Science.gov

Sample records for arctic environmental change

  1. Study of Environmental Arctic Change (SEARCH): Scientific Understanding of Arctic Environmental Change to Help Society Understand and Respond to a Rapidly Changing Arctic.

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Myers, B.

    2015-12-01

    The Study of Environmental Arctic Change (SEARCH) is a U.S. program with a mission to provide a foundation of Arctic change science through collaboration with the research community, funding agencies, and other stakeholders. To achieve this mission, SEARCH: Generates and synthesizes research findings and promotes Arctic science and scientific discovery across disciplines and among agencies. Identifies emerging issues in Arctic environmental change. Provides scientific information to Arctic stakeholders, policy-makers, and the public to help them understand and respond to arctic environmental change. Facilitates research activities across local-to-global scales, with an emphasis on addressing needs of decision-makers. Collaborates with national and international science programs integral to SEARCH goals. This poster presentation will present SEARCH activities and plans, highlighting those focused on providing information for decision-makers. http://www.arcus.org/search

  2. Towards Prediction of Environmental Arctic Change

    DTIC Science & Technology

    2004-06-01

    Maslowski, W., D. Marble, W. Walczowski , U. Schauer, J.L. Clement, and A.J. Semtner, "On climatological mass, heat, and 4. Significance to DoD salt... Walczowski , and A.J. have large errors due to insufficient model resolution to Semtner, "On Large Scale Shifts in the Arctic Ocean and Sea Ice account

  3. Inuit Perspectives on Arctic Environmental Change': A Traveling Exhibition

    NASA Astrophysics Data System (ADS)

    Sheffield, E. M.; Hakala, J. S.; Gearheard, S.

    2006-12-01

    The Inuit of Nunavut, Canada, have an intimate relationship with their surroundings. As a culture that relies on knowledge of sea ice, snow, and weather conditions for success in hunting, fishing, and healthy wellbeing, Inuit have observed and studied environmental patterns for generations. An ongoing study into their traditional knowledge and their observations of environmental change is being conducted by researcher Dr. Shari Gearheard, who has worked with Inuit communities in Nunavut for over a decade. The results of the research have been published in scientific journals, and to communicate the results to a broader audience, Dr. Gearheard designed an interactive CD-ROM displaying photographs, maps, and interview videos of Inuit Elders' perspectives on the changes they have witnessed. Receiving immediate popularity since its release in 2004, copies of `When the Weather is Uggianaqtuq: Inuit Observations of Environmental Change' have been distributed worldwide, to indigenous peoples, social science and climate change researchers, teachers, students, and the general public. To further disseminate the information contained on the CD-ROM, the National Snow and Ice Data Center and the Museum of Natural History, both of the University of Colorado, are partnering to create an exhibition which will open at the Museum during the International Polar Year in April 2008. The exhibit, tentatively titled `Inuit Perspectives on Arctic Environmental Change,' will feature photographs, graphics, and text in both English and Inuktitut describing environmental change in the North. The goals are to make the information and interpretation contained on the CD-ROM available and more accessible to a broad audience and to raise awareness about Arctic climate change and the important contribution of Inuit knowledge. Following exhibition at the Museum, the exhibit will travel throughout the United States, Alaska, and Nunavut, through a network of museums, schools, libraries, tribal

  4. SEARCH: Study of Environmental Arctic Change-A System-scale, Cross-disciplinary Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Eicken, H.; Fox, S. E.; Search Science Steering Committee

    2011-12-01

    SEARCH is an interdisciplinary and interagency program that works with academic and government agency scientists to plan, conduct, and synthesize studies of arctic change. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. Towards this end, SEARCH: (1) Generates and synthesizes research findings and promotes arctic science and scientific discovery across disciplines and among agencies. (2) Identifies emerging issues in arctic environmental change. (3) Provides information resources to arctic stakeholders, policy-makers, and the public to help them respond to arctic environmental change. (4) Coordinates with national arctic science programs integral to SEARCH goals. (5) Facilitates research activities across local-to-global scales with stakeholder concerns incorporated from the start of the planning process. (6) Represents the U.S. arctic environmental change science community in international and global change research initiatives. Examples of specific SEARCH activities include: (1) Arctic Observing Network (AON) - a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. (2) Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. (3) Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. (4) Developing recommendations for an interagency "Understanding Arctic Change" program. In addition to the above activities, SEARCH is also currently undertaking a strategic planning process to define priority goals and objectives for the next 3-5 years. SEARCH is guided by a Science Steering Committee and

  5. SEARCH: Study of Environmental Arctic Change--A System-scale, Cross-disciplinary Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Shnoro, R. S.; Eicken, H.; Francis, J. A.; Scambos, T. A.; Schuur, E. A.; Straneo, F.; Wiggins, H. V.

