technical Reports Server (NTRS)
Lindqwister, Ulf J.; Lichten, Stephen M.; Blewitt, Geoffrey
1990-01-01
A solution using GPS measurements acquired during the CASA Uno campaign has resulted in 3-4 mm horizontal daily baseline repeatability and 13 mm vertical repeatability for a 729 km baseline, located in North America. The agreement with VLBI is at the level of 10-20 mm for all components. The results were obtained with the GIPSY orbit determination and baseline estimation software and are based on five single-day data arcs spanning the 20, 21, 25, 26, and 27 of January, 1988. The estimation strategy included resolving the carrier phase integer ambiguities, utilizing an optial set of fixed reference stations, and constraining GPS orbit parameters by applying a priori information. A multiday GPS orbit and baseline solution has yielded similar 2-4 mm horizontal daily repeatabilities for the same baseline, consistent with the constrained single-day arc solutions. The application of weak constraints to the orbital state for single-day data arcs produces solutions which approach the precise orbits obtained with unconstrained multiday arc solutions.
NASA Astrophysics Data System (ADS)
Weifeng, Xie; Chenglei, Fan; Chunli, Yang; Sanbao, Lin
2018-02-01
Ultrasonic-wave-assisted gas metal arc welding (U-GMAW) is a new, advanced arc welding method that uses an ultrasonic wave emitted from an ultrasonic radiator above the arc. However, it remains unclear how the ultrasonic wave affects the metal droplet, hindering further application of U-GMAW. In this paper, an improved U-GMAW system was used and its superiority was experimentally demonstrated. Then a series of experiments were designed and performed to study how the ultrasonic wave affects droplet transfer, including droplet size, velocity, and motion trajectory. The behavior of droplet transfer was observed in high-speed images. The droplet transfer is closely related to the distribution of the acoustic field, determined by the ultrasonic current. Moreover, by analyzing the variably accelerated motion of the droplet, the acoustic control of the droplet transfer was intuitively demonstrated. Finally, U-GMAW was successfully used in vertical-up and overhead welding experiments, showing that U-GMAW is promising for use in welding in all positions.
Modelling welded material for ultrasonic testing using MINA: Theory and applications
NASA Astrophysics Data System (ADS)
Moysan, J.; Corneloup, G.; Chassignole, B.; Gueudré, C.; Ploix, M. A.
2012-05-01
Austenitic steel multi-pass welds exhibit a heterogeneous and anisotropic structure that causes difficulties in the ultrasonic testing. Increasing the material knowledge is a long term research field for LCND laboratory and EDF Les Renardières in France. A specific model has been developed: the MINA model (Modelling an Isotropy from Notebook of Arc welding). Welded material is described in 2D for flat position arc welding with shielded electrode (SMAW) at a functional scale for UT modeling. The grain growth is the result of three physical phenomena: epitaxial growth, influence of temperature gradient, and competition between the grains. The model uses phenomenological rules to combine these three phenomena. A limited number of parameters is used to make the modelling possible from the information written down in a notebook of arc welding. We present all these principles with 10 years' hindsight. To illustrate the model's use, we present conclusions obtained with two recent applications. In conclusion we give also insights on other research topics around this model : inverse problem using a F.E.M. code simulating the ultrasonic propagation, in position welding, 3D prospects, GTAW.
Anti-reflective coating with a conductive indium tin oxide layer on flexible glass substrates.
Sung, Yilin; Malay, Robert E; Wen, Xin; Bezama, Christian N; Soman, Varun V; Huang, Ming-Huang; Garner, Sean M; Poliks, Mark D; Klotzkin, David
2018-03-20
Flexible glass has many applications including photovoltaics, organic light-emitting device (OLED) lighting, and displays. Its ability to be processed in a roll-to-roll facility enables high-throughput continuous manufacturing compared to conventional glass processing. For photovoltaic, OLED lighting, and display applications, transparent conductors are required with minimal optical reflection losses. Here, we demonstrate an anti-reflective coating (ARC) that incorporates a useful transparent conductor that is realizable on flexible substrates. This reduces the average reflectivity to less than 6% over the visible band from normal incidence to incident angles up to 60°. This ARC is designed by the average uniform algorithm method. The coating materials consist of a multilayer stack of an electrically functional conductive indium tin oxide with conductivity 2.95×10 5 Siemens/m (31 Ω/□), and AlSiO 2 . The coatings showed modest changes in reflectivity and no delamination after 10,000 bending cycles. This demonstrates that effective conductive layers can be integrated into ARCs and can be realized on flexible glass substrates with proper design and process control.
Evaluation of a high-torque backlash-free roller actuator
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Rohn, Douglas A.; Anderson, William
1986-01-01
The results are presented of a test program that evaluated the stiffness, accuracy, torque ripple, frictional losses, and torque holding capability of a 16:1 ratio, 430 N-m (320 ft-lb) planetary roller drive for a potential space vehicle actuator application. The drive's planet roller supporting structure and bearings were found to be the largest contributors to overall drive compliance, accounting for more than half of the total. In comparison, the traction roller contacts themselves contributed only 9 percent of the drive's compliance based on an experimentally verified stiffness model. The drive exhibited no backlash although 8 arc sec of hysteresis deflection were recorded due to microcreep within the contact under torque load. Because of these load-dependent displacements, some form of feedback control would be required for arc second positioning applications. Torque ripple tests showed the drive to be extremely smooth, actually providing some damping of input torsional oscillations. The drive also demonstrated the ability to hold static torque with drifts of 7 arc sec or less over a 24 hr period at 35 percent of full load.
ASME Material Challenges for Advanced Reactor Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piyush Sabharwall; Ali Siahpush
2013-07-01
This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at highermore » temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.« less
NASA Astrophysics Data System (ADS)
Abdi, A.
2012-12-01
Science and science education benefit from easy access to data yet often geophysical data sets are large, complex and difficult to share. The difficulty in sharing data and imagery easily inhibits both collaboration and the use of real data in educational applications. The dissemination of data products through web maps serves a very efficient and user-friendly method for students, the public and the science community to gain insights and understanding from data. Few research groups provide direct access to their data, let alone map-based visualizations. By building upon current GIS infrastructure with web mapping technologies, like ArcGIS Server, scientific groups, institutions and agencies can enhance the value of their GIS investments. The advantages of web maps to serve data products are many; existing web-mapping technology allows complex GIS analysis to be shared across the Internet, and can be easily scaled from a few users to millions. This poster highlights the features of an interactive web map developed at the Polar Geophysics Group at the Lamont-Doherty Earth Observatory of Columbia University that provides a visual representation of, and access to, data products that resulted from the group's recently concluded AGAP project (http://pgg.ldeo.columbia.edu). The AGAP project collected more than 120,000 line km of new aerogeophysical data using two Twin Otter aircrafts. Data included ice penetrating radar, magnetometer, gravimeter and laser altimeter measurements. The web map is based upon ArcGIS Viewer for Flex, which is a configurable client application built on the ArcGIS API for Flex that works seamlessly with ArcGIS Server 10. The application can serve a variety of raster and vector file formats through the Data Interoperability for Server, which eliminates data sharing barriers across numerous file formats. The ability of the application to serve large datasets is only hindered by the availability of appropriate hardware. ArcGIS is a proprietary product, but there are a few data portals in the earth sciences that have a map interface using open access products such as MapServer and OpenLayers, the most notable being the NASA IceBridge Data Portal. Indeed, with the widespread availability of web mapping technology, the scientific community should advance towards this direction when disseminating their data.
Lidar arc scan uncertainty reduction through scanning geometry optimization
Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; ...
2016-04-13
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less
Lidar arc scan uncertainty reduction through scanning geometry optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less
Absorber arc mitigation during CHI on NSTX
NASA Astrophysics Data System (ADS)
Mueller, D.; Bell, M. G.; Roquemore, A. L.; Raman, R.; Nelson, B. A.; Jarboe, T. R.
2009-11-01
A method of non-inductive startup, referred to as transient coaxial helicity injection (CHI), was successfully developed on the Helicity Injected Torus (HIT-II) experiment and employed on the National Spherical Torus Experiment (NSTX). This technique has produced 160 kA of plasma current on closed flux surfaces. Over 100 kA of the CHI current has been coupled to inductively driven current ramp-up. In transient CHI, a voltage is applied across the insulating gap separating the inner and outer vacuum vessel and gas is introduced at the lower gap (the injector). The resulting current in the injector follows the helical magnetic field connecting the electrodes, forms a toroidal current and expands into the vacuum vessel. At higher CHI current, the poloidal field due to the plasma can connect the inner and outer vessels at the insulating gap at the top (called the absorber) of NSTX and lower the impedance there. This results in arcs in the absorber which are a source of impurities and which reduce the desired current in the injector. Two coils installed in the absorber will be used to reduce the magnetic field across the absorber gap and mitigate the absorber arcs.
Long-range self-organization of cytoskeletal myosin II filament stacks.
Hu, Shiqiong; Dasbiswas, Kinjal; Guo, Zhenhuan; Tee, Yee-Han; Thiagarajan, Visalatchi; Hersen, Pascal; Chew, Teng-Leong; Safran, Samuel A; Zaidel-Bar, Ronen; Bershadsky, Alexander D
2017-02-01
Although myosin II filaments are known to exist in non-muscle cells, their dynamics and organization are incompletely understood. Here, we combined structured illumination microscopy with pharmacological and genetic perturbations, to study the process of actomyosin cytoskeleton self-organization into arcs and stress fibres. A striking feature of the myosin II filament organization was their 'registered' alignment into stacks, spanning up to several micrometres in the direction orthogonal to the parallel actin bundles. While turnover of individual myosin II filaments was fast (characteristic half-life time 60 s) and independent of actin filament turnover, the process of stack formation lasted a longer time (in the range of several minutes) and required myosin II contractility, as well as actin filament assembly/disassembly and crosslinking (dependent on formin Fmnl3, cofilin1 and α-actinin-4). Furthermore, myosin filament stack formation involved long-range movements of individual myosin filaments towards each other suggesting the existence of attractive forces between myosin II filaments. These forces, possibly transmitted via mechanical deformations of the intervening actin filament network, may in turn remodel the actomyosin cytoskeleton and drive its self-organization.
Applicability of Firecracker Welding to Ship Production
1975-07-31
minor arc-outages seemed to coincide with defects in-the weld. For example, careful study of the film permitted orientation of such phenomena with the...Sample Electrode Electrode Voltage Current Frames Length weld covered No. Type diam. in. v A per sec. of film ft. in. Polarity 50 7024 1/4 35 240 128...to snuff out the arc. This was especially evident with the E7016 and E7018 electrodes which have a very fluid slag. The molten metal often caused a
NASA Astrophysics Data System (ADS)
Sych, O. V.; Khlusova, E. I.; Yashin, E. A.
2017-12-01
The paper presents the results of quantitative analysis of C, Mn, Ni and Cu content on strength and cold-resistance of rolled plates. Relations between the ferritic-bainitic structure morphology and anisotropy and steel performance characteristics have been established. Influence of thermal and deformation rolling patterns on steel structure has been studied. The steel chemical composition has been improved and precision thermomechanical processing conditions for production of cold-resistant Arc-steel plates have been developed.
Research on Characteristics of New Energy Dissipation With Symmetrical Structure
NASA Astrophysics Data System (ADS)
Ming, Wen; Huang, Chun-mei; Huang, Hao-wen; Wang, Xin-fang
2018-03-01
Utilizing good energy consumption capacity of arc steel bar, a new energy dissipation with symmetrical structure was proposed in this article. On the base of collection experimental data of damper specimen Under low cyclic reversed loading, finite element models were built by using ANSYS software, and influences of parameter change (Conduction rod diameter, Actuation plate thickness, Diameter of arc steel rod, Curved bars initial bending) on energy dissipation performance were analyzed. Some useful conclusions which can lay foundations for practical application were drawn.
2015-12-01
is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Hull cut welding proficiency is an essential skill maintained by personnel...at naval shipyards. This thesis explores arc weld theory to develop ideal submarine hull butt joint designs and recommends preliminary testing to...shipboard hull welding applications, theoretically. Butt joint samples were created using HY-80 steel plate so that the following comparisons could
Plasma-Arc Deposited Elemental Boron Film for use as a Durable Nonstick Coating
2007-09-01
therefore inexpensive) to deposit by either magnetron sputtering or vacuum arc techniques. As it turned out, a Ti-coated sample of 1100Al was available...in dual -use applications, such as the ones just mentioned. 2. RESULTS OF THE PHASE I WORK The Phase I project demonstrated that it is possible to...this upgrade, we replaced the original source assembly by one that could handle very long-pulse operation, by including water-cooling in the anode
An analysis of the ArcCHECK-MR diode array's performance for ViewRay quality assurance.
Ellefson, Steven T; Culberson, Wesley S; Bednarz, Bryan P; DeWerd, Larry A; Bayouth, John E
2017-07-01
The ArcCHECK-MR diode array utilizes a correction system with a virtual inclinometer to correct the angular response dependencies of the diodes. However, this correction system cannot be applied to measurements on the ViewRay MR-IGRT system due to the virtual inclinometer's incompatibility with the ViewRay's multiple simultaneous beams. Additionally, the ArcCHECK's current correction factors were determined without magnetic field effects taken into account. In the course of performing ViewRay IMRT quality assurance with the ArcCHECK, measurements were observed to be consistently higher than the ViewRay TPS predictions. The goals of this study were to quantify the observed discrepancies and test whether applying the current factors improves the ArcCHECK's accuracy for measurements on the ViewRay. Gamma and frequency analysis were performed on 19 ViewRay patient plans. Ion chamber measurements were performed at a subset of diode locations using a PMMA phantom with the same dimensions as the ArcCHECK. A new method for applying directionally dependent factors utilizing beam information from the ViewRay TPS was developed in order to analyze the current ArcCHECK correction factors. To test the current factors, nine ViewRay plans were altered to be delivered with only a single simultaneous beam and were measured with the ArcCHECK. The current correction factors were applied using both the new and current methods. The new method was also used to apply corrections to the original 19 ViewRay plans. It was found the ArcCHECK systematically reports doses higher than those actually delivered by the ViewRay. Application of the current correction factors by either method did not consistently improve measurement accuracy. As dose deposition and diode response have both been shown to change under the influence of a magnetic field, it can be concluded the current ArcCHECK correction factors are invalid and/or inadequate to correct measurements on the ViewRay system. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Salavati, Saeid
Metallic foam core sandwich structures have been of particular interest for engineering applications in recent decades due to their unique physical and mechanical properties. One of the potential applications of open pore metallic foam core sandwich structures is in heat exchangers. An investigation of sandwich structures fabricated from materials suitable for application at high temperatures and in corrosive environments was undertaken in this project. A novel method for fabrication of metallic foam core sandwich structures is thermal spray deposition of the faces on the prepared surfaces of the metallic foam substrate. The objective of the current study was to optimize the twin wire arc spray process parameters for the deposition of alloy 625 faces with controllable porosity content on the nickel foam substrate, and to characterize the physical and mechanical properties of the sandwich structure. The experimental investigations consisted of microstructural evaluation of the skin material and the foam substrate, investigation of the effect of alloying on the mechanical and thermal properties of the nickel foam, optimization of the grit-blasting and arc spray processes, observation of mechanical properties of the alloy 625 deposit by tensile testing and evaluation of the overall mechanical properties of the sandwich structure under flexural loading condition. The optimization of arc spraying process parameters allowed deposition of alloy 625 faces with a porosity of less than 4% for heat exchanger applications. Modification of the arc spraying process by co-deposition of polyester powder enabled 20% porosity to be obtained in the deposited faces for heat shield applications with film cooling. The effects of nickel foam alloying and heat treatment on the flexural rigidity of the sandwich structures were investigated and compared with as-received foam and as-fabricated sandwich structures. Available analytical models were employed to describe the effect of constituents' mechanical properties on the overall mechanical performance of the sandwich structures. Finite element modeling using ANSYS Structural was used to simulate the behaviour of the sandwich structures in four-point bending. The analytical and simulation results were compared with the experimental results obtained from the flexural tests.
Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)
NASA Astrophysics Data System (ADS)
Li, X. R.; Wang, X.
2016-03-01
When using the genetic algorithm to solve the problem of too-short-arc (TSA) determination, due to the difference of computing processes between the genetic algorithm and classical method, the methods for outliers editing are no longer applicable. In the genetic algorithm, the robust estimation is acquired by means of using different loss functions in the fitness function, then the outlier problem of TSAs is solved. Compared with the classical method, the application of loss functions in the genetic algorithm is greatly simplified. Through the comparison of results of different loss functions, it is clear that the methods of least median square and least trimmed square can greatly improve the robustness of TSAs, and have a high breakdown point.
NASA Astrophysics Data System (ADS)
Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori; Okamoto, Kazufumi
Nitric monoxide (NO) is increasingly being used in medical applications. Current applications use a gas cylinder of N2 mixed with a high concentration of NO. This arrangement is potentially dangerous, given the possibility of an accidental leak of NO from the cylinder. The presence of NO in air leads to the formation of nitric dioxide (NO2), which is toxic to the lungs. Therefore on-site generation of NO would be very desirable to treat patients with acute respiratory distress syndrome and other related illnesses. Recently, pure NO was generated using a pulsed arc discharge in dry air with an NO2-NO converter and charcoal. The concentration of NO was easily controlled by controlling pulse repetition rate and gas flow rate. This system is already under investigation in an animal experiment.
