Sample records for arctic climate variability

  1. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maslowski, Wieslaw

    This project aims to develop, apply and evaluate a regional Arctic System model (RASM) for enhanced decadal predictions. Its overarching goal is to advance understanding of the past and present states of arctic climate and to facilitate improvements in seasonal to decadal predictions. In particular, it will focus on variability and long-term change of energy and freshwater flows through the arctic climate system. The project will also address modes of natural climate variability as well as extreme and rapid climate change in a region of the Earth that is: (i) a key indicator of the state of global climate throughmore » polar amplification and (ii) which is undergoing environmental transitions not seen in instrumental records. RASM will readily allow the addition of other earth system components, such as ecosystem or biochemistry models, thus allowing it to facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts. As such, RASM is expected to become a foundation for more complete Arctic System models and part of a model hierarchy important for improving climate modeling and predictions.« less

  2. Collaborative Research: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutowski, William J.

    This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASMmore » can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are: - Changes in the freshwater flux between arctic climate system components resulting from decadal changes in land and sea ice, seasonal snow, vegetation, and ocean circulation. - Changing energetics due to decadal changes in ice mass, vegetation, and air-sea interactions. - The role of small-scale atmospheric and oceanic processes that influence decadal variability. This research has been addressing modes of natural climate variability as well as extreme and rapid climate change. RASM can facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts.« less

  3. Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures

    NASA Astrophysics Data System (ADS)

    Chylek, Petr; Folland, Chris K.; Lesins, Glen; Dubey, Manvendra K.

    2010-04-01

    Understanding the phase relationship between climate changes in the Arctic and Antarctic regions is essential for our understanding of the dynamics of the Earth's climate system. In this paper we show that the 20th century de-trended Arctic and Antarctic temperatures vary in anti-phase seesaw pattern - when the Arctic warms the Antarctica cools and visa versa. This is the first time that a bi-polar seesaw pattern has been identified in the 20th century Arctic and Antarctic temperature records. The Arctic (Antarctic) de-trended temperatures are highly correlated (anti-correlated) with the Atlantic Multi-decadal Oscillation (AMO) index suggesting the Atlantic Ocean as a possible link between the climate variability of the Arctic and Antarctic regions. Recent accelerated warming of the Arctic results from a positive reinforcement of the linear warming trend (due to an increasing concentration of greenhouse gases and other possible forcings) by the warming phase of the multidecadal climate variability (due to fluctuations of the Atlantic Ocean circulation).

  4. Toward Evaluating the Predictability of Arctic-related Climate Variations: Initial Results from ArCS Project Theme 5

    NASA Astrophysics Data System (ADS)

    Hasumi, H.

    2016-12-01

    We present initial results from the theme 5 of the project ArCS, which is a national flagship project for Arctic research in Japan. The goal of theme 5 is to evaluate the predictability of Arctic-related climate variations, wherein we aim to: (1) establish the scientific basis of climate predictability; and (2) develop a method for predicting/projecting medium- and long-term climate variations. Variability in the Arctic environment remotely influences middle and low latitudes. Since some of the processes specific to the Arctic environment function as a long memory of the state of the climate, understanding of the process of remote connections would lead to higher-precision and longer-term prediction of global climate variations. Conventional climate models have large uncertainty in the Arctic region. By making Arctic processes in climate models more sophisticated, we aim to clarify the role of multi-sphere interaction in the Arctic environment. In this regard, our newly developed high resolution ice-ocean model has revealed the relationship between the oceanic heat transport into the Arctic Ocean and the synoptic scale atmospheric variability. We also aim to reveal the mechanism of remote connections by conducting climate simulations and analyzing various types of climate datasets. Our atmospheric model experiments under possible future situations of Arctic sea ice cover indicate that reduction of sea ice qualitatively alters the basic mechanism of remote connection. Also, our analyses of climate data have identified the cause of recent more frequent heat waves at Eurasian mid-to-high latitudes and clarified the dynamical process which forms the West Pacific pattern, a dominant mode of the atmospheric anomalous circulation in the West Pacific region which also exhibits a significant signal in the Arctic stratosphere.

  5. Uncertainty in Arctic climate projections traced to variability of downwelling longwave radiation

    NASA Astrophysics Data System (ADS)

    Krikken, Folmer; Bintanja, Richard; Hazeleger, WIlco; van Heerwaarden, Chiel

    2017-04-01

    The Arctic region has warmed rapidly over the last decades, and this warming is projected to increase. The uncertainty in these projections, i.e. intermodel spread, is however very large and a clear understanding of the sources behind the spread is so far still lacking. Here we use 31 state-of-the-art global climate models to show that variability of May downwelling radiation (DLR) in the models' control climate, primarily located at the land surrounding the Arctic ocean, explains 2/3 of the intermodel spread in projected Arctic warming under the RPC85 scenario. This variability is related to the combined radiative effect of the cloud radiative forcing (CRF) and the albedo response due to snowfall, which varies strongly between the models in these regions. This mechanism dampens or enhances yearly variability of DLR in the control climate but also dampens or enhances the climate response of DLR, sea ice cover and near surface temperature.

  6. Impact of Holocene climate variability on Arctic vegetation

    NASA Astrophysics Data System (ADS)

    Gajewski, K.

    2015-10-01

    This paper summarizes current knowledge about the postglacial history of the vegetation of the Canadian Arctic Archipelago (CAA) and Greenland. Available pollen data were used to understand the initial migration of taxa across the Arctic, how the plant biodiversity responded to Holocene climate variability, and how past climate variability affected primary production of the vegetation. Current evidence suggests that most of the flora arrived in the area during the Holocene from Europe or refugia south or west of the region immediately after local deglaciation, indicating rapid dispersal of propagules to the region from distant sources. There is some evidence of shrub species arriving later in Greenland, but it is not clear if this is dispersal limited or a response to past climates. Subsequent climate variability had little effect on biodiversity across the CAA, with some evidence of local extinctions in areas of Greenland in the late Holocene. The most significant impact of climate changes is on vegetation density and/or plant production.

  7. Growing Land-Sea Temperature Contrast and the Intensification of Arctic Cyclones

    NASA Astrophysics Data System (ADS)

    Day, Jonathan J.; Hodges, Kevin I.

    2018-04-01

    Cyclones play an important role in the coupled dynamics of the Arctic climate system on a range of time scales. Modeling studies suggest that storminess will increase in Arctic summer due to enhanced land-sea thermal contrast along the Arctic coastline, in a region known as the Arctic Frontal Zone (AFZ). However, the climate models used in these studies are poor at reproducing the present-day Arctic summer cyclone climatology and so their projections of Arctic cyclones and related quantities, such as sea ice, may not be reliable. In this study we perform composite analysis of Arctic cyclone statistics using AFZ variability as an analog for climate change. High AFZ years are characterized both by increased cyclone frequency and dynamical intensity, compared to low years. Importantly, the size of the response in this analog suggests that General Circulation Models may underestimate the response of Arctic cyclones to climate change, given a similar change in baroclinicity.

  8. Spatial and Temporal Means and Variability of Arctic Sea Ice Climate Indicators from Satellite Data

    NASA Astrophysics Data System (ADS)

    Peng, G.; Meier, W.; Bliss, A. C.; Steele, M.; Dickinson, S.

    2017-12-01

    Arctic sea ice has been undergoing rapid and accelerated loss since satellite-based measurements became available in late 1970s, especially the summer ice coverage. For the Arctic as a whole, the long-term trend for the annual sea ice extent (SIE) minimum is about -13.5±2.93 % per decade change relative to the 1979-2015 climate average, while the trends of the annual SIE minimum for the local regions can range from 0 to up to -42 % per decade. This presentation aims to examine and baseline spatial and temporal means and variability of Arctic sea ice climate indicators, such as the annual SIE minimum and maximum, snow/ice melt onset, etc., from a consistent, inter-calibrated, long-term time series of remote sensing sea ice data for understanding regional vulnerability and monitoring ice state for climate adaptation and risk mitigation.

  9. Trend analysis of Arctic sea ice extent

    NASA Astrophysics Data System (ADS)

    Silva, M. E.; Barbosa, S. M.; Antunes, Luís; Rocha, Conceição

    2009-04-01

    The extent of Arctic sea ice is a fundamental parameter of Arctic climate variability. In the context of climate change, the area covered by ice in the Arctic is a particularly useful indicator of recent changes in the Arctic environment. Climate models are in near universal agreement that Arctic sea ice extent will decline through the 21st century as a consequence of global warming and many studies predict a ice free Arctic as soon as 2012. Time series of satellite passive microwave observations allow to assess the temporal changes in the extent of Arctic sea ice. Much of the analysis of the ice extent time series, as in most climate studies from observational data, have been focussed on the computation of deterministic linear trends by ordinary least squares. However, many different processes, including deterministic, unit root and long-range dependent processes can engender trend like features in a time series. Several parametric tests have been developed, mainly in econometrics, to discriminate between stationarity (no trend), deterministic trend and stochastic trends. Here, these tests are applied in the trend analysis of the sea ice extent time series available at National Snow and Ice Data Center. The parametric stationary tests, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and the KPSS, do not support an overall deterministic trend in the time series of Arctic sea ice extent. Therefore, alternative parametrizations such as long-range dependence should be considered for characterising long-term Arctic sea ice variability.

  10. Advancing NOAA NWS Arctic Program Development

    NASA Astrophysics Data System (ADS)

    Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Meyers, J. C.; Churma, M.; Thoman, R.

    2016-12-01

    Environmental changes in the Arctic require changes in the way the National Oceanic and Atmospheric Administration (NOAA) delivers hydrological and meteorological information to prepare the region's societies and indigenous population for emerging challenges. These challenges include changing weather patterns, changes in the timing and extent of sea ice, accelerated soil erosion due to permafrost decline, increasing coastal vulnerably, and changes in the traditional food supply. The decline in Arctic sea ice is opening new opportunities for exploitation of natural resources, commerce, tourism, and military interest. These societal challenges and economic opportunities call for a NOAA integrated approach for delivery of environmental information including climate, water, and weather data, forecasts, and warnings. Presently the NOAA Arctic Task Force provides leadership in programmatic coordination across NOAA line offices. National Weather Service (NWS) Alaska Region and the National Centers for Environmental Prediction (NCEP) provide the foundational operational hydro-meteorological products and services in the Arctic. Starting in 2016, NOAA's NWS will work toward improving its role in programmatic coordination and development through assembling an NWS Arctic Task Team. The team will foster ties in the Arctic between the 11 NWS national service programs in climate, water, and weather information, as well as between Arctic programs in NWS and other NOAA line offices and external partners. One of the team outcomes is improving decision support tools for the Arctic. The Local Climate Analysis Tool (LCAT) currently has more than 1100 registered users, including NOAA staff and technical partners. The tool has been available online since 2013 (http://nws.weather.gov/lcat/ ). The tool links trusted, recommended NOAA data and analytical capabilities to assess impacts of climate variability and climate change at local levels. A new capability currently being developed will enable analysis of sea ice changes in different parts of the Arctic, and allow users to link those change to phases of climate variability such as El Nino Southern Oscillation Arctic Oscillation, etc.

  11. Arctic sea ice area in CMIP3 and CMIP5 climate model ensembles - variability and change

    NASA Astrophysics Data System (ADS)

    Semenov, V. A.; Martin, T.; Behrens, L. K.; Latif, M.

    2015-02-01

    The shrinking Arctic sea ice cover observed during the last decades is probably the clearest manifestation of ongoing climate change. While climate models in general reproduce the sea ice retreat in the Arctic during the 20th century and simulate further sea ice area loss during the 21st century in response to anthropogenic forcing, the models suffer from large biases and the model results exhibit considerable spread. The last generation of climate models from World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5), when compared to the previous CMIP3 model ensemble and considering the whole Arctic, were found to be more consistent with the observed changes in sea ice extent during the recent decades. Some CMIP5 models project strongly accelerated (non-linear) sea ice loss during the first half of the 21st century. Here, complementary to previous studies, we compare results from CMIP3 and CMIP5 with respect to regional Arctic sea ice change. We focus on September and March sea ice. Sea ice area (SIA) variability, sea ice concentration (SIC) variability, and characteristics of the SIA seasonal cycle and interannual variability have been analysed for the whole Arctic, termed Entire Arctic, Central Arctic and Barents Sea. Further, the sensitivity of SIA changes to changes in Northern Hemisphere (NH) averaged temperature is investigated and several important dynamical links between SIA and natural climate variability involving the Atlantic Meridional Overturning Circulation (AMOC), North Atlantic Oscillation (NAO) and sea level pressure gradient (SLPG) in the western Barents Sea opening serving as an index of oceanic inflow to the Barents Sea are studied. The CMIP3 and CMIP5 models not only simulate a coherent decline of the Arctic SIA but also depict consistent changes in the SIA seasonal cycle and in the aforementioned dynamical links. The spatial patterns of SIC variability improve in the CMIP5 ensemble, particularly in summer. Both CMIP ensembles depict a significant link between the SIA and NH temperature changes. Our analysis suggests that, on average, the sensitivity of SIA to external forcing is enhanced in the CMIP5 models. The Arctic SIA variability response to anthropogenic forcing is different in CMIP3 and CMIP5. While the CMIP3 models simulate increased variability in March and September, the CMIP5 ensemble shows the opposite tendency. A noticeable improvement in the simulation of summer SIA by the CMIP5 models is often accompanied by worse results for winter SIA characteristics. The relation between SIA and mean AMOC changes is opposite in September and March, with March SIA changes being positively correlated with AMOC slowing. Finally, both CMIP ensembles demonstrate an ability to capture, at least qualitatively, important dynamical links of SIA to decadal variability of the AMOC, NAO and SLPG. SIA in the Barents Sea is strongly overestimated by the majority of the CMIP3 and CMIP5 models, and projected SIA changes are characterized by a large spread giving rise to high uncertainty.

  12. Skillful prediction of northern climate provided by the ocean

    NASA Astrophysics Data System (ADS)

    Årthun, Marius; Eldevik, Tor; Viste, Ellen; Drange, Helge; Furevik, Tore; Johnson, Helen L.; Keenlyside, Noel S.

    2017-06-01

    It is commonly understood that a potential for skillful climate prediction resides in the ocean. It nevertheless remains unresolved to what extent variable ocean heat is imprinted on the atmosphere to realize its predictive potential over land. Here we assess from observations whether anomalous heat in the Gulf Stream's northern extension provides predictability of northwestern European and Arctic climate. We show that variations in ocean temperature in the high latitude North Atlantic and Nordic Seas are reflected in the climate of northwestern Europe and in winter Arctic sea ice extent. Statistical regression models show that a significant part of northern climate variability thus can be skillfully predicted up to a decade in advance based on the state of the ocean. Particularly, we predict that Norwegian air temperature will decrease over the coming years, although staying above the long-term (1981-2010) average. Winter Arctic sea ice extent will remain low but with a general increase towards 2020.

  13. Temporal Variation of NDVI and the Drivers of Climate Variables in the Arctic Tundra Transition Zone

    NASA Astrophysics Data System (ADS)

    Lee, J.; Ryu, Y.; Lee, Y. K.

    2016-12-01

    The Arctic is a sensitive region to temperature, which is drastically increasing with climate change. Vegetation in transition zones of the sub-arctic tundra biome are most sensitive to the warming climate, as temperature in the Arctic ecosystem is one of important limiting factors of vegetation growth and decomposition. Previous research in the transition zone show that there is a difference of sensible heat flux (21 Wm-2), Leaf Area Index increase from 0.58 - 2.76 and canopy height from 0.1 - 6.1m across dwarf and tall shrubs to forest, however, we lack understanding of NDVI trend of this zone. To better understand the vegetation in transition zones of the arctic ecosystem, we analyze the long-term trend of NDVI (AVHRR 3g GIMMs data), temperature and precipitation (Climate Research Unit data) trend from 1982 - 2010 in Council, Alaska that is a region where arctic tundra is transitioning to boreal forest. We also analyze how the climatic factors, temperature or precipitation, affect NDVI. Annual precipitation had the highest interannual variability compared to temperature and NDVI. There was an overall decreasing trend of annual maximum NDVI (y = -0.0019x+4.7). During 1982 to 2003, NDVI and temperature had a similar pattern, but when temperature suddenly jumped to 13.2°C in 2004, NDVI and precipitation declined. This study highlights that temperature increase does not always lead to greening, but after a certain threshold they may cause damage to sub-arctic tundra vegetation.

  14. Atmospheric teleconnections between the Arctic and the Baltic Sea regions

    NASA Astrophysics Data System (ADS)

    Jakobson, L.; Jakobson, E.

    2017-12-01

    The observed enhanced warming of the Arctic, referred to as the AA, is expected to be related to further changes that impact mid-latitudes and the rest of the world. Our aim is to clarify how the climatic parameters in the Baltic Sea and Arctic regions are associated. Knowledge of such connections helps to define regions in the Arctic that could be with higher extent associated with the Baltic Sea region climate change. We used monthly mean reanalysis data from NCEP-CFSR and ERA-Interim. The strongest teleconnections between the same parameter (temperature, SLP, specific humidity, wind speed) at the Baltic Sea region and the Arctic are found in winter, but they are clearly affected by the Arctic Oscillation (AO) index. After removal of the AO index variability, correlations in winter were everywhere below ±0.5, while in other seasons there remained regions with strong (|R|>0.5, p<0.002) correlations. Strong correlations are also present between different climate variables at the Baltic Sea region and different regions of the Arctic. Temperature from 1000 to 500 hPa level at the Baltic Sea region have a strong negative correlation with the Greenland sector (the region between 20 - 80W and 55 - 80N) during all seasons except summer. The positive temperature anomaly of mild winter at the Greenland sector shifts towards east during the next seasons, reaching to Scandinavia/Baltic Sea region in summer. The Greenland sector is the region which gives the most significant correlations with the climatic parameters (temperature, wind speed, specific humidity, SLP) of the Baltic Sea region. These relationships can be explained by the AO index variability only in winter. In other seasons there has to be other influencing factors. The results of this study are valuable for selecting regions in the Arctic that have statistically the largest effect on climate in the Baltic Sea region.

  15. Role of Greenland meltwater in the changing Arctic

    NASA Astrophysics Data System (ADS)

    Dukhovskoy, Dmitry; Proshutinsky, Andrey; Timmermans, Mary-Louise; Myers, Paul; Platov, Gennady; Bamber, Jonathan; Curry, Beth; Somavilla, Raquel

    2016-04-01

    Observational data show that the Arctic ocean-ice-atmosphere system has been changing over the last two decades. Arctic change is manifest in the atypical behavior of the climate indices in the 21st century. Before the 2000s, these indices characterized the quasi-decadal variability of the Arctic climate related to different circulation regimes. Between 1948 and 1996, the Arctic atmospheric circulation alternated between anticyclonic circulation regimes and cyclonic circulation regimes with a period of 10-15 years. Since 1997, however, the Arctic has been dominated by an anticyclonic regime. Previous studies indicate that in the 20th century, freshwater and heat exchange between the Arctic Ocean and the sub-Arctic seas were self-regulated and their interactions were realized via quasi-decadal climate oscillations. What physical processes in the Arctic Ocean - sub-Arctic ocean-ice-atmosphere system are responsible for the observed changes in Arctic climate variability? The presented work is motivated by our hypothesis that in the 21st century, these quasi-decadal oscillations have been interrupted as a result of an additional freshwater source associated with Greenland Ice Sheet melt. Accelerating since the early 1990s, the Greenland Ice Sheet mass loss exerts a significant impact on thermohaline processes in the sub-Arctic seas. Surplus Greenland freshwater, the amount of which is about a third of the freshwater volume fluxed into the region during the 1970s Great Salinity Anomaly event, can spread and accumulate in the sub-Arctic seas influencing convective processes there. It is not clear, however, whether Greenland freshwater can propagate into the interior convective regions in the Labrador Sea and the Nordic Seas. In order to investigate the fate and pathways of Greenland freshwater in the sub-Arctic seas and to determine how and at what rate Greenland freshwater propagates into the convective regions, several numerical experiments using a passive tracer to track propagation of Greenland freshwater have been conducted as a part of the Forum for Arctic Ocean Modeling and Observational Synthesis effort. The presentation discusses the role of Greenland meltwater in the Arctic environment and how this can explain observed cessation of the quasi-decadal Arctic variability. The rate and pathways of Greenland meltwater in the sub-Arctic seas derived from the coordinated model experiments are analyzed. The presented study discusses a possible scenario of the Arctic in the future. It is argued that Greenland meltwater being accumulated in the sub-Arctic seas since the 1990s can trigger a negative feedback mechanism that may impede or even reverse processes of Arctic warming observed in the 21st century.

  16. Arctic Change Detection: Multiple Observations and Recent Explanations

    NASA Astrophysics Data System (ADS)

    Soreide, N. N.; Overland, J. E.; Calder, J.

    2004-12-01

    The recently released Arctic Climate Impact Assessment (ACIA) Report documents Arctic-wide changes and impacts; it provides a long-term perspective for peoples, governments and scientists in coping with these changes. Further, investigation of the last three decades of multivariate biophysical data sets(climate, land and marine ecosystems, cryosphere) and century-long weather records, show two main types of Arctic variability. These are: 1) long-term trends as represented by loss of sea-ice and tundra area and their biological response, and 2) decadal variability in atmospheric forcing and its direct impacts. Three main conclusions are possible: * Temperature anomalies in the last 15 years are unique in the Arctic instrumental record (1880-2003). Historically, there were regional/decadal warm events during winter and spring in the 1930s to 1950s, but meteorological analysis shows that these surface air temperature anomalies are the result of intrinsic variability in regional flow patterns, as contrasted with the Arctic-wide Arctic Oscillation (AO) influence of the 1990s. * These changes are primarily driven by changes in atmospheric circulation, and thus are subject to north/south gradients in hemispheric radiative forcing from volcanic aerosols, insolation cycles and CO2 increase. These north/south differences drive temperature advection in the trough-ridge structure of the AO. This conclusion is based primarily on model results and impacts from volcanos. * Change is likely to be irreversible over at least the next decade. In the previous five years, many ecosystems, such as the Bering Sea and east Greenland, are showing more year-to-year persistence, despite considerable variability in the AO and other climate indices. We hypothesize that the changes occurring in the Arctic are beginning to be significant enough to make the Arctic less sensitive to cold swings in atmospheric variability, although direct mechanisms are unclear. A next step in the post-ACIA period is a comprehensive Arctic Change Detection product which builds upon the ACIA report with regularly updated information. Credibility is based on multiple lines of evidence and cooperation of scientists. The Arctic Change Detection project provides a near-realtime suite of indicators, their potential impacts, recent events, news items, and scientific publications, in an understandable format at www.arctic.noaa.gov. This website makes information about the current status of the Arctic available to a wide audience.

  17. Is "Warm Arctic, Cold Continent" A Fingerprint Pattern of Climate Change?

    NASA Astrophysics Data System (ADS)

    Hoerling, M. P.; Sun, L.; Perlwitz, J.

    2015-12-01

    Cold winters and cold waves have recently occurred in Europe, central Asia and the Midwest to eastern United States, even as global mean temperatures set record highs and Arctic amplification of surface warming continued. Since 1979, Central Asia winter temperatures have in fact declined. Conjecture has it that more cold extremes over the mid-latitude continents should occur due to global warming and the impacts of Arctic sea ice loss. A Northern Hemisphere temperature signal termed the "Warm Arctic, Cold Continent" pattern has thus been surmised. Here we use a multi-model approach to test the hypothesis that such a pattern is indeed symptomatic of climate change. Diagnosis of a large model ensemble of historical climate simulations shows some individual realizations to yield cooling trends over Central Asia, but importantly the vast majority show warming. The observed cooling has thus likely been a low probability state of internal variability, not a fingerprint of forced climate change. We show that daily temperature variations over continents decline in winter due to global warming, and cold waves become less likely. This is partly related to diminution of Arctic cold air reservoirs due to warming-induced sea ice loss. Nonetheless, we find some evidence and present a physical basis that Arctic sea ice loss alone can induce a winter cooling over Central Asia, though with a magnitude that is appreciably smaller than the overall radiative-forced warming signal. Our results support the argument that recent cooling trends over central Asia, and cold extreme events over the winter continents, have principally resulted from atmospheric internal variability and have been neither a forced response to Arctic seas ice loss nor a symptom of global warming. The paradigm of climate change is thus better expressed as "Warm Arctic, Warm Continent" for the NH winter.

  18. Arctic hydroclimate variability during the last 2000 years: current understanding and research challenges

    NASA Astrophysics Data System (ADS)

    Linderholm, Hans W.; Nicolle, Marie; Francus, Pierre; Gajewski, Konrad; Helama, Samuli; Korhola, Atte; Solomina, Olga; Yu, Zicheng; Zhang, Peng; D'Andrea, William J.; Debret, Maxime; Divine, Dmitry V.; Gunnarson, Björn E.; Loader, Neil J.; Massei, Nicolas; Seftigen, Kristina; Thomas, Elizabeth K.; Werner, Johannes; Andersson, Sofia; Berntsson, Annika; Luoto, Tomi P.; Nevalainen, Liisa; Saarni, Saija; Väliranta, Minna

    2018-04-01

    Reanalysis data show an increasing trend in Arctic precipitation over the 20th century, but changes are not homogenous across seasons or space. The observed hydroclimate changes are expected to continue and possibly accelerate in the coming century, not only affecting pan-Arctic natural ecosystems and human activities, but also lower latitudes through the atmospheric and ocean circulations. However, a lack of spatiotemporal observational data makes reliable quantification of Arctic hydroclimate change difficult, especially in a long-term context. To understand Arctic hydroclimate and its variability prior to the instrumental record, climate proxy records are needed. The purpose of this review is to summarise the current understanding of Arctic hydroclimate during the past 2000 years. First, the paper reviews the main natural archives and proxies used to infer past hydroclimate variations in this remote region and outlines the difficulty of disentangling the moisture from the temperature signal in these records. Second, a comparison of two sets of hydroclimate records covering the Common Era from two data-rich regions, North America and Fennoscandia, reveals inter- and intra-regional differences. Third, building on earlier work, this paper shows the potential for providing a high-resolution hydroclimate reconstruction for the Arctic and a comparison with last-millennium simulations from fully coupled climate models. In general, hydroclimate proxies and simulations indicate that the Medieval Climate Anomaly tends to have been wetter than the Little Ice Age (LIA), but there are large regional differences. However, the regional coverage of the proxy data is inadequate, with distinct data gaps in most of Eurasia and parts of North America, making robust assessments for the whole Arctic impossible at present. To fully assess pan-Arctic hydroclimate variability for the last 2 millennia, additional proxy records are required.

  19. The Arctic Predictability and Prediction on Seasonal-to-Interannual TimEscales (APPOSITE) data set

    NASA Astrophysics Data System (ADS)

    Day, J. J.; Tietsche, S.; Collins, M.; Goessling, H. F.; Guemas, V.; Guillory, A.; Hurlin, W. J.; Ishii, M.; Keeley, S. P. E.; Matei, D.; Msadek, R.; Sigmond, M.; Tatebe, H.; Hawkins, E.

    2015-10-01

    Recent decades have seen significant developments in seasonal-to-interannual timescale climate prediction capabilities. However, until recently the potential of such systems to predict Arctic climate had not been assessed. This paper describes a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Inter-annual Timescales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable. In order to achieve this, a coordinated set of idealised initial-value predictability experiments, with seven general circulation models, was conducted. This was the first model intercomparison project designed to quantify the predictability of Arctic climate on seasonal to inter-annual timescales. Here we present a description of the archived data set (which is available at the British Atmospheric Data Centre) and an update of the project's results. Although designed to address Arctic predictability, this data set could also be used to assess the predictability of other regions and modes of climate variability on these timescales, such as the El Niño Southern Oscillation.

  20. Factors driving mercury variability in the Arctic atmosphere and ocean over the past 30 years

    NASA Astrophysics Data System (ADS)

    Fisher, Jenny A.; Jacob, Daniel J.; Soerensen, Anne L.; Amos, Helen M.; Corbitt, Elizabeth S.; Streets, David G.; Wang, Qiaoqiao; Yantosca, Robert M.; Sunderland, Elsie M.

    2013-12-01

    observations at Arctic sites (Alert and Zeppelin) show large interannual variability (IAV) in atmospheric mercury (Hg), implying a strong sensitivity of Hg to environmental factors and potentially to climate change. We use the GEOS-Chem global biogeochemical Hg model to interpret these observations and identify the principal drivers of spring and summer IAV in the Arctic atmosphere and surface ocean from 1979-2008. The model has moderate skill in simulating the observed atmospheric IAV at the two sites (r 0.4) and successfully reproduces a long-term shift at Alert in the timing of the spring minimum from May to April (r = 0.7). Principal component analysis indicates that much of the IAV in the model can be explained by a single climate mode with high temperatures, low sea ice fraction, low cloudiness, and shallow boundary layer. This mode drives decreased bromine-driven deposition in spring and increased ocean evasion in summer. In the Arctic surface ocean, we find that the IAV for modeled total Hg is dominated by the meltwater flux of Hg previously deposited to sea ice, which is largest in years with high solar radiation (clear skies) and cold spring air temperature. Climate change in the Arctic is projected to result in increased cloudiness and strong warming in spring, which may thus lead to decreased Hg inputs to the Arctic Ocean. The effect of climate change on Hg discharges from Arctic rivers remains a major source of uncertainty.

  1. Skillful prediction of northern climate provided by the ocean

    PubMed Central

    Årthun, Marius; Eldevik, Tor; Viste, Ellen; Drange, Helge; Furevik, Tore; Johnson, Helen L.; Keenlyside, Noel S.

    2017-01-01

    It is commonly understood that a potential for skillful climate prediction resides in the ocean. It nevertheless remains unresolved to what extent variable ocean heat is imprinted on the atmosphere to realize its predictive potential over land. Here we assess from observations whether anomalous heat in the Gulf Stream's northern extension provides predictability of northwestern European and Arctic climate. We show that variations in ocean temperature in the high latitude North Atlantic and Nordic Seas are reflected in the climate of northwestern Europe and in winter Arctic sea ice extent. Statistical regression models show that a significant part of northern climate variability thus can be skillfully predicted up to a decade in advance based on the state of the ocean. Particularly, we predict that Norwegian air temperature will decrease over the coming years, although staying above the long-term (1981–2010) average. Winter Arctic sea ice extent will remain low but with a general increase towards 2020. PMID:28631732

  2. Regional Arctic System Model (RASM): A Tool to Advance Understanding and Prediction of Arctic Climate Change at Process Scales

    NASA Astrophysics Data System (ADS)

    Maslowski, W.; Roberts, A.; Osinski, R.; Brunke, M.; Cassano, J. J.; Clement Kinney, J. L.; Craig, A.; Duvivier, A.; Fisel, B. J.; Gutowski, W. J., Jr.; Hamman, J.; Hughes, M.; Nijssen, B.; Zeng, X.

    2014-12-01

    The Arctic is undergoing rapid climatic changes, which are some of the most coordinated changes currently occurring anywhere on Earth. They are exemplified by the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Global Climate and Global Earth System Models (GC/ESMs) are in broad agreement with these changes, the rate of change in the GC/ESMs remains outpaced by observations. Reasons for that stem from a combination of coarse model resolution, inadequate parameterizations, unrepresented processes and a limited knowledge of physical and other real world interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the GC/ESM limitations in simulating observed seasonal to decadal variability and trends in the sea ice cover and climate. RASM is a high resolution, fully coupled, pan-Arctic climate model that uses the Community Earth System Model (CESM) framework. It uses the Los Alamos Sea Ice Model (CICE) and Parallel Ocean Program (POP) configured at an eddy-permitting resolution of 1/12° as well as the Weather Research and Forecasting (WRF) and Variable Infiltration Capacity (VIC) models at 50 km resolution. All RASM components are coupled via the CESM flux coupler (CPL7) at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled earth system model, which due to the additional constraints from lateral boundary conditions and nudging within a regional model domain facilitates detailed comparisons with observational statistics that are not possible with GC/ESMs. In this talk, we will emphasize the utility of RASM to understand sensitivity to variable parameter space, importance of critical processes, coupled feedbacks and ultimately to reduce uncertainty in arctic climate change projections.

  3. Climate Prediction Center - Outreach: 41st Annual Climate Diagnostics &

    Science.gov Websites

    the University of Maine Climate Change Institute and School of Earth and Climate Sciences and is co (drought, heat waves, severe weather, tropical cyclones) in the framework of climate variability and change and including the use of paleoclimate data. Arctic climate variability and change, and linkages to

  4. Detecting and Understanding Changing Arctic Carbon Emissions

    NASA Astrophysics Data System (ADS)

    Bruhwiler, L.

    2017-12-01

    Warming in the Arctic has proceeded faster than anyplace on Earth. Our current understanding of biogeochemistry suggests that we can expect feedbacks between climate and carbon in the Arctic. Changes in terrestrial fluxes of carbon can be expected as the Arctic warms, and the vast stores of organic carbon frozen in Arctic soils could be mobilized to the atmosphere, with possible significant impacts on global climate. Quantifying trends in Arctic carbon exchanges is important for policymaking because greater reductions in anthropogenic emissions may be required to meet climate goals. Observations of greenhouse gases in the Arctic and globally have been collected for several decades. Analysis of this data does not currently support significantly changed Arctic emissions of CH4, however it is difficult to detect changes in Arctic emissions because of transport from lower latitudes and large inter-annual variability. Unfortunately, current space-based remote sensing systems have limitations at Arctic latitudes. Modeling systems can help untangle the Arctic budget of greenhouse gases, but they are dependent on underlying prior fluxes, wetland distributions and global anthropogenic emissions. Also, atmospheric transport models may have significant biases and errors. For example, unrealistic near-surface stability can lead to underestimation of emissions in atmospheric inversions. We discuss our current understanding of the Arctic carbon budget from both top-down and bottom-up approaches. We show that current atmospheric inversions agree well on the CH4 budget. On the other hand, bottom-up models vary widely in their predictions of natural emissions, with some models predicting emissions too large to be accommodated by the budget implied by global observations. Large emissions from the shallow Arctic ocean are also inconsistent with atmospheric observations. We also discuss the sensitivity of the current atmospheric network to what is likely small, gradual increases in emissions over time by examining modeled and observed spatial and seasonal variability. An issue we will consider is whether well-mixed background atmospheric records are more likely to detect changing Arctic emissions compared to stronger, but more variable signal from local sources.

  5. Evidence for Holocene centennial variability in sea ice cover based on IP25 biomarker reconstruction in the southern Kara Sea (Arctic Ocean)

    NASA Astrophysics Data System (ADS)

    Hörner, Tanja; Stein, Rüdiger; Fahl, Kirsten

    2017-10-01

    The Holocene is characterized by the late Holocene cooling trend as well as by internal short-term centennial fluctuations. Because Arctic sea ice acts as a significant component (amplifier) within the climate system, investigating its past long- and short-term variability and controlling processes is beneficial for future climate predictions. This study presents the first biomarker-based (IP25 and PIP25) sea ice reconstruction from the Kara Sea (core BP00-07/7), covering the last 8 ka. These biomarker proxies reflect conspicuous short-term sea ice variability during the last 6.5 ka that is identified unprecedentedly in the source region of Arctic sea ice by means of a direct sea ice indicator. Prominent peaks of extensive sea ice cover occurred at 3, 2, 1.3 and 0.3 ka. Spectral analysis of the IP25 record revealed 400- and 950-year cycles. These periodicities may be related to the Arctic/North Atlantic Oscillation, but probably also to internal climate system fluctuations. This demonstrates that sea ice belongs to a complex system that more likely depends on multiple internal forcing.

  6. Paleoeskimo Demographic History in the Canadian Arctic (ca. 4800-800 B.P.) and its Relationship to Mid-Late Holocene Climate Variability.

    NASA Astrophysics Data System (ADS)

    Savelle, J. M.

    2014-12-01

    Paleoeskimos were the first occupants of the central and eastern Canadian Arctic, spreading east from the Bering Strait region beginning approximately 4800 B.P., and occupied much of the Canadian Arctic through to their eventual disappearance ca. 800 B.P. Extensive regional archaeological site surveys throughout this area by the author and Arthur S. Dyke indicate that Paleoskimo populations underwent a series of population 'boom' (rapid expansion) and 'bust' (population declines and local extinctions) over the 4,000 year occupation history, including in the purported stable 'core area' of Foxe Basin. In this paper, we examine the contemporaneity of the local boom and bust cycles in a pan-Canadian Arctic context, and in turn examine the relationship of these cycles to mid-late Holocene climate variability.

  7. Winter temperature conditions (1670-2010) reconstructed from varved sediments, western Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Amann, Benjamin; Lamoureux, Scott F.; Boreux, Maxime P.

    2017-09-01

    Advances in paleoclimatology from the Arctic have provided insights into long-term climate conditions. However, while past annual and summer temperature have received considerable research attention, comparatively little is known about winter paleoclimate. Arctic winter is of special interest as it is the season with the highest sensitivity to climate change, and because it differs substantially from summer and annual measures. Therefore, information about past changes in winter climate is key to improve our knowledge of past forced climate variability and to reduce uncertainty in climate projections. In this context, Arctic lakes with snowmelt-fed catchments are excellent potential winter climate archives. They respond strongly to snowmelt-induced runoff, and indirectly to winter temperature and snowfall conditions. To date, only a few well-calibrated lake sediment records exist, which appear to reflect site-specific responses with differing reconstructions. This limits the possibility to resolve large-scale winter climate change prior the instrumental period. Here, we present a well-calibrated quantitative temperature and snowfall record for the extended winter season (November through March; NDJFM) from Chevalier Bay (Melville Island, NWT, Canadian Arctic) back to CE 1670. The coastal embayment has a large catchment influenced by nival terrestrial processes, which leads to high sedimentation rates and annual sedimentary structures (varves). Using detailed microstratigraphic analysis from two sediment cores and supported by μ-XRF data, we separated the nival sedimentary units (spring snowmelt) from the rainfall units (summer) and identified subaqueous slumps. Statistical correlation analysis between the proxy data and monthly climate variables reveals that the thickness of the nival units can be used to predict winter temperature (r = 0.71, pc < 0.01, 5-yr filter) and snowfall (r = 0.65, pc < 0.01, 5-yr filter) for the western Canadian High Arctic over the last ca. 400 years. Results reveal a strong variability in winter temperature back to CE 1670 with the coldest decades reconstructed for the period CE 1800-1880, while the warmest decades and major trends are reconstructed for the period CE 1880-1930 (0.26°C/decade) and CE 1970-2010 (0.37°C/decade). Although the first aim of this study was to increase the paleoclimate data coverage for the winter season, the record from Chevalier Bay also holds great potential for more applied climate research such as data-model comparisons and proxy-data assimilation in climate model simulations.

  8. Recent trends in energy flows through the Arctic climate system

    NASA Astrophysics Data System (ADS)

    Mayer, Michael; Haimberger, Leo

    2016-04-01

    While Arctic climate change can be diagnosed in many parameters, a comprehensive assessment of long-term changes and low frequency variability in the coupled Arctic energy budget still remains challenging due to the complex physical processes involved and the lack of observations. Here we draw on strongly improved observational capabilities of the past 15 years and employ observed radiative fluxes from CERES along with state-of-the-art atmospheric as well as coupled ocean-ice reanalyses to explore recent changes in energy flows through the Arctic climate system. Various estimates of ice volume and ocean heat content trends imply that the energy imbalance of the Arctic climate system was >1 Wm-2 during the 2000-2015 period, where most of the extra heat warmed the ocean and a comparatively small fraction was used to melt sea ice. The energy imbalance was partly fed by enhanced oceanic heat transports into the Arctic, especially in the mid 2000s. Seasonal trends of net radiation show a very clear signal of the ice-albedo feedback. Stronger radiative energy input during summer means increased seasonal oceanic heat uptake and accelerated sea ice melt. In return, lower minimum sea ice extent and higher SSTs lead to enhanced heat release from the ocean during fall season. These results are consistent with modeling studies finding an enhancement of the annual cycle of surface energy exchanges in a warming Arctic. Moreover, stronger heat fluxes from the ocean to the atmosphere in fall tend to warm the arctic boundary layer and reduce meridional temperature gradients, thereby reducing atmospheric energy transports into the polar cap. Although the observed results are a robust finding, extended high-quality datasets are needed to reliably separate trends from low frequency variability.

  9. Phenological adjustment in arctic bird species: relative importance of snow melt and ecological factors

    USGS Publications Warehouse

    Liebezeit, Joseph R.; Gurney, K. E. B.; Budde, Michael E.; Zack, Steve; Ward, David H.

    2014-01-01

    Previous studies have documented advancement in clutch initiation dates (CIDs) in response to climate change, most notably for temperate-breeding passerines. Despite accelerated climate change in the Arctic, few studies have examined nest phenology shifts in arctic breeding species. We investigated whether CIDs have advanced for the most abundant breeding shorebird and passerine species at a long-term monitoring site in arctic Alaska. We pooled data from three additional nearby sites to determine the explanatory power of snow melt and ecological variables (predator abundance, green-up) on changes in breeding phenology. As predicted, all species (semipalmated sandpiper, Calidris pusilla, pectoral sandpiper, Calidris melanotos, red-necked phalarope, Phalaropus lobatus, red phalarope, Phalaropus fulicarius, Lapland longspur, Calcarius lapponicus) exhibited advanced CIDs ranging from 0.40 to 0.80 days/year over 9 years. Timing of snow melt was the most important variable in explaining clutch initiation advancement (“climate/snow hypothesis”) for four of the five species, while green-up was a much less important explanatory factor. We found no evidence that high predator abundances led to earlier laying dates (“predator/re-nest hypothesis”). Our results support previous arctic studies in that climate change in the cryosphere will have a strong impact on nesting phenology although factors explaining changes in nest phenology are not necessarily uniform across the entire Arctic. Our results suggest some arctic-breeding shorebird and passerine species are altering their breeding phenology to initiate nesting earlier enabling them to, at least temporarily, avoid the negative consequences of a trophic mismatch.

  10. Changing Conditions in the Arctic: An Analysis of 45 years of Tropospheric Ozone Measurements at Barrow Observatory

    NASA Astrophysics Data System (ADS)

    McClure-Begley, A.; Petropavlovskikh, I. V.; Crepinsek, S.; Jefferson, A.; Emmons, L. K.; Oltmans, S. J.

    2017-12-01

    In order to understand the impact of climate on local bio-systems, understanding the changes to the atmospheric composition and processes in the Arctic boundary layer and free troposphere is imperative. In the Arctic, many conditions influence tropospheric ozone variability such as: seasonal halogen caused depletion events, long range transport of pollutants from mid-northern latitudes, compounds released from wildfires, and different meteorological conditions. The Barrow station in Utqiagvik, Alaska has collected continuous measurements of ground-level ozone since 1973. This unique long-term time series allows for analysis of the influence of a rapidly changing climate on ozone conditions in this region. Specifically, this study analyzes the frequency of enhanced ozone episodes over time and provides in depth analysis of periods of positive deviations from the expected conditions. To discern the contribution of different pollutant sources to observed ozone variability, co-located measurements of aerosols, carbon monoxide, and meteorological conditions are used. In addition, the NCAR Mozart-4/MOPITT Chemical Forecast model and NOAA Hysplit back-trajectory analysis provide information on transport patterns to the Arctic and confirmation of the emission sources that influenced the observed conditions. These anthropogenic influences on ozone variability in and below the boundary layer are essential for developing an understanding of the interaction of climate change and the bio-systems in the Arctic.

  11. Expanding research capabilities with sea ice climate records for analysis of long-term climate change and short-term variability

    NASA Astrophysics Data System (ADS)

    Scott, D. J.; Meier, W. N.

    2008-12-01

    Recent sea ice analysis is leading to predictions of a sea ice-free summertime in the Arctic within 20 years, or even sooner. Sea ice topics, such as concentration, extent, motion, and age, are predominately studied using satellite data. At the National Snow and Ice Data Center (NSIDC), passive microwave sea ice data sets provide timely assessments of seasonal-scale variability as well as consistent long-term climate data records. Such data sets are crucial to understanding changes and assessing their impacts. Noticeable impacts of changing sea ice conditions on native cultures and wildlife in the Arctic region are now being documented. With continued deterioration in Arctic sea ice, global economic impacts will be seen as new shipping routes open. NSIDC is at the forefront of making climate data records available to address the changes in sea ice and its global impacts. By focusing on integrated data sets, NSIDC leads the way by broadening the studies of sea ice beyond the traditional cryospheric community.

  12. Influence of climate variability on near-surface ozone depletion events in the Arctic spring

    NASA Astrophysics Data System (ADS)

    Koo, Ja-Ho; Wang, Yuhang; Jiang, Tianyu; Deng, Yi; Oltmans, Samuel J.; Solberg, Sverre

    2014-04-01

    Near-surface ozone depletion events (ODEs) generally occur in the Arctic spring, and the frequency shows large interannual variations. We use surface ozone measurements at Barrow, Alert, and Zeppelinfjellet to analyze if their variations are due to climate variability. In years with frequent ODEs at Barrow and Alert, the western Pacific (WP) teleconnection pattern is usually in its negative phase, during which the Pacific jet is strengthened but the storm track originated over the western Pacific is weakened. Both factors tend to reduce the transport of ozone-rich air mass from midlatitudes to the Arctic, creating a favorable environment for the ODEs. The correlation of ODE frequencies at Zeppelinfjellet with WP indices is higher in the 2000s, reflecting stronger influence of the WP pattern in recent decade to cover ODEs in broader Arctic regions. We find that the WP pattern can be used to diagnose ODE changes and subsequent environmental impacts in the Arctic spring.

  13. Climate of the Arctic marine environment.

    PubMed

    Walsh, John E

    2008-03-01

    The climate of the Arctic marine environment is characterized by strong seasonality in the incoming solar radiation and by tremendous spatial variations arising from a variety of surface types, including open ocean, sea ice, large islands, and proximity to major landmasses. Interannual and decadal-scale variations are prominent features of Arctic climate, complicating the distinction between natural and anthropogenically driven variations. Nevertheless, climate models consistently indicate that the Arctic is the most climatically sensitive region of the Northern Hemisphere, especially near the sea ice margins. The Arctic marine environment has shown changes over the past several decades, and these changes are part of a broader global warming that exceeds the range of natural variability over the past 1000 years. Record minima of sea ice coverage during the past few summers and increased melt from Greenland have important implications for the hydrographic regime of the Arctic marine environment. The recent changes in the atmosphere (temperature, precipitation, pressure), sea ice, and ocean appear to be a coordinated response to systematic variations of the large-scale atmospheric circulation, superimposed on a general warming that is likely associated with increasing greenhouse gases. The changes have been sufficiently large in some sectors (e.g., the Bering/Chukchi Seas) that consequences for marine ecosystems appear to be underway. Global climate models indicate an additional warming of several degrees Celsius in much of the Arctic marine environment by 2050. However, the warming is seasonal (largest in autumn and winter), spatially variable, and closely associated with further retreat of sea ice. Additional changes predicted for 2050 are a general decrease of sea level pressure (largest in the Bering sector) and an increase of precipitation. While predictions of changes in storminess cannot be made with confidence, the predicted reduction of sea ice cover will almost certainly lead to increased oceanic mixing, ocean wave generation, and coastal flooding.

  14. Enhanced Arctic Amplification Began at the Mid-Brunhes Event ~400,000 years ago.

    PubMed

    Cronin, T M; Dwyer, G S; Caverly, E K; Farmer, J; DeNinno, L H; Rodriguez-Lazaro, J; Gemery, L

    2017-11-03

    Arctic Ocean temperatures influence ecosystems, sea ice, species diversity, biogeochemical cycling, seafloor methane stability, deep-sea circulation, and CO 2 cycling. Today's Arctic Ocean and surrounding regions are undergoing climatic changes often attributed to "Arctic amplification" - that is, amplified warming in Arctic regions due to sea-ice loss and other processes, relative to global mean temperature. However, the long-term evolution of Arctic amplification is poorly constrained due to lack of continuous sediment proxy records of Arctic Ocean temperature, sea ice cover and circulation. Here we present reconstructions of Arctic Ocean intermediate depth water (AIW) temperatures and sea-ice cover spanning the last ~ 1.5 million years (Ma) of orbitally-paced glacial/interglacial cycles (GIC). Using Mg/Ca paleothermometry of the ostracode Krithe and sea-ice planktic and benthic indicator species, we suggest that the Mid-Brunhes Event (MBE), a major climate transition ~ 400-350 ka, involved fundamental changes in AIW temperature and sea-ice variability. Enhanced Arctic amplification at the MBE suggests a major climate threshold was reached at ~ 400 ka involving Atlantic Meridional Overturning Circulation (AMOC), inflowing warm Atlantic Layer water, ice sheet, sea-ice and ice-shelf feedbacks, and sensitivity to higher post-MBE interglacial CO 2 concentrations.

  15. The Arctic's sea ice cover: trends, variability, predictability, and comparisons to the Antarctic.

    PubMed

    Serreze, Mark C; Meier, Walter N

    2018-05-28

    As assessed over the period of satellite observations, October 1978 to present, there are downward linear trends in Arctic sea ice extent for all months, largest at the end of the melt season in September. The ice cover is also thinning. Downward trends in extent and thickness have been accompanied by pronounced interannual and multiyear variability, forced by both the atmosphere and ocean. As the ice thins, its response to atmospheric and oceanic forcing may be changing. In support of a busier Arctic, there is a growing need to predict ice conditions on a variety of time and space scales. A major challenge to providing seasonal scale predictions is the 7-10 days limit of numerical weather prediction. While a seasonally ice-free Arctic Ocean is likely well within this century, there is much uncertainty in the timing. This reflects differences in climate model structure, the unknown evolution of anthropogenic forcing, and natural climate variability. In sharp contrast to the Arctic, Antarctic sea ice extent, while highly variable, has increased slightly over the period of satellite observations. The reasons for this different behavior remain to be resolved, but responses to changing atmospheric circulation patterns appear to play a strong role. © 2018 New York Academy of Sciences.

  16. Quantifying Direct and Indirect Impact of Future Climate on Sub-Arctic Hydrology

    NASA Astrophysics Data System (ADS)

    Endalamaw, A. M.; Bolton, W. R.; Young-Robertson, J. M.; Morton, D.; Hinzman, L. D.

    2016-12-01

    Projected future climate will have a significant impact on the hydrology of interior Alaskan sub-arctic watersheds, directly though the changes in precipitation and temperature patterns, and indirectly through the cryospheric and ecological impacts. Although the latter is the dominant factor controlling the hydrological processes in the interior Alaska sub-arctic, it is often overlooked in many climate change impact studies. In this study, we aim to quantify and compare the direct and indirect impact of the projected future climate on the hydrology of the interior Alaskan sub-arctic watersheds. The Variable Infiltration Capacity (VIC) meso-scale hydrological model will be implemented to simulate the hydrological processes, including runoff, evapotranspiration, and soil moisture dynamics in the Chena River Basin (area = 5400km2), located in the interior Alaska sub-arctic region. Permafrost and vegetation distribution will be derived from the Geophysical Institute Permafrost Lab (GIPL) model and the Lund-Potsdam-Jena Dynamic Global Model (LPJ) model, respectively. All models will be calibrated and validated using historical data. The Scenario Network for Alaskan and Arctic Planning (SNAP) 5-model average projected climate data products will be used as forcing data for each of these models. The direct impact of climate change on hydrology is estimated using surface parameterization derived from the present day permafrost and vegetation distribution, and future climate forcing from SNAP projected climate data products. Along with the projected future climate, outputs of GIPL and LPJ will be incorporated into the VIC model to estimate the indirect and overall impact of future climate on the hydrology processes in the interior Alaskan sub-arctic watersheds. Finally, we will present the potential hydrological and ecological changes by the end of the 21st century.

  17. Reconstruction of Centennial and Millennial-scale Climate and Environmental Variability during the Holocene in the Central Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Rolland, N.; Porinchu, D.; MacDonald, G.; Moser, K.

    2007-12-01

    The Arctic and sub-Arctic regions are experiencing dramatic changes in surface temperature, sea-ice extent, glacial melt, river discharge, soil carbon storage and snow cover. According to the IPCC high latitude regions are expected to warm between 4°C and 7°C over the next 100 years. The magnitude of warming and the rate at which it occurs will dwarf any previous warming episodes experienced by latitude regions over the last 11,000 years. It is critical that we improve our understanding of how the Arctic and sub-Arctic regions responded to past periods of warming, especially in light of the changes these regions will be experiencing over the next 100 years. One of the lines of evidence increasingly utilized in multi-proxy paleolimnological research is the Chironomidae (Insecta: Diptera). Also known as non-biting midge flies, chironomids are ubiquitous, frequently the most abundant insects found in freshwater ecosystems and very sensitive to environmental conditions. This research uses Chironomidae to quantitatively characterize climate and environmental conditions of the continental interior of Arctic Canada during the Holocene. Spanning four major vegetation zones (boreal forest, forest-tundra, birch tundra and herb tundra), the surface samples of 80 lakes recovered from the central Canadian Arctic were used to assess the relationship of 22 environmental variables with the chironomid distribution. Redundancy analysis (RDA) identified four variables, total Kjeldahl nitrogen (TKN), pH, summer surface water temperature (SSWT) and depth, which best explain the variance in the distribution of chironomids within these ecoregions. In order to provide new quantitative estimates of SSWT, a 1-component weighted average partial least square (WA-PLS) model was developed (r2jack = 0.76, RMSEP = 1.42°C) and applied downcore in two low arctic continental Nunavut lakes located approximately 50 km and 200 km north of modern treeline. This robust midge-inferred temperature reconstruction of the Holocene thermal conditions will then be compared with previous research describing vegetation development in this region. This study provides new and important data which helps to further resolve millennial and centennial-scale climate variability in the central Canadian Arctic during the Holocene.

  18. Ecosystem responses to climate change at a Low Arctic and a High Arctic long-term research site

    Treesearch

    John E. Hobbie; Gaius R. Shaver; Edward B. Rastetter; Jessica E. Cherry; Scott J. Goetz; Kevin C. Guay; William A. Gould; George W. Kling

    2017-01-01

    Long-term measurements of ecological effects of warming are often not statistically significant because of annual variability or signal noise. These are reduced in indicators that filter or reduce the noise around the signal and allow effects of climate warming to emerge. In this way, certain indicators act as medium pass filters integrating the signal over years-to-...

  19. CARVE: The Carbon in Arctic Reservoirs Vulnerability Experiment

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.; Dinardo, Steven J.

    2012-01-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a NASA Earth Ventures (EV-1) investigation designed to quantify correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems through intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. CARVE's objectives are to: (1) Directly test hypotheses attributing the mobilization of vulnerable Arctic carbon reservoirs to climate warming; (2) Deliver the first direct measurements and detailed maps of CO2 and CH4 sources on regional scales in the Alaskan Arctic; and (3) Demonstrate new remote sensing and modeling capabilities to quantify feedbacks between carbon fluxes and carbon cycle-climate processes in the Arctic (Figure 1). We describe the investigation design and results from 2011 test flights in Alaska.

  20. Bridging a possible gap of GRACE observations in the Arctic Ocean using existing GRACE data and in situ bottom pressure sensors

    NASA Astrophysics Data System (ADS)

    Peralta Ferriz, C.; Morison, J.

    2014-12-01

    Since 2003, the Gravity Recovery and Climate Experiment (GRACE) satellite system has provided the means of investigating month-to-month to inter-annual variability of, among many other things, Arctic Ocean circulation over the entire Arctic Basin. Such a comprehensive picture could not have been achieved with the limited in situ pressure observations available. Results from the first 10 years of ocean bottom pressure measurements from GRACE in the Arctic Ocean reveal distinct patterns of ocean variability that are strongly associated with changes in large-scale atmospheric circulation (Peralta-Ferriz et al., 2014): the leading mode of variability being a wintertime basin-coherent mass change driven by winds in the Nordic Seas; the second mode of variability corresponding to a mass signal coherent along the Siberian shelves, and driven by the Arctic Oscillation; and the third mode being a see-saw between western and eastern Arctic shelves, also driven by the large-scale wind patterns. In order to understand Arctic Ocean changes, it is fundamental to continue to track ocean bottom pressure. Our concern is what to do if the present GRACE system, which is already well beyond its design lifetime, should fail before its follow-on is launched, currently estimated to be in 2017. In this work, we regress time series of pressure from the existing and potential Arctic Ocean bottom pressure recorder locations against the fundamental modes of bottom pressure variation. Our aim is to determine the optimum combination of in situ measurements to represent the broader scale variability now observed by GRACE. With this understanding, we can be better prepared to use in situ observations to at least partially cover a possible gap in GRACE coverage. Reference:Peralta-Ferriz, Cecilia, James H. Morison, John M. Wallace, Jennifer A. Bonin, Jinlun Zhang, 2014: Arctic Ocean Circulation Patterns Revealed by GRACE. J. Climate, 27, 1445-1468. doi: http://dx.doi.org/10.1175/JCLI-D-13-00013.1

  1. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification.

    PubMed

    Lameris, Thomas K; Scholten, Ilse; Bauer, Silke; Cobben, Marleen M P; Ens, Bruno J; Nolet, Bart A

    2017-10-01

    Arctic amplification, the accelerated climate warming in the polar regions, is causing a more rapid advancement of the onset of spring in the Arctic than in temperate regions. Consequently, the arrival of many migratory birds in the Arctic is thought to become increasingly mismatched with the onset of local spring, consequently reducing individual fitness and potentially even population levels. We used a dynamic state variable model to study whether Arctic long-distance migrants can advance their migratory schedules under climate warming scenarios which include Arctic amplification, and whether such an advancement is constrained by fuel accumulation or the ability to anticipate climatic changes. Our model predicts that barnacle geese Branta leucopsis suffer from considerably reduced reproductive success with increasing Arctic amplification through mistimed arrival, when they cannot anticipate a more rapid progress of Arctic spring from their wintering grounds. When geese are able to anticipate a more rapid progress of Arctic spring, they are predicted to advance their spring arrival under Arctic amplification up to 44 days without any reproductive costs in terms of optimal condition or timing of breeding. Negative effects of mistimed arrival on reproduction are predicted to be somewhat mitigated by increasing summer length under warming in the Arctic, as late arriving geese can still breed successfully. We conclude that adaptation to Arctic amplification may rather be constrained by the (un)predictability of changes in the Arctic spring than by the time available for fuel accumulation. Social migrants like geese tend to have a high behavioural plasticity regarding stopover site choice and migration schedule, giving them the potential to adapt to future climate changes on their flyway. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  2. Arctic vs. Tropical Influence and Over the Period of Arctic Amplification including Winter 2015/16

    NASA Astrophysics Data System (ADS)

    Cohen, J. L.; Francis, J. A.; Pfeiffer, K.

    2016-12-01

    The tropics in general and El Niño/Southern Oscillation (ENSO) in particular are almost exclusively relied upon for seasonal forecasting. Much less considered and certainly more controversial is the idea that Arctic variability is influencing mid-latitude weather. However, since the late 1980s and early 1990s the Arctic has undergone the most rapid warming observed globally, referred to as Arctic amplification (AA), which has coincided with an observed increase in extreme weather. Analysis of observed trends in hemispheric circulation over the period of AA more closely resembles variability associated with Arctic boundary forcings than with tropical forcing. Furthermore, analysis of intra-seasonal temperature variability shows that the cooling in mid-latitude winter temperatures has been accompanied by an increase in temperature variability and not a decrease, popularly referred to as "weather whiplash." When a record El Niño occurred this past winter, it should have been an opportunity to showcase decades of research and resources dedicated to the study of the ENSO phenomenon and its global impacts. However the dynamical forecasts performed poorly this past winter. Instead we will show that many of the significant circulation anomalies of this past winter are related to high latitude processes. We believe that the failed forecasts of this past winter will serve as a watershed moment and an inflection point in climate science. Climate science requires a paradigm shift in order to improve long-range forecasts. Less reliance on the tropics and exploration of new regions of predictability, including the Arctic, are required.

  3. Analysis of Surface Fluxes at Eureka Climate Observatory in Arctic

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey; Albee, Robert; Fairall, Christopher; Hare, Jeffrey; Persson, Ola; Uttal, Taneil

    2010-05-01

    The Arctic region is experiencing unprecedented changes associated with increasing average temperatures (faster than the pace of the globally-averaged increase) and significant decreases in both the areal extent and thickness of the Arctic pack ice. These changes are early warning signs of shifts in the global climate system that justifies increased scientific focus on this region. The increase in atmospheric carbon dioxide has raised concerns worldwide about future climate change. Recent studies suggest that huge stores of carbon dioxide (and other climate relevant compounds) locked up in Arctic soils could be unexpectedly released due to global warming. Observational evidence suggests that atmospheric energy fluxes are a major contributor to the decrease of the Arctic pack ice, seasonal land snow cover and the warming of the surrounding land areas and permafrost layers. To better understand the atmosphere-surface exchange mechanisms, improve models, and to diagnose climate variability in the Arctic, accurate measurements are required of all components of the net surface energy budget and the carbon dioxide cycle over representative areas and over multiple years. In this study we analyze variability of turbulent fluxes including water vapor and carbon dioxide transfer based on long-term measurements made at Eureka observatory (80.0 N, 85.9 W) located near the coast of the Arctic Ocean (Canadian territory of Nunavut). Turbulent fluxes and mean meteorological data are continuously measured and reported hourly at various levels on a 10-m flux tower. Sonic anemometers are located at 3 and 8 m heights while high-speed Licor 7500 infrared gas analyzer (water moisture and carbon dioxide measurements) at 7.5 m height. According to our data, that the sensible heat flux, carbon dioxide and water vapor fluxes exhibited clear diurnal cycles in Arctic summer. This behavior is similar to the diurnal variation of the fluxes in mid-latitudes during the plants growing season, with carbon dioxide uptake from the atmosphere during the day due to photosynthesis, and carbon dioxide loss to the atmosphere due to vegetation respiration during the night. However, at Eureka vegetation was a source of carbon dioxide during sunlit periods. Thus the sign of carbon dioxide flux was controlled by air temperature even during Arctic summer.

  4. 800,000 Years of Arctic Climate Variability: Insights from Lake El'gygytgyn, Far East Russia

    NASA Astrophysics Data System (ADS)

    Castañeda, I. S.; Habicht, H.; Patterson, M. O.; Burns, S. J.; Deconto, R. M.; Brigham-Grette, J.

    2017-12-01

    The regional response of the high Arctic to past climate variability is little known prior to 100,000 years ago. In 2009, a 3.6 Ma sediment core was recovered from Lake El'gygytgyn (Russia), the largest and oldest unglaciated Arctic lake basin. These sediments offer a unique opportunity to examine Plio-Pleistocene high-latitude continental climate variability. Determining the magnitude of past Arctic temperature and precipitation variability is especially relevant to understanding the mechanisms and feedbacks contributing to arctic amplification. Here we present results of ongoing organic geochemical analyses of Lake El'gygytgyn sediments focusing on the past 800,000 years. We use the methylation and cyclization index of branched tetraethers (MBT'/CBT) to reconstruct past temperature (Weijers et al., 2007; Peterse et al., 2012; De Jonge et al., 2014) and ratios of plant leaf waxes to examine vegetation variability within the lake catchment. In addition, algal biomarkers and bulk carbon isotopes provide insights into past changes in primary productivity. Trends noted in the MBT'/CBT record are in close agreement with pollen-based temperature estimates throughout the entire core and reveal a strong response to interglacial-glacial variability as well as local summer insolation. Our temperature reconstructions indicate the terrestrial Arctic experienced both warm interglacials and mild glacial periods during the Mid-Pleistocene but transitioned to more extreme temperature fluctuations in the more recent part of the record. Plant leaf wax average chain lengths suggest that glacial intervals were marked by increased aridity, while interglacial periods were wetter at Lake El'gygytgyn. Time-series analysis of the organic geochemical temperature and vegetation reconstructions records revealed variability at precession and obliquity frequencies, respectively. We also find a signal of the Mid-Brunhes Event (MBE) recorded in numerous Lake El'gygytgyn proxy records. Pre- and post-MBE differences are likely attributed to shifts in atmospheric circulation due to the stratification and warming in the North Pacific associated with changes in AABW production, thus providing further support for teleconnections between the high northern and southern latitudes.

  5. Arctic cities and climate change: climate-induced changes in stability of Russian urban infrastructure built on permafrost

    NASA Astrophysics Data System (ADS)

    Shiklomanov, Nikolay; Streletskiy, Dmitry; Swales, Timothy

    2014-05-01

    Planned socio-economic development during the Soviet period promoted migration into the Arctic and work force consolidation in urbanized settlements to support mineral resources extraction and transportation industries. These policies have resulted in very high level of urbanization in the Soviet Arctic. Despite the mass migration from the northern regions during the 1990s following the collapse of the Soviet Union and the diminishing government support, the Russian Arctic population remains predominantly urban. In five Russian Administrative regions underlined by permafrost and bordering the Arctic Ocean 66 to 82% (depending on region) of the total population is living in Soviet-era urban communities. The political, economic and demographic changes in the Russian Arctic over the last 20 years are further complicated by climate change which is greatly amplified in the Arctic region. One of the most significant impacts of climate change on arctic urban landscapes is the warming and degradation of permafrost which negatively affects the structural integrity of infrastructure. The majority of structures in the Russian Arctic are built according to the passive principle, which promotes equilibrium between the permafrost thermal regime and infrastructure foundations. This presentation is focused on quantitative assessment of potential changes in stability of Russian urban infrastructure built on permafrost in response to ongoing and future climatic changes using permafrost - geotechnical model forced by GCM-projected climate. To address the uncertainties in GCM projections we have utilized results from 6 models participated in most recent IPCC model inter-comparison project. The analysis was conducted for entire extent of Russian permafrost-affected area and on several representative urban communities. Our results demonstrate that significant observed reduction in urban infrastructure stability throughout the Russian Arctic can be attributed to climatic changes and that projected future climatic changes will further negatively affect communities on permafrost. However, the uncertainties in magnitude and spatial and temporal patterns of projected climate change produced by individual GCMs translate to substantial variability of the future state of infrastructure built on permafrost.

  6. Correlated declines in Pacific arctic snow and sea ice cover

    USGS Publications Warehouse

    Stone, Robert P.; Douglas, David C.; Belchansky, Gennady I.; Drobot, Sheldon

    2005-01-01

    Simulations of future climate suggest that global warming will reduce Arctic snow and ice cover, resulting in decreased surface albedo (reflectivity). Lowering of the surface albedo leads to further warming by increasing solar absorption at the surface. This phenomenon is referred to as “temperature–albedo feedback.” Anticipation of such a feedback is one reason why scientists look to the Arctic for early indications of global warming. Much of the Arctic has warmed significantly. Northern Hemisphere snow cover has decreased, and sea ice has diminished in area and thickness. As reported in the Arctic Climate Impact Assessment in 2004, the trends are considered to be outside the range of natural variability, implicating global warming as an underlying cause. Changing climatic conditions in the high northern latitudes have influenced biogeochemical cycles on a broad scale. Warming has already affected the sea ice, the tundra, the plants, the animals, and the indigenous populations that depend on them. Changing annual cycles of snow and sea ice also affect sources and sinks of important greenhouse gases (such as carbon dioxide and methane), further complicating feedbacks involving the global budgets of these important constituents. For instance, thawing permafrost increases the extent of tundra wetlands and lakes, releasing greater amounts of methane into the atmosphere. Variable sea ice cover may affect the hemispheric carbon budget by altering the ocean–atmosphere exchange of carbon dioxide. There is growing concern that amplification of global warming in the Arctic will have far-reaching effects on lower latitude climate through these feedback mechanisms. Despite the diverse and convincing observational evidence that the Arctic environment is changing, it remains unclear whether these changes are anthropogenically forced or result from natural variations of the climate system. A better understanding of what controls the seasonal distributions of snow and ice is fundamental to the problem.

  7. Enhanced Arctic amplification began at the Mid-Brunhes Event 430,000 years ago

    USGS Publications Warehouse

    Cronin, Thomas M.; Dwyer, Gary S.; Caverly, Emma; Farmer, Jesse; DeNinno, Lauren H.; Rodriguez-Lazaro, Julio; Gemery, Laura

    2017-01-01

    Arctic Ocean temperatures influence ecosystems, sea ice, species diversity, biogeochemical cycling, seafloor methane stability, deep-sea circulation, and CO2 cycling. Today's Arctic Ocean and surrounding regions are undergoing climatic changes often attributed to "Arctic amplification" - that is, amplified warming in Arctic regions due to sea-ice loss and other processes, relative to global mean temperature. However, the long-term evolution of Arctic amplification is poorly constrained due to lack of continuous sediment proxy records of Arctic Ocean temperature, sea ice cover and circulation. Here we present reconstructions of Arctic Ocean intermediate depth water (AIW) temperatures and sea-ice cover spanning the last ~ 1.5 million years (Ma) of orbitally-paced glacial/interglacial cycles (GIC). Using Mg/Ca paleothermometry of the ostracode Krithe and sea-ice planktic and benthic indicator species, we suggest that the Mid-Brunhes Event (MBE), a major climate transition ~ 400-350 ka, involved fundamental changes in AIW temperature and sea-ice variability. Enhanced Arctic amplification at the MBE suggests a major climate threshold was reached at ~ 400 ka involving Atlantic Meridional Overturning Circulation (AMOC), inflowing warm Atlantic Layer water, ice sheet, sea-ice and ice-shelf feedbacks, and sensitivity to higher post-MBE interglacial CO2 concentrations.

  8. A modelling study of the influence of anomalous wind forcing over the Barents Sea on the Atlantic water flow to the Arctic Ocean in the period 1979-2004

    NASA Astrophysics Data System (ADS)

    Marciniak, Jakub; Schlichtholz, Pawel; Maslowski, Wieslaw

    2016-04-01

    Arctic climate system is influenced by oceanic heat transport with the Atlantic water (AW) streaming towards the Arctic Ocean in two branches, through the deep Fram Strait and the shallow Barents Sea. In Fram Strait, the AW submerges below the Polar surface water and then flows cyclonically along the margin of the Arctic Ocean as a subsurface water mass in the Arctic Slope Current. In contrast to the Fram Strait branch, which is the major source of heat for the Arctic Ocean, most of the heat influx to the Barents Sea through the Barents Sea opening (BSO) is passed to the atmosphere. Only cold remnants of AW outflow to the Arctic Ocean through the northeastern gate of the Barents Sea. Some AW entering the Barents Sea recirculates westward, contributing to an outflow from the Barents Sea through the BSO along the shelf slope south of Bear Island, in the Bear Island Slope Current. Even though the two-branched AW flow toward the Arctic Ocean has been known for more than a century, little is known about co-variability of heat fluxes in the two branches, its mechanisms and climatic implications. Recent studies indicate that the Bear Island Slope Current may play a role in this co-variability. Here, co-variability of the flow through the BSO and Fram Strait is investigated using a pan-Arctic coupled ice-ocean hindcast model run for the period 1979-2004 and forced with daily atmospheric data from the ECMWF. Significant wintertime co-variability between the volume transport in the Bear Island and Arctic slope currents and its link to wind forcing over the Barents Sea is confirmed. It is found that the volume transports in these currents are, however, not correlated in the annual mean and that the wintertime co-variability of these currents has no immediate effect on either the net heat flux through the BSO or the net heat flux divergence in the Barents Sea. It is shown that the main climatic effect of wind forcing over the northern Barents Sea shelf is to induce temperature anomalies in the Murman/West Novaya Zemlya current system on the eastern side of the Barents Sea. These anomalies affect sea ice in the eastern Barents Sea 1-3 months later, but are not completely lost on the interactions with the sea ice and local atmosphere. Statistically significant subsurface temperature anomalies driven by anomalous winds over the Barents Sea join, on their exit to the Arctic Ocean through St. Anna Trough, the Arctic Slope Current, in which they persist for several years.

  9. The PLOT (Paleolimnological Transect) Project in the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Gromig, R.; Andreev, A.; Baumer, M.; Bolshiyanov, D.; Fedorov, G.; Frolova, L.; Krastel, S.; Lebas, E.; Ludikova, A.; Melles, M.; Meyer, H.; Nazarova, L.; Pestryakova, L.; Savelieva, L.; Shumilovskikh, L.; Subetto, D.; Wagner, B.; Wennrich, V.

    2017-12-01

    The joint Russian- German project 'PLOT - Paleolimnological Transec' aims to recover lake sediment sequences along a >6000 km long longitudinal transect across the Eurasian Arctic in order to investigate the Late Quaternary climatic and environmental history. The climate history of the Arctic is of particular interest since it is the region, which is experiencing major impact of the current climate change. The project is funded for three years (2015-2018) by the Russian and German Ministries of Research. Since 2013 extensive fieldwork, including seismic surveys, coring, and hydrological investigations, was carried out at lakes Ladoga (NW Russia, pilot study), Bolshoye Shuchye (Polar Urals), Emanda (Verkhoyansk Range, field campaign planned for August 2017), Levinson-Lessing and Taymyr (Taymyr Peninsula). Fieldwork at lakes Bolshoye Shuchye, Levinson-Lessing and Taymyr was conducted in collaboration with the Russian-Norwegian CHASE (Climate History along the Arctic Seaboard of Eurasia) project. A major objective of the PLOT project was to recover preglacial sediments. A multiproxy approach was applied to the analytical work of all cores, including (bio-)geochemical, sedimentological, geophysical, and biological analyses. First data implies the presence of preglacial sediments in the cores from all lakes so far visited. Age-depth models, based on radiocarbon dating, OSL dating, paleomagnetic measurements, identification of cryptotephra, and varve counting (where applicable), are in progress. Climate variability in the records shall be compared to that recorded at Lake Eĺgygytgyn (NE Russia), which represents the master record for the Siberian Arctic. The outcome of the PLOT project will be a better understanding of the temporal and spatial variability and development of the Arctic climate. Here, we present the major results and first key interpretations of the PLOT project, along with an outlook on the future strategy and foci. First results from lakes Ladoga, Bolshoye Shuchye, Levinson-Lessing and Taymyr will be published in a special journal issue (Boreas) in spring 2018.

  10. The Open-Ocean Sensible Heat Flux and Its Significance for Arctic Boundary Layer Mixing During Early Fall

    NASA Technical Reports Server (NTRS)

    Ganeshan, Manisha; Wu, Dongliang

    2016-01-01

    The increasing ice-free area during late summer has transformed the Arctic to a climate system with more dynamic boundary layer (BL) clouds and seasonal sea ice growth. The open-ocean sensible heat flux, a crucial mechanism of excessive ocean heat loss to the atmosphere during the fall freeze season, is speculated to play an important role in the recently observed cloud cover increase and BL instability. However, lack of observations and understanding of the resilience of the proposed mechanisms, especially in relation to meteorological and interannual variability, has left a poorly constrained BL parameterization scheme in Arctic climate models. In this study, we use multiyear Japanese cruise-ship observations from RV Mirai over the open Arctic Ocean to characterize the surface sensible heat flux (SSHF) during early fall and investigate its contribution to BL turbulence. It is found that mixing by SSHF is favored during episodes of high surface wind speed and is also influenced by the prevailing cloud regime. The deepest BLs and maximum ocean-atmosphere temperature difference are observed during cold air advection (associated with the stratocumulus regime), yet, contrary to previous speculation, the efficiency of sensible heat exchange is low. On the other hand, the SSHF contributes significantly to BL mixing during the uplift (low pressure) followed by the highly stable (stratus) regime. Overall, it can explain 10 of the open ocean BL height variability, whereas cloud-driven (moisture and radiative) mechanisms appear to be the other dominant source of convective turbulence. Nevertheless, there is strong interannual variability in the relationship between the SSHF and the BL height which can be intensified by the changing occurrence of Arctic climate patterns, such as positive surface wind speed anomalies and more frequent conditions of uplift. This study highlights the need for comprehensive BL observations like the RV Mirai for better understanding and predicting the dynamic nature of the Arctic climate.

  11. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska

    USGS Publications Warehouse

    Carey, Michael P.; Zimmerman, Christian E.

    2014-01-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to the entire food web will be necessary to predict ecosystem responses in lakes of the Arctic.

  12. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska

    PubMed Central

    Carey, Michael P; Zimmerman, Christian E

    2014-01-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to the entire food web will be necessary to predict ecosystem responses in lakes of the Arctic. PMID:24963391

  13. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska.

    PubMed

    Carey, Michael P; Zimmerman, Christian E

    2014-05-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to the entire food web will be necessary to predict ecosystem responses in lakes of the Arctic.

  14. Long-period humidity variability in the Arctic atmosphere from upper-air observations

    NASA Astrophysics Data System (ADS)

    Agurenko, A.; Khokhlova, A.

    2014-12-01

    Under climate change, atmospheric water content also tends to change. This gives rise to changes in the amount of moisture transferred, clouds and precipitation, as well as in hydrological regime. This work analyzes seasonal climatic characteristics of precipitated water in the Arctic atmosphere, by using 1972-2011 data from 55 upper-air stations located north of 60°N. Regions of maximum and minimum mean values and variability trends are determined. In the summer, water amount is shown to increase in nearly the whole of the latitudinal zone. The comparison with the similar characteristics of reanalysis obtained by the other authors shows a good agreement. Time variation in the atmosphere moisture transport crossing 70°N, which is calculated from observation data, is presented and compared with model results. The work is supported by the joint EC ERA.Net RUS and Russian Fundamental Research Fund Project "Arctic Climate Processes Linked Through the Circulation of the Atmosphere" (ACPCA) (project 12-05-91656-ЭРА_а).

  15. Monitoring Climate Variability and Change in Northern Alaska: Updates to the U.S. Geological Survey (USGS) Climate and Permafrost Monitoring Network

    NASA Astrophysics Data System (ADS)

    Urban, F. E.; Clow, G. D.; Meares, D. C.

    2004-12-01

    Observations of long-term climate and surficial geological processes are sparse in most of the Arctic, despite the fact that this region is highly sensitive to climate change. Instrumental networks that monitor the interplay of climatic variability and geological/cryospheric processes are a necessity for documenting and understanding climate change. Improvements to the spatial coverage and temporal scale of Arctic climate data are in progress. The USGS, in collaboration with The Bureau of Land Management (BLM) and The Fish and Wildlife Service (FWS) currently maintains two types of monitoring networks in northern Alaska: (1) A 15 site network of continuously operating active-layer and climate monitoring stations, and (2) a 21 element array of deep bore-holes in which the thermal state of deep permafrost is monitored. Here, we focus on the USGS Alaska Active Layer and Climate Monitoring Network (AK-CLIM). These 15 stations are deployed in longitudinal transects that span Alaska north of the Brooks Range, (11 in The National Petroleum Reserve Alaska, (NPRA), and 4 in The Arctic National Wildlife Refuge (ANWR)). An informative overview and update of the USGS AK-CLIM network is presented, including insight to current data, processing and analysis software, and plans for data telemetry. Data collection began in 1998 and parameters currently measured include air temperature, soil temperatures (5-120 cm), snow depth, incoming and reflected short-wave radiation, soil moisture (15 cm), wind speed and direction. Custom processing and analysis software has been written that calculates additional parameters such as active layer thaw depth, thawing-degree-days, albedo, cloudiness, and duration of seasonal snow cover. Data from selected AK-CLIM stations are now temporally sufficient to begin identifying trends, anomalies, and inter-annual variability in the climate of northern Alaska.

  16. Arctic Climate and Atmospheric Planetary Waves

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Haekkinen, S.

    2000-01-01

    Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave I pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach to determine significant forcing patterns of sea ice and high-latitude variability.

  17. High interannual variability of sea ice thickness in the Arctic region.

    PubMed

    Laxon, Seymour; Peacock, Neil; Smith, Doug

    2003-10-30

    Possible future changes in Arctic sea ice cover and thickness, and consequent changes in the ice-albedo feedback, represent one of the largest uncertainties in the prediction of future temperature rise. Knowledge of the natural variability of sea ice thickness is therefore critical for its representation in global climate models. Numerical simulations suggest that Arctic ice thickness varies primarily on decadal timescales owing to changes in wind and ocean stresses on the ice, but observations have been unable to provide a synoptic view of sea ice thickness, which is required to validate the model results. Here we use an eight-year time-series of Arctic ice thickness, derived from satellite altimeter measurements of ice freeboard, to determine the mean thickness field and its variability from 65 degrees N to 81.5 degrees N. Our data reveal a high-frequency interannual variability in mean Arctic ice thickness that is dominated by changes in the amount of summer melt, rather than by changes in circulation. Our results suggest that a continued increase in melt season length would lead to further thinning of Arctic sea ice.

  18. The Inter-Annual Variability Analysis of Carbon Exchange in Low Artic Fen Uncovers The Climate Sensitivity And The Uncertainties Around Net Ecosystem Exchange Partitioning

    NASA Astrophysics Data System (ADS)

    Blanco, E. L.; Lund, M.; Williams, M. D.; Christensen, T. R.; Tamstorf, M. P.

    2015-12-01

    An improvement in our process-based understanding of CO2 exchanges in the Arctic, and their climate sensitivity, is critical for examining the role of tundra ecosystems in changing climates. Arctic organic carbon storage has seen increased attention in recent years due to large potential for carbon releases following thaw. Our knowledge about the exact scale and sensitivity for a phase-change of these C stocks are, however, limited. Minor variations in Gross Primary Production (GPP) and Ecosystem Respiration (Reco) driven by changes in the climate can lead to either C sink or C source states, which likely will impact the overall C cycle of the ecosystem. Eddy covariance data is usually used to partition Net Ecosystem Exchange (NEE) into GPP and Reco achieved by flux separation algorithms. However, different partitioning approaches lead to different estimates. as well as undefined uncertainties. The main objectives of this study are to use model-data fusion approaches to (1) determine the inter-annual variability in C source/sink strength for an Arctic fen, and attribute such variations to GPP vs Reco, (2) investigate the climate sensitivity of these processes and (3) explore the uncertainties in NEE partitioning. The intention is to elaborate on the information gathered in an existing catchment area under an extensive cross-disciplinary ecological monitoring program in low Arctic West Greenland, established under the auspices of the Greenland Ecosystem Monitoring (GEM) program. The use of such a thorough long-term (7 years) dataset applied to the exploration in inter-annual variability of carbon exchange, related driving factors and NEE partition uncertainties provides a novel input into our understanding about land-atmosphere CO2 exchange.

  19. Empirical and modeled synoptic cloud climatology of the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Newell, J. P.; Schweiger, A.; Crane, R. G.

    1986-01-01

    A set of cloud cover data were developed for the Arctic during the climatically important spring/early summer transition months. Parallel with the determination of mean monthly cloud conditions, data for different synoptic pressure patterns were also composited as a means of evaluating the role of synoptic variability on Arctic cloud regimes. In order to carry out this analysis, a synoptic classification scheme was developed for the Arctic using an objective typing procedure. A second major objective was to analyze model output of pressure fields and cloud parameters from a control run of the Goddard Institue for Space Studies climate model for the same area and to intercompare the synoptic climatatology of the model with that based on the observational data.

  20. Eocene climate and Arctic paleobathymetry: A tectonic sensitivity study using GISS ModelE-R

    NASA Astrophysics Data System (ADS)

    Roberts, C. D.; Legrande, A. N.; Tripati, A. K.

    2009-12-01

    The early Paleogene (65-45 million years ago, Ma) was a ‘greenhouse’ interval with global temperatures warmer than any other time in the last 65 Ma. This period was characterized by high levels of CO2, warm high-latitudes, warm surface-and-deep oceans, and an intensified hydrological cycle. Sediments from the Arctic suggest that the Eocene surface Arctic Ocean was warm, brackish, and episodically enabled the freshwater fern Azolla to bloom. The precise mechanisms responsible for the development of these conditions remain uncertain. We present equilibrium climate conditions derived from a fully-coupled, water-isotope enabled, general circulation model (GISS ModelE-R) configured for the early Eocene. We also present model-data comparison plots for key climatic variables (SST and δ18O) and analyses of the leading modes of variability in the tropical Pacific and North Atlantic regions. Our tectonic sensitivity study indicates that Northern Hemisphere climate would have been very sensitive to the degree of oceanic exchange through the seaways connecting the Arctic to the Atlantic and Tethys. By restricting these seaways, we simulate freshening of the surface Arctic Ocean to ~6 psu and warming of sea-surface temperatures by 2°C in the North Atlantic and 5-10°C in the Labrador Sea. Our results may help explain the occurrence of low-salinity tolerant taxa in the Arctic Ocean during the Eocene and provide a mechanism for enhanced warmth in the north western Atlantic. We also suggest that the formation of a volcanic land-bridge between Greenland and Europe could have caused increased ocean convection and warming of intermediate waters in the Atlantic. If true, this result is consistent with the theory that bathymetry changes may have caused thermal destabilisation of methane clathrates in the Atlantic.

  1. Arctic storms simulated in atmospheric general circulation models under uniform high, uniform low, and variable resolutions

    NASA Astrophysics Data System (ADS)

    Roesler, E. L.; Bosler, P. A.; Taylor, M.

    2016-12-01

    The impact of strong extratropical storms on coastal communities is large, and the extent to which storms will change with a warming Arctic is unknown. Understanding storms in reanalysis and in climate models is important for future predictions. We know that the number of detected Arctic storms in reanalysis is sensitive to grid resolution. To understand Arctic storm sensitivity to resolution in climate models, we describe simulations designed to identify and compare Arctic storms at uniform low resolution (1 degree), at uniform high resolution (1/8 degree), and at variable resolution (1 degree to 1/8 degree). High-resolution simulations resolve more fine-scale structure and extremes, such as storms, in the atmosphere than a uniform low-resolution simulation. However, the computational cost of running a globally uniform high-resolution simulation is often prohibitive. The variable resolution tool in atmospheric general circulation models permits regional high-resolution solutions at a fraction of the computational cost. The storms are identified using the open-source search algorithm, Stride Search. The uniform high-resolution simulation has over 50% more storms than the uniform low-resolution and over 25% more storms than the variable resolution simulations. Storm statistics from each of the simulations is presented and compared with reanalysis. We propose variable resolution as a cost-effective means of investigating physics/dynamics coupling in the Arctic environment. Future work will include comparisons with observed storms to investigate tuning parameters for high resolution models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7402 A

  2. Late-Middle Quaternary lithostratigraphy and sedimentation patterns on the Alpha Ridge, central Arctic Ocean: Implications for Arctic climate variability on orbital time scales

    NASA Astrophysics Data System (ADS)

    Wang, Rujian; Polyak, Leonid; Xiao, Wenshen; Wu, Li; Zhang, Taoliang; Sun, Yechen; Xu, Xiaomei

    2018-02-01

    We use sediment cores collected by the Chinese National Arctic Research Expeditions from the Alpha Ridge to advance Quaternary stratigraphy and paleoceanographic reconstructions for the Arctic Ocean. Our cores show a good litho/biostratigraphic correlation to sedimentary records developed earlier for the central Arctic Ocean, suggesting a recovered stratigraphic range of ca. 0.6 Ma, suitable for paleoclimatic studies on orbital time scales. This stratigraphy was tested by correlating the stacked Alpha Ridge record of bulk XRF manganese, calcium and zirconium (Mn, Ca, Zr), to global stable-isotope (LR04-δ18O) and sea-level stacks and tuning to orbital parameters. Correlation results corroborate the applicability of presumed climate/sea-level controlled Mn variations in the Arctic Ocean for orbital tuning. This approach enables better understanding of the global and orbital controls on the Arctic climate. Orbital tuning experiments for our records indicate strong eccentricity (100-kyr) and precession (∼20-kyr) controls on the Arctic Ocean, probably implemented via glaciations and sea ice. Provenance proxies like Ca and Zr are shown to be unsuitable as orbital tuning tools, but useful as indicators of glacial/deglacial processes and circulation patterns in the Arctic Ocean. Their variations suggest an overall long-term persistence of the Beaufort Gyre circulation in the Alpha Ridge region. Some glacial intervals, e.g., MIS 6 and 4/3, are predominated by material presumably transported by the Transpolar Drift. These circulation shifts likely indicate major changes in the Arctic climatic regime, which yet need to be investigated. Overall, our results demonstrate applicability of XRF data to paleoclimatic studies of the Arctic Ocean.

  3. Arctic Storms and Their Influence on Surface Climate in the Chukchi-Beaufort Seas

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Zhang, X.; Rinke, A.; Zhang, J.

    2017-12-01

    Increases in the frequency and intensity of Arctic storms and resulting weather hazards may endanger the offshore environment, coastal community, and energy infrastructure in the Arctic as sea ice retreats. Advancing ability to identify fine-scale variations in surface climate produced by progressively stronger storm would be extremely helpful to resources management and sustainable development for coastal community. In this study, we analyzed the storms and their impacts on surface climate over the Beaufort-Chukchi seas by employing the date sets from both the hindcast simulations of the coupled Arctic regional climate model HIRHAM-NAOSIM and the recently developed Chukchi-Beaufort High-resolution Atmospheric Reanalysis (CBHAR). Based on the characteristics of spatial pattern and temporal variability of the Arctic storm activity, we categorized storms to three groups with their different origins: the East Siberia Sea, Alaska and the central Arctic Ocean. The storms originating from the central Arctic Ocean have the strongest intensity in winter with relatively less storm number. Storms traveling from Alaska to the Beaufort Sea most frequently occurred in autumn with weaker intensity. A large portion of storms originated from the East Siberia Sea region in summer. Further statistical analysis suggests that increase in surface air temperature and wind speed could be attributed to the increased frequency of storm occurrence in autumn (September to November) along the continental shelf in the Beaufort Sea.