    2013-12-01

    SEARCH is an interdisciplinary, interagency program that works with academic and government agency scientists and stakeholders to plan, conduct, and synthesize studies of Arctic change. Over the past three years, SEARCH has developed a new vision and mission, a set of prioritized cross-disciplinary 5-year goals, an integrated set of activities, and an organizational structure. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. SEARCH's 5-year science goals include: 1. Improve understanding, advance prediction, and explore consequences of changing Arctic sea ice. 2. Document and understand how degradation of near-surface permafrost will affect Arctic and global systems. 3. Improve predictions of future land-ice loss and impacts on sea level. 4. Analyze societal and policy implications of Arctic environmental change. Action Teams organized around each of the 5-year goals will serve as standing groups responsible for implementing specific goal activities. Members will be drawn from academia, different agencies and stakeholders, with a range of disciplinary backgrounds and perspectives. 'Arctic Futures 2050' scenarios tasks will describe plausible future states of the arctic system based on recent trajectories and projected changes. These scenarios will combine a range of data including climate model output, paleo-data, results from data synthesis and systems modeling, as well as expert scientific and traditional knowledge. Current activities include: - Arctic Observing Network (AON) - coordinating a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. - Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. A newly-launched Sea Ice Prediction Network

  6. Promoting Knowledge to Action through the Study of Environmental Arctic Change (SEARCH) Program

    NASA Astrophysics Data System (ADS)

    Myers, B.; Wiggins, H. V.

    2016-12-01

    The Study of Environmental Arctic Change (SEARCH) is a multi-institutional collaborative U.S. program that advances scientific knowledge to inform societal responses to Arctic change. Currently, SEARCH focuses on how diminishing Arctic sea ice, thawing permafrost, and shrinking land ice impact both Arctic and global systems. Emphasizing "knowledge to action", SEARCH promotes collaborative research, synthesizes research findings, and broadly communicates the resulting knowledge to Arctic researchers, stakeholders, policy-makers, and the public. This poster presentation will highlight recent program products and findings; best practices and challenges for managing a distributed, interdisciplinary program; and plans for cross-disciplinary working groups focused on Arctic coastal erosion, synthesis of methane budgets, and development of Arctic scenarios. A specific focus will include how members of the broader research community can participate in SEARCH activities. http://www.arcus.org/search

  7. Arctic Observing Network (AON): Enhancing Observing, Data Archiving and Data Discovery Capabilities as Arctic Environmental System Change Continues

    NASA Astrophysics Data System (ADS)

    Jeffries, M. O.

    2008-12-01

    The National Science Foundation (NSF) and the National Oceanic and Atmospheric Administration, under the auspices of the U.S. Inter-Agency Arctic Research Policy Committee, are leading the development of the Arctic Observing Network (AON) as part of the implementation of the Study of Environmental Arctic Change (SEARCH) and as a legacy of International Polar Year (IPY). As the Observing Change component of SEARCH, AON complements the Understanding Change and Responding to Change components. AON addresses the need to enhance observing capabilities in a data-sparse region where environmental system changes are among the most rapid on Earth. AON data will contribute to research into understanding the causes and consequences of Arctic environmental system change and its global connections, and to improving predictive skill. AON is also a contribution to the development of a multi-nation, pan-Arctic observing network that is being discussed at the IPY 'Sustaining Arctic Observing Networks' (SAON) workshops. Enhancing Arctic observing capabilities faces many challenges, including coordination and integration of disparate observing elements and data systems that operate according to diverse policies and practices. There is wide agreement that data systems that provide archiving and discovery services are essential and integral to AON. In recognition of this, NSF is supporting the development of CADIS (Cooperative Arctic Data and Information Service) as an AON portal for data discovery, a repository for data storage, and a platform for data analysis. NSF is also supporting ELOKA (Exchange for Local Observations and Knowledge in the Arctic), a pilot project for a data management and networking service for community- based observing that keeps control of data in the hands of data providers while still allowing for broad searches and sharing of information. CADIS and ELOKA represent the application of cyberinfrastructure to meet AON data system needs that might also

  8. SEARCH: Study of Environmental Arctic Change--A System-scale, Cross-disciplinary, Long-term Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Schlosser, P.; Loring, A. J.; Warnick, W. K.; Committee, S. S.