Application of YAG Laser TIG Arc Hybrid Welding to Thin AZ31B Magnesium Alloy Sheet
NASA Astrophysics Data System (ADS)
Kim, Taewon; Kim, Jongcheol; Hasegawa, Yu; Suga, Yasuo
A magnesium alloy is said to be an ecological material with high ability of recycling and lightweight property. Especially, magnesium alloys are in great demand on account of outstanding material property as a structural material. Under these circumstances, research and development of welding process to join magnesium alloy plates are of great significance for wide industrial application of magnesium. In order to use it as a structure material, the welding technology is very important. TIG arc welding process is the most ordinary process to weld magnesium alloy plates. However, since the heat source by the arc welding process affects the magnesium alloy plates, HAZ of welded joint becomes wide and large distortion often occurs. On the other hand, a laser welding process that has small diameter of heat source seems to be one of the possible means to weld magnesium alloy in view of the qualitative improvement. However, the low boiling point of magnesium generates some weld defects, including porosity and solidification cracking. Furthermore, precise edge preparation is very important in butt-welding by the laser welding process, due to the small laser beam diameter. Laser/arc hybrid welding process that combines the laser beam and the arc is an effective welding process in which these two heat sources influence and assist each other. Using the hybrid welding, a synegistic effect is achievable and the disadvantages of the respective processes can be compensated. In this study, YAG laser/TIG arc hybrid welding of thin magnesium alloy (AZ31B) sheets was investigated. First of all, the effect of the irradiation point and the focal position of laser beam on the quality of a weld were discussed in hybrid welding. Then, it was confirmed that a sound weld bead with sufficient penetration is obtained using appropriate welding conditions. Furthermore, it was made clear that the heat absorption efficiency is improved with the hybrid welding process. Finally, the tensile tests of welded joints were performed, and it was confirmed that they have sufficient mechanical properties. As a result of this study, it is confirmed that, if the appropriate welding conditions are selected, sound welded joints of AZ31B magnesium alloy are obtainable by the YAG laser/TIG arc hybrid welding process.
Oceanographic Analysis of Sun Glint Images Taken on Space Shuttle Mission STS 41-G.
1986-03-01
10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. ?I TITLE (Include Security Ciassification) OCEANOGRAPHIC...CONTENTS le INTRJODUCTION --- ---. m.--- --..-- --.-- -- -- -- --- -- ---.-. II. WESTERN MEDITERRANEAN OCEANOGRAPHIC OVERVIEV - --------------- 10. A...By computing the arc tangent of 128 n.m./125 n.m. a tilt angle of 45.7’ was approximated for the camera lens. Two simplifications were made. Earth
ERIC Educational Resources Information Center
Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.
This curriculum guide consists of materials for use in teaching an advanced course in agricultural mechanics designed for 11th and 12th grade students. Addressed in the individual units of the guide are arc welding; oxy-acetylene welding; soldering; electricity; tractor maintenance, operation, and safety; small engines; farm structures; and cold…
Operating experience with LEAP from the perspective of the computing applications analyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, W.E. III; Horwedel, J.E.; McAdoo, J.W.
1981-05-01
The Long-Term Energy Analysis Program (LEAP), which was used for the energy price-quantity projections in the 1978 Annual Report to Congress (ARC '78) and used in an ORNL research program to develop and demonstrate a procedure for evaluating energy-economic modeling computer codes and the important results derived therefrom, is discussed. The LEAP system used in the ORNL research, the mechanics of executing LEAP, and the personnel skills required to execute the system are described. In addition, a LEAP sample problem, subroutine hierarchical flowcharts, and input tables for the ARC '78 energy-economic model are included. Results of a study to testmore » the capability of the LEAP system used in the ORNL research to reproduce the ARC '78 results credited to LEAP are presented.« less
U.S. Geological Survey ArcMap Sediment Classification tool
O'Malley, John
2007-01-01
The U.S. Geological Survey (USGS) ArcMap Sediment Classification tool is a custom toolbar that extends the Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 9.2 Desktop application to aid in the analysis of seabed sediment classification. The tool uses as input either a point data layer with field attributes containing percentage of gravel, sand, silt, and clay or four raster data layers representing a percentage of sediment (0-100%) for the various sediment grain size analysis: sand, gravel, silt and clay. This tool is designed to analyze the percent of sediment at a given location and classify the sediments according to either the Folk (1954, 1974) or Shepard (1954) as modified by Schlee(1973) classification schemes. The sediment analysis tool is based upon the USGS SEDCLASS program (Poppe, et al. 2004).
Replogle, William C.; Sweatt, William C.
2001-01-01
A photolithography system that employs a condenser that includes a series of aspheric mirrors on one side of a small, incoherent source of radiation producing a series of beams is provided. Each aspheric mirror images the quasi point source into a curved line segment. A relatively small arc of the ring image is needed by the camera; all of the beams are so manipulated that they all fall onto this same arc needed by the camera. Also, all of the beams are aimed through the camera's virtual entrance pupil. The condenser includes a correcting mirror for reshaping a beam segment which improves the overall system efficiency. The condenser efficiently fills the larger radius ringfield created by today's advanced camera designs. The system further includes (i) means for adjusting the intensity profile at the camera's entrance pupil or (ii) means for partially shielding the illumination imaging onto the mask or wafer. The adjusting means can, for example, change at least one of: (i) partial coherence of the photolithography system, (ii) mask image illumination uniformity on the wafer or (iii) centroid position of the illumination flux in the entrance pupil. A particularly preferred adjusting means includes at least one vignetting mask that covers at least a portion of the at least two substantially equal radial segments of the parent aspheric mirror.
Morimura, Shigeru; Suzuki, Katsuo; Takahashi, Kazuhide
2011-01-21
Investigation of the mechanism underlying cell membrane-targeted WAVE2 capture by phosphatidylinositol 3,4,5-triphosphate (PIP(3)) through IRSp53 revealed an unidentified 250-kDa protein (p250) bound to PIP(3). We identified p250 as nonmuscle myosin IIA heavy chain (MYH9) by mass spectrometry and immunoblot analysis using anti-MYH9 antibody. After stimulation with insulin-like growth factor I (IGF-I), MYH9 colocalized with PIP(3) in lamellipodia at the leading edge of cells. Depletion of MYH9 expression by small interfering RNA (siRNA) and inhibition of myosin II activity by blebbistatin abrogated the formation of actin filament (F-actin) arcs and lamellipodia induced by IGF-I. MYH9 was constitutively associated with WAVE2, which was dependent on myosin II activity, and the MYH9-WAVE2 complex colocalized to PIP(3) at the leading edge after IGF-I stimulation. These results indicate that MYH9 is required for lamellipodia formation since it provides contractile forces and tension for the F-actin network to form convex arcs at the leading edge through constitutive binding to WAVE2 and colocalization with PIP(3) in response to IGF-I. Copyright © 2010 Elsevier Inc. All rights reserved.
Development of multi-ampered D{sup {minus}} source for fusion applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacquot, C.; Belchenko, Y.; Bucalossi, J.
1996-07-01
Large current and high current density deuterium negative ion sources are investigated on the MANTIS test bed with the objective of producing several amperes of D{sup {minus}} beams, at an accelerated current density in the range 10{endash}20 mA/cm{sup 2}, for possible application in future neutral beam injectors, e.g. ITER. As a first step, the DRAGON source, which was built by Culham Laboratory was tested on the MANTIS test bed in order to test this large source using only {open_quote}{open_quote}pure volume{close_quote}{close_quote} production of negative ions. The accelerated negative ion current is found to be a strong function of the source operatingmore » pressure and the arc power, and a significant isotopic effect is observed. The maximum accelerated currents are 1.3 A of H{sup {minus}} (3.3 mA/cm{sup 2}) and 0.5 A (1.3 mA/cm{sup 2}) at 110 kW of arc power. Cesium injection from a non conventional dispenser together with an improved extraction system, have significantly improved the D-current. A maximum of 14 mA/cm{sup 2} of D{sup {minus}1} are accelerated at 30 kV, which corresponds potentially, to more than 5 A for a full aperture extraction with an arc power of 140 kW (2250 A of arc current). {copyright} {ital 1996 American Institute of Physics.}« less
Accelerated and enhanced bone formation on novel simvastatin-loaded porous titanium oxide surfaces.
Nyan, Myat; Hao, Jia; Miyahara, Takayuki; Noritake, Kanako; Rodriguez, Reena; Kasugai, Shohei
2014-10-01
With increasing application of dental implants in poor-quality bones, the need for implant surfaces ensuring accelerated osseointegration and enhanced peri-implant bone regeneration is increased. A study was performed to evaluate the osseointegration and bone formation on novel simvastatin-loaded porous titanium oxide surface. Titanium screws were treated by micro-arc oxidation to form porous oxide surface and 25 or 50 μg of simvastatin was loaded. The nontreated control, micro-arc oxidized, and simvastatin-loaded titanium screws were surgically implanted into the proximal tibia of 16-week-old male Wistar rats (n = 36). Peri-implant bone volume, bone-implant contact, and mineral apposition rates were measured at 2 and 4 weeks. Data were analyzed by one-way analysis of variance followed by Tukey's post hoc test. New bone was formed directly on the implant surface in the bone marrow cavity in simvastatin-loaded groups since 2 weeks. Bone-implant contact values were significantly higher in simvastatin-loaded groups than control and micro-arc oxidized groups at both time points (p < .05). Peri-implant bone volume and mineral apposition rate of simvastatin-loaded groups were significantly higher than control and micro-arc oxidized groups at 2 weeks (p < .05). These data suggested that simvastatin-loaded porous titanium oxide surface provides faster osseointegration and peri-implant bone formation and it would be potentially applicable in poor-quality bones. © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Noury, M.; Münch, P.; Philippon, M. M.; Bernet, M.; Bruguier, O.; Balvay, M.
2017-12-01
In subduction zones, volcanic arc initiation, cessation, migration and associated upper plate deformation -i.e faulting and vertical motions- reflect large-scale slab dynamics. At the northeastern edge of the Caribbean plate, the Greater Caribbean subduction zone waned out during the Mid Eocene, following the subduction of the Bahamas bank. This arc cessation was contemporaneous with (i) a plate boundary re-organization (evolving from subduction to transform), (ii) upper plate deformation and (iii) arc initiation in the Lesser Antilles. As part of the GAARANTI project that aims at unraveling the relationships between the evolution of terrestrial Caribbean biodiversity and vertical motions resulting from the Lesser Antilles subduction zone dynamic, we study the Saint Martin granodiorites, one of the two Oligocene plutons outcropping in the Lesser Antillean forearc. We investigate the birth and evolution of the Lesser Antillean arc and its thermo-mechanical impact on the Caribbean upper plate. In order to characterize the P,T,t path of the pluton we performed several thermochronological analyses covering a wide range of temperature (U-Pb on zircon -Tc 850°C, Ar/Ar on amphibole -Tc 550°C- and biotite -Tc 325°C-, zircon and apatite fission-tracks -Tc 250 and 110°C, respectively as well as U-Th/He on apatite -Tc 60°C) coupled with in-situ thermobarometry analyses (Al in hornblendes) and structural data. Geochronology and thermobarometry reveal that the granodiorites emplaced at ca. 28 Ma, at a depth of 5 km. Based on the age difference between amphibole and biotite Ar/Ar ages, we show that the northern pluton cooled faster than the southern one. Preliminary thermochronological results show a fast cooling between 29 and 25 Ma and then a continuous and slow cooling since 25 Ma and inverse modeling points to a 10 Ma cooling event. Our investigations give insights on the thermo-mechanical evolution of the arc-forearc region of the Lesser Antilles subduction zone. Considering a mean high of 1200m for the volcanic edifice, the pluton emplaced at shallow depth (ca. 4 km) within the Caribbean plate. The pluton is bounded by N-S faults that could possibly be responsible for the 10 Ma exhumation event. This thermal event may be contemporaneous with the westward arc migration during Miocene times and may reflect slab flattening.
Comparison of Ultra-Rapid Orbit Prediction Strategies for GPS, GLONASS, Galileo and BeiDou.
Geng, Tao; Zhang, Peng; Wang, Wei; Xie, Xin
2018-02-06
Currently, ultra-rapid orbits play an important role in the high-speed development of global navigation satellite system (GNSS) real-time applications. This contribution focuses on the impact of the fitting arc length of observed orbits and solar radiation pressure (SRP) on the orbit prediction performance for GPS, GLONASS, Galileo and BeiDou. One full year's precise ephemerides during 2015 were used as fitted observed orbits and then as references to be compared with predicted orbits, together with known earth rotation parameters. The full nine-parameter Empirical Center for Orbit Determination in Europe (CODE) Orbit Model (ECOM) and its reduced version were chosen in our study. The arc lengths of observed fitted orbits that showed the smallest weighted root mean squares (WRMSs) and medians of the orbit differences after a Helmert transformation fell between 40 and 45 h for GPS and GLONASS and between 42 and 48 h for Galileo, while the WRMS values and medians become flat after a 42 h arc length for BeiDou. The stability of the Helmert transformation and SRP parameters also confirmed the similar optimal arc lengths. The range around 42-45 h is suggested to be the optimal arc length interval of the fitted observed orbits for the multi-GNSS joint solution of ultra-rapid orbits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, P.E.; Smartt, H.B.; Johnson, J.A.
1997-12-31
We develop a model of the depth of penetration of the weld pool in gas metal arc welding (GMAW) which demonstrates interaction between the arc, filler wire and weld pool. This model is motivated by the observations of Essers and Walter which suggest a relationship between droplet momentum and penetration depth. A model of gas metal arc welding was augmented to include an improved model of mass transfer and a simple model of accelerating droplets in a plasma jet to obtain the mass and momentum of impinging droplets. The force of the droplets and depth of penetration is correlated bymore » a dimensionless linear relation used to predict weld pool depth for a range of values of arc power and contact tip to workpiece distance. Model accuracy is examined by comparing theoretical predictions and experimental measurements of the pool depth obtained from bead on plate welds of carbon steel in an argon rich shielding gas. Moreover, theoretical predictions of pool depth are compared to the results obtained from the heat conduction model due to Christensen et al. which suggest that in some cases the momentum of impinging droplets is a better indicator of the depth of the weld pool and the presence of a deep, narrow penetration.« less
NASA Astrophysics Data System (ADS)
Neumann, Patrick R. C.; Bilek, Marcela; McKenzie, David R.
2016-08-01
The cathodic arc is a high current, low voltage discharge that operates in vacuum and provides a stream of highly ionised plasma from a solid conducting cathode. The high ion velocities, together with the high ionisation fraction and the quasineutrality of the exhaust stream, make the cathodic arc an attractive plasma source for spacecraft propulsion applications. The specific impulse of the cathodic arc thruster is substantially increased when the emission of neutral species is reduced. Here, we demonstrate a reduction of neutral emission by exploiting sublimation in cathode spots and enhanced ionisation of the plasma in short, high-current pulses. This, combined with the enhanced directionality due to the efficient erosion profiles created by centre-triggering, substantially increases the specific impulse. We present experimentally measured specific impulses and jet power efficiencies for titanium and magnesium fuels. Our Mg fuelled source provides the highest reported specific impulse for a gridless ion thruster and is competitive with all flight rated ion thrusters. We present a model based on cathode sublimation and melting at the cathodic arc spot explaining the outstanding performance of the Mg fuelled source. A further significant advantage of an Mg-fuelled thruster is the abundance of Mg in asteroidal material and in space junk, providing an opportunity for utilising these resources in space.
Comparison of Ultra-Rapid Orbit Prediction Strategies for GPS, GLONASS, Galileo and BeiDou
Zhang, Peng; Wang, Wei; Xie, Xin
2018-01-01
Currently, ultra-rapid orbits play an important role in the high-speed development of global navigation satellite system (GNSS) real-time applications. This contribution focuses on the impact of the fitting arc length of observed orbits and solar radiation pressure (SRP) on the orbit prediction performance for GPS, GLONASS, Galileo and BeiDou. One full year’s precise ephemerides during 2015 were used as fitted observed orbits and then as references to be compared with predicted orbits, together with known earth rotation parameters. The full nine-parameter Empirical Center for Orbit Determination in Europe (CODE) Orbit Model (ECOM) and its reduced version were chosen in our study. The arc lengths of observed fitted orbits that showed the smallest weighted root mean squares (WRMSs) and medians of the orbit differences after a Helmert transformation fell between 40 and 45 h for GPS and GLONASS and between 42 and 48 h for Galileo, while the WRMS values and medians become flat after a 42 h arc length for BeiDou. The stability of the Helmert transformation and SRP parameters also confirmed the similar optimal arc lengths. The range around 42–45 h is suggested to be the optimal arc length interval of the fitted observed orbits for the multi-GNSS joint solution of ultra-rapid orbits. PMID:29415467
Gundawar, Sham M.; Radke, Usha M.
2015-01-01
Purpose: The purpose of this vitro study was to comparatively evaluate the adhesive bonding of dual cured resin luting agents with lithium disilicate ceramic material. Materials and Methods: Porcelain laminate veneers were prepared with lithium disilicate ceramic material i.e. IPS Empress II( E-Max Press). These laminates were bonded with RelyX ARC, Panavia F 2.0, Variolink II, Duolink and Nexus NX3.The porcelain laminates were etched with 9.6% hydrofluoric acid (Pulpdent Corporation) for one minute, washed for 15 sec with three way syringe and dried for 15 sec with air syringe. The silane (Ultradent) was applied with the help of applicator tip in a single coat and kept undisturbed for one minute. The prepared surfaces of the premolars were treated with 37% phosphoric acid (Prime dent) for 15 sec, thoroughly rinsed and dried as per manufactures instructions. The shear bond test was carried out on all samples with the Universal testing machine (Instron U.S.A.) The scanning electron microscopic study was performed at the fractured interface of representative samples from each group of luting agents. Result: In this study, the highest value of shear bond strength was obtained for NEXUS NX3 and the lowest for VARIOLINK II. Conclusion: The difference in bond strength can be interpreted as the difference in fracture resistance of luting agents, to which shearing load was applied during the shear bond strength test. It is inferred from this study that the composition of the luting agent determines the adhesive characteristics in addition to surface treatment and bonding surface area. PMID:25859514
NASA Astrophysics Data System (ADS)
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; Khodak, A.