  4. Determination of Arctic sea ice variability modes on interannual timescales via nonhierarchical clustering

    NASA Astrophysics Data System (ADS)

    Fučkar, Neven-Stjepan; Guemas, Virginie; Massonnet, François; Doblas-Reyes, Francisco

    2015-04-01

    Over the modern observational era, the northern hemisphere sea ice concentration, age and thickness have experienced a sharp long-term decline superimposed with strong internal variability. Hence, there is a crucial need to identify robust patterns of Arctic sea ice variability on interannual timescales and disentangle them from the long-term trend in noisy datasets. The principal component analysis (PCA) is a versatile and broadly used method for the study of climate variability. However, the PCA has several limiting aspects because it assumes that all modes of variability have symmetry between positive and negative phases, and suppresses nonlinearities by using a linear covariance matrix. Clustering methods offer an alternative set of dimension reduction tools that are more robust and capable of taking into account possible nonlinear characteristics of a climate field. Cluster analysis aggregates data into groups or clusters based on their distance, to simultaneously minimize the distance between data points in a given cluster and maximize the distance between the centers of the clusters. We extract modes of Arctic interannual sea-ice variability with nonhierarchical K-means cluster analysis and investigate the mechanisms leading to these modes. Our focus is on the sea ice thickness (SIT) as the base variable for clustering because SIT holds most of the climate memory for variability and predictability on interannual timescales. We primarily use global reconstructions of sea ice fields with a state-of-the-art ocean-sea-ice model, but we also verify the robustness of determined clusters in other Arctic sea ice datasets. Applied cluster analysis over the 1958-2013 period shows that the optimal number of detrended SIT clusters is K=3. Determined SIT cluster patterns and their time series of occurrence are rather similar between different seasons and months. Two opposite thermodynamic modes are characterized with prevailing negative or positive SIT anomalies over the Arctic basin. The intermediate mode, with negative anomalies centered on the East Siberian shelf and positive anomalies along the North American side of the basin, has predominately dynamic characteristics. The associated sea ice concentration (SIC) clusters vary more between different seasons and months, but the SIC patterns are physically framed by the SIT cluster patterns.

  5. Regional and inter-annual variability in Atlantic zooplankton en route to the Arctic Ocean: potential effects of multi-path Atlantic water advection through Fram Strait and the Barents Sea

    NASA Astrophysics Data System (ADS)

    Kwasniewski, Slawomir; Gluchowska, Marta; Trudnowska, Emilia; Ormanczyk, Mateusz; Walczowski, Waldemar; Beszczynska-Moeller, Agnieszka

    2016-04-01

    The Arctic is among the regions where the climate change effects on ecosystem will be the most rapid and consequential, with Arctic amplification recognized as an integral part of the process. Great part of the changes are forced by advection of warm waters from the North Atlantic and the expected modifications of Arctic marine ecosystem will be induced not only by changing environmental conditions but also as a result of introducing Atlantic biota. Thus, the knowledge of physical and biological heterogeneity of Atlantic inflow is requisite for understanding the effects of climate change on biological diversity and ecosystem functioning in the Arctic. The complex and variable two-branched structure of the Atlantic Water flow via Fram Strait and the Barents Sea most likely has a strong influence on the ocean biology in these regions, especially in the pelagic realm. Zooplankton are key components of marine ecosystems which form essential links between primary producers and grazer/predator consumers, thus they are important for functioning of the biological carbon pump. Changes in zooplankton distribution and abundance may have cascading effects on ecosystem functioning, with regulatory effects on climate. Based on data collected in summers of 2012-2014, within the scope of the Polish-Norwegian PAVE research project, we investigate zooplankton distribution, abundance and selected structural characteristics of communities, in relation to water mass properties in the Atlantic Water complex flow to the Arctic Ocean. The main questions addressed here are: what are the differences in zooplankton patterns between the Fram Strait and Barents Sea branches, and how does the inter-annual variability of Atlantic Water advection relate to changes in zooplankton? The results of the investigation are precondition for foreseeing changes in the pelagic realm in the Arctic Ocean and are necessary for constructing and tuning plankton components of ecosystem models.

  6. Reduced arctic tundra productivity linked with landform and climate change interactions

    USGS Publications Warehouse

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; Martin, Philip; McGuire, A. David

    2018-01-01

    Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (~60,000 km²) using the Landsat archive (1999–2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected.

  7. Reduced arctic tundra productivity linked with landform and climate change interactions.

    PubMed

    Lara, Mark J; Nitze, Ingmar; Grosse, Guido; Martin, Philip; McGuire, A David

    2018-02-05

    Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (~60,000 km²) using the Landsat archive (1999-2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected.

  8. Distant drivers or local signals: where do mercury trends in western Arctic belugas originate?

    PubMed

    Loseto, L L; Stern, G A; Macdonald, R W

    2015-03-15

    Temporal trends of contaminants are monitored in Arctic higher trophic level species to inform us on the fate, transport and risk of contaminants as well as advise on global emissions. However, monitoring mercury (Hg) trends in species such as belugas challenge us, as their tissue concentrations reflect complex interactions among Hg deposition and methylation, whale physiology, dietary exposure and foraging patterns. The Beaufort Sea beluga population showed significant increases in Hg during the 1990 s; since that time an additional 10 years of data have been collected. During this time of data collection, changes in the Arctic have affected many processes that underlie the Hg cycle. Here, we examine Hg in beluga tissues and investigate factors that could contribute to the observed trends after removing the effect of age and size on Hg concentrations and dietary factors. Finally, we examine available indicators of climate variability (Arctic Oscillation (AO), the Pacific Decadal Oscillation (PDO) and sea-ice minimum (SIM) concentration) to evaluate their potential to explain beluga Hg trends. Results reveal a decline in Hg concentrations from 2002 to 2012 in the liver of older whales and the muscle of large whales. The temporal increases in Hg in the 1990 s followed by recent declines do not follow trends in Hg emission, and are not easily explained by diet markers highlighting the complexity of feeding, food web dynamics and Hg uptake. Among the regional-scale climate variables the PDO exhibited the most significant relationship with beluga Hg at an eight year lag time. This distant signal points us to consider beluga winter feeding areas. Given that changes in climate will impact ecosystems; it is plausible that these climate variables are important in explaining beluga Hg trends. Such relationships require further investigation of the multiple connections between climate variables and beluga Hg. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Medieval Warm Period and Little Ice Age Impacts on Prehistoric Human Migrations in the Eastern North American Arctic

    NASA Astrophysics Data System (ADS)

    Friesen, M.; Finkelstein, S. A.

    2014-12-01

    The eastern North American Arctic has a complex 5,000-year prehistory, during which many human population movements occurred over large distances. Archaeologists have interpreted these movements as resulting from many factors, however the effects of climate change are often hypothesized as primary drivers that can "push" human groups to leave some regions, or "pull" them to move to others. In this paper, we will examine climate change over the past millennium-and-a-half, and in particular at the two widespread, though variable, climate change events known as the Medieval Warm Period and Little Ice Age. We synthesize the latest paleoclimatological information on the timing and magnitude of these periods across the eastern Arctic, and assess the degree to which they coincide with current understanding of major population movements. In particular, we assess climate's potential impact on 1) the expansion of Late Dorset Paleo-Inuit to the High Arctic; 2) the migration of Thule Inuit from Alaska to the eastern Arctic; and 3) the abandonment of northern regions and new settlement of southern regions by Inuit in the mid-second millennium AD.

  10. Arctic climatechange and its impacts on the ecology of the North Atlantic.

    PubMed

    Greene, Charles H; Pershing, Andrew J; Cronin, Thomas M; Ceci, Nicole

    2008-11-01

    Arctic climate change from the Paleocene epoch to the present is reconstructed with the objective of assessing its recent and future impacts on the ecology of the North Atlantic. A recurring theme in Earth's paleoclimate record is the importance of the Arctic atmosphere, ocean, and cryosphere in regulating global climate on a variety of spatial and temporal scales. A second recurring theme in this record is the importance of freshwater export from the Arctic in regulating global- to basin-scale ocean circulation patterns and climate. Since the 1970s, historically unprecedented changes have been observed in the Arctic as climate warming has increased precipitation, river discharge, and glacial as well as sea-ice melting. In addition, modal shifts in the atmosphere have altered Arctic Ocean circulation patterns and the export of freshwater into the North Atlantic. The combination of these processes has resulted in variable patterns of freshwater export from the Arctic Ocean and the emergence of salinity anomalies that have periodically freshened waters in the North Atlantic. Since the early 1990s, changes in Arctic Ocean circulation patterns and freshwater export have been associated with two types of ecological responses in the North Atlantic. The first of these responses has been an ongoing series of biogeographic range expansions by boreal plankton, including renewal of the trans-Arctic exchanges of Pacific species with the Atlantic. The second response was a dramatic regime shift in the shelf ecosystems of the Northwest Atlantic that occurred during the early 1990s. This regime shift resulted from freshening and stratification of the shelf waters, which in turn could be linked to changes in the abundances and seasonal cycles of phytoplankton, zooplankton, and higher trophic-level consumer populations. It is predicted that the recently observed ecological responses to Arctic climate change in the North Atlantic will continue into the near future if current trends in sea ice, freshwater export, and surface ocean salinity continue. It is more difficult to predict ecological responses to abrupt climate change in the more distant future as tipping points in the Earth's climate system are exceeded.

  11. High Arctic summer warming tracked by increased Cassiope tetragona growth in the world's northernmost polar desert.

    PubMed

    Weijers, Stef; Buchwal, Agata; Blok, Daan; Löffler, Jörg; Elberling, Bo

    2017-11-01

    Rapid climate warming has resulted in shrub expansion, mainly of erect deciduous shrubs in the Low Arctic, but the more extreme, sparsely vegetated, cold and dry High Arctic is generally considered to remain resistant to such shrub expansion in the next decades. Dwarf shrub dendrochronology may reveal climatological causes of past changes in growth, but is hindered at many High Arctic sites by short and fragmented instrumental climate records. Moreover, only few High Arctic shrub chronologies cover the recent decade of substantial warming. This study investigated the climatic causes of growth variability of the evergreen dwarf shrub Cassiope tetragona between 1927 and 2012 in the northernmost polar desert at 83°N in North Greenland. We analysed climate-growth relationships over the period with available instrumental data (1950-2012) between a 102-year-long C. tetragona shoot length chronology and instrumental climate records from the three nearest meteorological stations, gridded climate data, and North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) indices. July extreme maximum temperatures (JulT emx ), as measured at Alert, Canada, June NAO, and previous October AO, together explained 41% of the observed variance in annual C. tetragona growth and likely represent in situ summer temperatures. JulT emx explained 27% and was reconstructed back to 1927. The reconstruction showed relatively high growing season temperatures in the early to mid-twentieth century, as well as warming in recent decades. The rapid growth increase in C. tetragona shrubs in response to recent High Arctic summer warming shows that recent and future warming might promote an expansion of this evergreen dwarf shrub, mainly through densification of existing shrub patches, at High Arctic sites with sufficient winter snow cover and ample water supply during summer from melting snow and ice as well as thawing permafrost, contrasting earlier notions of limited shrub growth sensitivity to summer warming in the High Arctic. © 2017 John Wiley & Sons Ltd.

  12. The Great White Ocean

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1999-01-01

    Satellite data have revealed overall decreases in the Arctic sea ice cover since the late 1970s, although with substantial interannual variability. The ice reductions are likely tied to an overall warming in the Arctic region over the same time period, although both the warming and the ice reductions could be connected to large-scale oscillations within the system. Should the ice reductions continue, consequences to the Arctic ecosystems and climate could be considerable.

  13. The future of ice sheets and sea ice: between reversible retreat and unstoppable loss.

    PubMed

    Notz, Dirk

    2009-12-08

    We discuss the existence of cryospheric "tipping points" in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice-albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet.

  14. The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss

    PubMed Central

    Notz, Dirk

    2009-01-01

    We discuss the existence of cryospheric “tipping points” in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice–albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet. PMID:19884496

  15. Mapping the future expansion of Arctic open water

    NASA Astrophysics Data System (ADS)

    Barnhart, Katherine R.; Miller, Christopher R.; Overeem, Irina; Kay, Jennifer E.

    2016-03-01

    Sea ice impacts most of the Arctic environment, from ocean circulation and marine ecosystems to animal migration and marine transportation. Sea ice has thinned and decreased in age over the observational record. Ice extent has decreased. Reduced ice cover has warmed the surface ocean, accelerated coastal erosion and impacted biological productivity. Declines in Arctic sea-ice extent cannot be explained by internal climate variability alone and can be attributed to anthropogenic effects. However, extent is a poor measure of ice decline at specific locations as it integrates over the entire Arctic basin and thus contains no spatial information. The open water season, in contrast, is a metric that represents the duration of open water over a year at an individual location. Here we present maps of the open water season over the period 1920-2100 using daily output from a 30-member initial-condition ensemble of business-as-usual climate simulations that characterize the expansion of Arctic open water, determine when the open water season will move away from pre-industrial conditions (`shift’ time) and identify when human forcing will take the Arctic sea-ice system outside its normal bounds (`emergence’ time). The majority of the Arctic nearshore regions began shifting in 1990 and will begin leaving the range of internal variability in 2040. Models suggest that ice will cover coastal regions for only half of the year by 2070.

  16. Sources and Variability of Aerosols and Aerosol-Cloud Interactions in the Arctic

    NASA Astrophysics Data System (ADS)

    Liu, H.; Zhang, B.; Taylor, P. C.; Moore, R.; Barahona, D.; Fairlie, T. D.; Chen, G.; Ham, S. H.; Kato, S.

    2017-12-01

    Arctic sea ice in recent decades has significantly declined. This requires understanding of the Arctic surface energy balance, of which clouds are a major driver. However, the mechanisms for the formation and evolution of clouds in the Arctic and the roles of aerosols therein are highly uncertain. Here we conduct data analysis and global model simulations to examine the sources and variability of aerosols and aerosol-cloud interactions in the Arctic. We use the MERRA-2 reanalysis data (2006-present) from the NASA Global Modeling and Assimilation Office (GMAO) to (1) quantify contributions of different aerosol types to the aerosol budget and aerosol optical depths in the Arctic, (2) ­examine aerosol distributions and variability and diagnose the major pathways for mid-latitude pollution transport to the Arctic, including their seasonal and interannual variability, and (3) characterize the distribution and variability of clouds (cloud optical depth, cloud fraction, cloud liquid and ice water path, cloud top height) in the Arctic. We compare MERRA-2 aerosol and cloud properties with those from C3M, a 3-D aerosol and cloud data product developed at NASA Langley Research Center and merged from multiple A-Train satellite (CERES, CloudSat, CALIPSO, and MODIS) observations. We also conduct perturbation experiments using the NASA GEOS-5 chemistry-climate model (with GOCART aerosol module coupled with two-moment cloud microphysics), and discuss the roles of various types of aerosols in the formation and evolution of clouds in the Arctic.

  17. Shrub growth response to climate across the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Ackerman, D.; Griffin, D.; Finlay, J. C.; Hobbie, S. E.

    2016-12-01

    Warmer temperatures at high latitudes are driving the expansion of woody shrubs in arctic tundra, yielding feedbacks to regional carbon cycling. Accounting for these feedbacks in global climate models will require accurate predictions of the spatial extent of shrub expansion within arctic tundra. While dendroecological approaches have proven useful in understanding how shrubs respond to climate, empirical studies to date are limited in spatial extent, often to just one or two sites within a landscape. A recent meta-analysis of such dendroecological studies hypothesizes that soil moisture is a key variable in determining climate sensitivity of arctic shrub growth. We present the first regional-scale empirical test of this hypothesis by analyzing inter-annual radial growth of deciduous shrubs across soil moisture gradients throughout the North Slope of Alaska. Contrary to expectation, riparian shrubs in high-moisture environments showed no climate sensitivity, while shrubs growing in drier upland sites showed a strong positive growth response to summer temperature. These results proved robust to a variety of detrending functions ranging from conservative (negative exponential) to data adaptive (20-year cubic smoothing spline). These findings call into question the role of soil moisture in determining the climate sensitivity of arctic shrubs and further highlight the importance of unified, regional-scale sampling strategies in understanding climate-vegetation links.

  18. Evaluation of CORDEX-Arctic daily precipitation and temperature-based climate indices over Canadian Arctic land areas

    NASA Astrophysics Data System (ADS)

    Diaconescu, Emilia Paula; Mailhot, Alain; Brown, Ross; Chaumont, Diane

    2018-03-01

    This study focuses on the evaluation of daily precipitation and temperature climate indices and extremes simulated by an ensemble of 12 Regional Climate Model (RCM) simulations from the ARCTIC-CORDEX experiment with surface observations in the Canadian Arctic from the Adjusted Historical Canadian Climate Dataset. Five global reanalyses products (ERA-Interim, JRA55, MERRA, CFSR and GMFD) are also included in the evaluation to assess their potential for RCM evaluation in data sparse regions. The study evaluated the means and annual anomaly distributions of indices over the 1980-2004 dataset overlap period. The results showed that RCM and reanalysis performance varied with the climate variables being evaluated. Most RCMs and reanalyses were able to simulate well climate indices related to mean air temperature and hot extremes over most of the Canadian Arctic, with the exception of the Yukon region where models displayed the largest biases related to topographic effects. Overall performance was generally poor for indices related to cold extremes. Likewise, only a few RCM simulations and reanalyses were able to provide realistic simulations of precipitation extreme indicators. The multi-reanalysis ensemble provided superior results to individual datasets for climate indicators related to mean air temperature and hot extremes, but not for other indicators. These results support the use of reanalyses as reference datasets for the evaluation of RCM mean air temperature and hot extremes over northern Canada, but not for cold extremes and precipitation indices.

  19. How predictable is the timing of a summer ice-free Arctic?

    NASA Astrophysics Data System (ADS)

    Jahn, Alexandra; Kay, Jennifer E.; Holland, Marika M.; Hall, David M.

    2016-09-01

    Climate model simulations give a large range of over 100 years for predictions of when the Arctic could first become ice free in the summer, and many studies have attempted to narrow this uncertainty range. However, given the chaotic nature of the climate system, what amount of spread in the prediction of an ice-free summer Arctic is inevitable? Based on results from large ensemble simulations with the Community Earth System Model, we show that internal variability alone leads to a prediction uncertainty of about two decades, while scenario uncertainty between the strong (Representative Concentration Pathway (RCP) 8.5) and medium (RCP4.5) forcing scenarios adds at least another 5 years. Common metrics of the past and present mean sea ice state (such as ice extent, volume, and thickness) as well as global mean temperatures do not allow a reduction of the prediction uncertainty from internal variability.

  20. Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Arctic Ocean is the smallest of the Earth's four major oceans, covering 14x10(exp 6) sq km located entirely within the Arctic Circle (66 deg 33 min N). It is a major player in the climate of the north polar region and has a variable sea ice cover that tends to increase its sensitivity to climate change. Its temperature, salinity, and ice cover have all undergone changes in the past several decades, although it is uncertain whether these predominantly reflect long-term trends, oscillations within the system, or natural variability. Major changes include a warming and expansion of the Atlantic layer, at depths of 200-900 m, a warming of the upper ocean in the Beaufort Sea, a considerable thinning (perhaps as high as 40%) of the sea ice cover, a lesser and uneven retreat of the ice cover (averaging approximately 3% per decade), and a mixed pattern of salinity increases and decreases.

  1. Interannual Variability of the Atlantic Water in the Arctic Basin

    DTIC Science & Technology

    1996-01-01

    3778-3784, 1987. 4. Anderson L.G., Bjork G., Holby 0., Jones E.P., Kattner G., Kolterman K.P., Liljebad B ., Lindegren R., Rudels B ., Swift J. Water...Res., part A, 36, pp. 475 - 482 , 1989. 6. Antonov J. Recent climatic changes of the vertical thermal structure of the North Atlantic Ocean and the...North Pacific Ocean. - J. of Climate, v.6, pp.1928-1942, 1993. 7. Blinov N.I. and Popkov S.N. About the heat exchange of Atlantic Waters in the Arctic

  2. Controls on Arctic sea ice from first-year and multi-year ice survival rates

    NASA Astrophysics Data System (ADS)

    Armour, K.; Bitz, C. M.; Hunke, E. C.; Thompson, L.

    2009-12-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi-year (MY) ice. The transition to an Arctic that is populated by thinner first-year (FY) sea ice has important implications for future trends in area and volume. We develop a reduced model for Arctic sea ice with which we investigate how the survivability of FY and MY ice control various aspects of the sea-ice system. We demonstrate that Arctic sea-ice area and volume behave approximately as first-order autoregressive processes, which allows for a simple interpretation of September sea-ice in which its mean state, variability, and sensitivity to climate forcing can be described naturally in terms of the average survival rates of FY and MY ice. This model, used in concert with a sea-ice simulation that traces FY and MY ice areas to estimate the survival rates, reveals that small trends in the ice survival rates explain the decline in total Arctic ice area, and the relatively larger loss of MY ice area, over the period 1979-2006. Additionally, our model allows for a calculation of the persistence time scales of September area and volume anomalies. A relatively short memory time scale for ice area (~ 1 year) implies that Arctic ice area is nearly in equilibrium with long-term climate forcing at all times, and therefore observed trends in area are a clear indication of a changing climate. A longer memory time scale for ice volume (~ 5 years) suggests that volume can be out of equilibrium with climate forcing for long periods of time, and therefore trends in ice volume are difficult to distinguish from its natural variability. With our reduced model, we demonstrate the connection between memory time scale and sensitivity to climate forcing, and discuss the implications that a changing memory time scale has on the trajectory of ice area and volume in a warming climate. Our findings indicate that it is unlikely that a “tipping point” in September ice area and volume will be reached as the climate is further warmed. Finally, we suggest novel model validation techniques based upon comparing the characteristics of FY and MY ice within models to observations. We propose that keeping an account of FY and MY ice area within sea ice models offers a powerful new way to evaluate model projections of sea ice in a greenhouse warming climate.

  3. Arctic energy budget in relation to sea-ice variability on monthly to annual time scales

    NASA Astrophysics Data System (ADS)

    Krikken, Folmer; Hazeleger, Wilco

    2015-04-01

    The strong decrease in Arctic sea-ice in recent years has triggered a strong interest in Arctic sea-ice predictions on seasonal to decadal time scales. Hence, it is key to understand physical processes that provide enhanced predictability beyond persistence of sea ice anomalies. The authors report on an analysis of natural variability of Arctic sea-ice from an energy budget perspective, using 15 CMIP5 climate models, and comparing these results to atmospheric and oceanic reanalyses data. We quantify the persistence of sea ice anomalies and the cross-correlation with the surface and top energy budget components. The Arctic energy balance components primarily indicate the important role of the seasonal sea-ice albedo feedback, in which sea-ice anomalies in the melt season reemerge in the growth season. This is a robust anomaly reemergence mechanism among all 15 climate models. The role of ocean lies mainly in storing heat content anomalies in spring, and releasing them in autumn. Ocean heat flux variations only play a minor role. The role of clouds is further investigated. We demonstrate that there is no direct atmospheric response of clouds to spring sea-ice anomalies, but a delayed response is evident in autumn. Hence, there is no cloud-ice feedback in late spring and summer, but there is a cloud-ice feedback in autumn, which strengthens the ice-albedo feedback. Anomalies in insolation are positively correlated with sea-ice variability. This is primarily a result of reduced multiple-reflection of insolation due to an albedo decrease. This effect counteracts the sea-ice albedo effect up to 50%. ERA-Interim and ORAS4 confirm the main findings from the climate models.

  4. The Long and Winding Road of Arctic Change Research

    NASA Astrophysics Data System (ADS)

    Mark, S.

    2016-12-01

    In the quest to better understand the local, regional and global drivers and impacts of Arctic change, we must not forget that the questions being asked today build on more than a century of research. There were giants before us. Perhaps the first observational evidence that the Arctic was responding to increasing carbon dioxide levels came from a 1986 study by Lachenbruch and Marshall of permafrost temperatures from boreholes in northernmost Alaska. In 1991, Detlef Quadfasel provided the first data on what appeared to be shifts in the ocean circulation, and hints then emerged that the sea ice cover at summer's end was receding. It was then noted that air temperatures over some parts of the Arctic were rising and others were cooling, attended by shifts in weather patterns. While some of this resembled what climate models were projecting, much of it looked like natural climate variability, driven variously by processes internal to the Arctic or linked to lower latitudes via the behavior of the NAO and the Arctic Oscillation. But the changes kept coming. Through a largely self-organizing process, led in considerable part by a small number of leading voices and with the strong support of funding agencies, scientists from diverse disciplines around the world began to find the answers. By the first decade of the 21st century, it was understood that large natural variability in Arctic climate, linked to both within-Arctic and lower-latitude drivers, was superimposed upon warming due to rising greenhouse gas levels, and that what was happening in the Arctic was already influencing lower latitudes. Many issues remain to be resolved. What are the relative roles of different drivers of Arctic amplification? Does Arctic amplification influence weather patterns beyond the Arctic? Will thawing terrestrial or subsea permafrost lead to substantial carbon emissions to the atmosphere, exacerbating global warming? How will sea ice loss affect Arctic ecosystems? How much will the Greenland ice sheet contribute to sea level rise? These questions are at the heart of evolving research on the Arctic's role as a responder and a driver of environmental change. But we should remember that without the insights, passion and collective effort of those that preceded us and laid the foundations, we would not be in position to answer them.

  5. Arctic temperature and moisture trends during the past 2000 years - Progress from multiproxy-paleoclimate data compilations

    NASA Astrophysics Data System (ADS)

    Kaufman, Darrell; Routson, Cody; McKay, Nicholas; Beltrami, Hugo; Jaume-Santero, Fernando; Konecky, Bronwen; Saenger, Casey

    2017-04-01

    Instrumental climate data and climate-model projections show that Arctic-wide surface temperature and precipitation are positively correlated. Higher temperatures coincide with greater moisture by: (1) expanding the duration and source area for evaporation as sea ice retracts, (2) enhancing the poleward moisture transport, and (3) increasing the water-vapor content of the atmosphere. Higher temperature also influences evaporation rate, and therefore precipitation minus evaporation (P-E), the climate variable often sensed by paleo-hydroclimate proxies. Here, we test whether Arctic temperature and moisture also correlate on centennial timescales over the Common Era (CE). We use the new PAGES2k multiproxy-temperature dataset along with a first-pass compilation of moisture-sensitive proxy records to calculate century-scale composite timeseries, with a focus on longer records that extend back through the first millennium CE. We present a new Arctic borehole temperature reconstruction as a check on the magnitude of Little Ice Age cooling inferred from the proxy records, and we investigate the spatial pattern of centennial-scale variability. Similar to previous reconstructions, v2 of the PAGES2k proxy temperature dataset shows that, prior to the 20th century, mean annual Arctic-wide temperature decreased over the CE. The millennial-scale cooling trend is most prominent in proxy records from glacier ice, but is also registered in lake and marine sediment, and trees. In contrast, the composite of moisture-sensitive (primarily P-E) records does not exhibit a millennial-scale trend. Determining whether fluctuations in the mean state of Arctic temperature and moisture were in fact decoupled is hampered by the difficulty in detecting a significant trend within the relatively small number of spatially heterogeneous multi-proxy moisture-sensitive records. A decoupling of temperature and moisture would indicate that evaporation had a strong counterbalancing effect on precipitation and/or that shifting circulation patterns overwhelmed any multi-centennial-scale co-variability.

  6. Arctic Climate Change, Economy and Society (ACCESS): Integrated perspectives.

    PubMed

    Crépin, Anne-Sophie; Karcher, Michael; Gascard, Jean-Claude

    2017-12-01

    This introduction to the special issue presents an overview of the wide range of results produced during the European Union project Arctic Climate Change, Economy and Society (ACCESS). This project assessed the main impacts of climate change on Arctic Ocean's geophysical variables and how these impending changes could be expected to impact directly and indirectly on socio-economic activities like transportation, marine sea food production and resource exploitation. Related governance issues were examined. These results were used to develop several management tools that can live on beyond ACCESS. In this article, we synthesize most of the project results in the form of tentative responses to questions raised during the project. By doing so, we put the findings of the project in a broader perspective and introduce the contributions made in the different articles published in this special issue.

  7. The Arctic Predictability and Prediction on Seasonal-to-Interannual TimEscales (APPOSITE) data set version 1

    NASA Astrophysics Data System (ADS)

    Day, Jonathan J.; Tietsche, Steffen; Collins, Mat; Goessling, Helge F.; Guemas, Virginie; Guillory, Anabelle; Hurlin, William J.; Ishii, Masayoshi; Keeley, Sarah P. E.; Matei, Daniela; Msadek, Rym; Sigmond, Michael; Tatebe, Hiroaki; Hawkins, Ed

    2016-06-01

    Recent decades have seen significant developments in climate prediction capabilities at seasonal-to-interannual timescales. However, until recently the potential of such systems to predict Arctic climate had rarely been assessed. This paper describes a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Interannual Timescales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable. In order to achieve this, a coordinated set of idealised initial-value predictability experiments, with seven general circulation models, was conducted. This was the first model intercomparison project designed to quantify the predictability of Arctic climate on seasonal to interannual timescales. Here we present a description of the archived data set (which is available at the British Atmospheric Data Centre), an assessment of Arctic sea ice extent and volume predictability estimates in these models, and an investigation into to what extent predictability is dependent on the initial state. The inclusion of additional models expands the range of sea ice volume and extent predictability estimates, demonstrating that there is model diversity in the potential to make seasonal-to-interannual timescale predictions. We also investigate whether sea ice forecasts started from extreme high and low sea ice initial states exhibit higher levels of potential predictability than forecasts started from close to the models' mean state, and find that the result depends on the metric. Although designed to address Arctic predictability, we describe the archived data here so that others can use this data set to assess the predictability of other regions and modes of climate variability on these timescales, such as the El Niño-Southern Oscillation.

  8. Climate Effects on Methylmercury Bioaccumulation Along a Latitudinal Gradient in the Eastern Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Chetelat, J.; Richardson, M.; MacMillan, G. A.; Amyot, M.; Hintelmann, H.; Crump, D.

    2014-12-01

    Recent evidence indicates that inorganic mercury (Hg) loadings to Arctic lakes decline with latitude. However, monomethylmercury (MMHg) concentrations in fish and their prey do not decline in a similar fashion, suggesting that higher latitude lakes are more vulnerable to Hg inputs. Preliminary results will be presented from a three-year study (2012-2015) of climate effects on MMHg bioaccumulation in lakes of the eastern Canadian Arctic. We have investigated mercury transport and accumulation processes in lakes and ponds from three study regions along a latitudinal gradient in climate-controlled ecosystem types in the Canadian Arctic, specifically sub-Arctic taiga, Arctic tundra and polar desert. In each water body, we measured key aspects of MMHg bioaccumulation—MMHg bioavailability to benthic food webs and organism growth rates—as well as how watershed characteristics affect the transport of Hg and organic carbon to lakes. Novel approaches were incorporated including the use of passive samplers (Diffusive Gradient in Thin Film samplers or DGTs) to estimate sediment bioavailable MMHg concentrations and tissue RNA content to compare organism short-term growth rates. A comparison of Arctic tundra and sub-Arctic taiga lakes showed that surface water concentrations of MMHg were strongly and positively correlated to total Hg concentrations both within and among study regions, implying strong control of inorganic Hg supply. Sediment concentrations of bioavailable MMHg were highly variable among lakes, although average concentrations were similar between study regions. Local environmental conditions appear to have a strong influence on sediment potential for MMHg supply. Lake-dwelling Arctic char from tundra lakes had similar or higher total Hg concentrations compared with brook trout from sub-Arctic lakes that were exposed to higher water MMHg concentrations. Potential environmental drivers of these patterns will be discussed. This latitudinal study will provide new information on how climate change may affect temporal and geographic trends of Hg bioaccumulation in the Arctic.

  9. Does a Relationship Between Arctic Low Clouds and Sea Ice Matter?

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.

    2016-01-01

    Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these elements of the Arctic climate system, and these interactions create the potential for Arctic cloud-climate feedbacks. To further our understanding of potential Arctic cloudclimate feedbacks, the goal of this paper is to quantify the influence of atmospheric state on the surface cloud radiative effect (CRE) and its covariation with sea ice concentration (SIC). We build on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, there is a weak covariation between CRE and SIC for most atmospheric conditions. Third, the results show statistically significant differences in the average surface CRE under different SIC values in fall indicating a 3-5 W m(exp -2) larger LW CRE in 0% versus 100% SIC footprints. Because systematic changes on the order of 1 W m(exp -2) are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback, under certain meteorological conditions, that could delay the fall freeze-up and influence the variability in sea ice extent and volume. Lastly, a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.

  10. Toward Quantifying the Impact of Atmospheric Forcing on Arctic Sea Ice Variability Using the NPS 1/12 Degree Pan-Arctic Coupled Ice-Ocean Model

    DTIC Science & Technology

    2010-03-01

    strong while the temperatures over Scandinavia and Europe (eastern Arctic) are warmer and winds are weaker than average (Serreze and Barry 2005...than the Fram Strait branch than previously thought. This could facilitate an increase in the frequency of storms reaching higher latitudes...REFERENCES Ackerman, J. T., 2008: Climate Change, National Security, and the Quadrennial Defense Review: Avoiding the Perfect Storm . Strategic Studies

  11. Arctic Temperature Variability over the last Millennium

    NASA Astrophysics Data System (ADS)

    Divine, Dmitry V.; Werner, Johannes P.

    2017-04-01

    This study presents two new climate field reconstructions (CFR) of Arctic surface air temperature (SAT) variability over the last 1000 years. The CFR is based on collection of 60 temperature sensitive proxies north of 60 N mainly from the recently updated Pages2K v 2.0.0 global multiproxy database (Pages2K, 2017) of the Common Era supplemented with some new records not yet included in the Pages 2K archive. Using two subsets of annually dated proxy records sensitive to summer temperatures and those representative of both summer and annual mean SAT, we generated seasonal (summer) and annual SAT CFR for the study region. This study provides a substantial extension to the previous Artic CFR reconstruction by Tingley& Huybers (2013) in terms of both the input proxy data density and duration back in time as well as improved reconstruction technique applied. As a major innovation we used a recently developed extension to the BARCAST method of Tingley&Huybers (2010), BARCAST+AMS (Werner&Tingley, 2015) that provides a means to treat climate archives with dating uncertainties via probabilistic constraining the age-depth models of time-uncertain climate proxies within the hierarchical Bayesian framework. Preliminary analysis of the new reconstructions confirms the recent warming to interrupt the millennial scale general cooling trend. The rate of contemporary circum- Arctic warming of 0.04(0.01) C year-1 since AD 1961 is unprecedented on the time scale of at least past 1000 years. Since AD 1990 the circum-Arctic SAT persistently exceeds the two historical warm extremes of AD 1014-1017 and 1028-1033 associated with the Medieval Climate Anomaly (MCA). A previous well-recorded early 20th century Arctic warming is manifested as event with a magnitude and duration comparable to a number of other anomalies detected in past centuries including the MCA. The new reconstructions provide a prospective framework for further analysis of seasonal regional past climate variability on the range of time-scales. It includes the periods of past rapid changes in the Arctic with a focus on the regional manifestation and time evolution of past major climate extremes. References: Tingley, M. P. and Huybers, P.: Recent temperature extremes at high northern latitudes unprecedented in the past 600 years, Nature, 496, 201-205, 2013. Werner, J. P. and Tingley, M. P.: Technical Note: Probabilistically constraining proxy age-depth models within a Bayesian hierarchical reconstruction model, Clim. Past, 11, 533-545, doi:10.5194/cp-11-533-2015, 2015.

  12. Multi-Decadal Variability in the Bering Sea: A Synthesis of Model Results and Observations from 1948 to the Present

    DTIC Science & Technology

    2013-12-01

    stated that the development and use of high-resolution Arctic climate and systems models are important stepping stones for dedicated studies of...W., J. L. Clement Kinney, D. C. Marble , and J. Jakacki, 2008: Towards eddy resolving models of the Arctic Ocean: Ocean Modeling in an Eddying

  13. Modelling of Black and Organic Carbon Variability in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Kurganskiy, Alexander; Nuterman, Roman; Mahura, Alexander; Kaas, Eigil; Baklanov, Alexander; Hansen Sass, Bent

    2016-04-01

    Black and organic carbon as short-lived climate forcers have influence on air quality and climate in Northern Europe and Arctic. Atmospheric dispersion, deposition and transport of these climate forcers from remote sources is especially difficult to model in Arctic regions due to complexity of meteorological and chemical processes and uncertainties of emissions. In our study, the online integrated meteorology-chemistry/aerosols model Enviro-HIRLAM (Environment - High Resolution Limited Area Model) was employed for evaluating spatio-temporal variability of black and organic carbon aerosols in atmospheric composition in the Northern Hemisphere regions. The model setup included horizontal resolution of 0.72 deg, time step of 450 sec, 6 h meteorological surface data assimilation, 1 month spin-up; and model was run for the full year of 2010. Emissions included anthropogenic (ECLIPSE), shipping (AU_RCP&FMI), wildfires (IS4FIRES), and interactive sea salt, dust and DMS. Meteorological (from IFS at 0.75 deg) and chemical (from MACC Reanalysis at 1.125 deg) boundary conditions were obtained from ECMWF. Annual and month-to-month variability of mean concentration, accumulated dry/wet and total deposition fluxes is analyzed for the model domain and selected European and Arctic observation sites. Modelled and observed BC daily mean concentrations during January and July showed fair-good correlation (0.31-0.64) for stations in Germany, UK and Italy; however, for Arctic stations (Tiksi, Russia and Zeppelin, Norway) the correlations were negative in January, but higher correlations and positive (0.2-0.7) in July. For OC, it varied 0.45-0.67 in January and 0.19-0.57 in July. On seasonal scale, during both summer and winter seasons the BC and OC correlations are positive and higher for European stations compared with Arctic. On annual scale, both BC and OC correlations are positive and vary between 0.4-0.6 for European stations, and these are smoothed to negligible values for Arctic stations. Results of simulations showed that in general the model tends to underestimate both black and organic carbon concentrations for the Arctic and European stations.

  14. Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX)

    NASA Astrophysics Data System (ADS)

    Akperov, Mirseid; Rinke, Annette; Mokhov, Igor I.; Matthes, Heidrun; Semenov, Vladimir A.; Adakudlu, Muralidhar; Cassano, John; Christensen, Jens H.; Dembitskaya, Mariya A.; Dethloff, Klaus; Fettweis, Xavier; Glisan, Justin; Gutjahr, Oliver; Heinemann, Günther; Koenigk, Torben; Koldunov, Nikolay V.; Laprise, René; Mottram, Ruth; Nikiéma, Oumarou; Scinocca, John F.; Sein, Dmitry; Sobolowski, Stefan; Winger, Katja; Zhang, Wenxin

    2018-03-01

    The ability of state-of-the-art regional climate models to simulate cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble are compared with the results forced by four reanalyses (ERA-Interim, National Centers for Environmental Prediction-Climate Forecast System Reanalysis, National Aeronautics and Space Administration-Modern-Era Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency-Japanese 55-year reanalysis) in winter and summer for 1981-2010 period. In addition, we compare cyclone statistics between ERA-Interim and the Arctic System Reanalysis reanalyses for 2000-2010. Biases in cyclone frequency, intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are partly attributed to the differences in cyclone frequency over land. The variations across the models are largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at 200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone characteristics in the Arctic but models that employ large-scale spectral nudging show a better agreement with ERA-Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables.

  15. Climate drift of AMOC, North Atlantic salinity and arctic sea ice in CFSv2 decadal predictions

    NASA Astrophysics Data System (ADS)

    Huang, Bohua; Zhu, Jieshun; Marx, Lawrence; Wu, Xingren; Kumar, Arun; Hu, Zeng-Zhen; Balmaseda, Magdalena A.; Zhang, Shaoqing; Lu, Jian; Schneider, Edwin K.; Kinter, James L., III

    2015-01-01

    There are potential advantages to extending operational seasonal forecast models to predict decadal variability but major efforts are required to assess the model fidelity for this task. In this study, we examine the North Atlantic climate simulated by the NCEP Climate Forecast System, version 2 (CFSv2), using a set of ensemble decadal hindcasts and several 30-year simulations initialized from realistic ocean-atmosphere states. It is found that a substantial climate drift occurs in the first few years of the CFSv2 hindcasts, which represents a major systematic bias and may seriously affect the model's fidelity for decadal prediction. In particular, it is noted that a major reduction of the upper ocean salinity in the northern North Atlantic weakens the Atlantic meridional overturning circulation (AMOC) significantly. This freshening is likely caused by the excessive freshwater transport from the Arctic Ocean and weakened subtropical water transport by the North Atlantic Current. A potential source of the excessive freshwater is the quick melting of sea ice, which also causes unrealistically thin ice cover in the Arctic Ocean. Our sensitivity experiments with adjusted sea ice albedo parameters produce a sustainable ice cover with realistic thickness distribution. It also leads to a moderate increase of the AMOC strength. This study suggests that a realistic freshwater balance, including a proper sea ice feedback, is crucial for simulating the North Atlantic climate and its variability.

  16. Arctic Amplification and Potential Mid-Latitude Weather Linkages

    NASA Astrophysics Data System (ADS)

    Overland, J. E.

    2014-12-01

    Increasing temperatures and other changes continued in the Arctic over the last decade, even though the rate of global warming has decreased in part due to a cool Pacific Ocean. Thus Arctic temperatures have increased at least 3 times the rate of mid-latitude temperatures. Credibility for persistent Arctic change comes from multiple indicators which are now available for multiple decades. Further, the spatial pattern of Arctic Amplification differs from patterns of natural variability. The role of the Arctic in the global climate system is based on multiple interacting feedbacks represented by these indicators as a causal basis for Arctic Amplification driven by modest global change. Many of these processes act on a regional basis and their non-linear interactions are not well captured by climate models. For example, future loss of sea ice due to increases in CO2 are demonstrated by these models but the rates of loss appear slow. It is reasonable to suspect that Arctic change which can produce the largest temperature anomalies on the planet and demonstrate recent extremes in the polar vortex could be linked to mid-latitude weather, especially as Arctic change will continue over the next decades. The meteorological community remains skeptical, however, in the sense of "not proven." Natural variability in chaotic atmospheric flow remains the main dynamic process, and it is difficult to determine whether Arctic forcing of a north-south linkage is emerging from the most recent period of Arctic change since 2007. Nonetheless, such a hypothesis is worthy of investigation, given the need to further understand Arctic dynamic atmospheric processes, and the potential for improving mid-latitude seasonal forecasts base on high-latitude forcing. Several AGU sessions and other forums over the next year (WWRP, IASC,CliC) address this issue, but the topic is not ready for a firm answer. The very level of controversy indicates the state of the science.

  17. The International Arctic Buoy Programme (IABP) - An International Polar Year Every Year

    NASA Astrophysics Data System (ADS)

    Hanna, M.; Rigor, I.; Ortmeyer, M.; Haas, C.

    2004-12-01

    A network of automatic data buoys to monitor synoptic-scale fields of sea level pressure (SLP), surface air temperature (SAT), and ice motion throughout the Arctic Ocean was recommended by the U.S. National Academy of Sciences in 1974. Based on the Academy's recommendation, the Arctic Ocean Buoy Program was established by the Polar Science Center, Applied Physics Laboratory (APL), University of Washington, in 1978 to support the Global Weather Experiment. Operations began in early 1979, and the program continued through 1990 under funding from various agencies. In 1991, the International Arctic Buoy Programme (IABP) succeeded the Arctic Ocean Buoy Program, but the basic objective remains - to maintain a network of drifting buoys on the Arctic Ocean to provide meteorological and oceanographic data for real-time operational requirements and research purposes including support to the World Climate Research Programme and the World Weather Watch Programme. The IABP currently has 37 buoys deployed on the Arctic Ocean. Most of the buoys measure SLP and SAT, but many buoys are enhanced to measure other geophysical variables such as sea ice thickness, ocean temperature and salinity. This observational array is maintained by the 20 Participants from 10 different countries, who support the program through contributions of buoys, deployment logistics, and other services. The observations from the IABP are posted on the Global Telecommunications System for operational use, are archived at the World Data Center for Glaciology at the National Snow and Ice Data Center (http://nsidc.org), and can also be obtained from the IABP web server for research (http://iabp.apl.washington.edu). The observations from the IABP have been essential for: 1.) Monitoring Arctic and global climate change; 2.) Forecasting weather and sea ice conditions; 3.) Forcing, assimilation and validation of global weather and climate models; 4.) Validation of satellite data; etc. As of 2003, over 450 papers have been written using the observations collected by the IABP. The observations from IABP have been one of the cornerstones for environmental forecasting and studies of climate and climate change, i.e. many of the changes in Arctic climate were first observed or explained using data from the IABP. The IABP is also evolving to better support the operational and research requirements of the community. For example, some of the Participants of the IABP have been deploying buoys which not only measure SLP and SAT, but also ocean currents, temperatures and salinity. Other buoys have been enhanced to measure the ice mass balance (IMB) using thermistor strings and pingers aimed at the top and bottom of the sea ice. Some of these ocean and IMB buoys are deployed in close proximity to each other in order to provide a myriad of concurrent observations at a few points across the Arctic Ocean. From these data we can also estimate time variations in other geophysical variables such as oceanic heat storage and heat flux. These stations provide critical atmospheric, ice, and upper ocean hydrographic measurements that cannot be obtained by other means. The Arctic and global climate system is changing. These changes threaten our native cultures and ecosystems, but may also provide economic and social opportunities. In order to understand and respond to these changes, we need to sustain our current observational systems, and for the Arctic, the IABP provides the longest continuing record of observations.

  18. MOSAiC - Multidisciplinary drifting Observatory for the Study of Arctic Climate

    NASA Astrophysics Data System (ADS)

    Shupe, M.; Persson, O. P.; Tjernstrom, M. K.; Dethloff, K.

    2012-12-01

    The climate in the Arctic is changing faster than in other regions of the Earth, with near surface temperatures rising more than twice as fast as the global average and the perennial sea-ice cover shrinking fast, especially in summer. The Arctic is transitioning towards a new climate regime dominated by first year sea-ice. At the same time, the scientific understanding of processes and feedbacks causing this rapid change is poor and climate modeling in the Arctic remains problematic. Furthermore, the key physical processes and process-interactions in this new emerging Arctic system are likely different from those in the old system that was dominated by multi-year ice. Our understanding of this complex climate system, and ability to improve climate and weather models, is limited by the lack of observations in the extreme and remote central Arctic. Multi-year, detailed and comprehensive measurements, extending from the atmosphere through the sea-ice and into the ocean in the central Arctic Basin are needed to provide process-level understanding of the central Arctic climate system. To address this need, a manned, international drifting station will be installed in the young sea-ice of the western Arctic and follow the evolution of the ice pack as it proceeds through the transpolar drift towards the Fram Strait over the course of 1-2 years. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC), proposed to start in autumn 2017, will be guided by the broad theme: What are the causes and consequences of diminished Arctic sea-ice coverage? To address this theme requires a number of interdisciplinary investigations that target more specific science questions. *How do ongoing changes in the Arctic ice-ocean-atmosphere system drive heat and mass transfers of importance to climate and ecosystems? *What are the processes and feedbacks affecting sea ice cover, atmosphere-ocean stratification and energy budget in the Arctic? *Will an ice reduced Arctic become more biologically productive and what are the consequences of this to other components of the system? *How do the different scales of heterogeneity within the atmosphere ice and ocean interact to impact the linkages or feedbacks within the system? *How do interfacial exchange rates, biology and chemistry couple to regulate the major elemental cycles? MOSAiC will address these multi-disciplinary questions using intensive observations and modeling of processes that transfer energy, mass, and momentum through the atmosphere-ice-ocean system. The centerpiece of the observatory will be an icebreaker-based station to serve as a hub for intensive and comprehensive observations of climatically-significant physical, chemical, and biological processes through the vertical column. To provide important spatial context and horizontal variability, this facility will be the focal point for a constellation of coordinated observations made by drifting buoys, unmanned aerial and underwater vehicles, aircraft, ships, and satellites. These MOSAiC observational activities will serve as a testbed for evaluation and development of models at scales ranging from high-resolution, process models to regional and global climate models. MOSAiC observational and modeling activities will be linked at the outset, such that model needs will be integral in observational design, implementation, and analysis.

  19. Research Applications of Data from Arctic Ocean Drifting Platforms: The Arctic Buoy Program and the Environmental Working Group CD's.

    NASA Astrophysics Data System (ADS)

    Moritz, R. E.; Rigor, I.

    2006-12-01

    ABSTRACT: The Arctic Buoy Program was initiated in 1978 to measure surface air pressure, surface temperature and sea-ice motion in the Arctic Ocean, on the space and time scales of synoptic weather systems, and to make the data available for research, forecasting and operations. The program, subsequently renamed the International Arctic Buoy Programme (IABP), has endured and expanded over the past 28 years. A hallmark of the IABP is the production, dissemination and archival of research-quality datasets and analyses. These datasets have been used by the authors of over 500 papers on meteorolgy, sea-ice physics, oceanography, air-sea interactions, climate, remote sensing and other topics. Elements of the IABP are described briefly, including measurements, analysis, data dissemination and data archival. Selected highlights of the research applications are reviewed, including ice dynamics, ocean-ice modeling, low-frequency variability of Arctic air-sea-ice circulation, and recent changes in the age, thickness and extent of Arctic Sea-ice. The extended temporal coverage of the data disseminated on the Environmental Working Group CD's is important for interpreting results in the context of climate.

  20. The Earth Is Faster Now: Indigenous Observations of Arctic Environmental Change. Frontiers in Polar Social Science.

    ERIC Educational Resources Information Center

    Krupnik, Igor, Ed.; Jolly, Dyanna, Ed.

    This book focuses on documenting and understanding the nature of environmental changes observed by indigenous residents of the Arctic. Common themes include increasing variability and unpredictability of the weather and seasonal climatic patterns, as well as changes in the sea ice and the health of wildlife. Nine papers focus on these changes,…

  1. A multilinear regression methodology to analyze the effect of atmospheric and surface forcing on Arctic clouds

    NASA Astrophysics Data System (ADS)

    Boeke, R.; Taylor, P. C.; Li, Y.

    2017-12-01

    Arctic cloud amount as simulated in CMIP5 models displays large intermodel spread- models disagree on the processes important for cloud formation as well as the radiative impact of clouds. The radiative response to cloud forcing can be better assessed when the drivers of Arctic cloud formation are known. Arctic cloud amount (CA) is a function of both atmospheric and surface conditions, and it is crucial to separate the influences of unique processes to understand why the models are different. This study uses a multilinear regression methodology to determine cloud changes using 3 variables as predictors: lower tropospheric stability (LTS), 500-hPa vertical velocity (ω500), and sea ice concentration (SIC). These three explanatory variables were chosen because their effects on clouds can be attributed to unique climate processes: LTS is a thermodynamic indicator of the relationship between clouds and atmospheric stability, SIC determines the interaction between clouds and the surface, and ω500 is a metric for dynamical change. Vertical, seasonal profiles of necessary variables are obtained from the Coupled Model Intercomparison Project 5 (CMIP5) historical simulation, an ocean-atmosphere couple model forced with the best-estimate natural and anthropogenic radiative forcing from 1850-2005, and statistical significance tests are used to confirm the regression equation. A unique heuristic model will be constructed for each climate model and for observations, and models will be tested by their ability to capture the observed cloud amount and behavior. Lastly, the intermodel spread in Arctic cloud amount will be attributed to individual processes, ranking the relative contributions of each factor to shed light on emergent constraints in the Arctic cloud radiative effect.

  2. Circumpolar spatio-temporal patterns and contributing climatic factors of wildfire activity in the Arctic tundra from 2001-2015

    NASA Astrophysics Data System (ADS)

    Masrur, Arif; Petrov, Andrey N.; DeGroote, John

    2018-01-01

    Recent years have seen an increased frequency of wildfire events in different parts of Arctic tundra ecosystems. Contemporary studies have largely attributed these wildfire events to the Arctic’s rapidly changing climate and increased atmospheric disturbances (i.e. thunderstorms). However, existing research has primarily examined the wildfire-climate dynamics of individual large wildfire events. No studies have investigated wildfire activity, including climatic drivers, for the entire tundra biome across multiple years, i.e. at the planetary scale. To address this limitation, this paper provides a planetary/circumpolar scale analyses of space-time patterns of tundra wildfire occurrence and climatic association in the Arctic over a 15 year period (2001-2015). In doing so, we have leveraged and analyzed NASA Terra’s MODIS active fire and MERRA climate reanalysis products at multiple temporal scales (decadal, seasonal and monthly). Our exploratory spatial data analysis found that tundra wildfire occurrence was spatially clustered and fire intensity was spatially autocorrelated across the Arctic regions. Most of the wildfire events occurred in the peak summer months (June-August). Our multi-temporal (decadal, seasonal and monthly) scale analyses provide further support to the link between climate variability and wildfire activity. Specifically, we found that warm and dry conditions in the late spring to mid-summer influenced tundra wildfire occurrence, spatio-temporal distribution, and fire intensity. Additionally, reduced average surface precipitation and soil moisture levels in the winter-spring period were associated with increased fire intensity in the following summer. These findings enrich contemporary knowledge on tundra wildfire’s spatial and seasonal patterns, and shed new light on tundra wildfire-climate relationships in the circumpolar context. Furthermore, this first pan-Arctic analysis provides a strong incentive and direction for future studies which integrate multiple datasets (i.e. climate, fuels, topography, and ignition sources) to accurately estimate carbon emission from tundra burning and its global climate feedbacks in coming decades.

  3. A Paleo Perspective on Arctic and Mid-latitude Linkages from a Southeast Alaska Ice Core

    NASA Astrophysics Data System (ADS)

    Porter, S. E.; Mosley-Thompson, E.; Thompson, L. G.; Bolzan, J. F.

    2017-12-01

    Recent extreme weather events in the Northern Hemisphere have been linked to anomalously amplified jet stream patterns, North Pacific marine heatwaves, retreating Arctic sea ice extent, and/or the combination thereof. The role of the Arctic in influencing mid-latitude weather and extreme events is a burgeoning topic of climate research that is limited primarily to the recent decades in which Arctic amplification and shrinking Arctic sea ice extent are occurring. Paleo-proxy data afford an opportunity to place the changing Arctic and its far-reaching climatic consequences in the longer context of Earth's climate history and allow identification of time periods with conditions analogous to the present. Ice core-derived annual net accumulation from the Bona-Churchill (BC) ice core, retrieved in 2002 from the Wrangell-St. Elias mountain range in southeast Alaska, is used to explore the historical characteristics of the regional North Pacific climate and the further afield teleconnections. Variability of accumulation on BC is driven primarily by shifts in the position of the Aleutian Low which influences the available moisture sources for the drill site. The accumulation record is also related to sea surface temperatures in the Gulf of Alaska, defined here by the North Pacific Mode and somewhat colloquially as the North Pacific "blob". Thus due to its connection with the Aleutian Low and North Pacific sea surface temperatures, this uniquely situated ice core record indirectly captures the phasing of troughs and ridges in the polar jet stream over North America, and thereby facilitates examination of the atmospheric wave structure prior to the instrumental record. The relationships among the ice core accumulation record and various North Pacific climate features are presented along with evidence identifying specific time periods possibly characterized by persistently amplified wave patterns.

  4. The Climate Science Special Report: Arctic Changes and their Effect on Alaska and the Rest of the United States

    NASA Astrophysics Data System (ADS)

    Taylor, P. C.

    2017-12-01

    Rapid and visible climate change is happening across the Arctic, outpacing global change. Annual average near-surface air temperatures across the Arctic are increasing at more than twice the rate of global average surface temperature. In addition to surface temperature, all components of the Arctic climate system are responding in kind, including sea ice, mountain glaciers and the Greenland Ice sheet, snow cover, and permafrost. Many of these changes with a discernable anthropogenic imprint. While Arctic climate change may seem physically remote to those living in other regions of the planet, Arctic climate change can affect the global climate influencing sea level, the carbon cycle, and potentially atmospheric and oceanic circulation patterns. As an Arctic nation, United States' adaptation, mitigation, and policy decisions depend on projections of future Alaskan and Arctic climate. This chapter of the Climate Science Special Report documents significant scientific progress and knowledge about how the Alaskan and Arctic climate has changed and will continue to change.

  5. Arctic climate tipping points.

    PubMed

    Lenton, Timothy M

    2012-02-01

    There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the Arctic are briefly reviewed. Then, the current behaviour of a range of Arctic systems is summarised. Looking ahead, a range of potential tipping phenomena are described. This leads to a revised and expanded list of potential Arctic climate tipping elements, whose likelihood is assessed, in terms of how much warming will be required to tip them. Finally, the available responses are considered, especially the prospects for avoiding Arctic climate tipping points.

  6. Toward Process-resolving Synthesis and Prediction of Arctic Climate Change Using the Regional Arctic System Model

    NASA Astrophysics Data System (ADS)

    Maslowski, W.

    2017-12-01

    The Regional Arctic System Model (RASM) has been developed to better understand the operation of Arctic System at process scale and to improve prediction of its change at a spectrum of time scales. RASM is a pan-Arctic, fully coupled ice-ocean-atmosphere-land model with marine biogeochemistry extension to the ocean and sea ice models. The main goal of our research is to advance a system-level understanding of critical processes and feedbacks in the Arctic and their links with the Earth System. The secondary, an equally important objective, is to identify model needs for new or additional observations to better understand such processes and to help constrain models. Finally, RASM has been used to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook of the Sea Ice Prediction Network. Future RASM forecasts, are likely to include increased resolution for model components and ecosystem predictions. Such research is in direct support of the US environmental assessment and prediction needs, including those of the U.S. Navy, Department of Defense, and the recent IARPC Arctic Research Plan 2017-2021. In addition to an overview of RASM technical details, selected model results are presented from a hierarchy of climate models together with available observations in the region to better understand potential oceanic contributions to polar amplification. RASM simulations are analyzed to evaluate model skill in representing seasonal climatology as well as interannual and multi-decadal climate variability and predictions. Selected physical processes and resulting feedbacks are discussed to emphasize the need for fully coupled climate model simulations, high model resolution and sensitivity of simulated sea ice states to scale dependent model parameterizations controlling ice dynamics, thermodynamics and coupling with the atmosphere and ocean.

  7. The Influence of Sea Ice on Arctic Low Cloud Properties and Radiative Effects

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.

    2015-01-01

    The Arctic is one of the most climatically sensitive regions of the Earth. Climate models robustly project the Arctic to warm 2-3 times faster than the global mean surface temperature, termed polar warming amplification (PWA), but also display the widest range of surface temperature projections in this region. The response of the Arctic to increased CO2 modulates the response in tropical and extra-tropical regions through teleconnections in the atmospheric circulation. An increased frequency of extreme precipitation events in the northern mid-latitudes, for example, has been linked to the change in the background equator-to-pole temperature gradient implied by PWA. Understanding the Arctic climate system is therefore important for predicting global climate change. The ice albedo feedback is the primary mechanism driving PWA, however cloud and dynamical feedbacks significantly contribute. These feedback mechanisms, however, do not operate independently. How do clouds respond to variations in sea ice? This critical question is addressed by combining sea ice, cloud, and radiation observations from satellites, including CERES, CloudSAT, CALIPSO, MODIS, and microwave radiometers, to investigate sea ice-cloud interactions at the interannual timescale in the Arctic. Cloud characteristics are strongly tied to the atmospheric dynamic and thermodynamic state. Therefore, the sensitivity of Arctic cloud characteristics, vertical distribution and optical properties, to sea ice anomalies is computed within atmospheric dynamic and thermodynamic regimes. Results indicate that the cloud response to changes in sea ice concentration differs significantly between atmospheric state regimes. This suggests that (1) the atmospheric dynamic and thermodynamic characteristics and (2) the characteristics of the marginal ice zone are important for determining the seasonal forcing by cloud on sea ice variability.

  8. NATO’s Future Role in the Arctic

    DTIC Science & Technology

    2016-05-01

    iv Global Climate Change and Arctic Geopolitics............................. Error! Bookmark not defined. Russian Claims to the Arctic...13 1 Global Climate Change and Arctic Geopolitics Global climate change has a profound...explaining the effect of climate change in the Arctic and the consequences on regional security. Issues regarding territorial sovereignty will be

  9. Evaluating climate variables, indexes and thresholds governing Arctic urban sustainability: case study of Russian permafrost regions

    NASA Astrophysics Data System (ADS)

    Anisimov, O. A.; Kokorev, V.

    2013-12-01

    Addressing Arctic urban sustainability today forces planners to deal with the complex interplay of multiple factors, including governance and economic development, demography and migration, environmental changes and land use, changes in the ecosystems and their services, and climate change. While the latter can be seen as a factor that exacerbates the existing vulnerabilities to other stressors, changes in temperature, precipitation, snow, river and lake ice, and the hydrological regime also have direct implications for the cities in the North. Climate change leads to reduced demand for heating energy, on one hand, and heightened concerns about the fate of the infrastructure built upon thawing permafrost, on the other. Changes in snowfall are particularly important and have direct implications for the urban economy, as together with heating costs, expenses for snow removal from streets, airport runways, roofs and ventilation corridors underneath buildings erected on pile foundations on permafrost constitute the bulk of the city's maintenance budget. Many cities are located in river valleys and are prone to flooding that leads to enormous economic losses and casualties, including human deaths. The severity of the northern climate has direct implications for demographic changes governed by regional migration and labor flows. Climate could thus be viewed as an inexhaustible public resource that creates opportunities for sustainable urban development. Long-term trends show that climate as a resource is becoming more readily available in the Russian North, notwithstanding the general perception that globally climate change is one of the challenges facing humanity in the 21st century. In this study we explore the sustainability of the Arctic urban environment under changing climatic conditions. We identify key governing variables and indexes and study the thresholds beyond which changes in the governing climatic parameters have significant impact on the economy, infrastructure and society in the Arctic cities. We use CMIP-5 ensemble projection to evaluate future changes in these parameters and identify regions where immediate attention is needed to develop appropriate adaptation strategies. Acknowledgement. This study is supported by the German-Russian Otto Schmidt Laboratory, project OSL-13-02, and the Russian Foundation for Basic Research, projects 13-05-0072 and 13-05-91171.

  10. Effects of short-term variability of meteorological variables on soil temperature in permafrost regions

    NASA Astrophysics Data System (ADS)

    Beer, Christian; Porada, Philipp; Ekici, Altug; Brakebusch, Matthias

    2018-03-01

    Effects of the short-term temporal variability of meteorological variables on soil temperature in northern high-latitude regions have been investigated. For this, a process-oriented land surface model has been driven using an artificially manipulated climate dataset. Short-term climate variability mainly impacts snow depth, and the thermal diffusivity of lichens and bryophytes. These impacts of climate variability on insulating surface layers together substantially alter the heat exchange between atmosphere and soil. As a result, soil temperature is 0.1 to 0.8 °C higher when climate variability is reduced. Earth system models project warming of the Arctic region but also increasing variability of meteorological variables and more often extreme meteorological events. Therefore, our results show that projected future increases in permafrost temperature and active-layer thickness in response to climate change will be lower (i) when taking into account future changes in short-term variability of meteorological variables and (ii) when representing dynamic snow and lichen and bryophyte functions in land surface models.

  11. Spatiotemporal Trends in late-Holocene Fire Regimes in Arctic and Boreal Alaska

    NASA Astrophysics Data System (ADS)

    Hoecker, T. J.; Higuera, P. E.; Hu, F.; Kelly, R.

    2015-12-01

    Alaskan arctic and boreal ecosystems are of global importance owing to their sensitivity and feedbacks to directional climate change. Wildfires are a primary driver of boreal carbon balance, and altered fire regimes may significantly impact global climate through the release of stored carbon and changes to surface albedo. Paleoecological records provide a window to how these systems respond to change by revealing climatic and disturbance variability throughout the Holocene. These long-term records highlight the sensitivity of fire regimes to climate and vegetation change, including responses to the relatively warm Medieval Climate Anomaly (MCA), and the relatively cool Little Ice Age (LIA). Over millennial timescales, boreal forests and arctic tundra have been resilient to climate change, but continued directional climate change may result in novel vegetation compositions and fire regimes, with potentially significant implications for global climate. Here we present a spatiotemporal synthesis of 22 published sediment-charcoal records from three Alaskan ecoregions. We add to this network eight records collected in June 2015 from an additional ecoregion. Variability in fire return intervals (FRIs) was quantified within and among ecoregions and climatic periods spanning the past 2 millennia, based on a peak analysis representing local fire events. Preliminary results suggest that fire regimes were responsive to centennial-scale climatic shifts, including the MCA and LIA, but the degree of sensitivity varies by ecoregion. Over the past 2000 years, FRIs were shortest during the MCA, indicating the potential for climate warming to promote high rates of burning. FRIs in tundra regions of northwestern Alaska and in interior boreal forests were 20% shorter during the MCA than during the LIA, and 25% shorter in boreal forest in the south-central Brooks Range. Burning was likely promoted during the warmer, drier MCA through lower fuel moisture. Quantifying fire-regime response to climate forcing across multiple ecoregions helps reveal the mechanisms that connect fire and climate in Alaskan ecosystems.

  12. Arctic sea-ice variability and its implication to the path of pollutants under a changing climate

    NASA Astrophysics Data System (ADS)

    Castro-Morales, K.; Gerdes, R.; Riemann-Campe, K.; Köberle, C.; Losch, M.

    2012-04-01

    The increasing concentration of pollutants from anthropogenic origin in the Arctic atmosphere, water, sediments and biota has been evident during the last decade. The sea-ice is an important vehicle for pollutants in the Arctic Ocean. Pollutants are taken up by precipitation and dry atmospheric deposition over the snow and ice cover during winter and released to the ocean during melting. Recent changes in the sea-ice cover of the Arctic Ocean affect the fresh water balance and the oceanic circulation, and with it, the fate of pollutants in the system. The Arctic Ocean is characterized by complex dynamics and strong stratification. Thus, to evaluate the current and future changes in the Arctic circulation high-resolution models are needed. As part of the EU FP7 project ArcRisk (under the scope of the IPY), we use a high resolution regional sea-ice-ocean coupled model covering the Arctic Ocean and the subpolar North Atlantic based on the Massachusetts Institute of Technology - circulation model (MITgcm). Under realistic atmospheric forcing we obtain hindcast results of circulation patterns for the period 1990 - 2010 for validation of the model. We evaluate possible consequences on the pathways and transport of contaminants by downscaling future climate scenario runs available in the coupled model intercomparison project (CMIP3) for the following fifty years. Particular interest is set in the Barents Sea. In this shallow region strong river runoff, sea-ice delivered from the interior of the Arctic Ocean and warm waters from the North Atlantic current are main sources of contaminants. Under a changing climate, a higher input of contaminants delivered to surface waters is expected, remaining in the interior of the Arctic Ocean in a strongly stratified water column remaining.

  13. Long-Term Trends and Role of Climate in the Population Dynamics of Eurasian Reindeer

    PubMed Central

    Horstkotte, Tim; Kaarlejärvi, Elina; Sévêque, Anthony; Stammler, Florian; Olofsson, Johan; Forbes, Bruce C.; Moen, Jon

    2016-01-01

    Temperature is increasing in Arctic and sub-Arctic regions at a higher rate than anywhere else in the world. The frequency and nature of precipitation events are also predicted to change in the future. These changes in climate are expected, together with increasing human pressures, to have significant impacts on Arctic and sub-Arctic species and ecosystems. Due to the key role that reindeer play in those ecosystems, it is essential to understand how climate will affect the region’s most important species. Our study assesses the role of climate on the dynamics of fourteen Eurasian reindeer (Rangifer tarandus) populations, using for the first time data on reindeer abundance collected over a 70-year period, including both wild and semi-domesticated reindeer, and covering more than half of the species’ total range. We analyzed trends in population dynamics, investigated synchrony among population growth rates, and assessed the effects of climate on population growth rates. Trends in the population dynamics were remarkably heterogeneous. Synchrony was apparent only among some populations and was not correlated with distance among population ranges. Proxies of climate variability mostly failed to explain population growth rates and synchrony. For both wild and semi-domesticated populations, local weather, biotic pressures, loss of habitat and human disturbances appear to have been more important drivers of reindeer population dynamics than climate. In semi-domesticated populations, management strategies may have masked the effects of climate. Conservation efforts should aim to mitigate human disturbances, which could exacerbate the potentially negative effects of climate change on reindeer populations in the future. Special protection and support should be granted to those semi-domesticated populations that suffered the most because of the collapse of the Soviet Union, in order to protect the livelihood of indigenous peoples that depend on the species, and the multi-faceted role that reindeer exert in Arctic ecosystems. PMID:27362499

  14. Long-Term Trends and Role of Climate in the Population Dynamics of Eurasian Reindeer.

    PubMed

    Uboni, Alessia; Horstkotte, Tim; Kaarlejärvi, Elina; Sévêque, Anthony; Stammler, Florian; Olofsson, Johan; Forbes, Bruce C; Moen, Jon

    2016-01-01

    Temperature is increasing in Arctic and sub-Arctic regions at a higher rate than anywhere else in the world. The frequency and nature of precipitation events are also predicted to change in the future. These changes in climate are expected, together with increasing human pressures, to have significant impacts on Arctic and sub-Arctic species and ecosystems. Due to the key role that reindeer play in those ecosystems, it is essential to understand how climate will affect the region's most important species. Our study assesses the role of climate on the dynamics of fourteen Eurasian reindeer (Rangifer tarandus) populations, using for the first time data on reindeer abundance collected over a 70-year period, including both wild and semi-domesticated reindeer, and covering more than half of the species' total range. We analyzed trends in population dynamics, investigated synchrony among population growth rates, and assessed the effects of climate on population growth rates. Trends in the population dynamics were remarkably heterogeneous. Synchrony was apparent only among some populations and was not correlated with distance among population ranges. Proxies of climate variability mostly failed to explain population growth rates and synchrony. For both wild and semi-domesticated populations, local weather, biotic pressures, loss of habitat and human disturbances appear to have been more important drivers of reindeer population dynamics than climate. In semi-domesticated populations, management strategies may have masked the effects of climate. Conservation efforts should aim to mitigate human disturbances, which could exacerbate the potentially negative effects of climate change on reindeer populations in the future. Special protection and support should be granted to those semi-domesticated populations that suffered the most because of the collapse of the Soviet Union, in order to protect the livelihood of indigenous peoples that depend on the species, and the multi-faceted role that reindeer exert in Arctic ecosystems.

  15. Past climate variability and change in the Arctic and at high latitudes

    USGS Publications Warehouse

    Alley, Richard B.; Brigham-Grette, Julie; Miller, Gifford H.; Polyak, Leonid; ,; ,; ,

    2009-01-01

    Paleoclimate records play a key role in our understanding of Earth's past and present climate system and in our confidence in predicting future climate changes. Paleoclimate data help to elucidate past and present active mechanisms of climate change by placing the short instrumental record into a longer term context and by permitting models to be tested beyond the limited time that instrumental measurements have been available.

  16. Estimation of Volume and Freshwater Flux from the Arctic Ocean using SMAP and NCEP CFSv2

    NASA Astrophysics Data System (ADS)

    Bulusu, S.

    2017-12-01

    Spatial and temporal monitoring of sea surface salinity (SSS) plays an important role globally and especially over the Arctic Ocean. The Arctic ice melt has led to an influx of freshwater into the Arctic environment, a process that can be observed in SSS. The recently launched NASA's Soil Moisture Active Passive (SMAP) mission is primarily designed for the global monitoring of soil moisture using L- band (1.4GHz) frequency. SMAP also has the capability of measuring SSS and can thus extend the NASA's Aquarius salinity mission (ended June 7, 2015), salinity data record with improved temporal/spatial sampling. In this research an attempt is made to investigate the retrievability of SSS over the Arctic from SMAP satellite. The objectives of this study are to verify the use of SMAP sea surface salinity (and freshwater) variability in the Arctic Ocean and the extent to estimate freshwater, salt and volume flux from the Arctic Ocean. Along with SMAP data we will use NASA's Ice, Cloud,and land Elevation Satellites (ICESat and ICESat-2), and ESA's CryoSat-2, and NASA's Gravity Recovery and Climate Experiment (GRACE) satellites data to estimate ice melt in the Arctic. The preliminary results from SMAP compared well with the NCEP Climate Forecast System version 2 (CFSv2) salinity data in this region capturing patterns fairly well over the Arctic.

  17. Midlatitude atmospheric responses to Arctic sensible heat flux anomalies in Community Climate Model, Version 4: Atmospheric Response to Arctic SHFs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Catrin M.; Cassano, John J.; Cassano, Elizabeth N.

    Possible linkages between Arctic sea ice loss and midlatitude weather are strongly debated in the literature. We analyze a coupled model simulation to assess the possibility of Arctic ice variability forcing a midlatitude response, ensuring consistency between atmosphere, ocean, and ice components. We work with weekly running mean daily sensible heat fluxes with the self-organizing map technique to identify Arctic sensible heat flux anomaly patterns and the associated atmospheric response, without the need of metrics to define the Arctic forcing or measure the midlatitude response. We find that low-level warm anomalies during autumn can build planetary wave patterns that propagatemore » downstream into the midlatitudes, creating robust surface cold anomalies in the eastern United States.« less

  18. Exploitation dynamics of small fish stocks like Arctic cisco

    USGS Publications Warehouse

    Nielsen, Jennifer L.

    2004-01-01

    Potential impacts to the Arctic cisco population fall into both demographic and behavioral categories. Possible demographic impacts include stock recruitment effects, limited escapement into marine habitats, and variable age-class reproductive success. Potential behavioral impacts involve migratory patterns, variable life histories, and strategies for seasonal feeding. Arctic cisco stocks are highly susceptible to over-exploitation due to our limited basic knowledge of the highly variable Arctic environment and the role they play in this dynamic ecosystem.Our knowledge of potential demographic changes is very limited, and it is necessary to determine the abundance and recruitment of the hypothesized Mackenzie River source population, the extent of the coastal migratory corridor, growth patterns, and coastal upwelling and mixing effects on population dynamics for this species. Information needed to answer some of the demographic questions includes basic evolutionary history and molecular genetics of Arctic cisco (for instance, are there contributions to the Arctic cisco stock from the Yukon?), what is the effective population size (i.e., breeding population size), and potential links to changes in climate. The basic behavioral questions include migratory and variable life history questions. For instance, the extent of movement back and forth between freshwater and the sea, age-specific differences in food web dynamics, and nearshore brackish and high salinity habitats are topics that should be studied. Life history data should be gathered to understand the variation in age at reproduction, salinity tolerance, scale and duration of the freshwater stage, survival, and adult migration. Both molecular and ecological tools should be integrated to manage the Arctic cisco stock(s), such as understanding global climate changes on patterns of harvest and recruitment, and the genetics of population structure and colonization. Perhaps other populations are contributing to the population within the Colville River other than only the Mackenzie River population. This needs further exploration. By examining otolith microchemistry, unique transitions from freshwater to sea can be identified for these stocks. This may shed light on why some fish arrive at the mouth of the Colville River, while others don’t.

  19. Modelling carbon responses of tundra ecosystems to historical and projected climate: Sensitivity of pan-Arctic carbon storage to temporal and spatial variation in climate

    USGS Publications Warehouse

    McGuire, A.D.; Clein, Joy S.; Melillo, J.M.; Kicklighter, D.W.; Meier, R.A.; Vorosmarty, C.J.; Serreze, Mark C.

    2000-01-01

    Historical and projected climate trends for high latitudes show substantial temporal and spatial variability. To identify uncertainties in simulating carbon (C) dynamics for pan-Arctic tundra, we compare the historical and projected responses of tundra C storage from 1921 to 2100 between simulations by the Terrestrial Ecosystem Model (TEM) for the pan-Arctic and the Kuparuk River Basin, which was the focus of an integrated study of C dynamics from 1994 to 1996. In the historical period from 1921 to 1994, the responses of net primary production (NPP) and heterotrophic respiration (RH) simulated for the Kuparuk River Basin and the pan-Arctic are correlated with the same factors; NPP is positively correlated with net nitrogen mineralization (NMIN) and RH is negatively correlated with mean annual soil moisture. In comparison to the historical period, the spatially aggregated responses of NPP and RH for the Kuparuk River Basin and the pan-Arctic in our simulations for the projected period have different sensitivities to temperature, soil moisture and NMIN. In addition to being sensitive to soil moisture during the projected period, RH is also sensitive to temperature and there is a significant correlation between RH and NMIN. We interpret the increases in NPP during the projected period as being driven primarily by increases in NMIN, and that the correlation between NPP and temperature in the projected period is a result primarily of the causal linkage between temperature, RH, and NMIN. Although similar factors appear to be controlling simulated regional-and biome-scale C dynamics, simulated C dynamics at the two scales differ in magnitude with higher increases in C storage simulated for the Kuparuk River Basin than for the pan-Arctic at the end of the historical period and throughout the projected period. Also, the results of the simulations indicate that responses of C storage show different climate sensitivities at regional and pan-Arctic spatial scales and that these sensitivities change across the temporal scope of the simulations. The results of the TEM simulations indicate that the scaling of C dynamics to a region of arctic tundra may not represent C dynamics of pan-Arctic tundra because of the limited spatial variation in climate and vegetation within a region relative to the pan-Arctic. For reducing uncertainties, our analyses highlight the importance of incorporating the understanding gained from process-level studies of C dynamics in a region of arctic tundra into process-based models that simulate C dynamics in a spatially explicit fashion across the spatial domain of pan-Arctic tundra. Also, efforts to improve gridded datasets of historical climate for the pan-Arctic would advance the ability to assess the responses of C dynamics for pan-Arctic tundra in a more realistic fashion. A major challenge will be to incorporate topographic controls over soil moisture in assessing the response of C storage for pan-Arctic tundra.

  20. Orbital-scale Central Arctic Ocean Temperature Records from Benthic Foraminiferal δ18O and Ostracode Mg/Ca Ratios

    NASA Astrophysics Data System (ADS)

    Keller, K.; Cronin, T. M.; Dwyer, G. S.; Farmer, J. R.; Poirier, R. K.; Schaller, M. F.

    2017-12-01

    Orbital-scale climate variability is often amplified in the polar region, for example in changes in seawater temperature, sea-ice cover, deep-water formation, ecosystems, heat storage and carbon cycling. Yet, the relationship between the Arctic Ocean and global climate remains poorly understood due largely to limited orbital-scale paleoclimate records, the complicated nature of sea-ice response to climate and limited abundance of deep sea biological proxies. Here we reconstruct central Arctic Ocean bottom temperatures over the last 600 kyr using ostracode Mg/Ca ratios (genus Krithe) and benthic foraminiferal oxygen isotope ratios (δ18Obf - I. teretis, O. tener, P. bulloides, C. reniforme, C. wuellerstorfi) in six sediment cores recovered from the Mendeleev and Northwind Ridges (700- 2726 m water depth). We examined glacial-interglacial cycles in Arctic seawater temperatures and Arctic δ18Obf chronostratigraphy to reconcile effects of changing bottom water temperature, ice volume and regional hydrography on δ18Obf records. Results show lower ( 10-12 mmol/mol) interglacial and higher ( 16-23 mmol/mol) glacial Mg/Ca ratios, signifying intermediate depth ocean warming during glacials of up to 2 ºC. These temperature maxima are likely related to a deepening of the halocline and the corresponding deeper influence of warm Atlantic water. Glacial-interglacial δ18Obf ranges are smaller in the Arctic ( 0.8-1‰ VPDB) than in the global ocean ( 1.8 ‰). However, when the distinct glacial-interglacial temperature histories of the Arctic (glacial warming) and global ocean (glacial cooling) are accounted for, both Arctic and global ocean seawater δ18O values (δ18Osw) exhibit similar 1.2-1.3 ‰ glacial-interglacial ranges. Thus, Arctic δ18Obf confirms glacial Arctic warming inferred from ostracode Mg/Ca. This study will discuss the strengths and limitations of applying paired Mg/Ca and oxygen isotope proxies in reconstructing more robust paleoceanographic changes in the Arctic Ocean.

  1. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes.

    PubMed

    Kumar, Vikas; Kutschera, Verena E; Nilsson, Maria A; Janke, Axel

    2015-08-07

    The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated and analyzed for signatures of positive selection. In addition, the data allowed for a phylogenetic analysis and divergence time estimate between the two fox species. The de novo assembly of reads resulted in more than 160,000 contigs/transcripts per individual. Approximately 17,000 homologous genes were identified using human and the non-redundant databases. Positive selection analyses revealed several genes involved in various metabolic and molecular processes such as energy metabolism, cardiac gene regulation, apoptosis and blood coagulation to be under positive selection in foxes. Branch site tests identified four genes to be under positive selection in the Arctic fox transcriptome, two of which are fat metabolism genes. In the red fox transcriptome eight genes are under positive selection, including molecular process genes, notably genes involved in ATP metabolism. Analysis of the three transcriptomes and five Sanger re-sequenced genes in additional individuals identified a lower genetic variability within Arctic foxes compared to red foxes, which is consistent with distribution range differences and demographic responses to past climatic fluctuations. A phylogenomic analysis estimated that the Arctic and red fox lineages diverged about three million years ago. Transcriptome data are an economic way to generate genomic resources for evolutionary studies. Despite not representing an entire genome, this transcriptome analysis identified numerous genes that are relevant to arctic adaptation in foxes. Similar to polar bears, fat metabolism seems to play a central role in adaptation of Arctic foxes to the cold climate, as has been identified in the polar bear, another arctic specialist.

  2. Quantification of physical and economic impacts of climate change on public infrastructure in Alaska and benefits of global greenhouse gas mitigation

    NASA Astrophysics Data System (ADS)

    Melvin, A. M.; Larsen, P.; Boehlert, B.; Martinich, J.; Neumann, J.; Chinowsky, P.; Schweikert, A.; Strzepek, K.

    2015-12-01

    Climate change poses many risks and challenges for the Arctic and sub-Arctic, including threats to infrastructure. The safety and stability of infrastructure in this region can be impacted by many factors including increased thawing of permafrost soils, reduced coastline protection due to declining arctic sea ice, and changes in inland flooding. The U.S. Environmental Protection Agency (EPA) is coordinating an effort to quantify physical and economic impacts of climate change on public infrastructure across the state of Alaska and estimate how global greenhouse gas (GHG) mitigation may avoid or reduce these impacts. This research builds on the Climate Change Impacts and Risk Analysis (CIRA) project developed for the contiguous U.S., which is described in an EPA report released in June 2015. We are using a multi-model analysis focused primarily on the impacts of changing permafrost, coastal erosion, and inland flooding on a range of infrastructure types, including transportation (e.g. roads, airports), buildings and harbors, energy sources and transmission, sewer and water systems, and others. This analysis considers multiple global GHG emission scenarios ranging from a business as usual future to significant global action. These scenarios drive climate projections through 2100 spanning a range of outcomes to capture variability amongst climate models. Projections are being combined with a recently developed public infrastructure database and integrated into a version of the Infrastructure Planning Support System (IPSS) we are modifying for use in the Arctic and sub-Arctic region. The IPSS tool allows for consideration of both adaptation and reactive responses to climate change. Results of this work will address a gap in our understanding of climate change impacts in Alaska, provide estimates of the physical and economic damages we may expect with and without global GHG mitigation, and produce important insights about infrastructure vulnerabilities in response to warming at northern latitudes.

  3. Adaptation of mammalian host-pathogen interactions in a changing arctic environment

    PubMed Central

    2011-01-01

    Many arctic mammals are adapted to live year-round in extreme environments with low winter temperatures and great seasonal variations in key variables (e.g. sunlight, food, temperature, moisture). The interaction between hosts and pathogens in high northern latitudes is not very well understood with respect to intra-annual cycles (seasons). The annual cycles of interacting pathogen and host biology is regulated in part by highly synchronized temperature and photoperiod changes during seasonal transitions (e.g., freezeup and breakup). With a warming climate, only one of these key biological cues will undergo drastic changes, while the other will remain fixed. This uncoupling can theoretically have drastic consequences on host-pathogen interactions. These poorly understood cues together with a changing climate by itself will challenge host populations that are adapted to pathogens under the historic and current climate regime. We will review adaptations of both host and pathogens to the extreme conditions at high latitudes and explore some potential consequences of rapid changes in the Arctic. PMID:21392401

  4. Adaptation of mammalian host-pathogen interactions in a changing arctic environment.

    PubMed

    Hueffer, Karsten; O'Hara, Todd M; Follmann, Erich H

    2011-03-11

    Many arctic mammals are adapted to live year-round in extreme environments with low winter temperatures and great seasonal variations in key variables (e.g. sunlight, food, temperature, moisture). The interaction between hosts and pathogens in high northern latitudes is not very well understood with respect to intra-annual cycles (seasons). The annual cycles of interacting pathogen and host biology is regulated in part by highly synchronized temperature and photoperiod changes during seasonal transitions (e.g., freezeup and breakup). With a warming climate, only one of these key biological cues will undergo drastic changes, while the other will remain fixed. This uncoupling can theoretically have drastic consequences on host-pathogen interactions. These poorly understood cues together with a changing climate by itself will challenge host populations that are adapted to pathogens under the historic and current climate regime. We will review adaptations of both host and pathogens to the extreme conditions at high latitudes and explore some potential consequences of rapid changes in the Arctic.

  5. The International Arctic Buoy Programme (IABP)

    NASA Astrophysics Data System (ADS)

    Rigor, I. G.; Ortmeyer, M.

    2003-12-01

    The Arctic has undergone dramatic changes in weather, climate and environment. It should be noted that many of these changes were first observed and studied using data from the International Arctic Buoy Programme (IABP). For example, IABP data were fundamental to Walsh et al. (1996) showing that atmospheric pressure has decreased, Rigor et al. (2000) showing that air temperatures have increased, and to Proshutinsky and Johnson (1997); Steele and Boyd, (1998); Kwok, (2000); and Rigor et al. (2002) showing that the clockwise circulation of sea ice and the ocean has weakened. All these results relied heavily on data from the IABP. In addition to supporting these studies of climate change, the IABP observations are also used to forecast weather and ice conditions, validate satellite retrievals of environmental variables, to force, validate and initialize numerical models. Over 350 papers have been written using data from the IABP. The observations and datasets of the IABP data are one of the cornerstones for environmental forecasting and research in the Arctic.

  6. Global warming triggers the loss of a key Arctic refugium.

    PubMed

    Rühland, K M; Paterson, A M; Keller, W; Michelutti, N; Smol, J P

    2013-12-07

    We document the rapid transformation of one of the Earth's last remaining Arctic refugia, a change that is being driven by global warming. In stark contrast to the amplified warming observed throughout much of the Arctic, the Hudson Bay Lowlands (HBL) of subarctic Canada has maintained cool temperatures, largely due to the counteracting effects of persistent sea ice. However, since the mid-1990s, climate of the HBL has passed a tipping point, the pace and magnitude of which is exceptional even by Arctic standards, exceeding the range of regional long-term variability. Using high-resolution, palaeolimnological records of algal remains in dated lake sediment cores, we report that, within this short period of intense warming, striking biological changes have occurred in the region's freshwater ecosystems. The delayed and intense warming in this remote region provides a natural observatory for testing ecosystem resilience under a rapidly changing climate, in the absence of direct anthropogenic influences. The environmental repercussions of this climate change are of global significance, influencing the huge store of carbon in the region's extensive peatlands, the world's southern-most polar bear population that depends upon Hudson Bay sea ice and permafrost for survival, and native communities who rely on this landscape for sustenance.

  7. The early vs the late 20th century Arctic warming: The role of energy and aerosol fluxes in reanalysis driven datasets

    NASA Astrophysics Data System (ADS)

    Wegmann, Martin; Broennimann, Stefan

    2014-05-01

    During the last two decades, the Arctic was put into the scientific focus as one of the most impacted regions worldwide concerning anthropogenic global warming. However, the warming between 1920 and 1940 proofs the importance of internal variability on yearly and decadal scale. Therefore, it is important to further investigate the role of external and internal forcings on the Arctic climate attribute process and causes leading to changes in the Arctic climate regime (Serreze & Barry 2009). Although much research effort was spent to understand the links and influences of and on the Arctic climate, there is still a need for further insights concerning this topic. Especially the results and discussion about anthropogenic global warming and Arctic amplification put the Arctic into the public and academic focus (Serreze & Barry 2011). However, the early 20th century Arctic warming, although discovered immediately, was scientifically forgotten until recently (Delworth & Knutson 2000, Bengtsson et al 2004, Grant et al 2009, Bekryaev et al 2010). The comparison of this earlier Arctic warming and the recent warming period grants a chance to deepen knowledge about the drivers of Arctic climate and can be used to evaluate the anthropogenic impact. The authors use the Twentieth Century Reanalysis (20CR) dataset and a nudged, reanalysis-driven Aerosol Global Circulation Model (A-GCM) to investigate the impact of atmospheric energy and aerosol fluxes into the Arctic during the 20th century. The 20CR dataset covers the period of 1871 - 2010 with a temporal resolution of 6hr and a spatial resolution of 2° x 2°. For the first time, this dataset (and ist 56 ensemble member) is used to compute the atmospheric energy flux, consisting of sensble heat, latent heat, potential energy and kinetic energy. The values are integrated around 70° N and between 1000 - 100 hPa. Aerosol fluxes for the same domain but for the years 1957 - 2000 are calculated based on the A-GCM nudged to the ECMWF 40 year Re-analysis (ERA) and correlated to circulation patterns. Based on these dataset we analyze timeseries and patterns of several variables, with a focus on the temperature changes in the Arctic domain. We show that the 20CR can recreate recent sensible heat fluxes, meaning from the 1950s onward. Before this timeperiod 20CR exhibits a strong positive energy influx between 1920 and 1930, which is difficult to validate, however probably arises due to missrepresentation of local wind maxima, mostly over the Canadian Arctic. The authors highlight the impact of this flaw by investigating snow cover and atmospheric stability over the Arctic. Finally, the two datasets are compared and exemplary extreme events in aerosol fluxes are analysed in terms of warming impact and the related circulation patterns. Possible implications for the future use of 20CR are discussed, together with the impact of our findings for the interpretation of the early 20th warming in todays context.