    2008-12-01

    The Study of Environmental Arctic Change (SEARCH) is a multi-agency effort to observe, understand, and guide responses to changes in the arctic system. Interrelated environmental changes in the Arctic are affecting ecosystems and living resources and are impacting local and global communities and economic activities. Under the SEARCH program, guided by the Science Steering Committee (SSC), the Interagency Program Management Committee (IPMC), and the Observing, Understanding, and Responding to Change panels, scientists with a variety of expertise--atmosphere, ocean and sea ice, hydrology and cryosphere, terrestrial ecosystems, human dimensions, and paleoclimatology--work together to achieve goals of the program. Over 150 projects and activities contribute to SEARCH implementation. The Observing Change component is underway through National Science Foundation's (NSF) Arctic Observing Network (AON), NOAA-sponsored atmospheric and sea ice observations, and other relevant national and international efforts, including the EU- sponsored Developing Arctic Modelling and Observing Capabilities for Long-term Environmental Studies (DAMOCLES) Program. The Understanding Change component of SEARCH consists of modeling and analysis efforts, with strong linkages to relevant programs such as NSF's Arctic System Synthesis (ARCSS) Program. The Responding to Change element is driven by stakeholder research and applications addressing social and economic concerns. As a national program under the International Study of Arctic Change (ISAC), SEARCH is also working to expand international connections in an effort to better understand the global arctic system. SEARCH is sponsored by eight (8) U.S. agencies, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the Department of Energy (DOE), the Department of the Interior (DOI), the Smithsonian

  9. SEARCH: Study of Environmental Arctic Change--A System-scale, Cross-disciplinary, Long-term Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Schlosser, P.; Fox, S. E.

    2009-12-01

    The Study of Environmental Arctic Change (SEARCH) is a multi-agency effort to observe, understand, and guide responses to changes in the changing arctic system. Under the SEARCH program, guided by the Science Steering Committee (SSC), the Observing, Understanding, and Responding to Change panels, and the Interagency Program Management Committee (IPMC), scientists with a variety of expertise work together to achieve goals of the program. Over 150 projects and activities contribute to SEARCH implementation. The Observing Change component is underway through the NSF’s Arctic Observing Network (AON), NOAA-sponsored atmospheric and sea ice observations, and other relevant national and international efforts, including the EU-sponsored Developing Arctic Modeling and Observing Capabilities for Long-term Environmental Studies (DAMOCLES) Program. The Understanding Change component of SEARCH consists of modeling and analysis efforts, including the Sea Ice Outlook project, an international effort to provide a community-wide summary of the expected September arctic sea ice minimum. The Understanding Change component also has strong linkages to programs such as the NSF Arctic System Science (ARCSS) Program. The Responding to Change element will be launched through stakeholder-focused research and applications addressing social and economic concerns. As a national program under the International Study of Arctic Change (ISAC), SEARCH is working to expand international connections. The State of the Arctic Conference (soa.arcus.org), to be held 16-19 March 2010 in Miami, will be a milestone activity of SEARCH and will provide an international forum for discussion of future research directions aimed toward a better understanding of the arctic system and its trajectory. SEARCH is sponsored by eight U.S. agencies that comprise the IPMC, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space

  10. The Earth Is Faster Now: Indigenous Observations of Arctic Environmental Change. Frontiers in Polar Social Science.

    ERIC Educational Resources Information Center

    Krupnik, Igor, Ed.; Jolly, Dyanna, Ed.

    This book focuses on documenting and understanding the nature of environmental changes observed by indigenous residents of the Arctic. Common themes include increasing variability and unpredictability of the weather and seasonal climatic patterns, as well as changes in the sea ice and the health of wildlife. Nine papers focus on these changes,…

  11. The Earth Is Faster Now: Indigenous Observations of Arctic Environmental Change. Frontiers in Polar Social Science.

    ERIC Educational Resources Information Center

    Krupnik, Igor, Ed.; Jolly, Dyanna, Ed.