2018-01-01
The atmospheric pressure arcs have recently found application in the production of nanoparticles. The distinguishing features of such arcs are small length and hot ablating anode characterized by intensive electron emission and radiation from its surface. We performed a one-dimensional modeling of argon arc, which shows that near-electrode effects of thermal and ionization non-equilibrium play an important role in the operation of a short arc, because the non-equilibrium regions are up to several millimeters long and are comparable to the arc length. The near-anode region is typically longer than the near-cathode region and its length depends more strongly on the current density. The model was extensively verified and validated against previous simulation results and experimental data. The Volt-Ampere characteristic (VAC) of the near-anode region depends on the anode cooling mechanism. The anode voltage is negative. In the case of strong anode cooling (water-cooled anode) when the anode is cold, temperature and plasma density gradients increase with current density, resulting in a decrease of the anode voltage (the absolute value increases). Falling VAC of the near-anode region suggests the arc constriction near the anode. Without anode cooling, the anode temperature increases significantly with the current density, leading to a drastic increase in the thermionic emission current from the anode. Correspondingly, the anode voltage increases to suppress the emission, and the opposite trend in the VAC is observed. The results of simulations were found to be independent of sheath model used: collisional (fluid) or collisionless model gave the same plasma profiles for both near-anode and near-cathode regions.
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; ...
2018-01-22
The atmospheric pressure arcs have recently found application in the production of nanoparticles. The distinguishing features of such arcs are small length and hot ablating anode characterized by intensive electron emission and radiation from its surface. We performed a one-dimensional modeling of argon arc, which shows that near-electrode effects of thermal and ionization non-equilibrium play an important role in the operation of a short arc, because the non-equilibrium regions are up to several millimeters long and are comparable to the arc length. The near-anode region is typically longer than the near-cathode region and its length depends more strongly on themore » current density. The model was extensively verified and validated against previous simulation results and experimental data. The Volt-Ampere characteristic (VAC) of the near-anode region depends on the anode cooling mechanism. The anode voltage is negative. In the case of strong anode cooling (water-cooled anode) when the anode is cold, temperature and plasma density gradients increase with current density, resulting in a decrease of the anode voltage (the absolute value increases). Falling VAC of the near-anode region suggests the arc constriction near the anode. Without anode cooling, the anode temperature increases significantly with the current density, leading to a drastic increase in the thermionic emission current from the anode. Correspondingly, the anode voltage increases to suppress the emission, and the opposite trend in the VAC is observed. Here, the results of simulations were found to be independent of sheath model used: collisional (fluid) or collisionless model gave the same plasma profiles for both near-anode and near-cathode regions.« less
Evolution of residual stresses in micro-arc oxidation ceramic coatings on 6061 Al alloy
NASA Astrophysics Data System (ADS)
Shen, Dejiu; Cai, Jingrui; Guo, Changhong; Liu, Peiyu
2013-11-01
Most researches on micro-arc oxidation mainly focus on the application rather than discovering the evolution of residual stresses. However, residual stresses in the surface coatings of structural components have adverse effects on their properties, such as fatigue life, dimensional stability and corrosion resistance, etc. The micro-arc oxidation ceramic coatings are produced on the surfaces of 6061 aluminum alloy by a homemade asymmetric AC type of micro-arc oxidation equipment of 20 kW. A constant current density of 4.4±0.1 A/dm2 and a self-regulated composite electrolyte are used. The micro-arc oxidation treatment period ranges from 10 min to 40 min, and the thickness of the ceramic coatings is more than 20 μm. Residual stresses attributed to γ-Al2O3 constituent in the coatings at different micro-arc oxidation periods are analyzed by an X-ray diffractometer using the sin2 ψ method. The analysis results show that the residual stress in the ceramic coatings is compressive in nature, and it increases first and then decreases with micro-arc oxidation time increase. The maximum stress value is 1 667±20 MPa for period of 20 min. Through analyzing the coating thickness, surface morphology and phase composition, it is found that the residual stress in the ceramic coatings is linked closely with the coating growth, the phase composition and the micro cracks formed. It is also found that both the heat treatment and the ultrasonic action release remarkably the residual compressive stress. The heat treatment makes the residual compressive stress value decrease 1 378 MPa. The ultrasonic action even alters the nature of the residual stress, making the residual compressive stress change into a residual tensile stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.
The atmospheric pressure arcs have recently found application in the production of nanoparticles. The distinguishing features of such arcs are small length and hot ablating anode characterized by intensive electron emission and radiation from its surface. We performed a one-dimensional modeling of argon arc, which shows that near-electrode effects of thermal and ionization non-equilibrium play an important role in the operation of a short arc, because the non-equilibrium regions are up to several millimeters long and are comparable to the arc length. The near-anode region is typically longer than the near-cathode region and its length depends more strongly on themore » current density. The model was extensively verified and validated against previous simulation results and experimental data. The Volt-Ampere characteristic (VAC) of the near-anode region depends on the anode cooling mechanism. The anode voltage is negative. In the case of strong anode cooling (water-cooled anode) when the anode is cold, temperature and plasma density gradients increase with current density, resulting in a decrease of the anode voltage (the absolute value increases). Falling VAC of the near-anode region suggests the arc constriction near the anode. Without anode cooling, the anode temperature increases significantly with the current density, leading to a drastic increase in the thermionic emission current from the anode. Correspondingly, the anode voltage increases to suppress the emission, and the opposite trend in the VAC is observed. Here, the results of simulations were found to be independent of sheath model used: collisional (fluid) or collisionless model gave the same plasma profiles for both near-anode and near-cathode regions.« less
NASA Astrophysics Data System (ADS)
Merchant, Christopher J.; Embury, Owen; Rayner, Nick A.; Berry, David I.; Corlett, Gary K.; Lean, Katie; Veal, Karen L.; Kent, Elizabeth C.; Llewellyn-Jones, David T.; Remedios, John J.; Saunders, Roger
2012-12-01
A new record of sea surface temperature (SST) for climate applications is described. This record provides independent corroboration of global variations estimated from SST measurements made in situ. Infrared imagery from Along-Track Scanning Radiometers (ATSRs) is used to create a 20 year time series of SST at 0.1° latitude-longitude resolution, in the ATSR Reprocessing for Climate (ARC) project. A very high degree of independence of in situ measurements is achieved via physics-based techniques. Skin SST and SST estimated for 20 cm depth are provided, with grid cell uncertainty estimates. Comparison with in situ data sets establishes that ARC SSTs generally have bias of order 0.1 K or smaller. The precision of the ARC SSTs is 0.14 K during 2003 to 2009, from three-way error analysis. Over the period 1994 to 2010, ARC SSTs are stable, with better than 95% confidence, to within 0.005 K yr-1(demonstrated for tropical regions). The data set appears useful for cleanly quantifying interannual variability in SST and major SST anomalies. The ARC SST global anomaly time series is compared to the in situ-based Hadley Centre SST data set version 3 (HadSST3). Within known uncertainties in bias adjustments applied to in situ measurements, the independent ARC record and HadSST3 present the same variations in global marine temperature since 1996. Since the in situ observing system evolved significantly in its mix of measurement platforms and techniques over this period, ARC SSTs provide an important corroboration that HadSST3 accurately represents recent variability and change in this essential climate variable.
Chlorophyll a with a farnesyl tail in thermophilic cyanobacteria.
Wiwczar, Jessica M; LaFountain, Amy M; Wang, Jimin; Frank, Harry A; Brudvig, Gary W
2017-11-01
Photosystem II (PSII) of oxygenic photosynthetic organisms normally contains exclusively chlorophyll a (Chl a) as its major light-harvesting pigment. Chl a canonically consists of the chlorin headgroup with a 20-carbon, 4-isoprene unit, phytyl tail. We have examined the 1.9 Å crystal structure of PSII from thermophilic cyanobacteria reported by Shen and coworkers in 2012 (PDB accession of 3ARC/3WU2). A newly refined electron density map from this structure, presented here, reveals that some assignments of the cofactors may be different from those modeled in the 3ARC/3WU2 structure, including a specific Chl a that appears to have a truncated tail by one isoprene unit. We provide experimental evidence using high-performance liquid chromatography and mass spectrometry for a small population of Chl a esterified to a 15-carbon farnesyl tail in PSII of thermophilic cyanobacteria.
Multiple Types of Topological Fermions in Transition Metal Silicides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Peizhe; Zhou, Quan; Zhang, Shou -Cheng
Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, whichmore » is confirmed by (001) surface electronic spectra of CoSi. Additionally, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.« less
NASA Astrophysics Data System (ADS)
Schillak, S.; Wnuk, E.
Determination of the stations coordinates and the control of their stability is one of the most important task in the satellite geodesy and geodynamics. This work is continu- ation of the similar paper about coordinates stability of the all SLR stations in 1999. The paper present results of positions determination for all SLR stations in 2000 cal- culated in the ITRF2000 system on the basis of data provided by the LAGEOS-1 and LAGEOS-2 laser ranging. The calculations were performed with the usage of the GEODYN II program. Coordinates of the stations were determined from monthly arcs for 2000. Typical RMS of (O-C) values for the monthly orbital arcs was on a level of 1.7 cm. The final stability of the geocentric coordinates of SLR stations per one year for all components varies from 5 millimetres to several centimetres.
Yang, Ching; Wan, Min-Tao; Lauderdale, Tsai-Ling; Yeh, Kuang-Sheng; Chen, Charles; Hsiao, Yun-Hsia; Chou, Chin-Cheng
2017-06-01
This study aimed to investigate the presence of arginine catabolic mobile element (ACME) and its associated molecular characteristics in methicillin-resistant Staphylococcus pseudintermedius (MRSP). Among the 72 S. pseudintermedius recovered from various infection sites of dogs and cats, 52 (72.2%) were MRSP. ACME-arcA was detected commonly (69.2%) in these MRSP isolates, and was more frequently detected in those from the skin than from other body sites (P=0.047). There was a wide genetic diversity among the ACME-arcA-positive MRSP isolates, which comprised three SCCmec types (II-III, III and V) and 15 dru types with two predominant clusters (9a and 11a). Most MRSP isolates were multidrug-resistant. Since S. pseudintermedius could serve as a reservoir of ACME, further research on this putative virulence factor is recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multiple Types of Topological Fermions in Transition Metal Silicides
Tang, Peizhe; Zhou, Quan; Zhang, Shou -Cheng
2017-11-17
Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, whichmore » is confirmed by (001) surface electronic spectra of CoSi. Additionally, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.« less
Electronic properties of two inequivalent surfaces in MoTe2 studied by quasi-particle interference
NASA Astrophysics Data System (ADS)
Iaia, Davide; Shichao, Yan; Madhavan, Vidya
MoTe2 has received renewed interest due to its topological properties. At a temperature below 250 K, MoTe2 is a type II Weyl semimetal hosting three-dimensional (3D) linearly dispersing states with well defined chirality. Nodes in this 3D dispersion are called Weyl points. Weyl points of opposite chirality are expected to be connected by topologically protected Fermi arcs. In this talk we discuss low temperature scanning tunneling microscopy studies of the electronic structure of MoTe2. The electronic properties are studied using quasi-particle interference technique which allows us to resolve Fermi arcs features and to clearly distinguish between two inequivalent MoTe2 surfaces. Our results provide important contributions to further our understanding of the electronic properties of this new and exotic class of materials. National Science Foundation (NSF).
40 CFR 433.10 - Applicability; description of the metal finishing point source category.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Descaling, Solvent Degreasing, Paint Stripping, Painting, Electrostatic Painting, Electropainting, Vacuum..., Electrochemical Machining, Electron Beam Machining, Laser Beam Machining, Plasma Arc Machining, Ultrasonic...
40 CFR 433.10 - Applicability; description of the metal finishing point source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Descaling, Solvent Degreasing, Paint Stripping, Painting, Electrostatic Painting, Electropainting, Vacuum..., Electrochemical Machining, Electron Beam Machining, Laser Beam Machining, Plasma Arc Machining, Ultrasonic...
40 CFR 433.10 - Applicability; description of the metal finishing point source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Descaling, Solvent Degreasing, Paint Stripping, Painting, Electrostatic Painting, Electropainting, Vacuum..., Electrochemical Machining, Electron Beam Machining, Laser Beam Machining, Plasma Arc Machining, Ultrasonic...
40 CFR 433.10 - Applicability; description of the metal finishing point source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Descaling, Solvent Degreasing, Paint Stripping, Painting, Electrostatic Painting, Electropainting, Vacuum..., Electrochemical Machining, Electron Beam Machining, Laser Beam Machining, Plasma Arc Machining, Ultrasonic...
40 CFR 433.10 - Applicability; description of the metal finishing point source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Descaling, Solvent Degreasing, Paint Stripping, Painting, Electrostatic Painting, Electropainting, Vacuum..., Electrochemical Machining, Electron Beam Machining, Laser Beam Machining, Plasma Arc Machining, Ultrasonic...
NASA Astrophysics Data System (ADS)
Bénard, A.; Koga, K. T.; Shimizu, N.; Kendrick, M. A.; Ionov, D. A.; Nebel, O.; Arculus, R. J.
2017-02-01
We report chlorine (Cl) and fluorine (F) abundances in minerals, interstitial glasses, and melt inclusions in 12 andesite-hosted, spinel harzburgite xenoliths and crosscutting pyroxenite veins exhumed from the sub-arc lithospheric mantle beneath Avacha volcano in the Kamchatka Arc (NE Russia). The data are used to calculate equilibrium mineral-melt partition coefficients (D mineral / melt) for Cl and F relevant to subduction-zone processes and unravel the history of volatile depletion and enrichment mechanisms in an arc setting. Chlorine is ∼100 times more incompatible in pyroxenes (DClmineral/melt = 0.005-0.008 [±0.002-0.003]) than F (DFmineral/melt = 0.50-0.57 [±0.21-0.24]), which indicates that partial melting of mantle sources leads to strong depletions in Cl relative to F in the residues. The data set in this study suggests a strong control of melt composition on DCl,Fpyroxene/melt, in particular H2O contents and Al/(Al + Si), which is in line with recent experiments. Fluorine is compatible in Ca-amphibole in the 'wet' sub-arc mantle (DFamphibole/melt = 3.5-3.7 [±1.5]) but not Cl (DClamphibole/melt = 0.03-0.05 [±0.01-0.03]), indicating that amphibole may fractionate F from Cl in the mantle wedge. The inter-mineral partition coefficients for Cl and F in this study are consistent amongst different harzburgite samples, whether they contain glass or not. In particular, disseminated amphibole hosts much of the Cl and F bulk rock budgets of spinel harzburgites (DClamphibole/pyroxene up to 14 and DFamphibole/pyroxene up to 40). Chlorine and fluorine are variably enriched (up to 1500 ppm Cl and 750 ppm F) in the parental arc picrite and boninite melts of primitive pyroxenite veins (and related melt inclusions) crosscutting spinel harzburgites. Based on the data in this study, the main inferences on the behaviour of Cl and F during melting and metasomatic processes in the sub-arc mantle are as follow: (i) Melting models show that most depleted mantle protoliths of intra-oceanic arc sources can have extremely low Cl/F (0.002-0.007) before being overprinted by subduction-derived components. (ii) Chlorine has a higher percolation distance in the mantle than F. Even for small fluid or melt volumes, Cl and F signatures of partial melting are overprinted by those of pervasive percolation, which increases Cl/F in percolating agents and bulk peridotites during chromatographic interaction and/or amphibole-forming metasomatic reactions. These processes ultimately control the bulk Cl and F compositions of the residual mantle lithosphere beneath arcs, and likely in other tectonic settings. (iii) Fluxed melting models suggest that Cl enrichment in arc picrite and boninite melts in this study, and in many arc melt inclusions reported in the literature, could be related to the infiltration of high Cl/F fluids derived from subducted serpentinite or altered crust in mantle wedge sources. However, these high Cl/F signatures should be re-evaluated with new models in light of the possible overprint of pervasive percolation effects in the mantle. The breakdown of amphibole (and/or mica) in the deep metasomatised mantle at higher pressure and temperature conditions than in the slab may explain, at least in part, the positive correlations between F abundances and Cl/F in primitive arc melt inclusions and slab depth.
75 FR 54656 - Notice of Intent To Grant Exclusive License
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... States to practice the inventions described and claimed in U.S. Patent Applications corresponding to NASA Case Nos. ARC-14744-2 entitled ``A Versatile Platform for Nanotechnology Based on Circular Permutations... applications completed and received by NASA within fifteen (15) days of the date of this published notice will...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
... DEPARTMENT OF COMMERCE International Trade Administration Department of Mechanical Engineering, Texas A&M University, Notice of Decision on Application for Duty-Free Entry of Scientific Instruments...: Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123. Instrument: Arc...
Progress Towards Microwave Ignition of Explosives
NASA Astrophysics Data System (ADS)
Curling, Mark; Collins, Adam; Dima, Gabriel; Proud, William
2009-06-01
Microwaves could provide a method of propellant ignition that does away with a traditional primer, making ammunition safer and suitable for Insensitive Munitions (IM) applications. By embedding a suitable material inside a propellant, it is postulated that microwaves could be used to stimulate hotspots, through direct heating or electrostatic discharge (arcing) across the energetic material. This paper reports on progress in finding these suitable materials. Graphite rod, magnetite cubes and powders of graphite, aluminium, copper oxide, and iron were irradiated in a conventional microwave oven. Temperature measurements were made using a shielded thermocouple and thermal paints. Only graphite rod and magnetite showed significant heating upon microwave exposure. The light output from arcing of iron, steel, iron pyrite, magnetite and graphite was measured in the same microwave oven as above. Sample mass and shape were correlated with arcing intensity. A strategy is proposed to create a homogeneous igniter material by embedding arcing materials within an insulator, Polymethylpentene (TPX). External discharges were transmitted through TPX, however no embedded samples were successful in generating an electrical breakdown suitable for propellant ignition.
Boundary Layer Protuberance Simulations in Channel Nozzle Arc-Jet
NASA Technical Reports Server (NTRS)
Marichalar, J. J.; Larin, M. E.; Campbell, C. H.; Pulsonetti, M. V.