  8. Northern Hemisphere Winter Climate Response to Greenhouse Gas, Ozone, Solar and Volcanic Forcing

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Schmidt, Gavin A.; Miller, Ron L.; Rind, David; Hansen, James E. (Technical Monitor)

    2001-01-01

    The Goddard Institute for Space Studies (GISS) climate/middle atmosphere model has been used to study the impacts of increasing greenhouse gases, polar ozone depletion, volcanic eruptions, and solar cycle variability. We focus on the projection of the induced responses onto Northern Hemisphere winter surface climate. Changes in the model's surface climate take place largely through enhancement of existing variability patterns, with greenhouse gases, polar ozone depletion and volcanic eruptions primarily affecting the Arctic Oscillation (AO) pattern. Perturbations descend from the stratosphere to the surface in the model by altering the propagation of planetary waves coming up from the surface, in accord with observational evidence. Models lacking realistic stratospheric dynamics fail to capture these wave flux changes. The results support the conclusion that the stratosphere plays a crucial role in recent AO trends. We show that in our climate model, while ozone depletion has a significant effect, greenhouse gas forcing is the only one capable of causing the large, sustained increase in the AO observed over recent decades. This suggests that the AO trend, and a concurrent strengthening of the stratospheric vortex over the Arctic, are very likely anthropogenic in origin.

  9. Moisture transport and Atmospheric circulation in the Arctic

    NASA Astrophysics Data System (ADS)

    Woods, Cian; Caballero, Rodrigo

    2013-04-01

    Cyclones are an important feature of the Mid-Latitudes and Arctic Climates. They are a main transporter of warm moist energy from the sub tropics to the poles. The Arctic Winter is dominated by highly stable conditions for most of the season due to a low level temperature inversion caused by a radiation deficit at the surface. This temperature inversion is a ubiquitous feature of the Arctic Winter Climate and can persist for up to weeks at a time. The inversion can be destroyed during the passage of a cyclone advecting moisture and warming the surface. In the absence of an inversion, and in the presence of this warm moist air mass, clouds can form quite readily and as such influence the radiative processes and energy budget of the Arctic. Wind stress caused by a passing cyclones also has the tendency to cause break-up of the ice sheet by induced rotation, deformation and divergence at the surface. For these reasons, we wish to understand the mechanisms of warm moisture advection into the Arctic from lower latitudes and how these mechanisms are controlled. The body of work in this area has been growing and gaining momentum in recent years (Stramler et al. 2011; Morrison et al. 2012; Screen et al. 2011). However, there has been no in depth analysis of the underlying dynamics to date. Improving our understanding of Arctic dynamics becomes increasingly important in the context of climate change. Many models agree that a northward shift of the storm track is likely in the future, which could have large impacts in the Arctic, particularly the sea ice. A climatology of six-day forward and backward trajectories starting from multiple heights around 70 N is constructed using the 22 year ECMWF reanalysis dataset (ERA-INT). The data is 6 hourly with a horizontal resolution of 1 degree on 16 pressure levels. Our methodology here is inspired by previous studies examining flow patterns through cyclones in the mid-latitudes. We apply these earlier mid-latitude methods in the Arctic. We investigate an Arctic trajectory dataset and provide a phenomenological/descriptive analysis of these trajectories, including key meteorological variables carried along trajectories. The trajectory climatology is linked to a previously established cyclone climatology dataset from Hanley and Caballero (2011). We associate trajectories and the meteorological variables they are carrying to cyclones in this dataset. A climatology of 'Arctic-influencing' cyclones is constructed from the cyclone dataset. The resilience of the polar vortex and its effect on circulation, via blocking and breaking, is examined in relation to our trajectory climatology.

  10. Climatology and Characteristics of Aerosol Optical Properties in the Arctic

    NASA Astrophysics Data System (ADS)

    Schmeisser, Lauren; Ogren, John; Backman, John; Asmi, Eija; Andrews, Elisabeth; Jefferson, Anne; Bergin, Michael; Tunved, Peter; Sharma, Sangeeta; Starkweather, Sandra

    2016-04-01

    Within the Arctic, climate forcers like atmospheric aerosols are important contributors to the observed warming and environmental changes in the region. Quantifying the forcing by aerosols in the Arctic is especially difficult, given short aerosol lifetimes, annual variability in illumination and surface albedo, stratified atmospheric conditions, complex feedbacks, and long-range aerosol transport. However, in-situ surface measurements of Arctic aerosol optical properties can be used to constrain variability of light scattering and absorption, identify potential particle sources, and help evaluate the resulting forcing. Data from six WMO Global Atmosphere Watch stations are presented: Alert, Canada (ALT); Barrow, Alaska (BRW); Pallas, Finland (PAL); Summit, Greenland (SUM); Tiksi, Russia (TIK); and Zeppelin Mountain, Norway (ZEP). These sites contribute to the International Arctic System for Observing the Atmosphere (IASOA), which facilitates Arctic-wide data collection and analysis. Climatologies of aerosol optical properties from each station show differences in magnitude and variability of observed parameters. For example, most stations (ALT, BRW, SUM, TIK, ZEP) experience maximum scattering in winter/spring, while PAL exhibits maximum scattering in the summer. The observed range in scattering across these sites is large (almost an order of magnitude) - SUM has the lowest annual median scattering at 0.82 Mm-1 while BRW has the highest at 6.9 Mm-1. A closer look at systematic variability between optical properties at each station, as well as site back trajectories, suggest differences in aerosol processes, sources and transport. The development of consistent climatologies and additional analyses like the ones presented here can help provide a better understanding of trans-Arctic aerosol variability, which can be an asset for improving aerosol models in this unique and remote region.

  11. Controls and variability of solute and sedimentary fluxes in Arctic and sub-Arctic Environments

    NASA Astrophysics Data System (ADS)

    Dixon, John

    2015-04-01

    Six major factors consistently emerge as controls on the spatial and temporal variability in sediment and solute fluxes in cold climates. They are climatic, geologic, physiographic or relief, biologic, hydrologic, and regolith factors. The impact of these factors on sediment and solute mass transfer in Arctic and sub-Arctic environments is examined. Comparison of non-glacierized Arctic vs. subarctic drainage basins reveals the effects of these controls. All drainage basins exhibit considerable variability in rates of sediment and solute fluxes. For the non-glacierized drainage basins there is a consistent increase in sediment mass transfer by slope processes and fluvial processes as relief increases. Similarly, a consistent increase in sediment mass transfer by slope and fluvial processes is observed as total precipitation increases. Similar patterns are also observed with respect to solute transport and relief and precipitation. Lithologic factors are most strongly observed in the contrast between volcanic vs. plutonic igneous bedrock substrates. Basins underlain by volcanic rocks display greater mass transfers than those underlain by plutonic rocks. Biologic influences are most strongly expressed by variations in extent of vegetation cover and the degree of human interference, with human impacted basins generating greater fluxes. For glacierized basins the fundamental difference to non-glacierized basins is an overall increase in mean annual mass transfers of sediment and a generally smaller magnitude solute transfer. The principal role of geology is observed with respect to lithology. Catchments underlain by limestone demonstrate substantially greater solute mass transfers than sediment transfer. The influence of relief is seen in the contrast in mass transfers between upland and lowland drainage basins with upland basins generating greater sediment and solute transfers than lowland basins. For glacierized basins the effects of biology and regolith appear to be largely overridden by the hydrologic impacts of glacierization.

  12. Determining diatom ecotones and their relationship to terrestrial ecoregion designations in the central Canadian Arctic Islands.

    PubMed

    Antoniades, Dermot; Douglas, Marianne S V; Michelutti, Neal; Smol, John P

    2014-08-01

    Ecotones are key areas for the detection of global change because many are predicted to move with shifts in climate. Prince of Wales Island, in the Canadian Arctic Archipelago, spans the transition between mid- to high-Arctic ecoregions. We analyzed limnological variables and recent diatom assemblages from its lakes and ponds to determine if assemblages reflected this ecotone. Limnological gradients were short, and water chemistry explained 20.0% of diatom variance in a redundancy analysis (RDA), driven primarily by dissolved organic carbon, Ca and SO4 . Most taxa were small, benthic forms; key taxa such as planktonic Cyclotella species were restricted to the warmer, southern portion of the study area, while benthic Staurosirella were associated with larger, ice-dominated lakes. Nonetheless, there were no significant changes in diatom assemblages across the mid- to high-Arctic ecoregion boundary. We combined our data set with one from nearby Cornwallis Island to expand the study area and lengthen its environmental gradients. Within this expanded data set, 40.6% of the diatom variance was explained by a combination of water chemistry and geographic variables, and significant relationships were revealed between diatom distributions and key limnological variables, including pH, specific conductivity, and chl-a. Using principal coordinates analysis, we estimated community turnover with latitude and applied piecewise linear regression to determine diatom ecotone positions. A pronounced transition was present between Prince of Wales Island and the colder, more northerly Cornwallis Island. These data will be important in detecting any future northward ecotone movement in response to predicted Arctic climate warming in this highly sensitive region. © 2014 Phycological Society of America.

  13. Chemistry and dynamics of the Arctic winter 2015/2016: Simulations with the Chemistry-Climate Model EMAC

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Kirner, Ole; Sinnhuber, Bjoern-Martin; Ruhnke, Roland; Hoepfner, Michael; Woiwode, Wolfgang; Oelhaf, Hermann; Santee, Michelle L.; Manney, Gloria L.; Froidevaux, Lucien; Murtagh, Donal; Braesicke, Peter

    2016-04-01

    Model simulations of the Arctic winter 2015/2016 were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the POLSTRACC (Polar Stratosphere in a Changing Climate) project. The POLSTRACC project is a HALO mission (High Altitude and LOng Range Research Aircraft) that aims to investigate the structure, composition and evolution of the Arctic Upper Troposphere Lower Stratosphere (UTLS) in a changing climate. Especially, the chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, polar stratospheric clouds as well as cirrus clouds are investigated. The model simulations were performed with a resolution of T42L90, corresponding to a quadratic Gaussian grid of approximately 2.8°× 2.8° degrees in latitude and longitude, and 90 vertical layers from the surface up to 0.01 hPa (approx. 80 km). A Newtonian relaxation technique of the prognostic variables temperature, vorticity, divergence and surface pressure towards ECMWF data was applied above the boundary layer and below 10 hPa, in order to nudge the model dynamics towards the observed meteorology. During the Arctic winter 2015/2016 a stable vortex formed in early December, with a cold pool where temperatures reached below the Nitric Acid Trihydrate (NAT) existence temperature of 195 K, thus allowing Polar Stratospheric Clouds (PSCs) to form. The early winter has been exceptionally cold and satellite observations indicate that sedimenting PSC particles have lead to denitrification as well as dehydration of stratospheric layers. In this presentation an overview of the chemistry and dynamics of the Arctic winter 2015/2016 as simulated with EMAC will be given and comparisons to satellite observations such as e.g. Aura/MLS and Odin/SMR will be shown.

  14. Climate variability in the subarctic area for the last 2 millennia

    NASA Astrophysics Data System (ADS)

    Nicolle, Marie; Debret, Maxime; Massei, Nicolas; Colin, Christophe; deVernal, Anne; Divine, Dmitry; Werner, Johannes P.; Hormes, Anne; Korhola, Atte; Linderholm, Hans W.

    2018-01-01

    To put recent climate change in perspective, it is necessary to extend the instrumental climate records with proxy data from paleoclimate archives. Arctic climate variability for the last 2 millennia has been investigated using statistical and signal analyses from three regionally averaged records from the North Atlantic, Siberia and Alaska based on many types of proxy data archived in the Arctic 2k database v1.1.1. In the North Atlantic and Alaska, the major climatic trend is characterized by long-term cooling interrupted by recent warming that started at the beginning of the 19th century. This cooling is visible in the Siberian region at two sites, warming at the others. The cooling of the Little Ice Age (LIA) was identified from the individual series, but it is characterized by wide-range spatial and temporal expression of climate variability, in contrary to the Medieval Climate Anomaly. The LIA started at the earliest by around AD 1200 and ended at the latest in the middle of the 20th century. The widespread temporal coverage of the LIA did not show regional consistency or particular spatial distribution and did not show a relationship with archive or proxy type either. A focus on the last 2 centuries shows a recent warming characterized by a well-marked warming trend parallel with increasing greenhouse gas emissions. It also shows a multidecadal variability likely due to natural processes acting on the internal climate system on a regional scale. A ˜ 16-30-year cycle is found in Alaska and seems to be linked to the Pacific Decadal Oscillation, whereas ˜ 20-30- and ˜ 50-90-year periodicities characterize the North Atlantic climate variability, likely in relation with the Atlantic Multidecadal Oscillation. These regional features are probably linked to the sea ice cover fluctuations through ice-temperature positive feedback.

  15. High-Latitude Stratospheric Sensitivity to QBO Width in a Chemistry-Climate Model with Parameterized Ozone Chemistry

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    In a pair of idealized simulations with a simplified chemistry-climate model, the sensitivity of the wintertime Arctic stratosphere to variability in the width of the quasi-biennial oscillation (QBO) is assessed. The width of the QBO appears to have equal influence on the Arctic stratosphere as does the phase (i.e. the Holton-Tan mechanism). In the model, a wider QBO acts like a preferential shift toward the easterly phase of the QBO, where zonal winds at 60 N tend to be relatively weaker, while 50 hPa geopotential heights and polar ozone values tend to be higher.

  16. The Role of Arctic Sea Ice in Last Millennium Climate Variability: Model-Proxy Comparisons Using Ensemble Members and Novel Model Experiments.

    NASA Astrophysics Data System (ADS)

    Gertler, C. G.; Monier, E.; Prinn, R. G.

    2016-12-01

    Variability in sea ice extent is a prominent feature of forced simulations of the last millennium and reconstructions of paleoclimate using proxy records. The rapid 20th century decline in sea ice extent is most likely due to greenhouse gas forcing, but the accuracy of future projections depend on the characterization of natural variability. Declining sea ice extent affects regional climate and society, but also plays a large role in Arctic amplification, with implications for mid-latitude circulation and even large-scale climate oscillations. To characterize the effects of natural and anthropogenic climate forcing on sea ice and the related changes in large-scale atmospheric circulation, a combination of instrumental record, paleoclimate reconstructions, and general circulation models can be employed to recreate sea ice extents and the corresponding atmosphere-ocean states. Model output from the last millennium ensemble (LME) is compared to a proxy-based sea ice reconstruction and a global proxy network using a variety of statistical and data assimilation techniques. Further model runs using the Community Earth Systems Model (CESM) are performed with the same inputs as LME but forced with experimental sea ice extents, and results are contextualized within the larger ensemble by a variety of metrics.

  17. Changing Seasonality of Tundra Vegetation and Associated Climatic Variables

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Bieniek, P.; Epstein, H. E.; Comiso, J. C.; Pinzon, J.; Tucker, C. J.; Steele, M.; Ermold, W. S.; Zhang, J.

    2014-12-01

    This study documents changes in the seasonality of tundra vegetation productivity and its associated climate variables using long-term data sets. An overall increase of Pan-Arctic tundra greenness potential corresponds to increased land surface temperatures and declining sea ice concentrations. While sea ice has continued to decline, summer land surface temperature and vegetation productivity increases have stalled during the last decade in parts of the Arctic. To understand the processes behind these features we investigate additional climate parameters. This study employs remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2013. Maximum NDVI (MaxNDVI, Maximum Normalized Difference Vegetation Index), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), ocean heat content (PIOMAS, model incorporating ocean data assimilation), and snow water equivalent (GlobSnow, assimilated snow data set) are explored. We analyzed the data for the full period (1982-2013) and for two sub-periods (1982-1998 and 1999-2013), which were chosen based on the declining Pan-Arctic SWI since 1998. MaxNDVI has increased from 1982-2013 over most of the Arctic but has declined from 1999 to 2013 over western Eurasia, northern Canada, and southwest Alaska. TI-NDVI has trends that are similar to those for MaxNDVI for the full period but displays widespread declines over the 1999-2013 period. Therefore, as the MaxNDVI has continued to increase overall for the Arctic, TI-NDVI has been declining since 1999. SWI has large relative increases over the 1982-2013 period in eastern Canada and Greenland and strong declines in western Eurasia and southern Canadian tundra. Weekly Pan-Arctic tundra land surface temperatures warmed throughout the summer during the 1982-1998 period but display midsummer declines from 1999-2013. Weekly snow water equivalent over Arctic tundra has declined over most seasons but shows slight increases in spring in North America and during fall over Eurasia. Later spring or earlier fall snow cover can both lead to reductions in TI-NDVI. The time-varying spatial patterns of NDVI trends can be largely explained using either snow cover or land surface temperature trends.

  18. Observations reveal external driver for Arctic sea-ice retreat

    NASA Astrophysics Data System (ADS)

    Notz, Dirk; Marotzke, Jochem

    2012-04-01

    The very low summer extent of Arctic sea ice that has been observed in recent years is often casually interpreted as an early-warning sign of anthropogenic global warming. For examining the validity of this claim, previously IPCC model simulations have been used. Here, we focus on the available observational record to examine if this record allows us to identify either internal variability, self-acceleration, or a specific external forcing as the main driver for the observed sea-ice retreat. We find that the available observations are sufficient to virtually exclude internal variability and self-acceleration as an explanation for the observed long-term trend, clustering, and magnitude of recent sea-ice minima. Instead, the recent retreat is well described by the superposition of an externally forced linear trend and internal variability. For the externally forced trend, we find a physically plausible strong correlation only with increasing atmospheric CO2 concentration. Our results hence show that the observed evolution of Arctic sea-ice extent is consistent with the claim that virtually certainly the impact of an anthropogenic climate change is observable in Arctic sea ice already today.

  19. Response of ice cover on shallow Arctic lakes to contemporary climate conditions: Numerical modeling and remote sensing data analysis

    NASA Astrophysics Data System (ADS)

    Duguay, C.; Surdu, C.; Brown, L.; Samuelsson, P.

    2012-04-01

    Lake ice cover has been shown to be a robust indicator of climate variability and change. Recent studies have demonstrated that break-up dates, in particular, have been occurring earlier in many parts of the Northern Hemisphere over the last 50 years in response to warmer climatic conditions in the winter and spring seasons. The impacts of trends in air temperature and winter precipitation over the last five decades and those projected by global climate models will affect the timing and duration of ice cover (and ice thickness) on Arctic lakes. This will likely, in turn, have an important feedback effect on energy, water, and biogeochemical cycling in various regions of the Arctic. In the case of shallow tundra lakes, many of which are less than 3-m deep, warmer climate conditions could result in a smaller fraction of lakes that freeze to their bed in winter since thinner ice covers are expected to develop. Shallow lakes of the coastal plain of northern Alaska, and other similar regions of the Arctic, have likely been experiencing changes in seasonal ice thickness (and phenology) over the last few decades but these have not yet been documented. This paper presents results from a numerical lake ice modeling experiment and the analysis of ERS-1/2 synthetic aperture radar (SAR) data to elucidate the response of ice cover (thickness, freezing to bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA)to climate conditions over the last three decades. New downscaled data specific for the Arctic domain (at a resolution of 0.44 degrees using ERA Interim Reanalysis as boundary condition) produced by the Rossby Centre regional atmospheric model (RCA4) was used to force the Canadian Lake Ice Model (CLIMo) for the period 1979-2010. Output from CLIMo included freeze-up and break-up dates as well as ice thickness on a daily basis. ERS-1/2 data was used to map areas of shallow lakes that freeze to bed and when this happens (timing) in winter for the period 1991-2010. Preliminary results from a sub-region of the NSA show that the interannual variability in ice thickness simulated with CLIMo match well that of the fraction of lakes that freeze to their bed in winter as determined from the analysis of SAR data.

  20. Biological response to climate change in the Arctic Ocean: The view from the past

    USGS Publications Warehouse

    Cronin, Thomas M.; Cronin, Matthew A.

    2017-01-01

    The Arctic Ocean is undergoing rapid climatic changes including higher ocean temperatures, reduced sea ice, glacier and Greenland Ice Sheet melting, greater marine productivity, and altered carbon cycling. Until recently, the relationship between climate and Arctic biological systems was poorly known, but this has changed substantially as advances in paleoclimatology, micropaleontology, vertebrate paleontology, and molecular genetics show that Arctic ecosystem history reflects global and regional climatic changes over all timescales and climate states (103–107 years). Arctic climatic extremes include 25°C hyperthermal periods during the Paleocene-Eocene (56–46 million years ago, Ma), Quaternary glacial periods when thick ice shelves and sea ice cover rendered the Arctic Ocean nearly uninhabitable, seasonally sea-ice-free interglacials and abrupt climate reversals. Climate-driven biological impacts included large changes in species diversity, primary productivity, species’ geographic range shifts into and out of the Arctic, community restructuring, and possible hybridization, but evidence is not sufficient to determine whether or when major episodes of extinction occurred.

  1. Responding to Change in NW Alaska: Ethnographic Film and the Voices of the People

    NASA Astrophysics Data System (ADS)

    Betcher, S. R.; Gerlach, S. C.; Atkinson, D. E.; Loring, P. A.

    2014-12-01

    Communities in the NW arctic rely on subsistence activities such as hunting, fishing and gathering to ensure their food security and to maintain a cultural identity but climate change is altering the timing and distribution of plants and animals. Arctic Alaskan villages are only accessible by air or watercraft thus limiting the options of goods and services and increasing the cost due to vast distances traveled. Additionally, these goods and services must be transported during winter months, which include some of the most extreme temperatures and landscapes people permanently occupy. Many rural community members mitigate these high food prices by maintaining their traditional lifestyle of hunting fishing and gathering of marine mammals, fish, greens and berries. These essential subsistence activities are impacted by a warming arctic as reduced sea ice extent, permafrost thaw, increased storm severity and shifting seasonality alters plant and animal patterns that people in the region have knowledge about for thousands of years. Now with increased weather variability and a changing climate the people in the region are adapting and responding to these changes. Local traditional knowledge (LTK) of active hunters, fishers, and gatherers can provide a deeper and more comprehensive understanding to western science of how climate change is impacting the Arctic. This documentary film captures footage from the summer and fall of 2013 of activities of hunters fishers and gatherers and recorded their sentiments of how climate changes has impacted their subsistence way of life, and how arctic residence are responding to both climate and extreme weather events. Video is taken from the land, sea and air in and around Kotzebue, Kivalina, Point Hope, Noatak, Ambler, Buckland and Deering. The presenters will discuss how the film shows responses to change and how the film was made in close collaboration with NW arctic residents.

  2. Hydrology of the North Klondike River: carbon export, water balance and inter-annual climate influences within a sub-alpine permafrost catchment.

    PubMed

    Lapp, Anthony; Clark, Ian; Macumber, Andrew; Patterson, Tim

    2017-10-01

    Arctic and sub-arctic watersheds are undergoing significant changes due to recent climate warming and degrading permafrost, engendering enhanced monitoring of arctic rivers. Smaller catchments provide understanding of discharge, solute flux and groundwater recharge at the process level that contributes to an understanding of how larger arctic watersheds are responding to climate change. The North Klondike River, located in west central Yukon, is a sub-alpine permafrost catchment, which maintains an active hydrological monitoring station with a record of >40 years. In addition to being able to monitor intra-annual variability, this data set allows for more complex analysis of streamflow records. Streamflow data, geochemistry and stable isotope data for 2014 show a groundwater-dominated system, predominantly recharged during periods of snowmelt. Radiocarbon is shown to be a valuable tracer of soil zone recharge processes and carbon sources. Winter groundwater baseflow contributes 20 % of total annual discharge, and accounts for up to 50 % of total river discharge during the spring and summer months. Although total stream discharge remains unchanged, mean annual groundwater baseflow has increased over the 40-year monitoring period. Wavelet analysis reveals a catchment that responds to El Niño and longer solar cycles, as well as climatic shifts such as the Pacific Decadal Oscillation. Dedicated to Professor Peter Fritz on the occasion of his 80th birthday.

  3. Changing climate: Geothermal evidence from permafrost in the Alaskan Arctic

    USGS Publications Warehouse

    Lachenbruch, A.H.; Marshall, B.V.

    1986-01-01

    Temperature profiles measured in permafrost in northernmost Alaska usually have anomalous curvature in the upper 100 meters or so. When analyzed by heat-conduction theory, the profiles indicate a variable but widespread secular warming of the permafrost surface, generally in the range of 2 to 4 Celsius degrees during the last few decades to a century. Although details of the climatic change cannot be resolved with existing data, there is little doubt of its general magnitude and timing; alternative explanations are limited by the fact that heat transfer in cold permafrost is exclusively by conduction. Since models of greenhouse warming predict climatic change will be greatest in the Arctic and might already be in progress, it is prudent to attempt to understand the rapidly changing thermal regime in this region.

  4. Pan-arctic trends in terrestrial dissolved organic matter from optical measurements

    NASA Astrophysics Data System (ADS)

    Mann, Paul; Spencer, Robert; Hernes, Peter; Six, Johan; Aiken, George; Tank, Suzanne; McClelland, James; Butler, Kenna; Dyda, Rachael; Holmes, Robert

    2016-03-01

    Climate change is causing extensive warming across arctic regions resulting in permafrost degradation, alterations to regional hydrology, and shifting amounts and composition of dissolved organic matter (DOM) transported by streams and rivers. Here, we characterize the DOM composition and optical properties of the six largest arctic rivers draining into the Arctic Ocean to examine the ability of optical measurements to provide meaningful insights into terrigenous carbon export patterns and biogeochemical cycling. The chemical composition of aquatic DOM varied with season, spring months were typified by highest lignin phenol and dissolved organic carbon (DOC) concentrations with greater hydrophobic acid content, and lower proportions of hydrophilic compounds, relative to summer and winter months. Chromophoric DOM (CDOM) spectral slope (S275-295) tracked seasonal shifts in DOM composition across river basins. Fluorescence and parallel factor analysis identified seven components across the six Arctic rivers. The ratios of 'terrestrial humic-like' versus 'marine humic-like' fluorescent components co-varied with lignin monomer ratios over summer and winter months, suggesting fluorescence may provide information on the age and degradation state of riverine DOM. CDOM absorbance (a350) proved a sensitive proxy for lignin phenol concentrations across all six river basins and over the hydrograph, enabling for the first time the development of a single pan-arctic relationship between a350 and terrigenous DOC (R2 = 0.93). Combining this lignin proxy with high-resolution monitoring of a350, pan-arctic estimates of annual lignin flux were calculated to range from 156 to 185 Gg, resulting in shorter and more constrained estimates of terrigenous DOM residence times in the Arctic Ocean (spanning 7 months to 2½ years). Furthermore, multiple linear regression models incorporating both absorbance and fluorescence variables proved capable of explaining much of the variability in lignin composition across rivers and seasons. Our findings suggest that synoptic, high-resolution optical measurements can provide improved understanding of northern high-latitude organic matter cycling and flux, and prove an important technique for capturing future climate-driven changes.

  5. An Arctic source for the Great Salinity Anomaly - A simulation of the Arctic ice-ocean system for 1955-1975

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1993-01-01

    The paper employs a fully prognostic Arctic ice-ocean model to study the interannual variability of sea ice during the period 1955-1975 and to explain the large variability of the ice extent in the Greenland and Iceland seas during the late 1960s. The model is used to test the contention of Aagaard and Carmack (1989) that the Great Salinity Anomaly (GSA) was a consequence of the anomalously large ice export in 1968. The high-latitude ice-ocean circulation changes due to wind field changes are explored. The ice export event of 1968 was the largest in the simulation, being about twice as large as the average and corresponding to 1600 cu km of excess fresh water. The simulations suggest that, besides the above average ice export to the Greenland Sea, there was also fresh water export to support the larger than average ice cover. The model results show the origin of the GSA to be in the Arctic, and support the view that the Arctic may play an active role in climate change.

  6. Process contributions to the intermodel spread in amplified Arctic warming

    NASA Astrophysics Data System (ADS)

    Boeke, R.; Taylor, P. C.

    2016-12-01

    The Arctic is warming at a rate more than twice the global average. This robust climate system response to an external forcing is referred to as Arctic Amplification (AA). While Coupled Model Intercomparison Project 5 (CMIP5) climate models simulate AA, the largest intermodel spread in projected warming is also found in the Arctic. Quantifying the amount of polar warming relative to global warming influences how society adapts to climate change; a 2°C increase in global mean temperature would result in a polar warming between 4-8°C according to the intermodel spread in CMIP5 simulations. A trove of previous work has considered AA diagnostically using variations in the surface energy budget to attribute the intermodel spread in AA to an assortment of feedbacks—surface albedo, cloud, surface turbulent flux, and atmospheric and oceanic energy transport. We consider a systems-thinking approach treating AA as a process that evolves over time. We hypothesize that two specific components of the AA process are most important and influence the intermodel spread. (1) The inability of the Arctic system to effectively remove excess heat sourced from natural variability. The change in the efficiency of the `Arctic air conditioner' is thought to be due to thinner and less extensive sea ice and the resulting ice albedo feedback. (2) The process through which energy is stored in the ocean and exchanged with the atmosphere within the context of the sea ice annual cycle is also important. This study uses CMIP5 simulations from the historical and RCP8.5 (Representative Concentration Pathway; an emission scenario with forcing increasing to 8.5 W m-2 by 2100) to analyze how the AA process operates in present and future climate. The intermodel spread in these processes and the influence on the spread in AA are discussed. This approach identifies models that more realistically simulate the AA process and will aid in narrowing intermodel spread in Arctic surface temperature projections.

  7. Enhanced role of eddies in the Arctic marine biological pump

    PubMed Central

    Watanabe, Eiji; Onodera, Jonaotaro; Harada, Naomi; Honda, Makio C.; Kimoto, Katsunori; Kikuchi, Takashi; Nishino, Shigeto; Matsuno, Kohei; Yamaguchi, Atsushi; Ishida, Akio; Kishi, Michio J.

    2014-01-01

    The future conditions of Arctic sea ice and marine ecosystems are of interest not only to climate scientists, but also to economic and governmental bodies. However, the lack of widespread, year-long biogeochemical observations remains an obstacle to understanding the complicated variability of the Arctic marine biological pump. Here we show an early winter maximum of sinking biogenic flux in the western Arctic Ocean and illustrate the importance of shelf-break eddies to biological pumping from wide shelves to adjacent deep basins using a combination of year-long mooring observations and three-dimensional numerical modelling. The sinking flux trapped in the present study included considerable fresh organic material with soft tissues and was an order of magnitude larger than previous estimates. We predict that further reductions in sea ice will promote the entry of Pacific-origin biological species into the Arctic basin and accelerate biogeochemical cycles connecting the Arctic and subarctic oceans. PMID:24862402

  8. Trends and variability of cloud fraction cover in the Arctic, 1982-2009

    NASA Astrophysics Data System (ADS)

    Boccolari, Mauro; Parmiggiani, Flavio

    2018-05-01

    Climatology, trends and variability of cloud fraction cover (CFC) data over the Arctic (north of 70°N), were analysed over the 1982-2009 period. Data, available from the Climate Monitoring Satellite Application Facility (CM SAF), are derived from satellite measurements by AVHRR. Climatological means confirm permanent high CFC values over the Atlantic sector during all the year and during summer over the eastern Arctic Ocean. Lower values are found in the rest of the analysed area especially over Greenland and the Canadian Archipelago, nearly continuously during all the months. These results are confirmed by CFC trends and variability. Statistically significant trends were found during all the months over the Greenland Sea, particularly during the winter season (negative, less than -5 % dec -1) and over the Beaufort Sea in spring (positive, more than +5 % dec -1). CFC variability, investigated by the Empirical Orthogonal Functions, shows a substantial "non-variability" in the Northern Atlantic Ocean. Statistically significant correlations between CFC principal components elements and both the Pacific Decadal Oscillation index and Pacific North America patterns are found.

  9. Observational constraints on Arctic boundary-layer clouds, surface moisture and sensible heat fluxes

    NASA Astrophysics Data System (ADS)

    Wu, D. L.; Boisvert, L.; Klaus, D.; Dethloff, K.; Ganeshan, M.

    2016-12-01

    The dry, cold environment and dynamic surface variations make the Arctic a unique but difficult region for observations, especially in the atmospheric boundary layer (ABL). Spaceborne platforms have been the key vantage point to capture basin-scale changes during the recent Arctic warming. Using the AIRS temperature, moisture and surface data, we found that the Arctic surface moisture flux (SMF) had increased by 7% during 2003-2013 (18 W/m2 equivalent in latent heat), mostly in spring and fall near the Arctic coastal seas where large sea ice reduction and sea surface temperature (SST) increase were observed. The increase in Arctic SMF correlated well with the increases in total atmospheric column water vapor and low-level clouds, when compared to CALIPSO cloud observations. It has been challenging for climate models to reliably determine Arctic cloud radiative forcing (CRF). Using the regional climate model HIRHAM5 and assuming a more efficient Bergeron-Findeisen process with generalized subgrid-scale variability for total water content, we were able to produce a cloud distribution that is more consistent with the CloudSat/CALIPSO observations. More importantly, the modified schemes decrease (increase) the cloud water (ice) content in mixed-phase clouds, which help to improve the modeled CRF and energy budget at the surface, because of the dominant role of the liquid water in CRF. Yet, the coupling between Arctic low clouds and the surface is complex and has strong impacts on ABL. Studying GPS/COSMIC radio occultation (RO) refractivity profiles in the Arctic coldest and driest months, we successfully derived ABL inversion height and surface-based inversion (SBI) frequency, and they were anti-correlated over the Arctic Ocean. For the late summer and early fall season, we further analyzed Japanese R/V Mirai ship measurements and found that the open-ocean surface sensible heat flux (SSHF) can explain 10 % of the ABL height variability, whereas mechanisms such as cloud-driven turbulence appear to be dominant. Contrary to previous speculation, the efficiency of turbulent heat exchange is low. The SSHF contribution to ABL mixing is significant during the uplift (low-pressure) followed by the highly stable (stratus cloud) regime.

  10. Drivers of River Water Temperature Space-time Variability in Northeast Greenland

    NASA Astrophysics Data System (ADS)

    Hannah, D. M.; Docherty, C.; Milner, A.

    2015-12-01

    Water temperature plays an important role in stream ecosystem functioning; however, water temperature dynamics in high Arctic environments have received relatively little attention. Given that global climate is predicted to change most at high latitudes, it is vital we broaden our knowledge of space-time variability in Arctic river temperature to understand controlling processes and potential consequences of climate change. To address this gap, our research aims: (1) to characterise seasonal and diel patterns of variability over three summer and two winter seasons with contrasting hydrometeorological conditions, (2) to unravel the key drivers influencing thermal regimes and (3) to place these results in the context of other snow/ glacier-melt dominated environments. Fieldwork was undertaken in July-September 2013, 2014 and 2015 close to the Zackenberg Research Station in Northeast Greenland - an area of continuous permafrost with a mean July air temperature of 6 °C. Five streams were chosen that drain different water source contributions (glacier melt, snow melt, groundwater). Data were collected at 30 minute intervals using micro-dataloggers. Air temperature data were collected within 7km by the Greenland Survey. Weather conditions were highly variable between field campaigns, with 2013 experiencing below average, and 2014 and 2015 above average, snowfall. Summer water temperatures appear to be high in comparison to some Arctic streams in Alaska and in Svalbard. Winter snowfall extent decreases stream water temperature; and water temperature increases with atmospheric exposure time (distance from source) - illustrating the intertwined controls of water and heat fluxes. These Greenland streams are most strongly influenced by snowmelt, but groundwater contributions could increase with a changing climate due to increased active layer thickness, which may result in increased river temperature with implications for aquatic biodiversity and ecosystem functioning.

  11. Patterns and controls of mercury accumulation in sediments from three thermokarst lakes on the Arctic Coastal Plain of Alaska

    USGS Publications Warehouse

    Burke, Samantha M.; Zimmerman, Christian E.; Branfireun, Brian A.; Koch, Joshua C.; Swanson, Heidi K.

    2018-01-01

    The biogeochemical cycle of mercury will be influenced by climate change, particularly at higher latitudes. Investigations of historical mercury accumulation in lake sediments inform future predictions as to how climate change might affect mercury biogeochemistry; however, in regions with a paucity of data, such as the thermokarst-rich Arctic Coastal Plain of Alaska (ACP), the trajectory of mercury accumulation in lake sediments is particularly uncertain. Sediment cores from three thermokarst lakes on the ACP were analyzed to understand changes in, and drivers of, Hg accumulation over the past ~ 100 years. Mercury accumulation in two of the three lakes was variable and high over the past century (91.96 and 78.6 µg/m2/year), and largely controlled by sedimentation rate. Mercury accumulation in the third lake was lower (14.2 µg/m2/year), more temporally uniform, and was more strongly related to sediment Hg concentration than sedimentation rate. Sediment mercury concentrations were quantitatively related to measures of sediment composition and VRS-inferred chlorophyll a, and sedimentation rates were related to various catchment characteristics. These results were compared to data from 37 previously studied Arctic and Alaskan lakes. Results from the meta-analysis indicate that thermokarst lakes have significantly higher and more variable Hg accumulation rates than non-thermokarst lakes, suggesting that certain properties (e.g., thermal erosion, thaw slumping, low hydraulic conductivity) likely make lakes prone to high and variable Hg accumulation rates. Differences and high variability in Hg accumulation among high latitude lakes highlight the complexity of predicting future climate-related change impacts on mercury cycling in these environments.

  12. Spatial heterogeneity in zooplankton summer distribution in the eastern Chukchi Sea in 2012-2013 as a result of large-scale interactions of water masses

    NASA Astrophysics Data System (ADS)

    Pinchuk, Alexei I.; Eisner, Lisa B.

    2017-01-01

    Interest in the Arctic shelf ecosystems has increased in recent years as the climate has rapidly warmed and sea ice declined. These changing conditions prompted the broad-scale multidisciplinary Arctic Ecosystem integrated survey (Arctic Eis) aimed at systematic, comparative analyses of interannual variability of the shelf ecosystem. In this study, we compared zooplankton composition and geographical distribution in relation to water properties on the eastern Chukchi and northern Bering Sea shelves during the summers of 2012 and 2013. In 2012, waters of Pacific origin prevailed over the study area carrying expatriate oceanic species (e.g. copepods Neocalanus spp., Eucalanus bungii) from the Bering Sea outer shelf well onto the northeastern Chukchi shelf. In contrast, in 2013, zooplankton of Pacific origin was mainly distributed over the southern Chukchi shelf, suggesting a change of advection pathways into the Arctic. These changes also manifested in the emergence of large lipid-rich Arctic zooplankton (e.g. Calanus hyperboreus) on the northeastern Chukchi shelf in 2013. The predominant copepod Calanus glacialis was composed of two distinct populations originating from the Bering Sea and from the Arctic, with the Arctic population expanding over a broader range in 2013. The observed interannual variability in zooplankton distribution on the Chukchi Sea shelf may be explained by previously described systematic oceanographic patterns derived from long-term observations. Variability in oceanic circulation and related zooplankton distributions (e.g. changes in southwestward advection of C. hyperboreus) may impact keystone predators such as Arctic Cod (Boreogadus saida) that feed on energy-rich zooplankton.

  13. New insight of Arctic cloud parameterization from regional climate model simulations, satellite-based, and drifting station data

    NASA Astrophysics Data System (ADS)

    Klaus, D.; Dethloff, K.; Dorn, W.; Rinke, A.; Wu, D. L.

    2016-05-01

    Cloud observations from the CloudSat and CALIPSO satellites helped to explain the reduced total cloud cover (Ctot) in the atmospheric regional climate model HIRHAM5 with modified cloud physics. Arctic climate conditions are found to be better reproduced with (1) a more efficient Bergeron-Findeisen process and (2) a more generalized subgrid-scale variability of total water content. As a result, the annual cycle of Ctot is improved over sea ice, associated with an almost 14% smaller area average than in the control simulation. The modified cloud scheme reduces the Ctot bias with respect to the satellite observations. Except for autumn, the cloud reduction over sea ice improves low-level temperature profiles compared to drifting station data. The HIRHAM5 sensitivity study highlights the need for improving accuracy of low-level (<700 m) cloud observations, as these clouds exert a strong impact on the near-surface climate.

  14. Variations in freshwater pathways from the Arctic Ocean into the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Zeliang; Hamilton, James; Su, Jie

    2017-06-01

    Understanding the mechanisms that drive exchanges between the Arctic Ocean and adjacent oceans is critical to building our knowledge of how the Arctic is reacting to a warming climate, and how potential changes in Arctic Ocean freshwater export may impact the AMOC (Atlantic Meridional Overturning Circulation). Here, freshwater pathways from the Arctic Ocean to the North Atlantic are investigated using a 1 degree global model. An EOF analysis of modeled sea surface height (SSH) demonstrates that while the second mode accounts for only 15% of the variability, the associated geostrophic currents are strongly correlated with freshwater exports through CAA (Canadian Arctic Archipelago; r = 0.75), Nares Strait (r = 0.77) and Fram Strait (r = -0.60). Separation of sea level into contributing parts allows us to show that the EOF1 is primarily a barotropic mode reflecting variability in bottom pressure equivalent sea level, while the EOF2 mode reflects changes in steric height in the Arctic Basin. This second mode is linked to momentum wind driven surface current, and dominates the Arctic Ocean freshwater exports. Both the Arctic Oscillation and Arctic Dipole atmospheric indices are shown to be linked to Arctic Ocean freshwater exports, with the forcing associated with the Arctic Dipole reflecting the out-of-phase relationship between transports through the CAA and those through Fram Strait. Finally, observed freshwater transport variation through the CAA is found to be strongly correlated with tide gauge data from the Beaufort Sea coast (r = 0.81), and with the EOF2 mode of GRACE bottom pressure data (r = 0.85) on inter-annual timescales.

  15. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system

    USGS Publications Warehouse

    McGuire, A.D.; Chapin, F. S.; Walsh, J.E.; Wirth, C.; ,

    2006-01-01

    The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The balance of evidence suggests that positive feedbacks to global warming will likely dominate in the Arctic during the next 50 to 100 years. However, the negative feedbacks associated with changing the freshwater balance of the Arctic Ocean might abruptly launch the planet into another glacial period on longer timescales. In light of uncertainties and the vulnerabilities of the climate system to responses in the Arctic, it is important that we improve our understanding of how integrated regional changes in the Arctic will likely influence the evolution of the global climate system. Copyright ?? 2006 by Annual Reviews. All rights reserved.

  16. Levels and temporal trends of persistent organic pollutants (POPs) in arctic foxes (Vulpes lagopus) from Svalbard in relation to dietary habits and food availability.

    PubMed

    Andersen, Martin S; Fuglei, Eva; König, Max; Lipasti, Inka; Pedersen, Åshild Ø; Polder, Anuschka; Yoccoz, Nigel G; Routti, Heli

    2015-04-01

    Temporal trends of persistent organic pollutants (POPs) in arctic foxes (Vulpes lagopus) from Svalbard, Norway, were investigated in relation to feeding habits and seasonal food availability. Arctic foxes from Svalbard forage in both marine and terrestrial ecosystems and the availability of their food items are impacted by climatic variability. Concentrations of polychlorinated biphenyls (PCBs), organochlorinated pesticides (OCPs) and brominated flame retardants (polybrominated diphenyl ethers [PBDEs] and hexabromocyclododecane [HBCDD]) were analyzed in the liver of 141 arctic foxes collected between 1997 and 2013. Stable carbon isotope values (δ13C) were used as a proxy for feeding on marine versus terrestrial prey. The annual number of recovered reindeer carcasses and sea ice cover were used as proxies for climate influenced food availability (reindeers, seals). Linear models revealed that concentrations of PCBs, chlordanes, p,p'-DDE, mirex and PBDEs decreased 4-11% per year, while no trends were observed for hexachlorobenzene (HCB) or β-hexachlorocyclohexane (β-HCH). Positive relationships between POP concentrations and δ13C indicate that concentrations of all compounds increase with increasing marine dietary input. Increasing reindeer mortality was related to lower HCB concentrations in the foxes based on the linear models. This suggests that concentrations of HCB in arctic foxes may be influenced by high mortality levels of Svalbard reindeer. Further, β-HCH concentrations showed a positive association with sea ice cover. These results in addition to the strong effect of δ13C on all POP concentrations suggest that climate-related changes in arctic fox diet are likely to influence contaminant concentrations in arctic foxes from Svalbard. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Sources and Fluxes of Atmospheric Methane from Lakes in the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Townsend-Small, A.; Akerstrom, F.; Hinkel, K. M.; Arp, C. D.; Beck, R. A.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Eisner, W. R.

    2014-12-01

    Climate warming in the Arctic may result in release of carbon dioxide and/or methane from thawing permafrost soils, resulting in a positive feedback to warming. Permafrost thaw may also result in release of methane from previously trapped natural gas. The Arctic landscape is approximately 50% covered by shallow permafrost lakes, and these environments may serve as bellwethers for climate change - carbon cycle feedbacks, since permafrost thaw is generally deeper under lakes than tundra soils. Since 2011, the Circum-Arctic Lakes Observation Network (CALON) project has documented landscape-scale variability in physical and biogeochemical processes of Arctic lakes in permafrost terrain, including carbon cycle feedbacks to climate warming. Here we present a dataset of concentrations, isotope ratios (13C and 2H), and atmospheric fluxes of methane from lakes in Arctic Alaska. Concentrations of methane in lake water ranged from 0.3 to 43 micrograms per liter, or between 6 and 750 times supersaturated with respect to air. Isotopic measurements of dissolved methane indicated that most of the lakes had methane derived from anaerobic organic matter decomposition, but that some lakes may have a small source of methane from fossil fuel sources such as natural gas or coal beds. Concurrent measurements of methane fluxes and dissolved methane concentrations in summer of 2014 will aid in translating routine dissolved measurements into fluxes, and will also elucidate the relative importance of diffusive versus ebulliative fluxes. It is essential that measurements of methane emissions from Arctic lakes be continued long-term to determine whether methane emissions are on the rise, and whether warming of the lakes leads to increased venting of fossil fuel methane from enhanced thaw of permafrost beneath the lakes.

  18. Amsterdamøya: a key site for the post-glacial of Svalbard

    NASA Astrophysics Data System (ADS)

    Bakke, Jostein; Balascio, Nicholas; van der Bilt, Willem; D`Andrea, William; Bradley, Raymond; Gjerde, Marthe; Hormes, Anne; Olafsdottir, Sædis; Røthe, Torgeir; Vasskog, Kristian; De Wet, Greg; Werner, Johannes

    2016-04-01

    No other place on Earth is changing as fast as the Arctic in terms of climate. On average this region is warming twice as fast as the global average with a seasonal bias towards winter. A major retreat in sea ice extent accompanied by an even more massive thinning represents one of the most robust trends in the Arctic. This trend is anticipated to continue in the decades to come and, according to some models, will leave the Arctic Ocean open during summer some time between 2050-2100. Unabated reduction in the spring-snow cover represents another significant trend. The current warming is also expressed in the massive melting of the Greenland ice sheet as well as local glaciers and ice caps in the Arctic, which causes increased freshwater influx to the Arctic Ocean and adjacent seas. Climate modeling and scenarios are improving and becoming of growing importance, but without a firmer understanding of natural climate variability over longer timescale it is still hard to evaluate and best read the output from these models. In the SHIFTS project we have done an unparalleled effort to overcome this quandary, providing necessary empirical data on past climate which is critical for assessing past changes in atmospheric circulation patterns controlling Arctic hydroclimate. Our study site is located at the northwestern corner of Svalbard on the Island of Amsterdamøya, a site sensitive to changes in both oceanic and atmospheric forcing, at tail of the westward moving branch of the North Atlantic current. Here we have cored several lakes with the goal of providing quantitative data on temperature, hydrology and winter precipitation for the Holocene. Our approach has been to combine reconstruction of glaciers with lipid biomarkers and hydrogen isotopes with the goal of unravel the underlying signature of past climate in the Arctic. Chronological control is secured by radiocarbon dates on macrofossils combined with measurement of paleomagnetic secular variations. Here we synthesis the individual time series providing quantitative data on winter precipitation and summer temperature of the past.

  19. A new collective view of oceanography of the Arctic and North Atlantic basins

    NASA Astrophysics Data System (ADS)

    Yashayaev, Igor; Seidov, Dan; Demirov, Entcho

    2015-03-01

    We review some historical aspects of the major observational programs in the North Atlantic and adjacent regions that contributed to establishing and maintaining the global ocean climate monitoring network. The paper also presents the oceanic perspectives of climate change and touches the important issues of ocean climate variability on time scales from years to decades. Some elements of the improved understanding of the causes and mechanisms of variability in the subpolar North Atlantic and adjacent seas are discussed in detail. The sophistication of current oceanographic analysis, especially in connection with the most recent technological breakthroughs - notably the launch of the global array of profiling Argo floats - allows us to approach new challenges in ocean research. We demonstrate how the ocean-climate changes in the subpolar basins and polar seas correlate with variations in the major climate indices such as the North Atlantic Oscillation and Atlantic Multidecadal Oscillation, and discuss possible connections between the unprecedented changes in the Arctic and Greenland ice-melt rates observed over the past decade and variability of hydrographic conditions in the Labrador Sea. Furthermore, a synthesis of shipboard and Argo measurements in the Labrador Sea reveals the effects of the regional climate trends such as freshening of the upper layer - possible causes of which are also discussed - on the winter convection in the Labrador Sea including its strength, duration and spatial extent. These changes could have a profound impact on the regional and planetary climates. A section with the highlights of all papers comprising the Special Issue concludes the Preface.

  20. Total Column Water Vapor Trends from 15 Years of MODIS/NIR above the Arctic

    NASA Astrophysics Data System (ADS)

    OMAR, D. A.; Sarkissian, A.; Keckhut, P.; Bock, O.; Claud, C.; Irbah, A.

    2016-12-01

    Water vapor is defined as a major climate indicator at many occasions, highly variable spatially and temporarily, water vapor has the most important natural GHG effect, through his high infra-red absorption capacity, and temperature changes sensitivity, water vapor affects the Earth radiative budget and energy transfer, evolved at many atmospheric dynamics including the cloud formation and the aerosols composition. As a consequence to the accelerated transition towards the new climate especially above the arctic, and to investigate the feedback to the arctic amplification and the global warming, we study the water vapor variability and trends on a relatively long term above the arctic region, using the Total Column Water Vapor retrieval from MODIS/NIR spectro-radiometer on board of TERRA satellite. These 15 Years monthly daytime satellite data were compared to GPS integrated water vapor over four selected NDACC polar stations: Sodankyla-Finland, Ny-Alesund -Svalbard, Thule-Greenland, Scoresbysund-Greenland. GPS data are calculated with the temperature and pressure profile of the nearest coastal ERA-Interim station. These data were filtered for nearly coincident time to satellite over pass in order to exclude the timing effects. Errors, relative biases and RMSE at both monthly and seasonally scales will be presented and discussed. Then the MODIS 15 years linear trends and anomalies above the whole Arctic will be shown with a special focus on sea ice extent decline feed-back and hydrologic cycle connections with respect to heat waves. Results show wetter trends on the Mackenzie and mid-Siberia at September, unlike the European arctic summer which is getting drier, while Svalbard is getting wetter almost all the year. Conclusion and perspectives are also presented.

  1. Holocene Paleoceanographic Environments at the Chukchi-Alaskan Margin: Implications for Future Changes

    NASA Astrophysics Data System (ADS)

    Polyak, L.; Nam, S. I.; Dipre, G.; Kim, S. Y.; Ortiz, J. D.; Darby, D. A.

    2017-12-01

    The impacts of the North Pacific oceanic and atmospheric system on the Arctic Ocean result in accelerated sea-ice retreat and related changes in hydrography and biota in the western Arctic. Paleoclimatic records from the Pacific sector of the Arctic are key for understanding the long-term history of these interactions. As opposed to stratigraphically long but strongly compressed sediment cores recovered from the deep Arctic Ocean, sediment depocenters on the Chukchi-Alaskan margin yield continuous, medium to high resolution records formed since the last deglaciation. While early Holocene conditions were non-analogous to modern environments due to the effects of prolonged deglaciation and insufficiently high sea levels, mid to late Holocene sediments are more relevant for recent and modern climate variability. Notably, a large depocenter at the Alaskan margin has sedimentation rates estimated as high as a few millimeters per year, thus providing a decadal to near-annual resolution. This high accumulation can be explained by sediment delivery via the Alaskan Coastal Current originating from the Bering Sea and supposedly controlled by the Aleutian Low pressure center. Preliminary results from sediment cores recovering the last several centuries, along with a comparison with other paleoclimatic proxy records from the Arctic-North Pacific region, indicate a persistent role of the Aleutian Low in the Bering Strait inflow and attendant deposition. More proxy studies are underway to reconstruct the history of this circulation system and its relationship with sea ice extent. The expected results will improve our understanding of natural variability in oceanic and atmospheric conditions at the Chukchi-Alaskan margin, a critical area for modulating the Arctic climate change.

  2. Integrating Research on Global Climate Change and Human Use of the Oceans: a Geospatial Method for Daily Monitoring of Sea Ice and Ship Traffic in the Arctic

    NASA Astrophysics Data System (ADS)

    Eucker, W.; McGillivary, P. A.

    2012-12-01

    One apparent consequence of global climate change has been a decrease in the extent and thickness of Arctic sea ice more rapidly than models have predicted, while Arctic ship traffic has likewise increased beyond economic predictions. To ensure representative observations of changing climate conditions and human use of the Arctic Ocean, we concluded a method of tracking daily changes in both sea ice and shipping in the Arctic Ocean was needed. Such a process improves the availability of sea ice data for navigational safety and allows future developments to be monitored for understanding of ice and shipping in relation to policy decisions appropriate to optimize sustainable use of a changing Arctic Ocean. The impetus for this work was the 2009 Arctic Marine Shipping Assessment (AMSA) which provided baseline data on Arctic ship traffic. AMSA was based on responses from circumpolar countries, was manpower intensive, and took years to compile. A more timely method of monitoring human use of the Arctic Ocean was needed. To address this, a method of monitoring sea ice on a scale relevant to ship-navigation (<10km) was developed and implemented in conjunction with arctic ship tracking using S-AIS (Satellite Automatic Identification Systems). S-AIS is internationally required on ships over a certain size, which includes most commercial vessels in the Arctic Ocean. Daily AIS and sea ice observations were chosen for this study. Results of this method of geospatial analysis of the entire arctic are presented for a year long period from April 1, 2010 to March 31, 2011. This confirmed the dominance of European Arctic ship traffic. Arctic shipping is maximal during August and diminishes in September with a minimum in winter, although some shipping continues year-round in perennially ice-free areas. Data are analyzed for the four principal arctic quadrants around the North Pole by season for number and nationality of vessels. The goal of this study was not merely to monitor ship traffic and ice conditions concurrently, but also to demonstrate a new method of ocean monitoring based on daily assimilation, data fusion, and integrated visualization of satellite ice remote sensing data and S-AIS ship data. In the future, as Arctic ship traffic and cryosphere sea ice cover variability are both expected to increase, this method can provide near real-time physical data on global climate change and human dimensions of ocean use of to guide policies addressing arctic resource management, Search and Rescue (SAR) operations, oil spill response, and issues such as ship noise impacts on marine mammals, and whale-ship collision avoidance. An internationally agreed implementation of this methodology would benefit ships operating in the Arctic and advance sustainable use of the Arctic Ocean.

  3. Population, Migration, and Arctic Community Change

    NASA Astrophysics Data System (ADS)

    Hamilton, L.; Wirsing, J.

    2017-12-01

    North American Arctic communities commonly show decadal trends in population growth, driven by natural increase but variably offset by net migration with year-to-year volatility. Migration rates themselves can be a social indicator, integrating a range of push and pull factors. Population and population change of Arctic communities are basic scale properties affecting the resources needed to achieve sustainability, and the adaptations that may be required for climate change (such as relocation from flood-threatened locations). We examine interannual changes 1990-2016 in population and net migration of 43 Alaska Arctic communities, some facing serious threats of flooding. Our Alaska analysis updates previous work with additional years of data. We also extend this demographic analysis for the first time to 25 towns and villages of Nunavut, Canada.

  4. Towards decadal time series of Arctic and Antarctic sea ice thickness from radar altimetry

    NASA Astrophysics Data System (ADS)

    Hendricks, S.; Rinne, E. J.; Paul, S.; Ricker, R.; Skourup, H.; Kern, S.; Sandven, S.

    2016-12-01

    The CryoSat-2 mission has demonstrated the value of radar altimetry to assess the interannual variability and short-term trends of Arctic sea ice over the existing observational record of 6 winter seasons. CryoSat-2 is a particular successful mission for sea ice mass balance assessment due to its novel radar altimeter concept and orbit configuration, but radar altimetry data is available since 1993 from the ERS-1/2 and Envisat missions. Combining these datasets promises a decadal climate data record of sea ice thickness, but inter-mission biases must be taken into account due to the evolution of radar altimeters and the impact of changing sea ice conditions on retrieval algorithm parametrizations. The ESA Climate Change Initiative on Sea Ice aims to extent the list of data records for Essential Climate Variables (ECV's) with a consistent time series of sea ice thickness from available radar altimeter data. We report on the progress of the algorithm development and choices for auxiliary data sets for sea ice thickness retrieval in the Arctic and Antarctic Oceans. Particular challenges are the classification of surface types and freeboard retrieval based on radar waveforms with significantly varying footprint sizes. In addition, auxiliary data sets, e.g. for snow depth, are far less developed in the Antarctic and we will discuss the expected skill of the sea ice thickness ECV's in both hemispheres.

  5. Variability in Arctic sea ice topography and atmospheric form drag: Combining IceBridge laser altimetry with ASCAT radar backscatter.

    NASA Astrophysics Data System (ADS)

    Petty, A.; Tsamados, M.; Kurtz, N. T.

    2016-12-01

    Here we present atmospheric form drag estimates over Arctic sea ice using high resolution, three-dimensional surface elevation data from NASA's Operation IceBridge Airborne Topographic Mapper (ATM), and surface roughness estimates from the Advanced Scatterometer (ASCAT). Surface features of the ice pack (e.g. pressure ridges) are detected using IceBridge ATM elevation data and a novel surface feature-picking algorithm. We use simple form drag parameterizations to convert the observed height and spacing of surface features into an effective atmospheric form drag coefficient. The results demonstrate strong regional variability in the atmospheric form drag coefficient, linked to variability in both the height and spacing of surface features. This includes form drag estimates around 2-3 times higher over the multiyear ice north of Greenland, compared to the first-year ice of the Beaufort/Chukchi seas. We compare results from both scanning and linear profiling to ensure our results are consistent with previous studies investigating form drag over Arctic sea ice. A strong correlation between ASCAT surface roughness estimates (using radar backscatter) and the IceBridge form drag results enable us to extrapolate the IceBridge data collected over the western-Arctic across the entire Arctic Ocean. While our focus is on spring, due to the timing of the primary IceBridge campaigns since 2009, we also take advantage of the autumn data collected by IceBridge in 2015 to investigate seasonality in Arctic ice topography and the resulting form drag coefficient. Our results offer the first large-scale assessment of atmospheric form drag over Arctic sea ice due to variable ice topography (i.e. within the Arctic pack ice). The analysis is being extended to the Antarctic IceBridge sea ice data, and the results are being used to calibrate a sophisticated form drag parameterization scheme included in the sea ice model CICE, to improve the representation of form drag over Arctic and Antarctic sea ice in global climate models.

  6. Integrating Access to Arctic Environmental Change and Human Health Research for the International Polar Year and Beyond

    NASA Astrophysics Data System (ADS)

    Garrett, C. L.

    2006-12-01

    Each day, people in the communities of the Arctic face challenges to their health and well-being from changing climatic and environmental conditions and increasing levels of pollution to emerging infectious diseases. For this reason, it is critical that Arctic researchers and residents have access to timely, accurate, and relevant information addressing their unique concerns. To meet this need, the National Library of Medicine (NLM) and the University of Alaska Anchorage (UAA) have developed the Arctic Health website, www.arctichealth.org. The website provides an easy-to-use one-stop shop for information on the diverse health-related aspects of the Arctic region. It is organized around relevant topics, including climate change and environmental health, traditional healing and telehealth/telemedicine. The Arctic Health website provides links to the most reliable resources available from local, state, and international agencies, universities, and professional organizations. Two major goals of the site are to create a comprehensive, accessible repository for various media and a listing of research projects, past and present that relate to climate change and human health in the Arctic. To increase the site's relevance, the project has established and continues to create collaborations with researchers, communities, and other organizations to supply publications not available elsewhere, including gray literature, streaming video of traditional healers, and oral histories. These collaborations will also help ensure a database with a comprehensive list of research projects being done in the Arctic, from the international to the local level. Finding ways to negotiate the legal, cultural and national concerns of data sharing are a continuing job for the management team. All of this helps to create a system that will eventually track and ensure that data and reports from the research database translate to the publications database. As part of these efforts, the site is hosting the Arctic Human Health Initiative (AHHI), the human health focus of the International Polar Year activities. AHHI will coordinate research in the areas of infectious disease; the effects of anthropogenic pollution, UV radiation, and climate variability on human health; and telehealth innovations. A major goal of AHHI is the better integration of the findings of Arctic health research through outreach programs and public education.

  7. Global warming triggers the loss of a key Arctic refugium

    PubMed Central

    Rühland, K. M.; Paterson, A. M.; Keller, W.; Michelutti, N.; Smol, J. P.

    2013-01-01

    We document the rapid transformation of one of the Earth's last remaining Arctic refugia, a change that is being driven by global warming. In stark contrast to the amplified warming observed throughout much of the Arctic, the Hudson Bay Lowlands (HBL) of subarctic Canada has maintained cool temperatures, largely due to the counteracting effects of persistent sea ice. However, since the mid-1990s, climate of the HBL has passed a tipping point, the pace and magnitude of which is exceptional even by Arctic standards, exceeding the range of regional long-term variability. Using high-resolution, palaeolimnological records of algal remains in dated lake sediment cores, we report that, within this short period of intense warming, striking biological changes have occurred in the region's freshwater ecosystems. The delayed and intense warming in this remote region provides a natural observatory for testing ecosystem resilience under a rapidly changing climate, in the absence of direct anthropogenic influences. The environmental repercussions of this climate change are of global significance, influencing the huge store of carbon in the region's extensive peatlands, the world's southern-most polar bear population that depends upon Hudson Bay sea ice and permafrost for survival, and native communities who rely on this landscape for sustenance. PMID:24107529

  8. Does Arctic governance hold the key to achieving climate policy targets?

    NASA Astrophysics Data System (ADS)

    Forbis, Robert, Jr.; Hayhoe, Katharine

    2018-02-01

    Arctic feedbacks are increasingly viewed as the wild card in the climate system; but their most unpredictable and potentially dangerous aspect may lie in the human, rather than the physical, response to a warming climate. If Arctic policy is driven by agendas based on domestic resource development, the ensuing oil and gas extraction will ensure the failure of the Paris Agreement. If Arctic energy policy can be framed by the Arctic Council, however, its environmental agenda and fragmented governance structure offers the scientific community a fighting chance to determine the region’s energy future. Connecting Arctic climate science to resource economics via its unique governance structure is one of the most powerful ways the scientific community can protect the Arctic region’s environmental, cultural, and scientific resources, and influence international energy and climate policy.

  9. A multiple-proxy approach to understanding rapid Holocene climate change in Southeast Greenland

    NASA Astrophysics Data System (ADS)

    Davin, S. H.; Bradley, R. S.; Balascio, N. L.; de Wet, G.

    2012-12-01

    The susceptibility of the Arctic to climate change has made it an excellent workshop for paleoclimatological research. Although there have been previous studies concerning climate variability carried out in the Arctic, there remains a critical dearth of knowledge due the limited number of high-resolution Holocene climate-proxy records available from this region. This gap skews our understanding of observed and predicted climate change, and fuels uncertainty both in the realms of science and policy. This study takes a comprehensive approach to tracking Holocene climate variability in the vicinity of Tasiilaq, Southeast Greenland using a ~5.6 m sediment core from Lower Sermilik Lake. An age-depth model for the core has been established using 8 radiocarbon dates, the oldest of which was taken at 4 m down core and has been been dated to approximately 6.2 kyr BP. The bottom meter of the core below the final radiocarbon date contains a transition from cobbles and coarse sand to organic-rich laminations, indicating the termination of direct glacial influence and therefore likely marking the end of the last glacial period in this region. The remainder of the core is similarly organic-rich, with light-to-dark brown laminations ranging from 0.5 -1 cm in thickness and riddled with turbidites. Using this core in tandem with findings from an on-site assessment of the geomorphic history of the locale we attempt to assess and infer the rapid climatic shifts associated with the Holocene on a sub-centennial scale. Such changes include the termination of the last glacial period, the Mid-Holocene Climatic Optimum, the Neoglacial Period, the Medieval Climatic Optimum, and the Little Ice Age. A multiple proxy approach including magnetic susceptibility, bulk organic geochemistry, elemental profiles acquired by XRF scanning, grain-size, and spectral data will be used to characterize the sediment and infer paleoclimate conditions. Additionally, percent biogenic silica by weight has been quantified via diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and validated by a traditional wet leaching method. The use of the emerging DRIFTS technology to obtain inferred biogenic silica concentrations has not been widely applied to arctic lacustrine sediments and will help to contribute to the presently limited pool of literature on the topic. Preliminary results of the data reveal high frequency fluctuations between laminations superimposed on long-term trends, which has revealed already some correlation with Holocene climatic events. The data provided by this barrage of proxies is to be presented and will contribute to the understanding of Holocene Arctic climate change at a sub-centennial scale.

  10. Sea ice decline and 21st century trans-Arctic shipping routes

    NASA Astrophysics Data System (ADS)

    Melia, N.; Haines, K.; Hawkins, E.

    2016-09-01

    The observed decline in Arctic sea ice is projected to continue, opening shorter trade routes across the Arctic Ocean, with potentially global economic implications. Here we quantify, using Coupled Model Intercomparison Project Phase 5 global climate model simulations calibrated to remove spatial biases, how projected sea ice loss might increase opportunities for Arctic transit shipping. By midcentury for standard open water vessels, the frequency of navigable periods doubles, with routes across the central Arctic becoming available. A sea ice-ship speed relationship is used to show that European routes to Asia typically become 10 days faster via the Arctic than alternatives by midcentury, and 13 days faster by late century, while North American routes become 4 days faster. Future greenhouse gas emissions have a larger impact by late century; the shipping season reaching 4-8 months in Representative Concentration Pathway (RCP)8.5 double that of RCP2.6, both with substantial interannual variability. Moderately, ice-strengthened vessels likely enable Arctic transits for 10-12 months by late century.

  11. Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon

    USGS Publications Warehouse

    Elder, Clayton D.; Xu, Xiaomei; Walker, Jennifer; Schnell, Jordan L.; Hinkel, Kenneth M.; Townsend-Small, Amy; Arp, Christopher D.; Pohlman, John; Gaglioti, Benjamin V.; Czimzik, Claudia I.

    2018-01-01

    Climate-sensitive Arctic lakes have been identified as conduits for ancient permafrost-carbon (C) emissions and as such accelerate warming. However, the environmental factors that control emission pathways and their sources are unclear; this complicates upscaling, forecasting and climate-impact-assessment efforts. Here we show that current whole-lake CH4 and CO2 emissions from widespread lakes in Arctic Alaska primarily originate from organic matter fixed within the past 3–4 millennia (modern to 3,300 ± 70 years before the present), and not from Pleistocene permafrost C. Furthermore, almost 100% of the annual diffusive C flux is emitted as CO2. Although the lakes mostly processed younger C (89 ± 3% of total C emissions), minor contributions from ancient C sources were two times greater in fine-textured versus coarse-textured Pleistocene sediments, which emphasizes the importance of the underlying geological substrate in current and future emissions. This spatially extensive survey considered the environmental and temporal variability necessary to monitor and forecast the fate of ancient permafrost C as Arctic warming progresses.

  12. Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon

    NASA Astrophysics Data System (ADS)

    Elder, Clayton D.; Xu, Xiaomei; Walker, Jennifer; Schnell, Jordan L.; Hinkel, Kenneth M.; Townsend-Small, Amy; Arp, Christopher D.; Pohlman, John W.; Gaglioti, Benjamin V.; Czimczik, Claudia I.

    2018-01-01

    Climate-sensitive Arctic lakes have been identified as conduits for ancient permafrost-carbon (C) emissions and as such accelerate warming. However, the environmental factors that control emission pathways and their sources are unclear; this complicates upscaling, forecasting and climate-impact-assessment efforts. Here we show that current whole-lake CH4 and CO2 emissions from widespread lakes in Arctic Alaska primarily originate from organic matter fixed within the past 3-4 millennia (modern to 3,300 ± 70 years before the present), and not from Pleistocene permafrost C. Furthermore, almost 100% of the annual diffusive C flux is emitted as CO2. Although the lakes mostly processed younger C (89 ± 3% of total C emissions), minor contributions from ancient C sources were two times greater in fine-textured versus coarse-textured Pleistocene sediments, which emphasizes the importance of the underlying geological substrate in current and future emissions. This spatially extensive survey considered the environmental and temporal variability necessary to monitor and forecast the fate of ancient permafrost C as Arctic warming progresses.

  13. Variable Trends in High Peak Flow Generation Across the Swedish Sub-Arctic

    NASA Astrophysics Data System (ADS)

    Matti, B.; Dahlke, H. E.; Lyon, S. W.

    2015-12-01

    There is growing concern about increased frequency and severity of floods and droughts globally in recent years. Improving knowledge on the complexity of hydrological systems and their interactions with climate is essential to be able to determine drivers of these extreme events and to predict changes in these drivers under altered climate conditions. This is particularly true in cold regions such as the Swedish Sub-Arctic where independent shifts in both precipitation and temperature can have significant influence on extremes. This study explores changes in the magnitude and timing of the annual maximum daily flows in 18 Swedish sub-arctic catchments. The Mann-Kendall trend test was used to estimate changes in selected hydrological signatures. Further, a flood frequency analysis was conducted by fitting a Gumbel (Extreme Value type I) distribution whereby selected flood percentiles were tested for stationarity using a generalized least squares regression approach. Our results showed that hydrological systems in cold climates have complex, heterogeneous interactions with climate. Shifts from a snowmelt-dominated to a rainfall-dominated flow regime were evident with all significant trends pointing towards (1) lower flood magnitudes in the spring flood; (2) earlier flood occurrence; (3) earlier snowmelt onset; and (4) decreasing mean summer flows. Decreasing trends in flood magnitude and mean summer flows suggest permafrost thawing and are in agreement with the increasing trends in annual minimum flows. Trends in the selected flood percentiles showed an increase in extreme events over the entire period of record, while trends were variable under shorter periods. A thorough uncertainty analysis emphasized that the applied trend test is highly sensitive to the period of record considered. As such, no clear overall regional pattern could be determined suggesting that how catchments are responding to changes in climatic drivers is strongly influenced by their physical characteristics.

  14. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  15. Amplified Arctic warming by phytoplankton under greenhouse warming

    PubMed Central

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-01-01

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  16. The Immediacy of Arctic Change: New 2016-17 Extremes

    NASA Astrophysics Data System (ADS)

    Overland, J. E.; Kattsov, V.; Olsen, M. S.; Walsh, J. E.

    2017-12-01

    Additional recent observations add increased certainty to cryospheric Arctic changes, and trends are very likely to continue past mid-century. Observed and projected Arctic changes are large compared with those at mid-latitude, driven by greenhouse gas (GHG) increase and Arctic feedbacks. Sea ice has undergone a regime shift from mostly multi-year to first-year sea ice, and summer sea ice is likely to be esentially gone within the next few decades. Spring snow cover is decreasing, and Arctic greening is increasing, although somewhat variable. There are potential emerging impacts of Arctic change on mid-latitude weather and sea level rise. Model assessments under different future GHG concentration scenarios show that stabilizing global temperatures near 2° C compliant with Paris agreement could slow, but not halt further major changes in the Arctic before mid- 21st century; foreseeable Arctic temperature changes are 4-5° C for fall/winter by 2040-2050. Substantial and immediate mitigation reductions in GHG emissions (at least at the level of the RCP 4.5 emission scenario) should reduce the risk of further change for most cryospheric components after mid-century, and reduce the likelyhood of potential runaway loss of ice sheets and glaciers and their impact on sea level rise. Extreme winter 2016 Arctic temperatures and a large winter 2017 sea ice deficit demonstrate contemporary climate states outside the envelope of previous experience. While there is confidence in the sign of Arctic changes, recent observations increase uncertainty in projecting the rate for future real world scenarios. Do events return to mean conditions, represent irreversible changes, or contribute to accelerating trends beyond those provided by climate models? Such questions highlight the need for improved quantitative prediction of the cryosphere and its global impacts, crucial for adaptation actions and risk management at local to global scales.

  17. Remote sensing of the Canadian Arctic: Modelling biophysical variables

    NASA Astrophysics Data System (ADS)

    Liu, Nanfeng

    It is anticipated that Arctic vegetation will respond in a variety of ways to altered temperature and precipitation patterns expected with climate change, including changes in phenology, productivity, biomass, cover and net ecosystem exchange. Remote sensing provides data and data processing methodologies for monitoring and assessing Arctic vegetation over large areas. The goal of this research was to explore the potential of hyperspectral and high spatial resolution multispectral remote sensing data for modelling two important Arctic biophysical variables: Percent Vegetation Cover (PVC) and the fraction of Absorbed Photosynthetically Active Radiation (fAPAR). A series of field experiments were conducted to collect PVC and fAPAR at three Canadian Arctic sites: (1) Sabine Peninsula, Melville Island, NU; (2) Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, NU; and (3) Apex River Watershed (ARW), Baffin Island, NU. Linear relationships between biophysical variables and Vegetation Indices (VIs) were examined at different spatial scales using field spectra (for the Sabine Peninsula site) and high spatial resolution satellite data (for the CBAWO and ARW sites). At the Sabine Peninsula site, hyperspectral VIs exhibited a better performance for modelling PVC than multispectral VIs due to their capacity for sampling fine spectral features. The optimal hyperspectral bands were located at important spectral features observed in Arctic vegetation spectra, including leaf pigment absorption in the red wavelengths and at the red-edge, leaf water absorption in the near infrared, and leaf cellulose and lignin absorption in the shortwave infrared. At the CBAWO and ARW sites, field PVC and fAPAR exhibited strong correlations (R2 > 0.70) with the NDVI (Normalized Difference Vegetation Index) derived from high-resolution WorldView-2 data. Similarly, high spatial resolution satellite-derived fAPAR was correlated to MODIS fAPAR (R2 = 0.68), with a systematic overestimation of 0.08, which was attributed to PAR absorption by soil that could not be excluded from the fAPAR calculation. This research clearly demonstrates that high spectral and spatial resolution remote sensing VIs can be used to successfully model Arctic biophysical variables. The methods and results presented in this research provided a guide for future studies aiming to model other Arctic biophysical variables through remote sensing data.

  18. Final Technical Report for Project "Improving the Simulation of Arctic Clouds in CCSM3"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen J. Vavrus

    2008-11-15

    This project has focused on the simulation of Arctic clouds in CCSM3 and how the modeled cloud amount (and climate) can be improved substantially by altering the parameterized low cloud fraction. The new formula, dubbed 'freeezedry', alleviates the bias of excessive low clouds during polar winter by reducing the cloud amount under very dry conditions. During winter, freezedry decreases the low cloud amount over the coldest regions in high latitudes by over 50% locally and more than 30% averaged across the Arctic (Fig. 1). The cloud reduction causes an Arctic-wide drop of 15 W m{sup -2} in surface cloud radiativemore » forcing (CRF) during winter and about a 50% decrease in mean annual Arctic CRF. Consequently, wintertime surface temperatures fall by up to 4 K on land and 2-8 K over the Arctic Ocean, thus significantly reducing the model's pronounced warm bias (Fig. 1). While improving the polar climate simulation in CCSM3, freezedry has virtually no influence outside of very cold regions (Fig. 2) or during summer (Fig. 3), which are space and time domains that were not targeted. Furthermore, the simplicity of this parameterization allows it to be readily incorporated into other GCMs, many of which also suffer from excessive wintertime polar cloudiness, based on the results from the CMIP3 archive (Vavrus et al., 2008). Freezedry also affects CCSM3's sensitivity to greenhouse forcing. In a transient-CO{sub 2} experiment, the model version with freezedry warms up to 20% less in the North Polar and South Polar regions (1.5 K and 0.5 K smaller warming, respectively) (Fig. 4). Paradoxically, the muted high-latitude response occurs despite a much larger increase in cloud amount with freezedry during non-summer months (when clouds warm the surface), apparently because of the colder modern reference climate. These results of the freezedry parameterization have recently been published (Vavrus and D. Waliser, 2008: An improved parameterization for simulating Arctic cloud amount in the CCSM3 climate model. J. Climate, 21, 5673-5687.). The article also provides a novel synthesis of surface- and satellite-based Arctic cloud observations that show how much the new freezedry parameterization improves the simulated cloud amount in high latitudes (Fig. 3). Freezedry has been incorporated into the CCSM3.5 version, in which it successfully limits the excessive polar clouds, and may be used in CCSM4. Material from this work is also appearing in a synthesis article on future Arctic cloud changes (Vavrus, D. Waliser, J. Francis, and A. Schweiger, 'Simulations of 20th and 21st century Arctic cloud amount in the global climate models assessed in the IPCC AR4', accepted in Climate Dynamics) and was used in a collaborative paper on Arctic cloud-sea ice coupling (Schweiger, A., R. Lindsay, S. Vavrus, and J. Francis, 2008: Relationships between Arctic sea ice and clouds during autumn. J. Climate, 21, 4799-4810.). This research was presented at the 2007 CCSM Annual Workshop, as well as the CCSM's 2007 Atmospheric Model Working Group and Polar Working Group Meetings. The findings were also shown at the 2007 Climate Change Prediction Program's Science Team Meeting. In addition, I served as an instructor at the International Arctic Research Center's (IARC) Summer School on Arctic Climate Modeling in Fairbanks this summer, where I presented on the challenges and techniques used in simulating polar clouds. I also contributed to the development of a new Arctic System Model by attending a workshop in Colorado this summer on this fledgling project. Finally, an outreach activity for the general public has been the development of an interactive web site () that displays Arctic cloud amount in the CMIP3 climate model archive under present and future scenarios. This site allows users to make polar and global maps of a variety of climate variables to investigate the individual and ensemble-mean GCM response to greenhouse warming and the extent to which models adequately represent Arctic clouds in the modern climate. This site was used extensively in the IARC summer school projects. This work has also led to a collaboration this year during a 4-month visit I made to NCAR through its Faculty Fellowship Program. I worked with scientists Marika Holland, David Bailey, Andrew Gettleman, and Jen Kay, who are researching polar climate and/or clouds. I met with this group frequently during my visit, leading to some fruitful interactions. This work led to the discovery of a tightly coupled response of clouds and sea ice during intervals of rapid sea ice loss in greenhouse simulations, as well as advising on the evolving CCSM3.5 to CCSM4 model development. This involvement with NCAR also led to a longer-term connection, as I have recently begun a two-year stint on the SSC for CCSM.« less

  19. Future Changes in Major Stratospheric Warmings in CCMI Models

    NASA Technical Reports Server (NTRS)

    Ayarzaguena, B.; Langematz, U.; Polvani, L. M; Abalichin, J.; Akiyoshi, H.; Klekociuk, A.; Michou, M.; Morgenstern, O.; Oman, L.

    2015-01-01

    Major stratospheric warmings (MSWs) are one of the most important phenomena of wintertime Arctic stratospheric variability. They consist of a warming of the Arctic stratosphere and a deceleration of the polar night jet, triggered by an anomalously high injection of tropospheric wave activity into the stratosphere. Due to the relevance and the impact of MSWs on the tropospheric circulation, several model studies have investigated their potential responses to climate change. However, a wide range of results has been obtained, extending from a future increase in the frequency of MSWs to a decrease. These discrepancies might be explained by different factors such as a competition of radiative and dynamical contributors with opposite effects on the Arctic polar vortex, biases of models to reproduce the related processes, or the metric chosen for the identification of MSWs. In this study, future changes in wintertime Arctic stratospheric variability are examined in order to obtaina more precise picture of future changes in the occurrence of MSWs. In particular, transient REFC2 simulations of different CCMs involved in the Chemistry Climate Model Initiative (CCMI) are used. These simulations extend from 1960 to 2100 and include forcings by halogens and greenhouse gases following the specifications of the CCMI-REF-C2 scenario. Sea surface temperatures (SSTs) and sea-ice distributions are either prescribed from coupled climate model integrations or calculated internally in the case of fully coupled atmosphere-ocean CCMs. Potential changes in the frequency and main characteristics of MSWs in the future are investigated with special focus on the dependence of the results on the criterion for the identification of MSWs and the tropospheric forcing of these phenomena.

  20. Increases in Growing Season Length and Changes in Precipitation at Six Different Arctic and Subarctic Ecosystems from 1906-Present

    NASA Astrophysics Data System (ADS)

    Culler, L. E.; Finger, R.; Plane, E.; Ayres, M.; Virginia, R. A.

    2015-12-01

    Ecological dynamics across the Arctic are responding to rapid changes in climate. As a whole, the Arctic has warmed at approximately twice the rate of the rest of the world, but changes in temperature and precipitation experienced at regional and local scales are most important for coupled human-natural systems. In addition, biologically-relevant climate indices are necessary for quantifying ecological responses of terrestrial and aquatic systems to varying climate. We compared climatic changes at six different Arctic and sub-Arctic locations, including two in Greenland (Kangerlussuaq, Sisimiut), one in Sweden (Abisko), and three in Alaska (Barrow, Nome, Fairbanks). We amassed weather data (daily temperature and precipitation), dating as far back as 1906, from public-access databases and used these data to calculate indices such as length of growing season, growing season degree days (GDD), and growing season precipitation. Annual GDD increased at all locations (average of 13% increase in GDD since 1980), but especially in western Greenland (16 and 37% in Kangerlussuaq and Sisimiut, respectively). Changes in growing season precipitation were more variable, with only Barrow, AK and Abisko, Sweden experiencing increased precipitation. All other sites experienced stable or slightly declining precipitation. Increasing temperatures and relatively stable precipitation translates to increased evapotranspiration potential, which influences soil moisture, lake depth, vegetation, carbon emissions, and fire susceptibility. Understanding local and regional trends in temperature and precipitation can help explain observed phenological changes and other processes at population, community, and ecosystem levels. In addition, identification of locations most susceptible to future change will allow scientists to closely monitor their ecological dynamics, anticipate changes in coupled human-natural systems, and consider adaptation plans for the most rapidly changing systems.

  1. Arctic sea-ice melting: Effects on hydroclimatic variability and on UV-induced carbon cycling

    NASA Astrophysics Data System (ADS)

    Sulzberger, Barbara

    2016-04-01

    Since 1980 both the perennial and the multiyear central Arctic sea ice areas have declined by approximately 13 and 15% per decade, respectively (IPCC, 2013). Arctic sea-ice melting has led to an increase in the amplitude of the Northern Hemisphere jet stream and, as a consequence, in more slowly moving Rossby waves which results in blocking of weather patterns such as heat waves, droughts, cold spells, and heavy precipitation events (Francis and Vavrus, 2012). Changing Rossby waves account for more than 30% of the precipitation variability over several regions of the northern middle and high latitudes, including the US northern Great Plains and parts of Canada, Europe, and Russia (Schubert et al., 2011). From 2007 to 2013, northern Europe experienced heavy summer precipitation events that were unprecedented in over a century, concomitant with Arctic sea ice loss (Screen, 2013). Heavy precipitation events tend to increase the runoff intensity of terrigenous dissolved organic matter (tDOM) (Haaland et al., 2010). In surface waters tDOM is subject to UV-induced oxidation to produce atmospheric CO2. Mineralization of DOM also occurs via microbial respiration. However, not all chemical forms of DOM are available to bacterioplankton. UV-induced transformations generally increase the bioavailability of tDOM (Sulzberger and Durisch-Kaiser, 2009). Mineralization of tDOM is an important source of atmospheric CO2 and this process is likely to contribute to positive feedbacks on global warming (Erickson et al., 2015). However, the magnitudes of these potential feedbacks remain unexplored. This paper will discuss the following items: 1.) Links between Arctic sea-ice melting, heavy precipitation events, and enhanced tDOM runoff. 2.) UV-induced increase in the bioavailability of tDOM. 3.) UV-mediated feedbacks on global warming. References Erickson, D. J. III, B. Sulzberger, R. G. Zepp, A. T. Austin (2015), Effects of stratospheric ozone depletion, solar UV radiation, and climate change on biogeochemical cycling: interactions and feedbacks, Photochemical & Photobiological Sciences, 14(1), 127-148. Francis, J. A., S. J. Vavrus (2012), Evidence linking Arctic amplification to extreme weather in mid-latitudes, Geophysical Research Letters, 39, doi: 10.1029/2012GL051000. Haaland, S., D. Hongve, H. Laudon, G. Riise, R. D. Vogt (2010), Quantifying the drivers of the increasing colored organic matter in boreal surface waters, Environmental Science & Technology, 44(8), 2975-2980. IPCC Climate Change 2013 - The Physical Science Bases (2013). Schubert, S., H. Wang, M. Suarez (2011), Warm season subseasonal variability and climate extremes in the Northern Hemisphere: The role of stationary Rossby waves, Journal of Climate, 24(18), 4773-4792. Screen, J. A. (2013), Influence of Arctic sea ice on European summer precipitation, Environmental Research Letters, 8(4), doi: 10.1088/1748-9326/8/4/044015. Sulzberger, B., E. Durisch-Kaiser (2009), Chemical characterization of dissolved organic matter (DOM): A prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailability, Aquatic Sciences, 71(2), 104-126.

  2. Dynamical Core in Atmospheric Model Does Matter in the Simulation of Arctic Climate

    NASA Astrophysics Data System (ADS)

    Jun, Sang-Yoon; Choi, Suk-Jin; Kim, Baek-Min

    2018-03-01

    Climate models using different dynamical cores can simulate significantly different winter Arctic climates even if equipped with virtually the same physics schemes. Current climate simulated by the global climate model using cubed-sphere grid with spectral element method (SE core) exhibited significantly warmer Arctic surface air temperature compared to that using latitude-longitude grid with finite volume method core. Compared to the finite volume method core, SE core simulated additional adiabatic warming in the Arctic lower atmosphere, and this was consistent with the eddy-forced secondary circulation. Downward longwave radiation further enhanced Arctic near-surface warming with a higher surface air temperature of about 1.9 K. Furthermore, in the atmospheric response to the reduced sea ice conditions with the same physical settings, only the SE core showed a robust cooling response over North America. We emphasize that special attention is needed in selecting the dynamical core of climate models in the simulation of the Arctic climate and associated teleconnection patterns.

  3. Observed Changes at the Surface of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ortmeyer, M.; Rigor, I.

    2004-12-01

    The Arctic has long been considered a harbinger of global climate change since simulations with global climate models predict that if the concentration of CO2 in the atmosphere doubles, the Arctic would warm by more than 5°C, compared to a warming of 2°C for subpolar regions (Manabe et al., 1991). And indeed, studies of the observational records show polar amplification of the warming trends (e.g. Serreze and Francis, 2004). These temperature trends are accompanied by myriad concurrent changes in Arctic climate. One of the first indicators of Arctic climate change was found by Walsh et al. (1996) using sea level pressure (SLP) data from the International Arctic Buoy Programme (IABP, http://iabp.apl.washington.edu). In this study, they showed that SLP over the Arctic Ocean decreased by over 4 hPa from 1979 - 1994. The decreases in SLP (winds) over the Arctic Ocean, forced changes in the circulation of sea ice and the surface ocean currents such that the Beaufort Gyre is reduced in size and speed (e.g. Rigor et al., 2002). Data from the IABP has also been assimilated into the global surface air temperature (SAT) climatologies (e.g. Jones et al. 1999), and the IABP SAT analysis shows that the temperature trends noted over land extend out over the Arctic Ocean. Specifically, Rigor et al. (2000) found warming trends in SAT over the Arctic Ocean during win¬ter and spring, with values as high as 2°C/decade in the eastern Arctic during spring. It should be noted that many of the changes in Arctic climate were first observed or explained using data from the IABP. The observations from IABP have been one of the cornerstones for environmental forecasting and studies of climate and climate change. These changes have a profound impact on wildlife and people. Many species and cultures depend on the sea ice for habitat and subsistence. Thus, monitoring the Arctic Ocean is crucial not only for our ability to detect climate change, but also to improve our understanding of the Arctic and global climate system, and for forecasting weather and sea ice conditions. The IABP provides the longest continuing record of observations for the Arctic Ocean.

  4. Global Climate Change: Valuable Insights from Concordant and Discordant Ice Core Histories

    NASA Astrophysics Data System (ADS)

    Mosley-Thompson, E.; Thompson, L. G.; Porter, S. E.; Goodwin, B. P.; Wilson, A. B.