    This book focuses on documenting and understanding the nature of environmental changes observed by indigenous residents of the Arctic. Common themes include increasing variability and unpredictability of the weather and seasonal climatic patterns, as well as changes in the sea ice and the health of wildlife. Nine papers focus on these changes,…

  12. White Arctic vs. Blue Arctic: A case study of diverging stakeholder responses to environmental change

    NASA Astrophysics Data System (ADS)

    Newton, Robert; Pfirman, Stephanie; Schlosser, Peter; Tremblay, Bruno; Murray, Maribeth; Pomerance, Rafe

    2016-08-01

    Recent trends and climate models suggest that the Arctic summer sea ice cover is likely to be lost before climate interventions can stabilize it. There are environmental, socioeconomic, and sociocultural arguments for, but also against, restoring and sustaining current conditions. Even if global warming can be reversed, some people will experience ice-free summers before perennial sea ice begins to return. We ask: How will future generations feel about bringing sea ice back where they have not experienced it before? How will conflicted interests in ice-covered vs. ice-free conditions be resolved? What role will science play in these debates?

  13. Supporting decisions through the Study of Environmental Arctic Change (SEARCH) Program: A History and Way Forward

    NASA Astrophysics Data System (ADS)

    Druckenmiller, M. L.; Wiggins, H. V.; Eicken, H.; Francis, J. A.; Huntington, H.; Scambos, T. A.

    2015-12-01

    The Study of Environmental Arctic Change (SEARCH), ongoing since the early-2000s, aims to develop scientific knowledge to help society understand and respond to the rapidly changing Arctic. Through collaboration with the research community, funding agencies, national and international science programs, and other stakeholders, SEARCH facilitates research activities across local-to-global scales, with increasing emphasis on addressing the information needs of policy and decision-makers. This talk will explore the program's history, spanning its earliest efforts to understand interrelated atmospheric, oceanic, and terrestrial changes in the Arctic to more recent objectives of providing stakeholder-relevant information, such as community-wide summaries of the expected arctic summer sea ice minimum or up-to-date information on sea ice conditions to Alaska Native walrus hunters in the Bering and Chukchi Seas. We will discuss SEARCH's recent shift toward a "Knowledge to Action" vision and implementation of focused Action Teams to: (1) improve understanding, advance prediction, and explore consequences of changing arctic sea ice; (2) document and understand how degradation of near-surface permafrost will affect arctic and global systems; and (3) improve predictions of future land-ice loss and impacts on sea level. Tracking and evaluating how scientific information from such research reaches stakeholders and informs decisions are critical for interactions that allow the research community to keep pace with an evolving landscape of arctic decision-makers. Examples will be given for the new directions these Action Teams are taking regarding science communication and approaches for research community collaboration to synthesize research findings and promote arctic science and interdisciplinary scientific discovery.

  14. Climate change impacts on environmental and human exposure to mercury in the arctic.

    PubMed

    Sundseth, Kyrre; Pacyna, Jozef M; Banel, Anna; Pacyna, Elisabeth G; Rautio, Arja

    2015-03-31

    This paper reviews information from the literature and the EU ArcRisk project to assess whether climate change results in an increase or decrease in exposure to mercury (Hg) in the Arctic, and if this in turn will impact the risks related to its harmful effects. It presents the state-of-the art of knowledge on atmospheric mercury emissions from anthropogenic sources worldwide, the long-range transport to the Arctic, and it discusses the likely environmental fate and exposure effects on population groups in the Arctic under climate change conditions. The paper also includes information about the likely synergy effects (co-benefits) current and new climate change polices and mitigation options might have on mercury emissions reductions in the future. The review concludes that reductions of mercury emission from anthropogenic sources worldwide would need to be introduced as soon as possible in order to assure lowering the adverse impact of climate change on human health. Scientific information currently available, however, is not in the position to clearly answer whether climate change will increase or decrease the risk of exposure to mercury in the Arctic. New research should therefore be undertaken to model the relationships between climate change and mercury exposure.