2010-01-01
Two protuberance designs were modeled in the channel nozzle of the NASA Johnson Space Center Atmospheric Reentry Materials and Structures Facility with the Data-Parallel Line Relaxation computational fluid dynamics code. The heating on the protuberance was compared to nominal baseline heating at a single fixed arc-jet condition in order to obtain heating augmentation factors for flight traceability in the Boundary Layer Transition Flight Experiment on Space Shuttle Orbiter flights STS-119 and STS-128. The arc-jet simulations were performed in conjunction with the actual ground tests performed on the protuberances. The arc-jet simulations included non-uniform inflow conditions based on the current best practices methodology and used variable enthalpy and constant mass flow rate across the throat. Channel walls were modeled as fully catalytic isothermal surfaces, while the test section (consisting of Reaction Cured Glass tiles) was modeled as a partially catalytic radiative equilibrium wall. The results of the protuberance and baseline simulations were compared to the applicable ground test results, and the effects of the protuberance shock on the opposite channel wall were investigated.
Signatures of Fermi Arcs in the Quasiparticle Interferences of the Weyl Semimetals TaAs and NbP.
Chang, Guoqing; Xu, Su-Yang; Zheng, Hao; Lee, Chi-Cheng; Huang, Shin-Ming; Belopolski, Ilya; Sanchez, Daniel S; Bian, Guang; Alidoust, Nasser; Chang, Tay-Rong; Hsu, Chuang-Han; Jeng, Horng-Tay; Bansil, Arun; Lin, Hsin; Hasan, M Zahid
2016-02-12
The recent discovery of the first Weyl semimetal in TaAs provides the first observation of a Weyl fermion in nature. Such a topological semimetal features a novel type of anomalous surface state, the Fermi arc, which connects a pair of Weyl nodes through the boundary of the crystal. Here, we present theoretical calculations of the quasiparticle interference (QPI) patterns that arise from the surface states including the topological Fermi arcs in the Weyl semimetals TaAs and NbP. Most importantly, we discover that the QPI exhibits termination points that are fingerprints of the Weyl nodes in the interference pattern. Our results, for the first time, propose a universal interference signature of the topological Fermi arcs in TaAs, which is fundamental for scanning tunneling microscope (STM) measurements on this prototypical Weyl semimetal compound. More generally, our work provides critical guideline and methodology for STM studies on new Weyl semimetals. Further, the scattering channels revealed by our QPIs are broadly relevant to surface transport and device applications based on Weyl semimetals.
2011-08-25
Aeronautics Technical Seminar with Dennis Koehler, Vice President, Science Applications International Corporation (and former FAA executive) presenting 'Beyond the Technical: Procedural, Operational and Economic Factors 'POET' for NextGen Success
NASA Astrophysics Data System (ADS)
Salavati, S.; Pershin, L.; Coyle, T. W.; Mostaghimi, J.
2015-01-01
Metallic foam core sandwich structures have been of particular interest for engineering applications in recent decades because of their unique mechanical and physical properties. Thermal spraying techniques have been recently introduced as a novel low-cost method for production of these structures with complex shapes. One of the potential applications of the metallic foam core sandwich structures prepared by thermal spray techniques is as heat shield devices. Open porosity in the microstructure of the coating may allow the cooling efficiency of the heat shield to be improved through the film cooling phenomenon. A modified twin wire-arc spraying process was employed to deposit high temperature resistant alloy 625 coatings with a high percentage of the open porosity. The effect of skin porosity on the mechanical properties (flexural rigidity) of the sandwich structures was studied using a four-point bending test. It was concluded from the four-point bending test results that increase in the porosity content of the coatings leads to decrease in the flexural rigidity of the sandwich panels. The ductility of the porous and conventional arc-sprayed alloy 625 coatings was improved after heat treatment at 1100 °C for 3 h.
Xiaodan, Wang; Xianghao, Zhong; Pan, Gao
2010-10-01
Regional eco-security assessment is an intricate, challenging task. In previous studies, the integration of eco-environmental models and geographical information systems (GIS) usually takes two approaches: loose coupling and tight coupling. However, the present study used a full coupling approach to develop a GIS-based regional eco-security assessment decision support system (ESDSS). This was achieved by merging the pressure-state-response (PSR) model and the analytic hierarchy process (AHP) into ArcGIS 9 as a dynamic link library (DLL) using ArcObjects in ArcGIS and Visual Basic for Applications. Such an approach makes it easy to capitalize on the GIS visualization and spatial analysis functions, thereby significantly supporting the dynamic estimation of regional eco-security. A case study is presented for the Tibetan Plateau, known as the world's "third pole" after the Arctic and Antarctic. Results verified the usefulness and feasibility of the developed method. As a useful tool, the ESDSS can also help local managers to make scientifically-based and effective decisions about Tibetan eco-environmental protection and land use. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Daniel, R. L.; Sanders, H. L.; Zimmerman, F. R.
1995-01-01
With the advent of new environmental laws restricting volatile organic compounds and hexavalent chrome emissions, 'environmentally safe' thermal spray coatings are being developed to replace the traditional corrosion protection chromate primers. A wire arc sprayed aluminum coating is being developed for corrosion protection of low pressure liquid hydrogen carrying ducts on the Space Shuttle Main Engine. Currently, this hardware utilizes a chromate primer to provide protection against corrosion pitting and stress corrosion cracking induced by the cryogenic operating environment. The wire are sprayed aluminum coating has been found to have good potential to provide corrosion protection for flight hardware in cryogenic applications. The coating development, adhesion test, corrosion test and cryogenic flexibility test results will be presented.
Defense Small Business Innovation Research Program (SBIR). Program Solicitation Number 89.1. FY-1989
1989-01-06
scale testing, such as plasma-arc and oxyacetylene torch test are performed. However, correlations to relate ablation rate from these test data to...helicopter rotor. In phase II, the contractor should construct and demonstrate a working model. 36 A89-010 TITLE: Smooth, Erosion Resistant Coatings ...for Organic Matrix Composites OBJECTIVE: Erosion Resistant Coatings for Organic Matrix Composites for use in Compressor Section of Future Gas Turbine
Analyzing and Visualizing Precipitation and Soil Moisture in ArcGIS
NASA Technical Reports Server (NTRS)
Yang, Wenli; Pham, Long; Zhao, Peisheng; Kempler, Steve; Wei, Jennifer
2016-01-01
Precipitation and soil moisture are among the most important parameters in many land GIS (Geographic Information System) research and applications. These data are available globally from NASA GES DISC (Goddard Earth Science Data and Information Services Center) in GIS-ready format at 10-kilometer spatial resolution and 24-hour or less temporal resolutions. In this presentation, well demonstrate how rainfall and soil moisture data are used in ArcGIS to analyze and visualize spatiotemporal patterns of droughts and their impacts on natural vegetation and agriculture in different parts of the world.
Properties of arc-sprayed coatings from Fe-based cored wires for high-temperature applications
NASA Astrophysics Data System (ADS)
Korobov, Yu. S.; Nevezhin, S. V.; FiliÑpov, M. A.; Makarov, A. V.; Malygina, I. Yu.; Fantozzi, D.; Milanti, A.; Koivuluoto, H.; Vuoristo, P.
2017-12-01
Equipment of a thermal power plant is subjected to high temperature oxidation and wear. This raises operating costs through frequent repair of worn parts and high metal consumption. The paper proposes a possible solution to this problem through arc spraying of protective coatings. Cored wires of the Fe-Cr-C basic alloying system are used as a feedstock. Additional alloying by Al, B, Si, Ti and Y allows one to create wear- and heat-resistant coatings, which are an attractive substitute of more expensive Co- and Ni-based materials.
Application field and ways to control alternating-current plasma torch with rail electrodes
NASA Astrophysics Data System (ADS)
Kuznetsov, V. E.; Safronov, A. A.; Vasilieva, O. B.; Shiryaev, V. N.; Dudnik, Yu D.; Pavlov, A. V.; Kuchina, Yu A.
2018-01-01
The paper deals with the investigation of parameters of the high voltage alternating-current plasma torch with rail electrodes. Usage of the injector and its variation allows controlling of operation of the ac plasma torch with rail electrodes. Also the possibility to protect the electric arc chamber without protective gas has been studied. It was found that increasing in the injector power causes the repeated breakdown at lower voltage and hence the arc dimensions decreases. The results of experiments are presented in the paper.
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Tsay, Chung-Biau
1987-01-01
The authors have proposed a method for the generation of circular arc helical gears which is based on the application of standard equipment, worked out all aspects of the geometry of the gears, proposed methods for the computer aided simulation of conditions of meshing and bearing contact, investigated the influence of manufacturing and assembly errors, and proposed methods for the adjustment of gears to these errors. The results of computer aided solutions are illustrated with computer graphics.
NASA-ARC 91.5-cm airborne infrared telescope. [tracking mechanism
NASA Technical Reports Server (NTRS)
Mobley, R. E.; Brown, T. M.
1979-01-01
A 91.5 cm aperture telescope installed aboard NASA-Lockheed C-141A aircraft for the performance of infrared astronomy is described. A unique feature of the telescope is that its entire structure is supported by a 41 cm spherical air bearing which effectively uncouples it from aircraft angular motion, and with inertial stabilization and star tracking, limits tracking errors to less than 1 arc second in most applications. A general description of the system, a summary of its performance, and a detailed description of an offset tracking mechanism is presented.
Relationship between Leakage Current and Pollution Deposits on the Surface of Polymeric Insulator
NASA Astrophysics Data System (ADS)
Miyake, Takuma; Seo, Yuya; Sakoda, Tatsuya; Otsubo, Masahisa
Application of polymeric materials used for housing insulators is considered. However, because polymeric insulator is organic matter, the aged deterioration is anxious. The lifetime of polymeric insulator is influenced by environmental conditions such as ultraviolet, acid rain, and polluted deposits. A change of the surface condition of polymeric material causes the dry band arc discharge and the discharge may lower the insulation strength. To investigate the relationship between insoluble pollution and occurrence of dry band arc discharge, we performed a salt-fog test with ethylene vinyl acetate (EVA) samples. The results showed that the heavy erosion caused by frequent dry band arc discharges occurred even in the case of a light polluted condition. Additionally, a very characteristic increase tendency in leakage current with a period of about 5 h was observed during the mist period.
NASA Astrophysics Data System (ADS)
Tang, M.; Erdman, M.; Eldridge, G.; Lee, C. T.
2017-12-01
Arc lavas are generally more oxidized than mid-ocean-ridge basalts, but how arc lavas acquire their oxidized signatures remains poorly understood. Iron oxidation state in melts have been used to suggest that fluids released from subducted slab may oxidize the sub-arc mantle and produce oxidized arc magmas from the source (e.g., Carmichael, 1991; Kelley and Cottrell), but redox-sensitive trace element and Fe isotope signatures of basalts also suggest that oxidation may happen during magma differentiation (e.g., Dauphas et al., 2009; Lee et al., 2005, 2010). One potential problem, however, is that all of these studies, represent indirect constraints on the primary, pre-erupted magma oxidation state. Here, we examine the Eu systematics of primitive, deep-seated (>45-80 km) arc cumulates, which provide the most direct constraint on arc magmas before they rise into the crust. The ratio of Eu2+/Eu3+ is a function of fo2, temperature and composition. Eu2+ is more incompatible than Eu3+ except in plagioclase. Combining Eu partitioning in minerals and experimentally calibrated Eu oxybarometer (Burnham et al., 2015) allows the application of mineral Eu anomalies in constraining magma redox conditions. The cumulates are represented by garnet-bearing pyroxenites from Arizona, USA and are arc cumulates. Because they derive from depths > 60 km, plagioclase was never present during their petrogenesis, hence any Eu anomalies reflect the effects of oxygen fugacity. We find that the most primitive cumulates have negative Eu anomalies in garnet and clinopyroxene (Eu/Eu*<1), despite the fact that depths of differentiation were too high to stabilize plagioclase. We further show that garnet and clinopyroxene Eu/Eu* increases with differentiation (decreasing Mg#), consistent with Eu2+ being more incompatible than Eu3+. Based on the Eu oxybarometer calibrated by Burnham et al. (2015), the Eu deficits in the most primitive cumulate (Mg# = 77) suggest crystallization at Dlogfo2 of FMQ-1, similar to that of mid-ocean-ridge basalts. Crystal fractionation modelling shows that the increasing Eu/Eu* in the evolved cumulates require fo2 to increase by at least 2 log units as the fractionated cumulate Mg# decreases from 77 to 53. These observations suggest that the oxidized nature of arc magmas occurs during intracrustal differentiation.
NASA Astrophysics Data System (ADS)
Wesling, V.; Schram, A.; Müller, T.; Treutler, K.
2016-03-01
Under the premise of an increasing scarcity of raw materials and increasing demands on construction materials, the mechanical properties of steels and its joints are gaining highly important. In particular high- and highest-strength steels are getting in the focus of the research and the manufacturing industry. To the same extent, the requirements for filler metals are increasing as well. At present, these low-alloy materials are protected by a copper coating (<1μm) against corrosion. In addition, the coating realizes a good ohmic contact and good sliding properties between the welding machine and the wire during the welding process. By exchanging the copper with other elements it should be possible to change the mechanical properties of the weld metal and the arc stability during gas metal arc welding processes and keep the basic functions of the coating nearly untouched. On a laboratory scale solid wire electrodes with coatings of various elements and compounds such as titanium oxide were made and processed with a Gas Metal Arc Welding process. During the processing a different process behavior between the wire electrodes, coated and original, could be observed. The influences ranges from greater/shorter arc-length over increasing/decreasing droplets to larger/smaller arc foot point. Furthermore, the weld metal of the coated electrodes has significantly different mechanical and technological characteristics as the weld metal from the copper coated ground wire. The yield strength and tensile strength can be increased by up to 50%. In addition, the chemical composition of the weld metal was influenced by the application of coatings with layer thicknesses to 15 microns in the lower percentage range (up to about 3%). Another effect of the coating is a modified penetration. The normally occurring “argon finger” can be suppressed or enhanced by the choice of the coating. With the help of the presented studies it will be shown that Gas Metal Arc Welding processes are significantly affected by thin film coatings on solid wire electrodes for Gas Metal Arc welding. The influences are regarding the stability of the arc, the properties of the weld metal in terms of geometric expression, chemical composition and mechanical properties, the composition of the arc-plasma and the dynamics of the molten metal.
Near Real-time Scientific Data Analysis and Visualization with the ArcGIS Platform
NASA Astrophysics Data System (ADS)
Shrestha, S. R.; Viswambharan, V.; Doshi, A.
2017-12-01
Scientific multidimensional data are generated from a variety of sources and platforms. These datasets are mostly produced by earth observation and/or modeling systems. Agencies like NASA, NOAA, USGS, and ESA produce large volumes of near real-time observation, forecast, and historical data that drives fundamental research and its applications in larger aspects of humanity from basic decision making to disaster response. A common big data challenge for organizations working with multidimensional scientific data and imagery collections is the time and resources required to manage and process such large volumes and varieties of data. The challenge of adopting data driven real-time visualization and analysis, as well as the need to share these large datasets, workflows, and information products to wider and more diverse communities, brings an opportunity to use the ArcGIS platform to handle such demand. In recent years, a significant effort has put in expanding the capabilities of ArcGIS to support multidimensional scientific data across the platform. New capabilities in ArcGIS to support scientific data management, processing, and analysis as well as creating information products from large volumes of data using the image server technology are becoming widely used in earth science and across other domains. We will discuss and share the challenges associated with big data by the geospatial science community and how we have addressed these challenges in the ArcGIS platform. We will share few use cases, such as NOAA High Resolution Refresh Radar (HRRR) data, that demonstrate how we access large collections of near real-time data (that are stored on-premise or on the cloud), disseminate them dynamically, process and analyze them on-the-fly, and serve them to a variety of geospatial applications. We will also share how on-the-fly processing using raster functions capabilities, can be extended to create persisted data and information products using raster analytics capabilities that exploit distributed computing in an enterprise environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oden, L.L.; O`Connor, W.K.; Turner, P.C.
1993-11-19
This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc meltingmore » furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.« less
Hubble Space Telescope Images and Spectra of Objects Around an Optically Violent Variable QSO
NASA Astrophysics Data System (ADS)
Burbidge, E. M.; Beaver, E. A.; Cohen, R. D.; Hamann, F.; Junkkarinen, V. T.; Lyons, R. W.; Zuo, L.
1995-12-01
The Arecibo Occultation radio source AO 0235+164 is a rapidly and violently variable QSO with ze = 0.94. It was originally designated as a BL Lac object since no emission lines were detected in its spectrum; two absorption redshifts at 0.524 and 0.851 were measured some years before weak emission lines at z = 0.94 were detected by Cohen et al. (ApJ,318,577,1987). A point-like companion (Smith et al., ApJ,218,611,1977) was found 2 arc sec south with an emission line redshift at 0.524. It was designated object A by Yanny et al. (ApJ,338,735,1989). This object has sometimes been called a ``normal'' galaxy, presumably giving rise to the absorption at 0.524 in the QSO. Recent observations of the surrounding field, using the post-repair WFPC 2 on the Hubble Space Telescope, have been analyzed and the nature of the companion object 2 arc sec south, and of a second companion 1.3 arc sec east of AO, have been studied. Spectra of companion object A have been obtained with the Faint Object Spectrograph with gratings G160L and G270H, and 1.0 arc sec aperture, and these show that it is an AGN or QSO with BAL-type broad absorption lines shortward of CIVlambda 1549, SiIVlambda 1397, and NVlambda 1240, also broad CIII]lambda 1909 emission. The second object, A1, 1.3 arc sec east of the QSO, originally identified by Yanny et al. (1989) and shown to have [0II]lambda 3727 at z=0.524, is slightly extended. The physical properties and nature of this remarkable configuration will be discussed. This research has been supported in part by NASA NAS5-29293 and NAG5-1630.