    2014-12-01

    Earth's ice cover is responding to the ongoing large-scale warming driven in part by anthropogenic forces. The highest tropical and subtropical ice fields are dramatically shrinking and/or thinning and unique climate histories archived therein are now threatened, compromised or lost. Many ice fields in higher latitudes are also experiencing and recording climate system changes although these are often manifested in less evident and spectacular ways. The Antarctic Peninsula (AP) has experienced a rapid, widespread and dramatic warming over the last 60 years. Carefully selected ice fields in the AP allow reconstruction of long histories of key climatic variables. As more proxy climate records are recovered it is clear they reflect a combination of expected and unexpected responses to seemingly similar climate forcings. Recently acquired temperature and precipitation histories from the Bruce Plateau are examined within the context provided by other cores recently collected in the AP. Understanding the differences and similarities among these records provides a better understanding of the forces driving climate variability in the AP over the last century. The Arctic is also rapidly warming. The δ18O records from the Bona-Churchill and Mount Logan ice cores from southeast Alaska and southwest Yukon Territory, respectively, do not record this strong warming. The Aleutian Low strongly influences moisture transport to this geographically complex region, yet its interannual variability is preserved differently in these cores located just 110 km apart. Mount Logan is very sensitive to multi-decadal to multi-centennial climate shifts in the tropical Pacific while low frequency variability on Bona-Churchill is more strongly connected to Western Arctic sea ice extent. There is a natural tendency to focus more strongly on commonalities among records, particularly on regional scales. However, it is also important to investigate seemingly poorly correlated records, particularly those from geographically complex settings that appear to be dominated by similar large-scale climatological processes. Better understanding of the spatially and temporally diverse responses in such regions will expand our understanding of the mechanisms forcing climate variability in meteorologically complex environments.

  5. Future sea ice conditions and weather forecasts in the Arctic: Implications for Arctic shipping.

    PubMed

    Gascard, Jean-Claude; Riemann-Campe, Kathrin; Gerdes, Rüdiger; Schyberg, Harald; Randriamampianina, Roger; Karcher, Michael; Zhang, Jinlun; Rafizadeh, Mehrad

    2017-12-01

    The ability to forecast sea ice (both extent and thickness) and weather conditions are the major factors when it comes to safe marine transportation in the Arctic Ocean. This paper presents findings focusing on sea ice and weather prediction in the Arctic Ocean for navigation purposes, in particular along the Northeast Passage. Based on comparison with the observed sea ice concentrations for validation, the best performing Earth system models from the Intergovernmental Panel on Climate Change (IPCC) program (CMIP5-Coupled Model Intercomparison Project phase 5) were selected to provide ranges of potential future sea ice conditions. Our results showed that, despite a general tendency toward less sea ice cover in summer, internal variability will still be large and shipping along the Northeast Passage might still be hampered by sea ice blocking narrow passages. This will make sea ice forecasts on shorter time and space scales and Arctic weather prediction even more important.

  6. Understanding Arctic Surface Temperature Differences in Reanalyses

    NASA Technical Reports Server (NTRS)

    Cullather, Richard; Zhao, Bin; Shuman, Christopher; Nowicki, Sophie

    2017-01-01

    Reanalyses in the Arctic are widely used for model evaluation and for understanding contemporary climate change. Nevertheless, differences among reanalyses in fundamental meteorological variables including surface air temperature are large. A review of surface temperature differences is presented with a particular focus on differences in contemporary reanalyses. An important consideration is the significant differences in Arctic surfaces, including the central Arctic Ocean, the Greenland Ice Sheet, and non-glaciated land. While there is significant correlation among reanalyses in annual time series, there is substantial disagreement in mean values. For the period 1980-2013, the trend in annual temperature ranges from 0.3 to 0.7K per decade. Over the central Arctic Ocean, differences in mean values and trends are larger. Most of the uncertainty is associated with winter months. This is likely associated with the constraint imposed by melting processes (i.e. 0 deg. Celsius), rather than seasonal changes to the observing system.

  7. Challenges of climate change: an Arctic perspective.

    PubMed

    Corell, Robert W

    2006-06-01

    Climate change is being experienced particularly intensely in the Arctic. Arctic average temperature has risen at almost twice the rate as that of the rest of the world in the past few decades. Widespread melting of glaciers and sea ice and rising permafrost temperatures present additional evidence of strong Arctic warming. These changes in the Arctic provide an early indication of the environmental and societal significance of global consequences. The Arctic also provides important natural resources to the rest of the world (such as oil, gas, and fish) that will be affected by climate change, and the melting of Arctic glaciers is one of the factors contributing to sea level rise around the globe. An acceleration of these climatic trends is projected to occur during this century, due to ongoing increases in concentrations of greenhouse gases in the Earth's atmosphere. These Arctic changes will, in turn, impact the planet as a whole.

  8. The Holocene floods and their affinity to climatic variability in the western Himalaya, India

    NASA Astrophysics Data System (ADS)

    Sharma, Shubhra; Shukla, A. D.; Bartarya, S. K.; Marh, B. S.; Juyal, Navin

    2017-08-01

    The present study in the middle Satluj valley explores the sedimentary records of past floods with an objective to understand the climatic processes responsible for their genesis. Based on lithostratigraphy, sedimentology, and grain size variability, 25 flood events are identified. The geochemical data indicate that the flood sediments were mostly generated and transported from the higher Himalayan crystalline and the trans-Himalaya. Our study suggests that the floods were generated by Landslide Lake Outburst Floods (LLOFs) during extreme precipitation events. However, the existing database does not allow us to negate the contribution from Glacial Lake Outburst Floods (GLOFs). Field stratigraphy supported by optical chronology indicates four major flood phases that are dated to 13.4-10.4, 8.3-3.6, 2.2-1.4, and < 1.4 ka (kilo-annum). These phases correspond to the cooler and less wet conditions and broadly correlate with the phases of negative Arctic Oscillation (- AO) and negative North Atlantic Oscillation (- NAO). Thus, implying coupling between the moisture-laden monsoon circulation and southward penetrating mid-latitude westerly troughs for extreme precipitation events and consequent LLOFs. Additionally, a broad synchronicity in Holocene floods between the western Himalaya and across the mid-latitudinal region (30°N-40°N) suggests a synoptic scale Arctic and Atlantic climate variability.

  9. The Immediacy of Arctic Change

    NASA Astrophysics Data System (ADS)

    Overland, J. E.; Wang, M.; Soreide, N. N.

    2015-12-01

    Ongoing temperature changes in the Arctic are large relative to lower latitudes; a process known as Arctic Amplification. Arctic temperatures have increased at least 3 times the rate of mid-latitude temperatures relative to the late 20th century, due to multiple interacting feedbacks driven by modest global change. Even if global temperature increases are contained to +2° C by 2040, Arctic (North of 60° N) monthly mean temperatures in fall will increase by +5° C. The Arctic is very likely to be sea ice free during summer before 2040, with the sea ice free duration limited to <5 months. Snow cover will be absent in May and June on most land masses. Whether these changes impact mid-latitude weather events is complex and controversial, as the time period for observing such linkages is short [<10 years] and involves understanding direct forcing by Arctic changes on a chaotic climatic system. Although chaotic internal variability dominates the dynamics of atmospheric circulation, Arctic thermodynamic influences can reinforce regional weather patterns. Extreme Arctic temperature events, as a combination of mean temperature increases combined with natural variability, will become common, nearing and exceeding previous thresholds. Such an event as an analog for the future was the +4° C anomalies for Alaska in November-December 2014 related to recent warm Pacific sea surface temperatures. Thus for the next few decades out to 2040, continuing rapid environmental changes in the Arctic are very likely, despite any mitigation activities, and the appropriate response is to plan for adaptation to meet these mean and extreme event changes. Mitigation is essential to forestall further disasters in the second half of the century. It is important to note such future rapid Arctic amplification, and the potential for environmental surprises, to support those making planning decisions and encourage action.

  10. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core.

    PubMed

    Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Dahl-Jensen, Dorthe

    2016-09-21

    Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called "bromine explosions" and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement.

  11. Molecules in the mud: Combining ancient DNA and lipid biomarkers to reconstruct vegetation response to climate variability during the Last Interglacial and the Holocene on Baffin Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Crump, S. E.; Sepúlveda, J.; Bunce, M.; Miller, G. H.

    2017-12-01

    Modern ecological studies are revealing that the "greening" of the Arctic, resulting from a poleward shift in woody vegetation ranges, is already underway. The increasing abundance of shrubs in tundra ecosystems plays an important role in the global climate system through multiple positive feedbacks, yet uncertainty in future predictions of terrestrial vegetation means that climate models are likely not capturing these feedbacks accurately. Recently developed molecular techniques for reconstructing past vegetation and climate allow for a closer look at the paleo-record in order to improve our understanding of tundra community responses to climate variability; our current research focus is to apply these tools to both Last Interglacial and Holocene warm times. Here we present initial results from a small lake on southern Baffin Island spanning the last 7.2 ka. We reconstruct climate with both bulk geochemical and biomarker proxies, primarily using biogenic silica and branched glycerol dialkyl glycerol tetraethers (brGDGTs) as temperature indicators. We assess shifts in plant community using multivariate analysis of sedimentary ancient DNA (sedaDNA) metabarcoding data. This combination of approaches reveals that the vegetation community has responded sensitively to early Holocene warmth, Neoglacial cooling, and possibly modern anthropogenic warming. To our knowledge, this represents the first combination of a quantitative, biomarker-based climate reconstruction with a sedaDNA-based paleoecological reconstruction, and offers a glimpse at the potential of these molecular techniques used in tandem.

  12. Use of a cable-based system for observing the heterogeneity of vegetation communities in arctic tundra

    NASA Astrophysics Data System (ADS)

    Ahrends, H. E.; Oberbauer, S. F.; Tweedie, C.; Hollister, R. D.

    2010-12-01

    Knowledge of changing tundra vegetation and its response to climate variability is critical for understanding the land-atmosphere-interactions for the Arctic and the global system. However, vegetation characteristics, such as phenology, structure and species composition, are characterized by an extreme heterogeneity at a small scale. Manual observations of these variables are highly time-consuming, labor intensive, subjective, and disturbing to the vegetation. In contrast, recently developed robotic systems (networked infomechanical systems, NIMS) allow for performing non-intrusive spatially integrated measurements of vegetation communities. Within the ITEX (International Tundra Experiment) AON (Arctic Observation Network) project we installed a cable-based sensor system, running over a transect of approximately 50 m length and 2 m width, at two long-term arctic research sites in Alaska. The trolley was initially equipped with instruments recording the distance to vegetation canopy, up- and downwelling short- and longwave radiation, air and surface temperature and spectral reflection. We aim to study the thermal and spectral response of the vegetation communities over a wide range of ecosystem types. We expect that automated observations, covering the spatial heterogeneity of vegetation and surface characteristics, can give a deeper insight in ecosystem functioning and vegetation response to climate. The data can be used for scaling up vegetation characteristics derived from manual measurements and for linking them to aircraft and satellite data and to carbon, water and surface energy budgets measured at the ecosystem scale. Sampling errors due to cable sag are correctable and effects of wind-driven movements can be offset by repeat measurements. First hand-pulled test measurements during summer 2010 show strong heterogeneity of the observation parameters and a variable spectral and thermal response of the plants within the transects. Differences support the importance of our approach for upscaling purposes and for a comprehensive understanding of the arctic biome.

  13. Climate Change and Arctic Issues in the Marine and Environmental Science Curriculum at the U.S. Coast Guard Academy

    NASA Astrophysics Data System (ADS)

    Vlietstra, L.; McConnell, M. C.; Bergondo, D. L.; Mrakovcich, K. L.; Futch, V.; Stutzman, B. S.; Fleischmann, C. M.

    2016-02-01

    As global climate change becomes more evident, demand will likely increase for experts with a detailed understanding of the scientific basis of climate change, the ocean's role in the earth-atmosphere system, and forecasted impacts, especially in Arctic regions where effects may be most pronounced. As a result, programs in marine and environmental sciences are uniquely poised to prepare graduates for the formidable challenges posed by changing climates. Here we present research evaluating the prevalence and themes of courses focusing on anthropogenic climate change in 125 Marine Science and Environmental Science undergraduate programs at 86 institutions in the United States. These results, in addition to the increasing role of the Coast Guard in the Arctic, led to the development of two new courses in the curriculum. Climate Change Science, a one-credit seminar, includes several student-centered activities supporting key learning objectives. Polar Oceanography, a three-credit course, incorporates a major outreach component to Coast Guard units and members of the scientific community. Given the importance of climate change in Arctic regions in particular, we also propose six essential "Arctic Literacy Principles" around which courses or individual lesson plans may be organized. We show how these principles are incorporated into an additional new three-credit course, Model Arctic Council, which prepares students to participate in a week-long simulation exercise of Arctic Council meetings, held in Fairbanks, Alaska. Students examine the history and mission of the Arctic Council and explore some of the issues on which the council has deliberated. Special attention is paid to priorities of the current U.S. chairmanship of the Arctic Council which include climate change impacts on, and stewardship of, the Arctic Ocean.

  14. National Oceanic and Atmospheric Administration(NOAA) Arctic Climate Change Studies: A Contribution to IPY

    NASA Astrophysics Data System (ADS)

    Calder, J.; Overland, J.; Uttal, T.; Richter-Menge, J.; Rigor, I.; Crane, K.

    2004-12-01

    NOAA has initiated four activities that respond to the Arctic Climate Impact Assessment(ACIA) recommendations and represent contributions toward the IPY: 1) Arctic cloud, radiation and aerosol observatories, 2) documentation and attribution of changes in sea-ice thickness through direct measurement and modeling, 3) deriving added value from existing multivariate and historical data, and 4) following physical and biological changes in the northern Bering and Chukchi Seas. Northeast Canada, the central Arctic coast of Russia and the continuing site at Barrow have been chosen as desirable radiation/cloud locations as they exhibit different responses to Arctic Oscillation variability. NOAA is closely collaborating with Canadian groups to establish an observatory at Eureka. NOAA has begun deployment of a network of ice-tethered ice mass balance buoys complemented by several ice profiling sonars. In combination with other sea ice investigators, the Arctic buoy program, and satellites, changes can be monitored more effectively in sea ice throughout the Arctic. Retrospective data analyses includes analysis of Arctic clouds and radiation from surface and satellite measurements, correction of systematic errors in TOVS radiance data sets for the Arctic which began in 1979, addressing the feasibility of an Arctic System Reanalysis, and an Arctic Change Detection project that incorporates historical and recent physical and biological observations and news items at a website, www.arctic.noaa.gov. NOAA has begun a long-term effort to detect change in ecosystem indicators in the northern Bering and Chukchi Seas that could provide a model for other northern marine ecosystems. The first efforts were undertaken in summer 2004 during a joint Russian-US cruise that mapped the regions physical, chemical and biological parameters to set the stage for future operations over the longer term. A line of biophysical moorings provide detection of the expected warming of this area. A retrospective analysis is also underway. NOAA is open to partnerships as the IPY develops.

  15. Evaluating Arctic warming mechanisms in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Franzke, Christian L. E.; Lee, Sukyoung; Feldstein, Steven B.

    2017-05-01

    Arctic warming is one of the most striking signals of global warming. The Arctic is one of the fastest warming regions on Earth and constitutes, thus, a good test bed to evaluate the ability of climate models to reproduce the physics and dynamics involved in Arctic warming. Different physical and dynamical mechanisms have been proposed to explain Arctic amplification. These mechanisms include the surface albedo feedback and poleward sensible and latent heat transport processes. During the winter season when Arctic amplification is most pronounced, the first mechanism relies on an enhancement in upward surface heat flux, while the second mechanism does not. In these mechanisms, it has been proposed that downward infrared radiation (IR) plays a role to a varying degree. Here, we show that the current generation of CMIP5 climate models all reproduce Arctic warming and there are high pattern correlations—typically greater than 0.9—between the surface air temperature (SAT) trend and the downward IR trend. However, we find that there are two groups of CMIP5 models: one with small pattern correlations between the Arctic SAT trend and the surface vertical heat flux trend (Group 1), and the other with large correlations (Group 2) between the same two variables. The Group 1 models exhibit higher pattern correlations between Arctic SAT and 500 hPa geopotential height trends, than do the Group 2 models. These findings suggest that Arctic warming in Group 1 models is more closely related to changes in the large-scale atmospheric circulation, whereas in Group 2, the albedo feedback effect plays a more important role. Interestingly, while Group 1 models have a warm or weak bias in their Arctic SAT, Group 2 models show large cold biases. This stark difference in model bias leads us to hypothesize that for a given model, the dominant Arctic warming mechanism and trend may be dependent on the bias of the model mean state.

  16. Colonizing the High Arctic: Mitochondrial DNA Reveals Common Origin of Eurasian Archipelagic Reindeer (Rangifer tarandus)

    PubMed Central

    Kvie, Kjersti S.; Heggenes, Jan; Anderson, David G.; Kholodova, Marina V.; Sipko, Taras; Mizin, Ivan; Røed, Knut H.

    2016-01-01

    In light of current debates on global climate change it has become important to know more on how large, roaming species have responded to environmental change in the past. Using the highly variable mitochondrial control region, we revisit theories of Rangifer colonization and propose that the High Arctic archipelagos of Svalbard, Franz Josef Land, and Novaia Zemlia were colonized by reindeer from the Eurasian mainland after the last glacial maximum. Comparing mtDNA control region sequences from the three Arctic archipelagos showed a strong genetic connection between the populations, supporting a common origin in the past. A genetic connection between the three archipelagos and two Russian mainland populations was also found, suggesting colonization of the Eurasian high Arctic archipelagos from the Eurasian mainland. The age of the Franz Josef Land material (>2000 years before present) implies that Arctic indigenous reindeer colonized the Eurasian Arctic archipelagos through natural dispersal, before humans approached this region. PMID:27880778

  17. The summer North Atlantic Oscillation (SNAO) variability on decadal to paleoclimate time scales

    NASA Astrophysics Data System (ADS)

    Linderholm, H. W.; Folland, C. K.; Zhang, P.; Gunnarson, B. E.; Jeong, J. H.; Ren, H.

    2017-12-01

    The summer North Atlantic Oscillation (SNAO), strongly related to the latitude of the North Atlantic and European summer storm tracks, exerts a considerable influence on European summer climate variability and extremes. Here we extend the period covered by the SNAO from July and August to June, July and August (JJA). As well as marked interannual variability, the JJA SNAO has shown a large inter-decadal change since the 1970s. Decadally averaged, there has been a change from a very positive to a rather negative SNAO phase. This change in SNAO phase is opposite in sign from that expected by a number of climate models under enhanced greenhouse forcing by the late twenty first century. It has led to noticeably wetter summers in North West Europe in the last decade. On interannual to multidecadal timescales, SNAO variability is linked to variations in North Atlantic sea surface temperature (SST): observations and models indicate an association between the Atlantic Multi-decadal Oscillation (AMO) where the cold (warm) phase of the AMO corresponds a positive (negative) phase of the SNAO. Observations also indicate a link with SST in the Gulf Stream region of the North Atlantic where, particularly on decadal time scales, SST warming may favour a more positive phase of the SNAO. Influences of Arctic climate change on North Atlantic and European atmospheric circulation may also exist, particularly reduced sea ice coverage, perhaps favouring the negative phase of the SNAO. A new tree-ring data based JJA SNAO reconstruction extending over the last millennium, as well as climate model output for the same period, enables us to examine the influence of North Atlantic SST and Arctic sea-ice coverage, as well as SNAO impacts on European summer climate, in a long-term, pre-industrial context.

  18. Sensitivity of Arctic carbon in a changing climate

    Treesearch

    A. David McGuire; Henry P. Huntington; Simon Wilson

    2009-01-01

    The Arctic has been warming rapidly in the past few decades. A key question is how that warming will affect the cycling of carbon (C) in the Arctic system. At present, the Arctic is a global sink for C. If that changes and the Arctic becomes a carbon source, global climate warming may speed up.

  19. Future Climate Change Will Favour Non-Specialist Mammals in the (Sub)Arctics

    PubMed Central

    Hof, Anouschka R.; Jansson, Roland; Nilsson, Christer

    2012-01-01

    Arctic and subarctic (i.e., [sub]arctic) ecosystems are predicted to be particularly susceptible to climate change. The area of tundra is expected to decrease and temperate climates will extend further north, affecting species inhabiting northern environments. Consequently, species at high latitudes should be especially susceptible to climate change, likely experiencing significant range contractions. Contrary to these expectations, our modelling of species distributions suggests that predicted climate change up to 2080 will favour most mammals presently inhabiting (sub)arctic Europe. Assuming full dispersal ability, most species will benefit from climate change, except for a few cold-climate specialists. However, most resident species will contract their ranges if they are not able to track their climatic niches, but no species is predicted to go extinct. If climate would change far beyond current predictions, however, species might disappear. The reason for the relative stability of mammalian presence might be that arctic regions have experienced large climatic shifts in the past, filtering out sensitive and range-restricted taxa. We also provide evidence that for most (sub)arctic mammals it is not climate change per se that will threaten them, but possible constraints on their dispersal ability and changes in community composition. Such impacts of future changes in species communities should receive more attention in literature. PMID:23285098

  20. Ocean-Glaciers Interactions in the Southern Svalbard Fjord, Hornsund.

    NASA Astrophysics Data System (ADS)

    Walczowski, W.; Beszczynska-Moeller, A.; Prominska, A.; Kruss, A.

    2017-12-01

    The Arctic fjords constitute a link between the ocean and land, therefore there are highly vulnerable to warming and are expected to exhibit the earliest environmental changes resulting from anthropogenic impacts on climate. In the Arctic, the inshore boundary of a fjord system is usually dominated by tidewater glaciers while its offshore boundary is strongly influenced by warm oceanic waters. Improved understanding of the fjord-ocean exchange and processes within Arctic fjords is of a highest importance because their response to atmospheric, oceanic and glacial variability provides a key to understand the past and to forecast the future of the high latitude glaciers and Arctic climate. The results of field measurements in the Hornsund fjord (southern Svalbard), collected under the Polish-Norwegian projects GLAERE and AWAKE-2, will be presented. Interannual variability of warm Atlantic water entering the fjord, seasonal changes of ocean properties in the glacier bays and the structure of the water column in the vicinity of the glacier termination will be addressed. Direct contact of warm oceanic water with a glacier's wall causes submarine melting, undercutting and glacier calving. Turbulent plumes of subglacial meltwater constitute an important mechanism of heat transfer and also influence a glacier retreat. However our understanding of these processes is limited due to problems with obtaining in situ data close to the glacier wall. Therefore special attention will be paid to observations of the underwater parts of Hornsund glaciers and new measurements of water column fine structure and mixing in the turbulent meltwater plumes.

  1. Pan-arctic trends in terrestrial dissolved organic matter from optical measurements

    USGS Publications Warehouse

    Mann, Paul J.; Spencer, Robert G.M.; Hernes, Peter J.; Six, Johan; Aiken, George R.; Tank, Suzanne E.; McClelland, James W.; Butler, Kenna D.; Dyda, Rachael Y.; Holmes, Robert M.

    2016-01-01

    Climate change is causing extensive warming across Arctic regions resulting in permafrost degradation, alterations to regional hydrology and shifting amounts and composition of dissolved organic matter (DOM) transported by streams and rivers. Here, we characterize the DOM composition and optical properties of the six largest Arctic rivers draining into the Arctic Ocean to examine the ability of optical measurements to provide meaningful insights into terrigenous carbon export patterns and biogeochemical cycling. The chemical composition of aquatic DOM varied with season, spring months were typified by highest lignin phenol and dissolved organic carbon (DOC) concentrations with greater hydrophobic acid content, and lower proportions of hydrophilic compounds, relative to summer and winter months. Chromophoric DOM (CDOM) spectral slope (S275–295) tracked seasonal shifts in DOM composition across river basins. Fluorescence and parallel factor analysis identified seven components across the six Arctic rivers. The ratios of “terrestrial humic-like” vs. “marine humic-like” fluorescent components co-varied with lignin monomer ratios over summer and winter months, suggesting fluorescence may provide information on the age and degradation state of riverine DOM. CDOM absorbance (a350) proved a sensitive proxy for lignin phenol concentrations across all six river basins and over the hydrograph, enabling for the first time the development of a single pan-arctic relationship between a350 and terrigenous DOC (R2 = 0.93). Combining this lignin proxy with high-resolution monitoring of a350, pan-arctic estimates of annual lignin flux were calculated to range from 156 to 185 Gg, resulting in shorter and more constrained estimates of terrigenous DOM residence times in the Arctic Ocean (spanning 7 months to 2½ years). Furthermore, multiple linear regression models incorporating both absorbance and fluorescence variables proved capable of explaining much of the variability in lignin composition across rivers and seasons. Our findings suggest that synoptic, high-resolution optical measurements can provide improved understanding of northern high-latitude organic matter cycling and flux, and prove an important technique for capturing future climate-driven changes.

  2. Pan-arctic trends in terrestrial dissolved organic matter from optical measurements

    USGS Publications Warehouse

    Mann, Paul J.; Spencer, Robert G. M.; Hernes, Peter J.; Six, Johan; Aiken, George R.; Tank, Suzanne E.; McClelland, James W.; Butler, Kenna D.; Dyda, Rachael Y.; Holmes, Robert M.

    2016-01-01

    Climate change is causing extensive warming across Arctic regions resulting in permafrost degradation, alterations to regional hydrology and shifting amounts and composition of dissolved organic matter (DOM) transported by streams and rivers. Here, we characterize the DOM composition and optical properties of the six largest Arctic rivers draining into the Arctic Ocean to examine the ability of optical measurements to provide meaningful insights into terrigenous carbon export patterns and biogeochemical cycling. The chemical composition of aquatic DOM varied with season, spring months were typified by highest lignin phenol and dissolved organic carbon (DOC) concentrations with greater hydrophobic acid content, and lower proportions of hydrophilic compounds, relative to summer and winter months. Chromophoric DOM (CDOM) spectral slope (S275–295) tracked seasonal shifts in DOM composition across river basins. Fluorescence and parallel factor analysis identified seven components across the six Arctic rivers. The ratios of “terrestrial humic-like” vs. “marine humic-like” fluorescent components co-varied with lignin monomer ratios over summer and winter months, suggesting fluorescence may provide information on the age and degradation state of riverine DOM. CDOM absorbance (a350) proved a sensitive proxy for lignin phenol concentrations across all six river basins and over the hydrograph, enabling for the first time the development of a single pan-arctic relationship between a350 and terrigenous DOC (R2 = 0.93). Combining this lignin proxy with high-resolution monitoring of a350, pan-arctic estimates of annual lignin flux were calculated to range from 156 to 185 Gg, resulting in shorter and more constrained estimates of terrigenous DOM residence times in the Arctic Ocean (spanning 7 months to 2½ years). Furthermore, multiple linear regression models incorporating both absorbance and fluorescence variables proved capable of explaining much of the variability in lignin composition across rivers and seasons. Our findings suggest that synoptic, high-resolution optical measurements can provide improved understanding of northern high-latitude organic matter cycling and flux, and prove an important technique for capturing future climate-driven changes.

  3. Characterizing the vertical presence of atmospheric black carbon in the in the high Arctic region from airborne measurements

    NASA Astrophysics Data System (ADS)

    Schulz, H.; Zanatta, M.; Stefanie, W.; Herber, A. B.

    2016-12-01

    Black carbon (BC) is an important contributor to climate change in the Arctic region. Due to its light absorption behavior, BC leads to a direct warming of the corresponding aerosol layer. Nevertheless, the net Arctic warming induced by BC strongly depends on its vertical distribution. At present, the low level of knowledge in BC vertical variability in the Arctic region may introduce a strong source of uncertainty in radiative forcing estimations. Vertical distribution of refractory black carbon (rBC) was investigated in spring 2015 during an aircraft campaign, as part of the NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) project. A single particle soot photometer was deployed on the research aircraft POLAR-6 during nine flights over the European and Canadian high Arctic. In the European Arctic, a decreasing vertical trend of rBC mass concentration was observed, with an average of 40 ng m-3 below 1000 m asl, and less than 10 ng m-3 above 3000 m asl. Combining potential temperature trends and number fraction of rBC particles, plume events were isolated from background conditions. At the Canadian site of Alert, low and high altitude background conditions were characterized by an average rBC number fraction below 10%, while higher values (17%) were observed during plume events. rBC mass concentration was found to decrease by a factor of five from low altitude background (27 ng m-3) to high altitude background (5.4 ng m-3). The plume event, located between 2500 and 3000 m asl, represented a discontinuity point in the decreasing vertical trend showing a rBC concentration of 25 ng m-3. Moreover, background conditions were characterized by a rBC mass mean diameter of 230 nm, while during plume events the observed mean size distribution was peaking at 180 nm only. Our work provides new insights on vertical variability of rBC properties and plume outbreaks in the high Arctic. This information is of actual interest for decreasing the high uncertainty of radiative forcing and atmospheric warming estimations in the Arctic region.

  4. Water isotopes and the Eocene. A tectonic sensitivity study

    NASA Astrophysics Data System (ADS)

    Legrande, A. N.; Roberts, C. D.; Tripati, A.; Schmidt, G. A.

    2009-04-01

    The early Eocene (54 Million years ago) is one of the warmest periods in the last 65 Million years. Its climate is postulated to have been the result of enhanced greenhouse gas concentration, with CO2 roughly 4 times pre-industrial and methane 7 times pre-industrial concentrations. One interesting feature of this period to emerge recently is the intermittent presence of fossilized Azolla, a type of freshwater fern, in the Arctic Ocean. Synchronous (within dating error) with this appearance were major changes in the restriction of the Arctic Ocean and the other global oceans. We investigate this time period using the Goddard Institute for Space Studies ModelE-R, a fully coupled atmosphere-ocean general circulation model that incorporates water isotopes throughout the hydrologic cycle, making it an ideal model to test hypotheses of past climate change and to compare to paleoclimate proxy data. We assess the impact of tectonic variability by using minimal and maximal levels of restriction for the Arctic Ocean seaways. We find that the modulation of connectivity of these basins dramatically alters global salinity distribution, leading to large changes in ocean circulation. Greater restriction of the Arctic Basin is associated with fresh and relatively warmer conditions. The same mechanisms responsible for this redistribution of salt also change the global distribution of water isotopes, and can alias (water isotope) proxy climate signals of warmth.

  5. Recent changes in aquatic biota in subarctic Fennoscandia - the role of global and local environmental variables

    NASA Astrophysics Data System (ADS)

    Weckström, Jan; Leppänen, Jaakko; Sorvari, Sanna; Kaukolehto, Marjut; Weckström, Kaarina; Korhola, Atte

    2013-04-01

    The Arctic, representing a fifth of the earth's surface, is highly sensitive to the predicted future warming and it has indeed been warming up faster than most other regions. This makes the region critically important and highlights the need to investigate the earliest signals of global warming and its impacts on the arctic and subarctic aquatic ecosystems and their biota. It has been demonstrated that many Arctic freshwater ecosystems have already experienced dramatic and unpreceded regime shifts during the last ca. 150 years, primarily driven by climate warming. However, despite the indisputable impact of climate-related variables on freshwater ecosystems other, especially local-scale catchment related variables (e.g. geology, vegetation, human activities) may override the climate signal and become the primary factor in shaping the structure of aquatic ecosystems. Although many studies have contributed to an improved understanding of limnological and hydrobiological features of Artic and subarctic lakes, much information is still needed especially on the interaction between the biotic and abiotic components, i.e. on factors controlling the food web dynamics in these sensitive aquatic ecosystems. This is of special importance as these lakes are of great value in water storage, flood prevention, and maintenance of biodiversity, in addition to which they are vital resources for settlement patterns, food production, recreation, and tourism. In this study we compare the pre-industrial sediment assemblages of primary producers (diatoms and Pediastrum) and primary consumers (cladoceran and chironomids) with their modern assemblages (a top-bottom approach) from 50 subarctic Fennoscandian lakes. We will evaluate the recent regional pattern of changes in aquatic assemblages, and assess how coherent the lakes' responses are across the subarctic area. Moreover, the impact of global (e.g. climate, precipitation) and local (e.g. lake and its catchment characteristics) scale environmental changes on the aquatic biota will be compared and discussed.

  6. Clouds across the Arctic: A spatial perspective uniting surface observations of downwelling infrared radiation, reanalyses and education

    NASA Astrophysics Data System (ADS)

    Cox, Christopher J.

    The polar regions serve an important role in the Earth's energy balance by acting as a heat sink for the global climate system. In the Arctic, a complex distribution of continental and oceanic features support large spatial variability in environmental parameters important for climate. Additionally, feedbacks that are unique to the cryosphere cause the region to be very sensitive to climate perturbations. Environmental changes are being observed, including increasing temperatures, reductions in sea ice extent and thickness, melting permafrost, changing atmospheric circulation patterns and changing cloud properties, which may be signaling a shift in climate. Despite these changes, the Arctic remains an understudied region, including with respect to the atmosphere and clouds. A better understanding of cloud properties and their geographical variability is needed to better understand observed changes and to forecast the future state of the system, to support adaptation and mitigation strategies, and understand how Arctic change impacts other regions of the globe. Surface-based observations of the atmosphere are critical measurements in this effort because they are high quality and have high temporal resolution, but there are few atmospheric observatories in the Arctic and the period of record is short. Reanalyses combine assimilated observations with models to fill in spatial and temporal data gaps, and also provide additional model-derived parameters. Reanalyses are spatially comprehensive, but are limited by large uncertainties and biases, in particular with respect to derived parameters. Infrared radiation is a large component of the surface energy budget. Infrared emission from clouds is closely tied to cloud properties, so measurements of the infrared spectrum can be used to retrieve information about clouds and can also be used to investigate the influence clouds have on the surface radiation balance. In this dissertation, spectral infrared radiances and other observations obtained between 2006 and 2012 at three Arctic observatories are used to investigate the spatial and temporal characteristics of cloud properties in the Arctic. The observatory locations are Barrow, Alaska; Eureka, Nunavut, Canada; and Summit Station, Greenland. Additional spatial information is inferred from reanalysis data. Therefore, to establish confidence in analysis results and context for interpretation, the reanalyses are validated using the surface observations in a mutually informative validation-analysis approach. In Chapter 1, a method is developed to convert spectral infrared radiances to downwelling infrared flux. These measurements are used to compare Barrow and Eureka. These sites are then situated in the context of the greater Arctic using the reanalyses. In Chapter 2, spectral infrared radiances are used to obtain a baseline data set of cloud microphysical and optical properties from Eureka. In Chapter 3, downwelling infrared fluxes are obtained from Summit Station using the method from Chapter 1 and are used to develop a new method for reanalysis validation. Comparisons are made between Summit, Barrow and Eureka. Spatial comparisons of cloud infrared influence are made across the Greenland ice sheet using the reanalyses. Chapter 4 reports on an effort to conduct timely and engaging educational programs for high school students in the Arctic, thereby helping to extend the reach of Arctic cloud science beyond research community.

  7. Impact of Arctic shelf summer stratification on Holocene climate variability

    NASA Astrophysics Data System (ADS)

    Thibodeau, Benoit; Bauch, Henning A.; Knies, Jochen

    2018-07-01

    Understanding the dynamic of freshwater and sea-ice export from the Arctic is crucial to better comprehend the potential near-future climate change consequences. Here, we report nitrogen isotope data of a core from the Laptev Sea to shed light on the impact of the Holocene Siberian transgression on the summer stratification of the Laptev Sea. Our data suggest that the oceanographic setting was less favourable to sea-ice formation in the Laptev Sea during the early to mid-Holocene. It is only after the sea level reached a standstill at around 4 ka that the water column structure in the Laptev Sea became more stable. Modern-day conditions, often described as "sea-ice factory", were reached about 2 ka ago, after the development of a strong summer stratification. These results are consistent with sea-ice reconstruction along the Transpolar Drift, highlighting the potential contribution of the Laptev Sea to the export of freshwater from the Arctic Ocean.

  8. Dynamical mechanisms of Arctic amplification.

    PubMed

    Dethloff, Klaus; Handorf, Dörthe; Jaiser, Ralf; Rinke, Annette; Klinghammer, Pia

    2018-05-12

    The Arctic has become a hot spot of climate change, but the nonlinear interactions between regional and global scales in the coupled climate system responsible for Arctic amplification are not well understood and insufficiently described in climate models. Here, we compare reanalysis data with model simulations for low and high Arctic sea ice conditions to identify model biases with respect to atmospheric Arctic-mid-latitude linkages. We show that an appropriate description of Arctic sea ice forcing is able to reproduce the observed winter cooling in mid-latitudes as result of improved tropospheric-stratospheric planetary wave propagation triggering a negative phase of the Arctic Oscillation/North Atlantic Oscillation in late winter. © 2018 New York Academy of Sciences.

  9. Atmospheric form drag over Arctic sea ice derived from high-resolution IceBridge elevation data

    NASA Astrophysics Data System (ADS)

    Petty, A.; Tsamados, M.; Kurtz, N. T.

    2016-02-01

    Here we present a detailed analysis of atmospheric form drag over Arctic sea ice, using high resolution, three-dimensional surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter. Surface features in the sea ice cover are detected using a novel feature-picking algorithm. We derive information regarding the height, spacing and orientation of unique surface features from 2009-2014 across both first-year and multiyear ice regimes. The topography results are used to explicitly calculate atmospheric form drag coefficients; utilizing existing form drag parameterizations. The atmospheric form drag coefficients show strong regional variability, mainly due to variability in ice type/age. The transition from a perennial to a seasonal ice cover therefore suggest a decrease in the atmospheric form drag coefficients over Arctic sea ice in recent decades. These results are also being used to calibrate a recent form drag parameterization scheme included in the sea ice model CICE, to improve the representation of form drag over Arctic sea ice in global climate models.

  10. The initiation and development of small peat-forming ecosystems adjacent to lakes in the north central Canadian low arctic during the Holocene

    NASA Astrophysics Data System (ADS)

    Camill, Philip; Umbanhowar, Charles E.; Geiss, Christoph; Edlund, Mark B.; Hobbs, Will O.; Dupont, Allison; Doyle-Capitman, Catherine; Ramos, Matthew

    2017-07-01

    Small peat-forming ecosystems in arctic landscapes may play a significant role in the regional biogeochemistry of high-latitude systems, yet they are understudied compared to arctic uplands and other major peat-forming regions of the North. We present a new data set of 25 radiocarbon-dated permafrost peat cores sampled around eight low arctic lake sites in northern Manitoba (Canada) to examine the timing of peat initiation and controls on peat accumulation throughout the Holocene. We used macrofossils and charcoal to characterize changes in the plant community and fire, and we explored potential impacts of these local factors, as well as regional climatic change, on rates of C accumulation and C stocks. Peat initiation was variable across and within sites, suggesting the influence of local topography, but 56% of the cores initiated after 3000 B.P. Most cores initiated and remained as drier bog hummock communities, with few vegetation transitions in this landscape. C accumulation was relatively slow and did not appear to be correlated with Holocene-scale climatic variability, but C stocks in this landscape were substantial (mean = 45.4 kg C m-2), potentially accounting for 13.2 Pg C in the Taiga Shield ecozone. To the extent that small peat-forming systems are underrepresented in peatland mapping, soil organic carbon (SOC) stocks may be underestimated in arctic regions. Mean fire severity appeared to be negatively correlated with C accumulation rates. Initiation and accumulation of soil C may respond to both regional and local factors, and substantial lowland soil C stocks have the potential for biogeochemical impacts on adjacent aquatic ecosystems.

  11. Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability.

    PubMed

    Hao, Qingzhen; Wang, Luo; Oldfield, Frank; Peng, Shuzhen; Qin, Li; Song, Yang; Xu, Bing; Qiao, Yansong; Bloemendal, Jan; Guo, Zhengtang

    2012-10-18

    Knowledge of the past variability of climate at high northern latitudes during astronomical analogues of the present interglacial may help to inform our understanding of future climate change. Unfortunately, long-term continuous records of ice-sheet variability in the Northern Hemisphere only are scarce because records of benthic (18)O content represent an integrated signal of changes in ice volume in both polar regions. However, variations in Northern Hemisphere ice sheets influence the Siberian High (an atmospheric pressure system), so variations in the East Asian winter monsoon (EAWM)--as recorded in the aeolian dust deposits on the Chinese Loess Plateau--can serve as a useful proxy of Arctic climate variability before the ice-core record begins. Here we present an EAWM proxy record using grain-size variations in two parallel loess sections representative of sequences across the whole of the Chinese Loess Plateau over the past 900,000 years. The results show that during periods of low eccentricity and precessional variability at approximately 400,000-year intervals, the grain-size-inferred intensity of the EAWM remains weak for up to 20,000 years after the end of the interglacial episode of high summer monsoon activity and strong pedogenesis. In contrast, there is a rapid increase in the EAWM after the end of most other interglacials. We conclude that, for both the 400,000-year interglacials, the weak EAWM winds maintain a mild, non-glacial climate at high northern latitudes for much longer than expected from the conventional loess and marine oxygen isotope records. During these times, the less-severe summer insolation minima at 65° N (ref. 4) would have suppressed ice and snow accumulation, leading to a weak Siberian High and, consequently, weak EAWM winds.

  12. Dangerous climate change and the importance of adaptation for the Arctic's Inuit population

    NASA Astrophysics Data System (ADS)

    Ford, James D.

    2009-04-01

    The Arctic's climate is changing rapidly, to the extent that 'dangerous' climate change as defined by the United Nations Framework on Climate Change might already be occurring. These changes are having implications for the Arctic's Inuit population and are being exacerbated by the dependence of Inuit on biophysical resources for livelihoods and the low socio-economic-health status of many northern communities. Given the nature of current climate change and projections of a rapidly warming Arctic, climate policy assumes a particular importance for Inuit regions. This paper argues that efforts to stabilize and reduce greenhouse gas emissions are urgent if we are to avoid runaway climate change in the Arctic, but unlikely to prevent changes which will be dangerous for Inuit. In this context, a new policy discourse on climate change is required for Arctic regions—one that focuses on adaptation. The paper demonstrates that states with Inuit populations and the international community in general has obligations to assist Inuit to adapt to climate change through international human rights and climate change treaties. However, the adaptation deficit, in terms of what we know and what we need to know to facilitate successful adaptation, is particularly large in an Arctic context and limiting the ability to develop response options. Moreover, adaptation as an option of response to climate change is still marginal in policy negotiations and Inuit political actors have been slow to argue the need for adaptation assistance. A new focus on adaptation in both policy negotiations and scientific research is needed to enhance Inuit resilience and reduce vulnerability in a rapidly changing climate.

  13. Mind the wind: microclimate effects on incubation effort of an arctic seabird.

    PubMed

    Høyvik Hilde, Christoffer; Pélabon, Christophe; Guéry, Loreleï; Gabrielsen, Geir Wing; Descamps, Sébastien

    2016-04-01

    The energetic costs of reproduction in birds strongly depend on the climate experienced during incubation. Climate change and increasing frequency of extreme weather events may severely affect these costs, especially for species incubating in extreme environments. In this 3-year study, we used an experimental approach to investigate the effects of microclimate and nest shelter on the incubation effort of female common eiders (Somateria mollissima) in a wild Arctic population. We added artificial shelters to a random selection of nesting females, and compared incubation effort, measured as body mass loss during incubation, between females with and without shelter. Nonsheltered females had a higher incubation effort than females with artificial shelters. In nonsheltered females, higher wind speeds increased the incubation effort, while artificially sheltered females experienced no effect of wind. Although increasing ambient temperatures tended to decrease incubation effort, this effect was negligible in the absence of wind. Humidity had no marked effect on incubation effort. This study clearly displays the direct effect of a climatic variable on an important aspect of avian life-history. By showing that increasing wind speed counteracts the energetic benefits of a rising ambient temperature, we were able to demonstrate that a climatic variable other than temperature may also affect wild populations and need to be taken into account when predicting the effects of climate change.

  14. The changing seasonal climate in the Arctic.

    PubMed

    Bintanja, R; van der Linden, E C

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities.

  15. The changing seasonal climate in the Arctic

    PubMed Central

    Bintanja, R.; van der Linden, E. C.

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities. PMID:23532038

  16. Changes in tundra pond limnology: re-sampling Alaskan ponds after 40 years.

    PubMed

    Lougheed, Vanessa L; Butler, Malcolm G; McEwen, Daniel C; Hobbie, John E

    2011-09-01

    The arctic tundra ponds at the International Biological Program (IBP) site in Barrow, AK, were studied extensively in the 1970s; however, very little aquatic research has been conducted there for over three decades. Due to the rapid climate changes already occurring in northern Alaska, identifying any changes in the ponds' structure and function over the past 30-40 years can help identify any potential climate-related impacts. Current research on the IBP ponds has revealed significant changes in the physical, chemical, and biological characteristics of these ponds over time. These changes include increased water temperatures, increased water column nutrient concentrations, the presence of at least one new chironomid species, and increased macrophyte cover. However, we have also observed significant annual variation in many measured variables and caution that this variation must be taken into account when attempting to make statements about longer-term change. The Barrow IBP tundra ponds represent one of the very few locations in the Arctic where long-term data are available on freshwater ecosystem structure and function. Continued monitoring and protection of these invaluable sites is required to help understand the implications of climate change on freshwater ecosystems in the Arctic.

  17. Contrasting shrub species respond to early summer temperatures leading to correspondence of shrub growth patterns

    NASA Astrophysics Data System (ADS)

    Weijers, Stef; Pape, Roland; Löffler, Jörg; Myers-Smith, Isla H.

    2018-03-01

    The Arctic-alpine biome is warming rapidly, resulting in a gradual replacement of low statured species by taller woody species in many tundra ecosystems. In northwest North America, the remotely sensed normalized difference vegetation index (NDVI), suggests an increase in productivity of the Arctic and alpine tundra and a decrease in productivity of boreal forests. However, the responses of contrasting shrub species growing at the same sites to climate drivers remain largely unexplored. Here, we test growth, climate, and NDVI relationships of two contrasting species: the expanding tall deciduous shrub Salix pulchra and the circumarctic evergreen dwarf shrub Cassiope tetragona from an alpine tundra site in the Pika valley in the Kluane Region, southwest Yukon Territories, Canada. We found that annual growth variability of both species at this site is strongly driven by early summer temperatures, despite their contrasting traits and habitats. Shrub growth chronologies for both species were correlated with the regional climate signal and showed spatial correspondence with interannual variation in NDVI in surrounding alpine and Arctic regions. Our results suggest that early summer warming represents a common driver of vegetation change for contrasting shrub species growing in different habitats in the same alpine environments.

  18. Possible connections of the opposite trends in Arctic and Antarctic sea-ice cover.

    PubMed

    Yu, Lejiang; Zhong, Shiyuan; Winkler, Julie A; Zhou, Mingyu; Lenschow, Donald H; Li, Bingrui; Wang, Xianqiao; Yang, Qinghua

    2017-04-05

    Sea ice is an important component of the global climate system and a key indicator of climate change. A decreasing trend in Arctic sea-ice concentration is evident in recent years, whereas Antarctic sea-ice concentration exhibits a generally increasing trend. Various studies have investigated the underlying causes of the observed trends for each region, but possible linkages between the regional trends have not been studied. Here, we hypothesize that the opposite trends in Arctic and Antarctic sea-ice concentration may be linked, at least partially, through interdecadal variability of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). Although evaluation of this hypothesis is constrained by the limitations of the sea-ice cover record, preliminary statistical analyses of one short-term and two long-term time series of observed and reanalysis sea-ice concentrations data suggest the possibility of the hypothesized linkages. For all three data sets, the leading mode of variability of global sea-ice concentration is positively correlated with the AMO and negatively correlated with the PDO. Two wave trains related to the PDO and the AMO appear to produce anomalous surface-air temperature and low-level wind fields in the two polar regions that contribute to the opposite changes in sea-ice concentration.

  19. Possible connections of the opposite trends in Arctic and Antarctic sea-ice cover

    PubMed Central

    Yu, Lejiang; Zhong, Shiyuan; Winkler, Julie A.; Zhou, Mingyu; Lenschow, Donald H.; Li, Bingrui; Wang, Xianqiao; Yang, Qinghua

    2017-01-01

    Sea ice is an important component of the global climate system and a key indicator of climate change. A decreasing trend in Arctic sea-ice concentration is evident in recent years, whereas Antarctic sea-ice concentration exhibits a generally increasing trend. Various studies have investigated the underlying causes of the observed trends for each region, but possible linkages between the regional trends have not been studied. Here, we hypothesize that the opposite trends in Arctic and Antarctic sea-ice concentration may be linked, at least partially, through interdecadal variability of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). Although evaluation of this hypothesis is constrained by the limitations of the sea-ice cover record, preliminary statistical analyses of one short-term and two long-term time series of observed and reanalysis sea-ice concentrations data suggest the possibility of the hypothesized linkages. For all three data sets, the leading mode of variability of global sea-ice concentration is positively correlated with the AMO and negatively correlated with the PDO. Two wave trains related to the PDO and the AMO appear to produce anomalous surface-air temperature and low-level wind fields in the two polar regions that contribute to the opposite changes in sea-ice concentration. PMID:28378830

  20. Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations

    USGS Publications Warehouse

    Rawlins, M.A.; Steele, M.; Holland, M.M.; Adam, J.C.; Cherry, J.E.; Francis, J.A.; Groisman, P.Y.; Hinzman, L.D.; Huntington, T.G.; Kane, D.L.; Kimball, J.S.; Kwok, R.; Lammers, R.B.; Lee, C.M.; Lettenmaier, D.P.; McDonald, K.C.; Podest, E.; Pundsack, J.W.; Rudels, B.; Serreze, Mark C.; Shiklomanov, A.; Skagseth, O.; Troy, T.J.; Vorosmarty, C.J.; Wensnahan, M.; Wood, E.F.; Woodgate, R.; Yang, D.; Zhang, K.; Zhang, T.

    2010-01-01

    Hydrologic cycle intensification is an expected manifestation of a warming climate. Although positive trends in several global average quantities have been reported, no previous studies have documented broad intensification across elements of the Arctic freshwater cycle (FWC). In this study, the authors examine the character and quantitative significance of changes in annual precipitation, evapotranspiration, and river discharge across the terrestrial pan-Arctic over the past several decades from observations and a suite of coupled general circulation models (GCMs). Trends in freshwater flux and storage derived from observations across the Arctic Ocean and surrounding seas are also described. With few exceptions, precipitation, evapotranspiration, and river discharge fluxes from observations and the GCMs exhibit positive trends. Significant positive trends above the 90% confidence level, however, are not present for all of the observations. Greater confidence in the GCM trends arises through lower interannual variability relative to trend magnitude. Put another way, intrinsic variability in the observations tends to limit confidence in trend robustness. Ocean fluxes are less certain, primarily because of the lack of long-term observations. Where available, salinity and volume flux data suggest some decrease in saltwater inflow to the Barents Sea (i.e., a decrease in freshwater outflow) in recent decades. A decline in freshwater storage across the central Arctic Ocean and suggestions that large-scale circulation plays a dominant role in freshwater trends raise questions as to whether Arctic Ocean freshwater flows are intensifying. Although oceanic fluxes of freshwater are highly variable and consistent trends are difficult to verify, the other components of the Arctic FWC do show consistent positive trends over recent decades. The broad-scale increases provide evidence that the Arctic FWC is experiencing intensification. Efforts that aim to develop an adequate observation system are needed to reduce uncertainties and to detect and document ongoing changes in all system components for further evidence of Arctic FWC intensification.

  1. The Impact of Stratospheric Circulation Extremes on Minimum Arctic Sea Ice Extent

    NASA Astrophysics Data System (ADS)

    Smith, K. L.; Polvani, L. M.; Tremblay, B.

    2017-12-01

    The interannual variability of summertime Arctic sea ice extent (SIE) is anti-correlated with the leading mode of extratropical atmospheric variability in preceding winter, the Arctic Oscillation (AO). Given this relationship and the need for better seasonal predictions of Arctic SIE, we here examine the role of stratospheric circulation extremes and stratosphere-troposphere coupling in linking the AO and Arctic SIE variability. We show that extremes in the stratospheric circulation during the winter season, namely stratospheric sudden warming (SSW) and strong polar vortex (SPV) events, are associated with significant anomalies in sea ice concentration in the Bering Straight and the Sea of Okhotsk in winter, the Barents Sea in spring and along the Eurasian coastline in summer in both observations and a fully-coupled, stratosphere-resolving general circulation model. The accompanying figure shows the composite mean sea ice concentration anomalies from the Whole Atmosphere Community Climate Model (WACCM) for SSWs (N = 126, top row) and SPVs (N = 99, bottom row) for winter (a,d), spring (b,e) and summer (c,f). Consistent with previous work on the AO, we find that SSWs, which are followed by the negative phase of the AO at the surface, result in sea ice growth, whereas SPVs, which are followed by the positive phase of the AO at the surface, result in sea ice loss, although the dynamic and thermodynamic processes driving these sea ice anomalies in the three Arctic regions, noted above, are different. Our analysis suggests that the presence or absence of stratospheric circulation extremes in winter may play a non-trivial role in determining total September Arctic SIE when combined with other factors.

  2. The Arctic-Subarctic Sea Ice System is Entering a Seasonal Regime: Implications for Future Arctic Amplication

    NASA Astrophysics Data System (ADS)

    Haine, T. W. N.; Martin, T.

    2017-12-01

    The loss of Arctic sea ice is a conspicuous example of climate change. Climate models project ice-free conditions during summer this century under realistic emission scenarios, reflecting the increase in seasonality in ice cover. To quantify the increased seasonality in the Arctic-Subarctic sea ice system, we define a non-dimensional seasonality number for sea ice extent, area, and volume from satellite data and realistic coupled climate models. We show that the Arctic-Subarctic, i.e. the northern hemisphere, sea ice now exhibits similar levels of seasonality to the Antarctic, which is in a seasonal regime without significant change since satellite observations began in 1979. Realistic climate models suggest that this transition to the seasonal regime is being accompanied by a maximum in Arctic amplification, which is the faster warming of Arctic latitudes compared to the global mean, in the 2010s. The strong link points to a peak in sea-ice-related feedbacks that occurs long before the Arctic becomes ice-free in summer.

  3. The Impact of Transported Pollution on Arctic Climate

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Stohl, A.; Arneth, A.; Berntsen, T.; Burkhart, J. F.; Flanner, M. G.; Kupiainen, K.; Shepherd, M.; Shevchenko, V. P.; Skov, H.; Vestreng, V.

    2011-12-01

    Arctic temperatures have increased at almost twice the global average rate over the past 100 years. Warming in the Arctic has been accompanied by an earlier onset of spring melt, a lengthening of the melt season, changes in the mass balance of the Greenland ice sheet, and a decrease in sea ice extent. Short-lived, climate warming pollutants such as black carbon (BC) have recently gained attention as a target for immediate mitigation of Arctic warming in addition to reductions in long lived greenhouse gases. Model calculations indicate that BC increases surface temperatures within the Arctic primarily through deposition on snow and ice surfaces with a resulting decrease in surface albedo and increase in absorbed solar radiation. In 2009, the Arctic Monitoring and Assessment Program (AMAP) established an Expert Group on BC with the goal of identifying source regions and energy sectors that have the largest impact on Arctic climate. Here we present the results of this work and investigate links between mid-latitude pollutants and Arctic climate.

  4. Exceptional Arctic warmth of early winter 2016 and attribution to global warming

    NASA Astrophysics Data System (ADS)

    van Oldenborgh, Geert Jan; Macias-Fauria, Marc; King, Andrew; Uhe, Peter; Philip, Sjoukje; Kew, Sarah; Karoly, David; Otto, Friederike; Allen, Myles; Cullen, Heidi

    2017-04-01

    The dark polar winters usually sport the coldest extremes on Earth, however this winter, the North Pole and the surrounding Arctic region have experienced record high temperatures in November and December, with daily means reaching 15 °C (27 °F) above normal and a November monthly mean that was 13 °C (23 °F) above normal on the pole. November also saw a brief retreat of sea-ice that was virtually unprecedented in nearly 40 years of satellite records, followed by a record low in November sea ice area since 1850. Unlike the Antarctic, Arctic lands are inhabited and their socio-economic systems are greatly affected by the impacts of extreme and unprecedented sea ice dynamics and temperatures, such as for example, the timing of marine mammal migrations, and refreezing rain on snow that prevents reindeer from feeding. Here we report on our multi-method rapid attribution analysis of North Pole November-December temperatures. To quantify the rarity of the event, we computed the November-December averaged temperature around the North Pole (80-90 °N) in the (short but North-pole covering) ERA-interim reanalysis. To put the event in context of natural variability, we use a longer and closely related time series based on the northern most meteorological observations on land (70-80 °N). This allows for a reconstruction of Arctic temperatures back to about 1900. We also perform a multi-method analysis of North Pole temperatures with two sets of climate models: the CMIP5 multi-model ensemble, and a large ensemble of model runs in the so-called Weather@Home project. Physical mechanisms that are responsible for temperature and sea ice variability in the North Pole region are also discussed. The observations and the bias-corrected CMIP5 ensemble point to a return period of about 50 to 200 years in the present climate, i.e., the probability of such an extreme is about 0.5% to 2% every year, with a large uncertainty. The observations show that November-December temperatures have risen on the North Pole, modulated by decadal North Atlantic variability. For all phases of this variability, a warm event like the one of this winter would have been extremely unlikely in the climate of a century ago. Both sets of models also give very comparable results and show that the bulk of the arctic temperature increase is due to anthropogenic emissions. This also holds for the warm extremes caused by the type of circulation present in the early winter of 2016.

  5. Key Findings of the AMAP 2015 Assessment on Black Carbon and Tropospheric Ozone as Arctic Climate Forcers

    NASA Astrophysics Data System (ADS)

    Quinn, P.

    2015-12-01

    The Arctic Monitoring and Assessment Programme (AMAP) established an Expert Group on Short-Lived Climate Forcers (SLCFs) in 2009 with the goal of reviewing the state of science surrounding SLCFs in the Arctic and recommending science tasks to improve the state of knowledge and its application to policy-making. In 2011, the result of the Expert Group's work was published in a technical report entitled The Impact of Black Carbon on Arctic Climate (AMAP, 2011). That report focused entirely on black carbon (BC) and co-emitted organic carbon (OC). The SLCFs Expert Group then expanded its scope to include all species co-emitted with BC as well as tropospheric ozone. An assessment report, entitled Black Carbon and Tropospheric Ozone as Arctic Climate Forcers, was published in 2015. The assessment includes summaries of measurement methods and emissions inventories of SLCFs, atmospheric transport of SLCFs to and within the Arctic, modeling methods for estimating the impact of SLCFs on Arctic climate, model-measurement inter-comparisons, trends in concentrations of SLCFs in the Arctic, and a literature review of Arctic radiative forcing and climate response. In addition, three Chemistry Climate Models and five Chemistry Transport Models were used to calculate Arctic burdens of SLCFs and precursors species, radiative forcing, and Arctic temperature response to the forcing. Radiative forcing was calculated for the direct atmospheric effect of BC, BC-snow/ice effect, and cloud indirect effects. Forcing and temperature response associated with different source sectors (Domestic, Energy+Industry+Waste, Transport, Agricultural waste burning, Forest fires, and Flaring) and source regions (United States, Canada, Russia, Nordic Countries, Rest of Europe, East and South Asia, Arctic, mid-latitudes, tropics, southern hemisphere) were calculated. To enable an evaluation of the cost-effectiveness of regional emission mitigation options, the normalized impacts (i.e., impacts per unit emission from each sector and region) were also calculated. Key findings from the 2015 assessment will be presented.

  6. A 15 year legacy of cloud and atmosphere observations in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Shupe, M.

    2012-12-01

    For the past 15 years, the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program has operated the North Slope of Alaska (NSA) atmospheric observatory in Barrow, Alaska. Barrow offers many valuable perspectives on the Arctic environment that complement observations at lower latitudes. Unique features of the Arctic region include cold and dry atmospheric conditions, strong annual variability in sun light, a seasonally high-reflective surface, and persistent clouds that involve mixed-phase processes. ARM's ultimate objective with its flagship observatory at the northernmost point in U.S. territory is to provide measurements that can be used to improve the understanding of these atmospheric physical and radiative properties and processes such that they can be better represented in climate models. The NSA is the most detailed and long-lasting cloud-radiation-atmosphere observatory in the Arctic, providing continuous, sophisticated measurements of climate-relevant parameters. Instrument suites include active radars and lidars at various frequencies, passive radiometers monitoring radiation in microwave, infrared, visible and ultraviolet wavelengths, meteorological towers, and sounding systems. Together these measurements are used to characterize many of the important properties of clouds, aerosols, atmospheric radiation, dynamics, thermodynamics, and the surface. The coordinated nature of these measurements offers important multi-dimensional insight into many fundamental processes linking these different elements of the climate system. Moreover, the continuous operations of the facility support these observations over the full diurnal cycle and in all seasons of the year. This presentation will highlight a number of important studies and key findings that have been facilitated by the NSA observations during the first 15 years in operation. Some of these include: a thorough documentation of clouds, their occurrence frequency, phase, microphysical properties, and impacts on surface radiation; the indirect effect of aerosols on the surface longwave radiative effects of Arctic clouds; improved measurements of low amounts of atmospheric water vapor and their impacts on atmospheric radiation; dynamical and microphysical processes that are responsible for long-lived Arctic stratiform clouds; evaluation of satellite observations in extreme and observationally-difficult regimes; and assessment of model performance for models ranging from very high resolution to climate model simulations in the Arctic. The observational legacy at Barrow continues as ARM works to expand and enhance its impact. Plans are underway to install observational capabilities at a sister location in Oliktok Point to the east of Barrow, including enhanced capabilities of tethered balloon profiling and flying unmanned aerial vehicles over the adjacent Arctic Ocean. A new set of scanning cloud and precipitation radars have recently come online at Barrow that will allow for new insights on the spatial context of measurements at Barrow, including important information on the variability of atmospheric processes associated with the coastline. And lastly, there are many opportunities for the intensive observations at Barrow to inform important regional research on permafrost and sea-ice loss, while also serving as an unmatched, long-term record for evaluating atmospheric processes in regional and global climate models.

  7. Interactions of arctic clouds, radiation, and sea ice in present-day and future climates

    NASA Astrophysics Data System (ADS)

    Burt, Melissa Ann

    The Arctic climate system involves complex interactions among the atmosphere, land surface, and the sea-ice-covered Arctic Ocean. Observed changes in the Arctic have emerged and projected climate trends are of significant concern. Surface warming over the last few decades is nearly double that of the entire Earth. Reduced sea-ice extent and volume, changes to ecosystems, and melting permafrost are some examples of noticeable changes in the region. This work is aimed at improving our understanding of how Arctic clouds interact with, and influence, the surface budget, how clouds influence the distribution of sea ice, and the role of downwelling longwave radiation (DLR) in climate change. In the first half of this study, we explore the roles of sea-ice thickness and downwelling longwave radiation in Arctic amplification. As the Arctic sea ice thins and ultimately disappears in a warming climate, its insulating power decreases. This causes the surface air temperature to approach the temperature of the relatively warm ocean water below the ice. The resulting increases in air temperature, water vapor and cloudiness lead to an increase in the surface downwelling longwave radiation, which enables a further thinning of the ice. This positive ice-insulation feedback operates mainly in the autumn and winter. A climate-change simulation with the Community Earth System Model shows that, averaged over the year, the increase in Arctic DLR is three times stronger than the increase in Arctic absorbed solar radiation at the surface. The warming of the surface air over the Arctic Ocean during fall and winter creates a strong thermal contrast with the colder surrounding continents. Sea-level pressure falls over the Arctic Ocean and the high-latitude circulation reorganizes into a shallow "winter monsoon." The resulting increase in surface wind speed promotes stronger surface evaporation and higher humidity over portions of the Arctic Ocean, thus reinforcing the ice-insulation feedback. In the second half of this study, we explore the effects of super-parameterization on the Arctic climate by evaluating a number of key atmospheric characteristics that strongly influence the regional and global climate. One aspect in particular that we examine is the occurrence of Arctic weather states. Observations show that during winter the Arctic exhibits two preferred and persistent states --- a radiatively clear and an opaquely cloudy state. These distinct regimes are influenced by the phase of the clouds and affect the surface radiative fluxes. We explore the radiative and microphysical effects of these Arctic clouds and the influence on these regimes in two present-day climate simulations. We compare simulations performed with the Community Earth System Model, and its super-parameterized counterpart (SP-CESM). We find that the SP-CESM is able to better reproduce both of the preferred winter states, compared to CESM, and has an overall more realistic representation of the Arctic climate.

  8. Continuous and discrete extreme climatic events affecting the dynamics of a high-arctic reindeer population.

    PubMed

    Chan, Kung-Sik; Mysterud, Atle; Øritsland, Nils Are; Severinsen, Torbjørn; Stenseth, Nils Chr

    2005-10-01

    Climate at northern latitudes are currently changing both with regard to the mean and the temporal variability at any given site, increasing the frequency of extreme events such as cold and warm spells. Here we use a conceptually new modelling approach with two different dynamic terms of the climatic effects on a Svalbard reindeer population (the Brøggerhalvøya population) which underwent an extreme icing event ("locked pastures") with 80% reduction in population size during one winter (1993/94). One term captures the continuous and linear effect depending upon the Arctic Oscillation and another the discrete (rare) "event" process. The introduction of an "event" parameter describing the discrete extreme winter resulted in a more parsimonious model. Such an approach may be useful in strongly age-structured ungulate populations, with young and very old individuals being particularly prone to mortality factors during adverse conditions (resulting in a population structure that differs before and after extreme climatic events). A simulation study demonstrates that our approach is able to properly detect the ecological effects of such extreme climate events.

  9. Holocene record of glacier variability from lake sediments reveals tripartite climate history for Svalbard

    NASA Astrophysics Data System (ADS)

    van der Bilt, Willem; Bakke, Jostein; Vasskog, Kristian; D`Andrea, William; Bradley, Raymond; Olafsdottir, Sædis

    2016-04-01

    The Arctic is responding sensitively to ongoing global climate change, warming and moistening faster than any other region on the planet. Holocene proxy paleoclimate time series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. Glaciers rapidly respond to climate shifts as demonstrated by their current demise around the world. This response has a composite climate signature, marked by shifts in hydroclimate (winter precipitation) as well as (summer) temperature. Attendant changes in glacier size are recorded by variations in glacigenic rock flour that may be deposited in downstream lakes. Here, we present a Holocene reconstruction of glacier activity, based on sediments from Hajeren, a glacier-fed lake on northwest Spitsbergen in the High Arctic Svalbard archipelago. Owing to undisturbed sediments and robust age control, we could resolve variability on a sub-centennial scale. To ensure the accurate detection of glacier activity, we applied a toolbox of physical, magnetic and geochemical proxies in conjunction with multivariate statistics. Our findings indicate a three-stage Holocene climate history for Svalbard, driving by melt water pulses, episodic Atlantic cooling and a decline in orbitally driven summer insolation. Correspondence between inferred advances, including a Holocene glacier maximum around 9.5 ka BP, suggests forcing by the melting LIS during the Early Holocene. Following a late Holocene Thermal Maximum around 7.4 ka BP, glaciers disappeared from the catchment. Glaciers reformed around 4.2 ka BP during the regional onset of the Neoglacial, supporting previous findings. This transition did, however, not mark the onset of persistent glacier activity in the catchment, but a series of centennial-scale cycles of growth and decay, including events around 3.3 and 1.1 ka BP. As orbitally driven insolation declined towards the present, the glaciation threshold progressively lowered. The forcing behind these advances remains elusive, but their agreement with other glacier reconstructions from the region indicates a North Atlantic signature. Prolonged glacier activity commenced after 0.7 ka BP during the Little Ice Age, in agreement with other evidence from Svalbard. Comparatively high reconstructed temperatures during this timeframe suggest that glacier growth was precipitation-driven. Our findings highlight the sensitivity of small glaciers to climate shifts, demonstrating their potential to resolve centennial-scale perturbations. Moreover, this study underlines the value of lake sediments from glacier-fed lakes in understanding Holocene climate in the Arctic.

  10. Gender specific reproductive strategies of an arctic key species (Boreogadus saida) and implications of climate change.

    PubMed

    Nahrgang, Jasmine; Varpe, Oystein; Korshunova, Ekaterina; Murzina, Svetlana; Hallanger, Ingeborg G; Vieweg, Ireen; Berge, Jørgen

    2014-01-01

    The Arctic climate is changing at an unprecedented rate. What consequences this may have on the Arctic marine ecosystem depends to a large degree on how its species will respond both directly to elevated temperatures and more indirectly through ecological interactions. But despite an alarming recent warming of the Arctic with accompanying sea ice loss, reports evaluating ecological impacts of climate change in the Arctic remain sparse. Here, based upon a large-scale field study, we present basic new knowledge regarding the life history traits for one of the most important species in the entire Arctic, the polar cod (Boreogadus saida). Furthermore, by comparing regions of contrasting climatic influence (domains), we present evidence as to how its growth and reproductive success is impaired in the warmer of the two domains. As the future Arctic is predicted to resemble today's Atlantic domains, we forecast changes in growth and life history characteristics of polar cod that will lead to alteration of its role as an Arctic keystone species. This will in turn affect community dynamics and energy transfer in the entire Arctic food chain.

  11. Evaluation of Routine Atmospheric Sounding Measurements Using Unmanned Systems (ERASMUS) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Boer, Gijs; Lawrence, Dale; Palo, Scott

    The Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) campaign was proposed with two central goals; to obtain scientifically relevant measurements of quantities related to clouds, aerosols, and radiation, including profiles of temperature, humidity, and aerosol particles, the structure of the arctic atmosphere during transitions between clear and cloudy states, measurements that would allow us to evaluate the performance of retrievals from U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility remote sensors in the Arctic atmosphere, and information on the spatial variability of heat and moisture fluxes from the arctic surface; and to demonstratemore » unmanned aerial system (UAS) capabilities in obtaining measurements relevant to the ARM and ASR programs, particularly for improving our understanding of Arctic clouds and aerosols.« less

  12. Relating Regional Arctic Sea Ice and climate extremes over Europe

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Grosfeld, Klaus; Lohmann, Gerrit; Scholz, Patrick

    2016-04-01

    The potential increase of temperature extremes under climate change is a major threat to society, as temperature extremes have a deep impact on environment, hydrology, agriculture, society and economy. Hence, the analysis of the mechanisms underlying their occurrence, including their relationships with the large-scale atmospheric circulation and sea ice concentration, is of major importance. At the same time, the decline in Arctic sea ice cover during the last 30 years has been widely documented and it is clear that this change is having profound impacts at regional as well as planetary scale. As such, this study aims to investigate the relation between the autumn regional sea ice concentration variability and cold winters in Europe, as identified by the numbers of cold nights (TN10p), cold days (TX10p), ice days (ID) and consecutive frost days (CFD). We analyze the relationship between Arctic sea ice variation in autumn (September-October-November) averaged over eight different Arctic regions (Barents/Kara Seas, Beaufort Sea, Chukchi/Bering Seas, Central Arctic, Greenland Sea, Labrador Sea/Baffin Bay, Laptev/East Siberian Seas and Northern Hemisphere) and variations in atmospheric circulation and climate extreme indices in the following winter season over Europe using composite map analysis. Based on the composite map analysis it is shown that the response of the winter extreme temperatures over Europe is highly correlated/connected to changes in Arctic sea ice variability. However, this signal is not symmetrical for the case of high and low sea ice years. Moreover, the response of temperatures extreme over Europe to sea ice variability over the different Arctic regions differs substantially. The regions which have the strongest impact on the extreme winter temperature over Europe are: Barents/Kara Seas, Beaufort Sea, Central Arctic and the Northern Hemisphere. For the years of high sea ice concentration in the Barents/Kara Seas there is a reduction in the number of cold nights, cold days, ice days and consecutive frost days over the western part of Europe. In the opposite case of low sea ice concentration over the Barents/Kara Seas an increase of up to 8 days/winter of cold nights and days is observed over the whole Europe and an increase of up to 4 days/winter in the number of ID and CFD is observed over the same regions. The cold winters over Europe (low sea ice years) are associated with anomalous anticyclone and the downstream development of a mid-latitude trough, which in turn favours the advection of cold air from the north, providing favourable conditions for severe winters over Europe. We suggest that these results can help to improve the seasonal predictions of winter extreme events over Europe. Due to the non-linear response to high vs. low sea ice years, the skill of the predictions might depend on the sign and amplitude of the anomalies.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Strickland, James Hassler

    Globally, there is no lack of security threats. Many of them demand priority engagement and there can never be adequate resources to address all threats. In this context, climate is just another aspect of global security and the Arctic just another region. In light of physical and budgetary constraints, new security needs must be integrated and prioritized with existing ones. This discussion approaches the security impacts of climate from that perspective, starting with the broad security picture and establishing how climate may affect it. This method provides a different view from one that starts with climate and projects it, inmore » isolation, as the source of a hypothetical security burden. That said, the Arctic does appear to present high-priority security challenges. Uncertainty in the timing of an ice-free Arctic affects how quickly it will become a security priority. Uncertainty in the emergent extreme and variable weather conditions will determine the difficulty (cost) of maintaining adequate security (order) in the area. The resolution of sovereignty boundaries affects the ability to enforce security measures, and the U.S. will most probably need a military presence to back-up negotiated sovereignty agreements. Without additional global warming, technology already allows the Arctic to become a strategic link in the global supply chain, possibly with northern Russia as its main hub. Additionally, the multinational corporations reaping the economic bounty may affect security tensions more than nation-states themselves. Countries will depend ever more heavily on the global supply chains. China has particular needs to protect its trade flows. In matters of security, nation-state and multinational-corporate interests will become heavily intertwined.« less

  14. Arctic sea ice trends, variability and implications for seasonal ice forecasting

    PubMed Central

    Serreze, Mark C.; Stroeve, Julienne

    2015-01-01

    September Arctic sea ice extent over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal ice forecasting. In particular, while advances in observing sea ice thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. PMID:26032315

  15. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic?

    PubMed

    Nielsen, Uffe N; Wall, Diana H

    2013-03-01

    The polar regions are experiencing rapid climate change with implications for terrestrial ecosystems. Here, despite limited knowledge, we make some early predictions on soil invertebrate community responses to predicted twenty-first century climate change. Geographic and environmental differences suggest that climate change responses will differ between the Arctic and Antarctic. We predict significant, but different, belowground community changes in both regions. This change will be driven mainly by vegetation type changes in the Arctic, while communities in Antarctica will respond to climate amelioration directly and indirectly through changes in microbial community composition and activity, and the development of, and/or changes in, plant communities. Climate amelioration is likely to allow a greater influx of non-native species into both the Arctic and Antarctic promoting landscape scale biodiversity change. Non-native competitive species could, however, have negative effects on local biodiversity particularly in the Arctic where the communities are already species rich. Species ranges will shift in both areas as the climate changes potentially posing a problem for endemic species in the Arctic where options for northward migration are limited. Greater soil biotic activity may move the Arctic towards a trajectory of being a substantial carbon source, while Antarctica could become a carbon sink. © 2013 Blackwell Publishing Ltd/CNRS.

  16. Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models

    NASA Astrophysics Data System (ADS)

    Screen, James A.; Deser, Clara; Smith, Doug M.; Zhang, Xiangdong; Blackport, Russell; Kushner, Paul J.; Oudar, Thomas; McCusker, Kelly E.; Sun, Lantao

    2018-03-01

    The decline of Arctic sea ice is an integral part of anthropogenic climate change. Sea-ice loss is already having a significant impact on Arctic communities and ecosystems. Its role as a cause of climate changes outside of the Arctic has also attracted much scientific interest. Evidence is mounting that Arctic sea-ice loss can affect weather and climate throughout the Northern Hemisphere. The remote impacts of Arctic sea-ice loss can only be properly represented using models that simulate interactions among the ocean, sea ice, land and atmosphere. A synthesis of six such experiments with different models shows consistent hemispheric-wide atmospheric warming, strongest in the mid-to-high-latitude lower troposphere; an intensification of the wintertime Aleutian Low and, in most cases, the Siberian High; a weakening of the Icelandic Low; and a reduction in strength and southward shift of the mid-latitude westerly winds in winter. The atmospheric circulation response seems to be sensitive to the magnitude and geographic pattern of sea-ice loss and, in some cases, to the background climate state. However, it is unclear whether current-generation climate models respond too weakly to sea-ice change. We advocate for coordinated experiments that use different models and observational constraints to quantify the climate response to Arctic sea-ice loss.

  17. The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study

    PubMed Central

    Hansen, Kaj M.; Christensen, Jesper H.; Brandt, Jørgen

    2015-01-01

    Mercury (Hg) is a global pollutant with adverse health effects on humans and wildlife. It is of special concern in the Arctic due to accumulation in the food web and exposure of the Arctic population through a rich marine diet. Climate change may alter the exposure of the Arctic population to Hg. We have investigated the effect of climate change on the atmospheric Hg transport to and deposition within the Arctic by making a sensitivity study of how the atmospheric chemistry-transport model Danish Eulerian Hemispheric Model (DEHM) reacts to climate change forcing. The total deposition of Hg to the Arctic is 18% lower in the 2090s compared to the 1990s under the applied Special Report on Emissions Scenarios (SRES-A1B) climate scenario. Asia is the major anthropogenic source area (25% of the deposition to the Arctic) followed by Europe (6%) and North America (5%), with the rest arising from the background concentration, and this is independent of the climate. DEHM predicts between a 6% increase (Status Quo scenario) and a 37% decrease (zero anthropogenic emissions scenario) in Hg deposition to the Arctic depending on the applied emission scenario, while the combined effect of future climate and emission changes results in up to 47% lower Hg deposition. PMID:26378551

  18. The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study.

    PubMed

    Hansen, Kaj M; Christensen, Jesper H; Brandt, Jørgen

    2015-09-10

    Mercury (Hg) is a global pollutant with adverse health effects on humans and wildlife. It is of special concern in the Arctic due to accumulation in the food web and exposure of the Arctic population through a rich marine diet. Climate change may alter the exposure of the Arctic population to Hg. We have investigated the effect of climate change on the atmospheric Hg transport to and deposition within the Arctic by making a sensitivity study of how the atmospheric chemistry-transport model Danish Eulerian Hemispheric Model (DEHM) reacts to climate change forcing. The total deposition of Hg to the Arctic is 18% lower in the 2090s compared to the 1990s under the applied Special Report on Emissions Scenarios (SRES-A1B) climate scenario. Asia is the major anthropogenic source area (25% of the deposition to the Arctic) followed by Europe (6%) and North America (5%), with the rest arising from the background concentration, and this is independent of the climate. DEHM predicts between a 6% increase (Status Quo scenario) and a 37% decrease (zero anthropogenic emissions scenario) in Hg deposition to the Arctic depending on the applied emission scenario, while the combined effect of future climate and emission changes results in up to 47% lower Hg deposition.

  19. Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions.

    PubMed

    Swingedouw, Didier; Ortega, Pablo; Mignot, Juliette; Guilyardi, Eric; Masson-Delmotte, Valérie; Butler, Paul G; Khodri, Myriam; Séférian, Roland

    2015-03-30

    While bidecadal climate variability has been evidenced in several North Atlantic paleoclimate records, its drivers remain poorly understood. Here we show that the subset of CMIP5 historical climate simulations that produce such bidecadal variability exhibits a robust synchronization, with a maximum in Atlantic Meridional Overturning Circulation (AMOC) 15 years after the 1963 Agung eruption. The mechanisms at play involve salinity advection from the Arctic and explain the timing of Great Salinity Anomalies observed in the 1970s and the 1990s. Simulations, as well as Greenland and Iceland paleoclimate records, indicate that coherent bidecadal cycles were excited following five Agung-like volcanic eruptions of the last millennium. Climate simulations and a conceptual model reveal that destructive interference caused by the Pinatubo 1991 eruption may have damped the observed decreasing trend of the AMOC in the 2000s. Our results imply a long-lasting climatic impact and predictability following the next Agung-like eruption.

  20. US Climate Variability and Predictability Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Mike

    The US CLIVAR Project Office administers the US CLIVAR Program with its mission to advance understanding and prediction of climate variability and change across timescales with an emphasis on the role of the ocean and its interaction with other elements of the Earth system. The Project Office promotes and facilitates scientific collaboration within the US and international climate and Earth science communities, addressing priority topics from subseasonal to centennial climate variability and change; the global energy imbalance; the ocean’s role in climate, water, and carbon cycles; climate and weather extremes; and polar climate changes. This project provides essential one-year supportmore » of the Project Office, enabling the participation of US scientists in the meetings of the US CLIVAR bodies that guide scientific planning and implementation, including the scientific steering committee that establishes program goals and evaluates progress of activities to address them, the science team of funded investigators studying the ocean overturning circulation in the Atlantic, and two working groups tackling the priority research topics of Arctic change influence on midlatitude climate and weather extremes and the decadal-scale widening of the tropical belt.« less

  1. US Climate Variability and Predictability (CLIVAR) Project- Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Mike

    The US CLIVAR Project Office administers the US CLIVAR Program with its mission to advance understanding and prediction of climate variability and change across timescales with an emphasis on the role of the ocean and its interaction with other elements of the Earth system. The Project Office promotes and facilitates scientific collaboration within the US and international climate and Earth science communities, addressing priority topics from subseasonal to centennial climate variability and change; the global energy imbalance; the ocean’s role in climate, water, and carbon cycles; climate and weather extremes; and polar climate changes. This project provides essential one-year supportmore » of the Project Office, enabling the participation of US scientists in the meetings of the US CLIVAR bodies that guide scientific planning and implementation, including the scientific steering committee that establishes program goals and evaluates progress of activities to address them, the science team of funded investigators studying the ocean overturning circulation in the Atlantic, and two working groups tackling the priority research topics of Arctic change influence on midlatitude climate and weather extremes and the decadal-scale widening of the tropical belt.« less

  2. Biased thermohaline exchanges with the Arctic across the Iceland-Faroe Ridge in ocean climate models

    NASA Astrophysics Data System (ADS)

    Olsen, S. M.; Hansen, B.; Østerhus, S.; Quadfasel, D.; Valdimarsson, H.

    2016-04-01

    The northern limb of the Atlantic thermohaline circulation and its transport of heat and salt towards the Arctic strongly modulate the climate of the Northern Hemisphere. The presence of warm surface waters prevents ice formation in parts of the Arctic Mediterranean, and ocean heat is directly available for sea-ice melt, while salt transport may be critical for the stability of the exchanges. Through these mechanisms, ocean heat and salt transports play a disproportionally strong role in the climate system, and realistic simulation is a requisite for reliable climate projections. Across the Greenland-Scotland Ridge (GSR) this occurs in three well-defined branches where anomalies in the warm and saline Atlantic inflow across the shallow Iceland-Faroe Ridge (IFR) have been shown to be particularly difficult to simulate in global ocean models. This branch (IF-inflow) carries about 40 % of the total ocean heat transport into the Arctic Mediterranean and is well constrained by observation during the last 2 decades but associated with significant inter-annual fluctuations. The inconsistency between model results and observational data is here explained by the inability of coarse-resolution models to simulate the overflow across the IFR (IF-overflow), which feeds back onto the simulated IF-inflow. In effect, this is reduced in the model to reflect only the net exchange across the IFR. Observational evidence is presented for a substantial and persistent IF-overflow and mechanisms that qualitatively control its intensity. Through this, we explain the main discrepancies between observed and simulated exchange. Our findings rebuild confidence in modelled net exchange across the IFR, but reveal that compensation of model deficiencies here through other exchange branches is not effective. This implies that simulated ocean heat transport to the Arctic is biased low by more than 10 % and associated with a reduced level of variability, while the quality of the simulated salt transport becomes critically dependent on the link between IF-inflow and IF-overflow. These features likely affect sensitivity and stability of climate models to climate change and limit the predictive skill.

  3. Seasonal and Inter-annual Phenological Varibility is Greatest in Low-Arctic and Wet Sites Across the North Slope of Alaska as Observed from Multiple Remote Sensing Platforms

    NASA Astrophysics Data System (ADS)

    Vargas, S. A., Jr.; Andresen, C. G.; May, J. L.; Oberbauer, S. F.; Hollister, R. D.; Tweedie, C. E.

    2017-12-01

    The Arctic is experiencing among the most dramatic impacts from climate variability on the planet. Arctic plant phenology has been identified as an ideal indicator of climate change impacts and provides great insight into seasonal and inter-annual vegetative trends and their responses to such changes. Traditionally, phenology has been quantified using satellite-based systems and plot-level observations but each approach presents limitations especially in high latitude regions. Mid-scale systems (e.g. automated sensor platforms and trams) have shown to provide alternative, and in most cases, cheaper solutions with comparable results to those acquired traditionally. This study contributes to the US Arctic Observing Network (AON) and assesses the effectiveness of using digital images acquired from pheno-cams, a kite aerial photography (KAP) system, and plot-level images (PLI) in their capacity to assess phenological variability (e.g. snow melt, greening and end-of-season) for dominant vegetation communities present at two sites in both Utqiagvik and Atqasuk, Alaska, namely the Mobile Instrumented Sensor Platform (MISP) and the Circum-arctic Active Layer Monitoring (CALM) grids. RGB indices (e.g. GEI and %G) acquired from these methods were compared to the normalized difference vegetation index (NDVI) calculated from multispectral ground-based reflectance measurements, which has been identified and used as a proxy of primary productivity across multiple ecosystems including the Arctic. The 5 years of growing season data collected generally resulted with stronger Pearson's correlations between indices located in plots containing higher soil moisture versus those that were drier. Future studies will extend platform inter-comparison to the satellite level by scaling trends to MODIS land surface products. Trends documented thus far, however, suggest that the long-term changes in satellite NDVI for these study areas, could be a direct response from wet tundra landscapes.

  4. Quantifying Chemical Ozone Loss in the Arctic Stratosphere with GEOS-STRATCHEM Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Wargan, K.; Nielsen, J. E.

    2017-01-01

    A faithful representation of polar stratospheric chemistry in models and its connection with dynamical variability is essential for our understanding of the evolution of the ozone layer in a changing climate and during the projected continuing decline of ozone depleting substances in the atmosphere. We use a new configuration of the Goddard Earth Observing System Data Assimilation System with a stratospheric chemistry model to study ozone depletion in the Arctic polar stratosphere during the exceptionally cold (in the stratosphere) winters 2015/2016 and 2010/2011.

  5. Distribution of branched GDGTs in surface sediments from the Colville River, Alaska: Implications for the MBT'/CBT paleothermometer in Arctic marine sediments

    NASA Astrophysics Data System (ADS)

    Hanna, Andrea J. M.; Shanahan, Timothy M.; Allison, Mead A.

    2016-07-01

    Significant climate fluctuations in the Arctic over the recent past, and additional predicted future temperature changes, highlight the need for high-resolution Arctic paleoclimate records. Arctic coastal environments supplied with terrigenous sediment from Arctic rivers have the potential to provide annual to subdecadal resolution records of climate variability over the last few millennia. A potential tool for paleotemperature reconstructions in these marine sediments is the revised methylation index of branched tetraethers (MBT')/cyclization ratio of branched tetraethers (CBT) proxy based on branched glycerol dialkyl glycerol tetraethers (brGDGTs). In this study, we examine the source of brGDGTs in the Colville River, Alaska, and the adjacent Simpson Lagoon and reconstruct temperatures from Simpson Lagoon sediments to evaluate the applicability of this proxy in Arctic estuarine environments. The Colville catchment soils, fluvial sediments, and estuarine sediments contain statistically similar brGDGT distributions, indicating that the brGDGTs throughout the system are soil derived with little alteration from in situ brGDGT production in the river or coastal waters. Temperatures reconstructed from the MBT'/CBT indices for surface samples show good agreement with regional summer (June through September) temperatures, suggesting a seasonal bias in Arctic temperature reconstructions from the Colville system. In addition, we reconstruct paleotemperatures from an estuarine sediment core that spans the last 75 years, revealing an overall warming trend in the twentieth century that is consistent with trends observed in regional instrumental records. These results support the application of this brGDGT-based paleotemperature proxy for subdecadal-scale summer temperature reconstructions in Arctic estuaries containing organic material derived from sediment-laden, episodic rivers.

  6. The Deglacial to Holocene Paleoceanography of Bering Strait: Results From the SWERUS-C3 Program

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Anderson, L. G.; Backman, J.; Barrientos, N.; Björk, G. M.; Coxall, H.; Cronin, T. M.; De Boer, A. M.; Gemery, L.; Jerram, K.; Johansson, C.; Kirchner, N.; Mayer, L. A.; Mörth, C. M.; Nilsson, J.; Noormets, R. R. N. N.; O'Regan, M.; Pearce, C.; Semiletov, I. P.; Stranne, C.

    2017-12-01

    The climate-carbon-cryosphere (C3) interactions in the East Siberian Arctic Ocean and related ocean, river and land areas of the Arctic have been the focus for the SWERUS-C3 Program (Swedish - Russian - US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions). This multi-investigator, multi-disciplinary program was carried out on a two-leg 90-day long expedition in 2014 with Swedish icebreaker Oden. One component of the expedition consisted of geophysical mapping and coring of Herald Canyon, located on the Chukchi Sea shelf north of the Bering Strait in the western Arctic Ocean. Herald Canyon is strategically placed to capture the history of the Pacific-Arctic Ocean connection and related changes in Arctic Ocean paleoceanography. Here we present a summary of key results from analyses of the marine geophysical mapping data and cores collected from Herald Canyon on the shelf and slope that proved to be particularly well suited for paleoceanographic reconstruction. For example, we provide a new age constraint of 11 cal ka BP on sediments from the uppermost slope for the initial flooding of the Bering Land Bridge and reestablishment of the Pacific-Arctic Ocean connection following the last glaciation. This age corresponds to meltwater pulse 1b (MWP1b) known as a post-Younger Dryas warming in many sea level and paleoclimate records. In addition, high late Holocene sedimentation rates that range between about 100 and 300 cm kyr-1, in Herald Canyon permitted paleoceanographic reconstructions of ocean circulation and sea ice cover at centennial scales throughout the late Holocene. Evidence suggests varying influence from inflowing Pacific water into the western Arctic Ocean including some evidence for quasi-cyclic variability in several paleoceanographic parameters, e.g. micropaleontological assemblages, isotope geochemistry and sediment physical properties.