  15. Climate Change Impacts on Environmental and Human Exposure to Mercury in the Arctic

    PubMed Central

    Sundseth, Kyrre; Pacyna, Jozef M.; Banel, Anna; Pacyna, Elisabeth G.; Rautio, Arja

    2015-01-01

    This paper reviews information from the literature and the EU ArcRisk project to assess whether climate change results in an increase or decrease in exposure to mercury (Hg) in the Arctic, and if this in turn will impact the risks related to its harmful effects. It presents the state-of-the art of knowledge on atmospheric mercury emissions from anthropogenic sources worldwide, the long-range transport to the Arctic, and it discusses the likely environmental fate and exposure effects on population groups in the Arctic under climate change conditions. The paper also includes information about the likely synergy effects (co-benefits) current and new climate change polices and mitigation options might have on mercury emissions reductions in the future. The review concludes that reductions of mercury emission from anthropogenic sources worldwide would need to be introduced as soon as possible in order to assure lowering the adverse impact of climate change on human health. Scientific information currently available, however, is not in the position to clearly answer whether climate change will increase or decrease the risk of exposure to mercury in the Arctic. New research should therefore be undertaken to model the relationships between climate change and mercury exposure. PMID:25837201

  16. Climate change and environmental impacts on maternal and newborn health with focus on Arctic populations.

    PubMed

    Rylander, Charlotta; Odland, Jon Ø; Sandanger, Torkjel M

    2011-01-01

    In 2007, the Intergovernmental Panel on Climate Change (IPCC) presented a report on global warming and the impact of human activities on global warming. Later the Lancet commission identified six ways human health could be affected. Among these were not environmental factors which are also believed to be important for human health. In this paper we therefore focus on environmental factors, climate change and the predicted effects on maternal and newborn health. Arctic issues are discussed specifically considering their exposure and sensitivity to long range transported contaminants. Considering that the different parts of pregnancy are particularly sensitive time periods for the effects of environmental exposure, this review focuses on the impacts on maternal and newborn health. Environmental stressors known to affects human health and how these will change with the predicted climate change are addressed. Air pollution and food security are crucial issues for the pregnant population in a changing climate, especially indoor climate and food security in Arctic areas. The total number of environmental factors is today responsible for a large number of the global deaths, especially in young children. Climate change will most likely lead to an increase in this number. Exposure to the different environmental stressors especially air pollution will in most parts of the world increase with climate change, even though some areas might face lower exposure. Populations at risk today are believed to be most heavily affected. As for the persistent organic pollutants a warming climate leads to a remobilisation and a possible increase in food chain exposure in the Arctic and thus increased risk for Arctic populations. This is especially the case for mercury. The perspective for the next generations will be closely connected to the expected temperature changes; changes in housing conditions; changes in exposure patterns; predicted increased exposure to Mercury because of increased

  17. Climate change and environmental impacts on maternal and newborn health with focus on Arctic populations

    PubMed Central

    Rylander, Charlotta; Odland, Jon Ø.; Sandanger, Torkjel M.

    2011-01-01

    Background In 2007, the Intergovernmental Panel on Climate Change (IPCC) presented a report on global warming and the impact of human activities on global warming. Later the Lancet commission identified six ways human health could be affected. Among these were not environmental factors which are also believed to be important for human health. In this paper we therefore focus on environmental factors, climate change and the predicted effects on maternal and newborn health. Arctic issues are discussed specifically considering their exposure and sensitivity to long range transported contaminants. Methods Considering that the different parts of pregnancy are particularly sensitive time periods for the effects of environmental exposure, this review focuses on the impacts on maternal and newborn health. Environmental stressors known to affects human health and how these will change with the predicted climate change are addressed. Air pollution and food security are crucial issues for the pregnant population in a changing climate, especially indoor climate and food security in Arctic areas. Results The total number of environmental factors is today responsible for a large number of the global deaths, especially in young children. Climate change will most likely lead to an increase in this number. Exposure to the different environmental stressors especially air pollution will in most parts of the world increase with climate change, even though some areas might face lower exposure. Populations at risk today are believed to be most heavily affected. As for the persistent organic pollutants a warming climate leads to a remobilisation and a possible increase in food chain exposure in the Arctic and thus increased risk for Arctic populations. This is especially the case for mercury. The perspective for the next generations will be closely connected to the expected temperature changes; changes in housing conditions; changes in exposure patterns; predicted increased exposure to

  18. Matching traditional and scientific observations to detect environmental change: a discussion on Arctic terrestrial ecosystems.