NASA Astrophysics Data System (ADS)
Liu, De-Liang; Shi, Ren-Deng; Ding, Lin; Zou, Hai-Bo
2018-01-01
This study deals with arc-type and subsequent bimodal volcanic rocks interbedded with (late) Cretaceous sedimentary formations near Gaize, central Tibet that shed new light on the Tethyan evolution along the Bangong-Nujiang suture. Unit I consists of trachyandesites interbedded with fine-grained sandstone, slate, and limestone. Zircon dating on a trachyandesite sample yields a 206Pb/238U age of 99 ± 1 Ma. The trachyandesites are characterized by strong enrichment in LILE but depletion in HFSE, low zircon saturation temperatures (TZr = 642-727 °C), and high oxygen fugacity (Δ FMQ = - 0.67-0.73), indicating their arc affinities. Unit II comprises a bimodal basalt-rhyolite suite interbedded with coarse-grained sandstone and conglomerate. Zircon dating on two rhyolitic samples yield 206Pb/238U ages of 97.1-87.0 Ma. In contrast with Unit I trachyandesites, Unit II basalts and rhyolites exhibit OIB-like trace element patterns, high temperatures (T = 1298-1379 °C for basalts, TZr = 855-930 °C for rhyolites), and low oxygen fugacity (Δ FMQ = - 3.37 - 0.43), suggesting that Unit II bimodal volcanic rocks probably formed in an extensional setting. The Sr-Nd isotopes of both Unit I (87Sr/86Sri = 0.7052-0.7074, εNd(t) = - 2.21-1.02) and Unit II (87Sr/86Sri = 0.7057-0.7098, εNd(t) = - 3.22-0.88) rocks are similar to mantle-wedge-derived volcanic rocks within the southern Qiangtang block. The parental magma of Unit I trachyandesites was formed by fluid induced melting of the mantle wedge above the subducted Bangong-Nujiang Tethyan slab, and contaminated by crustal materials during MASH process within a deep crustal hot zone; and Unit II bimodal volcanic rocks were derived by melting of upwelling asthenosphere and a mildly metasomatized mantle wedge during the Lhasa-Qiangtang collision. We propose that the transition from the Bangong-Nujiang Tethyan subduction to the Lhasa-Qiangtang collision occurred during the Late Cretaceous in central Tibet.
Fournier, Céline; Bridal, S Lori; Coron, Alain; Laugier, Pascal
2003-04-01
In vivo skin attenuation estimators must be applicable to backscattered radio frequency signals obtained in a pulse-echo configuration. This work compares three such estimators: short-time Fourier multinarrowband (MNB), short-time Fourier centroid shift (FC), and autoregressive centroid shift (ARC). All provide estimations of the attenuation slope (beta, dB x cm(-1) x MHz(-1)); MNB also provides an independent estimation of the mean attenuation level (IA, dB x cm(-1)). Practical approaches are proposed for data windowing, spectral variance characterization, and bandwidth selection. Then, based on simulated data, FC and ARC were selected as the best (compromise between bias and variance) attenuation slope estimators. The FC, ARC, and MNB were applied to in vivo human skin data acquired at 20 MHz to estimate betaFC, betaARC, and IA(MNB), respectively (without diffraction correction, between 11 and 27 MHz). Lateral heterogeneity had less effect and day-to-day reproducibility was smaller for IA than for beta. The IA and betaARC were dependent on pressure applied to skin during acquisition and IA on room and skin-surface temperatures. Negative values of IA imply that IA and beta may be influenced not only by skin's attenuation but also by structural heterogeneity across dermal depth. Even so, IA was correlated to subject age and IA, betaFC, and betaARC were dependent on subject gender. Thus, in vivo attenuation measurements reveal interesting variations with subject age and gender and thus appeared promising to detect skin structure modifications.
Arcjet Flow Properties Determined from Laser-Induced Fluorescence of Atomic Species
NASA Technical Reports Server (NTRS)
Fletcher, Douglas G.
1997-01-01
Flow property measurements that were recently acquired in the Ames Research Center Aerodynamic Heating Facility (AHF) arc jet using two-photon Laser-Induced Fluorescence (LIF) of atomic nitrogen and oxygen are reported. The measured properties, which include velocity, translational temperature, and species concentration, cover a wide range of facility operation for the 30 cm nozzle. During the tests, the arc jet pressure and input stream composition were maintained at fixed values and the arc current was varied to vary the flow enthalpy. As part of this ongoing effort, a measurement of the two-photon absorption coefficient for the 3p4D<-2p4S transition of atomic nitrogen was performed, and the measured value is used to convert the relative concentration measurements to absolute values. A flow reactor is used to provide a known temperature line shape profile to deconvolve the laser line width contribution to the translational temperature measurements. Results from the current experiments are compared with previous results obtained using NO-Beta line profiles at room temperature and the problem of multimode laser oscillation and its impact on the two-photon excitation line shape are discussed. One figure is attached, and this figure shows relative N atom concentration measurements as a function of the arc power. Other measurements have already been acquired and analyzed. This poster represents an application of laser-spectroscopic measurements in an important test facility. The arc jet flow facilities are heavily used in thermal protection material development and evaluation. All hypersonic flight and planetary atmospheric entry vehicles will use materials tested in these arc jet facilities.
78 FR 34361 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-07
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 2 Take notice that the Commission received the following electric corporate filings: Docket Numbers: EC13-111-000. Applicants: CPV Shore, LLC. Description: Application Under FPA Section 203 of CPV Shore, LLC (ArcLight). Filed Date: 5/31/13. Accession Number:...
Manganese speciation of laboratory-generated welding fumes
Andrews, Ronnee N.; Keane, Michael; Hanley, Kevin W.; Feng, H. Amy; Ashley, Kevin
2015-01-01
The objective of this laboratory study was to identify and measure manganese (Mn) fractions in chamber-generated welding fumes (WF) and to evaluate and compare the results from a sequential extraction procedure for Mn fractions with that of an acid digestion procedure for measurement of total, elemental Mn. To prepare Mn-containing particulate matter from representative welding processes, a welding system was operated in short circuit gas metal arc welding (GMAW) mode using both stainless steel (SS) and mild carbon steel (MCS) and also with flux cored arc welding (FCAW) and shielded metal arc welding (SMAW) using MCS. Generated WF samples were collected onto polycarbonate filters before homogenization, weighing and storage in scintillation vials. The extraction procedure consisted of four sequential steps to measure various Mn fractions based upon selective solubility: (1) soluble Mn dissolved in 0.01 M ammonium acetate; (2) Mn (0,II) dissolved in 25 % (v/v) acetic acid; (3) Mn (III,IV) dissolved in 0.5% (w/v) hydroxylamine hydrochloride in 25% (v/v) acetic acid; and (4) insoluble Mn extracted with concentrated hydrochloric and nitric acids. After sample treatment, the four fractions were analyzed for Mn by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). WF from GMAW and FCAW showed similar distributions of Mn species, with the largest concentrations of Mn detected in the Mn (0,II) and insoluble Mn fractions. On the other hand, the majority of the Mn content of SMAW fume was detected as Mn (III,IV). Although the concentration of Mn measured from summation of the four sequential steps was statistically significantly different from that measured from the hot block dissolution method for total Mn, the difference is small enough to be of no practical importance for industrial hygiene air samples, and either method may be used for Mn measurement. The sequential extraction method provides valuable information about the oxidation state of Mn in samples and allows for comparison to results from previous work and from total Mn dissolution methods. PMID:26345630
Prieto, Lúcia Trazzi; Pimenta de Araújo, Cíntia Tereza; Araujo Pierote, Josué Junior; Salles de Oliveira, Dayane Carvalho Ramos; Coppini, Erick Kamiya; Sartini Paulillo, Luís Alexandre Maffei
2018-01-01
The aim of this in vitro study was to evaluate the color stability and degree of conversion (DC) of dual-cure and light-cure cements and flowable composites after thermal aging. A total of 50 human incisors were prepared and divided into six groups ( n = 10). Veneers were fabricated using IPS Empress Direct composite resin were bonded with three types of luting agents: Light-cured, conventional dual, and flowable composite according to the manufacturer's instructions. The groups were as follows: Filtek Z350XT Flow/Single Bond 2, RelyX ARC/Single Bond 2, RelyX Veneer/Single Bond 2, Tetric N-Flow/Tetric N-Bond, and Variolink II/Tetric N-Bond. Commission Internationale de l'Éclairage L*, a* and b* color coordinates were measured 24 h after cementation procedure with a color spectrophotometer and reevaluated after 10,000 thermal cycles. To evaluate the DC 50 specimens ( n = 10) of each resin material were obtained and Fourier transform infrared spectroscopy was used to evaluate the absorption spectra. Statistical analysis was performed with one-way ANOVA and Tukey's test (α = 0.05). No statistically significant differences in ΔE* occurred after aging. The greatest change in lightness occurred in the Variolink II resin cement. Changes in red-green hue were very small for the same cement and largest in the Tetric N-Flow flowable resin composite, while the greatest change in blue-yellow hue was a yellowing of the RelyX ARC luting cement. RelyX ARC exhibited the highest DC, and there were no statistically significant differences in DC among the other cements. Resin-based luting agent might affect the final of ceramic veneer restorations. The thermal aging affected the final color of the evaluated materials, and these were regarded as clinically unacceptable (ΔE >3.3).
Manganese speciation of laboratory-generated welding fumes.
Andrews, Ronnee N; Keane, Michael; Hanley, Kevin W; Feng, H Amy; Ashley, Kevin
The objective of this laboratory study was to identify and measure manganese (Mn) fractions in chamber-generated welding fumes (WF) and to evaluate and compare the results from a sequential extraction procedure for Mn fractions with that of an acid digestion procedure for measurement of total, elemental Mn. To prepare Mn-containing particulate matter from representative welding processes, a welding system was operated in short circuit gas metal arc welding (GMAW) mode using both stainless steel (SS) and mild carbon steel (MCS) and also with flux cored arc welding (FCAW) and shielded metal arc welding (SMAW) using MCS. Generated WF samples were collected onto polycarbonate filters before homogenization, weighing and storage in scintillation vials. The extraction procedure consisted of four sequential steps to measure various Mn fractions based upon selective solubility: (1) soluble Mn dissolved in 0.01 M ammonium acetate; (2) Mn (0,II) dissolved in 25 % (v/v) acetic acid; (3) Mn (III,IV) dissolved in 0.5% (w/v) hydroxylamine hydrochloride in 25% (v/v) acetic acid; and (4) insoluble Mn extracted with concentrated hydrochloric and nitric acids. After sample treatment, the four fractions were analyzed for Mn by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). WF from GMAW and FCAW showed similar distributions of Mn species, with the largest concentrations of Mn detected in the Mn (0,II) and insoluble Mn fractions. On the other hand, the majority of the Mn content of SMAW fume was detected as Mn (III,IV). Although the concentration of Mn measured from summation of the four sequential steps was statistically significantly different from that measured from the hot block dissolution method for total Mn, the difference is small enough to be of no practical importance for industrial hygiene air samples, and either method may be used for Mn measurement. The sequential extraction method provides valuable information about the oxidation state of Mn in samples and allows for comparison to results from previous work and from total Mn dissolution methods.
Third NASA Workshop on Wiring for Space Applications
NASA Technical Reports Server (NTRS)
Hammoud, Ahmad (Compiler); Stavnes, Mark (Compiler)
1995-01-01
This workshop addressed key technology issues in the field of electrical power wiring for space applications, and transferred information and technology related to space wiring for use in government and commercial applications. Speakers from space agencies, U.S. Federal labs, industry, and academia presented program overviews and discussed topics on arc tracking phenomena, advancements in insulation materials and constructions, and new wiring system topologies.
Evaluation of Noncontact Power Collection Techniques
DOT National Transportation Integrated Search
1972-07-01
An evaluation is made of four basic noncontacting techniques of power collection which have possible applicability in future high speed ground transportation systems. The techniques considered include the electric arc, magnetic induction, electrostat...
NASA Astrophysics Data System (ADS)
Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K.; Harrison, T. Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas
2016-12-01
Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the “cold storage” model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.
Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K; Harrison, T Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas
2016-12-06
Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the "cold storage" model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.
Multi-Group Reductions of LTE Air Plasma Radiative Transfer in Cylindrical Geometries
NASA Technical Reports Server (NTRS)
Scoggins, James; Magin, Thierry Edouard Bertran; Wray, Alan; Mansour, Nagi N.
2013-01-01
Air plasma radiation in Local Thermodynamic Equilibrium (LTE) within cylindrical geometries is studied with an application towards modeling the radiative transfer inside arc-constrictors, a central component of constricted-arc arc jets. A detailed database of spectral absorption coefficients for LTE air is formulated using the NEQAIR code developed at NASA Ames Research Center. The database stores calculated absorption coefficients for 1,051,755 wavelengths between 0.04 µm and 200 µm over a wide temperature (500K to 15 000K) and pressure (0.1 atm to 10.0 atm) range. The multi-group method for spectral reduction is studied by generating a range of reductions including pure binning and banding reductions from the detailed absorption coefficient database. The accuracy of each reduction is compared to line-by-line calculations for cylindrical temperature profiles resembling typical profiles found in arc-constrictors. It is found that a reduction of only 1000 groups is sufficient to accurately model the LTE air radiation over a large temperature and pressure range. In addition to the reduction comparison, the cylindrical-slab formulation is compared with the finite-volume method for the numerical integration of the radiative flux inside cylinders with varying length. It is determined that cylindrical-slabs can be used to accurately model most arc-constrictors due to their high length to radius ratios.
Barboni, Mélanie; Schmitt, Axel K.; Harrison, T. Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas
2016-01-01
Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the “cold storage” model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes. PMID:27799558
Dwelly, Priscilla M.; Tripp, Brady L.; Tripp, Patricia A.; Eberman, Lindsey E.; Gorin, Steven
2009-01-01
Abstract Context: Repetitive throwing at high velocities leads to altered range of motion (ROM) in the dominant shoulder compared with the nondominant shoulder in overhead-throwing athletes. Loss of glenohumeral internal rotation (IR), or glenohumeral internal-rotation deficit (GIRD), is associated with shoulder injuries. Therefore, GIRD should be evaluated during the clinical examination of the thrower's shoulder. Objective: To assess glenohumeral ROM in competitive baseball and softball athletes at 3 intervals over the course of an athletic season in order to (1) examine changes in ROM over time and (2) monitor the prevalence of GIRD. Design: Observational, repeated-measures study. Setting: Collegiate athletic training room. Patients or Other Participants: Forty-eight healthy National Collegiate Athletic Association (NCAA) Division I or Division II athletes (age = 19 ± 1 years, height = 174 ± 14 cm, mass = 77.8 ± 18.1 kg; 19 softball, 29 baseball players). Main Outcome Measure(s): We measured glenohumeral IR, external rotation (ER), total arc (ER + IR), and GIRD at 3 times: prefall, prespring, and postspring. We calculated GIRD in 2 ways: as the difference in IR between dominant and nondominant shoulders and as the percentage of the total arc. Results: In the dominant shoulder, ER increased during the season (F2,96 = 17.433, P < .001), but IR remained the same (F2,96 = 1.839, P = .17). The total arc in the dominant shoulder increased between time intervals (F2,96 = 14.030, P < .001); the mean difference between prefall and postspring measurements was 9.694° (P < .001), and the mean difference between prefall and postspring measurements was 10.990° (P < .001). In the nondominant shoulder, ER increased over the season (F2,96 = 23.395, P < .001), but IR did not change over the season (F2,96 = 0.087, P = .90). The total arc in the nondominant shoulder increased between prefall and prespring measurements and between prefall and postspring measurements (F2,96 = 18.552, P < .001). No changes were noted in GIRD over time. However, more athletes with GIRD were identified with the GIRD (IR difference) calculation in prefall (n = 6) than in prespring (n = 1) and postspring (n = 4) (Cochran Q = 5.2, P = .07). In addition, more athletes with GIRD were identified with the GIRD (% total arc) calculation in postspring (n = 6) than in prefall (n = 5) or prespring (n = 4) (Cochran Q = 2.6, P = .27). Conclusions: Healthy NCAA Division I and Division II athletes did not display changes in glenohumeral IR over an athletic season. However, they gained in ER and total arc during the season in both shoulders. Future researchers should investigate changes over multiple seasons. The 2 methods of calculating GIRD identified different athletes as having GIRD, indicating that additional investigation is warranted to determine the clinical benefits of each method. PMID:19911087
Jelmert, O; Hansteen, I L; Langård, S
1994-02-01
Cytogenetic damage was studied in lymphocytes from 42 welders using the manual metal arc (MMA) method on stainless steel (SS). A detailed characterization of previous exposure by job interviews, and for current exposure with personal air sampling and biological monitoring of chromium (Cr) and nickel (Ni) in blood and urine, was done for 32 of these welders. A subgroup of 20 welders was studied before and after 1-4 months of MMA/SS welding. A matched reference group I, and a larger reference group II were established for comparison. A significant increase in chromatid breaks (1.4 vs. 0.9 and 0.8 for group I and II) and for cells with aberrations (2.2 vs. 1.6 in group II) was found in the welders. An even larger difference was found when comparing non-smoking welders with their non-smoking referents. No synergistic effect between smoking and MMA/SS welding fumes was observed for any type of aberrations. Current welding fume exposure during the week before sampling was not associated with increases in any type of cytogenetic damage. The results indicated that the increase in chromatid breaks was associated with cumulated welding fume exposure for more than a year, and with not using respirators. Exposure to MMA/SS welding fumes for up to 4 months gave a slight, but significant increase in chromatid breaks when using the welders as their own referents. However, when using matched referents in the study after exposure, no difference was found between these welders and their matched referents. No differences between the groups were observed in the DNA synthesis and repair-inhibited cultures or for SCE.
Universal scattering response across the type-II Weyl semimetal phase diagram
NASA Astrophysics Data System (ADS)
Rüßmann, P.; Weber, A. P.; Glott, F.; Xu, N.; Fanciulli, M.; Muff, S.; Magrez, A.; Bugnon, P.; Berger, H.; Bode, M.; Dil, J. H.; Blügel, S.; Mavropoulos, P.; Sessi, P.