  7. Improving Arctic Sea Ice Observations and Data Access to Support Advances in Sea Ice Forecasting

    NASA Astrophysics Data System (ADS)

    Farrell, S. L.

    2017-12-01

    The economic and strategic importance of the Arctic region is becoming apparent. One of the most striking and widely publicized changes underway is the declining sea ice cover. Since sea ice is a key component of the climate system, its ongoing loss has serious, and wide-ranging, socio-economic implications. Increasing year-to-year variability in the geographic location, concentration, and thickness of the Arctic ice cover will pose both challenges and opportunities. The sea ice research community must be engaged in sustained Arctic Observing Network (AON) initiatives so as to deliver fit-for-purpose remote sensing data products to a variety of stakeholders including Arctic communities, the weather forecasting and climate modeling communities, industry, local, regional and national governments, and policy makers. An example of engagement is the work currently underway to improve research collaborations between scientists engaged in obtaining and assessing sea ice observational data and those conducting numerical modeling studies and forecasting ice conditions. As part of the US AON, in collaboration with the Interagency Arctic Research Policy Committee (IARPC), we are developing a strategic framework within which observers and modelers can work towards the common goal of improved sea ice forecasting. Here, we focus on sea ice thickness, a key varaible of the Arctic ice cover. We describe multi-sensor, and blended, sea ice thickness data products under development that can be leveraged to improve model initialization and validation, as well as support data assimilation exercises. We will also present the new PolarWatch initiative (polarwatch.noaa.gov) and discuss efforts to advance access to remote sensing satellite observations and improve communication with Arctic stakeholders, so as to deliver data products that best address societal needs.

  8. Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

    NASA Astrophysics Data System (ADS)

    Lee, Seongsuk; Yi, Yu

    2016-12-01

    The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/ or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).

  9. Arctic indigenous peoples as representations and representatives of climate change.

    PubMed

    Martello, Marybeth Long

    2008-06-01

    Recent scientific findings, as presented in the Arctic Climate Impact Assessment (ACIA), indicate that climate change in the Arctic is happening now, at a faster rate than elsewhere in the world, and with major implications for peoples of the Arctic (especially indigenous peoples) and the rest of the planet. This paper examines scientific and political representations of Arctic indigenous peoples that have been central to the production and articulation of these claims. ACIA employs novel forms and strategies of representation that reflect changing conceptual models and practices of global change science and depict indigenous peoples as expert, exotic, and at-risk. These portrayals emerge alongside the growing political activism of Arctic indigenous peoples who present themselves as representatives or embodiments of climate change itself as they advocate for climate change mitigation policies. These mutually constitutive forms of representation suggest that scientific ways of seeing the global environment shape and are shaped by the public image and voice of global citizens. Likewise, the authority, credibility, and visibility of Arctic indigenous activists derive, in part, from their status as at-risk experts, a status buttressed by new scientific frameworks and methods that recognize and rely on the local experiences and knowledges of indigenous peoples. Analyses of these relationships linking scientific and political representations of Arctic climate change build upon science and technology studies (STS) scholarship on visualization, challenge conventional notions of globalization, and raise questions about power and accountability in global climate change research.

  10. Summers with low Arctic sea ice linked to persistence of spring atmospheric circulation patterns

    NASA Astrophysics Data System (ADS)

    Kapsch, Marie-Luise; Skific, Natasa; Graversen, Rune G.; Tjernström, Michael; Francis, Jennifer A.

    2018-05-01

    The declining trend of Arctic September sea ice constitutes a significant change in the Arctic climate system. Large year-to-year variations are superimposed on this sea-ice trend, with the largest variability observed in the eastern Arctic Ocean. Knowledge of the processes important for this variability may lead to an improved understanding of seasonal and long-term changes. Previous studies suggest that transport of heat and moisture into the Arctic during spring enhances downward surface longwave radiation, thereby controlling the annual melt onset, setting the stage for the September ice minimum. In agreement with these studies, we find that years with a low September sea-ice concentration (SIC) are characterized by more persistent periods in spring with enhanced energy flux to the surface in forms of net longwave radiation plus turbulent fluxes, compared to years with a high SIC. Two main atmospheric circulation patterns related to these episodes are identified: one resembles the so-called Arctic dipole anomaly that promotes transport of heat and moisture from the North Pacific, whereas the other is characterized by negative geopotential height anomalies over the Arctic, favoring cyclonic flow from Siberia and the Kara Sea into the eastern Arctic Ocean. However, differences between years with low and high September SIC appear not to be due to different spring circulation patterns; instead it is the persistence and intensity of processes associated with these patterns that distinguish the two groups of anomalous years: Years with low September SIC feature episodes that are consistently stronger and more persistent than years with high SIC.

  11. The Arctic Summer Cloud-Ocean Study (ASCOS): overview and experimental design

    NASA Astrophysics Data System (ADS)

    Tjernström, M.; Leck, C.; Birch, C. E.; Brooks, B. J.; Brooks, I. M.; Bäcklin, L.; Chang, R. Y.-W.; Granath, E.; Graus, M.; Hansel, A.; Heintzenberg, J.; Held, A.; Hind, A.; de la Rosa, S.; Johnston, P.; Knulst, J.; de Leeuw, G.; Di Liberto, L.; Martin, M.; Matrai, P. A.; Mauritsen, T.; Müller, M.; Norris, S. J.; Orellana, M. V.; Orsini, D. A.; Paatero, J.; Persson, P. O. G.; Gao, Q.; Rauschenberg, C.; Ristovski, Z.; Sedlar, J.; Shupe, M. D.; Sierau, B.; Sirevaag, A.; Sjogren, S.; Stetzer, O.; Swietlicki, E.; Szczodrak, M.; Vaattovaara, P.; Wahlberg, N.; Westberg, M.; Wheeler, C. R.

    2013-05-01

    The climate in the Arctic is changing faster than anywhere else on Earth. Poorly understood feedback processes relating to Arctic clouds and aerosol-cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in-situ in this difficult to reach region with logistically demanding environmental conditions. The Arctic Summer Cloud-Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007-2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait; two in open water and two in the marginal ice zone. After traversing the pack-ice northward an ice camp was set up on 12 August at 87°21' N 01°29' W and remained in operation through 1 September, drifting with the ice. During this time extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggest the possibility of primary marine organically derived cloud condensation nuclei in Arctic stratocumulus clouds. Direct observations of surface fluxes of aerosols could, however, not explain observed variability in aerosol concentrations and the balance between local and remote aerosols sources remains open. Lack of CCN was at times a controlling factor in low-level cloud formation, and hence for the impact of clouds on the surface energy budget. ASCOS provided detailed measurements of the surface energy balance from late summer melt into the initial autumn freeze-up, and documented the effects of clouds and storms on the surface energy balance during this transition. In addition to such process-level studies, the unique, independent ASCOS data set can and is being used for validation of satellite retrievals, operational models, and reanalysis data sets.

  12. The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design

    NASA Astrophysics Data System (ADS)

    Tjernström, M.; Leck, C.; Birch, C. E.; Bottenheim, J. W.; Brooks, B. J.; Brooks, I. M.; Bäcklin, L.; Chang, R. Y.-W.; de Leeuw, G.; Di Liberto, L.; de la Rosa, S.; Granath, E.; Graus, M.; Hansel, A.; Heintzenberg, J.; Held, A.; Hind, A.; Johnston, P.; Knulst, J.; Martin, M.; Matrai, P. A.; Mauritsen, T.; Müller, M.; Norris, S. J.; Orellana, M. V.; Orsini, D. A.; Paatero, J.; Persson, P. O. G.; Gao, Q.; Rauschenberg, C.; Ristovski, Z.; Sedlar, J.; Shupe, M. D.; Sierau, B.; Sirevaag, A.; Sjogren, S.; Stetzer, O.; Swietlicki, E.; Szczodrak, M.; Vaattovaara, P.; Wahlberg, N.; Westberg, M.; Wheeler, C. R.

    2014-03-01

    The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol-cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in situ in this difficult-to-reach region with logistically demanding environmental conditions. The Arctic Summer Cloud Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007-2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait: two in open water and two in the marginal ice zone. After traversing the pack ice northward, an ice camp was set up on 12 August at 87°21' N, 01°29' W and remained in operation through 1 September, drifting with the ice. During this time, extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first-ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggests the possibility of primary marine organically derived cloud condensation nuclei in Arctic stratocumulus clouds. Direct observations of surface fluxes of aerosols could, however, not explain observed variability in aerosol concentrations, and the balance between local and remote aerosols sources remains open. Lack of cloud condensation nuclei (CCN) was at times a controlling factor in low-level cloud formation, and hence for the impact of clouds on the surface energy budget. ASCOS provided detailed measurements of the surface energy balance from late summer melt into the initial autumn freeze-up, and documented the effects of clouds and storms on the surface energy balance during this transition. In addition to such process-level studies, the unique, independent ASCOS data set can and is being used for validation of satellite retrievals, operational models, and reanalysis data sets.

  13. Lake Ice Cover of Shallow Lakes and Climate Interactions in Arctic Regions (1950-2011): SAR Data Analysis and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Surdu, C.; Duguay, C.; Brown, L.; Fernàndez-Prieto, D.; Samuelsson, P.

    2012-12-01

    Lake ice cover is highly correlated with climatic conditions and has, therefore, been demonstrated to be an essential indicator of climate variability and change. Recent studies have shown that the duration of the lake ice cover has decreased, mainly as a consequence of earlier thaw dates in many parts of the Northern Hemisphere over the last 50 years, mainly as a feedback to increased winter and spring air temperature. In response to projected air temperature and winter precipitation changes by climate models until the end of the 21st century, the timing, duration, and thickness of ice cover on Arctic lakes are expected to be impacted. This, in turn, will likely alter the energy, water, and bio-geochemical cycling in various regions of the Arctic. In the case of shallow tundra lakes, many of which are less than 3-m deep, warmer climate conditions could result in a smaller fraction of lakes that fully freeze to the bottom at the time of maximum winter ice thickness since thinner ice covers are predicted to develop. Shallow thermokarst lakes of the coastal plain of northern Alaska, and of other similar Arctic regions, have likely been experiencing changes in seasonal ice phenology and thickness over the last few decades but these have not yet been comprehensively documented. Analysis of a 20-year time series of ERS-1/2 synthetic aperture radar (SAR) data and numerical lake ice modeling were employed to determine the response of ice cover (thickness, freezing to bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA) to climate conditions over the last three decades. New downscaled data specific to the Arctic domain (at a resolution of 0.44 degrees using ERA Interim Reanalysis as boundary condition) produced by the Rossby Centre Regional Atmospheric Climate Model (RCA4) was used to drive the Canadian Lake Ice Model (CLIMo) for the period 1950-2011. In order to assess and integrate the SAR-derived observed changes into a longer historical context, and to improve the simulation outputs, CLIMo was also forced with climatic data recorded at the Barrow airport meteorological station since the middle of the 20th century. ERS-1/2 data was used to map areas of the shallow lakes that freeze to bed and the rate at which this occurs during the ice season for the period 1991-2011. The results were compared to daily ice thickness results derived from CLIMo. Analysis from a sub-region of the NSA near Barrow shows that the interannual variability in ice thickness simulated with CLIMo compares favorably with the fraction of lakes that freeze to their bed in winter, thicker ice cover corresponding to a higher ratio of lakes fully frozen to the bottom, as determined from the analysis of SAR data.

  14. Arctic summer school onboard an icebreaker

    NASA Astrophysics Data System (ADS)

    Alexeev, Vladimir A.; Repina, Irina A.

    2014-05-01

    The International Arctic Research Center (IARC) of the University of Alaska Fairbanks conducted a summer school for PhD students, post-docs and early career scientists in August-September 2013, jointly with an arctic expedition as a part of NABOS project (Nansen and Amundsen Basin Observational System) onboard the Russian research vessel "Akademik Fedorov". Both the summer school and NABOS expedition were funded by the National Science Foundation. The one-month long summer school brought together graduate students and young scientists with specialists in arctic oceanography and climate to convey to a new generation of scientists the opportunities and challenges of arctic climate observations and modeling. Young scientists gained hands-on experience during the field campaign and learned about key issues in arctic climate from observational, diagnostic, and modeling perspectives. The summer school consisted of background lectures, participation in fieldwork and mini-projects. The mini-projects were performed in collaboration with summer school instructors and members of the expedition. Key topics covered in the lectures included: - arctic climate: key characteristics and processes; - physical processes in the Arctic Ocean; - sea ice and the Arctic Ocean; - trace gases, aerosols, and chemistry: importance for climate changes; - feedbacks in the arctic system (e.g., surface albedo, clouds, water vapor, circulation); - arctic climate variations: past, ongoing, and projected; - global climate models: an overview. An outreach specialist from the Miami Science Museum was writing a blog from the icebreaker with some very impressive statistics (results as of January 1, 2014): Total number of blog posts: 176 Blog posts written/contributed by scientists: 42 Blog views: 22,684 Comments: 1,215 Number of countries who viewed the blog: 89 (on 6 continents) The 33-day long NABOS expedition started on August 22, 2013 from Kirkenes, Norway. The vessel ("Akademik Fedorov") returned to Kirkenes on September 23, 2013. In our presentation we will try to convey the spirit of learning and excitement of the students during the expedition and the summer school.

  15. Climate Change, Globalization and Geopolitics in the New Maritime Arctic

    NASA Astrophysics Data System (ADS)

    Brigham, L. W.

    2011-12-01

    Early in the 21st century a confluence of climate change, globalization and geopolitics is shaping the future of the maritime Arctic. This nexus is also fostering greater linkage of the Arctic to the rest of the planet. Arctic sea ice is undergoing a historic transformation of thinning, extent reduction in all seasons, and reduction in the area of multiyear ice in the central Arctic Ocean. Global Climate Model simulations of Arctic sea ice indicate multiyear ice could disappear by 2030 for a short period of time each summer. These physical changes invite greater marine access, longer seasons of navigation, and potential, summer trans-Arctic voyages. As a result, enhanced marine safety, environmental protection, and maritime security measures are under development. Coupled with climate change as a key driver of regional change is the current and future integration of the Arctic's natural wealth with global markets (oil, gas and hard minerals). Abundant freshwater in the Arctic could also be a future commodity of value. Recent events such as drilling for hydrocarbons off Greenland's west coast and the summer marine transport of natural resources from the Russian Arctic to China across the top of Eurasia are indicators of greater global economic ties to the Arctic. Plausible Arctic futures indicate continued integration with global issues and increased complexity of a range of regional economic, security and environmental challenges.

  16. A Linkage of Recent Arctic Summer Sea Ice and Snowfall Variability of Japan

    NASA Astrophysics Data System (ADS)

    Iwamoto, K.; Honda, M.; Ukita, J.

    2014-12-01

    In spite of its mid-latitude location, Japan has a markedly high amount of snowfall, which owes much to the presence of cold air-break from Siberia and thus depends on the strength of the Siberian high and the Aleutian low. With this background this study examines the relationship between interannual variability and spatial patterns of snowfall in Japan with large-scale atmospheric and sea ice variations. The lag regression map of the winter snowfall in Japan on the time series of the Arctic SIE from the preceding summer shows a seesaw pattern in the snowfall, suggesting an Arctic teleconnection to regional weather. From the EOF analyses conducted on the snowfall distribution in Japan, we identify two modes with physical significance. The NH SIC and SLP regressed on PC1 show a sea ice reduction in the Barents and Kara Seas and anomalous strength of the Siberia high as discussed in Honda et al. (2009) and other studies, which support the above notion that the snowfall variability of Japan is influenced by Arctic sea ice conditions. Another mode is related to the AO/NAO and the hemispheric scale double sea-ice seesaw centered over the sub-Arctic region: one between the Labrador and Nordic Seas in the Atlantic and the other between the Okhotsk and Bering Seas from the Pacific as discussed in Ukita et al. (2007). Together, observations point to a significant role of the sea-ice in determining mid-latitude regional climate and weather patterns.

  17. Late Quaternary Variability of Arctic Sea Ice: Insights From Biomarker Proxy Records and Model Simulations

    NASA Astrophysics Data System (ADS)

    Stein, R. H.; Fahl, K.; Gierz, P.; Niessen, F.; Lohmann, G.

    2017-12-01

    Over the last about four decades, coinciding with global warming and atmospheric CO2increase, the extent and thickness of Arctic sea ice has decreased dramatically, a decrease much more rapid than predicted by climate models. The driving forces of this change are still not fully understood. In this context, detailed paleoclimatic records going back beyond the timescale of direct observations, i.e., high-resolution Holocene records but also records representing more distant warm periods, may help to to distinguish and quantify more precisely the natural and anthropogenic greenhouse gas forcing of global climate change and related sea ice decrease. Here, we concentrate on sea ice biomarker records representing the penultimate glacial/last interglacial (MIS 6/MIS 5e) and the Holocene time intervals. Our proxy records are compared with climate model simulations using a coupled atmosphere-ocean general circulation model (AOGCM). Based on our data, polynya-type sea ice conditions probably occurred off the major ice sheets along the northern Barents and East Siberian continental margins during late MIS 6. Furthermore, we demonstrate that even during MIS 5e, i.e., a time interval when the high latitudes have been significantly warmer than today, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Assuming a closed Bering Strait (no Pacific Water inflow) during early MIS 5, model simulations point to a significantly reduced sea ice cover in the central Arctic Ocean, a scenario that is however not supported by the proxy record and thus seems to be less realistic. Our Holocene biomarker proxy records from the Chukchi Sea indicate that main factors controlling the millennial Holocene variability in sea ice are probably changes in surface water and heat flow from the Pacific into the Arctic Ocean as well as the long-term decrease in summer insolation. Here, increased Pacific Water inflow (and heat flux) may have triggered the contemporaneous decrease in sea ice and maximum surface-water productivity during mid-Holocene times.

  18. Variability of the atmospheric energy flux across 70°N computed from the GFDL data set

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Turet, Philip

    The primary energy balance for the arctic atmosphere is through northward advection of moist static energy—sensible heat, potential energy, and latent heat—balanced by long wave radiation to space. Energy flux from sea ice and marginal seas contributes perhaps 20-30% of the outgoing radiation north of 70°N in winter and absorbs a nearly equal amount during summer. Thorndike's toy model shows that extreme climate states with no ice growth or melt can occur by changing the latitudinal energy flux by ±20-30% out of an annual mean flux of 100 W m-2. We extend the previous work on latitudinal energy flux by Nakamura and Oort (NO) to a 25-year record and investigate temporal variability. Our annual latitudinal energy flux was 103 W m-2 compared to the NO value of 98 W m-2 this difference was from greater fluxes during the winter. We found that mean winter (NDJFM) energy flux was 121 W m-2 with a standard deviation of 11 W m-2. There were no large outliers in any year. An analysis of variance showed that interannual variability does not contribute towards explaining monthly variability of northward energy transport for the winter, summer or annual periods. Transient eddy flux of sensible heat into the arctic basin was the largest component of the total energy flux and is concentrated near the longitudes of the Greenland Sea (˜10°W) and the Bering and Chukchi Seas (180°). There is a minimum in atmospheric heating north of Greenland, a known region of thick ice. While there was little interannual variability of energy flux across 70°N, there was considerable month-to-month variability and regional variability in poleward energy flux. Sea ice may playa role in storage and redistribution of energy in the arctic climate.

  19. Mackenzie River Delta morphological change based on Landsat time series

    NASA Astrophysics Data System (ADS)

    Vesakoski, Jenni-Mari; Alho, Petteri; Gustafsson, David; Arheimer, Berit; Isberg, Kristina

    2015-04-01

    Arctic rivers are sensitive and yet quite unexplored river systems to which the climate change will impact on. Research has not focused in detail on the fluvial geomorphology of the Arctic rivers mainly due to the remoteness and wideness of the watersheds, problems with data availability and difficult accessibility. Nowadays wide collaborative spatial databases in hydrology as well as extensive remote sensing datasets over the Arctic are available and they enable improved investigation of the Arctic watersheds. Thereby, it is also important to develop and improve methods that enable detecting the fluvio-morphological processes based on the available data. Furthermore, it is essential to reconstruct and improve the understanding of the past fluvial processes in order to better understand prevailing and future fluvial processes. In this study we sum up the fluvial geomorphological change in the Mackenzie River Delta during the last ~30 years. The Mackenzie River Delta (~13 000 km2) is situated in the North Western Territories, Canada where the Mackenzie River enters to the Beaufort Sea, Arctic Ocean near the city of Inuvik. Mackenzie River Delta is lake-rich, productive ecosystem and ecologically sensitive environment. Research objective is achieved through two sub-objectives: 1) Interpretation of the deltaic river channel planform change by applying Landsat time series. 2) Definition of the variables that have impacted the most on detected changes by applying statistics and long hydrological time series derived from Arctic-HYPE model (HYdrologic Predictions for Environment) developed by Swedish Meteorological and Hydrological Institute. According to our satellite interpretation, field observations and statistical analyses, notable spatio-temporal changes have occurred in the morphology of the river channel and delta during the past 30 years. For example, the channels have been developing in braiding and sinuosity. In addition, various linkages between the studied explanatory variables, such as land cover, precipitation, evaporation, discharge, snow mass and temperature, were found. The significance of this research is emphasised by the growing population, increasing tourism, and economic actions in the Arctic mainly due to the ongoing climate change and technological development.

  20. Gender Specific Reproductive Strategies of an Arctic Key Species (Boreogadus saida) and Implications of Climate Change

    PubMed Central

    Nahrgang, Jasmine; Varpe, Øystein; Korshunova, Ekaterina; Murzina, Svetlana; Hallanger, Ingeborg G.; Vieweg, Ireen; Berge, Jørgen

    2014-01-01

    The Arctic climate is changing at an unprecedented rate. What consequences this may have on the Arctic marine ecosystem depends to a large degree on how its species will respond both directly to elevated temperatures and more indirectly through ecological interactions. But despite an alarming recent warming of the Arctic with accompanying sea ice loss, reports evaluating ecological impacts of climate change in the Arctic remain sparse. Here, based upon a large-scale field study, we present basic new knowledge regarding the life history traits for one of the most important species in the entire Arctic, the polar cod (Boreogadus saida). Furthermore, by comparing regions of contrasting climatic influence (domains), we present evidence as to how its growth and reproductive success is impaired in the warmer of the two domains. As the future Arctic is predicted to resemble today's Atlantic domains, we forecast changes in growth and life history characteristics of polar cod that will lead to alteration of its role as an Arctic keystone species. This will in turn affect community dynamics and energy transfer in the entire Arctic food chain. PMID:24871481

  1. Pan-Arctic observations in GRENE Arctic Climate Change Research Project and its successor

    NASA Astrophysics Data System (ADS)

    Yamanouchi, Takashi

    2016-04-01

    We started a Japanese initiative - "Arctic Climate Change Research Project" - within the framework of the Green Network of Excellence (GRENE) Program, funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), in 2011. This Project targeted understanding and forecasting "Rapid Change of the Arctic Climate System and its Global Influences." Four strategic research targets are set by the Ministry: 1. Understanding the mechanism of warming amplification in the Arctic; 2. Understanding the Arctic climate system for global climate and future change; 3. Evaluation of the impacts of Arctic change on the weather and climate in Japan, marine ecosystems and fisheries; 4. Projection of sea ice distribution and Arctic sea routes. Through a network of universities and institutions in Japan, this 5-year Project involves more than 300 scientists from 39 institutions and universities. The National Institute of Polar Research (NIPR) works as the core institute and The Japan Agency for Marine- Earth Science and Technology (JAMSTEC) joins as the supporting institute. There are 7 bottom up research themes approved: the atmosphere, terrestrial ecosystems, cryosphere, greenhouse gases, marine ecology and fisheries, sea ice and Arctic sea routes and climate modeling, among 22 applications. The Project will realize multi-disciplinal study of the Arctic region and connect to the projection of future Arctic and global climatic change by modeling. The project has been running since the beginning of 2011 and in those 5 years pan-Arctic observations have been carried out in many locations, such as Svalbard, Russian Siberia, Alaska, Canada, Greenland and the Arctic Ocean. In particular, 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard, and intensive atmospheric observations were carried out in 2014 and 2015. In addition, the Arctic Ocean cruises by R/V "Mirai" (belonging to JAMSTEC) and other icebreakers belonging to other countries were conducted and mooring buoy observations were also carried out. The data retrieved during these observations was accumulated in the "Arctic Data archive System (ADS)" (https://ads.nipr.ac.jp/) and served with interfaces for analysis. In addition, modeling studies have been promoted from fundamental process model to general circulation model. The successor of the project, ArCS (Arctic Challenge for Sustainability), which lays delivering emphasis 
on robust scientific information to stakeholders for decision making and solving problems, was started in FY2015. Within this project, a cooperative observation of black carbon are planned to be started at Cape Baranova Station (AARI, Rusia), Severnaya Zemlya, and new activities including emphasizing aerological observations are also planned to be started for contributing to "Year of Polar Prediction (YOPP)" of Polar Prediction Project (PPP/ WMO). It will be desirable to have a future collaboration with IASOA.

  2. Accounts from 19th-century Canadian Arctic explorers' logs reflect present climate conditions

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Wood, Kevin

    The widely perceived failure of 19th-century expeditions to find and transit the Northwest Passage in the Canadian Arctic is often attributed to extraordinary cold climatic conditions associated with the “Little Ice Age” evident in proxy records. However, examination of 44 explorers' logs for the western Arctic from 1818 to 1910 reveals that climate indicators such as navigability, the distribution and thickness of annual sea ice, monthly surface air temperature, and the onset of melt and freeze were within the present range of variability.The quest for the Northwest Passage through the Canadian archipelago during the 19th century is frequently seen as a vain and tragic failure. Polar exploration during the Victorian era seems to us today to have been a costly exercise in heroic futility, which in many respects it was. This perspective has been reinforced since the 1970s, when paleoclimate reconstructions based on Arctic ice core stratigraphy appeared to confirm the existence of exceptionally cold conditions consistent with the period glaciologists had termed the “Little Ice Age” (Figure 1a), with temperatures more than one standard deviation colder relative to an early 20th-century mean [Koerner, 1977; Koerner and Fisher, 1990; Overpeck et al., 1998]. In recent years, the view of the Little Ice Age as a synchronous worldwide and prolonged cold epoch that ended with modern warming has been questioned [Bradley and Jones, 1993; Jones and Briffa, 2001 ;Ogilvie, 2001].

  3. Surface towed electromagnetic system for mapping of subsea Arctic permafrost

    NASA Astrophysics Data System (ADS)

    Sherman, Dallas; Kannberg, Peter; Constable, Steven

    2017-02-01

    Sea level has risen globally since the late Pleistocene, resulting in permafrost-bearing coastal zones in the Arctic being submerged and subjected to temperature induced degradation. Knowing the extent of permafrost and how it changes over time is important for climate change predictions and for planning engineering activities in the Arctic environment. We developed a controlled source electromagnetic (CSEM) method to obtain information on the depth, thickness, and lateral extent of marine permafrost. To operate in shallow water we used a surface towed electric dipole-dipole CSEM system suitable for deployment from small boats. This system was used to map permafrost on the Arctic shelf offshore Prudhoe Bay, Alaska. Our results show significant lateral variability in the presence of permafrost, with the thickest layers associated with a large river outflow where freshwater influx seems to have a preserving effect on relict subsea permafrost.

  4. Data-driven Analysis and Prediction of Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Kondrashov, D. A.; Chekroun, M.; Ghil, M.; Yuan, X.; Ting, M.

    2015-12-01

    We present results of data-driven predictive analyses of sea ice over the main Arctic regions. Our approach relies on the Multilayer Stochastic Modeling (MSM) framework of Kondrashov, Chekroun and Ghil [Physica D, 2015] and it leads to prognostic models of sea ice concentration (SIC) anomalies on seasonal time scales.This approach is applied to monthly time series of leading principal components from the multivariate Empirical Orthogonal Function decomposition of SIC and selected climate variables over the Arctic. We evaluate the predictive skill of MSM models by performing retrospective forecasts with "no-look ahead" forup to 6-months ahead. It will be shown in particular that the memory effects included in our non-Markovian linear MSM models improve predictions of large-amplitude SIC anomalies in certain Arctic regions. Furtherimprovements allowed by the MSM framework will adopt a nonlinear formulation, as well as alternative data-adaptive decompositions.

  5. Arctic biodiversity: Increasing richness accompanies shrinking refugia for a cold-associated tundra fauna

    USGS Publications Warehouse

    Hope, Andrew G.; Waltari, Eric; Malaney, Jason L.; Payer, David C.; Cook, J.A.; Talbot, Sandra L.

    2015-01-01

    As ancestral biodiversity responded dynamically to late-Quaternary climate changes, so are extant organisms responding to the warming trajectory of the Anthropocene. Ecological predictive modeling, statistical hypothesis tests, and genetic signatures of demographic change can provide a powerful integrated toolset for investigating these biodiversity responses to climate change, and relative resiliency across different communities. Within the biotic province of Beringia, we analyzed specimen localities and DNA sequences from 28 mammal species associated with boreal forest and Arctic tundra biomes to assess both historical distributional and evolutionary responses and then forecasted future changes based on statistical assessments of past and present trajectories, and quantified distributional and demographic changes in relation to major management regions within the study area. We addressed three sets of hypotheses associated with aspects of methodological, biological, and socio-political importance by asking (1) what is the consistency among implications of predicted changes based on the results of both ecological and evolutionary analyses; (2) what are the ecological and evolutionary implications of climate change considering either total regional diversity or distinct communities associated with major biomes; and (3) are there differences in management implications across regions? Our results indicate increasing Arctic richness through time that highlights a potential state shift across the Arctic landscape. However, within distinct ecological communities, we found a predicted decline in the range and effective population size of tundra species into several discrete refugial areas. Consistency in results based on a combination of both ecological and evolutionary approaches demonstrates increased statistical confidence by applying cross-discipline comparative analyses to conservation of biodiversity, particularly considering variable management regimes that seek to balance sustainable ecosystems with other anthropogenic values. Refugial areas for cold-adapted taxa appear to be persistent across both warm and cold climate phases and although fragmented, constitute vital regions for persistence of Arctic mammals.

  6. Seasonal to interannual Arctic sea ice predictability in current global climate models

    NASA Astrophysics Data System (ADS)

    Tietsche, S.; Day, J. J.; Guemas, V.; Hurlin, W. J.; Keeley, S. P. E.; Matei, D.; Msadek, R.; Collins, M.; Hawkins, E.

    2014-02-01

    We establish the first intermodel comparison of seasonal to interannual predictability of present-day Arctic climate by performing coordinated sets of idealized ensemble predictions with four state-of-the-art global climate models. For Arctic sea ice extent and volume, there is potential predictive skill for lead times of up to 3 years, and potential prediction errors have similar growth rates and magnitudes across the models. Spatial patterns of potential prediction errors differ substantially between the models, but some features are robust. Sea ice concentration errors are largest in the marginal ice zone, and in winter they are almost zero away from the ice edge. Sea ice thickness errors are amplified along the coasts of the Arctic Ocean, an effect that is dominated by sea ice advection. These results give an upper bound on the ability of current global climate models to predict important aspects of Arctic climate.

  7. Water temperature variability within an Arctic stream; analysis and implications

    NASA Astrophysics Data System (ADS)

    Mellor, C. J.; Hannah, D. M.; Milner, A. M.

    2009-04-01

    Arctic climate warming occurred at twice the global average over the last century and air temperature is predicted to increase by 7.5°C by 2099. Arctic river systems are hypothesized to be particularly vulnerable to warming due to their dependence on cryospheric water sources and thermal sensitivity of biotic communities. However, research is very limited on hydroecological response of Arctic rivers to a changing climate. This paper addresses this research gap and aims to investigate links between thermal dynamics and benthic communities for a river basin in Swedish Lappland. The Kårsavagge is located ~200 km north of the Arctic Circle and contains a small temperate glacier and two lakes. The Kårsa River drains into the Abisko River (~ 25 km from the valley head). The region experiences marked seasonality with average monthly air temperature ranging from +10 to -10°C. In June 2008, three gauging stations (1 - close to glacier snout, 2 - above first major extra glacial tributary and 3 - between the lakes and confluence with the Abisko river) were installed to record water temperature, riverbed temperature (at 0.05m, 0.20m and 0.40m depth), electrical conductivity, river stage, precipitation and turbidity. On top of these, twenty loggers recorded water temperature between gauging stations and across a braided reach located ~ 1.5km downstream of the glacier snout. Diurnal water temperature cycles were found at all sites; but average temperature increased downstream from 1.7°C near the glacier snout to 10.6°C before the Abisko River confluence. Sites immediately downstream of the lakes displayed moderated thermal variability. Bed temperatures in the upper catchment (lower) were higher (lower) and less variable that temperatures in the overlying water column. The degree of parity between water column and stream bed temperatures varied among sites with site 3 showing the greatest difference and site 2 showing the least. This implies a variable degree of connectivity between the water column and bed sediments and/or variation in the extent and source water of upwelling. Average temperature across the braided reach ranged from 2.8°C in the main glacier fed (kryal) channel to 8.8°C in a snowmelt (nival) channel sourced from north-facing slopes, reflecting the differential impact of solar heating on water from these two distinct sources. Chironomidae (non-biting midges) dominated the benthic communities in the upper catchment where maximum water temperature did not exceed 4.4°C. As distance from the glacier and water temperature increases other taxa appear (e.g. Plecoptera, Simulidae), with species richness and diversity peaking between the two lakes. Longitudinal changes in thermal regime are associated with shifts in the benthic invertebrate community. Work is ongoing to evaluate whether the observed lateral variation, which is close to that observed down the 25km longitudinal profile has similar implications. This lateral variability may be important in providing thermal refugia and therefore increasing biota diversity in the upper catchment. This work has highlighted the potential extent of longitudinal, vertical and lateral temperature variation within Arctic river systems. In combination with invertebrate distribution this could be used to identify communities at high risk from changes in thermal regime and further, identify species which can act as indicators of the changing Arctic climate.

  8. Variability in Canopy Transpiration with Atmospheric Drivers and Permafrost Thaw Depth in an Arctic Siberian Larch Forest

    NASA Astrophysics Data System (ADS)

    Loranty, M. M.; Berner, L. T.; Alexander, H. D.; Davydov, S. P.

    2014-12-01

    Arctic ecosystems are experiencing rapid change associated with amplified rates of climate warming. A general increase in vegetation productivity has been among the expected responses for terrestrial ecosystems in the Arctic. However, recent evidence from satellite derived productivity metrics has revealed a high degree of spatial heterogeneity in the magnitude, and even the direction, of productivity trends in recent decades. Declines in productivity may seem counterintuitive in what are traditionally thought to be temperature limited ecosystems. However a warmer and drier atmosphere in conjunction with changing permafrost conditions may impose hydrologic stresses on vegetation as well. Many Siberian ecosystems receive annual precipitation inputs characteristics of arid and semiarid regions. Boreal forests persist because permafrost acts as an aquatard trapping water near the surface and because historically cool growing season temperatures have kept atmospheric evaporative demand relatively low. As climate change simultaneously warms the atmosphere and deepens the active layer it is likely that vegetation will experience a higher degree of hydrologic limitation, perhaps necessitating the reallocation of resources. Here we use sap flux observations of canopy transpiration to understand the influence of atmospheric and permafrost conditions on the function of an arctic boreal forest in northeastern Siberia. We find that individual trees exhibit stronger responses to atmospheric vapor pressure deficit (D) as the growing season progresses. Further, the magnitude of this response appears to be positively correlated with changes in the depth of permafrost thaw. These results imply that arctic boreal forests will need to adapt to increasing hydrologic stress in order to benefit from what are typically thought of as increasingly favorable growing conditions with continued climate change.

  9. How well can the observed Arctic sea ice summer retreat and winter advance be represented in the NCEP Climate Forecast System version 2?

    NASA Astrophysics Data System (ADS)

    Collow, Thomas W.; Wang, Wanqiu; Kumar, Arun; Zhang, Jinlun

    2017-09-01

    The capability of a numerical model to simulate the statistical characteristics of the summer sea ice date of retreat (DOR) and the winter date of advance (DOA) is investigated using sea ice concentration output from the Climate Forecast System Version 2 model (CFSv2). Two model configurations are tested, the operational setting (CFSv2CFSR) which uses initial data from the Climate Forecast System Reanalysis, and a modified version (CFSv2PIOMp) which ingests sea ice thickness initialization data from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) and includes physics modifications for a more realistic representation of heat fluxes at the sea ice top and bottom. First, a method to define DOR and DOA is presented. Then, DOR and DOA are determined from the model simulations and observational sea ice concentration from the National Aeronautics and Space Administration (NASA). Means, trends, and detrended standard deviations of DOR and DOA are compared, along with DOR/DOA rates in the Arctic Ocean. It is found that the statistics are generally similar between the model and observations, although some regional biases exist. In addition, regions of new ice retreat in recent years are represented well in CFSv2PIOMp over the Arctic Ocean, in terms of both spatial extent and timing. Overall, CFSv2PIOMp shows a reduction in error throughout the Arctic. Based on results, it is concluded that the model produces a reasonable representation of the climatology and variability statistics of DOR and DOA in most regions. This assessment serves as a prerequisite for future predictability experiments.

  10. Climate Change in the North American Arctic: A One Health Perspective.

    PubMed

    Dudley, Joseph P; Hoberg, Eric P; Jenkins, Emily J; Parkinson, Alan J

    2015-12-01

    Climate change is expected to increase the prevalence of acute and chronic diseases among human and animal populations within the Arctic and subarctic latitudes of North America. Warmer temperatures are expected to increase disease risks from food-borne pathogens, water-borne diseases, and vector-borne zoonoses in human and animal populations of Arctic landscapes. Existing high levels of mercury and persistent organic pollutant chemicals circulating within terrestrial and aquatic ecosystems in Arctic latitudes are a major concern for the reproductive health of humans and other mammals, and climate warming will accelerate the mobilization and biological amplification of toxic environmental contaminants. The adverse health impacts of Arctic warming will be especially important for wildlife populations and indigenous peoples dependent upon subsistence food resources from wild plants and animals. Additional research is needed to identify and monitor changes in the prevalence of zoonotic pathogens in humans, domestic dogs, and wildlife species of critical subsistence, cultural, and economic importance to Arctic peoples. The long-term effects of climate warming in the Arctic cannot be adequately predicted or mitigated without a comprehensive understanding of the interactive and synergistic effects between environmental contaminants and pathogens in the health of wildlife and human communities in Arctic ecosystems. The complexity and magnitude of the documented impacts of climate change on Arctic ecosystems, and the intimacy of connections between their human and wildlife communities, makes this region an appropriate area for development of One Health approaches to identify and mitigate the effects of climate warming at the community, ecosystem, and landscape scales.

  11. Two centuries of observed atmospheric variability and change over the North Sea region

    NASA Astrophysics Data System (ADS)

    Stendel, Martin; van den Besselaar, Else; Hannachi, Abdel; Kent, Elizabeth; Lefebvre, Christiana; van Oldenborgh, Geert Jan; Rosenhagen, Gudrun; Schenk, Frederik; van der Schrier, Gerard

    2015-04-01

    Situated in northwestern Europe, the North Sea region is under influence of air masses from subtropical to arctic origin, and thus exhibits significant natural climate variability. As the land areas surrounding the North Sea are densely populated, climate change is an important issue in terms of e.g. coastal protection, fishery and trade. This study is part of the NOSCCA initiative (North Sea Region Climate Change Assessment) and presents observed variability and changes in atmospheric parameters during the last roughly 200 years. Circulation patterns show considerable decadal variability. In recent decades, a northward shift of storm tracks and increased cyclonic activity has been observed. There is also an indication of increased persistence of weather types. The wind climate is dominated by large multidecadal variability, and no robust long-term trends can be identified in the available datasets. There is a clear positive trend in near-surface temperatures, in particular during spring and winter. Over the region as a whole, no clear long-term precipitation trends are visible, although regional indications exist for an increased risk of extreme precipitation events.

  12. The Arctic Predictability and Prediction on Seasonal-to-Interannual TimEscales (APPOSITE) project: a summary

    NASA Astrophysics Data System (ADS)

    Hawkins, Ed; Day, Jonny; Tietsche, Steffen

    2016-04-01

    Recent years have seen significant developments in seasonal-to-interannual timescale climate prediction capabilities. However, until recently the potential of such systems to predict Arctic climate had not been assessed. We describe a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Inter-annual TimEscales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable. In order to achieve this, a coordinated set of idealised initial-value predictability experiments, with seven general circulation models, was conducted. This was the first model intercomparison project designed to quantify the predictability of Arctic climate on seasonal to inter-annual timescales. Here we provide a summary and update of the project's results which include: (1) quantifying the predictability of Arctic climate, especially sea ice; (2) the state-dependence of this predictability, finding that extreme years are potentially more predictable than neutral years; (3) analysing a spring 'predictability barrier' to skillful forecasts; (4) initial sea ice thickness information provides much of the skill for summer forecasts; (5) quantifying the sources of error growth and uncertainty in Arctic predictions. The dataset is now publicly available.

  13. Multi-proxy evidence for climate-driven changes in arctic lakes from northern Russia over the Holocene.

    NASA Astrophysics Data System (ADS)

    Self, Angela; Brooks, Stephen; Jones, Vivienne; Solovieva, Nadia; McGowan, Suzanne; Rosén, Peter; Parrott, Emily; Seppä, Heikki; Salonen, Sakari

    2010-05-01

    Average arctic temperatures have increased at almost twice the rate of the rest of the world over the last 100 years and climate projections suggest this trend is likely to continue resulting in an additional warming of 2 - 3°C in annual mean air temperatures by 2050. Freshwater ecosystems occupy a substantial area of the terrestrial environment in the Arctic and are particularly sensitive to temperature increases which may lead to profound changes in catchment characteristics, permafrost, hydrology and nutrient availability. Therefore it is important to understand how past changes in climate have affected these ecosystems. In this paper we present one of the first quantitative multi-proxy climate records from arctic Siberia. The affect of early - mid Holocene and recent climate change on arctic lakes in northern Russia were investigated in multi-proxy studies. The past climate was reconstructed using chironomid inference models to estimate mean July air temperatures and trends in continentality. Stable isotopes and LOI were analysed to infer past changes in sediment organic matter. Near-infrared spectroscopy (NIRS) and/or diatoms were used to infer changes in lake water total organic carbon and algal pigments and/or diatoms were used to infer changes in productivity and light penetration in the lake. Analyses of a sediment core from a tundra lake (Lake Kharinei) in north-eastern European Russia show significant assemblage changes in diatoms, chironomids and pigments, which coincide with climate-driven vegetation shifts from open birch forest to spruce forest and then to tundra over the Holocene. During the open birch phase of the late Glacial - early Holocene, chironomid-inferred reconstructions suggest that the climate was approximately 1 - 3°C warmer and more continental than present. Isotopic analyses indicate a productive environment receiving a significant input of organic material from terrestrial plants into the lake. Both diatoms and NIRS-TOC also suggest that the lake water was relatively high in TOC. Spruce forest became established within the catchment during the early - mid Holocene, which appears to have stimulated algal production. Throughout this period July air temperatures are inferred to have gradually declined to present-day values and the climate became more maritime. From ca. 4000 cal yrs BP July air temperatures remained stable but continentality increased leading to a shorter ice-free period. The pollen and macrofossil record indicates a transition to tundra vegetation ca 3000 cal yr BP which coincides with major changes in pigments, chironomids and diatoms. High resolution reconstruction of climate variability over the last 200 years from two tundra lakes on the Putoran Plateau, western Siberia, suggest that mean July air temperatures warmed by approximately 0.5°C between ca 1820 - 1980 and have remained relatively stable over the last 30 years. However major compositional changes in the chironomid and diatom assemblages have occurred within the last 125 - 50 years. Since the 1970s increases in the instrumental June temperature record and a chironomid-inferred shift to a more maritime climate have been accompanied by increases in diatom accumulation rates together with an increase in within-lake productivity and a trend towards increased algal productivity (as highlighted by stable isotope analysis). The synchronicity of the changes suggests the biota may be responding to lengthening of the ice-free period and related limnological changes. The changes in these Russian lakes corroborate results from Europe and Arctic Canada and indicate a circumpolar pattern of climate-driven regime change in arctic lakes in the last 100 years.

  14. September Arctic Sea Ice minimum prediction - a new skillful statistical approach

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Grosfeld, Klaus; Scholz, Patrick; Treffeisen, Renate; Lohmann, Gerrit

    2017-04-01

    Sea ice in both Polar Regions is an important indicator for the expression of global climate change and its polar amplification. Consequently, a broad interest exists on sea ice, its coverage, variability and long term change. Knowledge on sea ice requires high quality data on ice extent, thickness and its dynamics. However, its predictability is complex and it depends on various climate and oceanic parameters and conditions. In order to provide insights into the potential development of a monthly/seasonal signal of sea ice evolution, we developed a robust statistical model based on ocean heat content, sea surface temperature and different atmospheric variables to calculate an estimate of the September Sea ice extent (SSIE) on monthly time scale. Although previous statistical attempts at monthly/seasonal forecasts of SSIE show a relatively reduced skill, we show here that more than 92% (r = 0.96) of the September sea ice extent can be predicted at the end of May by using previous months' climate and oceanic conditions. The skill of the model increases with a decrease in the time lag used for the forecast. At the end of August, our predictions are even able to explain 99% of the SSIE. Our statistical model captures both the general trend as well as the interannual variability of the SSIE. Moreover, it is able to properly forecast the years with extreme high/low SSIE (e.g. 1996/ 2007, 2012, 2013). Besides its forecast skill for SSIE, the model could provide a valuable tool for identifying relevant regions and climate parameters that are important for the sea ice development in the Arctic and for detecting sensitive and critical regions in global coupled climate models with focus on sea ice formation.

  15. Assessment of surface air temperature over the Arctic Ocean in reanalysis and IPCC AR4 model simulations with IABP/POLES observations

    NASA Astrophysics Data System (ADS)

    Liu, Jiping; Zhang, Zhanhai; Hu, Yongyun; Chen, Liqi; Dai, Yongjiu; Ren, Xiaobo

    2008-05-01

    The surface air temperature (SAT) over the Arctic Ocean in reanalyses and global climate model simulations was assessed using the International Arctic Buoy Programme/Polar Exchange at the Sea Surface (IABP/POLES) observations for the period 1979-1999. The reanalyses, including the National Centers for Environmental Prediction Reanalysis II (NCEP2) and European Centre for Medium-Range Weather Forecast 40-year Reanalysis (ERA40), show encouraging agreement with the IABP/POLES observations, although some spatiotemporal discrepancies are noteworthy. The reanalyses have warm annual mean biases and underestimate the observed interannual SAT variability in summer. Additionally, NCEP2 shows an excessive warming trend. Most model simulations (coordinated by the International Panel on Climate Change for its Fourth Assessment Report) reproduce the annual mean, seasonal cycle, and trend of the observed SAT reasonably well, particularly the multi-model ensemble mean. However, large discrepancies are found. Some models have the annual mean SAT biases far exceeding the standard deviation of the observed interannul SAT variability and the across-model standard deviation. Spatially, the largest inter-model variance of the annual mean SAT is found over the North Pole, Greenland Sea, Barents Sea and Baffin Bay. Seasonally, a large spread of the simulated SAT among the models is found in winter. The models show interannual variability and decadal trend of various amplitudes, and can not capture the observed dominant SAT mode variability and cooling trend in winter. Further discussions of the possible attributions to the identified SAT errors for some models suggest that the model's performance in the sea ice simulation is an important factor.

  16. Sensitivity of the Arctic Ocean gas hydrate to climate changes in the period of 1948-2015

    NASA Astrophysics Data System (ADS)

    Malakhova, Valentina V.; Golubeva, Elena N.; Iakshina, Dina F.

    2017-11-01

    The objective of the present study is to analyze the interactions between a methane hydrates stability zone and the ocean temperature variations and to define the hydrate sensitivity to the contemporary warming in the Arctic Ocean. To obtain the spatial-temporary variability of the ocean bottom temperature we employ the ICMMG regional Arctic-North Atlantic ocean model that has been developed in the Institute of Computational Mathematics and Mathematical Geophysics. With the ice-ocean model the Arctic bottom water temperatures were analyzed. The resulting warming ocean bottom water is spatially inhomogeneous, with a strong impact by the Atlantic inflow on shallow regions of 200-500 m depth. Results of the mathematical modeling of the dynamics of methane hydrate stability zone in the Arctic Ocean sediment are reported. We find that the reduction of the methane hydrate stability zone occurs in the Arctic Ocean between 250 and 400 m water depths within the upper 100 m of sediment in the area influenced by the Atlantic inflow. We have identified the areas of the Arctic Ocean where an increase in methane release is probable to occur at the present time.

  17. Uncertainty, Sensitivity Analysis, and Causal Identification in the Arctic using a Perturbed Parameter Ensemble of the HiLAT Climate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunke, Elizabeth Clare; Urrego Blanco, Jorge Rolando; Urban, Nathan Mark

    Coupled climate models have a large number of input parameters that can affect output uncertainty. We conducted a sensitivity analysis of sea ice proper:es and Arc:c related climate variables to 5 parameters in the HiLAT climate model: air-ocean turbulent exchange parameter (C), conversion of water vapor to clouds (cldfrc_rhminl) and of ice crystals to snow (micro_mg_dcs), snow thermal conduc:vity (ksno), and maximum snow grain size (rsnw_mlt). We used an elementary effect (EE) approach to rank their importance for output uncertainty. EE is an extension of one-at-a-time sensitivity analyses, but it is more efficient in sampling multi-dimensional parameter spaces. We lookedmore » for emerging relationships among climate variables across the model ensemble, and used causal discovery algorithms to establish potential pathways for those relationships.« less

  18. North Atlantic variability and its links to European climate over the last 3000 years.

    PubMed

    Moffa-Sánchez, Paola; Hall, Ian R

    2017-11-23

    The subpolar North Atlantic is a key location for the Earth's climate system. In the Labrador Sea, intense winter air-sea heat exchange drives the formation of deep waters and the surface circulation of warm waters around the subpolar gyre. This process therefore has the ability to modulate the oceanic northward heat transport. Recent studies reveal decadal variability in the formation of Labrador Sea Water. Yet, crucially, its longer-term history and links with European climate remain limited. Here we present new decadally resolved marine proxy reconstructions, which suggest weakened Labrador Sea Water formation and gyre strength with similar timing to the centennial cold periods recorded in terrestrial climate archives and historical records over the last 3000 years. These new data support that subpolar North Atlantic circulation changes, likely forced by increased southward flow of Arctic waters, contributed to modulating the climate of Europe with important societal impacts as revealed in European history.

  19. Chapman Conference on the Hydrologic Aspects of Global Climate Change, Lake Chelan, WA, June 12-14, 1990, Selected Papers

    NASA Technical Reports Server (NTRS)

    Lettenmaier, Dennis P. (Editor); Rind, D. (Editor)

    1992-01-01

    The present conference on the hydrological aspects of global climate change discusses land-surface schemes for future climate models, modeling of the land-surface boundary in climate models as a composite of independent vegetation, a land-surface hydrology parameterizaton with subgrid variability for general circulation models, and conceptual aspects of a statistical-dynamical approach to represent landscape subgrid-scale heterogeneities in atmospheric models. Attention is given to the impact of global warming on river runoff, the influence of atmospheric moisture transport on the fresh water balance of the Atlantic drainage basin, a comparison of observations and model simulations of tropospheric water vapor, and the use of weather types to disaggregate the prediction of general circulation models. Topics addressed include the potential response of an Arctic watershed during a period of global warming and the sensitivity of groundwater recharge estimates to climate variability and change.

  20. Model Estimates of Pan-Arctic Lake and Wetland Methane Emissions

    NASA Astrophysics Data System (ADS)

    Chen, X.; Bohn, T. J.; Glagolev, M.; Maksyutov, S.; Lettenmaier, D. P.

    2012-12-01

    Lakes and wetlands are important sources of the greenhouse gases CO2 and CH4, whose emission rates are sensitive to climate. The northern high latitudes, which are especially susceptible to climate change, contain about 50% of the world's lakes and wetlands. With the predicted changes in the regional climate for this area within the next century, there is concern about a possible positive feedback resulting from greenhouse gas emissions (especially of methane) from the region's wetlands and lakes. To study the climate response to emissions from northern hemisphere lakes and wetlands, we have coupled a large-scale hydrology and carbon cycling model (University of Washington's Variable Infiltration Capacity model; VIC) with the atmospheric chemistry and transport model (CTM) of Japan's National Institute for Environmental Studies and have applied this modelling framework over the Pan-Arctic region. In particular, the VIC model simulates the land surface hydrology and carbon cycling across a dynamic lake-wetland continuum. The model includes a distributed wetland water table that accounts for microtopography and simulates variations in inundated area that are calibrated to match a passive microwave based inundation product. Per-unit-area carbon uptake and methane emissions have been calibrated using extensive in situ observations. In this paper, the atmospheric methane concentrations from a coupled run of VIC and CTM are calibrated and verified for the Pan-Arctic region with satellite observations from Aqua's Atmospheric Infrared Sounder (AIRS) and Envisat's Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) instruments. We examine relative emissions from lakes and wetlands, as well as their net greenhouse warming potential, over the last half-century across the Pan-Arctic domain. We also assess relative uncertainties in emissions from each of the sources.

  1. Evaluating the performance of coupled snow-soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site

    NASA Astrophysics Data System (ADS)

    Barrere, Mathieu; Domine, Florent; Decharme, Bertrand; Morin, Samuel; Vionnet, Vincent; Lafaysse, Matthieu

    2017-09-01

    Climate change projections still suffer from a limited representation of the permafrost-carbon feedback. Predicting the response of permafrost temperature to climate change requires accurate simulations of Arctic snow and soil properties. This study assesses the capacity of the coupled land surface and snow models ISBA-Crocus and ISBA-ES to simulate snow and soil properties at Bylot Island, a high Arctic site. Field measurements complemented with ERA-Interim reanalyses were used to drive the models and to evaluate simulation outputs. Snow height, density, temperature, thermal conductivity and thermal insulance are examined to determine the critical variables involved in the soil and snow thermal regime. Simulated soil properties are compared to measurements of thermal conductivity, temperature and water content. The simulated snow density profiles are unrealistic, which is most likely caused by the lack of representation in snow models of the upward water vapor fluxes generated by the strong temperature gradients within the snowpack. The resulting vertical profiles of thermal conductivity are inverted compared to observations, with high simulated values at the bottom of the snowpack. Still, ISBA-Crocus manages to successfully simulate the soil temperature in winter. Results are satisfactory in summer, but the temperature of the top soil could be better reproduced by adequately representing surface organic layers, i.e., mosses and litter, and in particular their water retention capacity. Transition periods (soil freezing and thawing) are the least well reproduced because the high basal snow thermal conductivity induces an excessively rapid heat transfer between the soil and the snow in simulations. Hence, global climate models should carefully consider Arctic snow thermal properties, and especially the thermal conductivity of the basal snow layer, to perform accurate predictions of the permafrost evolution under climate change.

  2. Evidence and implications of recent climate change in northern Alaska and other arctic regions.

    Treesearch

    Larry D. Hinzman; Neil D. Bettez; W. Robert Bolton; F. Stuart Chapin; Mark B. Dyurgerov; Chris L. Fastie; Brad Griffith; Robert D. Hollister; Allen Hope; Henry P. Huntington; Anne M. Jensen; Gensuou J. Jia; Torre Jorgenson; Douglas L. Kane; David R. Klein; Gary Kofinas; Amanda H. Lynch; Andrea H. Lloyd; A. David McGuire; Frederick E. Nelson; Walter C. Oechel; Thomas E. Osterkamp; Charles H. Racine; Vladimir E. Romanovsky; Robert S. Stone; Douglas A. Stow; Matthew Sturm; Craig E. Tweedie; George L. Vourlitis; Marilyn D. Walker; Donald A. Walker; Patrick J. Webber; Jeffrey M. Welker; Kevin S. Winker; Kenji Yoshikawa

    2005-01-01

    The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth...

  3. Climate change and zoonotic infections in the Russian Arctic

    PubMed Central

    Revich, Boris; Tokarevich, Nikolai; Parkinson, Alan J.

    2012-01-01

    Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in the Russian Arctic, focusing on the potential climate related emergence of such diseases as tick-borne encephalitis, tularemia, brucellosis, leptospirosis, rabies, and anthrax. PMID:22868189

  4. Arctic climate response to geoengineering with stratospheric sulfate aerosols

    NASA Astrophysics Data System (ADS)

    McCusker, K. E.; Battisti, D. S.; Bitz, C. M.

    2010-12-01

    Recent warming and record summer sea-ice area minimums have spurred expressions of concern for arctic ecosystems, permafrost, and polar bear populations, among other things. Geoengineering by stratospheric sulfate aerosol injections to deliberately cancel the anthropogenic temperature rise has been put forth as a possible solution to restoring Arctic (and global) climate to modern conditions. However, climate is particularly sensitive in the northern high latitudes, responding easily to radiative forcing changes. To that end, we explore the extent to which tropical injections of stratospheric sulfate aerosol can accomplish regional cancellation in the Arctic. We use the Community Climate System Model version 3 global climate model to execute simulations with combinations of doubled CO2 and imposed stratospheric sulfate burdens to investigate the effects on high latitude climate. We further explore the sensitivity of the polar climate to ocean dynamics by running a suite of simulations with and without ocean dynamics, transiently and to equilibrium respectively. We find that, although annual, global mean temperature cancellation is accomplished, there is over-cooling on land in Arctic summer, but residual warming in Arctic winter, which is largely due to atmospheric circulation changes. Furthermore, the spatial extent of these features and their concurrent impacts on sea-ice properties are modified by the inclusion of ocean dynamical feedbacks.

  5. The Arctic's Role in Climate.

    ERIC Educational Resources Information Center

    Baker, D. James

    1986-01-01

    Discusses the special role the Arctic region plays in climate, focusing on: (1) the global energy balance; (2) feedback mechanisms; (3) effects of increasing carbon dioxide; and (4) climate processes study programs. (JN)

  6. DOI/GTN-P climate and active-layer data acquired in the National Petroleum Reserve-Alaska and the Arctic National Wildlife Refuge

    USGS Publications Warehouse

    Urban, Frank E.; Clow, Gary D.

    2014-01-01

    This report provides data collected by the climate monitoring array of the U.S. Department of the Interior on Federal lands in Arctic Alaska over the period August 1998 to July 2013; this array is part of the Global Terrestrial Network for Permafrost, (DOI/GTN-P). In addition to presenting data, this report also describes monitoring, data collection, and quality-control methods. This array of 16 monitoring stations spans lat 68.5°N. to 70.5°N. and long 142.5°W. to 161°W., an area of approximately 150,000 square kilometers. Climate summaries are presented along with quality-controlled data. Data collection is ongoing and includes the following climate- and permafrost-related variables: air temperature, wind speed and direction, ground temperature, soil moisture, snow depth, rainfall totals, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.

  7. DOI/GTN-P Climate and active-layer data acquired in the National Petroleum Reserve–Alaska and the Arctic National Wildlife Refuge, 1998–2014

    USGS Publications Warehouse

    Urban, Frank E.; Clow, Gary D.

    2016-03-04

    This report provides data collected by the climate monitoring array of the U.S. Department of the Interior on Federal lands in Arctic Alaska over the period August 1998 to July 2014; this array is part of the Global Terrestrial Network for Permafrost (DOI/GTN-P). In addition to presenting data, this report also describes monitoring, data collection, and quality-control methods. The array of 16 monitoring stations spans lat 68.5°N. to 70.5°N. and long 142.5°W. to 161°W., an area of approximately 150,000 square kilometers. Climate summaries are presented along with quality-controlled data. Data collection is ongoing and includes the following climate- and permafrost-related variables: air temperature, wind speed and direction, ground temperature, soil moisture, snow depth, rainfall totals, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.

  8. DOI/GTN-P Climate and active-layer data acquired in the National Petroleum Reserve–Alaska and the Arctic National Wildlife Refuge, 1998–2015

    USGS Publications Warehouse

    Urban, Frank E.; Clow, Gary D.

    2017-02-06

    This report provides data collected by the climate monitoring array of the U.S. Department of the Interior on Federal lands in Arctic Alaska over the period August 1998 to July 2015; this array is part of the Global Terrestrial Network for Permafrost (DOI/GTN-P). In addition to presenting data, this report also describes monitoring, data collection, and quality-control methods. The array of 16 monitoring stations spans lat 68.5°N. to 70.5°N. and long 142.5°W. to 161°W., an area of approximately 150,000 square kilometers. Climate summaries are presented along with quality-controlled data. Data collection is ongoing and includes the following climate- and permafrost-related variables: air temperature, wind speed and direction, ground temperature, soil moisture, snow depth, rainfall totals, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.

  9. DOI/GTN-P climate and active-layer data acquired in the National Petroleum Reserve: Alaska and the Arctic National Wildlife Refuge, 1998-2011

    USGS Publications Warehouse

    Urban, Frank E.; Clow, Gary D.

    2014-01-01

    This report provides data collected by the climate monitoring array of the U.S. Department of the Interior on Federal lands in Arctic Alaska over the period August 1998 to July 2011; this array is part of the Global Terrestrial Network for Permafrost, (DOI/GTN-P). In addition to presenting data, this report also describes monitoring, data collection, and quality-control methodology. This array of 16 monitoring stations spans lat 68.5°N. to 70.5°N. and long 142.5°W. to 161°W., an area of approximately 150,000 square kilometers. Climate summaries are presented along with quality-controlled data. Data collection is ongoing and includes the following climate- and permafrost-related variables: air temperature, wind speed and direction, ground temperature and soil moisture, snow depth, rainfall, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.

  10. Calcareous microfossil-based orbital cyclostratigraphy in the Arctic Ocean

    USGS Publications Warehouse

    Marzen, Rachel; DeNinno, Lauren H.; Cronin, Thomas M.

    2016-01-01

    Microfaunal and geochemical proxies from marine sediment records from central Arctic Ocean (CAO) submarine ridges suggest a close relationship over the last 550 thousand years (kyr) between orbital-scale climatic oscillations, sea-ice cover, marine biological productivity and other parameters. Multiple paleoclimate proxies record glacial to interglacial cycles. To understand the climate-cryosphere-productivity relationship, we examined the cyclostratigraphy of calcareous microfossils and constructed a composite Arctic Paleoclimate Index (API) "stack" from benthic foraminiferal and ostracode density from 14 sediment cores. Following the hypothesis that API is driven mainly by changes in sea-ice related productivity, the API stack shows the Arctic experienced a series of highly productive interglacials and interstadials every ∼20 kyr. These periods signify minimal ice shelf and sea-ice cover and maximum marine productivity. Rapid transitions in productivity are seen during shifts from interglacial to glacial climate states. Discrepancies between the Arctic API curves and various global climatic, sea-level and ice-volume curves suggest abrupt growth and decay of Arctic ice shelves related to climatic and sea level oscillations.

  11. Cloud Response to Arctic Sea Ice Loss and Implications for Feedbacks in the CESM1 Climate Model

    NASA Astrophysics Data System (ADS)

    Morrison, A.; Kay, J. E.; Chepfer, H.; Guzman, R.; Bonazzola, M.

    2017-12-01

    Clouds have the potential to accelerate or slow the rate of Arctic sea ice loss through their radiative influence on the surface. Cloud feedbacks can therefore play into Arctic warming as clouds respond to changes in sea ice cover. As the Arctic moves toward an ice-free state, understanding how cloud - sea ice relationships change in response to sea ice loss is critical for predicting the future climate trajectory. From satellite observations we know the effect of present-day sea ice cover on clouds, but how will clouds respond to sea ice loss as the Arctic transitions to a seasonally open water state? In this study we use a lidar simulator to first evaluate cloud - sea ice relationships in the Community Earth System Model (CESM1) against present-day observations (2006-2015). In the current climate, the cloud response to sea ice is well-represented in CESM1: we see no summer cloud response to changes in sea ice cover, but more fall clouds over open water than over sea ice. Since CESM1 is credible for the current Arctic climate, we next assess if our process-based understanding of Arctic cloud feedbacks related to sea ice loss is relevant for understanding future Arctic clouds. In the future Arctic, summer cloud structure continues to be insensitive to surface conditions. As the Arctic warms in the fall, however, the boundary layer deepens and cloud fraction increases over open ocean during each consecutive decade from 2020 - 2100. This study will also explore seasonal changes in cloud properties such as opacity and liquid water path. Results thus far suggest that a positive fall cloud - sea ice feedback exists in the present-day and future Arctic climate.

  12. Marine Mammals and Climate Change in the Pacific Arctic: Impacts & Resilience

    NASA Astrophysics Data System (ADS)

    Moore, S. E.

    2014-12-01

    Extreme reductions in Arctic sea ice extent and thickness have become a hallmark of climate change, but impacts to the marine ecosystem are poorly understood. As top predators, marine mammals must adapt to biological responses to physical forcing and thereby become sentinels to ecosystem variability and reorganization. Recent sea ice retreats have influenced the ecology of marine mammals in the Pacific Arctic sector. Walruses now often haul out by the thousands along the NW Alaska coast in late summer, and reports of harbor porpoise, humpback, fin and minke whales in the Chukchi Sea demonstrate that these temperate species routinely occur there. In 2010, satellite tagged bowhead whales from Atlantic and Pacific populations met in the Northwest Passage, an overlap thought precluded by sea ice since the Holocene. To forage effectively, baleen whales must target dense patches of zooplankton and small fishes. In the Pacific Arctic, bowhead and gray whales appear to be responding to enhanced prey availability delivered both by new production and advection pathways. Two programs, the Distributed Biological Observatory (DBO) and the Synthesis of Arctic Research (SOAR), include tracking of marine mammal and prey species' responses to ecosystem shifts associated with sea ice loss. Both programs provide an integrated-ecosystem baseline in support of the development of a web-based Marine Mammal Health Map, envisioned as a component of the U.S. Integrated Ocean Observing System (IOOS). An overarching goal is to identify ecological patterns for marine mammals in the 'new' Arctic, as a foundation for integrative research, local response and adaptive management.

  13. Seasonal differences in the response of Arctic cyclones to climate change in CESM1

    NASA Astrophysics Data System (ADS)

    Day, Jonathan J.; Holland, Marika M.; Hodges, Kevin I.

    2017-06-01

    The dramatic warming of the Arctic over the last three decades has reduced both the thickness and extent of sea ice, opening opportunities for business in diverse sectors and increasing human exposure to meteorological hazards in the Arctic. It has been suggested that these changes in environmental conditions have led to an increase in extreme cyclones in the region, therefore increasing this hazard. In this study, we investigate the response of Arctic synoptic scale cyclones to climate change in a large initial value ensemble of future climate projections with the CESM1-CAM5 climate model (CESM-LE). We find that the response of Arctic cyclones in these simulations varies with season, with significant reductions in cyclone dynamic intensity across the Arctic basin in winter, but with contrasting increases in summer intensity within the region known as the Arctic Ocean cyclone maximum. There is also a significant reduction in winter cyclogenesis events within the Greenland-Iceland-Norwegian sea region. We conclude that these differences in the response of cyclone intensity and cyclogenesis, with season, appear to be closely linked to changes in surface temperature gradients in the high latitudes, with Arctic poleward temperature gradients increasing in summer, but decreasing in winter.

  14. Climate change effects on human health in a gender perspective: some trends in Arctic research.

    PubMed

    Natalia, Kukarenko

    2011-01-01

    Climate change and environmental pollution have become pressing concerns for the peoples in the Arctic region. Some researchers link climate change, transformations of living conditions and human health. A number of studies have also provided data on differentiating effects of climate change on women's and men's well-being and health. To show how the issues of climate and environment change, human health and gender are addressed in current research in the Arctic. The main purpose of this article is not to give a full review but to draw attention to the gaps in knowledge and challenges in the Arctic research trends on climate change, human health and gender. A broad literature search was undertaken using a variety of sources from natural, medical, social science and humanities. The focus was on the keywords. Despite the evidence provided by many researchers on differentiating effects of climate change on well-being and health of women and men, gender perspective remains of marginal interest in climate change, environmental and health studies. At the same time, social sciences and humanities, and gender studies in particular, show little interest towards climate change impacts on human health in the Arctic. As a result, we still observe the division of labour between disciplines, the disciplinary-bound pictures of human development in the Arctic and terminology confusion. Efforts to bring in a gender perspective in the Arctic research will be successful only when different disciplines would work together. Multidisciplinary research is a way to challenge academic/disciplinary homogeneity and their boundaries, to take advantage of the diversity of approaches and methods in production of new integrated knowledge. Cooperation and dialogue across disciplines will help to develop adequate indicators for monitoring human health and elaborating efficient policies and strategies to the benefit of both women and men in the Arctic. Global Health Action 2011. © 2011 Kukarenko Natalia.

  15. Climate change effects on human health in a gender perspective: some trends in Arctic research

    PubMed Central

    Natalia, Kukarenko

    2011-01-01

    Background Climate change and environmental pollution have become pressing concerns for the peoples in the Arctic region. Some researchers link climate change, transformations of living conditions and human health. A number of studies have also provided data on differentiating effects of climate change on women's and men's well-being and health. Objective To show how the issues of climate and environment change, human health and gender are addressed in current research in the Arctic. The main purpose of this article is not to give a full review but to draw attention to the gaps in knowledge and challenges in the Arctic research trends on climate change, human health and gender. Methods A broad literature search was undertaken using a variety of sources from natural, medical, social science and humanities. The focus was on the keywords. Results Despite the evidence provided by many researchers on differentiating effects of climate change on well-being and health of women and men, gender perspective remains of marginal interest in climate change, environmental and health studies. At the same time, social sciences and humanities, and gender studies in particular, show little interest towards climate change impacts on human health in the Arctic. As a result, we still observe the division of labour between disciplines, the disciplinary-bound pictures of human development in the Arctic and terminology confusion. Conclusion Efforts to bring in a gender perspective in the Arctic research will be successful only when different disciplines would work together. Multidisciplinary research is a way to challenge academic/disciplinary homogeneity and their boundaries, to take advantage of the diversity of approaches and methods in production of new integrated knowledge. Cooperation and dialogue across disciplines will help to develop adequate indicators for monitoring human health and elaborating efficient policies and strategies to the benefit of both women and men in the Arctic. PMID:21949499

  16. Climate and Cryosphere (CliC) Project and its Interest in Arctic Hydrology Research

    NASA Astrophysics Data System (ADS)

    Yang, D.; Prowse, T. D.; Steffen, K.; Ryabinin, V.

    2009-12-01

    The cryosphere is an important and dynamic component of the global climate system. The global cryosphere is changing rapidly, with changes in the Polar Regions receiving particular attention during the International Polar Year 2007-2008. The Climate and Cryosphere (CliC) Project is a core project of the World Climate Research Programme (WCRP) and is co-sponsored by WCRP, SCAR (Scientific Committee for Antarctic Research) and IASC (International Committee for Antarctic Research). The principal goal of CliC is to assess and quantify the impacts that climatic variability and change have on components of the cryosphere and the consequences of these impacts for the climate system. To achieve its objectives, CliC coordinates international and regional projects, partners with other organizations in joint initiatives, and organizes panels and working groups to lead and coordinate advanced research aimed at closing identified gaps in scientific knowledge about climate and cryosphere. The terrestrial cryosphere includes land areas where snow cover, lake- and river-ice, glaciers and ice caps, permafrost and seasonally frozen ground and solid precipitation occur. The main task of this theme is to improve estimates and quantify the uncertainty of water balance and related energy flux components in cold climate regions. This includes precipitation (both solid and liquid) distribution, properties of snow, snow melt, evapotranspiration, sublimation, water movement through frozen and unfrozen ground, water storage in watersheds, river- and lake-ice properties and processes, and river runoff. The focus of this theme includes two specific issues: the role of permafrost and frozen ground in the carbon balance, and precipitation in cold climates. Hydrological studies of cold regions will provide a key contribution to the new theme crosscut, which focuses on the cryospheric input to the freshwater balance of the Arctic. This presentation will provide an overview and update of recent developments of cold region hydrometeorology research activities and future challenges in arctic hydrology and climate change investigations.

  17. Safeguarding Canadian Arctic Sovereignty Against Conventional Threats

    DTIC Science & Technology

    2009-06-01

    The effects of climate change as well as national interests over control of vast amounts of natural resources in the Arctic seem to be...Canadian Sovereignty, Climate Change, Military Capabilities for Arctic Operations 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...THREATS, by MAJ Dave Abboud, Canadian Forces, 95 pages. The effects of climate change as well as national interests over control of vast amounts of

  18. Species interactions and response time to climate change: ice-cover and terrestrial run-off shaping Arctic char and brown trout competitive asymmetries

    NASA Astrophysics Data System (ADS)

    Finstad, A. G.; Palm Helland, I.; Jonsson, B.; Forseth, T.; Foldvik, A.; Hessen, D. O.; Hendrichsen, D. K.; Berg, O. K.; Ulvan, E.; Ugedal, O.

    2011-12-01

    There has been a growing recognition that single species responses to climate change often mainly are driven by interaction with other organisms and single species studies therefore not are sufficient to recognize and project ecological climate change impacts. Here, we study how performance, relative abundance and the distribution of two common Arctic and sub-Arctic freshwater fishes (brown trout and Arctic char) are driven by competitive interactions. The interactions are modified both by direct climatic effects on temperature and ice-cover, and indirectly through climate forcing of terrestrial vegetation pattern and associated carbon and nutrient run-off. We first use laboratory studies to show that Arctic char, which is the world's most northernmost distributed freshwater fish, outperform trout under low light levels and also have comparable higher growth efficiency. Corresponding to this, a combination of time series and time-for-space analyses show that ice-cover duration and carbon and nutrient load mediated by catchment vegetation properties strongly affected the outcome of the competition and likely drive the species distribution pattern through competitive exclusion. In brief, while shorter ice-cover period and decreased carbon load favored brown trout, increased ice-cover period and increased carbon load favored Arctic char. Length of ice-covered period and export of allochthonous material from catchments are major, but contrasting, climatic drivers of competitive interaction between these two freshwater lake top-predators. While projected climate change lead to decreased ice-cover, corresponding increase in forest and shrub cover amplify carbon and nutrient run-off. Although a likely outcome of future Arctic and sub-arctic climate scenarios are retractions of the Arctic char distribution area caused by competitive exclusion, the main drivers will act on different time scales. While ice-cover will change instantaneously with increasing temperature, changes in catchment vegetation, such as forest-line or shrub advancement affecting carbon and nutrient transport into lakes, act on considerably longer time-scales. This study therefore emphasizes the recurring challenge for ecological climate change studies related to species interactions within and across ecosystem compartments and the response time of ecosystems.

  19. Climate change and the ecology and evolution of Arctic vertebrates.

    PubMed

    Gilg, Olivier; Kovacs, Kit M; Aars, Jon; Fort, Jérôme; Gauthier, Gilles; Grémillet, David; Ims, Rolf A; Meltofte, Hans; Moreau, Jérôme; Post, Eric; Schmidt, Niels Martin; Yannic, Glenn; Bollache, Loïc

    2012-02-01

    Climate change is taking place more rapidly and severely in the Arctic than anywhere on the globe, exposing Arctic vertebrates to a host of impacts. Changes in the cryosphere dominate the physical changes that already affect these animals, but increasing air temperatures, changes in precipitation, and ocean acidification will also affect Arctic ecosystems in the future. Adaptation via natural selection is problematic in such a rapidly changing environment. Adjustment via phenotypic plasticity is therefore likely to dominate Arctic vertebrate responses in the short term, and many such adjustments have already been documented. Changes in phenology and range will occur for most species but will only partly mitigate climate change impacts, which are particularly difficult to forecast due to the many interactions within and between trophic levels. Even though Arctic species richness is increasing via immigration from the South, many Arctic vertebrates are expected to become increasingly threatened during this century. © 2012 New York Academy of Sciences.

  20. Amplified North Atlantic warming in the late Pliocene by changes in Arctic gateways

    DOE PAGES

    Otto-Bliesner, Bette L.; Jahn, Alexandra; Feng, Ran; ...

    2016-12-26

    Under previous reconstructions of late Pliocene boundary conditions, climate models have failed to reproduce the warm sea surface temperatures reconstructed in the North Atlantic. Using a reconstruction of mid-Piacenzian paleogeography that has the Bering Strait and Canadian Arctic Archipelago Straits closed, however, improves the simulation of the proxy-indicated warm sea surface temperatures in the North Atlantic in the Community Climate System Model. We find that the closure of these small Arctic gateways strengthens the Atlantic Meridional Overturning Circulation, by inhibiting freshwater transport from the Pacific to the Arctic Ocean and from the Arctic Ocean to the Labrador Sea, leading tomore » warmer sea surface temperatures in the North Atlantic. In conclusion, this indicates that the state of the Arctic gateways may influence the sensitivity of the North Atlantic climate in complex ways, and better understanding of the state of these Arctic gateways for past time periods is needed.« less

  1. Can regional climate engineering save the summer Arctic sea ice?

    NASA Astrophysics Data System (ADS)

    Tilmes, S.; Jahn, Alexandra; Kay, Jennifer E.; Holland, Marika; Lamarque, Jean-Francois

    2014-02-01

    Rapid declines in summer Arctic sea ice extent are projected under high-forcing future climate scenarios. Regional Arctic climate engineering has been suggested as an emergency strategy to save the sea ice. Model simulations of idealized regional dimming experiments compared to a business-as-usual greenhouse gas emission simulation demonstrate the importance of both local and remote feedback mechanisms to the surface energy budget in high latitudes. With increasing artificial reduction in incoming shortwave radiation, the positive surface albedo feedback from Arctic sea ice loss is reduced. However, changes in Arctic clouds and the strongly increasing northward heat transport both counteract the direct dimming effects. A 4 times stronger local reduction in solar radiation compared to a global experiment is required to preserve summer Arctic sea ice area. Even with regional Arctic dimming, a reduction in the strength of the oceanic meridional overturning circulation and a shut down of Labrador Sea deep convection are possible.

  2. Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect

    NASA Astrophysics Data System (ADS)

    Croft, B.; Wentworth, G. R.; Martin, R. V.; Leaitch, W. R.; Murphy, J. G.; Murphy, B. N.; Kodros, J. K.; Abbatt, J. P. D.; Pierce, J. R.

    2016-11-01

    The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about -0.5 W m-2 pan-Arctic-mean cooling), exceeding -1 W m-2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological-chemical processes may be susceptible to Arctic warming and industrialization.

  3. Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect.

    PubMed

    Croft, B; Wentworth, G R; Martin, R V; Leaitch, W R; Murphy, J G; Murphy, B N; Kodros, J K; Abbatt, J P D; Pierce, J R

    2016-11-15

    The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about -0.5 W m -2 pan-Arctic-mean cooling), exceeding -1 W m -2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological-chemical processes may be susceptible to Arctic warming and industrialization.

  4. Arctic Climate and Terrestrial Vegetation Responses During the Middle to Late Eocene and Early Oligocene: Colder Winters Preceded Cool-Down.

    NASA Astrophysics Data System (ADS)

    Greenwood, D. R.; Eldrett, J.

    2006-12-01

    The late Eocene to early Oligocene is recognized as an interval of substantial change in the global climate, with isotopic proxies of climate indicating a significant drop in sea surface temperatures. Other studies have shown, however that at middle latitudes that terrestrial mean annual temperature did not change significantly over this interval, and that the major change was likely a shift towards a greater range of seasonal temperatures; colder winters and warmer summers. Previous analyses of high latitude (Arctic) middle Eocene climate using both leaf physiognomic analysis and qualitative analysis of identified nearest living relatives of terrestrial floras indicated upper microthermal environments (mean annual temp. or MAT ca 10°C but perhaps as high as 15°C, coldest month mean temp. or CMMT ca 0°C) for Axel Heiberg Island in the Arctic Archipelago, but did not address precipitation nor provide data on the Eocene-Oligocene transition in the Arctic. Presented here are new estimates of temperature and precipitation (annual and season amounts) for the Arctic based on NLR analysis of terrestrial plant palynomorphs (spores and pollen) from the ODP 913B and 985 cores from near Greenland. The record of climate for the Greenland cores show a similar climate in the middle Eocene to that previously estimated for Axel Heiberg Island further to the west, with MAT 10- 15°C but with CMMT >5°C. Precipitation was high (mean annual precip. or MAP >180 cm/yr), although with large uncertainties attached to the estimate. The climate proxy record for the late Eocene to early Oligocene shows a lack of change in MAT and MAP over the time interval. Consistent with other published records at middle latitudes, however, winter temperatures (as CMMT) show greater variability leading up to the E-O boundary, and consistently cooler values in the early Oligocene (CMMT <5°C) than recorded for most of the middle to late Eocene record (CMMT >5°C). Plant groups sensitive to freezing such as palms and the floating water fern Azolla were present in the warm parts of the record, but are absent from the latest Eocene and early Oligocene record. These data provide further evidence that the primary change in the global climate system in the E-O transition was a shift towards more extreme seasonal temperature ranges, rather than a drop in the mean temperature.

  5. Arctic sea ice variability during the last deglaciation: a biomarker approach

    NASA Astrophysics Data System (ADS)

    Müller, J.; Stein, R. H.

    2014-12-01

    The last transition from full glacial to current interglacial conditions was accompanied by distinct short-term climate fluctuations caused by changes in the global ocean circulation system. Most palaeoceanographic studies focus on the documentation of the behaviour of the Atlantic Meridional Overturning Circulation (AMOC) during the last deglaciation in response to freshwater forcing events. In this respect, the role of Arctic sea ice remained relatively unconsidered - primarily because of the difficulty of its reconstruction. Here we present new proxy data on late glacial (including the Last Glacial Maximum; LGM) and deglacial sea ice variability in the Arctic Ocean and its main gateway - the Fram Strait - and how these changes in sea ice coverage contributed to AMOC perturbations observed during Heinrich Event 1 and the Younger Dryas. Recurrent short-term advances and retreats of sea ice in Fram Strait, prior and during the LGM, are in line with a variable (or intermittent) North Atlantic heat flow along the eastern corridor of the Nordic Seas. Possibly in direct response to the initial freshwater discharge from melting continental ice-sheets, a permanent sea ice cover established only at about 19 ka BP (i.e. post-LGM) and lasted until 17.6 ka BP, when an abrupt break-up of this thick ice cover and a sudden discharge of huge amounts of sea ice and icebergs through Fram Strait coincided with the weakening of the AMOC during Heinrich Event 1. Similarly, another sea ice maximum at about 12.8 ka BP is associated with the slowdown of the AMOC during the Younger Dryas. The new data sets clearly highlight the important role of Arctic sea ice for the re-organisation of the oceanographic setting in the North Atlantic during the last deglaciation. Further studies and sensitivity experiments to identify crucial driving (and feedback) mechanisms within the High Latitude ice-ocean-atmosphere system will contribute the understanding of rapid climate changes.

  6. A propagating freshwater mode in the Arctic Ocean with multidecadal time scale

    NASA Astrophysics Data System (ADS)

    Schmith, Torben; Malskær Olsen, Steffen; Margrethe Ringgaard, Ida

    2017-04-01

    We apply Principal Oscillatory Pattern analysis to the Arctic Ocean fresh water content as simulated in a 500 year long control run with constant preindustrial forcing with the EC-Earth global climate model. Two modes emerge from this analysis. One mode is a standing mode with decadal time scale describing accumulation and release of fresh water in the Beaufort Gyre, known in the literature as the Beaufort Gyre flywheel. In addition, we identify a propagating mode with a time scale around 80 years, propagating along the rim of the Canadian Basin. This mode has maximum variability of the fresh water content in the Transpolar Drift and represents the bulk of the total variability of the fresh water content in the Arctic Ocean and also projects on the fresh water through the Fram Strait. Therefore, potentially, it can introduce a multidecadal variability to the Atlantic meridional overturning circulation. We will discuss the physical origin of this propagating mode. This include planetary-scale internal Rossby waves with multidecadal time scale, due to the slow variation of the Coriolis parameter at these high latitudes, as well as topographic steering of these Rossby waves.

  7. The A and m coefficients in the Bruun/Dean equilibrium profile equation seen from the Arctic

    USGS Publications Warehouse

    Are, F.; Reimnitz, E.

    2008-01-01

    The Bruun/Dean relation between water depth and distance from the shore with a constant profile shape factor is widely used to describe shoreface profiles in temperate environments. However, it has been shown that the sediment scale parameter (A) and the profile shape factor (m) are interrelated variables. An analysis of 63 Arctic erosional shoreface profiles shows that both coefficients are highly variable. Relative frequency of the average m value is only 16% by the class width 0.1. No other m value frequency exceeds 21%. Therefore, there is insufficient reason to use average m to characterize Arctic shoreface profile shape. The shape of each profile has a definite combination of A and m values. Coefficients A and m show a distinct inverse relationship, as in temperate climate. A dependence of m values on coastal sediment grain size is seen, and m decreases with increasing grain size. With constant m = 0.67, parameter A obtains a dimension unit m1/3. But A equals the water depth in meters 1 m from the water edge. This fact and the variability of parameter m testify that the Bruun/Dean equation is essentially an empirical formula. There is no need to give any measurement unit to parameter A. But the International System of Units (SI) has to be used in applying the Bruun/Dean equation for shoreface profiles. A comparison of the shape of Arctic shoreface profiles with those of temperate environments shows surprising similarity. Therefore, the conclusions reached in this Arctic paper seem to apply also to temperate environments.

  8. Sensitivity of the carbon cycle in the Arctic to climate change

    USGS Publications Warehouse

    McGuire, A. David; Anderson, Leif G.; Christensen, Torben R.; Dallimore, Scott; Guo, Laodong; Hayes, Daniel J.; Heimann, Martin; Lorenson, T.D.; Macdonald, Robie W.; Roulet, Nigel

    2009-01-01

    The recent warming in the Arctic is affecting a broad spectrum of physical, ecological, and human/cultural systems that may be irreversible on century time scales and have the potential to cause rapid changes in the earth system. The response of the carbon cycle of the Arctic to changes in climate is a major issue of global concern, yet there has not been a comprehensive review of the status of the contemporary carbon cycle of the Arctic and its response to climate change. This review is designed to clarify key uncertainties and vulnerabilities in the response of the carbon cycle of the Arctic to ongoing climatic change. While it is clear that there are substantial stocks of carbon in the Arctic, there are also significant uncertainties associated with the magnitude of organic matter stocks contained in permafrost and the storage of methane hydrates beneath both subterranean and submerged permafrost of the Arctic. In the context of the global carbon cycle, this review demonstrates that the Arctic plays an important role in the global dynamics of both CO2 and CH4. Studies suggest that the Arctic has been a sink for atmospheric CO2 of between 0 and 0.8 Pg C/yr in recent decades, which is between 0% and 25% of the global net land/ocean flux during the 1990s. The Arctic is a substantial source of CH4 to the atmosphere (between 32 and 112 Tg CH4/yr), primarily because of the large area of wetlands throughout the region. Analyses to date indicate that the sensitivity of the carbon cycle of the Arctic during the remainder of the 21st century is highly uncertain. To improve the capability to assess the sensitivity of the carbon cycle of the Arctic to projected climate change, we recommend that (1) integrated regional studies be conducted to link observations of carbon dynamics to the processes that are likely to influence those dynamics, and (2) the understanding gained from these integrated studies be incorporated into both uncoupled and fully coupled carbon–climate modeling efforts.

  9. Climate Change: Science and Policy in the Arctic Climate Change: Science and Policy in the Arctic

    NASA Astrophysics Data System (ADS)

    Bigras, S. C.

    2009-12-01

    It is an accepted fact that the Earth’s climate is warming. Recent research has demonstrated the direct links between the Arctic regions and the rest of the planet. We have become more aware that these regions are feeling the effects of global climate change more intensely than anywhere else on Earth -- and that they are fast becoming the new frontiers for resources and political disputes. This paper examines some of the potential climate change impacts in the Arctic and how the science of climate change can be used to develop policies that will help mitigate some of these impacts. Despite the growing body of research we do not yet completely understand the potential consequences of climate change in the Arctic. Climate models predict significant changes and impacts on the northern physical environment and renewable resources, and on the communities and societies that depend on them. Policies developed and implemented as a result of the research findings will be designed to help mitigate some of the more serious consequences. Given the importance of cost in making policy decisions, the financial implications of different scenarios will need to be considered. The Arctic Ocean Basin is a complex and diverse environment shared by five Arctic states. Cooperation among the states surrounding the Arctic Ocean is often difficult, as each country has its own political and social agenda. Northerners and indigenous peoples should be engaged and able to influence the direction of northern adaptation policies. Along with climate change, the Arctic environment and Arctic residents face many other challenges, among them safe resource development. Resource development in the Arctic has always been a controversial issue, seen by some as a solution to high unemployment and by others as an unacceptably disruptive and destructive force. Its inherent risks need to be considered: there are needs for adaptation, for management frameworks, for addressing cumulative effects, and for participation of indigenous peoples in the development and management process. The effective application of accumulated climate change knowledge requires development of a policy framework that can address cumulative effects and take into account various stakeholders, multi-jurisdictional regulations and interests, environmental impacts and other concerns specific to the Arctic. Fundamental to such a framework are responsible economic development, sustainable communities, the commitment to achieving consensus between parties, and the use of traditional knowledge. One way to facilitate collaborative policy making is to increase international co-operation between Northerners, indigenous peoples, scientists, politicians and policy makers. The International Polar Year (IPY) 2007-2008 proved a solid stepping-stone for multinational collaborations. Clear communication with politicians and policy-makers is challenging but essential, despite the lingering uncertainties in climate-change science. Public awareness helps considerably in getting messages to politicians, and it is therefore important that scientists and researchers share their results not only with colleagues but also with the general public.