    PubMed

    Huntington, Henry; Callaghan, Terry; Fox, Shari; Krupnik, Igor

    2004-11-01

    Recent environmental changes are having, and are expected to continue to have, significant impacts in the Arctic as elsewhere in the world. Detecting those changes and determining the mechanisms that cause them are far from trivial problems. The use of multiple methods of observation can increase confidence in individual observations, broaden the scope of information available about environmental change, and contribute to insights concerning mechanisms of change. In this paper, we examine the ways that using traditional ecological knowledge (TEK) together with scientific observations can achieve these objectives. A review of TEK observations in comparison with scientific observations demonstrates the promise of this approach, while also revealing several challenges to putting it into practice on a large scale. Further efforts are suggested, particularly in undertaking collaborative projects designed to produce parallel observations that can be readily compared and analyzed in greater detail than is possible in an opportunistic sample.

  19. Climate Change and Arctic Issues in the Marine and Environmental Science Curriculum at the U.S. Coast Guard Academy

    NASA Astrophysics Data System (ADS)

    Vlietstra, L.; McConnell, M. C.; Bergondo, D. L.; Mrakovcich, K. L.; Futch, V.; Stutzman, B. S.; Fleischmann, C. M.

    2016-02-01

    As global climate change becomes more evident, demand will likely increase for experts with a detailed understanding of the scientific basis of climate change, the ocean's role in the earth-atmosphere system, and forecasted impacts, especially in Arctic regions where effects may be most pronounced. As a result, programs in marine and environmental sciences are uniquely poised to prepare graduates for the formidable challenges posed by changing climates. Here we present research evaluating the prevalence and themes of courses focusing on anthropogenic climate change in 125 Marine Science and Environmental Science undergraduate programs at 86 institutions in the United States. These results, in addition to the increasing role of the Coast Guard in the Arctic, led to the development of two new courses in the curriculum. Climate Change Science, a one-credit seminar, includes several student-centered activities supporting key learning objectives. Polar Oceanography, a three-credit course, incorporates a major outreach component to Coast Guard units and members of the scientific community. Given the importance of climate change in Arctic regions in particular, we also propose six essential "Arctic Literacy Principles" around which courses or individual lesson plans may be organized. We show how these principles are incorporated into an additional new three-credit course, Model Arctic Council, which prepares students to participate in a week-long simulation exercise of Arctic Council meetings, held in Fairbanks, Alaska. Students examine the history and mission of the Arctic Council and explore some of the issues on which the council has deliberated. Special attention is paid to priorities of the current U.S. chairmanship of the Arctic Council which include climate change impacts on, and stewardship of, the Arctic Ocean.

  20. The Immediacy of Arctic Change

    NASA Astrophysics Data System (ADS)

    Overland, J. E.; Wang, M.; Soreide, N. N.

    2015-12-01

    Ongoing temperature changes in the Arctic are large relative to lower latitudes; a process known as Arctic Amplification. Arctic temperatures have increased at least 3 times the rate of mid-latitude temperatures relative to the late 20th century, due to multiple interacting feedbacks driven by modest global change. Even if global temperature increases are contained to +2° C by 2040, Arctic (North of 60° N) monthly mean temperatures in fall will increase by +5° C. The Arctic is very likely to be sea ice free during summer before 2040, with the sea ice free duration limited to <5 months. Snow cover will be absent in May and June on most land masses. Whether these changes impact mid-latitude weather events is complex and controversial, as the time period for observing such linkages is short [<10 years] and involves understanding direct forcing by Arctic changes on a chaotic climatic system. Although chaotic internal variability dominates the dynamics of atmospheric circulation, Arctic thermodynamic influences can reinforce regional weather patterns. Extreme Arctic temperature events, as a combination of mean temperature increases combined with natural variability, will become common, nearing and exceeding previous thresholds. Such an event as an analog for the future was the +4° C anomalies for Alaska in November-December 2014 related to recent warm Pacific sea surface temperatures. Thus for the next few decades out to 2040, continuing rapid environmental changes in the Arctic are very likely, despite any mitigation activities, and the appropriate response is to plan for adaptation to meet these mean and extreme event changes. Mitigation is essential to forestall further disasters in the second half of the century. It is important to note such future rapid Arctic amplification, and the potential for environmental surprises, to support those making planning decisions and encourage action.