2018-02-01
The discovery of Weyl semimetals represents a significant advance in topological band theory. They paradigmatically enlarged the classification of topological materials to gapless systems while simultaneously providing experimental evidence for the long-sought Weyl fermions. Beyond fundamental relevance, their high mobility, strong magnetoresistance, and the possible existence of even more exotic effects, such as the chiral anomaly, make Weyl semimetals a promising platform to develop radically new technology. Fully exploiting their potential requires going beyond the mere identification of materials and calls for a detailed characterization of their functional response, which is severely complicated by the coexistence of surface- and bulk-derived topologically protected quasiparticles, i.e., Fermi arcs and Weyl points, respectively. Here, we focus on the type-II Weyl semimetal class in which we find a stoichiometry-dependent phase transition from a trivial to a nontrivial regime. By exploring the two extreme cases of the phase diagram, we demonstrate the existence of a universal response of both surface and bulk states to perturbations. We show that quasiparticle interference patterns originate from scattering events among surface arcs. Analysis reveals that topologically nontrivial contributions are strongly suppressed by spin texture. We also show that scattering at localized impurities can generate defect-induced quasiparticles sitting close to the Weyl point energy. These give rise to strong peaks in the local density of states, which lift the Weyl node, significantly altering the pristine low-energy spectrum. Remarkably, by comparing the WTe2 and the MoTe2 cases we found that scattering response and topological transition are not directly linked. Visualizing the existence of a universal microscopic response to scattering has important consequences for understanding the unusual transport properties of this class of materials. Overall, our observations provide a unifying picture of the type-II Weyl phase diagram.
1964-01-01
uncovered by the Plague Suppressive Service of the U.S. Public Health Service in Montana, Wyoming, Colorado, North Dakota, and New Mexico . Intensive...control eggs which were inoculated with the 5 percent, normal chicken serum-Tyrode’s solution which was used to suspend the original membrane. Five...unclear as arc the uncertainties as to the true nature of the disease called trench fever. Kickettsial pox was not discovered until after the war
Evaluation of the US Army Research Laboratory Squeeze 5 Magnetic Flux Compression Generator
2016-09-01
Another potential loss in the system is the load itself. Arcing between connecting parts of the load can result in a large increase in resistance. This...the use thereof. Destroy this report when it is no longer needed. Do not return it to the originator. ARL-TR-7795 ● SEP 2016...unlimited. FOR OFFICIAL USE ONLY (delete if not FOUO) ii REPORT DOCUMENTATION PAGE Form Approved OMB No . 0704-0188 Public reporting burden
Paleohydrological methods and some examples from Swedish fluvial environments. II - River meanders.
Williams, G.P.
1984-01-01
Empirical relations are developed between river-meander features and water-discharge characteristics for 19 reaches along Swedish rivers. In these relations, either average channel width or average radius of curvature of meander arcs can be used to estimate average annual peak discharge and average daily discharge. By accepting certain assumptions, the relations can be applied to other meandering Swedish rivers, present or ancient. The Oster-Dalalven River near Mora is used as an example.-Author
NASA Astrophysics Data System (ADS)
Frey, Thomas G.; Coombs, Lee C.
2012-07-01
Eight double stars with separations between 13 and 48 arc seconds were studied. Their separations and position angles were measured using an equatorial mounted refractor and and alt-az mounted reflector. A 2x Barlow lens was used along with a Celestron Micro Guide eyepiece to magnify the separation. Comparison of the possible effect of magnitude difference on the separation and position angle measurements was investigated.
NASA Astrophysics Data System (ADS)
Mandal, D.; Bhatia, N.; Srivastav, R. K.
2016-12-01
Soil Water Assessment Tool (SWAT) is one of the most comprehensive hydrologic models to simulate streamflow for a watershed. The two major inputs for a SWAT model are: (i) Digital Elevation Models (DEM), and (ii) Land Use and Land Cover Maps (LULC). This study aims to quantify the uncertainty in streamflow predictions using SWAT for San Bernard River in Brazos-Colorado coastal watershed, Texas, by incorporating the respective datasets from different sources: (i) DEM data will be obtained from ASTER GDEM V2, GMTED2010, NHD DEM, and SRTM DEM datasets with ranging resolution from 1/3 arc-second to 30 arc-second, and (ii) LULC data will be obtained from GLCC V2, MRLC NLCD2011, NOAA's C-CAP, USGS GAP, and TCEQ databases. Weather variables (Precipitation and Max-Min Temperature at daily scale) will be obtained from National Climatic Data Centre (NCDC) and SWAT in-built STASGO tool will be used to obtain the soil maps. The SWAT model will be calibrated using SWAT-CUP SUFI-2 approach and its performance will be evaluated using the statistical indices of Nash-Sutcliffe efficiency (NSE), ratio of Root-Mean-Square-Error to standard deviation of observed streamflow (RSR), and Percent-Bias Error (PBIAS). The study will help understand the performance of SWAT model with varying data sources and eventually aid the regional state water boards in planning, designing, and managing hydrologic systems.
Effect of sulfuric acid etching of polyetheretherketone on the shear bond strength to resin cements.
Sproesser, Oliver; Schmidlin, Patrick R; Uhrenbacher, Julia; Roos, Malgorzata; Gernet, Wolfgang; Stawarczyk, Bogna
2014-10-01
To examine the influence of etching duration on the bond strength of PEEK substrate in combination with different resin composite cements. In total, 448 PEEK specimens were fabricated, etched with sulfuric acid for 5, 15, 30, 60, 90, 120, and 300 s and then luted with two conventional resin cements (RelyX ARC and Variolink II) and one self-adhesive resin cement (Clearfil SA Cement) (n = 18/subgroup). Non-etched specimens served as the control group. Specimens were stored in distilled water for 28 days at 37°C and shear bond strengths were measured. Data were analyzed nonparametrically using Kruskal-Wallis-H (p < 0.05). Non-etched PEEK demonstrated no bond strength to resin composite cements. The optimal etching duration varied with the type of resin composite: 60 s for RelyX ARC (15.3 ± 7.2 MPa), 90 s for Variolink II (15.2 ± 7.2 MPa), and 120 s for Clearfil SA Cement (6.4 ± 5.9 MPa). Regardless of etching duration, however, the self-etching resin composite cement showed significantly lower shear bond strength values when compared to groups luted with the conventional resin composites. Although sulfuric acid seems to be suitable and effective for PEEK surface pre-treatment, further investigations are required to examine the effect of other adhesive systems and cements.
Thermal energy storage systems using fluidized bed heat exchangers
NASA Technical Reports Server (NTRS)
Weast, T.; Shannon, L.
1980-01-01
A rotary cement kiln and an electric arc furnace were chosen for evaluation to determine the applicability of a fluid bed heat exchanger (FBHX) for thermal energy storage (TES). Multistage shallow bed FBHX's operating with high temperature differences were identified as the most suitable for TES applications. Analysis of the two selected conceptual systems included establishing a plant process flow configuration, an operational scenario, a preliminary FBHX/TES design, and parametric analysis. A computer model was developed to determine the effects of the number of stages, gas temperatures, gas flows, bed materials, charge and discharge time, and parasitic power required for operation. The maximum national energy conservation potential of the cement plant application with TES is 15.4 million barrels of oil or 3.9 million tons of coal per year. For the electric arc furnance application the maximum national conservation potential with TES is 4.5 million barrels of oil or 1.1 million tons of coal per year. Present time of day utility rates are near the breakeven point required for the TES system. Escalation of on-peak energy due to critical fuel shortages could make the FBHX/TES applications economically attractive in the future.
Thermal energy storage systems using fluidized bed heat exchangers
NASA Astrophysics Data System (ADS)
Weast, T.; Shannon, L.
1980-06-01
A rotary cement kiln and an electric arc furnace were chosen for evaluation to determine the applicability of a fluid bed heat exchanger (FBHX) for thermal energy storage (TES). Multistage shallow bed FBHX's operating with high temperature differences were identified as the most suitable for TES applications. Analysis of the two selected conceptual systems included establishing a plant process flow configuration, an operational scenario, a preliminary FBHX/TES design, and parametric analysis. A computer model was developed to determine the effects of the number of stages, gas temperatures, gas flows, bed materials, charge and discharge time, and parasitic power required for operation. The maximum national energy conservation potential of the cement plant application with TES is 15.4 million barrels of oil or 3.9 million tons of coal per year. For the electric arc furnance application the maximum national conservation potential with TES is 4.5 million barrels of oil or 1.1 million tons of coal per year. Present time of day utility rates are near the breakeven point required for the TES system. Escalation of on-peak energy due to critical fuel shortages could make the FBHX/TES applications economically attractive in the future.
NASA Astrophysics Data System (ADS)
Elßner, M.; Weis, S.; Grund, T.; Wagner, G.; Habisch, S.; Mayr, P.
2016-03-01
Joint interfaces of aluminum and stainless steel often exhibit intermetallics of Al-Fe, which limit the joint strength. In order to reduce these brittle phases in joints of aluminum matrix composites (AMC) and stainless steel, diffusion bonding and arc brazing are used. Due to the absence of a liquid phase, diffusion welding can reduce the formation of these critical in- termetallics. For this joining technique, the influence of surface treatments and adjusted time- temperature-surface-pressure-regimes is investigated. On the other hand, arc brazing offers the advantage to combine a localized heat input with the application of a low melting filler and was conducted using the system Al-Ag-Cu. Results of the joining tests using both approaches are described and discussed with regard to the microstructure of the joints and the interfaces.
High current DC negative ion source for cyclotron.
Etoh, H; Onai, M; Aoki, Y; Mitsubori, H; Arakawa, Y; Sakuraba, J; Kato, T; Mitsumoto, T; Hiasa, T; Yajima, S; Shibata, T; Hatayama, A; Okumura, Y
2016-02-01
A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H(-) beam of 10 mA and D(-) beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H(-) beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H(-) current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H(-) production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H(-) current dependence on the arc power.
Application of Waste Heat Recovery Energy Saving Technology in Reform of UHP-EAF
NASA Astrophysics Data System (ADS)
Zhao, J. H.; Zhang, S. X.; Yang, W.; Yu, T.
2017-08-01
The furnace waste heat of a company’s existing 4 × 100t ultra-high-power electric arc furnaces is not used and discharged directly of the situation has been unable to meet the national energy-saving emission reduction requirements, and also affected their own competitiveness and sustainable development. In order to make full use of the waste heat of the electric arc furnace, this paper presents an the energy-saving transformation program of using the new heat pipe boiler on the existing ultra-high-power electric arc furnaces for recovering the waste heat of flue gas. The results show that after the implementation of the project can save energy equivalent to 42,349 tons of standard coal. The flue gas waste heat is fully utilized and dust emission concentration is accorded with the standard of Chinese invironmental protection, which have achieved good results.
Ceramic Foams for TPS Applications
NASA Technical Reports Server (NTRS)
Stockpoole, Mairead
2003-01-01
Ceramic foams have potential in many areas of Thermal Protection Systems (TPS) including acreage and tile leading edges as well as being suitable as a repair approach for re-entry vehicles. NASA Ames is conducting ongoing research in developing lower-density foams from pre-ceramic polymer routes. One of the key factors to investigate, when developing new materials for re-entry applications, is their oxidation behavior in the appropriate re-entry environment which can be simulated using ground based arc jet (plasma jet) testing. Arc jet testing is required to provide the appropriate conditions (stagnation pressures, heat fluxes, enthalpies, heat loads and atmospheres) encountered during flight. This work looks at the response of ceramic foams (Si systems) exposed to simulated reentry environments and investigates the influence of microstructure and composition on the material? response. Other foam properties (mechanical and thermal) will also be presented.
NASA Astrophysics Data System (ADS)
This note is call for dive requests, coordinated to the extent practical, from those scientists interested in opportunities for an Alvin/Atlantis II expedition to some remote area. In an effort to facilitate planning for Alvin and to help focus the attention of investigators with diverse scientific interests in remote areas, Feenan Jennings of Texas A & M University, College Station, who chairs the University-National Oceanographic Laboratory System's (UNOLS') Alvin Review Committee (ARC), has announced establishment of an Alvin planning bulletin board on electronic mail. The bulletin board, ALVIN.PLANNING, is to help inform potential users of community interest in conducting Alvin/Atlantis II research projects, especially those involving expeditions to remote areas. ALVIN.PLANNING will be implemented early in 1990. Notice and further details will be broadcast throughout the ocean community.
Observations of the Ca II K line in Hel0830A dark points on August 3, 1985
NASA Technical Reports Server (NTRS)
Holt, Rush D.; Park, Albert H.; Thompson, Joseph C.; Mullan, D. M.
1986-01-01
Spectroheliograms taken in the light of He I 10830 A at the National Solar Observatory Vacuum Telescope on Kitt Peak were used to identify coronal holes and bright points (BPs). Target points were identified, coordinates calculated, and spectra recorded. For each spectrum, the difference in wavelength between the Ca II K minimum and the FeI reference line was calculated. It was noteworthy that the overall effect is a blueshift. It should be noted that if material of chromospheric density moves outward at this velocity, it could supply the mass flux of the solar wind if this chromospheric flow was concentrated in a few dozen sources, each of a diameter of a few arc seconds.
Velocity mapping in a 30-kW arcjet plume using laser-induced fluorescence
NASA Astrophysics Data System (ADS)
Pham-van-Diep, Gerald; Erwin, Daniel D.; Deininger, William D.; Pivirotto, Thomas J.
1989-07-01
A method for measuring the axial and transverse plume velocities and internal energy distributions in rarified thruster plumes by using pulsed laser-induced fluorescence (LIF) of atomic hydrogen Balmer lines is described. The results of an application of this technique for velocity mapping of a 30-kW ammonia arc-jet plume generated in the JPL arc-jet testing facility (which is uniquely suited for these measurements due to the end-on optical access provided by its ninety-degree-bent diffuser) are described. A schematic diagram of the JPL facility with LIF setup is included.
Raman Life Detection Instrument Development for Icy Worlds
NASA Technical Reports Server (NTRS)
Thomson, Seamus; Allen, A'Lester; Gutierrez, Daniel; Quinn, Richard C.; Chen, Bin; Koehne, Jessica E.
2017-01-01
The objective of this project is to develop a compact, high sensitivity Raman sensor for detection of life signatures in a flow cell configuration to enable bio-exploration and life detection during future mission to our Solar Systems Icy Worlds. The specific project objectives are the following: 1) Develop a Raman spectroscopy liquid analysis sensor for biosignatures; 2) Demonstrate applicability towards a future Enceladus or other Icy Worlds missions; 3) Establish key parameters for integration with the ARC Sample Processor for Life on Icy Worlds (SPLIce); 4) Position ARC for a successful response to upcoming Enceladus or other Icy World mission instrument opportunities.
Simulation of a manual electric-arc welding in a working gas pipeline. 1. Formulation of the problem
NASA Astrophysics Data System (ADS)
Baikov, V. I.; Gishkelyuk, I. A.; Rus', A. M.; Sidorovich, T. V.; Tonkonogov, B. A.
2010-11-01
Problems of mathematical simulation of the temperature stresses arising in the wall of a pipe of a cross-country gas pipeline in the process of electric-arc welding of defects in it have been considered. Mathematical models of formation of temperatures, deformations, and stresses in a gas pipe subjected to phase transformations have been developed. These models were numerically realized in the form of algorithms representing a part of an application-program package. Results of verification of the computational complex and calculation results obtained with it are presented.
NASA Technical Reports Server (NTRS)
Cooper, K. G.
2000-01-01
Rapid prototyping (RP) is a layer-by-layer-based additive manufacturing process for constructing three-dimensional representations of a computer design from a wax, plastic, or similar material. Wire arc spray (WAS) is a metal spray forming technique, which deposits thin layers of metal onto a substrate or pattern. Marshall Space Flight Center currently has both capabilities in-house, and this project proposed merging the two processes into an innovative manufacturing technique, in which intermediate injection molding tool halves were to be fabricated with RP and WAS metal forming.
NASA Astrophysics Data System (ADS)
Luna, J. A.; Rojas, J. I.
2016-07-01
All prostate cancer patients from Centro Médico Radioterapia Siglo XXI receive Volumetric Modulated Arc Therapy (VMAT). This therapy uses image-guided radiotherapy (IGRT) with the Cone Beam Computed Tomography (CBCT). This study compares the planned dose in the reference CT image against the delivered dose recalculate in the CBCT image. The purpose of this study is to evaluate the anatomic changes and related dosimetric effect based on weekly CBCT directly for patients with prostate cancer undergoing volumetric modulated arc therapy (VMAT) treatment. The collected data were analyzed using one-way ANOVA.
Metal vapor vacuum arc switching - Applications and results. [for launchers
NASA Technical Reports Server (NTRS)
Cope, D.; Mongeau, P.
1984-01-01
The design of metal-vapor vacuum-arc switches (MVSs) for electromagnetic launchers is discussed, and preliminary results are presented for an experimental MVS. The general principles of triggered-vacuum-gap and vacuum-interrupter MVSs are reviewed, and the requirements of electromagnetic launchers are analyzed. High-current design problems such as electrode erosion, current sharing, magnetic effects, and thermal effects are examined. The experimental MVS employs stainless-steel flanges, a glass vacuum vessel, an adjustable electrode gap, autonomous internal magnetic-field coils, and a tungsten-pin trigger assembly. Some results from tests without magnetic augmentation are presented graphically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q.
In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medicalmore » physics.« less
Implementation of an Outer Can Welding System for Savannah River Site FB-Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, S.R.
2003-03-27
This paper details three phases of testing to confirm use of a Gas Tungsten Arc (GTA) system for closure welding the 3013 outer container used for stabilization/storage of plutonium metals and oxides. The outer container/lid closure joint was originally designed for laser welding, but for this application, the gas tungsten arc (GTA) welding process has been adapted. The testing progressed in three phases: (1) system checkout to evaluate system components for operational readiness, (2) troubleshooting to evaluate high weld failure rates and develop corrective techniques, and (3) pre-installation acceptance testing.