  10. Arctic sea ice trends, variability and implications for seasonal ice forecasting.

    PubMed

    Serreze, Mark C; Stroeve, Julienne

    2015-07-13

    September Arctic sea ice extent over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal ice forecasting. In particular, while advances in observing sea ice thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. Recent climate warming drives ecological change in a remote high-Arctic lake.

    PubMed

    Woelders, Lineke; Lenaerts, Jan T M; Hagemans, Kimberley; Akkerman, Keechy; van Hoof, Thomas B; Hoek, Wim Z

    2018-05-01

    The high Arctic is the fastest warming region on Earth, evidenced by extreme near-surface temperature increase in non-summer seasons, recent rapid sea ice decline and permafrost melting since the early 1990's. Understanding the impact of climate change on the sensitive Arctic ecosystem to climate change has so far been hampered by the lack of time-constrained, high-resolution records and by implicit climate data analyses. Here, we show evidence of sharp growth in freshwater green algae as well as distinct diatom assemblage changes since ~1995, retrieved from a high-Arctic (80 °N) lake sediment record on Barentsøya (Svalbard). The proxy record approaches an annual to biennial resolution. Combining remote sensing and in-situ climate data, we show that this ecological change is concurrent with, and is likely driven by, the atmospheric warming and a sharp decrease in the length of the sea ice covered period in the region, and throughout the Arctic. Moreover, this research demonstrates the value of palaeoclimate records in pristine environments for supporting and extending instrumental records. Our results reinforce and extend observations from other sites that the high Arctic has already undergone rapid ecological changes in response to on-going climate change, and will continue to do so in the future.

  12. There goes the sea ice: following Arctic sea ice parcels and their properties.

    NASA Astrophysics Data System (ADS)

    Tschudi, M. A.; Tooth, M.; Meier, W.; Stewart, S.

    2017-12-01

    Arctic sea ice distribution has changed considerably over the last couple of decades. Sea ice extent record minimums have been observed in recent years, the distribution of ice age now heavily favors younger ice, and sea ice is likely thinning. This new state of the Arctic sea ice cover has several impacts, including effects on marine life, feedback on the warming of the ocean and atmosphere, and on the future evolution of the ice pack. The shift in the state of the ice cover, from a pack dominated by older ice, to the current state of a pack with mostly young ice, impacts specific properties of the ice pack, and consequently the pack's response to the changing Arctic climate. For example, younger ice typically contains more numerous melt ponds during the melt season, resulting in a lower albedo. First-year ice is typically thinner and more fragile than multi-year ice, making it more susceptible to dynamic and thermodynamic forcing. To investigate the response of the ice pack to climate forcing during summertime melt, we have developed a database that tracks individual Arctic sea ice parcels along with associated properties as these parcels advect during the summer. Our database tracks parcels in the Beaufort Sea, from 1985 - present, along with variables such as ice surface temperature, albedo, ice concentration, and convergence. We are using this database to deduce how these thousands of tracked parcels fare during summer melt, i.e. what fraction of the parcels advect through the Beaufort, and what fraction melts out? The tracked variables describe the thermodynamic and dynamic forcing on these parcels during their journey. This database will also be made available to all interested investigators, after it is published in the near future. The attached image shows the ice surface temperature of all parcels (right) that advected through the Beaufort Sea region (left) in 2014.

  13. Climate Change Impacts on Environmental and Human Exposure to Mercury in the Arctic

    PubMed Central

    Sundseth, Kyrre; Pacyna, Jozef M.; Banel, Anna; Pacyna, Elisabeth G.; Rautio, Arja

    2015-01-01

    This paper reviews information from the literature and the EU ArcRisk project to assess whether climate change results in an increase or decrease in exposure to mercury (Hg) in the Arctic, and if this in turn will impact the risks related to its harmful effects. It presents the state-of-the art of knowledge on atmospheric mercury emissions from anthropogenic sources worldwide, the long-range transport to the Arctic, and it discusses the likely environmental fate and exposure effects on population groups in the Arctic under climate change conditions. The paper also includes information about the likely synergy effects (co-benefits) current and new climate change polices and mitigation options might have on mercury emissions reductions in the future. The review concludes that reductions of mercury emission from anthropogenic sources worldwide would need to be introduced as soon as possible in order to assure lowering the adverse impact of climate change on human health. Scientific information currently available, however, is not in the position to clearly answer whether climate change will increase or decrease the risk of exposure to mercury in the Arctic. New research should therefore be undertaken to model the relationships between climate change and mercury exposure. PMID:25837201

  14. Climate change impacts on environmental and human exposure to mercury in the arctic.

    PubMed

    Sundseth, Kyrre; Pacyna, Jozef M; Banel, Anna; Pacyna, Elisabeth G; Rautio, Arja

    2015-03-31

    This paper reviews information from the literature and the EU ArcRisk project to assess whether climate change results in an increase or decrease in exposure to mercury (Hg) in the Arctic, and if this in turn will impact the risks related to its harmful effects. It presents the state-of-the art of knowledge on atmospheric mercury emissions from anthropogenic sources worldwide, the long-range transport to the Arctic, and it discusses the likely environmental fate and exposure effects on population groups in the Arctic under climate change conditions. The paper also includes information about the likely synergy effects (co-benefits) current and new climate change polices and mitigation options might have on mercury emissions reductions in the future. The review concludes that reductions of mercury emission from anthropogenic sources worldwide would need to be introduced as soon as possible in order to assure lowering the adverse impact of climate change on human health. Scientific information currently available, however, is not in the position to clearly answer whether climate change will increase or decrease the risk of exposure to mercury in the Arctic. New research should therefore be undertaken to model the relationships between climate change and mercury exposure.

  15. Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability.

    PubMed

    Litzow, Michael A; Mueter, Franz J; Hobday, Alistair J

    2014-01-01

    In areas of the North Pacific that are largely free of overfishing, climate regime shifts - abrupt changes in modes of low-frequency climate variability - are seen as the dominant drivers of decadal-scale ecological variability. We assessed the ability of leading modes of climate variability [Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), Arctic Oscillation (AO), Pacific-North American Pattern (PNA), North Pacific Index (NPI), El Niño-Southern Oscillation (ENSO)] to explain decadal-scale (1965-2008) patterns of climatic and biological variability across two North Pacific ecosystems (Gulf of Alaska and Bering Sea). Our response variables were the first principle component (PC1) of four regional climate parameters [sea surface temperature (SST), sea level pressure (SLP), freshwater input, ice cover], and PCs 1-2 of 36 biological time series [production or abundance for populations of salmon (Oncorhynchus spp.), groundfish, herring (Clupea pallasii), shrimp, and jellyfish]. We found that the climate modes alone could not explain ecological variability in the study region. Both linear models (for climate PC1) and generalized additive models (for biology PC1-2) invoking only the climate modes produced residuals with significant temporal trends, indicating that the models failed to capture coherent patterns of ecological variability. However, when the residual climate trend and a time series of commercial fishery catches were used as additional candidate variables, resulting models of biology PC1-2 satisfied assumptions of independent residuals and out-performed models constructed from the climate modes alone in terms of predictive power. As measured by effect size and Akaike weights, the residual climate trend was the most important variable for explaining biology PC1 variability, and commercial catch the most important variable for biology PC2. Patterns of climate sensitivity and exploitation history for taxa strongly associated with biology PC1-2 suggest plausible mechanistic explanations for these modeling results. Our findings suggest that, even in the absence of overfishing and in areas strongly influenced by internal climate variability, climate regime shift effects can only be understood in the context of other ecosystem perturbations. © 2013 John Wiley & Sons Ltd.

  16. Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvijanovic, Ivana; Caldeira, Ken; MacMartin, Douglas G.

    The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO₂ climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modestmore » reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO₂ induced global warming.« less

  17. Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate

    DOE PAGES

    Cvijanovic, Ivana; Caldeira, Ken; MacMartin, Douglas G.

    2015-04-01

    The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO₂ climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modestmore » reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO₂ induced global warming.« less

  18. The Arctic Grand Challenge: Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Wilkniss, P. E.

    2003-12-01

    Trouble in polar paradise (Science, 08/30/02), significant changes in the Arctic environment are scientifically documented (R.E. Moritz et al. ibid.). More trouble, lots more, "abrupt climate change," (R. B. Alley, et al. Science 03/28/03). R. Corell, Arctic Climate Impact Assessment team (ACIA), "If you want to see what will happen in the rest of the world 25 years from now just look what's happening in the Arctic," (Arctic Council meeting, Iceland, 08/03). What to do? Make abrupt Arctic climate change a grand challenge for the IPY-4 and beyond! Scientifically:Describe the "state" of the Arctic climate system as succinctly as possible and accept it as the point of departure.Develop a hypothesis and criteria what constitutes "abrupt climate change," in the Arctic that can be tested with observations. Observations: Bring to bear existing observations and coordinate new investments in observations through an IPY-4 scientific management committee. Make the new Barrow, Alaska, Global Climate Change Research Facility a major U.S. contribution and focal point for the IPY-4 in the U.S Arctic. Arctic populations, Native peoples: The people of the North are living already, daily, with wrenching change, encroaching on their habitats and cultures. For them "the earth is faster now," (I. Krupnik and D. Jolly, ARCUS, 2002). From a political, economic, social and entirely realistic perspective, an Arctic grand challenge without the total integration of the Native peoples in this effort cannot succeed. Therefore: Communications must be established, and the respective Native entities must be approached with the determination to create well founded, well functioning, enduring partnerships. In the U.S. Arctic, Barrow with its long history of involvement and active support of science and with the new global climate change research facility should be the focal point of choice Private industry: Resource extraction in the Arctic followed by oil and gas consumption, return the combustion products as greenhouse gases to their regions of origin. Thus multinational company operations are affected by their own activities. There is a strong, convincing case, that these industrial giants must be involved in Arctic partnerships of the grand challenge. A most instructive, very successful example is the collaboration by the chemical companies after the discovery of the polar ozone holes, followed by the replacement of the culprit chlorofluorocarbon compounds. Public relations and involvement/education: The IPY offers a unique opportunity to showcase and drive home, into homes, the seriousness of the issue, Hollywood/Madison Avenue/ NASA style, nothing else will do. Ultimately we need to be mindful that "civilizations are ephemeral compared to species. -What we need is a primer on science, clearly written and unambiguous in its meaning-a primer for anyone interested in the state of the Earth and how to survive and live well on it." (James Lovelock, Science, 08/05/98). - Let's start in the Arctic-NOW.

  19. Remote sensing of aerosols in the Arctic for an evaluation of global climate model simulations

    PubMed Central

    Glantz, Paul; Bourassa, Adam; Herber, Andreas; Iversen, Trond; Karlsson, Johannes; Kirkevåg, Alf; Maturilli, Marion; Seland, Øyvind; Stebel, Kerstin; Struthers, Hamish; Tesche, Matthias; Thomason, Larry

    2014-01-01

    In this study Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua retrievals of aerosol optical thickness (AOT) at 555 nm are compared to Sun photometer measurements from Svalbard for a period of 9 years. For the 642 daily coincident measurements that were obtained, MODIS AOT generally varies within the predicted uncertainty of the retrieval over ocean (ΔAOT = ±0.03 ± 0.05 · AOT). The results from the remote sensing have been used to examine the accuracy in estimates of aerosol optical properties in the Arctic, generated by global climate models and from in situ measurements at the Zeppelin station, Svalbard. AOT simulated with the Norwegian Earth System Model/Community Atmosphere Model version 4 Oslo global climate model does not reproduce the observed seasonal variability of the Arctic aerosol. The model overestimates clear-sky AOT by nearly a factor of 2 for the background summer season, while tending to underestimate the values in the spring season. Furthermore, large differences in all-sky AOT of up to 1 order of magnitude are found for the Coupled Model Intercomparison Project phase 5 model ensemble for the spring and summer seasons. Large differences between satellite/ground-based remote sensing of AOT and AOT estimated from dry and humidified scattering coefficients are found for the subarctic marine boundary layer in summer. Key Points Remote sensing of AOT is very useful in validation of climate models PMID:25821664

  20. Impact of Climate Change on Siberian High and Wintertime Air Pollution in China in Past Two Decades

    NASA Astrophysics Data System (ADS)

    Zhao, Shuyu; Feng, Tian; Tie, Xuexi; Long, Xin; Li, Guohui; Cao, Junji; Zhou, Weijian; An, Zhisheng

    2018-02-01

    China has suffered severe air pollutions during wintertime as national industrialization and urbanization have been increasingly developed in the past decades. Recent studies suggest that climate change has important impacts on extreme haze events in northern China. This study uses reanalysis datasets to analyze the trend and variability of Siberian High (SiH) intensity, and its relationship with the Arctic temperature and sea ice cover (SIC) in past two decades. The results show that Arctic is warming accompanied by a rapid decline of SIC, while Eurasia is cooling and SiH intensity is gradually enhancing. The statistics illustrates that the SiH has a significantly positive correlation to the temperature (R = 0.70), and a significant anticorrelation to the SIC (R = -0.69), and this is because the warming Arctic and the reducing SIC enhanced the SiH. The enhanced SiH leads to strengthened northerly winds in the North China Plain (NCP). The WRF-Chem model calculation reveals the strengthened northerly winds during the stronger SiH period in January 2016 produce a significant decrease in PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm) concentrations by 100-200 µg m-3 than that during the weaker one in January 2013. A sensitivity calculation figures out the reduction of PM2.5 concentrations due to a decrease of 50% in emissions is comparable to changes from the weak SiH condition to the strong SiH condition, suggesting that extreme climate variability in the past few years could have an equivalent impact as a consequence of a large emission reduction on wintertime air pollution in the NCP.

  1. The Contribution to Arctic Climate Change from Countries in the Arctic Council

    NASA Astrophysics Data System (ADS)

    Schultz, T.; MacCracken, M. C.

    2013-12-01

    The conventional accounting frameworks for greenhouse gas (GHG) emissions used today, established under the Kyoto Protocol 25 years ago, exclude short lived climate pollutants (SLCPs), and do not include regional effects on the climate. However, advances in climate science now suggest that mitigation of SLCPs can reduce up to 50% of global warming by 2050. It has also become apparent that regions such as the Arctic have experienced a much greater degree of anthropogenic warming than the globe as a whole, and that efforts to slow this warming could benefit the larger effort to slow climate change around the globe. A draft standard for life cycle assessment (LCA), LEO-SCS-002, being developed under the American National Standards Institute process, has integrated the most recent climate science into a unified framework to account for emissions of all radiatively significant GHGs and SLCPs. This framework recognizes four distinct impacts to the oceans and climate caused by GHGs and SLCPs: Global Climate Change; Arctic Climate Change; Ocean Acidification; and Ocean Warming. The accounting for Arctic Climate Change, the subject of this poster, is based upon the Absolute Regional Temperature Potential, which considers the incremental change to the Arctic surface temperature resulting from an emission of a GHG or SLCP. Results are evaluated using units of mass of carbon dioxide equivalent (CO2e), which can be used by a broad array of stakeholders, including scientists, consumers, policy makers, and NGOs. This poster considers the contribution to Arctic Climate Change from emissions of GHGs and SLCPs from the eight member countries of the Arctic Council; the United States, Canada, Russia, Denmark, Finland, Iceland, Norway, and Sweden. Of this group of countries, the United States was the largest contributor to Arctic Climate Change in 2011, emitting 9600 MMT CO2e. This includes a gross warming of 11200 MMT CO2e (caused by GHGs, black and brown carbon, and warming effects of nitrogen oxides), which is offset by -1600 MMT CO2e in cooling (caused by organic carbon aerosols, sulfate aerosols, and cooling effects of nitrogen oxides). Russia, Canada, and all the Nordic Countries emitted 5300, 1100, and 300 MMT CO2e (net) in 2011, respectively. Emissions of carbon dioxide, methane, and carbonaceous aerosols were the largest contributors overall, though the significance of each varied by country. This work incorporates the research and methods developed by D. Shindell, G. Faluvegi, M. Jacobson, A. Hu, V. Ramanathan, and T. Bond.

  2. Ecological dynamics across the Arctic associated with recent climate change.

    PubMed

    Post, Eric; Forchhammer, Mads C; Bret-Harte, M Syndonia; Callaghan, Terry V; Christensen, Torben R; Elberling, Bo; Fox, Anthony D; Gilg, Olivier; Hik, David S; Høye, Toke T; Ims, Rolf A; Jeppesen, Erik; Klein, David R; Madsen, Jesper; McGuire, A David; Rysgaard, Søren; Schindler, Daniel E; Stirling, Ian; Tamstorf, Mikkel P; Tyler, Nicholas J C; van der Wal, Rene; Welker, Jeffrey; Wookey, Philip A; Schmidt, Niels Martin; Aastrup, Peter

    2009-09-11

    At the close of the Fourth International Polar Year, we take stock of the ecological consequences of recent climate change in the Arctic, focusing on effects at population, community, and ecosystem scales. Despite the buffering effect of landscape heterogeneity, Arctic ecosystems and the trophic relationships that structure them have been severely perturbed. These rapid changes may be a bellwether of changes to come at lower latitudes and have the potential to affect ecosystem services related to natural resources, food production, climate regulation, and cultural integrity. We highlight areas of ecological research that deserve priority as the Arctic continues to warm.

  3. Cloud-Scale Numerical Modeling of the Arctic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Krueger, Steven K.

    1998-01-01

    The interactions between sea ice, open ocean, atmospheric radiation, and clouds over the Arctic Ocean exert a strong influence on global climate. Uncertainties in the formulation of interactive air-sea-ice processes in global climate models (GCMs) result in large differences between the Arctic, and global, climates simulated by different models. Arctic stratus clouds are not well-simulated by GCMs, yet exert a strong influence on the surface energy budget of the Arctic. Leads (channels of open water in sea ice) have significant impacts on the large-scale budgets during the Arctic winter, when they contribute about 50 percent of the surface fluxes over the Arctic Ocean, but cover only 1 to 2 percent of its area. Convective plumes generated by wide leads may penetrate the surface inversion and produce condensate that spreads up to 250 km downwind of the lead, and may significantly affect the longwave radiative fluxes at the surface and thereby the sea ice thickness. The effects of leads and boundary layer clouds must be accurately represented in climate models to allow possible feedbacks between them and the sea ice thickness. The FIRE III Arctic boundary layer clouds field program, in conjunction with the SHEBA ice camp and the ARM North Slope of Alaska and Adjacent Arctic Ocean site, will offer an unprecedented opportunity to greatly improve our ability to parameterize the important effects of leads and boundary layer clouds in GCMs.

  4. Climate change in the North American Arctic: A one health perspective

    USDA-ARS?s Scientific Manuscript database

    Climate change is expected to increase the prevalence of acute and chronic diseases among human and animal populations within the Arctic and sub-Arctic latitudes of North America. Warmer temperatures are expected to increase disease risks from food-borne pathogens, water-borne diseases, and vector-...

  5. The Arctic Climate Modeling Program: Professional Development for Rural Teachers

    ERIC Educational Resources Information Center

    Bertram, Kathryn Berry

    2010-01-01

    The Arctic Climate Modeling Program (ACMP) offered yearlong science, technology, engineering, and math (STEM) professional development to teachers in rural Alaska. Teacher training focused on introducing youth to workforce technologies used in Arctic research. Due to challenges in making professional development accessible to rural teachers, ACMP…

  6. Patterns and processes influencing helminth parasites of Arctic coastal communities during climate change.

    PubMed

    Galaktionov, K V

    2017-07-01

    This review analyses the scarce available data on biodiversity and transmission of helminths in Arctic coastal ecosystems and the potential impact of climate changes on them. The focus is on the helminths of seabirds, dominant parasites in coastal ecosystems. Their fauna in the Arctic is depauperate because of the lack of suitable intermediate hosts and unfavourable conditions for species with free-living larvae. An increasing proportion of crustaceans in the diet of Arctic seabirds would result in a higher infection intensity of cestodes and acanthocephalans, and may also promote the infection of seabirds with non-specific helminths. In this way, the latter may find favourable conditions for colonization of new hosts. Climate changes may alter the composition of the helminth fauna, their infection levels in hosts and ways of transmission in coastal communities. Immigration of boreal invertebrates and fish into Arctic seas may allow the circulation of helminths using them as intermediate hosts. Changing migratory routes of animals would alter the distribution of their parasites, facilitating, in particular, their trans-Arctic transfer. Prolongation of the seasonal 'transmission window' may increase the parasitic load on host populations. Changes in Arctic marine food webs would have an overriding influence on the helminths' circulation. This process may be influenced by the predicted decreased of salinity in Arctic seas, increased storm activity, coastal erosion, ocean acidification, decline of Arctic ice, etc. Greater parasitological research efforts are needed to assess the influence of factors related to Arctic climate change on the transmission of helminths.

  7. Changes in Arctic and Boreal ecosystems of North America: Integrating Recent Results from the Field, Remote Sensing and Ecosystem Models

    NASA Astrophysics Data System (ADS)

    Goetz, S. J.; Rogers, B. M.; Mack, M. C.; Goulden, M.; Pastick, N. J.; Berner, L. T.; Fisher, J.

    2017-12-01

    The Arctic and boreal forest biomes have global significance in terms of climate feedbacks associated with land surface interactions with the atmosphere. Changes in Arctic tundra and boreal forest ecosystem productivity and fire disturbance feedbacks have been well documented in recent years, but findings are often only locally relevant and are sometimes inconsistent among research teams. Part of these inconsistencies lie in utilization of different data sets and time periods considered. Integrated approaches are thus needed to adequately address changes in these ecosystems in order to assess consistency and variability of change, as well as ecosystem vulnerability and resiliency across spatial and temporal scales. Ultimately this can best be accomplished via multiple lines of evidence including remote sensing, field measurements and various types of data-constrained models. We will discuss some recent results integrating multiple lines of evidence for directional ecosystem change in the Arctic and boreal forest biomes of North America. There is increasing evidence for widespread spatial and temporal variability in Arctic and boreal ecosystem productivity changes that are strongly influenced by cycles of changing fire disturbance severity and its longer-term implications (i.e legacy effects). Integrated, multi-approach research, like that currently underway as part of the NASA-led Arctic Boreal Vulnerability Experiment (above.nasa.gov), is an effective way to capture the complex mechanisms that drive patterns and directionality of ecosystem structure and function, and ultimately determine feedbacks to environmental change, particularly in the context of global climate change. Additional ongoing ABoVE research will improve our understanding of the consequences of environmental changes underway, as well as increase our confidence in making projections of the ecosystem responses, vulnerability and resilience to change. ABoVE will also build a lasting legacy of collaboration through an expanded knowledge base, provision of key datasets to a broader network of researchers and resource managers, and the development of data products and knowledge designed to foster decision support and applied research partnerships with broad societal relevance.

  8. Complex carbon cycle responses to multi-level warming and supplemental summer rain in the high Arctic.

    PubMed

    Sharp, Elizabeth D; Sullivan, Patrick F; Steltzer, Heidi; Csank, Adam Z; Welker, Jeffrey M

    2013-06-01

    The Arctic has experienced rapid warming and, although there are uncertainties, increases in precipitation are projected to accompany future warming. Climate changes are expected to affect magnitudes of gross ecosystem photosynthesis (GEP), ecosystem respiration (ER) and the net ecosystem exchange of CO2 (NEE). Furthermore, ecosystem responses to climate change are likely to be characterized by nonlinearities, thresholds and interactions among system components and the driving variables. These complex interactions increase the difficulty of predicting responses to climate change and necessitate the use of manipulative experiments. In 2003, we established a long-term, multi-level and multi-factor climate change experiment in a polar semidesert in northwest Greenland. Two levels of heating (30 and 60 W m(-2) ) were applied and the higher level was combined with supplemental summer rain. We made plot-level measurements of CO2 exchange, plant community composition, foliar nitrogen concentrations, leaf δ(13) C and NDVI to examine responses to our treatments at ecosystem- and leaf-levels. We confronted simple models of GEP and ER with our data to test hypotheses regarding key drivers of CO2 exchange and to estimate growing season CO2 -C budgets. Low-level warming increased the magnitude of the ecosystem C sink. Meanwhile, high-level warming made the ecosystem a source of C to the atmosphere. When high-level warming was combined with increased summer rain, the ecosystem became a C sink of magnitude similar to that observed under low-level warming. Competition among our ER models revealed the importance of soil moisture as a driving variable, likely through its effects on microbial activity and nutrient cycling. Measurements of community composition and proxies for leaf-level physiology suggest GEP responses largely reflect changes in leaf area of Salix arctica, rather than changes in leaf-level physiology. Our findings indicate that the sign and magnitude of the future High Arctic C budget may depend upon changes in summer rain. © 2013 Blackwell Publishing Ltd.

  9. Arctic “ozone hole” in a cold volcanic stratosphere

    PubMed Central

    Tabazadeh, A.; Drdla, K.; Schoeberl, M. R.; Hamill, P.; Toon, O. B.

    2002-01-01

    Optical depth records indicate that volcanic aerosols from major eruptions often produce clouds that have greater surface area than typical Arctic polar stratospheric clouds (PSCs). A trajectory cloud–chemistry model is used to study how volcanic aerosols could affect springtime Arctic ozone loss processes, such as chlorine activation and denitrification, in a cold winter within the current range of natural variability. Several studies indicate that severe denitrification can increase Arctic ozone loss by up to 30%. We show large PSC particles that cause denitrification in a nonvolcanic stratosphere cannot efficiently form in a volcanic environment. However, volcanic aerosols, when present at low altitudes, where Arctic PSCs cannot form, can extend the vertical range of chemical ozone loss in the lower stratosphere. Chemical processing on volcanic aerosols over a 10-km altitude range could increase the current levels of springtime column ozone loss by up to 70% independent of denitrification. Climate models predict that the lower stratosphere is cooling as a result of greenhouse gas built-up in the troposphere. The magnitude of column ozone loss calculated here for the 1999–2000 Arctic winter, in an assumed volcanic state, is similar to that projected for a colder future nonvolcanic stratosphere in the 2010 decade. PMID:11854461

  10. Problems encountered when defining Arctic amplification as a ratio

    PubMed Central

    Hind, Alistair; Zhang, Qiong; Brattström, Gudrun

    2016-01-01

    In climate change science the term ‘Arctic amplification’ has become synonymous with an estimation of the ratio of a change in Arctic temperatures compared with a broader reference change under the same period, usually in global temperatures. Here, it is shown that this definition of Arctic amplification comes with a suite of difficulties related to the statistical properties of the ratio estimator itself. Most problematic is the complexity of categorizing uncertainty in Arctic amplification when the global, or reference, change in temperature is close to 0 over a period of interest, in which case it may be impossible to set bounds on this uncertainty. An important conceptual distinction is made between the ‘Ratio of Means’ and ‘Mean Ratio’ approaches to defining a ratio estimate of Arctic amplification, as they do not only possess different uncertainty properties regarding the amplification factor, but are also demonstrated to ask different scientific questions. Uncertainty in the estimated range of the Arctic amplification factor using the latest global climate models and climate forcing scenarios is expanded upon and shown to be greater than previously demonstrated for future climate projections, particularly using forcing scenarios with lower concentrations of greenhouse gases. PMID:27461918

  11. Problems encountered when defining Arctic amplification as a ratio.

    PubMed

    Hind, Alistair; Zhang, Qiong; Brattström, Gudrun

    2016-07-27

    In climate change science the term 'Arctic amplification' has become synonymous with an estimation of the ratio of a change in Arctic temperatures compared with a broader reference change under the same period, usually in global temperatures. Here, it is shown that this definition of Arctic amplification comes with a suite of difficulties related to the statistical properties of the ratio estimator itself. Most problematic is the complexity of categorizing uncertainty in Arctic amplification when the global, or reference, change in temperature is close to 0 over a period of interest, in which case it may be impossible to set bounds on this uncertainty. An important conceptual distinction is made between the 'Ratio of Means' and 'Mean Ratio' approaches to defining a ratio estimate of Arctic amplification, as they do not only possess different uncertainty properties regarding the amplification factor, but are also demonstrated to ask different scientific questions. Uncertainty in the estimated range of the Arctic amplification factor using the latest global climate models and climate forcing scenarios is expanded upon and shown to be greater than previously demonstrated for future climate projections, particularly using forcing scenarios with lower concentrations of greenhouse gases.

  12. The role of climate variability in extreme floods in Europe

    NASA Astrophysics Data System (ADS)

    Guimarães Nobre, Gabriela; Aerts, Jeroen C. J. H.; Jongman, Brenden; Ward, Philip J.

    2017-04-01

    Between 1980 and 2015, Europe experienced 18% of worldwide weather-related loss events, which accounted for over US500 billion in damage. Consequently, it is urgent to further develop adaptation strategies to mitigate the consequences of weather-related disasters, such as floods. Europe's capability to prepare for such disasters is challenged by a large range of uncertainties and a limited understanding of the driving forces of hydrometeorological hazards. One of the major sources of uncertainty is the relationship between climate variability and weather-related losses. Previous studies show that climate variability drives temporal changes in hydrometereological variables in Europe. However, their influence on flood risk has received little attention. We investigated the influence of the positive and negative phases of El Niño Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Arctic Oscillation (AO), on the seasonal frequency and intensity of extreme rainfall, and anomalies in flood occurrence and damage compared to the neutral phases of the indices of climate variability. Using statistical methods to analyze relationships between the indices of climate variability and four indicators of flooding, we found that positive and negative phases of NAO and AO are associated with more (or less) frequent and intense seasonal extreme rainfall over large areas of Europe. The relationship between ENSO and both the occurrence of extreme rainfall and intensity of extreme rainfall in Europe is much smaller than the relationship with NAO or AO, but still significant in some regions. We observe that flood damage and flood occurrence have strong links with climate variability, especially in southern and eastern Europe. Therefore, when investigating flooding across Europe, all three indices of climate variability should be considered. Seasonal forecasting of flooding could be enhanced by the inclusion of climate variability indicators .

  13. Sources of Uncertainty in Modelling mid-Pliocene Arctic Amplification

    NASA Astrophysics Data System (ADS)

    Dolan, A. M.; Haywood, A.; Howell, F.; Prescott, C.; Pope, J. O.; Hill, D. J.; Voss, J.

    2016-12-01

    The mid-Pliocene Warm Period (mPWP) is an interval between 3.264 and 3.205 million years ago, which has globally warmer temperatures (Haywood et al., 2013) accompanied by levels of CO2 above pre-Industrial ( 400 ppmv; e.g. Bartoli et al. 2011; Badger et al., 2013). Arctic amplification of temperatures is a major characteristic of all proxy-based reconstructions of the mPWP in terms of both oceanic (Dowsett et al., 2010) and land warming (Salzmann et al., 2013). For example, evidence of fossilised forests in the Canadian high-Arctic show summer temperatures of up to 16°C warmer than present (Csank et al., 2010). Also, summer temperatures estimates based on pollen reconstructions at Lake El'gygytgyn in North East Russia are up to 6°C warmer than present day (Brigham-Grette et al., 2013). Nevertheless, results from the first phase of the Pliocene Model Intercomparison Project (PlioMIP) suggest that climate models may underestimate the degree of Arctic amplification suggested by proxy records (Haywood et al., 2013). Here we use a large ensemble of experiments performed with the HadCM3 climate model to explore relative sources of uncertainty in the simulations of Arctic amplification. Within this suite of over 150 simulations, we consider; (i) a range of mPWP-specific orbital configurations to quantify the influence of temporal variability, (ii) a range of CO2 scenarios to take into account uncertainties in this particular greenhouse gas forcing, (iii) a perturbed physics ensemble to investigate parametric uncertainty within the HadCM3 climate model, and also (iv) a number of experiments with altered palaeogeographies (including changes to topography and ice sheets) to assess the impact of different boundary condition realisations on our simulation of Arctic amplification. We also incorporate results from the PlioMIP project to allude to the effect of structural uncertainty on Arctic warming. Following methods used in Yoshimori et al. (2013) and Laine et al. (2016), we identify the largest sources of uncertainty over both the land and the ocean in simulating the degree of amplification suggested by available proxy data. We also relate predictions of Arctic amplification to key features within the model, for example, sea ice extent and seasonality.

  14. Coordinated Parameterization Development and Large-Eddy Simulation for Marine and Arctic Cloud-Topped Boundary Layers

    NASA Technical Reports Server (NTRS)

    Bretherton, Christopher S.

    2002-01-01

    The goal of this project was to compare observations of marine and arctic boundary layers with: (1) parameterization systems used in climate and weather forecast models; and (2) two and three dimensional eddy resolving (LES) models for turbulent fluid flow. Based on this comparison, we hoped to better understand, predict, and parameterize the boundary layer structure and cloud amount, type, and thickness as functions of large scale conditions that are predicted by global climate models. The principal achievements of the project were as follows: (1) Development of a novel boundary layer parameterization for large-scale models that better represents the physical processes in marine boundary layer clouds; and (2) Comparison of column output from the ECMWF global forecast model with observations from the SHEBA experiment. Overall the forecast model did predict most of the major precipitation events and synoptic variability observed over the year of observation of the SHEBA ice camp.

  15. Future distribution of tundra refugia in northern Alaska

    USGS Publications Warehouse

    Hope, Andrew G.; Waltari, Eric; Payer, David C.; Cook, Joseph A.; Talbot, Sandra L.

    2013-01-01

    Climate change in the Arctic is a growing concern for natural resource conservation and management as a result of accelerated warming and associated shifts in the distribution and abundance of northern species. We introduce a predictive framework for assessing the future extent of Arctic tundra and boreal biomes in northern Alaska. We use geo-referenced museum specimens to predict the velocity of distributional change into the next century and compare predicted tundra refugial areas with current land-use. The reliability of predicted distributions, including differences between fundamental and realized niches, for two groups of species is strengthened by fossils and genetic signatures of demographic shifts. Evolutionary responses to environmental change through the late Quaternary are generally consistent with past distribution models. Predicted future refugia overlap managed areas and indicate potential hotspots for tundra diversity. To effectively assess future refugia, variable responses among closely related species to climate change warrants careful consideration of both evolutionary and ecological histories.

  16. Simulating the natural variability of the freshwater budget of the Arctic ocean from the mid to late Holocene using LOVECLIM

    NASA Astrophysics Data System (ADS)

    Davies, F. J.; Goosse, H.; Renssen, H.

    2012-04-01

    The influence of freshwater on the long term climatic variability of the Arctic region is currently of significant interest. Alterations to the natural variability of the oceanic, terrestrial and atmospheric sources of freshwater to the Arctic ocean, caused by anthropogenic induced warming, are likely to have far reaching effects on oceanic processes and climate. A number of these changes are already observable, such as an intensification of the hydrological cycle, a 7% increase in Eurasian river runoff (1936-1999), a 9% reduction of sea-ice extent per decade (1979-2006), a 120km northward migration of permafrost in Northern Canada (1968-1994), and air temperatures 6°C warmer, in parts, from 2007 to 2010, when compared to the 1958-1996 average. All of these changes add another layer of complexity to understanding the role of the freshwater budget, and this makes it difficult to say with any certainty how these future changes will impact freshwater fluxes of the Arctic gateways, such as the Bering Strait, Fram Strait, Canadian Arctic Archipelago and the Barents Sea inflow. Despite these difficulties, there have been studies that have integrated the available data, from both in situ measurements and modelling studies, and used this as a basis to form a picture of the current freshwater budget, and then project upon these hypotheses for the future (Holland et al., 2007). However, one particular aspect of these future projections that is lacking is the accountability of how much future variance is attributable to both natural variability and anthropogenic influences. Here we present results of a mid to late (6-0ka) Holocene transient simulation, using the earth model of intermediate complexity, LOVECLIM (Goosse et al., 2010). The model is forced with orbital and greenhouse gas forcings appropriate for the time period. The results will highlight the natural variability of the oceanic, terrestrial and atmospheric components of the freshwater budget, over decadal and centennial timescales. When computing the freshwater budget for the period, where in situ measurements are available, LOVECLIM has been shown to perform reasonably well. The intention here is not to present a fully quantitative assessment of the freshwater budget of the Arctic Ocean as such, but to highlight the natural variability of the freshwater budget and its individual components. We hope that this inspires other modelling groups to take a similar approach and work towards understanding the natural variability of the freshwater budget over timescales longer than current measurements allow, and modelling studies have previously attempted. Goosse, H., Brovkin, V., Fichefet, T., Haarsma, R., Huybrechts, P., Jongma, J., Mouchet, A., Selten, F., Barriat, P-Y., Campin, J-M., Deleersnijder, E., Driesschaert, E., Goelzer, H., Janssens, I., Loutre, M-F., Morales Maqueda, M.A., Opsteegh, T., Mathieu, P-P., Munhoven, G., Pettersson, E.J., Renssen, H., Roche, D.M., Schaeffer, M., Tartinville, B., Timmermann, A., Weber, S.L. (2010) Description of the Earth System Model of Intermediate Complexity LOVECLIM Version 1.2, Geoscientific Model Development, 3:603-633 doi: 10.5194/gmd-3-603-2010. Holland, M.M., Finnis, J., Barrett, A.P., Serreze, M.C. (2007) Projected Changes in Arctic Ocean Freshwater Budgets, Journal of Geophysical Research, 112, G04S55, doi:10.1029/2006JG000354, 2007

  17. Arctic Freshwater Synthesis: Summary of key emerging issues

    NASA Astrophysics Data System (ADS)

    Prowse, T.; Bring, A.; Mârd, J.; Carmack, E.; Holland, M.; Instanes, A.; Vihma, T.; Wrona, F. J.

    2015-10-01

    In response to a joint request from the World Climate Research Program's Climate and Cryosphere Project, the International Arctic Science Committee, and the Arctic Council's Arctic Monitoring and Assessment Program an updated scientific assessment has been conducted of the Arctic Freshwater System (AFS), entitled the Arctic Freshwater Synthesis (AFSΣ). The major reason behind the joint request was an increasing concern that changes to the AFS have produced, and could produce even greater, changes to biogeophysical and socioeconomic systems of special importance to northern residents and also produce extra-Arctic climatic effects that will have global consequences. The AFSΣ was structured around six key thematic areas: atmosphere, oceans, terrestrial hydrology, terrestrial ecology, resources, and modeling, the review of each coauthored by an international group of scientists and published as separate manuscripts in this special issue of Journal of Geophysical Research-Biogeosciences. This AFSΣ summary manuscript reviews key issues that emerged during the conduct of the synthesis, especially those that are cross-thematic in nature, and identifies future research required to address such issues.

  18. Sedimentary organic matter and carbonate variations in the Chukchi Borderland in association with ice sheet and ocean-atmosphere dynamics over the last 155 kyr

    NASA Astrophysics Data System (ADS)

    Rella, S. F.; Uchida, M.

    2012-12-01

    Knowledge on past variability of sedimentary organic carbon in the Arctic Ocean is important to assess natural carbon cycling and transport processes related to global climate changes. However, the late Pleistocene oceanographic history of the Arctic is still poorly understood. In the present study we show sedimentary records of total organic carbon (TOC), CaCO3, benthic foraminiferal δ18O and the coarse grain size fraction from a piston core recovered from the northern Northwind Ridge in the far western Arctic Ocean. TOC shows orbital-scale increases and decreases during the past ~155 kyr that can be respectively correlated to the waxing and waning of large ice sheets dominating the Eurasian Arctic, suggesting advection of fine suspended matter derived from glacial erosion to the Northwind Ridge by eastward flowing intermediate water and/or surface water and sea ice during cold periods. At millennial scales, increases in TOC might correlate to a suite of Dansgaard-Oeschger Stadials between 120 and 45 ka BP indicating a possible response to abrupt northern hemispheric temperature changes. Between 70 and 45 ka BP, closures and openings of the Bering Strait could have additionally influenced TOC variability. CaCO3 contents tend to anti-correlate with TOC on both orbital and millennial time scales, which we interpret in terms of enhanced sediment advection from the carbonate-rich Canadian Arctic via an extended Beaufort Gyre during warm periods and increased organic carbon advection from the Siberian Arctic during cold periods when the Beaufort Gyre contracted. We propose that this pattern may be related to orbital- and millennial-scale variations of dominant atmospheric surface pressure systems expressed in mode shifts of the Arctic Oscillation.

  19. Human adaptation responses to a rapidly changing Arctic: A research context for building system resilience

    NASA Astrophysics Data System (ADS)

    Chapin, T.; Brinkman, T. J.

    2016-12-01

    Although human behavior accounts for more uncertainty in future trajectories in climate change than do biophysical processes, most climate-change research fails to include human actions in research design and implementation. This is well-illustrated in the Arctic. At the global scale, arctic processes strongly influence the strength of biophysical feedbacks between global human emissions and the rate of climate warming. However, most human actions in the arctic have little effect on these feedbacks, so research can contribute most effectively to reduction in arctic warming through improved understanding of the strength of arctic-global biophysical feedbacks, as in NASA's ABoVE program, and its effective communication to policy makers and the public. In contrast, at the local to regional scale within the arctic, human actions may influence the ecological and societal consequences of arctic warming, so research benefits from active stakeholder engagement in research design and implementation. Human communities and other stakeholders (government and NGOs) respond heterogeneously to socioeconomic and environmental change, so research that documents the range of historical and current adaptive responses to change provides insights on the resilience (flexibility of future options) of social-ecological processes in the arctic. Alaskan communities have attempted a range of adaptive responses to coastal erosion (e.g., seasonal migration, protection in place, relocation), wildfire (fire suppression to use of fire to manage wildlife habitat or landscape heterogeneity), declining sea ice (e.g., new hunting technology, sea ice observations and predictions), and changes in wildlife and fish availability (e.g., switch to harvest of alternative species, harvest times, or harvest locations). Research that draws on both traditional and western knowledge facilitates adaptation and predictions of the likely societal consequences of climate change in the Arctic. Effective inclusion of these actors in the research process could strongly influence the resilience of arctic social-ecological systems to climate change.

  20. Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect

    PubMed Central

    Croft, B.; Wentworth, G. R.; Martin, R. V.; Leaitch, W. R.; Murphy, J. G.; Murphy, B. N.; Kodros, J. K.; Abbatt, J. P. D.; Pierce, J. R.

    2016-01-01

    The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about −0.5 W m−2 pan-Arctic-mean cooling), exceeding −1 W m−2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological–chemical processes may be susceptible to Arctic warming and industrialization. PMID:27845764

  1. Wave Processes in Arctic Seas, Observed from TerraSAR-X

    DTIC Science & Technology

    2015-09-30

    in order to improve wave models as well as ice models applicable to a changing Arctic wave/ and ice climate . This includes observation and...fields retrieved from the TS-X image swaths. 4. “Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling”, by...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. “Wave Processes in Arctic Seas, Observed from TerraSAR-X

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otto-Bliesner, Bette L.; Jahn, Alexandra; Feng, Ran

    Under previous reconstructions of late Pliocene boundary conditions, climate models have failed to reproduce the warm sea surface temperatures reconstructed in the North Atlantic. Using a reconstruction of mid-Piacenzian paleogeography that has the Bering Strait and Canadian Arctic Archipelago Straits closed, however, improves the simulation of the proxy-indicated warm sea surface temperatures in the North Atlantic in the Community Climate System Model. We find that the closure of these small Arctic gateways strengthens the Atlantic Meridional Overturning Circulation, by inhibiting freshwater transport from the Pacific to the Arctic Ocean and from the Arctic Ocean to the Labrador Sea, leading tomore » warmer sea surface temperatures in the North Atlantic. In conclusion, this indicates that the state of the Arctic gateways may influence the sensitivity of the North Atlantic climate in complex ways, and better understanding of the state of these Arctic gateways for past time periods is needed.« less

  3. Arctic Ocean Paleoceanography and Future IODP Drilling

    NASA Astrophysics Data System (ADS)

    Stein, Ruediger

    2015-04-01

    Although the Arctic Ocean is a major player in the global climate/earth system, this region is one of the last major physiographic provinces on Earth where the short- and long-term geological history is still poorly known. This lack in knowledge is mainly due to the major technological/logistical problems in operating within the permanently ice-covered Arctic region which makes it difficult to retrieve long and undisturbed sediment cores. Prior to 2004, in the central Arctic Ocean piston and gravity coring was mainly restricted to obtaining near-surface sediments, i.e., only the upper 15 m could be sampled. Thus, all studies were restricted to the late Pliocene/Quaternary time interval, with a few exceptions. These include the four short cores obtained by gravity coring from drifting ice floes over the Alpha Ridge, where older pre-Neogene organic-carbon-rich muds and laminated biosiliceous oozes were sampled. Continuous central Arctic Ocean sedimentary records, allowing a development of chronologic sequences of climate and environmental change through Cenozoic times and a comparison with global climate records, however, were missing prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition - ACEX), the first scientific drilling in the central Arctic Ocean. By studying the unique ACEX sequence, a large number of scientific discoveries that describe previously unknown Arctic paleoenvironments, were obtained during the last decade (for most recent review and references see Stein et al., 2014). While these results from ACEX were unprecedented, key questions related to the climate history of the Arctic Ocean remain unanswered, in part because of poor core recovery, and in part because of the possible presence of a major mid-Cenozoic hiatus or interval of starved sedimentation within the ACEX record. In order to fill this gap in knowledge, international, multidisciplinary expeditions and projects for scientific drilling/coring in the Arctic Ocean are needed. Key areas and approaches for drilling and recovering undisturbed and complete sedimentary sequences are depth transects across the major ocean ridge systems, such as the Lomonosov Ridge. These new detailed climate records spanning time intervals from the (late Cretaceous/)Paleogene Greenhouse world to the Neogene-Quaternary Icehouse world will give new insights into our understanding of the Arctic Ocean within the global climate system and provide an opportunity to test the performance of climate models used to predict future climate change. During the Polarstern Expedition PS87 in August-September 2014, new site survey data including detailed multibeam bathymetry, multi-channel seismic and Parasound profiling as well as geological coring, were obtained on Lomonosov Ridge (Stein, 2015), being the basis for a more precise planning and update for a future IODP drilling campaign. Reference: Stein, R. (Ed.), 2015. Cruise Report of Polarstern Expedition PS87-2014 (Arctic Ocean/Lomonosov Ridge). Reps. Pol. Mar. Res., in press. Stein, R. , Weller, P. , Backman, J. , Brinkhuis, H., Moran, K. , Pälike, H., 2014. Cenozoic Arctic Ocean Climate History: Some highlights from the IODP Arctic Coring Expedition (ACEX). Developments in Marine Geology 7, Elsevier Amsterdam/New York, pp. 259-293.

  4. Ecological dynamics across the Arctic associated with recent climate change

    Treesearch

    Eric Post; Mads C. Forchhammer; M. Syndonia Bret-Harte; Terry V. Callaghan; Torben R. Christensen; Bo Elberling; Anthony D. Fox; Olivier Gilg; David S. Hik; Toke T. Høye; Rolf A. Ims; Erik Jeppesen; David R. Klein; Jesper Madsen; A. David McGuire; Søren Rysgaard; Daniel E. Schindler; Ian Stirling; Mikkel P. Tamstorf; Nicholas J.C. Tyler; Rene van der Wal; Jeffrey Welker; Philip A. Wookey; Niels Martin Schmidt; Peter Aastrup

    2009-01-01

    At the close of the Fourth International Polar Year, we take stock of the ecological consequences of recent climate change in the Arctic, focusing on effects at population, community, and ecosystem scales. Despite the buffering effect of landscape heterogeneity, Arctic ecosystems and the trophic relationships that structure them have been severely perturbed. These...

  5. Present and Future Surface Mass Budget of Small Arctic Ice Caps in a High Resolution Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Mottram, Ruth; Langen, Peter; Koldtoft, Iben; Midefelt, Linnea; Hesselbjerg Christensen, Jens

    2016-04-01

    Globally, small ice caps and glaciers make a substantial contribution to sea level rise; this is also true in the Arctic. Around Greenland small ice caps are surprisingly important to the total mass balance from the island as their marginal coastal position means they receive a large amount of precipitation and also experience high surface melt rates. Since small ice caps and glaciers have had a disproportionate number of long-term monitoring and observational schemes in the Arctic, likely due to their relative accessibility, they can also be a valuable source of data. However, in climate models the surface mass balance contributions are often not distinguished from the main ice sheet and the presence of high relief topography is difficult to capture in coarse resolution climate models. At the same time, the diminutive size of marginal ice masses in comparison to the ice sheet makes modelling their ice dynamics difficult. Using observational data from the Devon Ice Cap in Arctic Canada and the Renland Ice Cap in Eastern Greenland, we assess the success of a very high resolution (~5km) regional climate model, HIRHAM5 in capturing the surface mass balance (SMB) of these small ice caps. The model is forced with ERA-Interim and we compare observed mean SMB and the interannual variability to assess model performance. The steep gradient in topography around Renland is challenging for climate models and additional statistical corrections are required to fit the calculated surface mass balance to the high relief topography. Results from a modelling experiment at Renland Ice Cap shows that this technique produces a better fit between modelled and observed surface topography. We apply this statistical relationship to modelled SMB on the Devon Ice Cap and use the long time series of observations from this glacier to evaluate the model and the smoothed SMB. Measured SMB values from a number of other small ice caps including Mittivakkat and A.P. Olsen ice cap are also compared with model output. Finally we use climate simulations forced with two different RCP scenarios to examine the likely future evolution of SMB over these small ice masses.

  6. Building Partnerships and Research Collaborations to Address the Impacts of Arctic Change: The North Atlantic Climate Change Collaboration (NAC3)

    NASA Astrophysics Data System (ADS)

    Polk, J.; North, L. A.; Strenecky, B.

    2015-12-01

    Changes in Arctic warming influence the various atmospheric and oceanic patterns that drive Caribbean and mid-latitude climate events, including extreme events like drought, tornadoes, and flooding in Kentucky and the surrounding region. Recently, the establishment of the North Atlantic Climate Change Collaboration (NAC3) project at Western Kentucky University (WKU) in partnership with the University of Akureyri (UNAK), Iceland Arctic Cooperation Network (IACN), and Caribbean Community Climate Change Centre (CCCCC) provides a foundation from which to engage students in applied research from the local to global levels and more clearly understand the many tenets of climate change impacts in the Arctic within both a global and local community context. The NAC3 project encompasses many facets, including joint international courses, student internships, economic development, service learning, and applied research. In its first phase, the project has generated myriad outcomes and opportunities for bridging STEM disciplines with other fields to holistically and collaboratively address specific human-environmental issues falling under the broad umbrella of climate change. WKU and UNAK students desire interaction and exposure to other cultures and regions that are threatened by climate change and Iceland presents a unique opportunity to study influences such as oceanic processes, island economies, sustainable harvest of fisheries, and Arctic influences on climate change. The project aims to develop a model to bring partners together to conduct applied research on the complex subject of global environmental change, particularly in the Arctic, while simultaneously focusing on changing how we learn, develop community, and engage internationally to understand the impacts and find solutions.

  7. Optical properties and molecular diversity of dissolved organic matter in the Bering Strait and Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Gonsior, Michael; Luek, Jenna; Schmitt-Kopplin, Philippe; Grebmeier, Jacqueline M.; Cooper, Lee W.

    2017-10-01

    Changes in the molecular composition of dissolved organic matter (DOM) and its light absorbing chromophoric component (CDOM) are of particular interest in the Arctic region because of climate change effects that lead to warmer sea surface temperatures and longer exposure to sunlight. We used continuous UV-vis (UV-vis) spectroscopy, excitation emission matrix fluorescence and ultrahigh resolution mass spectrometry during a transect from the Aleutian Islands in the Bering Sea to the Chukchi Sea ice edge through Bering Strait to determine the variability of DOM and CDOM. These data were combined with discrete sampling for stable oxygen isotopes of seawater, in order to evaluate the contributions of melted sea ice versus runoff to the DOM and CDOM components. This study demonstrated that high geographical resolution of optical properties in conjunction with stable oxygen ratios and non-targeted ultrahigh resolution mass spectrometry was able to distinguish between different DOM sources in the Arctic, including identification of labile DOM sources in Bering Strait associated with high algal blooms and sampling locations influenced by terrestrially-derived DOM, such as the terrestrial DOM signal originating from Arctic rivers and dirty/anchor sea ice. Results of this study also revealed the overall variability and chemodiversity of Arctic DOM present in the Bering and Chukchi Seas.

  8. Collaborative Project. Understanding the effects of tides and eddies on the ocean dynamics, sea ice cover and decadal/centennial climate prediction using the Regional Arctic Climate Model (RACM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchings, Jennifer; Joseph, Renu

    2013-09-14

    The goal of this project is to develop an eddy resolving ocean model (POP) with tides coupled to a sea ice model (CICE) within the Regional Arctic System Model (RASM) to investigate the importance of ocean tides and mesoscale eddies in arctic climate simulations and quantify biases associated with these processes and how their relative contribution may improve decadal to centennial arctic climate predictions. Ocean, sea ice and coupled arctic climate response to these small scale processes will be evaluated with regard to their influence on mass, momentum and property exchange between oceans, shelf-basin, ice-ocean, and ocean-atmosphere. The project willmore » facilitate the future routine inclusion of polar tides and eddies in Earth System Models when computing power allows. As such, the proposed research addresses the science in support of the BER’s Climate and Environmental Sciences Division Long Term Measure as it will improve the ocean and sea ice model components as well as the fully coupled RASM and Community Earth System Model (CESM) and it will make them more accurate and computationally efficient.« less

  9. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.

    PubMed

    Ernakovich, Jessica G; Hopping, Kelly A; Berdanier, Aaron B; Simpson, Rodney T; Kachergis, Emily J; Steltzer, Heidi; Wallenstein, Matthew D

    2014-10-01

    Global climate change is already having significant impacts on arctic and alpine ecosystems, and ongoing increases in temperature and altered precipitation patterns will affect the strong seasonal patterns that characterize these temperature-limited systems. The length of the potential growing season in these tundra environments is increasing due to warmer temperatures and earlier spring snow melt. Here, we compare current and projected climate and ecological data from 20 Northern Hemisphere sites to identify how seasonal changes in the physical environment due to climate change will alter the seasonality of arctic and alpine ecosystems. We find that although arctic and alpine ecosystems appear similar under historical climate conditions, climate change will lead to divergent responses, particularly in the spring and fall shoulder seasons. As seasonality changes in the Arctic, plants will advance the timing of spring phenological events, which could increase plant nutrient uptake, production, and ecosystem carbon (C) gain. In alpine regions, photoperiod will constrain spring plant phenology, limiting the extent to which the growing season can lengthen, especially if decreased water availability from earlier snow melt and warmer summer temperatures lead to earlier senescence. The result could be a shorter growing season with decreased production and increased nutrient loss. These contrasting alpine and arctic ecosystem responses will have cascading effects on ecosystems, affecting community structure, biotic interactions, and biogeochemistry. © 2014 John Wiley & Sons Ltd.

  10. On the Flow of Atlantic Water Towards the Arctic Ocean; a Synergy Between Altimetry and Hydrography.

    NASA Astrophysics Data System (ADS)

    Chafik, L.; Nilsson, J.; Skagseth, O.; Lundberg, P.

    2015-12-01

    The Arctic climate is strongly influenced by the inflow of warm Atlantic water conveyed by the Norwegian Atlantic Slope Current (NwASC); the main heat conveyor into the Arctic Ocean. Based on sea surface height (SSH) data from altimetry, we develop a dynamical measure of the NwASC transport to diagnose its spatio-temporal variability. This supports a dynamical division of the NwASC into two flow regimes; the Svinøy Branch (SvB) in the Norwegian Sea, and the Fram Strait Branch (FSB) west of Spitsbergen. The SvB transport is well correlated with the SSH and atmospheric variability within the Nordic Seas, factors that also affect the inflow to the Barents Sea. In contrast, the FSB is regulated by regional atmospheric patterns around Svalbard and northern Barents Sea. We further relate anomalous flow events to temperature fluctuations of Atlantic water. A warm anomaly is found to propagate northwards, with a tendency to amplify enroute, after events of strong flow in the Norwegian Sea. A roughly 12-months delayed temperature signal is identified in the FSB. This suggests that hydrographic anomalies both upstream from the North Atlantic, and locally generated in the Norwegian Sea, are important for the oceanic heat and salt transport that eventually enters into the Arctic. We believe that the combination of the flow from altimetry and temperature fluctuations in the Nordic Seas can be used to qualitatively predict warm anomalies towards the Arctic Ocean, which could be a valuable addition to the forecast skill of the statistical Arctic sea-ice models.

  11. The adaptation challenge in the Arctic

    NASA Astrophysics Data System (ADS)

    Ford, James D.; McDowell, Graham; Pearce, Tristan

    2015-12-01

    It is commonly asserted that human communities in the Arctic are highly vulnerable to climate change, with the magnitude of projected impacts limiting their ability to adapt. At the same time, an increasing number of field studies demonstrate significant adaptive capacity. Given this paradox, we review climate change adaptation, resilience and vulnerability research to identify and characterize the nature and magnitude of the adaptation challenge facing the Arctic. We find that the challenge of adaptation in the Arctic is formidable, but suggest that drivers of vulnerability and barriers to adaptation can be overcome, avoided or reduced by individual and collective efforts across scales for many, if not all, climate change risks.

  12. Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming

    NASA Astrophysics Data System (ADS)

    Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro

    2017-12-01

    Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.

  13. Historical and ecological determinants of genetic structure in arctic canids.

    PubMed

    Carmichael, L E; Krizan, J; Nagy, J A; Fuglei, E; Dumond, M; Johnson, D; Veitch, A; Berteaux, D; Strobeck, C

    2007-08-01

    Wolves (Canis lupus) and arctic foxes (Alopex lagopus) are the only canid species found throughout the mainland tundra and arctic islands of North America. Contrasting evolutionary histories, and the contemporary ecology of each species, have combined to produce their divergent population genetic characteristics. Arctic foxes are more variable than wolves, and both island and mainland fox populations possess similarly high microsatellite variation. These differences result from larger effective population sizes in arctic foxes, and the fact that, unlike wolves, foxes were not isolated in discrete refugia during the Pleistocene. Despite the large physical distances and distinct ecotypes represented, a single, panmictic population of arctic foxes was found which spans the Svalbard Archipelago and the North American range of the species. This pattern likely reflects both the absence of historical population bottlenecks and current, high levels of gene flow following frequent long-distance foraging movements. In contrast, genetic structure in wolves correlates strongly to transitions in habitat type, and is probably determined by natal habitat-biased dispersal. Nonrandom dispersal may be cued by relative levels of vegetation cover between tundra and forest habitats, but especially by wolf prey specialization on ungulate species of familiar type and behaviour (sedentary or migratory). Results presented here suggest that, through its influence on sea ice, vegetation, prey dynamics and distribution, continued arctic climate change may have effects as dramatic as those of the Pleistocene on the genetic structure of arctic canid species.

  14. Using Domestic and Free-Ranging Arctic Canid Models for Environmental Molecular Toxicology Research.

    PubMed

    Harley, John R; Bammler, Theo K; Farin, Federico M; Beyer, Richard P; Kavanagh, Terrance J; Dunlap, Kriya L; Knott, Katrina K; Ylitalo, Gina M; O'Hara, Todd M

    2016-02-16

    The use of sentinel species for population and ecosystem health assessments has been advocated as part of a One Health perspective. The Arctic is experiencing rapid change, including climate and environmental shifts, as well as increased resource development, which will alter exposure of biota to environmental agents of disease. Arctic canid species have wide geographic ranges and feeding ecologies and are often exposed to high concentrations of both terrestrial and marine-based contaminants. The domestic dog (Canis lupus familiaris) has been used in biomedical research for a number of years and has been advocated as a sentinel for human health due to its proximity to humans and, in some instances, similar diet. Exploiting the potential of molecular tools for describing the toxicogenomics of Arctic canids is critical for their development as biomedical models as well as environmental sentinels. Here, we present three approaches analyzing toxicogenomics of Arctic contaminants in both domestic and free-ranging canids (Arctic fox, Vulpes lagopus). We describe a number of confounding variables that must be addressed when conducting toxicogenomics studies in canid and other mammalian models. The ability for canids to act as models for Arctic molecular toxicology research is unique and significant for advancing our understanding and expanding the tool box for assessing the changing landscape of environmental agents of disease in the Arctic.

  15. Millennial-scale variability in Holocene aquatic productivity from Burial Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Finkenbinder, Matthew S.; Abbott, Mark B.; Stoner, Joseph S.; Ortiz, Joseph D.; Finney, Bruce P.; Dorfman, Jason M.; Stansell, Nathan D.

    2018-05-01

    Holocene records of lacustrine primary production are commonly used to reconstruct past changes in environmental and climatic conditions. While several methods exist to infer paleoproductivity trends, few studies to date have applied multiple geochemical indices in the same core sequence from Arctic lakes to evaluate their fidelity and sensitivity to specific climate variables over long (Holocene length) timescales. In this study, we evaluate sub-century to millennial-scale fluctuations in paleoproductivity over the Holocene using geochemical (biogenic opal and sedimentary chlorin) analyses of sediments from Burial Lake in the western Brooks Range, Alaska. Large fluctuations in opal and related proxies occur at millennial timescales over the last 10,000 years. We interpret the changes in opal to result from variability in diatom productivity, which is indirectly mediated by climate primarily through changes in the duration of the ice-free growing season and the availability of limiting nutrients at this oligotrophic, tundra lake. Comparison of the opal and sedimentary chlorin record, which is correlated with TOC, shows contrasting patterns on both short (century to multi-century) and relatively long (millennial) time scales. The concentration of opal far exceeds that of TOC and variations in sediment dry bulk density, driven by changes in the accumulation of opal, are likely responsible in part for the variations in sedimentary chlorin. Further, C/N ratio values indicate a mixed algal-terrestrial source of sedimentary organic matter. This result highlights the complexity in the climatic interpretation of sedimentary chlorin as an index of whole lake production, because the signal is prone to dilution/concentration from opal and also reflects a combination of aquatic and terrestrial production. Time series analysis of the productivity records indicates the presence of a significant ∼1500-yr oscillation in opal concentration, which has been found in North Atlantic Ocean proxy records and numerous other marine and terrestrial paleorecords. Comparison of diatom productivity against a sea-ice inferred reconstruction of the Arctic Oscillation (AO) from the Beaufort Sea (Darby et al., 2012) shows that periods of reduced productivity at Burial Lake coincide with inferred positive phases of the AO (AO+). Combined with modern observations of sea ice extent and meteorological data, we hypothesize that AO + conditions and a strengthened polar jet correspond with a shortened ice-free growing season, a decrease in the availability of limiting nutrients, and lower levels of diatom production at Burial Lake. Comparison of the spectral properties between opal and the AO reconstruction reveal similar millennial scale variations with ∼1500-yr variability during the middle Holocene that transition to ∼1000-yr variability during the late Holocene. In light of these findings, we suggest the possibility that millennial variations in diatom productivity observed in the Burial Lake record are related to millennial variability in high-latitude atmospheric circulation similar to the AO. These results shed light on the sensitivity of aquatic ecosystems in northern Alaska to changes in the duration of the ice-free growing season, the availability of limiting nutrients for phytoplankton growth, and Arctic-wide atmospheric circulation dynamics over the Holocene on millennial timescales.

  16. Postglacial response of Arctic Ocean gas hydrates to climatic amelioration

    PubMed Central

    Serov, Pavel; Mienert, Jürgen; Patton, Henry; Portnov, Alexey; Silyakova, Anna; Panieri, Giuliana; Carroll, Michael L.; Carroll, JoLynn; Andreassen, Karin; Hubbard, Alun

    2017-01-01

    Seafloor methane release due to the thermal dissociation of gas hydrates is pervasive across the continental margins of the Arctic Ocean. Furthermore, there is increasing awareness that shallow hydrate-related methane seeps have appeared due to enhanced warming of Arctic Ocean bottom water during the last century. Although it has been argued that a gas hydrate gun could trigger abrupt climate change, the processes and rates of subsurface/atmospheric natural gas exchange remain uncertain. Here we investigate the dynamics between gas hydrate stability and environmental changes from the height of the last glaciation through to the present day. Using geophysical observations from offshore Svalbard to constrain a coupled ice sheet/gas hydrate model, we identify distinct phases of subglacial methane sequestration and subsequent release on ice sheet retreat that led to the formation of a suite of seafloor domes. Reconstructing the evolution of this dome field, we find that incursions of warm Atlantic bottom water forced rapid gas hydrate dissociation and enhanced methane emissions during the penultimate Heinrich event, the Bølling and Allerød interstadials, and the Holocene optimum. Our results highlight the complex interplay between the cryosphere, geosphere, and atmosphere over the last 30,000 y that led to extensive changes in subseafloor carbon storage that forced distinct episodes of methane release due to natural climate variability well before recent anthropogenic warming. PMID:28584081

  17. Simulation of Extreme Arctic Cyclones in IPCC AR5 Experiments

    NASA Astrophysics Data System (ADS)

    Vavrus, S. J.

    2012-12-01

    Although impending Arctic climate change is widely recognized, a wild card in its expression is how extreme weather events in this region will respond to greenhouse warming. Intense polar cyclones represent one type of high-latitude phenomena falling into this category, including very deep synoptic-scale cyclones and mesoscale polar lows. These systems inflict damage through high winds, heavy precipitation, and wave action along coastlines, and their impact is expected to expand in the future, when reduced sea ice cover allows enhanced wave energy. The loss of a buffering ice pack could greatly increase the rate of coastal erosion, which has already been increasing in the Arctic. These and related threats may amplify if extreme Arctic cyclones become more frequent and/or intense in a warming climate with much more open water to fuel them. This possibility has merit on the basis of GCM experiments, which project that greenhouse forcing causes lower mean sea level pressure (SLP) in the Arctic and a strengthening of the deepest storms over boreal high latitudes. In this study, the latest Coupled Model Intercomparison Project (CMIP5) climate model output is used to investigate the following questions: (1) What are the spatial and seasonal characteristics of extreme Arctic cyclones? (2) How well do GCMs simulate these phenomena? (3) Are Arctic cyclones already showing the expected response to greenhouse warming in climate models? To address these questions, a retrospective analysis is conducted of the transient 20th century simulations among the CMIP5 GCMs (spanning years 1850-2005). The results demonstrate that GCMs are able to reasonably represent extreme Arctic cyclones and that the simulated characteristics do not depend significantly on model resolution. Consistent with observational evidence, climate models generate these storms primarily during winter and within the climatological Aleutian and Icelandic Low regions. Occasionally the cyclones remain very intense over the Arctic Ocean. The historical tendency in Arctic SLP varies considerably among the GCMs, but the intermodel average trend exhibits a lowering of mean-annual pressure over the Arctic during the past 150 years and an increase in extreme cyclones in the vicinity of the Aleutian and Icelandic Lows. However, only weak trends in extreme cyclones are simulated through 2005 over the Arctic Ocean, where simulations of future climate change produce the largest SLP falls.

  18. The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements

    NASA Astrophysics Data System (ADS)

    Lucas, S. E.; Todd, J. F.

    2015-12-01

    The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). The CVP Program currently supports multiple projects in areas that are aimed at improved representation of physical processes in global models. Some of the topics that are currently funded include: i) Improved Understanding of Intraseasonal Tropical Variability - DYNAMO field campaign and post -field projects, and the new climate model improvement teams focused on MJO processes; ii) Climate Process Teams (CPTs, co-funded with NSF) with projects focused on Cloud macrophysical parameterization and its application to aerosol indirect effects, and Internal-Wave Driven Mixing in Global Ocean Models; iii) Improved Understanding of Tropical Pacific Processes, Biases, and Climatology; iv) Understanding Arctic Sea Ice Mechanism and Predictability;v) AMOC Mechanisms and Decadal Predictability Recent results from CVP-funded projects will be summarized. Additional information can be found at http://cpo.noaa.gov/CVP.

  19. The temperature response of methane emission in Arctic wet sedge tundra

    NASA Astrophysics Data System (ADS)

    Lim, Edward; Zona, Donatella

    2015-04-01

    Since the last glacial maximum Arctic tundra soils have acted as an important carbon sink, having accumulated carbon under cold, anaerobic conditions (Zona et al. 2009). Several studies indicate that recent climate warming has altered this balance, with the Arctic tundra now posited to be a significant annual source of atmospheric methane (CH4) (McGuire et al. 2012). Nonetheless, the response of Arctic tundra CH4 fluxes to continued climate warming remains uncertain. Laboratory and field studies indicate that CH4 fluxes are temperature sensitive, thus accurate calculation of the temperature sensitivity is vital for the prediction of future CH4 emission. For this, the increase in reaction rate over a 10°C range (Q10) is frequently used, with single fixed Q10 values (between 2 and 4) commonly incorporated into climate-carbon cycle models. However, the temperature sensitivity of CH4 emission can vary considerably depending on factors such as vegetation composition, water table and season. This promotes the use of spatially and seasonally variable Q10 values for accurate CH4 flux estimation under different future climate change scenarios. This study investigates the temperature sensitivity (Q10) of Arctic tundra methane fluxes, using an extensive number of soil cores (48) extracted from wet sedge polygonal tundra (Barrow Experimental Observatory, Alaska). 'Wet' and 'dry' cores were taken from the centre and raised perimeter of ice-wedge polygons, where the water tables are 0cm and -15cm respectively. Cores were incubated in two controlled environment chambers (University of Sheffield, UK) for 12 weeks under different thaw depth treatments (control and control + 6.8cm), water tables (surface and -15cm), and CO2 concentrations (400ppm and 850ppm) in a multifactorial manner. Chamber temperature was gradually increased from -5°C to 20°C, then gradually decreased to -5°C, with each temperature stage lasting one week. Average CH4 fluxes from 'dry' cores were consistently low and did not change significantly with temperature, indicating that CH4 emission from drier Arctic tundra soils is not particularly temperature sensitive. Average CH4 emission from 'wet' cores increased with increasing temperature between -5°C and 20°C. Interestingly, continued increases in average CH4 emission as chamber temperature decreased (20°C to 0°C) were observed. Importantly, when chamber temperature was increased (-5°C to 20°C), average CH4 emission in the 'wet' cores was consistently lower at the end of each week-long temperature stage compared to at the start. This suggests that the response of CH4 emission to climate warming might acclimate. Overall, this study is critical for refining the temperature sensitivity of Arctic tundra CH4 emission, and thus improving model predictions of the response of CH4 fluxes to climate change. References McGuire, AD; Christensen, TR; Hayes, D. et al. (2012). An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences. Vol.9, p.3185-3204, doi:10.5194/bg-9-3185-2012. Zona, D; Oechel, WC; Kochendorfer, J. et al. (2009). Methane fluxes during the initiation of a large-scale water table manipulation experiment in the Alaskan Arctic tundra. Global Biogeochemical Cycles. Vol.23, GB2013, doi:10.1029/2009GB003487.

  20. Arctic shipping emissions inventories and future scenarios

    NASA Astrophysics Data System (ADS)

    Corbett, J. J.; Lack, D. A.; Winebrake, J. J.; Harder, S.; Silberman, J. A.; Gold, M.

    2010-04-01

    The Arctic is a sensitive region in terms of climate change and a rich natural resource for global economic activity. Arctic shipping is an important contributor to the region's anthropogenic air emissions, including black carbon - a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow. These emissions are projected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. To understand the impacts of these increased emissions, scientists and modelers require high-resolution, geospatial emissions inventories that can be used for regional assessment modeling. This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050) scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. Short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase climate forcing; a first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase climate forcing due to Arctic ships by at least 17% compared to warming from these vessels' CO2 emissions (~42 000 gigagrams). The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships.

  1. Sea ice thickness derived from radar altimetry: achievements and future plans

    NASA Astrophysics Data System (ADS)

    Ricker, R.; Hendricks, S.; Paul, S.; Kaleschke, L.; Tian-Kunze, X.

    2017-12-01

    The retrieval of Arctic sea ice thickness is one of the major objectives of the European CryoSat-2 radar altimeter mission and the 7-year long period of operation has produced an unprecedented record of monthly sea ice thickness information. We present CryoSat-2 results that show changes and variability of Arctic sea ice from the winter season 2010/2011 until fall 2017. CryoSat-2, however, was designed to observe thick perennial sea ice, while an accurate retrieval of thin seasonal sea ice is more challenging. We have therefore developed a method of completing and improving Arctic sea ice thickness information within the ESA SMOS+ Sea Ice project by merging CryoSat-2 and SMOS sea ice thickness retrievals. Using these satellite missions together overcomes several issues of single-mission retrievals and provides a more accurate and comprehensive view on the state of Arctic sea-ice thickness at higher temporal resolution. However, stand-alone CryoSat-2 observations can be used as reference data for the exploitation of older pulse-limited radar altimetry data sets over sea ice. In order to observe trends in sea ice thickness, it is required to minimize inter-mission biases between subsequent satellite missions. Within the ESA Climate Change Initiative (CCI) on Sea Ice, a climate data record of sea ice thickness derived from satellite radar altimetry has been developed for both hemispheres, based on the 15-year (2002-2017) monthly retrievals from Envisat and CryoSat-2 and calibrated in the 2010-2012 overlap period. The next step in promoting the utilization of sea ice thickness information from radar altimetry is to provide products by a service that meets the requirements for climate applications and operational systems. This task will be pursued within a Copernicus Climate Change Service project (C3S). This framework also aims to include additional sensors such as onboard Sentinel-3 and we will show first results of Sentinel-3 Arctic sea-ice thickness. These developments are the base for preserving the continuity of the sea ice thickness data record and the transformation from research oriented products into an operational service.

  2. Spatiotemporal Variation of Arctic Nearshore Fish Communities in Barrow, AK

    NASA Astrophysics Data System (ADS)

    Boswell, K. M.; Barton, M. B.; Lemoine, N. P.; Heintz, R.; Vollenweider, J.; Norcross, B.; Sousa, L.

    2016-02-01

    Climate change, oil and gas development, and increased transportation opportunities associated with retreating sea ice cover are likely to affect the processes underlying community development. Unfortunately, there is a paucity of information that prohibits establishing a baseline from which to examine biological and ecological changes. To address these concerns, we developed an intensive field sampling program using weekly beach seining for the six weeks following land-fast ice break-up during the summers of 2013-2015 (183 beach seine hauls totaling 37,303 fish) in three distinct water masses near Pt. Barrow, Alaska to examine how fish communities develop in the Arctic nearshore. Preliminary analyses indicate that inter-annual variability in temperature and salinity influence species composition observed in late summer, but it is unclear which factors operate on smaller temporal scales. We applied multivariate variance partitioning to quantify variation in community structure on multiple spatial and temporal scales during the summer season and identified several physicochemical parameters as important spatiotemporal drivers in structuring nearshore fish communities. Understanding how these drivers affect nearshore communities on the seasonal scale is an integral step to predict how these ecologically important ecosystems may shift in the face of Arctic climate change and continued development.

  3. Cool episodes in Early Tertiary Arctic climate: Evidence from Svalbard

    NASA Astrophysics Data System (ADS)

    Spielhagen, R. F.; Tripati, A.

    2009-04-01

    The Arctic is a climatically sensitive and important region. However, very little is known about the climatic and oceanographic evolution of the area, particularly prior to the Neogene. Until recently, the Arctic was assumed to be characterized by relatively warm conditions during the early Cenozoic. The Early Tertiary sedimentary sequence on Svalbard contains several layers with coal seams and broad-leaved plants which were commonly accepted as indicators of a generally temperate-warm climate. Here we report on the intermittent occurrence of certain temperature indicators in the succession, which may represent the first northern high-latitude record of near-freezing temperatures for the early Cenozoic. Besides the findings of probably ice-rafted erratic clasts in the Paleocene and Eocene sandstones and shales, we note especially the occurrence of glendonites which are pseudomorphs of calcite after ikaite (calcium carbonate hexahydrate). We measured the chemical composition of Svalbard glendonites which is almost identical to that of similar pseudomorphs from the Lower Cretaceaous of Northern Canada. Mass spectrometric analyses of the glendonite calcite gave very low carbon isotope values. These values suggest a provenance of the calcium carbonate from marine organic carbon and connect our glendonites to the precursor mineral ikaite which has similar low values. Since a variety of studies has demonstrated that ikaite is stable only at temperatures close to freezing point, we have to infer low temperatures also for the deepositional environment of which the sediments were deposited that now hold glendonites. These results imply the occurrence of cooling phases episodically during the warm background climate of the Paleocene and Eocene, suggesting that temperature variability was much greater than previously recognized.

  4. Evidence From Svalbard for Cool Episodes in Early Tertiary Arctic Climate

    NASA Astrophysics Data System (ADS)

    Spielhagen, R. F.; Tripati, A.; Mac Niocaill, C.

    2008-12-01

    The Arctic is a climatically sensitive and important region. However, very little is known about the climatic and oceanographic evolution of the area, particularly prior to the Neogene. Until recently, the Arctic was assumed to be characterized by relatively warm conditions during the early Cenozoic. The Early Tertiary sedimentary sequence on Svalbard contains several layers with coal seams and broad-leaved plants which were commonly accepted as indicators of a generally temperate-warm climate. Here we report on the intermittent occurrence of certain temperature indicators in the succession, which may represent the first northern high- latitude record of near-freezing temperatures for the early Cenozoic. Besides the findings of probably ice- rafted erratic clasts in the Paleocene and Eocene sandstones and shales, we note especially the occurrence of glendonites which are pseudomorphs of calcite after ikaite (calcium carbonate hexahydrate). Stratigraphic control for the most important glendonite layers was improved by paleomagnetic investigations on the host sediment. We measured the chemical composition of Svalbard glendonites which is almost identical to that of similar pseudomorphs from the Lower Cretaceaous of Northern Canada. Mass spectrometric analyses of the glendonite calcite gave very low carbon isotope values. These values suggest a provenance of the calcium carbonate from marine organic carbon and connect our glendonites to the precursor mineral ikaite which has similar low values. Since a variety of studies has demonstrated that ikaite is stable only at temperatures close to freezing point, we have to infer low temperatures also for the deepositional environment of which the sediments were deposited that now hold glendonites. These results imply the occurrence of cooling phases episodically during the warm background climate of the Paleocene and Eocene, suggesting that temperature variability was much greater than previously recognized.

  5. Seasonal climate change patterns due to cumulative CO2 emissions

    NASA Astrophysics Data System (ADS)

    Partanen, Antti-Ilari; Leduc, Martin; Damon Matthews, H.

    2017-07-01

    Cumulative CO2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO2 concentration growing at an annual rate of 1% using data from 12 Earth system models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Our results suggest that cumulative CO2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.

  6. Communicating Climate and Ecosystem Change in the Arctic

    NASA Astrophysics Data System (ADS)

    Soreide, N. N.; Overland, J. E.; Calder, J. A.; Rodionov, S.

    2005-12-01

    There is an explosion of interest in Northern Hemisphere climate, highlighting the importance of recent changes in the Arctic on mid-latitude climate and its impact on marine and terrestrial ecosystems. Traditional sea ice and tundra dominated arctic ecosystems are being reorganizing into warmer sub-arctic ecosystem types. Over the previous two years we have developed a comprehensive, near real-time arctic change detection protocol to track physical and biological changes for presentation on the web: http://www.arctic.noaa.gov/detect. The effort provides a continuous update to the Arctic Climate Impact Assessment (ACIA) Report, released in November 2004. Principles for the protocol include an accessible narrative style, scientifically credible and objective indicators, notes multiple uses for the information, acknowledges uncertainties, and balances having too many indicators-which leads to information overload-and too few-which does not capture the complexity of the system. Screening criteria include concreteness, public awareness, being understandable, availability of historical time series, and sensitivity. The site provides sufficient information for an individual to make their own assessment regarding the balance of the evidence for tracking change. The product provides an overview, recent news, links to many arctic websites, and highlights climate, global impacts, land and marine ecosystems, and human consequences. Since its inception a year ago, it has averaged about 9000 hits an day on the web, and is a major information source as determined by Google search. The future direction focuses on understanding the causes for change. In spring 2005 we also presented a near real-time ecological and climatic surveillance website for the Bering Sea: www.beringclimate.noaa.gov. The site provides up-to-date information which ties northward shifts of fish, invertebrate and marine mammal populations to physical changes in the Arctic. This site is more technical than the arctic change detection site and provides support to the North Pacific Fisheries Management Council and other interested parties. The site anticipates multiple uses by providing access and analysis tools for a set of Bering Sea indicator time series.

  7. Climate-driven regime shifts in Arctic marine benthos

    PubMed Central

    Kortsch, Susanne; Primicerio, Raul; Beuchel, Frank; Renaud, Paul E.; Rodrigues, João; Lønne, Ole Jørgen; Gulliksen, Bjørn

    2012-01-01

    Climate warming can trigger abrupt ecosystem changes in the Arctic. Despite the considerable interest in characterizing and understanding the ecological impact of rapid climate warming in the Arctic, few long time series exist that allow addressing these research goals. During a 30-y period (1980–2010) of gradually increasing seawater temperature and decreasing sea ice cover in Svalbard, we document rapid and extensive structural changes in the rocky-bottom communities of two Arctic fjords. The most striking component of the benthic reorganization was an abrupt fivefold increase in macroalgal cover in 1995 in Kongsfjord and an eightfold increase in 2000 in Smeerenburgfjord. Simultaneous changes in the abundance of benthic invertebrates suggest that the macroalgae played a key structuring role in these communities. The abrupt, substantial, and persistent nature of the changes observed is indicative of a climate-driven ecological regime shift. The ecological processes thought to drive the observed regime shifts are likely to promote the borealization of these Arctic marine communities in the coming years. PMID:22891319

  8. Air temperature, wind speed, and wind direction in the National Petroleum Reserve—Alaska and the Arctic National Wildlife Refuge, 1998–2011

    USGS Publications Warehouse

    Urban, Frank E.; Clow, Gary D.

    2013-01-01

    This report provides air temperature, wind speed, and wind direction data collected on Federal lands in Arctic Alaska over the period August 1998 to July 2011 by the U.S. Department of the Interior's climate monitoring array, part of the Global Terrestrial Network for Permafrost. In addition to presenting data, this report also describes monitoring, data collection, and quality control methodology. This array of 16 monitoring stations spans 68.5°N to 70.5°N and 142.5°W to 161°W, an area of roughly 150,000 square kilometers. Climate summaries are presented along with provisional quality-controlled data. Data collection is ongoing and includes several additional climate variables to be released in subsequent reports, including ground temperature and soil moisture, snow depth, rainfall, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.

  9. Body size and condition influence migration timing of juvenile Arctic grayling

    USGS Publications Warehouse

    Heim, Kurt C.; Wipfli, Mark S.; Whitman, Matthew S.; Seitz, Andrew C.

    2016-01-01

    Freshwater fishes utilising seasonally available habitats within annual migratory circuits time movements out of such habitats with changing hydrology, although individual attributes of fish may also mediate the behavioural response to environmental conditions. We tagged juvenile Arctic grayling in a seasonally flowing stream on the Arctic Coastal Plain in Alaska and recorded migration timing towards overwintering habitat. We examined the relationship between individual migration date, and fork length (FL) and body condition index (BCI) for fish tagged in June, July and August in three separate models. Larger fish migrated earlier; however, only the August model suggested a significant relationship with BCI. In this model, 42% of variability in migration timing was explained by FL and BCI, and fish in better condition were predicted to migrate earlier than those in poor condition. Here, the majority (33%) of variability was captured by FL with an additional 9% attributable to BCI. We also noted strong seasonal trends in BCI reflecting overwinter mass loss and subsequent growth within the study area. These results are interpreted in the context of size and energetic state-specific risks of overwinter starvation and mortality (which can be very high in the Arctic), which may influence individuals at greater risk to extend summer foraging in a risky, yet prey rich, habitat. Our research provides further evidence that heterogeneity among individuals within a population can influence migratory behaviour and identifies potential risks to late season migrants in Arctic beaded stream habitats influenced by climate change and petroleum development.

  10. Evidence and implications of recent climate change in Northern Alaska and other Arctic regions

    USGS Publications Warehouse

    Hinzman, L.D.; Bettez, N.D.; Bolton, W.R.; Chapin, F.S.; Dyurgerov, M.B.; Fastie, C.L.; Griffith, B.; Hollister, R.D.; Hope, Allen; Huntington, H.P.; Jensen, A.M.; Jia, G.J.; Jorgenson, T.; Kane, D.L.; Klein, D.R.; Kofinas, G.; Lynch, A.H.; Lloyd, A.H.; McGuire, A.D.; Nelson, Frederick E.; Oechel, W.C.; Osterkamp, T.E.; Racine, C.H.; Romanovsky, V.E.; Stone, R.S.; Stow, D.A.; Sturm, M.; Tweedie, C.E.; Vourlitis, G.L.; Walker, M.D.; Walker, D.A.; Webber, P.J.; Welker, J.M.; Winker, K.S.; Yoshikawa, K.

    2005-01-01

    The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth system and how humans will need to adapt. Our holistic review presents a broad array of evidence that illustrates convincingly; the Arctic is undergoing a system-wide response to an altered climatic state. New extreme and seasonal surface climatic conditions are being experienced, a range of biophysical states and processes influenced by the threshold and phase change of freezing point are being altered, hydrological and biogeochemical cycles are shifting, and more regularly human sub-systems are being affected. Importantly, the patterns, magnitude and mechanisms of change have sometimes been unpredictable or difficult to isolate due to compounding factors. In almost every discipline represented, we show how the biocomplexity of the Arctic system has highlighted and challenged a paucity of integrated scientific knowledge, the lack of sustained observational and experimental time series, and the technical and logistic constraints of researching the Arctic environment. This study supports ongoing efforts to strengthen the interdisciplinarity of arctic system science and improve the coupling of large scale experimental manipulation with sustained time series observations by incorporating and integrating novel technologies, remote sensing and modeling. ?? Springer 2005.

  11. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)

    NASA Astrophysics Data System (ADS)

    Rex, M.; Shupe, M.; Dethloff, K.

    2017-12-01

    MOSAiC is an international initiative under the umbrella of the International Arctic Science Committee (IASC) designed by an international consortium of leading polar research institutes. Rapid changes in the Arctic lead to an urgent need for reliable information about the state and evolution of the Arctic climate system. This requires more observations and improved modelling over various spatial and temporal scales, and across a wide variety of disciplines. Observations of many critical parameters were never made in the central Arctic for a full annual cycle. MOSAiC will be the first year-around expedition into the central Arctic exploring the coupled climate system. The research vessel Polarstern will drift with the sea ice across the central Arctic during the years 2019 to 2020. The drift starts in the Siberian sector of the Arctic in late summer. A distributed regional network of observational sites will be established on the sea ice in an area of up to 50 km distance from Polarstern, representing a grid cell of climate models. The ship and the surrounding network will drift with the natural sea ice drift across the polar cap towards the Atlantic. The focus of MOSAiC lies on in-situ observations of the climate processes that couple atmosphere, ocean, sea ice, biogeochemistry and ecosystem. These measurements will be supported by weather and sea ice predictions and remote sensing operations to make the expedition successful. The expedition includes aircraft operations and cruises by icebreakers from MOSAiC partners. All these observations will be used for the main scientific goals of MOSAiC, enhancing the understanding of the regional and global consequences of Arctic climate change and sea ice loss and improve weather and climate prediction. More precisely, the results are needed to advance the data assimilation for numerical weather prediction models, sea ice forecasts and climate models and ground truth for satellite remote sensing. Additionally, the understanding of energy budget and fluxes through interfaces, sources, sinks and cycles of chemical species, boundary layer processes, and primary productivity will be investigated during the expedition. MOSAiC will support safer maritime and offshore operations, contribute to an improved scientific future fishery and traffic along the northern sea routes.

  12. Arctic: A Friend Acting Strangely

    Science.gov Websites

    frequent. Explore the Arctic's changing climate. Discover what these changes mean for the Arctic, its warming in the Arctic by exploring how changes have been observed and documented by scientists and polar

  13. Connecting Ocean Heat Transport Changes from the Midlatitudes to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Hezel, P.; Nummelin, A.; Li, C.

    2017-12-01

    Under greenhouse warming, climate models simulate a weakening of the Atlantic Meridional Overturning Circulation and the associated ocean heat transport at midlatitudes but an increase in the ocean heat transport to the Arctic Ocean. These opposing trends lead to what could appear to be a discrepancy in the reported ocean contribution to Arctic amplification. This study clarifies how ocean heat transport affects Arctic climate under strong greenhouse warming using a set of the 21st century simulations performed within the Coupled Model Intercomparison Project. The results suggest that a future reduction in subpolar ocean heat loss enhances ocean heat transport to the Arctic Ocean, driving an increase in Arctic Ocean heat content and contributing to the intermodel spread in Arctic amplification. The results caution against extrapolating the forced oceanic signal from the midlatitudes to the Arctic.

  14. A reindeer herder's perspective on caribou, weather and socio-economic change on the Seward Peninsula, Alaska.

    Treesearch

    Kumi Rattenbury; Knut Kielland; Greg Finstad; William Schneider

    2009-01-01

    Nonclimate variables shape vulnerability and adaptive capacity to climate change. Here, we describe how recent environmental and socioeconomic developments have transformed reindeer herding and perceptions of weather on the Seward Peninsula, Alaska. The reindeer industry has shrunk considerably since the early 1990s, when the winter range of the Western Arctic Caribou...

  15. Linkages between atmospheric blocking, sea ice export through Fram Strait and the Atlantic Meridional Overturning Circulation

    PubMed Central

    Ionita, M.; Scholz, P.; Lohmann, G.; Dima, M.; Prange, M.