NASA Astrophysics Data System (ADS)
Vautravers, Maryline
2015-04-01
IODP Expedition 350 Site U1436C lies in the western part of the Izu fore arc basin, ~60 km east of the arc front volcano Aogashima, at 1776 m water depth. This site is a technical hole (only a 150 m long record) for a potential future deep drilling by Chikyu. Site U1437 is located in the Izu rear arc, ~90 km west of the arc front volcanoes Myojinsho and Myojin Knoll, at 2117 m water depth. At this site in order to study the evolution of the IZU rear arc crust we recovered a 1800 meter long sequence of mud and volcaniclastic sediments. These sites provide a rich and well-preserved record of volcanic eruptions within the area of the Izu Bonin-Arc. However, the material recovered, mostly mud with ash containing generally abundant planktonic foraminifera, can support additional paleoceanographic goals in an area affected by the Kuroshio Current. Also, the hydrographic divide created by the Izu rise provides a rare opportunity to gain some insight into the operation of the global intermediate circulation. The Antarctic Intermediate Water Mass is more influential at the depth of U1437B in the West and the North Pacific Intermediate Water at Site U1436C to the East. We analyzed 460 samples recovered at Sites U1436C and U1437B for a quantitative planktonic foraminifer study, and also for carbonate preservation indices, including: shell weight, percent planktonic foraminifera fragments planktonic foraminifer concentrations, various faunal proxies, and benthic/planktonic ratio. We measured the stable isotopes for a similar number of samples using the thermocline dwelling Neogloboquadrina dutertrei. The dataset presented here covers the last 1 Ma at Site U1437B and 0.9 Ma at Site U1436C. The age models for the two sites are largely established through stable isotope stratigraphy (this study). On their respective age models we evidence based on polar/subpolar versus subtropical faunal assemblages changes qualitative surface water temperature variations recording the changing influences in the Kuroshio/Oyashio currents at orbital time scales over the last 1 Ma. However, the 2 main findings are i.) that of the intense and pervasive carbonate dissolution at such an intermediate water depth, especially during interglacials, and in particular at site U1436C, and ii.) the good and improving carbonate preservation at Site U1437B during glacials, particularly in the upper part of the record.
Dennis, J H; Hewitt, P J; Redding, C A; Workman, A D
2001-03-01
Prediction of fume formation rate during metal arc welding and the composition of the fume are of interest to occupational hygienists concerned with risk assessment and to manufacturers of welding consumables. A model for GMAW (DC electrode positive) is described based on the welder determined process parameters (current, wire feed rate and wire composition), on the surface area of molten metal in the arc and on the partial vapour pressures of the component metals of the alloy wire. The model is applicable to globular and spray welding transfer modes but not to dip mode. Metal evaporation from a droplet is evaluated for short time increments and total evaporation obtained by summation over the life of the droplet. The contribution of fume derived from the weld pool and spatter (particles of metal ejected from the arc) is discussed, as are limitations of the model. Calculated droplet temperatures are similar to values determined by other workers. A degree of relationship between predicted and measured fume formation rates is demonstrated but the model does not at this stage provide a reliable predictive tool.
Plasma Torch for Plasma Ignition and Combustion of Coal
NASA Astrophysics Data System (ADS)
Ustimenko, Alexandr; Messerle, Vladimir
2015-09-01
Plasma-fuel systems (PFS) have been developed to improve coal combustion efficiency. PFS is a pulverized coal burner equipped with arc plasma torch producing high temperature air stream of 4000 - 6000 K. Plasma activation of coal at the PFS increases the coal reactivity and provides more effective ignition and ecologically friendly incineration of low-rank coal. The main and crucial element of PFS is plasma torch. Simplicity and reliability of the industrial arc plasma torches using cylindrical copper cathode and air as plasma forming gas predestined their application at heat and power engineering for plasma aided coal combustion. Life time of these plasma torches electrodes is critical and usually limited to 200 hours. Considered in this report direct current arc plasma torch has the cathode life significantly exceeded 1000 hours. To ensure the electrodes long life the process of hydrocarbon gas dissociation in the electric arc discharge is used. In accordance to this method atoms and ions of carbon from near-electrode plasma deposit on the active surface of the electrodes and form electrode carbon condensate which operates as ``actual'' electrode. Complex physicochemical investigation showed that deposit consists of nanocarbon material.
NASA Astrophysics Data System (ADS)
Zheng, Siqi; Wang, Li; Feng, Xuning; He, Xiangming
2018-02-01
Safety issue is very important for the lithium ion battery used in electric vehicle or other applications. This paper probes the heat sources in the thermal runaway processes of lithium ion batteries composed of different chemistries using accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC). The adiabatic thermal runaway features for the 4 types of commercial lithium ion batteries are tested using ARC, whereas the reaction characteristics of the component materials, including the cathode, the anode and the separator, inside the 4 types of batteries are measured using DSC. The peaks and valleys of the critical component reactions measured by DSC can match the fluctuations in the temperature rise rate measured by ARC, therefore the relevance between the DSC curves and the ARC curves is utilized to probe the heat source in the thermal runaway process and reveal the thermal runaway mechanisms. The results and analysis indicate that internal short circuit is not the only way to thermal runaway, but can lead to extra electrical heat, which is comparable with the heat released by chemical reactions. The analytical approach of the thermal runaway mechanisms in this paper can guide the safety design of commercial lithium ion batteries.
Exploiting chaos for applications.
Ditto, William L; Sinha, Sudeshna
2015-09-01
We discuss how understanding the nature of chaotic dynamics allows us to control these systems. A controlled chaotic system can then serve as a versatile pattern generator that can be used for a range of application. Specifically, we will discuss the application of controlled chaos to the design of novel computational paradigms. Thus, we present an illustrative research arc, starting with ideas of control, based on the general understanding of chaos, moving over to applications that influence the course of building better devices.
Investigation of the AC Plasma Torch Working Conditions for the Plasma Chemical Applications
NASA Astrophysics Data System (ADS)
Safronov, A. A.; Vasilieva, O. B.; Dudnik, J. D.; E Kuznetsov, V.; Shiryaev, V. N.; Subbotin, D. I.; Pavlov, A. V.
2017-04-01
The presented design and parameters of a three-phase AC plasma torch with the power up to 500 kW, flow rate of air 30-50 g/s (temperature up to 5000 K) could be used in different plasma chemical processes. Range of measured plasma temperature is 3500-5000 K. The paper presents investigations of the plasma torch operation modes for its application in plasma chemical technologies. Plasma chemical technologies for various purposes (processing, destruction of various wastes, including technological and hazardous waste, conversion or production of chemicals to obtain nanoscale materials, etc.) are very promising in terms of the process efficiency. Their industrial use is difficult due to the lack of inexpensive and reliable plasma torches providing the desired level of temperature, enthalpy of the working gas and other necessary conditions for the process. This problem can be solved using a considered design of a three-phase alternating current plasma torch with power of 150-500 kW with working gas flow rate of 30-50 g/s with mass average temperature up to 5000K on the basis of which an industrial plasma chemical plant can be created. The basis of the plasma torch operation is a railgun effect that is the principle of arc movement in the field of its own current field. Thanks to single supply of power to the arc, arcs forming in the discharge chamber of the plasma torch move along the electrodes under the action of electrodynamic forces resulting from the interaction of the arc current with its own magnetic field. Under the condition of the three-phase supply voltage, arc transits from the electrode to the electrode with change in the anodic and cathodic phases with frequency of 300 Hz. A special feature of this design is the ability to organize the movement of the arc attachment along the electrode, thus ensuring an even distribution of the thermal load and thus achieve long time of continuous operation of the plasma torch. The parameters of the plasma jet of the plasma torch and the single-phase three-phase plasma injector for use in a plasma-chemical unit for production of nano-dispersed materials are described in the paper.
21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.
Code of Federal Regulations, 2013 CFR
2013-04-01
... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...
21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.
Code of Federal Regulations, 2012 CFR
2012-04-01
... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...
21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.
Code of Federal Regulations, 2011 CFR
2011-04-01
... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...
21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.
Code of Federal Regulations, 2014 CFR
2014-04-01
... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...
Arc Jet Testing of the TIRS Cover Thermal Protection System for Mars Exploration Rover
NASA Technical Reports Server (NTRS)
Szalai, Christine E.; Chen, Y.-K.; Loomis, Mark; Hui, Frank; Scrivens, Larry
2002-01-01
This paper summarizes the arc jet test results of the Mars Exploration Rover (MER) Silicone Impregnated Reusable Ceramic Ablator (SIRCA) Transverse Impulse Rocket System (TIRS) Cover test series in the Panel Test Facility (PTF) at NASA Ames Research Center (ARC). NASA ARC performed aerothermal environment analyses, TPS sizing and thermal response analyses, and arc jet testing to evaluate the MER SIRCA TIRS Cover design and interface to the aeroshell structure. The primary objective of this arc jet test series was to evaluate specific design details of the SIRCA TIRS Cover interface to the MER aeroshell under simulated atmospheric entry heating conditions. Four test articles were tested in an arc jet environment with various sea] configurations. The test condition was designed to match the predicted peak flight heat load at the gap region between the SIRCA and the backshell TPS material, SLA-561S, and resulted in an over-test (with respect to heat flux and heat load) for the apex region of the SIRCA TIRS Cover. The resulting pressure differential was as much as twenty times that predicted for the flight case, depending on the location, and there was no post-test visual evidence of over-heating or damage to the seal, bracket, or backshell structure. The exposed titanium bolts were in good condition at post-test and showed only a small amount of oxidation at the leading edge locations. Repeatable thermocouple data were obtained and SIRCA thermal response analyses were compared to applicable thermocouple data. For the apex region of the SIRCA TIRS Cover, a one-dimensional thermal response prediction proved overly conservative, as there were strong multi-dimensional conduction effects evident from the thermocouple data. The one-dimensional thermal response prediction compared well with the thermocouple data for the leading edge "lip" region at the bolt location. In general, the test results yield confidence in the baseline seal design to prevent hot gas ingestion at the bracket and composite aeroshell structure interface.
Wu, Qixue; Snyder, Karen Chin; Liu, Chang; Huang, Yimei; Zhao, Bo; Chetty, Indrin J; Wen, Ning
2016-09-30
Treatment of patients with multiple brain metastases using a single-isocenter volumetric modulated arc therapy (VMAT) has been shown to decrease treatment time with the tradeoff of larger low dose to the normal brain tissue. We have developed an efficient Projection Summing Optimization Algorithm to optimize the treatment geometry in order to reduce dose to normal brain tissue for radiosurgery of multiple metastases with single-isocenter VMAT. The algorithm: (a) measures coordinates of outer boundary points of each lesion to be treated using the Eclipse Scripting Application Programming Interface, (b) determines the rotations of couch, collimator, and gantry using three matrices about the cardinal axes, (c) projects the outer boundary points of the lesion on to Beam Eye View projection plane, (d) optimizes couch and collimator angles by selecting the least total unblocked area for each specific treatment arc, and (e) generates a treatment plan with the optimized angles. The results showed significant reduction in the mean dose and low dose volume to normal brain, while maintaining the similar treatment plan qualities on the thirteen patients treated previously. The algorithm has the flexibility with regard to the beam arrangements and can be integrated in the treatment planning system for clinical application directly.
Gliding arc in tornado using a reverse vortex flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalra, Chiranjeev S.; Cho, Young I.; Gutsol, Alexander
The present article reports a new gliding arc (GA) system using a reverse vortex flow ('tornado') in a cylindrical reactor (gliding arc in tornado, or GAT), as used to preserve the main advantages of traditional GA systems and overcome their main drawbacks. The primary advantages of traditional GA systems retained in the present GAT are the possibility to generate transitional plasma and to avoid considerable electrode erosion. In contrast to a traditional GA, the new GAT system ensures much more uniform gas treatment and has a significantly larger gas residence time in the reactor. The present article also describes themore » design of the new reactor and its stable operation regime when the variation of GAT current is very small. These features are understood to be very important for most viable applications. Additionally the GAT provides near-perfect thermal insulation from the reactor wall, indicating that the present GAT does not require the reactor wall to be constructed of high-temperature materials. The new GAT system, with its unique properties such as a high level of nonequilibrium and a large residence time, looks very promising for many industrial applications including fuel conversion, carbon dioxide conversion to carbon monoxide and oxygen, surface treatment, waste treatment, flame stabilization, hydrogen sulfide treatment, etc.« less
Calibration of the motor-assisted robotic stereotaxy system: MARS.
Heinig, Maximilian; Hofmann, Ulrich G; Schlaefer, Alexander
2012-11-01
The motor-assisted robotic stereotaxy system presents a compact and light-weight robotic system for stereotactic neurosurgery. Our system is designed to position probes in the human brain for various applications, for example, deep brain stimulation. It features five fully automated axes. High positioning accuracy is of utmost importance in robotic neurosurgery. First, the key parameters of the robot's kinematics are determined using an optical tracking system. Next, the positioning errors at the center of the arc--which is equivalent to the target position in stereotactic interventions--are investigated using a set of perpendicular cameras. A modeless robot calibration method is introduced and evaluated. To conclude, the application accuracy of the robot is studied in a phantom trial. We identified the bending of the arc under load as the robot's main error source. A calibration algorithm was implemented to compensate for the deflection of the robot's arc. The mean error after the calibration was 0.26 mm, the 68.27th percentile was 0.32 mm, and the 95.45th was 0.50 mm. The kinematic properties of the robot were measured, and based on the results an appropriate calibration method was derived. With mean errors smaller than currently used mechanical systems, our results show that the robot's accuracy is appropriate for stereotactic interventions.
Vallières, Eric; Pintos, Javier; Lavoué, Jérôme; Parent, Marie-Élise; Rachet, Bernard; Siemiatycki, Jack
2012-08-01
We investigated relationships between occupational exposure to gas and arc welding fumes and the risk of lung cancer among workers exposed to these agents throughout the spectrum of industries. Two population-based case-control studies were conducted in Montreal. Study I (1979-1986) included 857 cases and 1066 controls, and Study II (1996-2001) comprised 736 cases and 894 controls. Detailed job histories were obtained by interview and evaluated by an expert team of chemist-hygienists to estimate degree of exposure to approximately 300 substances for each job. Gas and arc welding fumes were among the agents evaluated. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer using logistic regression, adjusting for smoking history and other covariates. The two studies provided similar results, so a pooled analysis was conducted. Among all subjects, no significant association was found between lung cancer and gas welding fumes (OR = 1.1; 95% CI = 0.9-1.4) or arc welding fumes (OR = 1.0; 95% CI = 0.8-1.2). However, when restricting attention to light smokers, there was an increased risk of lung cancer in relation to gas welding fumes (OR = 2.9; 95% CI = 1.7-4.8) and arc welding fumes (OR = 2.3; 95% CI = 1.3-3.8), with even higher OR estimates among workers with the highest cumulative exposures. In conclusion, there was no detectable excess risk of lung cancer due to welding fumes among moderate to heavy smokers; but among light smokers we found an excess risk related to both types of welding fumes.
Vallières, Eric; Pintos, Javier; Lavoué, Jérôme; Parent, Marie-Élise; Rachet, Bernard; Siemiatycki, Jack
2012-01-01
We investigated relationships between occupational exposure to gas and arc welding fumes and the risk of lung cancer among workers exposed to these agents throughout the spectrum of industries. Two population-based case–control studies were conducted in Montreal. Study I (1979–1986) included 857 cases and 1066 controls, and Study II (1996–2001) comprised 736 cases and 894 controls. Detailed job histories were obtained by interview and evaluated by an expert team of chemist–hygienists to estimate degree of exposure to approximately 300 substances for each job. Gas and arc welding fumes were among the agents evaluated. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer using logistic regression, adjusting for smoking history and other covariates. The two studies provided similar results, so a pooled analysis was conducted. Among all subjects, no significant association was found between lung cancer and gas welding fumes (OR = 1.1; 95% CI = 0.9–1.4) or arc welding fumes (OR = 1.0; 95% CI = 0.8–1.2). However, when restricting attention to light smokers, there was an increased risk of lung cancer in relation to gas welding fumes (OR = 2.9; 95% CI = 1.7–4.8) and arc welding fumes (OR = 2.3; 95% CI = 1.3–3.8), with even higher OR estimates among workers with the highest cumulative exposures. In conclusion, there was no detectable excess risk of lung cancer due to welding fumes among moderate to heavy smokers; but among light smokers we found an excess risk related to both types of welding fumes. PMID:23342253
NASA Astrophysics Data System (ADS)
Worthington, James R.; Kapp, Paul; Minaev, Vladislav; Chapman, James B.; Mazdab, Frank K.; Ducea, Mihai N.; Oimahmadov, Ilhomjon; Gadoev, Mustafo
2017-10-01
The amalgamation of the Central Asian Orogenic Belt in the southwestern Tian Shan in Tajikistan is represented by tectono-magmatic-metamorphic processes that accompanied late Paleozoic ocean closure and collision between the Karakum-Tarim and Kazakh-Kyrgyz terranes. Integrated U-Pb geochronology, thermobarometry, pseudosection modeling, and Hf geochemistry constrain the timing and petro-tectonic nature of these processes. The Gissar batholith and the Garm massif represent an eastward, along-strike increase in paleodepth from upper-batholith ( 21-7 km) to arc-root ( 36-19 km) levels of the Andean-syn-collisional Gissar arc, which developed from 323-288 Ma in two stages: (i) Andean, I-type granitoid magmatism from 323-306 Ma due to northward subduction of the Gissar back-arc ocean basin under the Gissar microcontinent, which was immediately followed by (ii) syn-collisional, I-S-type granitoid magmatism in the Gissar batholith and the Garm massif from 304-288 Ma due to northward subduction/underthrusting of Karakum marginal-continental crust under the Gissar microcontinent. A rapid isotopic pull-up from 288-286 Ma signals the onset of juvenile, alkaline-syenitic, post-collisional magmatism by 280 Ma, which was driven by delamination of the Gissar arclogite root and consequent convective asthenospheric upwelling. Whereas M-HT/LP prograde metamorphism in the Garm massif (650-750°C/6-7 kbar) from 310-288 Ma was associated with subduction-magma inundation and crustal thickening, HT/LP heating and decompression to peak-metamorphic temperatures ( 800-820°C/6-4 kbar) at 288 ± 6 Ma was driven by the transmission of a post-collisional, mantle-derived heat wave through the Garm-massif crust.
The earliest mantle fabrics formed during subduction zone infancy
NASA Astrophysics Data System (ADS)
Harigane, Y.; Michibayashi, K.; Morishita, T.; Tani, K.; Dick, H. J.; Ishizuka, O.
2013-12-01
Harzburgites obtained from the oldest crust-mantle section in the Philippine Sea plate along the landward slope of the southern Izu-Ogasawara Trench in Izu-Bonin-Mariana arc, that explored by Dive 7K417 of the ROV Kaiko 7000II during R/V Kairei cruise KR08-07, and Dredge 31 of R/V Hakuho-Maru cruise KH07-02, operated by the Japan Agency for Marine-Earth Science and Technology. Harzburgites preserve mantle fabrics formed during the infancy of the subduction zone; that is during the initial stages of Pacific plate subduction beneath the Philippine Sea plate. The main constituent minerals of harzburgites are olivine (15.6%), orthopyroxene (Opx; 13.1%) and spinel (0.5%), along with serpentine (70.8%) as a secondary mineral. Microstructure shows inequigranular interlobate (or protogranular) textures. There is no secondary deformation such as porphyroclastic or fine-grained textures. The secondary serpentine shows undeformed mesh texture in the harzburgites. Harzburgites have crystal preferred orientation patterns in olivine (001)[100] and Opx (100)[001]. The mineral chemistry in harzburgites have high olivine forsterite (90.6-92.1 mol.%) and NiO (~0.4 wt%) contents, low Opx Al2O3 (<~1.5 wt%) and Na2O (<0.03 wt%), and high spinel Cr# (65-67). This has the characteristics of residual peridotites, whereas the dunites, obtained from the same location as the harzburgites, provide evidence for the earliest stages of arc volcanism during the inception of subduction. Therefore, we propose that the (001)[100] olivine patterns began forming in immature fore-arc mantle with an increase in slab-derived hydrous fluids during the initial stages of subduction in in situ oceanic island arc.
NASA Astrophysics Data System (ADS)
Reston, T. J.
2005-12-01
The special research program SFB 574 at the University of Kiel investigates the role of fluid and volatile recycling in subduction zones along the Central American convergent margin (Guatemala to Panama) through integrated geophysical, geological, volcanological, geochemical, petrological and oceanographic studies. The work is carried out by over 50 scientists within 12 focussed scientific projects, evenly distributed between the tectonics of the subduction zone, the dewatering through the forearc, and the transfer of fluids from the slab to the atmosphere through the arc. During Phase I (2001-2004), we concentrated on a segment of the erosive subduction zone system onshore and offshore Costa Rica and Nicaragua, one of the focus areas for the MARGIN initiatives SubFac and SEIZE. Along this margin, the dip of subduction, the nature of the incoming plate, and magmatic compositions along the volcanic arc are all known to change significantly. In addition to work carried out during cruises and fieldwork from the 1990s, in the past 4 years we have collected new data during a total 10 months of shiptime on the research vessels SONNE and METEOR, and during 20 man-months of fieldwork, mainly in Costa Rica and Nicaragua. In Phase II (2004-2008) we will finish work off Central America, and start working in an accretionary segment of the Chile margin between 32 and 38S. In this presentation I outline some of the main results concentrating on the effect of variable input and on the output at the arc. Key effects include the influence of the Galapagos hotspot on the incoming section (and on the output at the arc), the thickness of the volcanic crust and the effects of mantle serpentinization.
NASA Astrophysics Data System (ADS)
Plafker, George; Nokleberg, W. J.; Lull, J. S.
1989-04-01
The Trans-Alaskan Crustal Transect in the southern Copper River Basin and Chugach Mountains traverses the margins of the Peninsular and Wrangellia terranes, and the adjacent accretionary oceanic units of the Chugach terrane to the south. The southern Wrangellia terrane margin consists of a polymetamorphosed magmatic arc complex at least in part of Pennsylvanian age (Strelna Metamorphics and metagranodiorite) and tonalitic metaplutonic rocks of the Late Jurassic Chitina magmatic arc. The southern Peninsular terrane margin is underlain by rocks of the Late Triassic (?) and Early Jurassic Talkeetna magmatic arc (Talkeetna Formation and Border Ranges ultra-mafic-mafic assemblage) on Permian or older basement rocks. The Peninsular and Wrangellia terranes are parts of a dominantly oceanic superterrane (composite Terrane II) that was amalgamated by Late Triassic time and was accreted to terranes of continental affinity north of the Denali fault system in the mid- to Late Cretaceous. The Chugach terrane in the transect area consists of three successively accreted units: (1) minor greenschist and intercalated blueschist, the schist of Liberty Creek, of unknown protolith age that was metamorphosed and probably accreted during the Early Jurassic, (2) the McHugh Complex (Late Triassic to mid-Cretaceous protolith age), a melange of mixed oceanic, volcaniclastic, and olistostromal rocks that is metamorphosed to prehnite-pumpellyite and lower greenschist facies that was accreted by middle Cretaceous time, and (3) the Upper Cretaceous Valdez Group, mainly magmatic arc-derived flysch and lesser oceanic volcanic rocks of greenschist facies that was accreted by early Paleocene time. A regional thermal event that culminated in early middle Eocene time (48-52 Ma) resulted in widespread greenschist facies metamorphism and plutonism.
Matzke, Antonius J M; Matzke, Marjori
2015-10-12
It is increasingly appreciated that electrical controls acting at the cellular and supra-cellular levels influence development and initiate rapid responses to environmental cues. An emerging method for non-invasive optical imaging of electrical activity at cell membranes uses genetically-encoded voltage indicators (GEVIs). Developed by neuroscientists to chart neuronal circuits in animals, GEVIs comprise a fluorescent protein that is fused to a voltage-sensing domain. One well-known GEVI, ArcLight, undergoes strong shifts in fluorescence intensity in response to voltage changes in mammalian cells. ArcLight consists of super-ecliptic (SE) pHluorin (pH-sensitive fluorescent protein) with an A227D substitution, which confers voltage sensitivity in neurons, fused to the voltage-sensing domain of the voltage-sensing phosphatase of C iona i ntestinalis (Ci-VSD). In an ongoing effort to adapt tools of optical electrophysiology for plants, we describe here the expression and testing of ArcLight and various derivatives in different membranes of root cells in Arabidopsis thaliana. Transgenic constructs were designed to express ArcLight and various derivatives targeted to the plasma membrane and nuclear membranes of Arabidopsis root cells. In transgenic seedlings, changes in fluorescence intensity of these reporter proteins following extracellular ATP (eATP) application were monitored using a fluorescence microscope equipped with a high speed camera. Coordinate reductions in fluorescence intensity of ArcLight and Ci-VSD-containing derivatives were observed at both the plasma membrane and nuclear membranes following eATP treatments. However, similar responses were observed for derivatives lacking the Ci-VSD. The dispensability of the Ci-VSD suggests that in plants, where H(+) ions contribute substantially to electrical activities, the voltage-sensing ability of ArcLight is subordinate to the pH sensitivity of its SEpHluorin base. The transient reduction of ArcLight fluorescence triggered by eATP most likely reflects changes in pH and not membrane voltage. The pH sensitivity of ArcLight precludes its use as a direct sensor of membrane voltage in plants. Nevertheless, ArcLight and derivatives situated in the plasma membrane and nuclear membranes may offer robust, fluorescence intensity-based pH indicators for monitoring concurrent changes in pH at these discrete membrane systems. Such tools will assist analyses of pH as a signal and/or messenger at the cell surface and the nuclear periphery in living plants.
Graded activation and free energy landscapes of a muscarinic G-protein-coupled receptor.
Miao, Yinglong; McCammon, J Andrew
2016-10-25
G-protein-coupled receptors (GPCRs) recognize ligands of widely different efficacies, from inverse to partial and full agonists, which transduce cellular signals at differentiated levels. However, the mechanism of such graded activation remains unclear. Using the Gaussian accelerated molecular dynamics (GaMD) method that enables both unconstrained enhanced sampling and free energy calculation, we have performed extensive GaMD simulations (∼19 μs in total) to investigate structural dynamics of the M 2 muscarinic GPCR that is bound by the full agonist iperoxo (IXO), the partial agonist arecoline (ARC), and the inverse agonist 3-quinuclidinyl-benzilate (QNB), in the presence or absence of the G-protein mimetic nanobody. In the receptor-nanobody complex, IXO binding leads to higher fluctuations in the protein-coupling interface than ARC, especially in the receptor transmembrane helix 5 (TM5), TM6, and TM7 intracellular domains that are essential elements for GPCR activation, but less flexibility in the receptor extracellular region due to stronger binding compared with ARC. Two different binding poses are revealed for ARC in the orthosteric pocket. Removal of the nanobody leads to GPCR deactivation that is characterized by inward movement of the TM6 intracellular end. Distinct low-energy intermediate conformational states are identified for the IXO- and ARC-bound M 2 receptor. Both dissociation and binding of an orthosteric ligand are observed in a single all-atom GPCR simulation in the case of partial agonist ARC binding to the M 2 receptor. This study demonstrates the applicability of GaMD for exploring free energy landscapes of large biomolecules and the simulations provide important insights into the GPCR functional mechanism.
Simpson, Steve; Clifford, Christine; Ross, Kaz; Sefton, Neil; Owen, Louise; Blizzard, Leigh; Turner, Richard
2015-06-01
Background Evidence suggests a varied level of sexual health literacy (SHL) among university student populations, so we evaluated the SHL among students at the University of Tasmania. Students were invited to complete an anonymous online questionnaire during August/September 2013. SHL was assessed using the ARCSHS National Survey of Australian Secondary Students & Sexual Health (ARC) and the Sexual Health Questionnaire (SHS). Predictors of literacy scores were evaluated by linear regression. The study recruited 1786 participants (8.2% of 2013 student population), of similar composition to the general university population. Female sex, older age, sexual education, and sexual experience were significant predictors of SHL. As hypothesised, students in medical/nursing disciplines had the highest SHL. Less expected were the significant differences by birthplace and religious affiliation, many of which persisted on adjustment for confounders. Compared with Australian/New Zealander students, overseas-born students had significantly lower ARC (-3.6%, P<0.001) & SHS (-4.2%, P<0.001); this was driven by Malaysian, Indian, and Chinese students. Compared with agnostic/atheist-identifying students, those of Buddhist (ARC: -5.4%, P=0.014; SHS: -6.7%, P=0.002), Hindu (ARC: -8.8%, P=0.098; SHS: -12.2%, P=0.027), Muslim (ARC: -16.5%, P<0.001; SHS: -13.4%, P=0.001) and Protestant (ARC: -2.3%, P=0.023; SHS: -4.4%, P<0.001) identifications had markedly lower SHL. This study, one of the first among university students in Australia, found a varied SHL by sex, age, sexual education and sexual experience, as well as by birthplace and religious affiliation. These findings have applications in orientation and education programs at Australian universities.
Wang, Piwen; Wang, Bin; Chung, Seyung; Wu, Yanyuan; Henning, Susanne M.; Vadgama, Jaydutt V.
2014-01-01
The low bioavailability of most flavonoids limits their application as anti-carcinogenic agents in humans. A novel approach of treatment with a mixture of bioactive compounds that share molecular anti-carcinogenic targets may enhance the effect on these targets at low concentrations of individual compound, thereby overcoming the limitations of reduced bioavailability. We therefore investigated whether a combination of three natural products arctigenin (Arc), a novel anti-inflammatory lignan from the seeds of Arctium lappa, green tea polyphenol (−)-epigallocatechin gallate (EGCG) and curcumin (Cur) increases the chemopreventive potency of individual compounds. LNCaP prostate cancer and MCF-7 breast cancer cells were treated with 2–4 mg/L (about 5–10μM) Cur, 1μM Arc and 40μM EGCG alone or in combination for 48h. In both cell lines treatment with the mixture of Cur, Arc and EGCG synergistically increased the antiproliferative effect. In LNCaP cells both Arc and EGCG increased the pro-apoptotic effect of Cur. Whereas in MCF-7 cells Arc increased the cell apoptosis of Cur while EGCG enhanced cell cycle arrest of Cur at G0/G1 phase. The strongest effects on cell cycle arrest and apoptosis were achieved by combining all three compounds in both cell lines. The combination treatment significantly increased the ratio of Bax to Bcl-2 proteins, decreased the activation of NFκB, PI3K/Akt and Stat3 pathways and cell migration compared to individual treatment. These results warrant in vivo studies to confirm the efficacy of this novel regimen by combining Arc and EGCG with Cur to enhance chemoprevention in both prostate and breast cancer. PMID:25243063
Adaptation and Study of AIDS Viruses in Animal and Cell Culture Systems
1991-06-28
Cancer Res 1985;44,69-120. 23. Armstrong D, and Walzer P: Experimental infections in the nude mouse. In: The Nude Mouse in Experimental and Clinical...3558-3564. 42. Reka S, Borcich A, Cronin W, Kotler DP: Intestinal HIV infection in AIDS and ARC: correlation with tissue content of p24 and...Assistant II (28 Aug 1989-20 Feb 1990) 100% effort Otho (Sonny) Armstrong , B.S., Research Assistant III (16April 1990-6April 1991) 100% effort Ada
The Marine Corps as an Ambidextrous Mixed Martial Artist for the 2025 Fight
2008-01-01
the globe in a wide band that encompasses Central and Southeast Asia, the Caribbean Basin , most of Africa, and the Middle East. The arc is populated...and II. During this period, the U.S. Marine Corps served as the nations 911 force of choice during numerous small wars in the Caribbean and Central ...Philippines and Central America, to today. The U.S. has over 200 years experience in fighting small wars. This is history often forgotten or overlooked
2010-03-01
is to develop a novel clinical useful delivered-dose verification protocol for modern prostate VMAT using Electronic Portal Imaging Device (EPID...technique. A number of important milestones have been accomplished, which include (i) calibrated CBCT HU vs. electron density curve; (ii...prostate VMAT using Electronic Portal Imaging Device (EPID) and onboard Cone beam Computed Tomography (CBCT). The specific aims of this project
KBSA Project Management Assistant. Volume 1.
1987-07-01
perforrim automiated syitim,’i. of j)r)gIiIIm, fm r specified ,,al-. ti ,. forth. The rationale for and benefits deriving foint tt,- 1. l* ’m m , arc...efficiently, as well as its interface to human user,. It is therefore of priun iiiict an,’," " to employ a language that allows the formalization of...km wledge th It i convenienT . I ;ITw the conceptual level of humans and efficiently manipulable by the PM A.. ’ In order to achieve these somewhat
Automatic classification techniques for type of sediment map from multibeam sonar data
NASA Astrophysics Data System (ADS)
Zakariya, R.; Abdullah, M. A.; Che Hasan, R.; Khalil, I.
2018-02-01
Sediment map can be important information for various applications such as oil drilling, environmental and pollution study. A study on sediment mapping was conducted at a natural reef (rock) in Pulau Payar using Sound Navigation and Ranging (SONAR) technology which is Multibeam Echosounder R2-Sonic. This study aims to determine sediment type by obtaining backscatter and bathymetry data from multibeam echosounder. Ground truth data were used to verify the classification produced. The method used to analyze ground truth samples consists of particle size analysis (PSA) and dry sieving methods. Different analysis being carried out due to different sizes of sediment sample obtained. The smaller size was analyzed using PSA with the brand CILAS while bigger size sediment was analyzed using sieve. For multibeam, data acquisition includes backscatter strength and bathymetry data were processed using QINSy, Qimera, and ArcGIS. This study shows the capability of multibeam data to differentiate the four types of sediments which are i) very coarse sand, ii) coarse sand, iii) very coarse silt and coarse silt. The accuracy was reported as 92.31% overall accuracy and 0.88 kappa coefficient.
3D Visualization Development of SIUE Campus
NASA Astrophysics Data System (ADS)
Nellutla, Shravya
Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.
Modeling the target dose fall-off in IMRT and VMAT planning techniques for cervical SBRT.
Brito Delgado, A; Cohen, D; Eng, T Y; Stanley, D N; Shi, Z; Charlton, M; Gutiérrez, A N
2018-01-01
There has been growing interest in the use of stereotactic body radiotherapy (SBRT) technique for the treatment of cervical cancer. The purpose of this study was to characterize dose distributions as well as model the target dose fall-off for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) delivery techniques using 6 and 10 MV photon beam energies. Fifteen (n = 15) patients with non-bulky cervical tumors were planned in Pinnacle 3 with a Varian Novalis Tx (HD120 MLC) using 6 and 10 MV photons with the following techniques: (1) IMRT with 10 non-coplanar beams (2) dual, coplanar 358° VMAT arcs (4° spacing), and (3) triple, non-coplanar VMAT arcs. Treatment volumes and dose prescriptions were segmented according to University of Texas Southwestern (UTSW) Phase II study. All plans were normalized such that 98% of the planning target volume (PTV) received 28 Gy (4 fractions). For the PTV, the following metrics were evaluated: homogeneity index, conformity index, D 2cc , D mean , D max , and dose fall-off parameters. For the organs at risk (OARs), D 2cc , D 15cc , D 0.01cc , V 20 , V 40 , V 50 , V 60 , and V 80 were evaluated for the bladder, bowel, femoral heads, rectum, and sigmoid. Statistical differences were evaluated using a Friedman test with a significance level of 0.05. To model dose fall-off, expanding 2-mm-thick concentric rings were created around the PTV, and doses were recorded. Statistically significant differences (p < 0.05) were noted in the dose fall-off when using 10 MV and VMAT 3-arc , as compared with IMRT. VMAT 3-arc improved the bladder V 40 , V 50 , and V 60 , and the bowel V 20 and V 50 . All fitted regressions had an R 2 ≥ 0.98. For cervical SBRT plans, a VMAT 3-arc approach offers a steeper dose fall-off outside of the target volume. Faster dose fall-off was observed in smaller targets as opposed to medium and large targets, denoting that OAR sparing is dependent on target size. These improvements are further pronounced with the use of 10-MV photons. Published by Elsevier Inc.