    2016-01-01

    As a key persistent component of the atmospheric dynamics, the North Atlantic blocking activity has been linked to extreme climatic phenomena in the European sector. It has also been linked to Atlantic multidecadal ocean variability, but its potential links to rapid oceanic changes have not been investigated. Using a global ocean-sea ice model forced with atmospheric reanalysis data, here it is shown that the 1962–1966 period of enhanced blocking activity over Greenland resulted in anomalous sea ice accumulation in the Arctic and ended with a sea ice flush from the Arctic into the North Atlantic Ocean through Fram Strait. This event induced a significant decrease of Labrador Sea water surface salinity and an abrupt weakening of the Atlantic Meridional Overturning Circulation (AMOC) during the 1970s. These results have implications for the prediction of rapid AMOC changes and indicate that an important part of the atmosphere-ocean dynamics at mid- and high latitudes requires a proper representation of the Fram Strait sea ice transport and of the synoptic scale variability such as atmospheric blocking, which is a challenge for current coupled climate models. PMID:27619955

  16. Linkages between atmospheric blocking, sea ice export through Fram Strait and the Atlantic Meridional Overturning Circulation.

    PubMed

    Ionita, M; Scholz, P; Lohmann, G; Dima, M; Prange, M

    2016-09-13

    As a key persistent component of the atmospheric dynamics, the North Atlantic blocking activity has been linked to extreme climatic phenomena in the European sector. It has also been linked to Atlantic multidecadal ocean variability, but its potential links to rapid oceanic changes have not been investigated. Using a global ocean-sea ice model forced with atmospheric reanalysis data, here it is shown that the 1962-1966 period of enhanced blocking activity over Greenland resulted in anomalous sea ice accumulation in the Arctic and ended with a sea ice flush from the Arctic into the North Atlantic Ocean through Fram Strait. This event induced a significant decrease of Labrador Sea water surface salinity and an abrupt weakening of the Atlantic Meridional Overturning Circulation (AMOC) during the 1970s. These results have implications for the prediction of rapid AMOC changes and indicate that an important part of the atmosphere-ocean dynamics at mid- and high latitudes requires a proper representation of the Fram Strait sea ice transport and of the synoptic scale variability such as atmospheric blocking, which is a challenge for current coupled climate models.

  17. Arctic Sea Ice, Eurasia Snow, and Extreme Winter Haze in China

    NASA Astrophysics Data System (ADS)

    Zou, Y.; Wang, Y.; Xie, Z.; Zhang, Y.; Koo, J. H.

    2017-12-01

    Eastern China is experiencing more severe haze pollution in winter during recent years. Though the environmental deterioration in this region is usually attributed to the high intensity of anthropogenic emissions and large contributions from secondary aerosol formation, the impact of climate variability is also indispensable given its significant influence on regional weather systems and pollution ventilation. Here we analyzed the air quality related winter meteorological conditions over Eastern China in the last four decades and showed a worsening trend in poor regional air pollutant ventilation. Such variations increased the probability of extreme air pollution events, which is in good agreement with aerosol observations of recent years. We further identified the key circulation pattern that is conducive to the weakening ventilation and investigated the relationship between synoptic circulation changes and multiple climate forcing variables. Both statistical analysis and numerical sensitivity experiments suggested that the poor ventilation condition is linked to boreal cryosphere changes including Arctic sea ice in preceding autumn and Eurasia snowfall in earlier winter. We conducted comprehensive dynamic diagnosis and proposed a physical mechanism to explain the observed and simulated circulation changes. At last, we examined future projections of winter extreme stagnation events based on the CMIP5 projection data.

  18. Medieval Warm Period Archives Preserved in Limpet Shells (Patella Vulgata) From Viking Deposits, United Kingdom

    NASA Astrophysics Data System (ADS)

    Mobilia, M.; Surge, D.

    2008-12-01

    The Medieval Warm Period (700-1100 YBP) represents a recent period of warm climate, and as such provides a powerful comparison to today's continuing warming trend. However, the spatial and temporal variability inherent in the Medieval Warm Period (MWP) makes it difficult to differentiate between global climate trends and regional variability. The continued study of this period will allow for the better understanding of temperature variability, both regional and global, during this climate interval. Our study is located in the Orkney Islands, Scotland, which is a critical area to understand climate dynamics. The North Atlantic Oscillation and Gulf Stream heavily influence climate in this region, and the study of climate intervals during the MWP will improve our understanding of the behavior of these climate mechanisms during this interval. Furthermore, the vast majority of the climate archive has been derived from either deep marine or arctic environments. Studying a coastal environment will offer valuable insight into the behavior of maritime climate during the MWP. Estimated seasonal sea surface temperature data were derived through isotopic analysis of limpet shells (Patella vulgata). Analysis of modern shells confirms that growth temperature tracks seasonal variation in ambient water temperature. Preliminary data from MWP shells record a seasonal temperature range comparable to that observed in the modern temperature data. We will extend the range of temperature data from the 10th through 14th centuries to advance our knowledge of seasonal temperature variability during the late Holocene.

  19. Canadian Unilateralism in the Arctic: Using Scenario Planning to Help Canada Achieve Its Strategic Goals in the North

    DTIC Science & Technology

    2013-05-23

    IN THE NORTH, by Major Sonny T. Hatton, 78 pages. Climate change and global warming could open up the Arctic to unprecedented energy and resource...heating up, both literally and figuratively. Climate change and global warming are melting the Polar ice cap in the North at an unprecedented rate...grow for Arctic nations as access increases due to global warming .35 Increased access and development in the Arctic will continue to encourage the

  20. Projected Regime Shift in Arctic Cloud and Water Vapor Feedbacks

    NASA Technical Reports Server (NTRS)

    Chen, Yonghua; Miller, James R.; Francis, Jennifer; Russel, Gary L.

    2011-01-01

    The Arctic climate is changing faster than any other large-scale region on Earth. A variety of positive feedback mechanisms are responsible for the amplification, most of which are linked with changes in snow and ice cover, surface temperature (T(sub s)), atmospheric water vapor (WV), and cloud properties. As greenhouse gases continue to accumulate in the atmosphere, air temperature and water vapor content also increase, leading to a warmer surface and ice loss, which further enhance evaporation and WV. Many details of these interrelated feedbacks are poorly understood, yet are essential for understanding the pace and regional variations in future Arctic change. We use a global climate model (Goddard Institute for Space Studies, Atmosphere-Ocean Model) to examine several components of these feedbacks, how they vary by season, and how they are projected to change through the 21st century. One positive feedback begins with an increase in T(sub s) that produces an increase in WV, which in turn increases the downward longwave flux (DLF) and T(sub s), leading to further evaporation. Another associates the expected increases in cloud cover and optical thickness with increasing DLF and T(sub s). We examine the sensitivities between DLF and other climate variables in these feedbacks and find that they are strongest in the non-summer seasons, leading to the largest amplification in Ts during these months. Later in the 21st century, however, DLF becomes less sensitive to changes in WV and cloud optical thickness, as they cause the atmosphere to emit longwave radiation more nearly as a black body. This regime shift in sensitivity implies that the amplified pace of Arctic change relative to the northern hemisphere could relax in the future.

  1. Achieving the NOAA Arctic Action Plan: The Missing Permafrost Element - Permafrost Forecasting Listening Session Results

    NASA Astrophysics Data System (ADS)

    Buxbaum, T. M.; Thoman, R.; Romanovsky, V. E.

    2015-12-01

    Permafrost is ground at or below freezing for at least two consecutive years. It currently occupies 80% of Alaska. Permafrost temperature and active layer thickness (ALT) are key climatic variables for monitoring permafrost conditions. Active layer thickness is the depth that the top layer of ground above the permafrost thaws each summer season and permafrost temperature is the temperature of the frozen permafrost under this active layer. Knowing permafrost conditions is key for those individuals working and living in Alaska and the Arctic. The results of climate models predict vast changes and potential permafrost degradation across Alaska and the Arctic. NOAA is working to implement its 2014 Arctic Action Plan and permafrost forecasting is a missing piece of this plan. The Alaska Center for Climate Assessment and Policy (ACCAP), using our webinar software and our diverse network of statewide stakeholder contacts, hosted a listening session to bring together a select group of key stakeholders. During this listening session the National Weather Service (NWS) and key permafrost researchers explained what is possible in the realm of permafrost forecasting and participants had the opportunity to discuss and share with the group (NWS, researchers, other stakeholders) what is needed for usable permafrost forecasting. This listening session aimed to answer the questions: Is permafrost forecasting needed? If so, what spatial scale is needed by stakeholders? What temporal scales do stakeholders need/want? Are there key times (winter, fall freeze-up, etc.) or locations (North Slope, key oil development areas, etc.) where forecasting would be most applicable and useful? Are there other considerations or priority needs we haven't thought of regarding permafrost forecasting? This presentation will present the results of that listening session.

  2. The Siberian High and Arctic Sea Ice: Long-term Climate Change and Impacts on Air Pollution during Wintertime in China

    NASA Astrophysics Data System (ADS)

    Long, X.; Zhao, S.; Feng, T.; Tie, X.; Li, G.

    2017-12-01

    China has undergone severe air pollution during wintertime as national industrialization and urbanization have been increasingly developed in the past three decades. It has been suggested that high emission and adverse weather patterns contribute to wintertime air pollution. Recent studies propose that climate change and Arctic sea ice loss likely lead to extreme haze events in winter. Here we use two reanalysis and observational datasets to present the trends of Siberian High (SH) intensity over Eurasia, and Arctic temperature and sea ice. The results show the Arctic region of Asia is becoming warming accompanied by a rapid decline of sea ice while Eurasia is cooling and SH intensity is gradually enhancing. Wind patterns induced by these changes cause straight westerly prevailing over Eurasia at the year of weak SH while strengthened northerly winds at the year of strong SH. Therefore, we utilize regional dynamical and chemical WRF-Chem model to determine the impact of SH intensity difference on wintertime air pollution in China. As a result, enhancing northerly winds at the year of strong SH rapidly dilute and transport air pollution, causing a decline of 50 - 400 µg m-3 PM2.5 concentrations relative to that at the year of weak SH. We also assess the impact of emission reduction to half the current level on air pollution. The results show that emission reduction by 50% has an equivalent impact as the variability of SH intensity. This suggests that climate change over Eurasia has largely offset the negative impact of emission on air pollution and it is urgently needed to take measures to mitigate air pollution. In view of current high emission scenario in China, it will be a long way to effectively mitigate, or ultimately prevent wintertime air pollution.

  3. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra

    PubMed Central

    Gauthier, Gilles; Bêty, Joël; Cadieux, Marie-Christine; Legagneux, Pierre; Doiron, Madeleine; Chevallier, Clément; Lai, Sandra; Tarroux, Arnaud; Berteaux, Dominique

    2013-01-01

    Arctic wildlife is often presented as being highly at risk in the face of current climate warming. We use the long-term (up to 24 years) monitoring records available on Bylot Island in the Canadian Arctic to examine temporal trends in population attributes of several terrestrial vertebrates and in primary production. Despite a warming trend (e.g. cumulative annual thawing degree-days increased by 37% and snow-melt date advanced by 4–7 days over a 23-year period), we found little evidence for changes in the phenology, abundance or productivity of several vertebrate species (snow goose, foxes, lemmings, avian predators and one passerine). Only primary production showed a response to warming (annual above-ground biomass of wetland graminoids increased by 123% during this period). We nonetheless found evidence for potential mismatches between herbivores and their food plants in response to warming as snow geese adjusted their laying date by only 3.8 days on average for a change in snow-melt of 10 days, half of the corresponding adjustment shown by the timing of plant growth (7.1 days). We discuss several reasons (duration of time series, large annual variability, amplitude of observed climate change, nonlinear dynamic or constraints imposed by various rate of warming with latitude in migrants) to explain the lack of response by herbivores and predators to climate warming at our study site. We also show how length and intensity of monitoring could affect our ability to detect temporal trends and provide recommendations for future monitoring. PMID:23836788

  4. Sea ice proxies, marine environmental change, and human societies in Northwest Greenland over the past ca. 4500 years

    NASA Astrophysics Data System (ADS)

    Ribeiro, Sofia; Weckström, Kaarina; Tallberg, Petra; Risager Kjøller, Marianne; Limoges, Audrey; Massé, Guillaume; Nissen, Martin; Toudal Pedersen, Leif; Mikkelsen, Naja

    2016-04-01

    Greenland has been inhabited for only ca. 4500 years, but several human colonization events and cultural transitions occurred during this period. This work is part of the ICE-ARC project - Ice, Climate and Economics in the Arctic (EU FP7), aimed at understanding and quantifying the multiple stresses involved in the change in the Arctic marine environment, with particular focus on the rapid retreat and collapse of the Arctic sea ice cover. The overall goal of the project is to assess the climatic (ice, ocean, atmosphere and ecosystem), economic and social impacts of these stresses on regional and global scales. Marine sediment cores were retrieved from the Inglefield Bredning fjord system in the Qaanaaq region, Northwest Greenland, and are being analysed for various climate and environmental proxies, including biological indicators (e.g. dinoflagellate cysts, diatoms), biogeochemical elements (biogenic silica, XRF scanning), and sea-ice specific biomarkers (IP25). We will present the first data from this core material, consisting of a spatial study of sea ice and productivity proxies in 13 surface sediment samples (IP25, biogenic silica, diatoms, and dinoflagellate cysts) which will be compared with satellite-derived sea ice cover data for the Qaanaaq region/ northern Baffin Bay. This spatial study will serve as basis to reconstruct sea ice variability in the area over the past ca. 4500 years, and will be combined with historical and archaeological data in order to identify possible links between past changes in climate and sea ice conditions, and events of human migration and cultural transition in Greenland.

  5. Recent warming leads to a rapid borealization of fish communities in the Arctic

    NASA Astrophysics Data System (ADS)

    Fossheim, Maria; Primicerio, Raul; Johannesen, Edda; Ingvaldsen, Randi B.; Aschan, Michaela M.; Dolgov, Andrey V.

    2015-07-01

    Arctic marine ecosystems are warming twice as fast as the global average. As a consequence of warming, many incoming species experience increasing abundances and expanding distribution ranges in the Arctic. The Arctic is expected to have the largest species turnover with regard to invading and locally extinct species, with a modelled invasion intensity of five times the global average. Studies in this region might therefore give valuable insights into community-wide shifts of species driven by climate warming. We found that the recent warming in the Barents Sea has led to a change in spatial distribution of fish communities, with boreal communities expanding northwards at a pace reflecting the local climate velocities. Increased abundance and distribution areas of large, migratory fish predators explain the observed community-wide distributional shifts. These shifts change the ecological interactions experienced by Arctic fish species. The Arctic shelf fish community retracted northwards to deeper areas bordering the deep polar basin. Depth might limit further retraction of some of the fish species in the Arctic shelf community. We conclude that climate warming is inducing structural change over large spatial scales at high latitudes, leading to a borealization of fish communities in the Arctic.

  6. Reconstruction of past methane availability in an Arctic Alaska wetland indicates climate influenced methane release during the past ~12,000 years

    USGS Publications Warehouse

    Wooller, Matthew J.; Pohlman, John W.; Gaglioti, Benjamin V.; Langdon, Peter; Jones, Miriam; Anthony, Katey M. Walter; Becker, Kevin W.; Hinrichs, Kai-Uwe; Elvert, Marcus

    2012-01-01

    Atmospheric contributions of methane from Arctic wetlands during the Holocene are dynamic and linked to climate oscillations. However, long-term records linking climate variability to methane availability in Arctic wetlands are lacking. We present a multi-proxy ~12,000 year paleoecological reconstruction of intermittent methane availability from a radiocarbon-dated sediment core (LQ-West) taken from a shallow tundra lake (Qalluuraq Lake) in Arctic Alaska. Specifically, stable carbon isotopic values of photosynthetic biomarkers and methane are utilized to estimate the proportional contribution of methane-derived carbon to lake-sediment-preserved benthic (chironomids) and pelagic (cladocerans) components over the last ~12,000 years. These results were compared to temperature, hydrologic, and habitat reconstructions from the same site using chironomid assemblage data, oxygen isotopes of chironomid head capsules, and radiocarbon ages of plant macrofossils. Cladoceran ephippia from ~4,000 cal year BP sediments have δ13C values that range from ~−39 to −31‰, suggesting peak methane carbon assimilation at that time. These low δ13C values coincide with an apparent decrease in effective moisture and development of a wetland that included Sphagnum subsecundum. Incorporation of methane-derived carbon by chironomids and cladocerans decreased from ~2,500 to 1,500 cal year BP, coinciding with a temperature decrease. Live-collected chironomids with a radiocarbon age of 1,640 cal year BP, and fossil chironomids from 1,500 cal year BP in the core illustrate that ‘old’ carbon has also contributed to the development of the aquatic ecosystem since ~1,500 cal year BP. The relatively low δ13C values of aquatic invertebrates (as low as −40.5‰) provide evidence of methane incorporation by lake invertebrates, and suggest intermittent climate-linked methane release from the lake throughout the Holocene.

  7. Temporal Arctic longwave surface emissivity feedbacks in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Yang, P.; Chen, X.

    2017-12-01

    We have investigated how the inclusion of realistic and consistent surface emissivity in both land-surface and atmospheric components of the CESM coupled-climate model affects a wide range of climate variables. We did this by replacing the unit emissivity values in RRTMG_LW for water, fine-grained snow, and desert scenes with spectral emissivity values, and by replacing broadband emissivity values in surface components with the Planck-curve weighted counterparts. We find that this harmonized treatment of surface emissivity within CESM can be important for reducing high-latitude temperature biases. We also find that short-term effects of atmospheric dynamics and spectral information need to be considered to understand radiative effects in higher detail, and are possible with radiative kernels computed for every grid and time point for the entire model integration period. We find that conventional climatological feedback calculations indicate that sea-ice emissivity feedback is positive in sign, but that the radiative effects of the difference in emissivity between frozen and unfrozen surfaces exhibit seasonal dependence. Furthermore, this seasonality itself exhibits meridional asymmetry due to differences in sea-ice response to climate forcing between the Arctic and the Antarctic. In the Arctic, this seasonal, temporally higher order analysis exhibits increasing outgoing surface emissivity radiative response in a warming climate. While the sea-ice emissivity feedback and seasonal sea-ice emissivity radiative response amplitudes are a few percent of surface albedo feedbacks, the feedback analysis methods outlined in this work demonstrate that spatially and temporally localized feedback analysis can give insight into the mechanisms at work on those scales which differ in amplitude and sign from conventional climatological analyses. We note that the inclusion of this realistic physics leads to improved agreement between CESM model results and Arctic surface temperatures and sea-ice trends. This reduction of persistent high-latitude model biases suggests that the current unrealistic representation of surface emissivity in model component radiation routines may be an important contributing factor to cold-pole biases.

  8. Impacts of a Changing Climate and Land Use on Reindeer Pastoralism: Indigenous Knowledge and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Maynard, N. G.; Oskal, A.; Turi, A.; Mathiesen, J. M.; Eira, S. D.; Yurchak, I. M. G.; Etylin, B.; Gebelein, J.

    2009-01-01

    The Arctic is home to many indigenous peoples, including those who depend on reindeer herding for their livelihood, in one of the harshest environments in the world. For the largely nomadic peoples, reindeer not only form a substantial part of the Arctic food base and economy, but they are also culturally important, shaping their way of life, mythologies, festivals and ceremonies. Reindeer pastoralism or husbandry has been practiced by numerous peoples all across Eurasia for thousands of years and involves moving herds of reindeer, which are very docile animals, from pasture to pasture depending on the season. Thus, herders must adapt on a daily basis to find optimal conditions for their herds according to the constantly changing conditions. Climate change and variability plus rapid development are increasingly creating major changes in the physical environment, ecology, and cultures of these indigenous reindeer herder communities in the North, and climate changes are occurring significantly faster in the Arctic than the rest of the globe, with correspondingly dramatic impacts (Oskal, 2008). In response to these changes, Eurasian reindeer herders have created the EALAT project, a comprehensive new initiative to study these impacts and to develop local adaptation strategies based upon their traditional knowledge of the land and its uses - in targeted partnership with the science and remote sensing community - involving extensive collaborations and coproduction of knowledge to minimize the impacts of the various changes. This chapter provides background on climate and development challenges to reindeer husbandry across the Arctic and an overview of the EALAT initiative, with an emphasis on indigenous knowledge, remote sensing, Geographic Information Systems (GIS), and other scientific data to 'co-produce' datasets for use by herders for improved decision-making and herd management. It also provides a description of the EALAT monitoring data integration and sharing system and portal being developed for reindeer pastoralism. In addition, the chapter provides some preliminary results from the EALAT Project, including some early remote sensing research results.

  9. Biodiversity, distributions and adaptations of Arctic species in the context of environmental change.

    PubMed

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus; Elster, Josef; Henttonen, Heikki; Laine, Kari; Taulavuori, Kari; Taulavuori, Erja; Zöckler, Christoph

    2004-11-01

    The individual of a species is the basic unit which responds to climate and UV-B changes, and it responds over a wide range of time scales. The diversity of animal, plant and microbial species appears to be low in the Arctic, and decreases from the boreal forests to the polar deserts of the extreme North but primitive species are particularly abundant. This latitudinal decline is associated with an increase in super-dominant species that occupy a wide range of habitats. Climate warming is expected to reduce the abundance and restrict the ranges of such species and to affect species at their northern range boundaries more than in the South: some Arctic animal and plant specialists could face extinction. Species most likely to expand into tundra are boreal species that currently exist as outlier populations in the Arctic. Many plant species have characteristics that allow them to survive short snow-free growing seasons, low solar angles, permafrost and low soil temperatures, low nutrient availability and physical disturbance. Many of these characteristics are likely to limit species' responses to climate warming, but mainly because of poor competitive ability compared with potential immigrant species. Terrestrial Arctic animals possess many adaptations that enable them to persist under a wide range of temperatures in the Arctic. Many escape unfavorable weather and resource shortage by winter dormancy or by migration. The biotic environment of Arctic animal species is relatively simple with few enemies, competitors, diseases, parasites and available food resources. Terrestrial Arctic animals are likely to be most vulnerable to warmer and drier summers, climatic changes that interfere with migration routes and staging areas, altered snow conditions and freeze-thaw cycles in winter, climate-induced disruption of the seasonal timing of reproduction and development, and influx of new competitors, predators, parasites and diseases. Arctic microorganisms are also well adapted to the Arctic's climate: some can metabolize at temperatures down to -39 degrees C. Cyanobacteria and algae have a wide range of adaptive strategies that allow them to avoid, or at least minimize UV injury. Microorganisms can tolerate most environmental conditions and they have short generation times which can facilitate rapid adaptation to new environments. In contrast, Arctic plant and animal species are very likely to change their distributions rather than evolve significantly in response to warming.

  10. The joint Russia-US-Sweden studies in the near-shore zone of the East-Siberian Arctic seas: (1999-2008)

    NASA Astrophysics Data System (ADS)

    Sergienko, V. I.; Shakhova, N.; Dudarev, O.; Gustafsson, O.; Anderson, L.; Semiletov, I.

    2009-04-01

    The Arctic Ocean is surrounded by permafrost, which is being degraded at an increasing rate under conditions of warming which are most pronounced in Siberia and Alaska . A major constraint on our ability to understand linkages between the Arctic Ocean and the global climate system is the scarcity of observational data in the Siberian Arctic marginal seas where major fresh water input and terrestrial CNP fluxes exist. The East-Siberian Sea has never been investigated by modern techniques despite the progress that has been made in new technologies useful for measuring ocean characteristics of interest. In this multi-year international project which joins scientists from 3 nations (Russia-USA-Sweden), and in cooperation with scientists from other countries (UK, Netherlands) we focus on poorly explored areas located west from the U.S.-Russia boundary, Warming causes thawing of the permafrost underlying a substantial fraction of the Arctic; this process could accelerate coastal erosion, river discharge and carbon losses from soils. Siberian freshwater discharge to the Arctic Ocean is expected to increase with increasing temperatures, potentially resulting in greater river export of old terrigenous organic carbon to the ocean. Rivers integrate variability in the components of the hydrometeorological regime, including soil condition, permafrost seasonal thaw, and thermokarst development, all the variables that determine atmospheric and ground water supply for the rivers and chemical weathering in their watershed. Thus studying carbon cycling in the East Siberian Arctic marginal seas has a high scientific priority in order to establish the carbon budget and evaluate the role of the Arctic region in global carbon cycling, especially in the coastal zone where the redistribution of carbon between terrestrial and marine environments occurs and the characteristics of carbon exchange with atmosphere are unknown. In this report we overview the main field activities and present some results obtained during the last decade (1999-2008).

  11. Review of science issues, deployment strategy, and status for the ARM north slope of Alaska-Adjacent Arctic Ocean climate research site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamnes, K.; Ellingson, R.G.; Curry, J.A.

    1999-01-01

    Recent climate modeling results point to the Arctic as a region that is particularly sensitive to global climate change. The Arctic warming predicted by the models to result from the expected doubling of atmospheric carbon dioxide is two to three times the predicted mean global warming, and considerably greater than the warming predicted for the Antarctic. The North Slope of Alaska-Adjacent Arctic Ocean (NSA-AAO) Cloud and Radiation Testbed (CART) site of the Atmospheric Radiation Measurement (ARM) Program is designed to collect data on temperature-ice-albedo and water vapor-cloud-radiation feedbacks, which are believed to be important to the predicted enhanced warming inmore » the Arctic. The most important scientific issues of Arctic, as well as global, significance to be addressed at the NSA-AAO CART site are discussed, and a brief overview of the current approach toward, and status of, site development is provided. ARM radiometric and remote sensing instrumentation is already deployed and taking data in the perennial Arctic ice pack as part of the SHEBA (Surface Heat Budget of the Arctic ocean) experiment. In parallel with ARM`s participation in SHEBA, the NSA-AAO facility near Barrow was formally dedicated on 1 July 1997 and began routine data collection early in 1998. This schedule permits the US Department of Energy`s ARM Program, NASA`s Arctic Cloud program, and the SHEBA program (funded primarily by the National Science Foundation and the Office of Naval Research) to be mutually supportive. In addition, location of the NSA-AAO Barrow facility on National Oceanic and Atmospheric Administration land immediately adjacent to its Climate Monitoring and Diagnostic Laboratory Barrow Observatory includes NOAA in this major interagency Arctic collaboration.« less

  12. Global warming and effects on the Arctic fox.

    PubMed

    Fuglei, Eva; Ims, Rolf Anker

    2008-01-01

    We predict the effect of global warming on the arctic fox, the only endemic terrestrial predatory mammals in the arctic region. We emphasize the difference between coastal and inland arctic fox populations. Inland foxes rely on peak abundance of lemming prey to sustain viable populations. In the short-term, warmer winters result in missed lemming peak years and reduced opportunities for successful arctic fox breeding. In the long-term, however, warmer climate will increase plant productivity and more herbivore prey for competitive dominant predators moving in from the south. The red fox has already intruded the arctic region and caused a retreat of the southern limit of arctic fox distribution range. Coastal arctic foxes, which rely on the richer and temporally stable marine subsidies, will be less prone to climate-induced resource limitations. Indeed, arctic islands, becoming protected from southern species invasions as the extent of sea ice is decreasing, may become the last refuges for coastal populations of Arctic foxes.

  13. Spatio Temporal Variability of the Global Transmittance During the Arctic POLARSTERN Expedition 106/1 Ice Floe Station

    NASA Astrophysics Data System (ADS)

    Barrientos Velasco, C.; Macke, A.; Griesche, H.; Engelmann, R.; Deneke, H.; Seifert, P.

    2017-12-01

    The Arctic is warming at a higher rate than the rest of the planet. This has been leading to a dramatically decrease of snow coverage and sea ice thickness in recent years and several studies have suggested that a similar trend is expected in the upcoming years. Large uncertainties in predicting the Arctic climate arise from our lack of understanding the role clouds play in sea ice / atmosphere interaction. During summer the shortwave radiation dominates and clouds have a net cooling effect at the surface. The strength of this cooling critically depends on cloud phase, composition and height. Clouds interactions with aerosols, and its sensitivity to surface properties further complicates their role in the Arctic system. Scattering between the surface and cloud layers amplifies the cloud shortwave contribution, especially over a highly reflective surface such as snow or ice. Therefore, to comprehend how the Arctic's surface is significantly modulated by solar radiation is necessary to more clearly understand the cloud-induced spatio-temporal variability at process relevant scales. Irradiance variability may also have an effect on the biological productivity of various plankton species below the ice. The present study provides an overview of spatio-temporal variability at spatial scales ranging from several decameters to 1 kilometer of the global transmittance derived from 15 pyranometer stations installed at an ice floe station (June 4-16 2017) during the POLARSTERN expedition PS106/1. Specific irradiance statistics under clear sky, broken clouds and overcast conditions will be described considering the combination of a Cloud Radar Mira 35 and a Polly Raman polarization Lidar. Ultimately, radiative closure studies will be performed to quantify our abilities to reproduce realistic cloud solar radiative forcing under Arctic conditions. Acknowledgements. This research is funded by Deutsche Forschunsgemeinschaft (DFG) and involves the active participation of Leibniz Institut für Troposphärenforschung (TROPOS), Universität Leipzig Institut für Meteorologie (LIM), Universitäat Bremen, Universität zu Köln and Alfred-Wegener-Institut, Helmholtz Zentrum für Polar - und Meeresforschung (AWI).

  14. Tracking and unpacking rapid Arctic change: Indicators of community health and sustainability in northern Alaska and links to cryospheric change

    NASA Astrophysics Data System (ADS)

    Eicken, H.; Sam, J. M.; Mueller-stoffels, M.; Lovecraft, A. L.; Fresco, N. L.

    2017-12-01

    Tracking and responding to rapid Arctic change benefits from time series of indicator variables that describe the state of the system and can inform anticipatory action. A key challenge is to identify and monitor sets of indicators that capture relevant variability, trends, and transitions in social-environmental systems. We present findings from participatory scenarios focused on community health and sustainability in northern Alaska. In a series of workshops in 2015 and 2016 (Kotzebue workshop photo shown below), over 50 experts, mostly local, identified determinants of community health and sustainability by 2040 in the Northwest Arctic and North Slope Boroughs, Alaska. Drawing on further research, an initial set of factors and uncertainties was refined and prioritized into a total of 20 key drivers, ranging from governance issues to socio-economic and environmental factors. The research team then developed sets of future projections that describe plausible outcomes by mid-century for each of these drivers. A plausibility and consistency analysis of all pairwise combinations of these projections (following Mueller-Stoffels and Eicken, In: North by 2020 - Perspectives on Alaska's Changing Social-Ecological Systems, University of Alaska Press, 2011) resulted in the identification of robust scenarios. The latter were further reviewed by workshop participants, and a set of indicator variables, including indicators of relevant cryospheric change, was identified to help track trajectories towards plausible future states. Publically accessible recorded data only exist for a subset of the more than 70 indicators, reaching back a few years to several decades. For several indicators, the sampling rate or time series length are insufficient for tracking of and response to change. A core set of variables has been identified that meets indicator requirements and can serve as a tool for Alaska Arctic communities in adapting to or mitigating rapid change affecting community health and sustainability. The study provides guidance on Arctic observing system design, highlighting the importance of knowledge co-production to capture those aspects of climate, cryospheric and environmental change that are relevant in the context of broader responses to rapid Arctic change.

  15. The relationship between Arctic sea ice and the Atlantic meridional overturning circulation in a warming climate

    NASA Astrophysics Data System (ADS)

    Liu, W.; Fedorov, A. V.

    2017-12-01

    A recent study (Sevellec, Fedorov, Liu 2017, Nature Climate Change) has suggested that Arctic sea ice decline can lead to a slow-down of the Atlantic meridional overturning circulation (AMOC). Here, we build on this previous work and explore the relationship between Arctic sea ice and the AMOC in climate models. We find that the current Arctic sea ice decline can contribute about 40% to the AMOC weakening over the next 60 years. This effect is related to the warming and freshening of the upper ocean in the Arctic, and the subsequent spread of generated buoyancy anomalies downstream where they affect the North Atlantic deep convection sites and hence the AMOC on multi-decadal timescales. The weakening of the AMOC and its poleward heat transport, in turn, sustains the "Warming Hole" - a region in the North Atlantic with anomalously weak (or even negative) warming trends. We discuss the key factors that control this robust AMOC response to changes in Arctic sea ice.

  16. Population limitation in a non-cyclic arctic fox population in a changing climate.

    PubMed

    Pálsson, Snæbjörn; Hersteinsson, Páll; Unnsteinsdóttir, Ester R; Nielsen, Ólafur K

    2016-04-01

    Arctic foxes Vulpes lagopus (L.) display a sharp 3- to 5-year fluctuation in population size where lemmings are their main prey. In areas devoid of lemmings, such as Iceland, they do not experience short-term fluctuations. This study focusses on the population dynamics of the arctic fox in Iceland and how it is shaped by its main prey populations. Hunting statistics from 1958-2003 show that the population size of the arctic fox was at a maximum in the 1950s, declined to a minimum in the 1970s, and increased steadily until 2003. Analysis of the arctic fox population size and their prey populations suggests that fox numbers were limited by rock ptarmigan numbers during the decline period. The recovery of the arctic fox population was traced mostly to an increase in goose populations, and favourable climatic conditions as reflected by the Subpolar Gyre. These results underscore the flexibility of a generalist predator and its responses to shifting food resources and climate changes.

  17. Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing.

    PubMed

    Bintanja, R; Krikken, F

    2016-12-02

    Observed and projected climate warming is strongest in the Arctic regions, peaking in autumn/winter. Attempts to explain this feature have focused primarily on identifying the associated climate feedbacks, particularly the ice-albedo and lapse-rate feedbacks. Here we use a state-of-the-art global climate model in idealized seasonal forcing simulations to show that Arctic warming (especially in winter) and sea ice decline are particularly sensitive to radiative forcing in spring, during which the energy is effectively 'absorbed' by the ocean (through sea ice melt and ocean warming, amplified by the ice-albedo feedback) and consequently released to the lower atmosphere in autumn and winter, mainly along the sea ice periphery. In contrast, winter radiative forcing causes a more uniform response centered over the Arctic Ocean. This finding suggests that intermodel differences in simulated Arctic (winter) warming can to a considerable degree be attributed to model uncertainties in Arctic radiative fluxes, which peak in summer.

  18. In Brief: Arctic Report Card

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-11-01

    The 2009 annual update of the Arctic Report Card, issued on 22 October, indicates that “warming of the Arctic continues to be widespread, and in some cases dramatic. Linkages between air, land, sea, and biology are evident.” The report, a collaborative effort of 71 national and international scientists initiated in 2006 by the Climate Program Office of the U.S. National Oceanic and Atmospheric Administration (NOAA), highlights several concerns, including a change in large-scale wind patterns affected by the loss of summer sea ice; the replacement of multiyear sea ice by first-year sea ice; warmer and fresher water in the upper ocean linked to new ice-free areas; and the effects of the loss of sea ice on Arctic plant, animal, and fish species. “Climate change is happening faster in the Arctic than any other place on Earth-and with wide-ranging consequences,” said NOAA administrator Jane Lubchenco. “This year“s Arctic Report Card underscores the urgency of reducing greenhouse gas pollution and adapting to climate changes already under way.”

  19. Effects of the Bering Strait closure on AMOC and global climate under different background climates

    NASA Astrophysics Data System (ADS)

    Hu, Aixue; Meehl, Gerald A.; Han, Weiqing; Otto-Bliestner, Bette; Abe-Ouchi, Ayako; Rosenbloom, Nan

    2015-03-01

    Previous studies have suggested that the status of the Bering Strait may have a significant influence on global climate variability on centennial, millennial, and even longer time scales. Here we use multiple versions of the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM, versions 2 and 3) to investigate the influence of the Bering Strait closure/opening on the Atlantic Meridional Overturning Circulation (AMOC) and global mean climate under present-day, 15 thousand-year before present (kyr BP), and 112 kyr BP climate boundary conditions. Our results show that regardless of the version of the model used or the widely different background climates, the Bering Strait's closure produces a robust result of a strengthening of the AMOC, and an increase in the northward meridional heat transport in the Atlantic. As a consequence, the climate becomes warmer in the North Atlantic and the surrounding regions, but cooler in the North Pacific, leading to a seesaw-like climate change between these two basins. For the first time it is noted that the absence of the Bering Strait throughflow causes a slower motion of Arctic sea ice, a reduced upper ocean water exchange between the Arctic and North Atlantic, reduced sea ice export and less fresh water in the North Atlantic. These changes contribute positively to the increased upper ocean density there, thus strengthening the AMOC. Potentially these changes in the North Atlantic could have a significant effect on the ice sheets both upstream and downstream in ice age climate, and further influence global sea level changes.

  20. Sensitivity of global terrestrial ecosystems to climate variability.

    PubMed

    Seddon, Alistair W R; Macias-Fauria, Marc; Long, Peter R; Benz, David; Willis, Kathy J

    2016-03-10

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems--be they natural or with a strong anthropogenic signature--to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  1. Sensitivity of global terrestrial ecosystems to climate variability

    NASA Astrophysics Data System (ADS)

    Seddon, Alistair W. R.; Macias-Fauria, Marc; Long, Peter R.; Benz, David; Willis, Kathy J.

    2016-03-01

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems—be they natural or with a strong anthropogenic signature—to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  2. Advancing High Spatial and Spectral Resolution Remote Sensing for Observing Plant Community Response to Environmental Variability and Change in the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Vargas Zesati, Sergio A.

    The Arctic is being impacted by climate change more than any other region on Earth. Impacts to terrestrial ecosystems have the potential to manifest through feedbacks with other components of the Earth System. Of particular concern is the potential for the massive store of soil organic carbon to be released from arctic permafrost to the atmosphere where it could exacerbate greenhouse warming and impact global climate and biogeochemical cycles. Even though substantial gains to our understanding of the changing Arctic have been made, especially over the past decade, linking research results from plot to regional scales remains a challenge due to the lack of adequate low/mid-altitude sampling platforms, logistic constraints, and the lack of cross-scale validation of research methodologies. The prime motivation of this study is to advance observational capacities suitable for documenting multi-scale environmental change in arctic terrestrial landscapes through the development and testing of novel ground-based and low altitude remote sensing methods. Specifically this study addressed the following questions: • How well can low-cost kite aerial photography and advanced computer vision techniques model the microtopographic heterogeneity of changing tundra surfaces? • How does imagery from kite aerial photography and fixed time-lapse digital cameras (pheno-cams) compare in their capacity to monitor plot-level phenological dynamics of arctic vegetation communities? • Can the use of multi-scale digital imaging systems be scaled to improve measurements of ecosystem properties and processes at the landscape level? • How do results from ground-based and low altitude digital remote sensing of the spatiotemporal variability in ecosystem processes compare with those from satellite remote sensing platforms? Key findings from this study suggest that cost-effective alternative digital imaging and remote sensing methods are suitable for monitoring and quantifying plot to landscape level ecosystem structure and phenological dynamics at multiple temporal scales. Overall, this study has furthered our knowledge of how tundra ecosystems in the Arctic change seasonally and how such change could impact remote sensing studies conducted from multiple platforms and across multiple spatial scales. Additionally, this study also highlights the urgent need for research into the validation of satellite products in order to better understand the causes and consequences of the changing Arctic and its potential effects on global processes. This study focused on sites located in northern Alaska and was formed in collaboration with Florida International University (FIU) and Grand Valley State University (GVSU) as a contribution to the US Arctic Observing Network (AON). All efforts were supported through the National Science Foundation (NSF), the Cyber-ShARE Center of Excellence, and the International Tundra Experiment (ITEX).

  3. Future scientific drilling in the Arctic Ocean: Key objectives, areas, and strategies

    NASA Astrophysics Data System (ADS)

    Stein, R.; Coakley, B.; Mikkelsen, N.; O'Regan, M.; Ruppel, C.

    2012-04-01

    In spite of the critical role of the Arctic Ocean in climate evolution, our understanding of the short- and long-term paleoceanographic and paleoclimatic history through late Mesozoic-Cenozoic times, as well as its plate-tectonic evolution, remains behind that from the other world's oceans. This lack of knowledge is mainly caused by the major technological/logistic problems in reaching this permanently ice-covered region with normal research vessels and in retrieving long and undisturbed sediment cores. With the Arctic Coring Expedition - ACEX (or IODP Expedition 302), the first Mission Specific Platform (MSP) expedition within IODP, a new era in Arctic research began (Backman, Moran, Mayer, McInroy et al., 2006). ACEX proved that, with an intensive ice-management strategy, successful scientific drilling in the permanently ice-covered central Arctic Ocean is possible. ACEX is certainly a milestone in Arctic Ocean research, but - of course - further drilling activities are needed in this poorly studied ocean. Furthermore, despite the success of ACEX fundamental questions related to the long- and short-term climate history of the Arctic Ocean during Mesozoic-Cenozoic times remain unanswered. This is partly due to poor core recovery during ACEX and, especially, because of a major mid-Cenozoic hiatus in this single record. Since ACEX, a series of workshops were held to develop a scientific drilling strategy for investigating the tectonic and paleoceanographic history of the Arctic Ocean and its role in influencing the global climate system: - "Arctic Ocean History: From Speculation to Reality" (Bremerhaven/Germany, November 2008); - "Overcoming barriers to Arctic Ocean scientific drilling: the site survey challenge" (Copenhagen/Denmark, November 2011); - Circum-Arctic shelf/upper continental slope scientific drilling workshop on "Catching Climate Change in Progress" (San Francisco/USA, December 2011); - "Coordinated Scientific Drilling in the Beaufort Sea: Addressing Past, Present and Future Changes in Arctic Terrestrial and Marine Systems" (Kananaskis, Alberta/Canada, February 2012). During these workshops, key areas and key scientific themes as well as drilling and site-survey strategies were discussed. Major scientific themes for future Arctic drilling will include: - The Arctic Ocean during the transition from greenhouse to icehouse conditions and millennial scale climate changes; - Physical and chemical changes of the evolving Polar Ocean and Arctic gateways; - Impact of Pleistocene/Holocene warming and sea-level rise on upper continental slope and shelf gas hydrates and on shelf permafrost; - Land-ocean interactions; - Tectonic evolution and birth of the Arctic Ocean basin: Arctic ridges, sea floor spreading and global lithosphere processes. When thinking about future Arctic drilling, it should be clearly emphasized that for the precise planning of future Arctic Ocean drilling campaigns, including site selection, evaluation of proposed drill sites for safety and environmental protection, etc., comprehensive site survey data are needed first. This means that the development of a detailed site survey strategy is a major challenge for the coming years. Here, an overview of perspectives and plans for future Arctic Ocean drilling will be presented.

  4. Arctic melt ponds and energy balance in the climate system

    NASA Astrophysics Data System (ADS)

    Sudakov, Ivan

    2017-02-01

    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  5. One Health – a strategy for resilience in a changing arctic

    PubMed Central

    Ruscio, Bruce A.; Brubaker, Michael; Glasser, Joshua; Hueston, Will; Hennessy, Thomas W.

    2015-01-01

    The circumpolar north is uniquely vulnerable to the health impacts of climate change. While international Arctic collaboration on health has enhanced partnerships and advanced the health of inhabitants, significant challenges lie ahead. One Health is an approach that considers the connections between the environment, plant, animal and human health. Understanding this is increasingly critical in assessing the impact of global climate change on the health of Arctic inhabitants. The effects of climate change are complex and difficult to predict with certainty. Health risks include changes in the distribution of infectious disease, expansion of zoonotic diseases and vectors, changing migration patterns, impacts on food security and changes in water availability and quality, among others. A regional network of diverse stakeholder and transdisciplinary specialists from circumpolar nations and Indigenous groups can advance the understanding of complex climate-driven health risks and provide community-based strategies for early identification, prevention and adaption of health risks in human, animals and environment. We propose a regional One Health approach for assessing interactions at the Arctic human–animal–environment interface to enhance the understanding of, and response to, the complexities of climate change on the health of the Arctic inhabitants. PMID:26333722

  6. Changes in Spring Vegetation Activity over Eurasian Boreal Forest Associated with Reduction of Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Koh, Y.; Jeong, J. H.; Kim, B. M.; Park, T. W.; Jeong, S. J.

    2017-12-01

    Vegetation activities over the high-latitude in the Northern-Hemisphere are known to be very sensitive to climate change, which can, in turn, affect the entire climate system. This is one of the important feedback effects on global climate change. In this study, we have detected a declining trend of vegetation index in the boreal forest (Taiga) region of Eurasia in early spring from the late 1990s, and confirmed that the cause is closely related to the decrease in winter temperature linked to the Arctic sea ice change. The reduction of Arctic sea ice induces weakening of the Polar vortex around the Arctic, which has a chilling effect throughout Eurasia until the early spring (March) by strengthening the Siberian high in the Eurasian continent. The decrease of vegetation growth is caused by the extreme cold phenomenon directly affecting the growth of the boreal trees. To verify this, we used vegetation-climate coupled models to investigate climate-vegetation sensitivity to sea ice reduction. As a result, when the Arctic sea ice decreased in the model simulation, the vegetation index of the boreal forest, especially needleleaf evergreen trees, decreased as similarly detected by observations.

  7. Contamination of the Arctic reflected in microbial metagenomes from the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Hauptmann, Aviaja L.; Sicheritz-Pontén, Thomas; Cameron, Karen A.; Bælum, Jacob; Plichta, Damian R.; Dalgaard, Marlene; Stibal, Marek

    2017-07-01

    Globally emitted contaminants accumulate in the Arctic and are stored in the frozen environments of the cryosphere. Climate change influences the release of these contaminants through elevated melt rates, resulting in increased contamination locally. Our understanding of how biological processes interact with contamination in the Arctic is limited. Through shotgun metagenomic data and binned genomes from metagenomes we show that microbial communities, sampled from multiple surface ice locations on the Greenland ice sheet, have the potential for resistance to and degradation of contaminants. The microbial potential to degrade anthropogenic contaminants, such as toxic and persistent polychlorinated biphenyls, was found to be spatially variable and not limited to regions close to human activities. Binned genomes showed close resemblance to microorganisms isolated from contaminated habitats. These results indicate that, from a microbiological perspective, the Greenland ice sheet cannot be seen as a pristine environment.

  8. Quaternary Sea-ice history in the Arctic Ocean based on a new Ostracode sea-ice proxy

    USGS Publications Warehouse

    Cronin, T. M.; Gemery, L.; Briggs, W.M.; Jakobsson, M.; Polyak, L.; Brouwers, E.M.

    2010-01-01

    Paleo-sea-ice history in the Arctic Ocean was reconstructed using the sea-ice dwelling ostracode Acetabulastoma arcticum from late Quaternary sediments from the Mendeleyev, Lomonosov, and Gakkel Ridges, the Morris Jesup Rise and the Yermak Plateau. Results suggest intermittently high levels of perennial sea ice in the central Arctic Ocean during Marine Isotope Stage (MIS) 3 (25-45 ka), minimal sea ice during the last deglacial (16-11 ka) and early Holocene thermal maximum (11-5 ka) and increasing sea ice during the mid-to-late Holocene (5-0 ka). Sediment core records from the Iceland and Rockall Plateaus show that perennial sea ice existed in these regions only during glacial intervals MIS 2, 4, and 6. These results show that sea ice exhibits complex temporal and spatial variability during different climatic regimes and that the development of modern perennial sea ice may be a relatively recent phenomenon. ?? 2010.

  9. Marine mammal harvests and other interactions with humans.

    PubMed

    Hovelsrud, Grete K; McKenna, Meghan; Huntington, Henry P

    2008-03-01

    The Arctic is currently undergoing rapid social and environmental changes, and while the peoples of the north have a long history of adapting, the current changes in climate pose unprecedented challenges to the marine mammal-human interactions in the Arctic regions. Arctic marine mammals have been and remain an important resource for many of the indigenous and nonindigenous people of the north. Changes in climate are likely to bring about profound changes to the environment in which these animals live and subsequently to the hunting practices and livelihoods of the people who hunt them. Climate change will lead to reduction in the sea ice extent and thickness and will likely increase shipping through the Northern Sea Route and the Northwest Passage and oil and gas activities in Arctic areas previously inaccessible. Such activities will lead to more frequent interactions between humans and marine mammals. These activities may also change the distribution of marine mammals, affecting the hunters. This paper has three parts. First, an overview of marine mammal harvesting activities in the different circumpolar regions provides a snapshot of current practices and conditions. Second, case studies of selected Arctic regions, indigenous groups, and species provide insight into the manner in which climate change is already impacting marine mammal harvesting activities in the Arctic. Third, we describe how climate change is likely to affect shipping and oil and gas exploration and production activities in the Arctic and describe the possible implications of these changes for the marine mammal populations. We conclude that many of the consequences of climate change are likely to be negative for marine mammal hunters and for marine mammals. Lack of adequate baseline data, however, makes it difficult to identify specific causal mechanisms and thus to develop appropriate conservation measures. Nonetheless, the future of Arctic marine mammals and human uses of them depends on addressing this challenge successfully.

  10. Statistical prediction of September Arctic Sea Ice minimum based on stable teleconnections with global climate and oceanic patterns

    NASA Astrophysics Data System (ADS)

    Ionita, M.; Grosfeld, K.; Scholz, P.; Lohmann, G.

    2016-12-01

    Sea ice in both Polar Regions is an important indicator for the expression of global climate change and its polar amplification. Consequently, a broad information interest exists on sea ice, its coverage, variability and long term change. Knowledge on sea ice requires high quality data on ice extent, thickness and its dynamics. However, its predictability depends on various climate parameters and conditions. In order to provide insights into the potential development of a monthly/seasonal signal, we developed a robust statistical model based on ocean heat content, sea surface temperature and atmospheric variables to calculate an estimate of the September minimum sea ice extent for every year. Although previous statistical attempts at monthly/seasonal forecasts of September sea ice minimum show a relatively reduced skill, here it is shown that more than 97% (r = 0.98) of the September sea ice extent can predicted three months in advance by using previous months conditions via a multiple linear regression model based on global sea surface temperature (SST), mean sea level pressure (SLP), air temperature at 850hPa (TT850), surface winds and sea ice extent persistence. The statistical model is based on the identification of regions with stable teleconnections between the predictors (climatological parameters) and the predictand (here sea ice extent). The results based on our statistical model contribute to the sea ice prediction network for the sea ice outlook report (https://www.arcus.org/sipn) and could provide a tool for identifying relevant regions and climate parameters that are important for the sea ice development in the Arctic and for detecting sensitive and critical regions in global coupled climate models with focus on sea ice formation.

  11. Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic.

    PubMed

    Assis, Jorge; Araújo, Miguel B; Serrão, Ester A

    2018-01-01

    Intraspecific genetic variability is critical for species adaptation and evolution and yet it is generally overlooked in projections of the biological consequences of climate change. We ask whether ongoing climate changes can cause the loss of important gene pools from North Atlantic relict kelp forests that persisted over glacial-interglacial cycles. We use ecological niche modelling to predict genetic diversity hotspots for eight species of large brown algae with different thermal tolerances (Arctic to warm temperate), estimated as regions of persistence throughout the Last Glacial Maximum (20,000 YBP), the warmer Mid-Holocene (6,000 YBP), and the present. Changes in the genetic diversity within ancient refugia were projected for the future (year 2100) under two contrasting climate change scenarios (RCP2.6 and RCP8.5). Models predicted distributions that matched empirical distributions in cross-validation, and identified distinct refugia at the low latitude ranges, which largely coincide among species with similar ecological niches. Transferred models into the future projected polewards expansions and substantial range losses in lower latitudes, where richer gene pools are expected (in Nova Scotia and Iberia for cold affinity species and Gibraltar, Alboran, and Morocco for warm-temperate species). These effects were projected for both scenarios but were intensified under the extreme RCP8.5 scenario, with the complete borealization (circum-Arctic colonization) of kelp forests, the redistribution of the biogeographical transitional zones of the North Atlantic, and the erosion of global gene pools across all species. As the geographic distribution of genetic variability is unknown for most marine species, our results represent a baseline for identification of locations potentially rich in unique phylogeographic lineages that are also climatic relics in threat of disappearing. © 2017 John Wiley & Sons Ltd.

  12. QBO Influence on Polar Stratospheric Variability in the GEOS Chemistry-Climate Model

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Oman, L. D.; Li, F.; Slong, I.-S.; Newman, P. A.; Nielsen, J. E.

    2010-01-01

    The quasi-biennial oscillation modulates the strength of both the Arctic and Antarctic stratospheric vortices. Model and observational studies have found that the phase and characteristics of the quasi-biennial oscillation (QBO) contribute to the high degree of variability in the Arctic stratosphere in winter. While the Antarctic stratosphere is less variable, recent work has shown that Southern Hemisphere planetary wave driving increases in response to "warm pool" El Nino events that are coincident with the easterly phase of the QBO. These events hasten the breakup of the Antarctic polar vortex. The Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) is now capable of generating a realistic QBO, due a new parameterization of gravity wave drag. In this presentation, we will use this new model capability to assess the influence of the QBO on polar stratospheric variability. Using simulations of the recent past, we will compare the modeled relationship between QBO phase and mid-winter vortex strength with the observed Holton-Tan relation, in both hemispheres. We will use simulations of the 21 St century to estimate future trends in the relationship between QBO phase and vortex strength. In addition, we will evaluate the combined influence of the QBO and El Nino/Southern Oscillation (ENSO) on the timing of the breakup of the polar stratospheric vortices in the GEOS CCM. We will compare the influence of these two natural phenomena with trends in the vortex breakup associated with ozone recovery and increasing greenhouse gas concentrations.

  13. Future Interannual Variability of Arctic Sea Ice Area and its Implications for Marine Navigation

    NASA Astrophysics Data System (ADS)

    Vavrus, S. J.; Mioduszewski, J.; Holland, M. M.; Wang, M.; Landrum, L.

    2016-12-01

    As both a symbol and driver of ongoing climate change, the diminishing Arctic sea ice pack has been widely studied in a variety of contexts. Most research, however, has focused on time-mean changes in sea ice, rather than on short-term variations that also have important physical and societal consequences. In this study we test the hypothesis that interannual Arctic sea ice variability will increase in the future by utilizing a set of 40 independent simulations from the Community Earth System Model's Large Ensemble for the 1920-2100 period. The model projects that ice variability will indeed grow substantially in all months but with a strong seasonal dependence in magnitude and timing. The variability increases most during late autumn (November-December) and least during spring. This increase proceeds in a time-transgressive manner over the course of the year, peaking soonest (2020s) in late-summer months and latest (2090s) during late spring. The variability in every month is inversely correlated with the average melt rate, resulting in an eventual decline in both terms as the ice pack becomes seasonal by late century. These projected changes in sea ice variations will likely have significant consequences for marine navigation, which we assess with the empirical Ice Numeral (IN) metric. A function of ice concentration and thickness, the IN quantifies the difficulty in traversing a transect of sea ice-covered ocean as a function of vessel strength. Our results show that although increasingly open Arctic seas will mean generally more favorable conditions for navigation, the concurrent rise in the variability of ice cover poses a competing risk. In particular, future intervals featuring the most rapid declines in ice area that coincide with the highest interannual ice variations will offer more inviting shipping opportunities tempered by less predictable navigational conditions.

  14. Sedimentary organic matter and carbonate variations in the Chukchi Borderland in association with ice sheet and ocean-atmosphere dynamics over the last 155 kyr

    NASA Astrophysics Data System (ADS)

    Rella, S. F.; Uchida, M.

    2011-12-01

    Knowledge on past variability of sedimentary organic carbon in the Arctic Ocean is important to assess natural carbon cycling and transport processes related to global climate changes. However, the late Pleistocene oceanographic history of the Arctic is still poorly understood. In the present study we show sedimentary records of total organic carbon (TOC), CaCO3, benthic foraminiferal δ18O and the coarse grain size fraction from a piston core recovered from the northern Northwind Ridge in the far western Arctic Ocean, a region potentially sensitively responding to past variability in surface current regimes and sedimentary processes such as coastal erosion. An age model based on oxygen stratigraphy, radiocarbon dating and lithological constraints suggests that the piston core records paleoenvironmental changes of the last 155 kyr. TOC shows orbital-scale increases and decreases that can be respectively correlated to the waxing and waning of large ice sheets dominating the Eurasian Arctic, suggesting advection of fine suspended matter derived from glacial erosion to the Northwind Ridge by eastward flowing intermediate water and/or surface water and sea ice during cold episodes of the last two glacial-interglacial cycles. At millennial scales, increases in TOC might correlate to a suite of Dansgaard-Oeschger Stadials between 120 and 45 ka before present (BP) indicating a possible response to abrupt northern hemispheric temperature changes. Between 70 and 45 ka BP, closures and openings of the Bering Strait could have additionally influenced TOC variability. CaCO3 content tends to anti-correlate with TOC on both orbital and millennial time scales, which we interpret in terms of enhanced sediment advection from the carbonate-rich Canadian Arctic via an extended Beaufort Gyre during warm periods of the last two glacial-interglacial cycles and increased organic carbon advection from the Siberian Arctic during cold periods when the Beaufort Gyre contracted. We propose that this pattern may be related to orbital- and millennial-scale variations of dominant atmospheric surface pressure systems expressed in mode shifts of the Arctic Oscillation.

  15. Sedimentary organic matter variations in the Chukchi Borderland over the last 155 kyr

    NASA Astrophysics Data System (ADS)

    Rella, S. F.; Uchida, M.

    2011-03-01

    Knowledge on past variability of sedimentary organic carbon in the Arctic Ocean is important to assess natural carbon cycling and transport processes related to global climate changes. However, the late Pleistocene oceanographic history of the Arctic is still poorly understood. In the present study we show sedimentary records of total organic carbon (TOC), C/N and CaCO3 from a piston core recovered from the northern Northwind Ridge in the far western Arctic Ocean, a region potentially sensitively responding to past variability in surface current regimes and sedimentary processes such as coastal erosion. An age model based on correlation of our CaCO3 record with the benthic δ18O stack, supplemented by lithological constraints, suggests that the piston core records paleoenvironmental changes of the last 155 kyr. According to this age model, TOC and C/N show orbital-scale increases and decreases that can be respectively correlated to the waxing and waning of large ice sheets dominating the Eurasian Arctic, suggesting advection of fine suspended matter derived from glacial erosion to the Northwind Ridge by eastward flowing intermediate water and/or surface water and sea ice during cold episodes of the last two glacial-interglacial cycles. At millennial scales, increases in TOC and C/N appear to correlate to a suite of Dansgaard-Oeschger Stadials between 120 and 40 ka before present (BP) and thus seem to respond to abrupt northern hemispheric temperature changes. Between 65 and 40 ka BP, closures and openings of the Bering Strait could have additionally influenced TOC and C/N variability. CaCO3 content tends to anti-correlate with TOC and C/N on both orbital and millennial time scales, which we interpret as enhanced sediment advection from the carbonate-rich Canadian Arctic via an extended Beaufort Gyre during warm periods of the last two glacial-interglacial cycles and increased terrestrial organic carbon advection from the Siberian Arctic during cold periods when the Beaufort Gyre contracted. We propose that this pattern may be related to orbital- and millennial-scale variations of dominant atmospheric surface pressure systems expressed in mode shifts of the Arctic Oscillation.

  16. Climate-Vegetation-Fire Interactions: Pieces in the Pliocene Polar Puzzle.

    NASA Astrophysics Data System (ADS)

    Fletcher, T.; Brown, K. J.; Warden, L.; Csank, A. Z.; Feng, R.; Higuera, P. E.; Rybczynski, N.; Ballantyne, A.

    2016-12-01

    The largest changes in climate are occurring at the poles, yet the mechanisms causing polar temperature amplification are not well understood, and models underestimate the increase in temperature relative to observation. Critical climate information can be gathered from past warm periods such as the Pliocene (2.6-5 million years ago) when atmospheric CO2 levels were comparable to today. Vegetation can influence climate through direct and indirect feedbacks. It can directly alter surface radiative budgets through albedo and atmospheric radiative budgets through transpiration. It can also alter the radiative budget indirectly by fueling fire. However, the interactions between climate, vegetation and fire in the Pliocene Arctic remain poorly understood. We investigated the climate, plant and charcoal at four early to mid-Pliocene localities in the Canadian High Arctic. Climate results from the vegetation based climate proxy, CRACLE, and bacterial tetraether analysis suggest mean annual temperatures 3°C. While the reconstructed climate was similar between sites, plant community composition differed, suggesting that other biotic or abiotic factors influenced plant community assembly. Results from charcoal analysis suggest forest fires were an integral part of Arctic ecosystems during the Pliocene. At the two sites with clear stratigraphic relationships between the samples, charcoal was present at multiple levels. The recurrent charcoal indicates sufficient biomass to fuel fire and sufficient ignition to spark fires during the Pliocene. Further investigation of the extent of fire across the Arctic may determine if lightning was the ignition source, important for understanding atmospheric energetics in the High Arctic during the early to mid-Pliocene, or if known coal seam fires provided ignition.

  17. Fast ice in the Canadian Arctic: Climatology, Atmospheric Forcing and Relation to Bathymetry

    NASA Astrophysics Data System (ADS)

    Galley, R. J.; Barber, D. G.

    2010-12-01

    Mobile sea ice in the northern hemisphere has experienced significant reductions in both extent and thickness over the last thirty years, and global climate models agree that these decreases will continue. However, the Canadian Arctic Archipelago (CAA) creates a much different icescape than in the central Arctic Ocean due to its distinctive topographic, bathymetric and climatological conditions. Of particular interest is the continued viability of landfast sea ice as a means of transportation and platform for transportation and hunting for the Canadian Inuit that reside in the region, as is the possibility of the Northwest Passage becoming a viable shipping lane in the future. Here we determine the climatological average landfast ice conditions in the Canadian Arctic Archipelago over the last 27 years, we investigate variability and trends in these landfast ice conditions, and we attempt to elucidate the physical parameters conducive to landfast sea ice formation in sub-regions of the CAA during different times of the year. We use the Canadian Ice Service digital sea ice charts between 1983 and 2009 on a 2x2km grid to determine the sea ice concentration-by-type and whether the sea ice in a grid cell was landfast on a weekly, bi-weekly or monthly basis depending on the time of year. North American Regional Reanalysis (NARR) atmospheric data were used in this work, including air temperature, surface level pressure and wind speed and direction. The bathymetric data employed was from the International Bathymetric Chart of the Arctic Ocean. Results indicate that the CAA sea ice regime is not climatologically analogous to the mobile sea ice of the central Arctic Ocean. The sea ice and the atmospheric and bathymetric properties that control the amount and timing of landfast sea ice within the CAA are regionally variable.

  18. How Will Sea Ice Loss Affect the Greenland Ice Sheet? On the Puzzling Features of Greenland Ice-Core Isotopic Composition

    NASA Technical Reports Server (NTRS)

    Pausata, Francesco S. R.; Legrande, Allegra N.; Roberts, William H. G.

    2016-01-01

    The modern cryosphere, Earth's frozen water regime, is in fast transition. Greenland ice cores show how fast theses changes can be, presenting evidence of up to 15 C warming events over timescales of less than a decade. These events, called Dansgaard/Oeschger (D/O) events, are believed to be associated with rapid changes in Arctic sea ice, although the underlying mechanisms are still unclear. The modern demise of Arctic sea ice may, in turn, instigate abrupt changes on the Greenland Ice Sheet. The Arctic Sea Ice and Greenland Ice Sheet Sensitivity (Ice2Ice Chttps://ice2ice.b.uib.noD) initiative, sponsored by the European Research Council, seeks to quantify these past rapid changes to improve our understanding of what the future may hold for the Arctic. Twenty scientists gathered in Copenhagen as part of this initiative to discuss the most recent observational, technological, and model developments toward quantifying the mechanisms behind past climate changes in Greenland. Much of the discussion focused on the causes behind the changes in stable water isotopes recorded in ice cores. The participants discussed sources of variability for stable water isotopes and framed ways that new studies could improve understanding of modern climate. The participants also discussed how climate models could provide insights into the relative roles of local and nonlocal processes in affecting stable water isotopes within the Greenland Ice Sheet. Presentations of modeling results showed how a change in the source or seasonality of precipitation could occur not only between glacial and modern climates but also between abrupt events. Recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. Further, indications from recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. This feature complicates the quantitative interpretation of ice core signals but also makes the stable ice isotope signal a more robust regional indicator of climate, speakers noted. Meeting participants agreed that to further our understanding of these relationships, we need more process-focused field and laboratory campaigns.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Mark A.; Zak, Bernard Daniel; Backus, George A.

    The Arctic region is rapidly changing in a way that will affect the rest of the world. Parts of Alaska, western Canada, and Siberia are currently warming at twice the global rate. This warming trend is accelerating permafrost deterioration, coastal erosion, snow and ice loss, and other changes that are a direct consequence of climate change. Climatologists have long understood that changes in the Arctic would be faster and more intense than elsewhere on the planet, but the degree and speed of the changes were underestimated compared to recent observations. Policy makers have not yet had time to examine themore » latest evidence or appreciate the nature of the consequences. Thus, the abruptness and severity of an unfolding Arctic climate crisis has not been incorporated into long-range planning. The purpose of this report is to briefly review the physical basis for global climate change and Arctic amplification, summarize the ongoing observations, discuss the potential consequences, explain the need for an objective risk assessment, develop scenarios for future change, review existing modeling capabilities and the need for better regional models, and finally to make recommendations for Sandia's future role in preparing our leaders to deal with impacts of Arctic climate change on national security. Accurate and credible regional-scale climate models are still several years in the future, and those models are essential for estimating climate impacts around the globe. This study demonstrates how a scenario-based method may be used to give insights into climate impacts on a regional scale and possible mitigation. Because of our experience in the Arctic and widespread recognition of the Arctic's importance in the Earth climate system we chose the Arctic as a test case for an assessment of climate impacts on national security. Sandia can make a swift and significant contribution by applying modeling and simulation tools with internal collaborations as well as with outside organizations. Because changes in the Arctic environment are happening so rapidly, a successful program will be one that can adapt very quickly to new information as it becomes available, and can provide decision makers with projections on the 1-5 year time scale over which the most disruptive, high-consequence changes are likely to occur. The greatest short-term impact would be to initiate exploratory simulations to discover new emergent and robust phenomena associated with one or more of the following changing systems: Arctic hydrological cycle, sea ice extent, ocean and atmospheric circulation, permafrost deterioration, carbon mobilization, Greenland ice sheet stability, and coastal erosion. Sandia can also contribute to new technology solutions for improved observations in the Arctic, which is currently a data-sparse region. Sensitivity analyses have the potential to identify thresholds which would enable the collaborative development of 'early warning' sensor systems to seek predicted phenomena that might be precursory to major, high-consequence changes. Much of this work will require improved regional climate models and advanced computing capabilities. Socio-economic modeling tools can help define human and national security consequences. Formal uncertainty quantification must be an integral part of any results that emerge from this work.« less

  20. Impacts of Canadian and global black carbon shipping emissions on Arctic climate

    NASA Astrophysics Data System (ADS)

    Shrestha, R.; von Salzen, K.

    2017-12-01

    Shipping activities have increased across the Arctic and are projected to continue to increase in the future. In this study we compare the climate impacts of Canadian and global shipping black carbon (BC) emissions on the Arctic using the Canadian Center for Climate Modelling and Analysis Earth System Model (CanESM4.1). The model simulations are performed with and without shipping emissions at T63 (128 x 64) spectral resolution. Results indicate that shipping activities enhance BC concentrations across the area close to the shipping emissions, which causes increased absorption of solar radiation (direct effect). An impact of shipping on temperatures is simulated across the entire Arctic, with maximum warming in fall and winter seasons. Although global mean temperature changes are very similar between the two simulations, increase in Canadian BC shipping emissions cause warmer Arctic land surface temperature in summer due to the direct radiative effects of aerosol.

  1. Lessons learned in managing crowdsourced data in the Alaskan Arctic.

    NASA Astrophysics Data System (ADS)

    Mastracci, Diana

    2017-04-01

    There is perhaps no place in which the consequences of global climate change can be felt more acutely than the Arctic. However, due to lack of measurements at the high latitudes, validation processes are often problematic. Citizen science projects, co-designed together with Native communities at the interface of traditional knowledge and scientific research, could play a major role in climate change adaptation strategies by advancing knowledge of the Arctic system, strengthening inter-generational bonds and facilitating improved knowledge transfer. This presentation will present lessons learned from a pilot project in the Alaskan Arctic, in which innovative approaches were used to design climate change adaptation strategies to support young subsistence hunters in taking in-situ measurements whilst out on the sea-ice. Both the socio-cultural and hardware/software challenges presented in this presentation, could provide useful guidance for future programs that aim to integrate citizens' with scientific data in Arctic communities.

  2. Sensitivity of the carbon cycle in the Arctic to climate change

    Treesearch

    A.D. McGuire; L.G. Anderson; T.R. Christensen; S. Dallimore; L. Guo; D.J. Hayes; M. Heimann; T.D. Lorenson; R.W. Macdonald; N. Roulet

    2009-01-01

    The recent warming in the Arctic is affecting a broad spectrum of physical, ecological, and human/cultural systems that may be irreversible on century time scales and have the potential to cause rapid changes in the earth system. The response of the carbon cycle of the Arctic to changes in climate is a major issue of global concern, yet there has not been a...

  3. Long-term climate patterns in Alaskan surface temperature and precipitation and their biological consequences

    USGS Publications Warehouse

    Simpson, James J.; Hufford, Gary L.; Fleming, Michael D.; Berg, Jared S.; Ashton, J.B.

    2002-01-01

    Mean monthly climate maps of Alaskan surface temperature and precipitation produced by the parameter-elevation regression on independent slopes model (PRISM) were analyzed. Alaska is divided into interior and coastal zones with consistent but different climatic variability separated by a transition region; it has maximum interannual variability but low long-term mean variability. Pacific decadal oscillation (PDO)- and El Nino Southern Oscillation (ENSO)-type events influence Alaska surface temperatures weakly (1-2/spl deg/C) statewide. PDO has a stronger influence than ENSO on precipitation but its influence is largely localized to coastal central Alaska. The strongest influence of Arctic oscillation (AO) occurs in northern and interior Alaskan precipitation. Four major ecosystems are defined. A major eco-transition zone occurs between the interior boreal forest and the coastal rainforest. Variability in insolation, surface temperature, precipitation, continentality, and seasonal changes in storm track direction explain the mapped ecosystems. Lack of westward expansion of the interior boreal forest into the western shrub tundra is influenced by the coastal marine boundary layer (enhanced cloud cover, reduced insolation, cooler surface and soil temperatures).

  4. Riveting Two-Dimensional Materials: Exploring Strain Physics in Atomically Thin Crystals with Microelectromechanical Systems

    NASA Astrophysics Data System (ADS)

    Christopher, Jason W.

    This thesis includes four studies that explore and compare the impacts of four contributing factors resulting in regional climate change on the North Slope of Alaska based on a numerical simulation approach. These four contributing factors include global warming due to changes in radiative forcing, sea ice decline, earlier Arctic lake ice-off, and atmospheric circulation change over the Arctic. A set of dynamically downscaled regional climate products has been developed for the North Slope of Alaska over the period from 1950 up to 2100. A fine grid spacing (10 km) is employed to develop products that resolve detailed mesoscale features in the temperature and precipitation fields on the North Slope of Alaska. Processes resolved include the effects of topography on regional climate and extreme precipitation events. The Representative Concentration Pathway (RCP) 4.5 scenario projects lower rates of precipitation and temperature increase than RCP8.5 compared to the historical product. The increases of precipitation and temperature trends in the RCP8.5 projection are higher in fall and winter compared to the historical product and the RCP4.5 projection. The impacts of sea ice decline are addressed by conducting sensitivity experiments employing both an atmospheric model and a permafrost model. The sea ice decline impacts are most pronounced in late fall and early winter. The near surface atmospheric warming in late spring and early summer due to sea ice decline are projected to be stronger in the 21st century. Such a warming effect also reduces the total cloud cover on the North Slope of Alaska in summer by destabilizing the atmospheric boundary layer. The sea ice decline warms the atmosphere and the permafrost on the North Slope of Alaska less strongly than the global warming does, while it primarily results in higher seasonal variability of the positive temperature trend that is bigger in late fall and early winter than in other seasons. The ongoing and projected earlier melt of the Arctic lake ice also contributes to regional climate change on the Northern coast of Alaska, though only on a local and seasonal scale. Heat and moisture released from the opened lake surface primarily propagate downwind of the lakes. The impacts of the earlier lake ice-off on both the atmosphere and the permafrost underneath are comparable to those of the sea ice decline in late spring and early summer, while they are roughly six times weaker than those of sea ice decline in late fall and early winter. The permafrost warming resulted from the earlier lake ice-off is speculated to be stronger with more snowfall expected in the 21st century, while the overall atmospheric warming of global origin is speculated to continue growing. Two major Arctic summer-time climatic variability patterns, the Arctic Oscillation (AO) and the Arctic Dipole (AD), are evaluated in 12 global climate models in Coupled Model Intercomparison Program Phase 5 (CMIP5). A combined metric ranking approach ranks the models by the Pattern Correlation Coefficients (PCCs) and explained variances calculated from the model-produced summer AO and AD over the historical period. Higher-ranked models more consistently project a positive trend of the summer AO index and a negative trend of summer AD index in their RCP8.5 projections. Such long-term trends of large-scale climate patterns will inhibit the increase in air temperature while favoring the increase in precipitation on the North Slope of Alaska. In summary, this thesis bridges the gaps by quantifying the relative importance of multiple contributing factors to the regional climate change on the North Slope of Alaska. Global warming is the leading contributing factor, while other factors primarily contribute to the spatial and temporal asymmetries of the regional climate change. The results of this thesis lead to a better understanding of the physical mechanisms behind the climatic impacts to the hydrological and ecological changes of the North Slope of Alaska that have been become more severe and more frequent. They, together with the developed downscaling data products, serve as the climatic background information in such fields of study.

  5. Arctic Council Nations Could Encourage Development of Climate Indicator: Flux to the Atmosphere from Arctic Permafrost Carbon

    NASA Astrophysics Data System (ADS)

    Ekwurzel, B.; Yona, L.; Natali, S.; Holmes, R. M.; Schuur, E.

    2015-12-01

    Permafrost regions store almost twice the carbon in the atmosphere (Tarnocai et al 2009). As climate warms a proportion of this carbon will be released as carbon dioxide and methane. The Arctic Council may be best suited to harness international scientific collaboration for policy relevant knowledge about the global impacts of permafrost thaw. Scientists in Arctic Council and observer states have historically collaborated on permafrost research (e.g. Permafrost Carbon Network, part of Study of Environmental Arctic Change (SEARCH) project). This work increased knowledge of permafrost carbon pool size and vulnerability. However, data gaps persist across the Arctic. Despite gaps, numerous studies directly inform international policy negotiations aiming to stay below 2° C. Some suggest "permafrost carbon feedback" may comprise 3 to 11% of total allowed emissions through 2100 under a RCP4.5 (Schaefer et al2014). Understanding and accounting for future permafrost atmospheric carbon release requires science and policy coordination that the Arctic Council could incentivize. For example, Council nations could convene scientists and stakeholders to develop a Permafrost-Climate Indicator providing more direct decision support than current permafrost indicators, and identify research needed for a periodic estimate of Arctic permafrost CO2 and CH4 emissions. This presentation covers current challenges scientists and policymakers may face to develop a practical and robust Permafrost Climate Indicator. For example, which timescales are most appropriate for international emissions commitments? Do policy-relevant timescales align with current scientific knowledge? What are the uncertainties and how can they be decreased? We present likely strengths and challenges of a Permafrost Climate Indicator co-developed by scientists and stakeholders. Potential greenhouse gas atmospheric flux from Arctic permafrost carbon may be greater than some nations' United Nations emissions reductions commitments. Investing in better understanding greenhouse gas emissions from thawing permafrost is relevant for all nations and essential to setting global emission targets.

  6. Improving understanding of controls on spatial variability in methane fluxes in Arctic tundra

    NASA Astrophysics Data System (ADS)

    Davidson, Scott J.; Sloan, Victoria; Phoenix, Gareth; Wagner, Robert; Oechel, Walter; Zona, Donatella

    2015-04-01

    The Arctic is experiencing rapid climate change relative to the rest of the globe, and this increase in temperature has feedback effects across hydrological and thermal regimes, plant community distribution and carbon stocks within tundra soils. Arctic wetlands account for a significant amount of methane emissions from natural ecosystems to the atmosphere and with further permafrost degradation under a warming climate, these emissions are expected to increase. Methane (CH4) is an extremely important component of the global carbon cycle with a global warming potential 28.5 times greater than carbon dioxide over a 100 year time scale (IPCC, 2013). In order to validate carbon cycle models, modelling methane at broader landscape scales is needed. To date direct measurements of methane have been sporadic in time and space which, while capturing some key controls on the spatial heterogeneity, make it difficult to accurately upscale methane emissions to the landscape and regional scales. This study investigates what is controlling the spatial heterogeneity of methane fluxes across Arctic tundra. We combined over 300 portable chamber observations from 13 micro-topographic positions (with multiple vegetation types) across three locations spanning a 300km latitudinal gradient in Northern Alaska from Barrow to Ivotuk with synchronous measurements of environmental (soil temperature, soil moisture, water table, active layer thaw depth, pH) and vegetation (plant community composition, height, sedge tiller counts) variables to evaluate key controls on methane fluxes. To assess the diurnal variation in CH4 fluxes, we also performed automated chamber measurements in one study site (Barrow) location. Multiple statistical approaches (regression tree and multiple linear regression) were used to identify key controlling variables and their interactions. Methane emissions across all sites ranged from -0.08 to 15.3 mg C-CH4 m-2 hr-1. As expected, soil moisture was the main control determining the direction and magnitude of methane flux, with methane emissions occurring in saturated micro-topographic locations and drier sites showing low rates of uptake. An interesting exception was in tussock sedge vegetation, which had a deep water table (approximately 20cm - 40cm below the soil surface) but which emitted methane in comparable quantities to saturated communities late in the growing season. This highlights the importance of plant transport and of understanding temporal variation in fluxes. Automated chamber measurements from peak and late growing season showed minimal diurnal trends in methane fluxes, indicating that short-term chamber measurements are representative of average diurnal CH4 fluxes. The breadth of environmental and vegetation variables measured across a wide spatial extent of arctic tundra vegetation communities within this study highlights the overriding controls on methane emissions and will significantly help with upscaling methane emissions from the plot scale to the landscape scale. Reference: IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi:10.1017/CBO97811074153

  7. Climate events synchronize the dynamics of a resident vertebrate community in the high Arctic.

    PubMed

    Hansen, Brage B; Grøtan, Vidar; Aanes, Ronny; Sæther, Bernt-Erik; Stien, Audun; Fuglei, Eva; Ims, Rolf A; Yoccoz, Nigel G; Pedersen, Ashild Ø

    2013-01-18

    Recently accumulated evidence has documented a climate impact on the demography and dynamics of single species, yet the impact at the community level is poorly understood. Here, we show that in Svalbard in the high Arctic, extreme weather events synchronize population fluctuations across an entire community of resident vertebrate herbivores and cause lagged correlations with the secondary consumer, the arctic fox. This synchronization is mainly driven by heavy rain on snow that encapsulates the vegetation in ice and blocks winter forage availability for herbivores. Thus, indirect and bottom-up climate forcing drives the population dynamics across all overwintering vertebrates. Icing is predicted to become more frequent in the circumpolar Arctic and may therefore strongly affect terrestrial ecosystem characteristics.

  8. Remarkable separability of circulation response to Arctic sea ice loss and greenhouse gas forcing

    NASA Astrophysics Data System (ADS)

    McCusker, K. E.; Kushner, P. J.; Fyfe, J. C.; Sigmond, M.; Kharin, V. V.; Bitz, C. M.

    2017-08-01

    Arctic sea ice loss may influence midlatitude climate by changing large-scale circulation. The extent to which climate change can be understood as greenhouse gas-induced changes that are modulated by this loss depends on how additive the responses to the separate influences are. A novel sea ice nudging methodology in a fully coupled climate model reveals that the separate effects of doubled atmospheric carbon dioxide (CO2) concentrations and associated Arctic sea ice loss are remarkably additive and insensitive to the mean climate state. This separability is evident in several fields throughout most of the year, from hemispheric to synoptic scales. The extent to which the regional response to sea ice loss sometimes agrees with and sometimes cancels the response to CO2 is quantified. The separability of the responses might provide a means to better interpret the diverse array of modeling and observational studies of Arctic change and influence.

  9. Western Arctic Temperature Sensitivity Varies under Different Mean States

    NASA Astrophysics Data System (ADS)

    Daniels, W.; Russell, J. M.; Morrill, C.; Longo, W. M.; Giblin, A. E.; Holland-Stergar, P.; Hu, A.; Huang, Y.

    2017-12-01

    The Arctic is warming faster than anywhere on earth. Predictions of future change, however, are hindered by uncertainty in the mechanisms that underpin Arctic amplification. Data from Beringia (Alaska and Eastern Siberia) are particularly inconclusive with regards to both glacial-interglacial climate change as well as the presence or absence of abrupt climate change events such as the Younger Dryas. Here we investigate temperature change in Beringia from the last glacial maximum (LGM) to present using a unique 30 kyr lacustrine record of leaf wax hydrogen isotope ratios (δDwax) from Northern Alaska. We evaluate our results in the context of PMIP3 climate simulations as well as sensitivity tests of the effects of sea level and Bering Strait closure on Arctic Alaskan climate. The amplitude of LGM cooling in Alaska (-3.2 °C relative to pre-industrial) is smaller than other parts of North America and areas proximal to LGM ice sheets, but similar to Arctic Asia and Europe. This suggests that the local feedbacks (vegetation, etc.) had limited impacts on regional temperatures during the last ice-age, and suggests most of the Arctic exhibited similar responses to global climate boundary conditions. Deglacial warming was superimposed by a series of rapid warming events that encompass most of the temperature increase. These events are largely synchronous with abrupt events in the North Atlantic, but are amplified, muted, or even reversed in comparison depending on the mean climate state. For example, we observe warming during Heinrich 1 and during the submergence of the Bering Land Bridge, which are associated with cooling in the North Atlantic. Climate modeling suggests that opening of the Bering Strait controlled the amplitude and sign of millennial-scale temperature changes across the glacial termination.

  10. Reconstruction of Past Climatic Variability

    DTIC Science & Technology

    1976-03-01

    Research Projects Agency/IPT 1400 Wilson Boulevard 7$ 10 . PROGRAM ELEMENT, PROJECT, TASK AREA S WORK UNIT NUMBERS 62706E AO 2221-3 Mr WCPOWT...Conclusions " II. INTRODUCTION 8 III. COLLECTIONS 10 A. North American Temperate Sites 10 B. North American Arctic Sites 10 C. European...Work Time Required to Collect and Process a ^ ^ 200- to 400-Year Ring-Width Chronology Statistics for 10 Tree-Ring Chronologies

  11. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, William

    RASM is a multi-disciplinary project, which brings together researchers from six state universities, one military postgraduate school, and one DoE laboratory to address the core modeling objectives of the arctic research community articulated in the Arctic System Modeling report by Roberts et al. (2010b). This report advocates the construction of a regional downscaling tool to generate probabilistic decadal projections of Greenland ice sheet retreat, evolution of arctic sea ice cover, changes in land surface vegetation, and regional processes leading to arctic amplification. Unified coupled models such as RASM are ideal for this purpose because they simulate fine-scale physics, essential formore » the realistic representation of intra-annual variability, in addition to processes fundamental to long term climatic shifts (Hurrell et al. 2009). By using RASM with boundary conditions from a global model, we can generate many-member ensembles essential for understanding uncertainty in regional climate projections (Hawkins and Sutton 2009). This probabilistic approach is computationally prohibitive for high-resolution global models in the foreseeable future, and also for regional models interactively nested within global simulations. Yet it is fundamental for quantifying uncertainty in decadal forecasts to make them useful for decision makers (Doherty et al. 2009). For this reason, we have targeted development of ensemble generation techniques as a core project task (Task 4.5). Environmental impact assessment specialists need high-fidelity regional ensemble projections to improve the accuracy of their work (Challinor et al. 2009; Moss et al. 2010). This is especially true of the Arctic, where economic, social and national interests are rapidly reshaping the high north in step with regional climate change. During the next decade, considerable oil and gas discoveries are expected across many parts of the marine and terrestrial Arctic (Gautier et al. 2009), the economics of the Northern Sea Route will steadily improve (Arctic Council 2009), and sovereign claims over the Arctic Ocean will increasingly be subject to international negotiations (Proelss 2009). Issues such as these have led to an expanding demand for Arctic climate projections to aid national and commercial decisions. However, detailed information from existing models is lacking. RASM will enhance the existing Arctic system modeling capabilities and align them with the scientific and societal needs outlined above. The science involved in the development of RASM will be integrated with teaching and training at a few different levels. RASM PIs will supervise at least six postdoctoral and doctoral students with additional involvement of undergraduate research assistants. RASM postdoctoral fellows and graduate trainees will benefit from being a part of a large, collaborative, and multi-disciplinary research projects employing state-of-the-art modeling and computational tools. They will also have the opportunity to contribute to the UTEP-led education and outreach effort developed specifically for RASM. The UTEP team will use RASM as a platform for education and outreach. First, we will develop products for public dissemination, such as curriculum units, lesson plans and other materials (simulations, movies, and images) for use by students and teachers in high school and university classrooms. Second, we will facilitate bringing RASM PIs, postdocs, and graduate students into the classroom, through electronic mentorship and by contributing content via online lectures and presentations. Third, by the use of problem-based learning (PBL) approaches, we will provide real-world scenarios and problems enabling students to do research and develop position papers or presentations on topics related to RASM. (Problem-based learning is a student-centered, inquiry-based approach in which students work in teams to solve challenging, open-ended problems.) Fourth, we will develop teacher-training materials that will be developed into workshops (face-to-face or online) to help teachers understand how to use the materials we supply. Overall, we will provide a broad, and long-term RASM program for education and outreach. RASM education and outreach activities will target underrepresented populations - in particular, Hispanic students and teachers. For example, the UTEP student body is more than 70 percent Hispanic and 55 percent female, and the majority of students are the first in their families to attend college. Students from underrepresented groups will be given the chance to expand their understanding of the different scientific knowledge and processes associated with RASM. We will develop an eye-catching RASM website to include information about the project, model results and educational materials, and lists of RASM publications and presentations.« less

  12. Arctic Circle Traverse 2010 (ACT-10): South East Greenland snow accumulation variability from firn coring and ice sounding radar

    NASA Astrophysics Data System (ADS)

    Forster, R. R.; Miege, C.; Box, J. E.; McConnell, J.; Spikes, V. B.; Burgess, E. W.

    2010-12-01

    The Greenland Ice Sheet plays an important role in Earth’s climate system evolution. The snow accumulation rate is the largest single mass budget term. With only 14% of the ice sheet area, Southeast Greenland contains the highest accumulation rates, accounting for one third of the total snow accumulation and annual variability. The high accumulation rates have made the region less desirable for long climate record ice cores and therefore, contain relatively very few in situ measurements to constrain the ice sheet mass budget. We present annual snow accumulation rates from the Arctic Circle Traverse 2010 (ACT-10). During April and May 2010 we acquired three 50 m firn cores connected by surface-based 400 MHz ground penetrating radar (GPR) in Southeast Greenland. The traverse repeated and extended the original Arctic Circle Traverse in 2004 (Spikes et al., 2004). Dating is achieved using geochemical analysis of the cores to identify isochronal layers detected by the GPR yielding annual accumulation estimates along the traverse between the core sites. The 300 km ACT-10 GPR snowmobile traverse extended the ACT-04 path 80 km to the lowest elevation core site at 1776 m. Meanwhile, airborne radars, operating as part of NASA’s Operation IceBridge also acquired data over the full length of the ACT-10 path, simultaneously with a portion of the traverse and within days for the remaining segments. The IceBridge and ACT-10 data are to be combined in a calibration effort such that snow accumulation rates may be mapped elsewhere in Greenland and even in Antarctica.

  13. Quantifying and predicting historical and future patterns of carbon fluxes from the North American Continent to Ocean

    NASA Astrophysics Data System (ADS)

    Tian, H.; Zhang, B.; Xu, R.; Yang, J.; Yao, Y.; Pan, S.; Lohrenz, S. E.; Cai, W. J.; He, R.; Najjar, R. G.; Friedrichs, M. A. M.; Hofmann, E. E.

    2017-12-01

    Carbon export through river channels to coastal waters is a fundamental component of the global carbon cycle. Changes in the terrestrial environment, both natural (e.g., climatic change, enriched CO2 concentration, and elevated ozone concentration) and anthropogenic (e.g, deforestation, cropland expansion, and urbanization) have greatly altered carbon production, stocks, decomposition, movement and export from land to river and ocean systems. However, the magnitude and spatiotemporal patterns of lateral carbon fluxes from land to oceans and the underlying mechanisms responsible for these fluxes remain far from certain. Here we applied a process-based land model with explicit representation of carbon processes in stream and rivers (Dynamic Land Ecosystem Model: DLEM 2.0) to examine how changes in climate, land use, atmospheric CO2, and nitrogen deposition have affected the carbon fluxes from North American continent to Ocean during 1980-2015. Our simulated results indicated that terrestrial carbon export shows substantially spatial and temporal variability. Of the five sub-regions (Arctic coast, Pacific coast, Gulf of Mexico, Atlantic coast, and Great lakes), the Arctic sub-region provides the highest DOC flux, whereas the Gulf of Mexico sub-region provided the highest DIC flux. However, terrestrial carbon export to the arctic oceans showed increasing trends for both DOC and DIC, whereas DOC and DIC export to the Gulf of Mexico decreased in the recent decades. Future pattern of riverine carbon fluxes would be largely dependent on the climate change and land use scenarios.

  14. The effect on Arctic climate of atmospheric meridional energy-transport changes studied based on the CESM climate model

    NASA Astrophysics Data System (ADS)

    Grand Graversen, Rune

    2017-04-01

    The Arctic amplification of global warming, and the pronounced Arctic sea-ice retreat constitute some of the most alarming signs of global climate change. These Arctic changes are likely a consequence of a combination of several processes, for instance enhanced uptake of solar radiation in the Arctic due to a decrease of sea ice (the ice-albedo feedback), and increase in the local Arctic greenhouse effect due to enhanced moister flux from lower latitudes. Many of the proposed processes appear to be dependent on each other, for instance an increase in water-vapour advection to the Arctic enhances the greenhouse effect in the Arctic and the longwave radiation to the surface, leading to sea-ice melt and enhancement of the ice-albedo feedback. The effects of albedo changes and other radiative feedbacks have been investigated in earlier studies based on model experiments designed to examine these effects specifically. Here we instead focus on the effects of meridional transport changes into the Arctic, both of moister and dry-static energy. Hence we here present results of model experiments with the CESM climate model designed specifically to extract the effects of the changes of the two transport components. In the CESM model the moister transport to the Arctic increases, whereas the dry-static transport decreases in response to a doubling of CO2. This is in agreement with other model results. The model is now forced with these transport changes of water-vapour and dry-static energy associated with a CO2 doubling. The results show that changes of the water-vapour transport lead to Arctic warming. This is partly a consequence of the ice-albedo feedback due to sea-ice melt caused by the change of the water-vapour advection. The changes of the dry-static transport lead to Arctic cooling, which however is smaller than the warming induced by the water-vapour component. Hence this study support the hypothesis that changes in the atmospheric circulation contribute to the Arctic temperature amplification of the ongoing global warming.

  15. An Investigation of the Radiative Effects and Climate Feedbacks of Sea Ice Sources of Sea Salt Aerosol

    NASA Astrophysics Data System (ADS)

    Horowitz, H. M.; Alexander, B.; Bitz, C. M.; Jaegle, L.; Burrows, S. M.

    2017-12-01

    In polar regions, sea ice is a major source of sea salt aerosol through lofting of saline frost flowers or blowing saline snow from the sea ice surface. Under continued climate warming, an ice-free Arctic in summer with only first-year, more saline sea ice in winter is likely. Previous work has focused on climate impacts in summer from increasing open ocean sea salt aerosol emissions following complete sea ice loss in the Arctic, with conflicting results suggesting no net radiative effect or a negative climate feedback resulting from a strong first aerosol indirect effect. However, the radiative forcing from changes to the sea ice sources of sea salt aerosol in a future, warmer climate has not previously been explored. Understanding how sea ice loss affects the Arctic climate system requires investigating both open-ocean and sea ice sources of sea-salt aerosol and their potential interactions. Here, we implement a blowing snow source of sea salt aerosol into the Community Earth System Model (CESM) dynamically coupled to the latest version of the Los Alamos sea ice model (CICE5). Snow salinity is a key parameter affecting blowing snow sea salt emissions and previous work has assumed constant regional snow salinity over sea ice. We develop a parameterization for dynamic snow salinity in the sea ice model and examine how its spatial and temporal variability impacts the production of sea salt from blowing snow. We evaluate and constrain the snow salinity parameterization using available observations. Present-day coupled CESM-CICE5 simulations of sea salt aerosol concentrations including sea ice sources are evaluated against in situ and satellite (CALIOP) observations in polar regions. We then quantify the present-day radiative forcing from the addition of blowing snow sea salt aerosol with respect to aerosol-radiation and aerosol-cloud interactions. The relative contributions of sea ice vs. open ocean sources of sea salt aerosol to radiative forcing in polar regions is discussed.

  16. Detecting regional carbon-climate feedbacks in the Arctic

    NASA Astrophysics Data System (ADS)

    Parazoo, N.; Koven, C.; Miller, C. E.; Commane, R.; Wofsy, S.; Frankenberg, C.; Luus, K. A.

    2016-12-01

    The Arctic Boreal Zone (ABZ) is one of the most important and sensitive regions on Earth in the context of climate change. Recent evidence points to ongoing changes to ecosystem metabolism and permafrost that have potential to significantly feed back to global climate processes. Our ability to detect and quantify carbon-climate feedbacks in the ABZ requires methods to measure long term changes in the rate of ecosystem carbon exchange across geographical regions and over seasonal timescales, disentangle fluxes from permafrost thaw and biosphere uptake, and resolve functional and structural characteristics of diverse ABZ ecosystems. In this study, we analyze satellite and airborne observations of atmospheric CO2 and solar induced chlorophyll fluorescence with climatically forced CO2 flux simulations to assess the detectability of Alaskan biosphere carbon cycle signals in current and future climates. A key finding is that current airborne and satellite measurements of CO2 in Alaska can accurately quantify interannual and long term changes in peak summer uptake, but are insufficient to capture regional changes in cold season emissions. As the potential for Arctic carbon budgets to become impacted by permafrost thaw and cold season emissions increases, strategies focused on year-round vertical profiles and improved spatial sampling will be needed to track carbon balance changes. We also present evidence that measurements of chlorophyll fluorescence, a variable tightly linked to terrestrial vegetation photosynthesis, provide critical information on the timing of spring photosynthetic onset and duration of growing season carbon uptake in tundra and boreal ecosystems. Comparisons to vegetation indices such as NDVI have shed light on structural and functional controls of seasonal carbon fluxes, and helped refine estimates of the overall carbon balance of the ABZ. A key theme in this study is emphasis of strategies that combine satellite, airborne, and ground based platforms to measure CO2 and fluorescence to refine our integrated understanding of the ABZ.

  17. Model Estimate of Pan-Arctic Lakes and Wetlands Methane Emissions and Their Future Climate Response

    NASA Astrophysics Data System (ADS)

    Chen, X.; Bohn, T. J.; Maksyutov, S. S.; Lettenmaier, D. P.

    2013-12-01

    Lakes and wetlands are important sources of the greenhouse gas CH4, whose emission rate is sensitive to climate. The northern high latitudes, which are especially susceptible to climate change, contain about 50% of the world's lakes and wetlands. Given predicted changes in the climate of this region over the next century (IPCC AR5 scenarios), there is concern about a possible positive feedback resulting from methane emissions from the region's wetlands and lakes. To study the climate response of emissions from northern high latitude lakes and wetlands, we employed a large-scale hydrology and carbon cycling model (Variable Infiltration Capacity model; VIC) over the Pan-Arctic domain, which was linked to an atmospheric model (Japan's National Institute of Environmental Studies transport model; NIES TM). In particular, the VIC model simulates the land surface hydrology and carbon cycling across a dynamic lake-wetland continuum, while NIES TM models the atmospheric mixing and 3-dimension transport of methane emitted. The VIC model includes a distributed wetland water table scheme, which accounts for microtopography around the lakes and simulates variations in inundated area that are calibrated to match a passive microwave based inundation product. Per-unit-area carbon uptake and methane emissions at the land surface have been calibrated using extensive in situ observations at West Siberia. Also, the atmospheric methane concentration from this linked model run was verified for the recent 5 years with satellite observations from Aqua's Atmospheric Infrared Sounder (AIRS) and Envisat's Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) instruments. Using RCP4.5 and RCP8.5 future climate scenarios, we examine CH4 emissions from high latitude lakes and wetlands, as well as their net greenhouse warming potential, over the next 3 centuries across the Pan-Arctic domain. We also assess relative uncertainties in emissions from each of the sources.

  18. Climate Modeling and Causal Identification for Sea Ice Predictability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunke, Elizabeth Clare; Urrego Blanco, Jorge Rolando; Urban, Nathan Mark

    This project aims to better understand causes of ongoing changes in the Arctic climate system, particularly as decreasing sea ice trends have been observed in recent decades and are expected to continue in the future. As part of the Sea Ice Prediction Network, a multi-agency effort to improve sea ice prediction products on seasonal-to-interannual time scales, our team is studying sensitivity of sea ice to a collection of physical process and feedback mechanism in the coupled climate system. During 2017 we completed a set of climate model simulations using the fully coupled ACME-HiLAT model. The simulations consisted of experiments inmore » which cloud, sea ice, and air-ocean turbulent exchange parameters previously identified as important for driving output uncertainty in climate models were perturbed to account for parameter uncertainty in simulated climate variables. We conducted a sensitivity study to these parameters, which built upon a previous study we made for standalone simulations (Urrego-Blanco et al., 2016, 2017). Using the results from the ensemble of coupled simulations, we are examining robust relationships between climate variables that emerge across the experiments. We are also using causal discovery techniques to identify interaction pathways among climate variables which can help identify physical mechanisms and provide guidance in predictability studies. This work further builds on and leverages the large ensemble of standalone sea ice simulations produced in our previous w14_seaice project.« less

  19. Can Arctic Sea Ice Decline Weaken the Atlantic Meridional Overturning Circulation?

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Sevellec, F.; Liu, W.

    2017-12-01

    The ongoing decline of Arctic sea ice exposes the ocean to anomalous surface heat and freshwater fluxes, resulting in positive buoyancy anomalies that can affect ocean circulation. In this study (detailed in Sevellec, Fedorov, Liu 2017, Nature Climate Change) we apply an optimal flux perturbation framework and comprehensive climate model simulations (using CESM) to estimate the sensitivity of the Atlantic meridional overturning circulation (AMOC) to such buoyancy forcing over the Arctic and globally, and more generally AMOC sensitivity to sea ice decline. We find that on decadal timescales flux anomalies over the subpolar North Atlantic have the largest impact on the AMOC; however, on multi-decadal timescales (longer than 20 years), anomalies in the Arctic become more important. These positive buoyancy anomalies from the Arctic spread to the North Atlantic, weakening the AMOC and its poleward heat transport after several decades. Therefore, the Arctic sea ice decline may explain the suggested slow-down of the AMOC and the "Warming Hole" persisting in the subpolar North Atlantic. Further, we discuss how the proposed connection, i.e. Arctic sea ice contraction would lead to an AMOC slow-down, varies across different earth system models. Overall, this study demonstrates that Arctic sea ice decline can play an active role in ocean and climate change.

  20. Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations

    NASA Astrophysics Data System (ADS)

    Jaiser, Ralf; Nakamura, Tetsu; Handorf, Dörthe; Romanowsky, Erik; Dethloff, Klaus; Ukita, Jinro; Yamazaki, Koji

    2017-04-01

    In recent years, Arctic regions showcased the most pronounced signals of a changing climate: Sea ice is reduced by more the ten percent per decade. At the same time, global warming trends have their maximum in Arctic latitudes often labled Arctic Amplification. There is strong evidence that amplified Arctic changes feed back into mid-latitudes in winter. We identified mechanisms that link recent Arctic changes through vertically propagating planetary waves to events of a weakened stratospheric polar vortex. Related anomalies propagate downward and lead to negative AO-like situations in the troposphere. European winter climate is sensitive to negative AO situations in terms of cold air outbreaks that are likely to occur more often in that case. These results based on ERA-Interim reanalysis data do not allow to dismiss other potential forcing factors leading to observed mid-latitude climate changes. Nevertheless, properly designed Atmospheric General Circulation Model (AGCM) experiments with AFES and ECHAM6 are able to reproduce observed atmospheric circulation changes if only observed sea ice changes in the Arctic are prescribed. This allows to deduce mechanisms that explain how Arctic Amplification can lead to a negative AO response via a stratospheric pathway. Further investigation of these mechanisms may feed into improved prediction systems.

  1. Exploring the variability of aerosol particle composition in the Arctic: a study from the springtime ACCACIA campaign

    NASA Astrophysics Data System (ADS)

    Young, G.; Jones, H. M.; Darbyshire, E.; Baustian, K. J.; McQuaid, J. B.; Bower, K. N.; Connolly, P. J.; Gallagher, M. W.; Choularton, T. W.

    2015-10-01

    Single-particle compositional analysis of filter samples collected on-board the FAAM BAe-146 aircraft is presented for six flights during the springtime Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign (March-April 2013). Scanning electron microscopy was utilised to derive size distributions and size-segregated particle compositions. These data were compared to corresponding data from wing-mounted optical particle counters and reasonable agreement between the calculated number size distributions was found. Significant variability in composition was observed, with differing external and internal mixing identified, between air mass trajectory cases based on HYSPLIT analyses. Dominant particle classes were silicate-based dusts and sea salts, with particles notably rich in K and Ca detected in one case. Source regions varied from the Arctic Ocean and Greenland through to northern Russia and the European continent. Good agreement between the back trajectories was mirrored by comparable compositional trends between samples. Silicate dusts were identified in all cases, and the elemental composition of the dust was consistent for all samples except one. It is hypothesised that long-range, high-altitude transport was primarily responsible for this dust, with likely sources including the Asian arid regions.

  2. Arctic freshwater synthesis: Introduction

    NASA Astrophysics Data System (ADS)

    Prowse, T.; Bring, A.; Mârd, J.; Carmack, E.

    2015-11-01

    In response to a joint request from the World Climate Research Program's Climate and Cryosphere Project, the International Arctic Science Committee, and the Arctic Council's Arctic Monitoring and Assessment Program, an updated scientific assessment has been conducted of the Arctic Freshwater System (AFS), entitled the Arctic Freshwater Synthesis (AFSΣ). The major reason for joint request was an increasing concern that changes to the AFS have produced, and could produce even greater, changes to biogeophysical and socioeconomic systems of special importance to northern residents and also produce extra-Arctic climatic effects that will have global consequences. Hence, the key objective of the AFSΣ was to produce an updated, comprehensive, and integrated review of the structure and function of the entire AFS. The AFSΣ was organized around six key thematic areas: atmosphere, oceans, terrestrial hydrology, terrestrial ecology, resources and modeling, and the review of each coauthored by an international group of scientists and published as separate manuscripts in this special issue of Journal of Geophysical Research-Biogeosciences. This AFSΣ—Introduction reviews the motivations for, and foci of, previous studies of the AFS, discusses criteria used to define the domain of the AFS, and details key characteristics of the definition adopted for the AFSΣ.

  3. Estimating the impact of internal climate variability on ice sheet model simulations

    NASA Astrophysics Data System (ADS)

    Tsai, C. Y.; Forest, C. E.; Pollard, D.

    2016-12-01

    Rising sea level threatens human societies and coastal habitats and melting ice sheets are a major contributor to sea level rise (SLR). Thus, understanding uncertainty of both forcing and variability within the climate system is essential for assessing long-term risk of SLR given their impact on ice sheet evolution. The predictability of polar climate is limited by uncertainties from the given forcing, the climate model response to this forcing, and the internal variability from feedbacks within the fully coupled climate system. Among those sources of uncertainty, the impact of internal climate variability on ice sheet changes has not yet been robustly assessed. Here we investigate how internal variability affects ice sheet projections using climate fields from two Community Earth System Model (CESM) large-ensemble (LE) experiments to force a three-dimensional ice sheet model. Each ensemble member in an LE experiment undergoes the same external forcings but with unique initial conditions. We find that for both LEs, 2m air temperature variability over Greenland ice sheet (GrIS) can lead to significantly different ice sheet responses. Our results show that the internal variability from two fully coupled CESM LEs can cause about 25 35 mm differences of GrIS's contribution to SLR in 2100 compared to present day (about 20% of the total change), and 100m differences of SLR in 2300. Moreover, only using ensemble-mean climate fields as the forcing in ice sheet model can significantly underestimate the melt of GrIS. As the Arctic region becomes warmer, the role of internal variability is critical given the complex nonlinear interactions between surface temperature and ice sheet. Our results demonstrate that internal variability from coupled atmosphere-ocean general circulation model can affect ice sheet simulations and the resulting sea-level projections. This study highlights an urgent need to reassess associated uncertainties of projecting ice sheet loss over the next few centuries to obtain robust estimates of the contribution of ice sheet melt to SLR.

  4. Earth System Modeling and Field Experiments in the Arctic-Boreal Zone - Report from a NASA Workshop

    NASA Technical Reports Server (NTRS)

    Sellers, Piers; Rienecker Michele; Randall, David; Frolking, Steve

    2012-01-01

    Early climate modeling studies predicted that the Arctic Ocean and surrounding circumpolar land masses would heat up earlier and faster than other parts of the planet as a result of greenhouse gas-induced climate change, augmented by the sea-ice albedo feedback effect. These predictions have been largely borne out by observations over the last thirty years. However, despite constant improvement, global climate models have greater difficulty in reproducing the current climate in the Arctic than elsewhere and the scatter between projections from different climate models is much larger in the Arctic than for other regions. Biogeochemical cycle (BGC) models indicate that the warming in the Arctic-Boreal Zone (ABZ) could lead to widespread thawing of the permafrost, along with massive releases of CO2 and CH4, and large-scale changes in the vegetation cover in the ABZ. However, the uncertainties associated with these BGC model predictions are even larger than those associated with the physical climate system models used to describe climate change. These deficiencies in climate and BGC models reflect, at least in part, an incomplete understanding of the Arctic climate system and can be related to inadequate observational data or analyses of existing data. A workshop was held at NASA/GSFC, May 22-24 2012, to assess the predictive capability of the models, prioritize the critical science questions; and make recommendations regarding new field experiments needed to improve model subcomponents. This presentation will summarize the findings and recommendations of the workshop, including the need for aircraft and flux tower measurements and extension of existing in-situ measurements to improve process modeling of both the physical climate and biogeochemical cycle systems. Studies should be directly linked to remote sensing investigations with a view to scaling up the improved process models to the Earth System Model scale. Data assimilation and observing system simulation studies should be used to guide the deployment pattern and schedule for inversion studies as well. Synthesis and integration of previously funded Arctic-Boreal projects (e.g., ABLE, BOREAS, ICESCAPE, ICEBRIDGE, ARCTAS) should also be undertaken. Such an effort would include the integration of multiple remotely sensed products from the EOS satellites and other resources.

  5. The 1994 Arctic Ocean Section. The First Major Scientific Crossing of the Arctic Ocean,

    DTIC Science & Technology

    1996-09-01

    contribute to the international effort to better understand the role of the Arctic Ocean in the global carbon cycle and climate change. Summar...Barium Distributions in the Arctic Ocean ? ........................ 32 Biology and the Carbon Cycle Cycling of Organic Carbon in the Central Arctic...of Heterotrophic Bacteria and Protists in the Arctic Ocean Carbon Cycle............. 40

  6. Decrease of lichens in Arctic ecosystems: the role of wildfire, caribou, reindeer, competition and climate in north-western Alaska

    Treesearch

    Kyle Joly; Randi R. Jandt; David R. Klein

    2009-01-01

    We review and present a synthesis of the existing research dealing with changing Arctic tundra ecosystems, in relation to caribou and reindeer winter ranges. Whereas pan-Arctic studies have documented the effects on tundra vegetation from simulated climate change, we draw upon recent long-term regional studies in Alaska that have documented the actual, on-the-ground...

  7. Stratospheric Aerosol and Gas Experiment (SAGE) II and III Aerosol Extinction Measurements in the Arctic Middle and Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Treffeisen, R. E.; Thomason, L. W.; Strom, J.; Herber, A. B.; Burton, S. P.; Yamanouchi, T.

    2006-01-01

    In recent years, substantial effort has been expended toward understanding the impact of tropospheric aerosols on Arctic climate and chemistry. A significant part of this effort has been the collection and documentation of extensive aerosol physical and optical property data sets. However, the data sets present significant interpretive challenges because of the diverse nature of these measurements. Among the longest continuous records is that by the spaceborne Stratospheric Aerosol and Gas Experiment (SAGE) II. Although SAGE tropospheric measurements are restricted to the middle and upper troposphere, they may be able to provide significant insight into the nature and variability of tropospheric aerosol, particularly when combined with ground and airborne observations. This paper demonstrates the capacity of aerosol products from SAGE II and its follow-on experiment SAGE III to describe the temporal and vertical variations of Arctic aerosol characteristics. We find that the measurements from both instruments are consistent enough to be combined. Using this combined data set, we detect a clear annual cycle in the aerosol extinction for the middle and upper Arctic troposphere.

  8. Data-Driven Modeling and Prediction of Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Kondrashov, Dmitri; Chekroun, Mickael; Ghil, Michael

    2016-04-01

    We present results of data-driven predictive analyses of sea ice over the main Arctic regions. Our approach relies on the Multilayer Stochastic Modeling (MSM) framework of Kondrashov, Chekroun and Ghil [Physica D, 2015] and it leads to probabilistic prognostic models of sea ice concentration (SIC) anomalies on seasonal time scales. This approach is applied to monthly time series of state-of-the-art data-adaptive decompositions of SIC and selected climate variables over the Arctic. We evaluate the predictive skill of MSM models by performing retrospective forecasts with "no-look ahead" for up to 6-months ahead. It will be shown in particular that the memory effects included intrinsically in the formulation of our non-Markovian MSM models allow for improvements of the prediction skill of large-amplitude SIC anomalies in certain Arctic regions on the one hand, and of September Sea Ice Extent, on the other. Further improvements allowed by the MSM framework will adopt a nonlinear formulation and explore next-generation data-adaptive decompositions, namely modification of Principal Oscillation Patterns (POPs) and rotated Multichannel Singular Spectrum Analysis (M-SSA).

  9. Arctic Contribution to Upper-Ocean Variability in the North Atlantic.

    NASA Astrophysics Data System (ADS)

    Walsh, John E.; Chapman, William L.

    1990-12-01

    Because much of the deep water of the world's oceans forms in the high-latitude North Atlantic, the potential climatic leverage of salinity and temperature anomalies in this region is large. Substantial variations of sea ice have accompanied North Atlantic salinity and temperature anomalies, especially the extreme and long-lived `Great Salinity Anomaly' of the late 1960s and early 1970s. Atmospheric pressure data are used hem to show that the local forcing of high-latitude North Atlantic Ocean fluctuations is augmented by antecedent atmospheric circulation anomalies over the central Arctic. These circulation anomalies are consistent with enhanced wind-forcing of thicker, older ice into the Transpolar Drift Stream and an enhanced export of sea ice (fresh water) from the Arctic into the Greenland Sea prior to major episodes of ice severity in the Greenland and Iceland seas. An index of the pressure difference between southern Greenland and the Arctic-Asian coast reached its highest value of the twentieth century during the middle-to-late 1960s, the approximate time of the earliest observation documentation of the Great Salinity Anomaly.

  10. Anoxia and high primary production in the Paleogene central Arctic Ocean: First detailed records from Lomonosov Ridge

    NASA Astrophysics Data System (ADS)

    Stein, Ruediger; Boucsein, Bettina; Meyer, Hanno

    2006-09-01

    Except for a few discontinuous fragments of the Late Cretaceous/Early Cenozoic climate history and depositional environment, the paleoenvironmental evolution of the pre-Neogene central Arctic Ocean was virtually unknown prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition-ACEX) drilling campaign on Lomonosov Ridge in 2004. Here we present detailed organic carbon (OC) records from the entire ca. 200 m thick Paleogene OC-rich section of the ACEX drill sites. These records indicate euxinic "Black Sea-type" conditions favorable for the preservation of labile aquatic (marine algae-type) OC occur throughout the upper part of the early Eocene and the middle Eocene, explained by salinity stratification due to freshwater discharge. The superimposed short-term ("Milankovitch-type") variability in amount and composition of OC is related to changes in primary production and terrigenous input. Prominent early Eocene events of algae-type OC preservation coincide with global δ13C events such as the PETM and Elmo events. The Elmo δ13C Event has been identified in the Arctic Ocean for the first time.

  11. Climbing the Slope of Enlightenment during NASA's Arctic Boreal Vulnerability Experiment

    NASA Astrophysics Data System (ADS)

    Griffith, P. C.; Hoy, E.; Duffy, D.; McInerney, M.

    2015-12-01

    The Arctic Boreal Vulnerability Experiment (ABoVE) is a new field campaign sponsored by NASA's Terrestrial Ecology Program and designed to improve understanding of the vulnerability and resilience of Arctic and boreal social-ecological systems to environmental change (http://above.nasa.gov). ABoVE is integrating field-based studies, modeling, and data from airborne and satellite remote sensing. The NASA Center for Climate Simulation (NCCS) has partnered with the NASA Carbon Cycle and Ecosystems Office (CCEO) to create a high performance science cloud for this field campaign. The ABoVE Science Cloud combines high performance computing with emerging technologies and data management with tools for analyzing and processing geographic information to create an environment specifically designed for large-scale modeling, analysis of remote sensing data, copious disk storage for "big data" with integrated data management, and integration of core variables from in-situ networks. The ABoVE Science Cloud is a collaboration that is accelerating the pace of new Arctic science for researchers participating in the field campaign. Specific examples of the utilization of the ABoVE Science Cloud by several funded projects will be presented.

  12. Possible causes of Arctic Tundra Vegetation Productivity Declines

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Bieniek, P.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2017-12-01

    Three decades of remotely sensed Normalized Difference Vegetation Index (NDVI) data document an overall increase in Arctic tundra vegetation greenness but the trends display considerable spatial variability. Pan-Arctic tundra vegetation greening is associated with increases in summer warmth that are, in large-part, driven by summer sea-ice retreat along Arctic coasts. Trends covering the period 1982-2016 are overall positive for summer open water, Summer Warmth Index (SWI, the sum of the degree months above zero from May-August), MaxNDVI (peak NDVI) and time integrated NDVI (TI-NDVI, sum of biweekly NDVI above 0.05 from May-September). Upon closer examination, it is clear that not all regions have positive trends, for example, there is an area of cooling in western Eurasia, which is broadly co-located with maxNDVI and TI-NDVI declines. While sea ice decline has continued over the satellite record, summer landsurface temperatures and vegetation productivity measures have not simply increased. Regional differences between warming and greening trends suggest that it is likely that multiple processes influence vegetation productivity beyond secular greening with increased summer warmth. This paper will present Pan-Arctic and regional analyses of the NDVI data in the context of climate drivers. Other possible drivers of vegetation productivity decline will be discussed such as increased standing water, delayed spring snow-melt, and winter thaw events. The status and limitations of data sets and modeling needed to advance our understanding of tundra vegetation productivity will be summarized and will serve as a starting point for planning the next steps in this topic. Methodical multi-disciplinary synthesis research that jointly considers vegetation type, permafrost conditions, altitude, as well as climate factors such as temperature, heat and moisture transport, and timing of snowfall and spring snowmelt is needed to better understand recent tundra vegetation productivity declines.

  13. Vegetation-Associated Impacts on Arctic Tundra Bacterial and Microeukaryotic Communities

    PubMed Central

    Shi, Yu; Xiang, Xingjia; Shen, Congcong; Neufeld, Josh D.; Walker, Virginia K.

    2014-01-01

    The Arctic is experiencing rapid vegetation changes, such as shrub and tree line expansion, due to climate warming, as well as increased wetland variability due to hydrological changes associated with permafrost thawing. These changes are of global concern because changes in vegetation may increase tundra soil biogeochemical processes that would significantly enhance atmospheric CO2 concentrations. Predicting the latter will at least partly depend on knowing the structure, functional activities, and distributions of soil microbes among the vegetation types across Arctic landscapes. Here we investigated the bacterial and microeukaryotic community structures in soils from the four principal low Arctic tundra vegetation types: wet sedge, birch hummock, tall birch, and dry heath. Sequencing of rRNA gene fragments indicated that the wet sedge and tall birch communities differed significantly from each other and from those associated with the other two dominant vegetation types. Distinct microbial communities were associated with soil pH, ammonium concentration, carbon/nitrogen (C/N) ratio, and moisture content. In soils with similar moisture contents and pHs (excluding wet sedge), bacterial, fungal, and total eukaryotic communities were correlated with the ammonium concentration, dissolved organic nitrogen (DON) content, and C/N ratio. Operational taxonomic unit (OTU) richness, Faith's phylogenetic diversity, and the Shannon species-level index (H′) were generally lower in the tall birch soil than in soil from the other vegetation types, with pH being strongly correlated with bacterial richness and Faith's phylogenetic diversity. Together, these results suggest that Arctic soil feedback responses to climate change will be vegetation specific not just because of distinctive substrates and environmental characteristics but also, potentially, because of inherent differences in microbial community structure. PMID:25362064

  14. Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities.

    PubMed

    Shi, Yu; Xiang, Xingjia; Shen, Congcong; Chu, Haiyan; Neufeld, Josh D; Walker, Virginia K; Grogan, Paul

    2015-01-01

    The Arctic is experiencing rapid vegetation changes, such as shrub and tree line expansion, due to climate warming, as well as increased wetland variability due to hydrological changes associated with permafrost thawing. These changes are of global concern because changes in vegetation may increase tundra soil biogeochemical processes that would significantly enhance atmospheric CO2 concentrations. Predicting the latter will at least partly depend on knowing the structure, functional activities, and distributions of soil microbes among the vegetation types across Arctic landscapes. Here we investigated the bacterial and microeukaryotic community structures in soils from the four principal low Arctic tundra vegetation types: wet sedge, birch hummock, tall birch, and dry heath. Sequencing of rRNA gene fragments indicated that the wet sedge and tall birch communities differed significantly from each other and from those associated with the other two dominant vegetation types. Distinct microbial communities were associated with soil pH, ammonium concentration, carbon/nitrogen (C/N) ratio, and moisture content. In soils with similar moisture contents and pHs (excluding wet sedge), bacterial, fungal, and total eukaryotic communities were correlated with the ammonium concentration, dissolved organic nitrogen (DON) content, and C/N ratio. Operational taxonomic unit (OTU) richness, Faith's phylogenetic diversity, and the Shannon species-level index (H') were generally lower in the tall birch soil than in soil from the other vegetation types, with pH being strongly correlated with bacterial richness and Faith's phylogenetic diversity. Together, these results suggest that Arctic soil feedback responses to climate change will be vegetation specific not just because of distinctive substrates and environmental characteristics but also, potentially, because of inherent differences in microbial community structure. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. a Coupled GCM Comparison of Marine Isotope Stages 1, 5e, 11c and 31 IN Relation to Lake El'gygytgyn, NE Russia

    NASA Astrophysics Data System (ADS)

    Coletti, A. J.; DeConto, R.; Melles, M.; Brigham-Grette, J.; Minyuk, P.

    2012-12-01

    The lack of scientific data concerning interglacials of the Pleistocene in the Arctic has been a major obstacle within the climate community. Study of the interglacials of Marine Isotope Stage(s) (MIS) 1, 5e, 11c and 31 in high latitudes is important to decoding Arctic sensitivity and providing us with a potential analogue for a future Arctic with climate change. Data from a sediment core recovered from Lake El'Gygytgyn in northeastern (NE) Russia gives a continuous, high-resolution record of the Arctic spanning the past 2.8 million years whilst recording these interglacials. The data was used to correlate simulated interglacial Arctic climate with Arctic climate derived from sediment core proxy studies. Here, we use a Global Circulation Model (GCM) with a coupled atmosphere and land-surface scheme complete with an interactive vegetation component to simulate marine isotope stages 1, 5e, 11c and 31 in the Arctic. GCM simulations of MIS 5e and 31 in the Arctic both show a warmer arctic climate that can be explained by high obliquity, high eccentricity, high CO2 (287 ppmv ,325 ppmv , respectively) and precession that aligns perihelion with boreal summer. Consequently, MIS 5e showed the greatest summer warming compared to the other interglacials and pre-industrial control. However, the distinctly higher values of mean temperature of the warmest month (MTWM) and annual precipitation during stage 11c cannot readily be explained by summer orbital forcings and greenhouse gas (GHG) concentrations. Montane forest is seen migrating northward in stages 1, 5e and 31 as the surface insolation increases and sea ice melts, whereas in 11c, the warmest of the interglacials, evergreen forest takes over and migrates pole ward toward the coast. Feedback from low albedo forest biome was studied and conclusions suggest the increase in temperature due to forest cover is insignificant in creating a significantly warm regional climate. The warming associated with a lack of a Greenland Ice Sheet (GIS) in stage 11c and 31 was not enough to warm temperatures to the observed temperatures seen in 11c during proxy analysis of the Lake El'Gygytgyn sediment core. The surprising warmth during MIS 11c might be explained by linkages with Antarctic ice retreat and decreased Antarctic Bottom Water (AABW) formation. The Lake El'Gygytgyn core provides a high-resolution terrestrial record that is unprecedented. The difficulty for the GCM to properly simulate stage 11c sparks questions for the Arctic climate community. Teleconnections such as the formation Antarctic Bottom Water (AABW) and the upwelling of bottom water in the Arctic could play a major role in affecting temperatures on a smaller, regional scale.

  16. Taimyr Reindeer and Environmental Change: Monitoring Wild Reindeer Migration in Changing Natural and Social Environments

    NASA Astrophysics Data System (ADS)

    Petrov, A. N.

    2016-12-01

    The Taimyr Reindeer Herd (TRH) is both the largest and the longest monitored wild reindeer herd in Eurasia. An important part of Arctic ecosystems and Indigenous livelihood, wild reindeer have been continuously monitored for almost 50 years. During this time, herds have exhibited large changes in size and these changes have been recorded in almost all herds across the animal's range. An increasing number of wild reindeer in the Soviet times was followed by a significant population loss in the last decade. In addition, recent monitoring revealed substantial shifts in the distribution of wild populations. The decline in wild reindeer is likely related to natural cycles and changes in the Arctic environment caused by climate variability and anthropogenic activity. This study investigates patterns and possible drives of reindeer population dynamics in space and time. We identify key climatic factors, possible relationships with biomass dynamics, as well as with hunting practices and other human impacts.

  17. Nonlinear Response of the Stratosphere and the North Atlantic-European Climate to Global Warming

    NASA Astrophysics Data System (ADS)

    Manzini, E.; Karpechko, A. Yu.; Kornblueh, L.

    2018-05-01

    The response of the northern winter atmospheric circulation for two consecutive global warming periods of 2 K is examined in a grand ensemble (68 members) of idealized CO2 increase experiments performed with the same climate model. The comparison of the atmospheric responses for the two periods shows remarkable differences, indicating the nonlinearity of the response. The nonlinear signature of the atmospheric and surface responses is reminiscent of the positive phase of the annular mode of variability. The stratospheric vortex response shifts from an easterly wind change for the first 2 K to a westerly wind change for the second 2 K. The North Atlantic storm track shifts poleward only in the second period. A weaker November Arctic amplification during the second period suggests that differences in Arctic sea ice changes can act to trigger the atmospheric nonlinear response. Stratosphere-troposphere coupling thereafter can provide for the persistence of this nonlinearity throughout the winter.

  18. Reconstructing Holocene glacier activity at Langfjordjøkelen, Arctic Norway, using multi-proxy fingerprinting of distal glacier-fed lake sediments

    NASA Astrophysics Data System (ADS)

    Wittmeier, Hella E.; Bakke, Jostein; Vasskog, Kristian; Trachsel, Mathias

    2015-04-01

    Late Glacial and Holocene glacier fluctuations are important indicators of climate variability in the northern polar region and contain knowledge vital to understanding and predicting present and future climate changes. However, there still is a lack of robustly dated terrestrial climate records from Arctic Norway. Here, we present a high-resolution relative glacier activity record covering the past ∼10,000 cal. a BP from the northern outlet of the Langfjordjøkelen ice cap in Arctic Norway. This record is reconstructed from detailed geomorphic mapping, multi-proxy sedimentary fingerprinting and analyses of distal glacier-fed lake sediments. We used Principal Component Analysis to characterize sediments of glacial origin and trace them in a chain of downstream lakes. Of the variability in the sediment record of the uppermost Lake Jøkelvatnet, 73% can be explained by the first Principal Component axis and tied directly to upstream glacier erosion, whereas the glacial signal becomes weaker in the more distal Lakes Store Rundvatnet and Storvatnet. Magnetic susceptibility and titanium count rates were found to be the most suitable indicators of Holocene glacier activity in the distal glacier-fed lakes. The complete deglaciation of the valley of Sør-Tverrfjorddalen occurred ∼10,000 cal. a BP, followed by a reduced or absent glacier during the Holocene Thermal Optimum. The Langfjordjøkelen ice cap reformed with the onset of the Neoglacial ∼4100 cal. a BP, and the gradually increasing glacier activity culminated at the end of the Little Ice Age in the early 20th century. Over the past 2000 cal. a BP, the record reflects frequent high-amplitude glacier fluctuations. Periods of reduced glacier activity were centered around 1880, 1600, 1250 and 950 cal. a BP, while intervals of increased glacier activity occurred around 1680, 1090, 440 and 25 cal. a BP. The large-scale Holocene glacier activity of the Langfjordjøkelen ice cap is consistent with regional temperature proxy reconstructions and glacier variability across Norway. Long-term changes in the extent of the northern outlet of the Langfjordjøkelen ice cap largely followed trends in regional summer temperatures, whereas winter season atmospheric variability may have triggered decadal-scale glacial fluctuations and generally affected the amplitude of glacier events.

  19. Arctic Research Plan: FY2017-2021

    USGS Publications Warehouse

    Starkweather, Sandy; Jeffries, Martin O; Stephenson, Simon; Anderson, Rebecca D.; Jones, Benjamin M.; Loehman, Rachel A.; von Biela, Vanessa R.

    2016-01-01

    The United States is an Arctic nation—Americans depend on the Arctic for biodiversity and climate regulation and for natural resources. America’s Arctic—Alaska—is at the forefront of rapid climate, environmental, and socio-economic changes that are testing the resilience and sustainability of communities and ecosystems. Research to increase fundamental understanding of these changes is needed to inform sound, science-based decision- and policy-making and to develop appropriate solutions for Alaska and the Arctic region as a whole. Created by an Act of Congress in 1984, and since 2010 a subcommittee of the National Science and Technology Council (NSTC) in the Executive Office of the President, the Interagency Arctic Research Policy Committee (IARPC) plays a critical role in advancing scientific knowledge and understanding of the changing Arctic and its impacts far beyond the boundaries of the Arctic. Comprising 14 Federal agencies, offices, and departments, IARPC is responsible for the implementation of a 5-year Arctic Research Plan in consultation with the U.S. Arctic Research Commission, the Governor of the State of Alaska, residents of the Arctic, the private sector, and public interest groups.

  20. Surveillance of infectious diseases in the Arctic.

    PubMed

    Bruce, M; Zulz, T; Koch, A

    2016-08-01

    This study reviews how social and environmental issues affect health in Arctic populations and describes infectious disease surveillance in Arctic Nations with a special focus on the activities of the International Circumpolar Surveillance (ICS) project. We reviewed the literature over the past 2 decades looking at Arctic living conditions and their effects on health and Arctic surveillance for infectious diseases. In regards to other regions worldwide, the Arctic climate and environment are extreme. Arctic and sub-Arctic populations live in markedly different social and physical environments compared to those of their more southern dwelling counterparts. A cold northern climate means people spending more time indoors, amplifying the effects of household crowding, smoking and inadequate ventilation on the person-to-person spread of infectious diseases. The spread of zoonotic infections north as the climate warms, emergence of antibiotic resistance among bacterial pathogens, the re-emergence of tuberculosis, the entrance of HIV into Arctic communities, the specter of pandemic influenza or the sudden emergence and introduction of new viral pathogens pose new challenges to residents, governments and public health authorities of all Arctic countries. ICS is a network of hospitals, public health agencies, and reference laboratories throughout the Arctic working together for the purposes of collecting, comparing and sharing of uniform laboratory and epidemiological data on infectious diseases of concern and assisting in the formulation of prevention and control strategies (Fig. 1). In addition, circumpolar infectious disease research workgroups and sentinel surveillance systems for bacterial and viral pathogens exist. The ICS system is a successful example of collaborative surveillance and research in an extreme environment. Published by Elsevier Ltd.

  1. Hydro-climatic control of stream water dissolved organic carbon (DOC) across northern catchments within the North-Watch program

    NASA Astrophysics Data System (ADS)

    Laudon, Hjalmar; Tetzlaff, Doerthe; Seibert, Jan; Soulsby, Chris; Carey, Sean; Buttle, Jim; McDonnell, Jeff; McGuire, Kevin; Caissie, Daniel; Shanley, Jamie

    2010-05-01

    There has been an increasing interest in understanding the regulating mechanisms of surface water dissolved organic carbon (DOC) the last decade. A majority of this recent work has been based on individual well characterized research catchments or on regional synoptic datasets combined with readily available landscape and climatic variables. However, as the production and transport of DOC primarily is a function of hydro-climatic conditions a better description of catchment hydrological functioning across large geographic regions would be favorable for moving the mechanistic understanding forward. To do this we report from a first assessment of catchment DOC within the international inter-catchment comparison program North-Watch (http://www.abdn.ac.uk/northwatch/). North-Watch includes long-term research catchments ranging from northern temperate regions to the boreal and sub-arctic biomes with the aim to better understand the variable hydrological and biogeochemical responses in Northern catchments to climate change. The North-Watch catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the US (Sleepers River and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). The annual average DOC concentration in the nine catchments investigated were directly linked to hydro-climatic influences (e.g. temperature, water storage) and landscape configuration. In general, the DOC concentration followed a parabolic shape with temperature, where the highest concentrations were found in the boreal and near boreal sites and with the lowest concentrations in the temperate and sub-arctic catchments. The between catchment variability in DOC concentration could also be explained by catchment water storage and amount of wetlands in the catchment. Whereas there is a mechanistic link between long-term climatic conditions and the areal coverage of wetlands, the total catchment storage of water is more strongly linked to topography, parent material and soil depth. The result from this analysis will serve as a conceptual framework for understanding biogeochemical response to environmental change across northern catchments. The next step in this work will be to include more detailed comparisons of the role catchment hydrological functioning for explaining the patterns and dynamics of catchment DOC of these northern watersheds.

  2. The Influence of Volcanic and Solar forcings on the Freshwater Budget of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Davies, F. J.; Goosse, H.; Renssen, H.

    2012-04-01

    In recent decades the quantity and spatial extent of measurements for the atmospheric, terrestrial and oceanic sources and sinks, that comprise the freshwater budget of the Arctic Ocean has increased. This has been driven by a need to understand the variability of the freshwater budget, as a response to anthropogenically induced climate change, and the effects upon climate. However, the natural variability of the system due to specific forcings over a number of temporal scales, is yet to be clearly defined. This is due to several factors. A lack of a reliable freshwater proxy, coupled with a truncated instrumental record, make it difficult to elicit meaningful trends from the data that is currently available. In addition, modelling studies have not taken up the opportunity to evaluate the historical freshwater budget, instead focusing all their efforts in ascertaining the future response of the system. Therefore, when it comes to understanding the role individual forcings, such as volcanic and solar, have upon the natural variability of the freshwater budget, a noticeable void is evident. In order to understand the natural variations over the recent past one has to first consider the effects that natural forcings have upon the system, both independently and simultaneously. Therefore, in this study we seek to understand the effects solar and volcanic forcings have upon the freshwater budget of the Arctic, and by association, the climate. Here we present results of a series of transient simulations spanning the last 2000 years, performed with the earth model of intermediate complexity, LOVECLIM (Goosse et al., 2010). These series of simulations use a combination of orbital parameters, greenhouse gas concentrations, total solar irradiance and volcanic forcings. By comparing the simulation with only long-term forcings (orbital and greenhouse gas), to experiments in which the impacts of short-term forcings (solar and volcanic) are added incrementally to the effect of these long-term forcings, we are able to assess to what extent solar and volcanic forcings influence the variability of the Arctic freshwater budget. Time-series analysis will be applied to the output of the different experiments to evaluate the changes in the different frequency domains. Goosse, H., Brovkin, V., Fichefet, T., Haarsma, R., Huybrechts, P., Jongma, J., Mouchet, A., Selten, F., Barriat, P-Y., Campin, J-M., Deleersnijder, E., Driesschaert, E., Goelzer, H., Janssens, I., Loutre, M-F., Morales Maqueda, M.A., Opsteegh, T., Mathieu, P-P., Munhoven, G., Pettersson., E.J., Renssen, H., Roche, D.M., Schaeffer, M., Tartinville, B., Timmermann, A., Weber, S.L. (2010) Description of the Earth System Model of Intermediate Complexity LOVECLIM Version 1.2, Geoscientific Model Development, 3:603-633 doi: 10.5194/gmd-3-603-2010.

  3. Covariance Between Arctic Sea Ice and Clouds Within Atmospheric State Regimes at the Satellite Footprint Level

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.; Kato, Seiji; Xu, Kuan-Man; Cai, Ming

    2015-01-01

    Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice-cloud relationship in the Arctic using a satellite footprint-level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A-Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and mid-tropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest-magnitude cloud-sea ice covariance occurs between 500m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near-surface static stability is found at larger sea ice concentrations.

  4. Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level

    PubMed Central

    Kato, Seiji; Xu, Kuan‐Man; Cai, Ming

    2015-01-01

    Abstract Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice‐cloud relationship in the Arctic using a satellite footprint‐level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A‐Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and midtropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest‐magnitude cloud‐sea ice covariance occurs between 500 m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near‐surface static stability is found at larger sea ice concentrations. PMID:27818851

  5. Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level.

    PubMed

    Taylor, Patrick C; Kato, Seiji; Xu, Kuan-Man; Cai, Ming

    2015-12-27

    Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice-cloud relationship in the Arctic using a satellite footprint-level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A-Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and midtropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest-magnitude cloud-sea ice covariance occurs between 500 m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near-surface static stability is found at larger sea ice concentrations.

  6. Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef

    Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth’s climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modesmore » and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this article, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.« less

  7. Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes

    DOE PAGES

    Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef; ...

    2016-10-04

    Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth’s climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modesmore » and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this article, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.« less

  8. Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes

    NASA Astrophysics Data System (ADS)

    Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef; Hu, Aixue; Hamlington, Benjamin; Kenigson, Jessica; Palanisamy, Hindumathi; Thompson, Philip

    2017-01-01

    Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth's climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modes and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this paper, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.

  9. Simulated decadal modes of the NH atmospheric circulation arising from intra-decadal variability, external forcing and slow-decadal climate processes

    NASA Astrophysics Data System (ADS)

    Lou, Jiale; Zheng, Xiaogu; Frederiksen, Carsten S.; Liu, Haibo; Grainger, Simon; Ying, Kairan

    2017-04-01

    A decadal variance decomposition method is applied to the Northern Hemisphere (NH) 500-hPa geopotential height (GPH) and the sea level pressure (SLP) taken from the last millennium (850-1850 AD) experiment with the coupled climate model CCSM4, to estimate the contribution of the intra-decadal variability to the inter-decadal variability. By removing the intra-decadal variability from the total inter-decadal variability, the residual variability is more likely to be associated with slowly varying external forcings and slow-decadal climate processes, and therefore is referred to as slow-decadal variability. The results show that the (multi-)decadal changes of the NH 500-hPa GPH are primarily dominated by slow-decadal variability, whereas the NH SLP field is primarily dominated by the intra-decadal variability. At both pressure levels, the leading intra-decadal modes each have features related to the El Niño-southern oscillation, the intra-decadal variability of the Pacific decadal oscillation (PDO) and the Arctic oscillation (AO); while the leading slow-decadal modes are associated with external radiative forcing (mostly with volcanic aerosol loadings), the Atlantic multi-decadal oscillation and the slow-decadal variability of AO and PDO. Moreover, the radiative forcing has much weaker effect to the SLP than that to the 500-hPa GPH.

  10. Paleodistribution modeling suggests glacial refugia in Scandinavia and out-of-Tibet range expansion of the Arctic fox.

    PubMed

    Fuentes-Hurtado, Marcelo; Hof, Anouschka R; Jansson, Roland

    2016-01-01

    Quaternary glacial cycles have shaped the geographic distributions and evolution of numerous species in the Arctic. Ancient DNA suggests that the Arctic fox went extinct in Europe at the end of the Pleistocene and that Scandinavia was subsequently recolonized from Siberia, indicating inability to track its habitat through space as climate changed. Using ecological niche modeling, we found that climatically suitable conditions for Arctic fox were found in Scandinavia both during the last glacial maximum (LGM) and the mid-Holocene. Our results are supported by fossil occurrences from the last glacial. Furthermore, the model projection for the LGM, validated with fossil records, suggested an approximate distance of 2000 km between suitable Arctic conditions and the Tibetan Plateau well within the dispersal distance of the species, supporting the recently proposed hypothesis of range expansion from an origin on the Tibetan Plateau to the rest of Eurasia. The fact that the Arctic fox disappeared from Scandinavia despite suitable conditions suggests that extant populations may be more sensitive to climate change than previously thought.

  11. Decision Making For Sustainable Futures In A Rapidly Changing Arctic

    NASA Astrophysics Data System (ADS)

    Chabay, I.

    2016-12-01

    Observing, understanding, and predicting effects of rapid climate change in the Arctic are crucial as the circumpolar region becomes more accessible and demand grows for commercial development and resource extraction. Climate change effects - including changes in ocean ice coverage, Arctic weather patterns, permafrost conditions, and coastal erosion - are a consequence of fossil fuel use outside the Arctic, while at the same time the changes open greater access to the Arctic's rich resources, including oil and gas. This offers new opportunities for livelihoods and development of Arctic communities, but inevitably also introduces substantially increased environmental, social, and economic risks. I will outline the rationale for and the process of our transdisciplinary project in engaging with a wide range of actors in the Arctic and beyond. The purpose of the project is to support informed and effective decision making for sustainable futures that is contextually appropriate through co-design and co-production of knowledge with rights-holders and stakeholders.

  12. Beyond Thin Ice: Co-Communicating the Many Arctics

    NASA Astrophysics Data System (ADS)

    Druckenmiller, M. L.; Francis, J. A.; Huntington, H.

    2015-12-01

    Science communication, typically defined as informing non-expert communities of societally relevant science, is persuaded by the magnitude and pace of scientific discoveries, as well as the urgency of societal issues wherein science may inform decisions. Perhaps nowhere is the connection between these facets stronger than in the marine and coastal Arctic where environmental change is driving advancements in our understanding of natural and socio-ecological systems while paving the way for a new assortment of arctic stakeholders, who generally lack adequate operational knowledge. As such, the Arctic provides opportunity to advance the role of science communication into a collaborative process of engagement and co-communication. To date, the communication of arctic change falls within four primary genres, each with particular audiences in mind. The New Arctic communicates an arctic of new stakeholders scampering to take advantage of unprecedented access. The Global Arctic conveys the Arctic's importance to the rest of the world, primarily as a regulator of lower-latitude climate and weather. The Intra-connected Arctic emphasizes the increasing awareness of the interplay between system components, such as between sea ice loss and marine food webs. The Transforming Arctic communicates the region's trajectory relative to the historical Arctic, acknowledging the impacts on indigenous peoples. The broad societal consensus on climate change in the Arctic as compared to other regions in the world underscores the opportunity for co-communication. Seizing this opportunity requires the science community's engagement with stakeholders and indigenous peoples to construct environmental change narratives that are meaningful to climate responses relative to non-ecological priorities (e.g., infrastructure, food availability, employment, or language). Co-communication fosters opportunities for new methods of and audiences for communication, the co-production of new interdisciplinary knowledge and cross-epistemological perspectives, and direct feedback to the science community regarding the societal implications of future research. Currently, the Study for Environmental Arctic Change (SEARCH) is developing this necessary cadre of co-communicators of marine and coastal arctic change.

  13. Change in abundance of pacific brant wintering in alaska: evidence of a climate warming effect?

    USGS Publications Warehouse

    Ward, David H.; Dau, Christian P.; Tibbitts, T. Lee; Sedinger, James S.; Anderson, Betty A.; Hines, James E.

    2009-01-01

    Winter distribution of Pacific Flyway brant (Branta bernicla nigricans) has shifted northward from lowtemperate areas to sub-Arctic areas over the last 42 years. We assessed the winter abundance and distribution of brant in Alaska to evaluate whether climate warming may be contributing to positive trends in the most northern of the wintering populations. Mean surface air temperatures during winter at the end of the Alaska Peninsula increased about 1??C between 1963 and 2004, resulting in a 23% reduction in freezing degree days and a 34% decline in the number of days when ice cover prevents birds from accessing food resources. Trends in the wintering population fluctuated with states of the Pacific Decadal Oscillation, increasing during positive (warm) phases and decreasing during negative (cold) phases, and this correlation provides support for the hypothesis that growth in the wintering population of brant in Alaska is linked to climate warming. The size of the wintering population was negatively correlated with the number of days of strong northwesterly winds in November, which suggests that the occurrence of tailwinds favorable for migration before the onset of winter was a key factor in whether brant migrated from Alaska or remained there during winter. Winter distribution of brant on the Alaska Peninsula was highly variable and influenced by ice cover, particularly at the heavily used Izembek Lagoon. Observations of previously marked brant indicated that the Alaska wintering population was composed primarily of birds originating from Arctic breeding colonies that appear to be growing. Numbers of brant in Alaska during winter will likely increase as temperatures rise and ice cover decreases at high latitudes in response to climate warming. ?? The Arctic Institute of North America.

  14. Global and Arctic climate engineering: numerical model studies.

    PubMed

    Caldeira, Ken; Wood, Lowell

    2008-11-13

    We perform numerical simulations of the atmosphere, sea ice and upper ocean to examine possible effects of diminishing incoming solar radiation, insolation, on the climate system. We simulate both global and Arctic climate engineering in idealized scenarios in which insolation is diminished above the top of the atmosphere. We consider the Arctic scenarios because climate change is manifesting most strongly there. Our results indicate that, while such simple insolation modulation is unlikely to perfectly reverse the effects of greenhouse gas warming, over a broad range of measures considering both temperature and water, an engineered high CO2 climate can be made much more similar to the low CO2 climate than would be a high CO2 climate in the absence of such engineering. At high latitudes, there is less sunlight deflected per unit albedo change but climate system feedbacks operate more powerfully there. These two effects largely cancel each other, making the global mean temperature response per unit top-of-atmosphere albedo change relatively insensitive to latitude. Implementing insolation modulation appears to be feasible.

  15. Early 20th Century Arctic Warming Intensified by Pacific and Atlantic Multidecadal Variability

    NASA Astrophysics Data System (ADS)

    Tokinaga, H.; Xie, S. P.; Mukougawa, H.

    2017-12-01

    We investigate the influence of Pacific and Atlantic multidecadal variability on the Arctic temperature, with a particular focus on the early 20th century Arctic warming. Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing than at present. We find that the concurrent phase shift of Pacific and Atlantic multidecadal variability is the major driver for the early 20th century Arctic warming. Atmospheric model simulations reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early Arctic warming is associated with the cold-to-warm phase shifts of Atlantic and Pacific multidecadal variability modes, a SST pattern reminiscent of the positive phase of the Pacific decadal and Atlantic multidecadal oscillations. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. The equatorial Pacific warming deepens the Aleutian low, advecting warm air to the North American Arctic. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, cold-to-warm phase shift of the Pacific and Atlantic multidecadal variability. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.

  16. Revolatilization of persistent organic pollutants in the Arctic induced by climate change

    NASA Astrophysics Data System (ADS)

    Ma, Jianmin; Hung, Hayley; Tian, Chongguo; Kallenborn, Roland

    2011-08-01

    Persistent organic pollutants (POPs) are organic compounds produced by human activities that are resistant to environmental degradation. They include industrial chemicals, such as polychlorinated biphenyls, and pesticides, such as dichlorodiphenyltrichloroethane. Owing to their persistence in the environment, POPs are transported long distances in the atmosphere, accumulating in regions such as the Arctic, where low temperatures induce their deposition. Here the compounds accumulate in wildlife and humans, putting their health at risk. The concentrations of many POPs have decreased in Arctic air over the past few decades owing to restrictions on their production and use. As the climate warms, however, POPs deposited in sinks such as water and ice are expected to revolatilize into the atmosphere, and there is evidence that this process may have already begun for volatile compounds. Here we show that many POPs, including those with lower volatilities, are being remobilized into the air from repositories in the Arctic region as a result of sea-ice retreat and rising temperatures. We analysed records of the concentrations of POPs in Arctic air since the early 1990s and compared the results with model simulations of the effect of climate change on their atmospheric abundances. Our results indicate that a wide range of POPs have been remobilized into the Arctic atmosphere over the past two decades as a result of climate change, confirming that Arctic warming could undermine global efforts to reduce environmental and human exposure to these toxic chemicals.

  17. Dynamical amplification of Arctic and global warming

    NASA Astrophysics Data System (ADS)

    Alekseev, Genrikh; Ivanov, Nikolai; Kharlanenkova, Natalia; Kuzmina, Svetlana; Bobylev, Leonid; Gnatiuk, Natalia; Urazgildeeva, Aleksandra

    2015-04-01

    The Arctic is coupled with global climate system by the atmosphere and ocean circulation that provides a major contribution to the Arctic energy budget. Therefore increase of meridional heat transport under global warming can impact on its Arctic amplification. Contribution of heat transport to the recent warming in the Arctic, Northern Hemisphere and the globe are estimated on base of reanalysis data, global climate model data and proposed special index. It is shown that significant part of linear trend during last four decades in average surface air temperature in these areas can be attributed to dynamical amplification. This attribution keeps until 400 mb height with progressive decreasing. The Arctic warming is amplified also due to an increase of humidity and cloudiness in the Arctic atmosphere that follow meridional transport gain. From October to January the Arctic warming trends are amplified as a result of ice edge retreat from the Siberian and Alaska coast and the heating of expanded volume of sea water. This investigation is supported with RFBR project 15-05-03512.

  18. Future Arctic Research: Integrative Approaches to Scientific and Methodological Challenges

    NASA Astrophysics Data System (ADS)

    Schmale, Julia; Lisowska, Maja; Smieszek, Malgorzata

    2013-08-01

    Climate change has significant consequences for both the natural environment and the socioeconomics in the Arctic. The complex interplay between the changing atmosphere, cryosphere, and ocean is responsible for a multitude of feedbacks and cascading effects leading to changes in the marine and terrestrial ecosystems, the sea ice cycle, and atmospheric circulation patterns. The warming Arctic has also become a region of economic interest as shipping, natural resource exploitation, and tourism are becoming achievable and lucrative with declining sea ice. Such climatic and anthropogenic developments are leading to profound changes in the Arctic, its people, and their cultural heritage.

  19. Arctic sea ice variability in the context of recent atmospheric circulation trends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deser, C.; Walsh, J.E.; Timlin, M.S.

    Sea ice is a sensitive component of the climate system, influenced by conditions in both the atmosphere and ocean. Variations in sea ice may in turn modulate climate by altering the surface albedo; the exchange of heat, moisture, and momentum between the atmosphere and ocean; and the upper ocean stratification in areas of deep water formation. The surface albedo effect is considered to be one of the dominant factors in the poleward amplification of global warming due to increased greenhouse gas concentrations simulated in many climate models. Forty years (1958--97) of reanalysis products and corresponding sea ice concentration data aremore » used to document Arctic sea ice variability and its association with surface air temperature (SAT) and sea level pressure (SLP) throughout the Northern Hemisphere extratropics. The dominant mode of winter (January-March) sea ice variability exhibits out-of-phase fluctuations between the western and eastern North Atlantic, together with a weaker dipole in the North Pacific. The time series of this mode has a high winter-to-winter autocorrelation (0.69) and is dominated by decadal-scale variations and a longer-term trend of diminishing ice cover east of Greenland and increasing ice cover west of Greenland. Associated with the dominant pattern of winter sea ice variability are large-scale changes in SAT and SLP that closely resemble the North Atlantic oscillation. The associated SAT and surface sensible and latent heat flux anomalies are largest over the portions of the marginal sea ice zone in which the trends of ice coverage have been greatest, although the well-documented warming of the northern continental regions is also apparent. the temporal and spatial relationships between the SLP and ice anomaly fields are consistent with the notion that atmospheric circulation anomalies force the sea ice variations. However, there appears to be a local response of the atmospheric circulation to the changing sea ice variations. However, there appears to be a local response of the atmospheric circulation to the changing sea ice cover east of Greenland. Specifically, cyclone frequencies have increased and mean SLPs have decreased over the retracted ice margin in the Greenland Sea, and these changes differ from those associated directly with the North Atlantic oscillation. The dominant mode of sea ice variability in summer (July-September) is more spatially uniform than that in winter. Summer ice extent for the Arctic as a whole has exhibited a nearly monotonic decline (-4% decade{sup {minus}1}) during the past 40 yr. Summer sea ice variations appear to be initiated by atmospheric circulation anomalies over the high Arctic in late spring. Positive ice-albedo feedback may account for the relatively long delay (2--3 months) between the time of atmospheric forcing and the maximum ice response, and it may have served to amplify the summer ice retreat.« less

  20. Unmanned Aerial Systems, Moored Balloons, and the U.S. Department of Energy ARM Facilities in Alaska

    NASA Astrophysics Data System (ADS)

    Ivey, Mark; Verlinde, Johannes

    2014-05-01

    The U.S. Department of Energy (DOE), through its scientific user facility, the Atmospheric Radiation Measurement (ARM) Climate Research Facility, provides scientific infrastructure and data to the international Arctic research community via its research sites located on the North Slope of Alaska. Facilities and infrastructure to support operations of unmanned aerial systems for science missions in the Arctic and North Slope of Alaska were established at Oliktok Point Alaska in 2013. Tethered instrumented balloons will be used in the near future to make measurements of clouds in the boundary layer including mixed-phase clouds. The DOE ARM Program has operated an atmospheric measurement facility in Barrow, Alaska, since 1998. Major upgrades to this facility, including scanning radars, were added in 2010. Arctic Observing Networks are essential to meet growing policy, social, commercial, and scientific needs. Calibrated, high-quality arctic geophysical datasets that span ten years or longer are especially important for climate studies, climate model initializations and validations, and for related climate policy activities. For example, atmospheric data and derived atmospheric forcing estimates are critical for sea-ice simulations. International requirements for well-coordinated, long-term, and sustained Arctic Observing Networks and easily-accessible data sets collected by those networks have been recognized by many high-level workshops and reports (Arctic Council Meetings and workshops, National Research Council reports, NSF workshops and others). The recent Sustaining Arctic Observation Network (SAON) initiative sponsored a series of workshops to "develop a set of recommendations on how to achieve long-term Arctic-wide observing activities that provide free, open, and timely access to high-quality data that will realize pan-Arctic and global value-added services and provide societal benefits." This poster will present information on opportunities for members of the arctic research community to make atmospheric measurements using unmanned aerial systems or tethered balloons.

  1. The role of declining summer sea ice extent in increasing Arctic winter precipitation

    NASA Astrophysics Data System (ADS)

    Hamman, J.; Roberts, A.; Cassano, J. J.; Nijssen, B.

    2016-12-01

    In the past three decades, the Arctic has experienced large declines in summer sea ice cover, permafrost extent, and spring snow cover, and increases in winter precipitation. This study explores the relationship between declining Arctic sea ice extent (IE) and winter precipitation (WP) across the Arctic land masses. The first part of this presentation presents the observed relationship between IE and WP. Using satellite estimates of IE and WP data based on a combination of in-situ observations and global reanalyses, we show that WP is negatively correlated with summer IE and that this relationship is strongest before the year 2000. After 2000, around the time IE minima began to decline most rapidly, the relationship between IE and WP degenerates. This indicates that other processes are driving changes in IE and WP. We hypothesize that positive anomalies in poleward moisture transport have historically driven anomalously low IE and high WP, and that since the significant decline in IE, moisture divergence from the central Arctic has been a larger contributor to WP over land. To better understand the physical mechanisms driving the observed changes in the Arctic climate system and the sensitivity of the Arctic climate system to declining sea ice, we have used the fully-coupled Regional Arctic System Model (RASM) to simulate two distinct sea ice climates. The first climate represents normal IE, while the second includes reduced summer IE. The second portion of this presentation analyzes these two RASM simulations, in conjunction with our observation-based analysis, to understand the coupled relationship between poleward moisture transport, IE, evaporation from the Arctic Ocean, and precipitation. We will present the RASM-simulated Arctic water budget and demonstrate the role of IE in driving WP anomalies. Finally, a spatial correlation analysis identifies characteristic patterns in IE, ocean evaporation, and polar cap convergence that contribute to anomalies in WP.

  2. A new way to study the changing Arctic ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, Susan

    2011-09-12

    Berkeley Lab scientists Susan Hubbard and Margaret Torn discuss the proposed Next Generation Ecosystem Experiment, which is designed to answer one of the most urgent questions facing researchers today: How will a changing climate impact the Arctic, and how will this in turn impact the planet's climate? More info: http://newscenter.lbl.gov/feature-stories/2011/09/14/alaska-climate-change/

  3. A new way to study the changing Arctic ecosystem

    ScienceCinema

    Hubbard, Susan

    2017-12-09

    Berkeley Lab scientists Susan Hubbard and Margaret Torn discuss the proposed Next Generation Ecosystem Experiment, which is designed to answer one of the most urgent questions facing researchers today: How will a changing climate impact the Arctic, and how will this in turn impact the planet's climate? More info: http://newscenter.lbl.gov/feature-stories/2011/09/14/alaska-climate-change/

  4. Deglacial climate modulated by the storage and release of Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Condron, A.; Coletti, A. J.; Bradley, R. S.

    2017-12-01

    Periods of abrupt climate cooling during the last deglaciation (20 - 8 kyr ago) are often attributed to glacial outburst floods slowing the Atlantic meridional overturning circulation (AMOC). Here, we present results from a series of climate model simulations showing that the episodic break-up and mobilization of thick, perennial, Arctic sea ice during this time would have released considerable volumes of freshwater directly to the Nordic Seas, where processes regulating large-scale climate occur. Massive sea ice export events to the North Atlantic are generated whenever the transport of sea ice is enhanced, either by changes in atmospheric circulation, rising sea level submerging the Bering land bridge, or glacial outburst floods draining into the Arctic Ocean from the Mackenzie River. We find that the volumes of freshwater released to the Nordic Seas are similar to, or larger than, those estimated to have come from terrestrial outburst floods, including the discharge at the onset of the Younger Dryas. Our results provide the first evidence that the storage and release of Arctic sea ice helped drive deglacial climate change by modulating the strength of the AMOC.

  5. Geospatial Analysis of Climate-Related Changes in North American Arctic Ecosystems and Implications for Terrestrial Flora and Fauna

    NASA Astrophysics Data System (ADS)

    Amirazodi, S.; Griffin, R.

    2016-12-01

    Climate change induces range shifts among many terrestrial species in Arctic regions. At best, warming often forces poleward migration if a stable environment is to be maintained. At worst, marginal ecosystems may disappear entirely without a contiguous shift allowing migratory escape to similar environs. These changing migration patterns and poleward range expansion push species into higher latitudes where ecosystems are less stable and more sensitive to change. This project focuses on ecosystem geography and interspecies relationships and interactions by analyzing seasonality and changes over time in variables including the following: temperature, precipitation, vegetation, physical boundaries, population demographics, permafrost, sea ice, and food and water availability. Publicly available data from remote sensing platforms are used throughout, and processed with both commercially available and open sourced GIS tools. This analysis describes observed range changes for selected North American species, and attempts to provide insight into the causes and effects of these phenomena. As the responses to climate change are complex and varied, the goal is to produce the aforementioned results in an easily understood set of geospatial representations to better support decision making regarding conservation prioritization and enable adaptive responses and mitigation strategies.

  6. Responses to projected changes in climate and UV-B at the species level.

    PubMed

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus; Elster, Josef; Jónsdóttir, Ingibjörg S; Laine, Kari; Taulavuori, Kari; Taulavuori, Erja; Zöckler, Christoph

    2004-11-01

    Environmental manipulation experiments showed that species respond individualistically to each environmental-change variable. The greatest responses of plants were generally to nutrient, particularly nitrogen, addition. Summer warming experiments showed that woody plant responses were dominant and that mosses and lichens became less abundant. Responses to warming were controlled by moisture availability and snow cover. Many invertebrates increased population growth in response to summer warming, as long as desiccation was not induced. CO2 and UV-B enrichment experiments showed that plant and animal responses were small. However, some microorganisms and species of fungi were sensitive to increased UV-B and some intensive mutagenic actions could, perhaps, lead to unexpected epidemic outbreaks. Tundra soil heating, CO2 enrichment and amendment with mineral nutrients generally accelerated microbial activity. Algae are likely to dominate cyanobacteria in milder climates. Expected increases in winter freeze-thaw cycles leading to ice-crust formation are likely to severely reduce winter survival rate and disrupt the population dynamics of many terrestrial animals. A deeper snow cover is likely to restrict access to winter pastures by reindeer/caribou and their ability to flee from predators while any earlier onset of the snow-free period is likely to stimulate increased plant growth. Initial species responses to climate change might occur at the sub-species level: an Arctic plant or animal species with high genetic/racial diversity has proved an ability to adapt to different environmental conditions in the past and is likely to do so also in the future. Indigenous knowledge, air photographs, satellite images and monitoring show that changes in the distributions of some species are already occurring: Arctic vegetation is becoming more shrubby and more productive, there have been recent changes in the ranges of caribou, and "new" species of insects and birds previously associated with areas south of the treeline have been recorded. In contrast, almost all Arctic breeding bird species are declining and models predict further quite dramatic reductions of the populations of tundra birds due to warming. Species-climate response surface models predict potential future ranges of current Arctic species that are often markedly reduced and displaced northwards in response to warming. In contrast, invertebrates and microorganisms are very likely to quickly expand their ranges northwards into the Arctic.

  7. Assessing slope dynamics in a climate-sensitive high arctic region with Sentinel-1 dataset

    NASA Astrophysics Data System (ADS)

    Mantovani, Matteo; Pasuto, Alessandro; Soldati, Mauro; Popovic, Radmil; Berthling, Ivar

    2017-04-01

    As witnessed by an increasing number of studies, the evidence of ongoing climate change and its geomorphological effects is unquestionable. In the Svalbard archipelago, the Arctic amplification of global warming trends currently has a significant effect on permafrost temperatures and active layer thickness. Combined with altered intensity and variability of precipitation, slopes are likely to become more active in terms of both rapid and slow (creep) processes - at least as a temporary effect where the ice-rich transient layer of soils or jointed permafrost rock walls are starting to thaw. The slopes of the Kongsfjorden area aroundNy-Ålesund, NW Spitzbergen comprise a variable set of slopes systems on which to evaluate current modifications of slope sediment transfer; from low-angle fined-grained vegetated slopes to steep rock walls, talus slopes and rock glaciers. In addition, systems influenced by currently retreating glaciers and thermokarst processes are also found, in some settings interfering with the rock wall and talus slope systems. Within the framework of the SLOPES project, we provide baseline data on slope geometry from detailed terrestrial laser scanning and drone aerial image acquisition. Further, in order to document current dynamics, we employ interferometric analysis of data gathered by the new ESA mission SENTINEL. This presentation will report on data from the interferometric analysis.

  8. Postglacial paleoclimates of the Foxe Basin and surrounding regions (Nunavut, Canada): a multiproxy lake sediment archive study

    NASA Astrophysics Data System (ADS)

    Pienitz, Reinhard; Beaudoin, Anne; Narancic, Biljana; Rolland, Nicolas; Wagner, Anne-Marie; Zimmermann, Claudia

    2013-04-01

    Climate change reports show that global warming effects, which are amplified at high latitudes, drive unprecedented environmental changes (ACIA 2005; AMAP-SWIPA 2011). However, not all arctic regions yield the same rate of change (Smol et al. 2005). Several paleoclimate studies completed in areas surrounding the southern Foxe Basin, in Nunavik and Labrador suggest that these regions experienced relatively subtle climatic and environmental changes over the recent past (Pienitz et al. 2004) as compared to the drastic changes reported from the Canadian High Arctic. These contrasting scenarios underscore the need to increase our knowledge of past and present environmental conditions across the Arctic in order to refine our capacity to model past, present and future environmental impacts. Unfortunately, instrumental data available for developing regional and global climate models do not adequately capture the natural environmental variability that has affected these regions over the past. In an effort to explore the potential responses of northern freshwater ecosystems and their watersheds to climatic change and to place instrumental records into a longer-term perspective, we use a multi-proxy paleolimnological approach to study the sedimentary records preserved in several lakes distributed across regions bordering the Foxe Basin (65°-70°N; 71°-85°W) in Nunavut. This presentation will showcase the preliminary results obtained through studies of lake sediment records from the Foxe Peninsula, Southampton Island, Melville Peninsula, Steensby Inlet and the Nettilling Lake area (Nunavut, Canada). Combined with sedimentological analyses (X-ray profiles, XRF, CHN, grain size, magnetic susceptibility), changes in the composition of both fossil chironomid and diatom assemblages provide an improved understanding of the temporal and spatial variability and of the timing of past climatic events since the last deglaciation. Our central objective is to generate a network of decadal-millennial scale records of quantitative variations in water quality parameters (e.g., temperature, dissolved organic carbon, alkalinity) to explore fundamental questions concerning postglacial ecosystem succession and water quality trends in northern landscapes. Regional comparisons with ice core data from the Penny Ice Cap and the Greenland Ice Sheet, as well as with paleoceanographic data from surrounding marine environments should also allow us refine regional paleoclimate models.

  9. Late Cretaceous seasonal ocean variability from the Arctic.

    PubMed

    Davies, Andrew; Kemp, Alan E S; Pike, Jennifer

    2009-07-09

    The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized. Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre, or those indicated for the Mediterranean sapropels. With increased CO(2) levels and warming currently driving increased stratification in the global ocean, this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean, rather than recent suggestions of a 15 degrees C mean annual temperature at this time.

  10. Carbon, Climate and Cameras: Showcasing Arctic research through multimedia storytelling

    NASA Astrophysics Data System (ADS)

    Tachihara, B. L.; Linder, C. A.; Holmes, R. M.

    2011-12-01

    In July 2011, Tachihara spent three weeks in the Siberian Arctic documenting The Polaris Project, an NSF-funded effort that brings together an international group of undergraduate students and research scientists to study Arctic systems. Using a combination of photography, video and interviews gathered during the field course, we produced a six-minute film focusing on the researchers' quest to track carbon as it moves from terrestrial upland areas into lakes, streams, rivers and eventually into the Arctic Ocean. The overall goal was to communicate the significance of Arctic science in the face of changing climate. Using a selection of clips from the 2011 video, we will discuss the advantages and challenges specific to using multimedia presentations to represent Arctic research, as well as science in general. The full video can be viewed on the Polaris website: http://www.thepolarisproject.org.

  11. Rapid Arctic Changes due to Infrastructure and Climate (RATIC) in the Russian North

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Kofinas, G.; Raynolds, M. K.; Kanevskiy, M. Z.; Shur, Y.; Ambrosius, K.; Matyshak, G. V.; Romanovsky, V. E.; Kumpula, T.; Forbes, B. C.; Khukmotov, A.; Leibman, M. O.; Khitun, O.; Lemay, M.; Allard, M.; Lamoureux, S. F.; Bell, T.; Forbes, D. L.; Vincent, W. F.; Kuznetsova, E.; Streletskiy, D. A.; Shiklomanov, N. I.; Fondahl, G.; Petrov, A.; Roy, L. P.; Schweitzer, P.; Buchhorn, M.

    2015-12-01

    The Rapid Arctic Transitions due to Infrastructure and Climate (RATIC) initiative is a forum developed by the International Arctic Science Committee (IASC) Terrestrial, Cryosphere, and Social & Human working groups for developing and sharing new ideas and methods to facilitate the best practices for assessing, responding to, and adaptively managing the cumulative effects of Arctic infrastructure and climate change. An IASC white paper summarizes the activities of two RATIC workshops at the Arctic Change 2014 Conference in Ottawa, Canada and the 2015 Third International Conference on Arctic Research Planning (ICARP III) meeting in Toyama, Japan (Walker & Pierce, ed. 2015). Here we present an overview of the recommendations from several key papers and posters presented at these conferences with a focus on oil and gas infrastructure in the Russian north and comparison with oil development infrastructure in Alaska. These analyses include: (1) the effects of gas- and oilfield activities on the landscapes and the Nenets indigenous reindeer herders of the Yamal Peninsula, Russia; (2) a study of urban infrastructure in the vicinity of Norilsk, Russia, (3) an analysis of the effects of pipeline-related soil warming on trace-gas fluxes in the vicinity of Nadym, Russia, (4) two Canadian initiatives that address multiple aspects of Arctic infrastructure called Arctic Development and Adaptation to Permafrost in Transition (ADAPT) and the ArcticNet Integrated Regional Impact Studies (IRIS), and (5) the effects of oilfield infrastructure on landscapes and permafrost in the Prudhoe Bay region, Alaska.

  12. Squaring the Arctic Circle: connecting Arctic knowledge with societal needs

    NASA Astrophysics Data System (ADS)

    Wilkinson, J.

    2017-12-01

    Over the coming years the landscape of the Arctic will change substantially- environmentally, politically, and economically. Furthermore, Arctic change has the potential to significantly impact Arctic and non-Arctic countries alike. Thus, our science is in-demand by local communities, politicians, industry leaders and the public. During these times of transition it is essential that the links between science and society be strengthened further. Strong links between science and society is exactly what is needed for the development of better decision-making tools to support sustainable development, enable adaptation to climate change, provide the information necessary for improved management of assets and operations in the Arctic region, and and to inform scientific, economic, environmental and societal policies. By doing so tangible benefits will flow to Arctic societies, as well as for non-Arctic countries that will be significantly affected by climate change. Past experience has shown that the engagement with a broad range of stakeholders is not always an easy process. Consequently, we need to improve collaborative opportunities between scientists, indigenous/local communities, private sector, policy makers, NGOs, and other relevant stakeholders. The development of best practices in this area must build on the collective experiences of successful cross-sectorial programmes. Within this session we present some of the outreach work we have performed within the EU programme ICE-ARC, from community meetings in NW Greenland through to sessions at the United Nations Framework Convention on Climate Change COP Conferences, industry round tables, and an Arctic side event at the World Economic Forum in Davos.

  13. Predicting Changes in Arctic Tundra Vegetation: Towards an Understanding of Plant Trait Uncertainty

    NASA Astrophysics Data System (ADS)

    Euskirchen, E. S.; Serbin, S.; Carman, T.; Iversen, C. M.; Salmon, V.; Helene, G.; McGuire, A. D.

    2017-12-01

    Arctic tundra plant communities are currently undergoing unprecedented changes in both composition and distribution under a warming climate. Predicting how these dynamics may play out in the future is important since these vegetation shifts impact both biogeochemical and biogeophysical processes. More precise estimates of these future vegetation shifts is a key challenge due to both a scarcity of data with which to parameterize vegetation models, particularly in the Arctic, as well as a limited understanding of the importance of each of the model parameters and how they may vary over space and time. Here, we incorporate newly available field data from arctic Alaska into a dynamic vegetation model specifically developed to take into account a particularly wide array of plant species as well as the permafrost soils of the arctic tundra (the Terrestrial Ecosystem Model with Dynamic Vegetation and Dynamic Organic Soil, Terrestrial Ecosystem Model; DVM-DOS-TEM). We integrate the model within the Predicative Ecosystem Analyzer (PEcAn), an open-source integrated ecological bioinformatics toolbox that facilitates the flows of information into and out of process models and model-data integration. We use PEcAn to evaluate the plant functional traits that contribute most to model variability based on a sensitivity analysis. We perform this analysis for the dominant types of tundra in arctic Alaska, including heath, shrub, tussock and wet sedge tundra. The results from this analysis will help inform future data collection in arctic tundra and reduce model uncertainty, thereby improving our ability to simulate Arctic vegetation structure and function in response to global change.

  14. A Holarctic Biogeographical Analysis of the Collembola (Arthropoda, Hexapoda) Unravels Recent Post-Glacial Colonization Patterns

    PubMed Central

    Ávila-Jiménez, María Luisa; Coulson, Stephen James

    2011-01-01

    We aimed to describe the main Arctic biogeographical patterns of the Collembola, and analyze historical factors and current climatic regimes determining Arctic collembolan species distribution. Furthermore, we aimed to identify possible dispersal routes, colonization sources and glacial refugia for Arctic collembola. We implemented a Gaussian Mixture Clustering method on species distribution ranges and applied a distance- based parametric bootstrap test on presence-absence collembolan species distribution data. Additionally, multivariate analysis was performed considering species distributions, biodiversity, cluster distribution and environmental factors (temperature and precipitation). No clear relation was found between current climatic regimes and species distribution in the Arctic. Gaussian Mixture Clustering found common elements within Siberian areas, Atlantic areas, the Canadian Arctic, a mid-Siberian cluster and specific Beringian elements, following the same pattern previously described, using a variety of molecular methods, for Arctic plants. Species distribution hence indicate the influence of recent glacial history, as LGM glacial refugia (mid-Siberia, and Beringia) and major dispersal routes to high Arctic island groups can be identified. Endemic species are found in the high Arctic, but no specific biogeographical pattern can be clearly identified as a sign of high Arctic glacial refugia. Ocean currents patterns are suggested as being an important factor shaping the distribution of Arctic Collembola, which is consistent with Antarctic studies in collembolan biogeography. The clear relations between cluster distribution and geographical areas considering their recent glacial history, lack of relationship of species distribution with current climatic regimes, and consistency with previously described Arctic patterns in a series of organisms inferred using a variety of methods, suggest that historical phenomena shaping contemporary collembolan distribution can be inferred through biogeographical analysis. PMID:26467728

  15. Response of Arctic Temperature to Changes in Emissions of Short-Lived Climate Forcers

    NASA Astrophysics Data System (ADS)

    Sand, M.; Berntsen, T.; von Salzen, K.; Flanner, M.; Langner, J.; Victor, D. G.

    2015-12-01

    There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased twice the global rate, largely due to ice albedo and temperature feedbacks. While deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short lived climate forcers (SLCFs). Politically, action on SLCFs may be particularly promising because the benefits of mitigation appear promptly and there are large co-benefits in terms of improved air quality. This study is the first to systematically quantify the Arctic climate impact of regional SLCF emissions, taking into account BC, sulphur dioxide (SO2), nitrogen oxides (NOx), volatile hydrocarbons (VOC), organic carbon (OC) and tropospheric ozone, their transport processes and transformations in the atmosphere. Using several chemical transport models we perform detailed radiative forcing calculations from emissions of these species. Geographically we separate emissions into seven source regions that correspond with the national groupings of the Arctic Council, the leading body organizing international policy in the region (the United States, Canada, the Nordic countries, the rest of Europe, Russia, East and South Asia, and the rest of the world). We look at six main sectors known to account for [nearly all] of these emissions: households (domestic), energy/industry/waste, transport, agricultural fires, grass/forest fires, and gas flaring. We find that the largest Arctic warming source is from emissions within the Asian nations. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible SLCFs mitigation scenario, phased in from 2015 through 2030, can cut warming by 0.2 K in 2050.

  16. Response of Arctic Temperature to Changes in Emissions of Short-Lived Climate Forcers

    NASA Astrophysics Data System (ADS)

    Sand, M.; Berntsen, T.; von Salzen, K.; Flanner, M.; Langner, J.; Victor, D. G.

    2014-12-01

    There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased twice the global rate, largely due to ice albedo and temperature feedbacks. While deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short lived climate forcers (SLCFs). Politically, action on SLCFs may be particularly promising because the benefits of mitigation appear promptly and there are large co-benefits in terms of improved air quality. This study is the first to systematically quantify the Arctic climate impact of regional SLCF emissions, taking into account BC, sulphur dioxide (SO2), nitrogen oxides (NOx), volatile hydrocarbons (VOC), organic carbon (OC) and tropospheric ozone, their transport processes and transformations in the atmosphere. Using several chemical transport models we perform detailed radiative forcing calculations from emissions of these species. Geographically we separate emissions into seven source regions that correspond with the national groupings of the Arctic Council, the leading body organizing international policy in the region (the United States, Canada, the Nordic countries, the rest of Europe, Russia, East and South Asia, and the rest of the world). We look at six main sectors known to account for [nearly all] of these emissions: households (domestic), energy/industry/waste, transport, agricultural fires, grass/forest fires, and gas flaring. We find that the largest Arctic warming source is from emissions within the Asian nations. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible SLCFs mitigation scenario, phased in from 2015 through 2030, can cut warming by 0.2 K in 2050.

  17. Forage plants of an Arctic-nesting herbivore show larger warming response in breeding than wintering grounds, potentially disrupting migration phenology.

    PubMed

    Lameris, Thomas K; Jochems, Femke; van der Graaf, Alexandra J; Andersson, Mattias; Limpens, Juul; Nolet, Bart A

    2017-04-01

    During spring migration, herbivorous waterfowl breeding in the Arctic depend on peaks in the supply of nitrogen-rich forage plants, following a "green wave" of grass growth along their flyway to fuel migration and reproduction. The effects of climate warming on forage plant growth are expected to be larger at the Arctic breeding grounds than in temperate wintering grounds, potentially disrupting this green wave and causing waterfowl to mistime their arrival on the breeding grounds. We studied the potential effect of climate warming on timing of food peaks along the migratory flyway of the Russian population of barnacle geese using a warming experiment with open-top chambers. We measured the effect of 1.0-1.7°C experimental warming on forage plant biomass and nitrogen concentration at three sites along the migratory flyway (temperate wintering site, temperate spring stopover site, and Arctic breeding site) during 2 months for two consecutive years. We found that experimental warming increased biomass accumulation and sped up the decline in nitrogen concentration of forage plants at the Arctic breeding site but not at temperate wintering and stop-over sites. Increasing spring temperatures in the Arctic will thus shorten the food peak of nitrogen-rich forage at the breeding grounds. Our results further suggest an advance of the local food peak in the Arctic under 1-2°C climate warming, which will likely cause migrating geese to mistime their arrival at the breeding grounds, particularly considering the Arctic warms faster than the temperate regions. The combination of a shorter food peak and mistimed arrival is likely to decrease goose reproductive success under climate warming by reducing growth and survival of goslings after hatching.

  18. Climate-driven changes in functional biogeography of Arctic marine fish communities

    PubMed Central

    Primicerio, Raul; Kortsch, Susanne; Aune, Magnus; Dolgov, Andrey V.; Fossheim, Maria; Aschan, Michaela M.

    2017-01-01

    Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions. PMID:29087943

  19. Assessing climate impacts and risks of ocean albedo modification in the Arctic

    NASA Astrophysics Data System (ADS)

    Mengis, N.; Martin, T.; Keller, D. P.; Oschlies, A.

    2016-05-01

    The ice albedo feedback is one of the key factors of accelerated temperature increase in the high northern latitudes under global warming. This study assesses climate impacts and risks of idealized Arctic Ocean albedo modification (AOAM), a proposed climate engineering method, during transient climate change simulations with varying representative concentration pathway (RCP) scenarios. We find no potential for reversing trends in all assessed Arctic climate metrics under increasing atmospheric CO2 concentrations. AOAM only yields an initial offset during the first years after implementation. Nevertheless, sea ice loss can be delayed by 25(60) years in the RCP8.5(RCP4.5) scenario and the delayed thawing of permafrost soils in the AOAM simulations prevents up to 40(32) Pg of carbon from being released by 2100. AOAM initially dampens the decline of the Atlantic Meridional Overturning and delays the onset of open ocean deep convection in the Nordic Seas under the RCP scenarios. Both these processes cause a subsurface warming signal in the AOAM simulations relative to the default RCP simulations with the potential to destabilize Arctic marine gas hydrates. Furthermore, in 2100, the RCP8.5 AOAM simulation diverts more from the 2005-2015 reference state in many climate metrics than the RCP4.5 simulation without AOAM. Considering the demonstrated risks, we conclude that concerning longer time scales, reductions in emissions remain the safest and most effective way to prevent severe changes in the Arctic.

  20. Interglacial climates and the Atlantic meridional overturning circulation: is there an Arctic controversy?

    NASA Astrophysics Data System (ADS)

    Bauch, Henning A.

    2013-03-01

    Arctic palaeorecords are important to understand the "natural range" of forcing and feedback mechanisms within the context of past and present climate change in this temperature-sensitive region. A wide array of methods and archives now provide a robust understanding of the Holocene climate evolution. By comparison rather little is still known about older interglacials, and in particular, on the effects of the northward propagation of heat transfer via the Atlantic meridional ocean circulation (AMOC) into the Arctic. Terrestrial records from this area often indicate a warmer and moister climate during past interglacials than in the Holocene implying a more vigorous AMOC activity. This is in conflict with marine data. Although recognized as very prominent interglacials in Antarctic ice cores, cross-latitudinal surface ocean temperature reconstructions show that little of the surface ocean warmth still identified in the Northeast Atlantic during older interglacial peaks (e.g., MIS5e, 9, 11) was further conveyed into the polar latitudes, and that each interglacial developed its own specific palaeoclimate features. Interactive processes between water mass overturning and the hydrological system of the Arctic, and how both developed together out of a glacial period with its particular ice sheet configuration and relative sea-level history, determined the efficiency of an evolving interglacial AMOC. Because of that glacial terminations developed some very specific water mass characteristics, which also affected the climate evolution of the ensuing interglacial periods. Moreover, the observed contrasts in the Arctic-directed meridional ocean heat flux between past interglacials have implications for the palaeoclimatic evaluation of this polar region. Crucial environmental factors of the Arctic climate system, such as the highly dynamical interactions between deep water mass flow, surface ocean temperature/salinity, sea ice, and atmosphere, exert strong feedbacks on interglacial climate regionality that goes well beyond the Arctic. A sound interpretation of such processes from palaeoarchives requires a good understanding of the applied proxies. Fossils, in particular, are often key to the reconstruction of past conditions. But the tremendously flexible adaptation strategies of biota sometimes hampers further in-depth interpretations, especially when considering their palaeoenvironmental meaning in the context of rapid palaeoclimatic changes and long-term Pleistocene evolution.

Top