  1. Integrating Access to Arctic Environmental Change and Human Health Research for the International Polar Year and Beyond

    NASA Astrophysics Data System (ADS)

    Garrett, C. L.

    2006-12-01

    Each day, people in the communities of the Arctic face challenges to their health and well-being from changing climatic and environmental conditions and increasing levels of pollution to emerging infectious diseases. For this reason, it is critical that Arctic researchers and residents have access to timely, accurate, and relevant information addressing their unique concerns. To meet this need, the National Library of Medicine (NLM) and the University of Alaska Anchorage (UAA) have developed the Arctic Health website, www.arctichealth.org. The website provides an easy-to-use one-stop shop for information on the diverse health-related aspects of the Arctic region. It is organized around relevant topics, including climate change and environmental health, traditional healing and telehealth/telemedicine. The Arctic Health website provides links to the most reliable resources available from local, state, and international agencies, universities, and professional organizations. Two major goals of the site are to create a comprehensive, accessible repository for various media and a listing of research projects, past and present that relate to climate change and human health in the Arctic. To increase the site's relevance, the project has established and continues to create collaborations with researchers, communities, and other organizations to supply publications not available elsewhere, including gray literature, streaming video of traditional healers, and oral histories. These collaborations will also help ensure a database with a comprehensive list of research projects being done in the Arctic, from the international to the local level. Finding ways to negotiate the legal, cultural and national concerns of data sharing are a continuing job for the management team. All of this helps to create a system that will eventually track and ensure that data and reports from the research database translate to the publications database. As part of these efforts, the site is

  2. Does temporal variation of mercury levels in Arctic seabirds reflect changes in global environmental contamination, or a modification of Arctic marine food web functioning?

    PubMed

    Fort, Jérôme; Grémillet, David; Traisnel, Gwendoline; Amélineau, Françoise; Bustamante, Paco

    2016-04-01

    Studying long-term trends of contaminants in Arctic biota is essential to better understand impacts of anthropogenic activities and climate change on the exposure of sensitive species and marine ecosystems. We concurrently measured temporal changes (2006-2014) in mercury (Hg) contamination of little auks (Alle alle; the most abundant Arctic seabird) and in their major zooplankton prey species (Calanoid copepods, Themisto libellula, Gammarus spp.). We found an increasing contamination of the food-chain in East Greenland during summer over the last decade. More specifically, bird contamination (determined by body feather analyses) has increased at a rate of 3.4% per year. Conversely, bird exposure to Hg during winter in the northwest Atlantic (determined by head feather analyses) decreased over the study period (at a rate of 1.5% per year), although winter concentrations remained consistently higher than during summer. By combining mercury levels measured in birds and zooplankton to isotopic analyses, our results demonstrate that inter-annual variations of Hg levels in little auks reflect changes in food-chain contamination, rather than a reorganization of the food web and a modification of seabird trophic ecology. They therefore underline the value of little auks, and Arctic seabirds in general, as bio-indicators of long-term changes in environmental contamination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. a New Japanese Project for Arctic Climate Change Research - Grene Arctic - (Invited)

    NASA Astrophysics Data System (ADS)

    Enomoto, H.

    2013-12-01

    A new Arctic Climate Change Research Project 'Rapid Change of the Arctic Climate System and its Global Influences' has started in 2011 for a five years project. GRENE-Arctic project is an initiative of Arctic study by more than 30 Japanese universities and institutes as the flame work of GRENE (Green Network of Excellence) of MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan). The GRENE-Arctic project set four strategic research targets: 1. Understanding the mechanism of warming amplification in the Arctic 2. Understanding the Arctic system for global climate and future change 3. Evaluation of the effects of Arctic change on weather in Japan, marine ecosystems and fisheries 4. Prediction of sea Ice distribution and Arctic sea routes This project aims to realize the strategic research targets by executing following studies: -Improvement of coupled general circulation models based on validations of the Arctic climate reproducibility and on mechanism analyses of the Arctic climate change and variability -The role of Arctic cryosphere in the global change -Change in terrestrial ecosystem of pan-Arctic and its effect on climate -Studies on greenhouse gas cycles in the Arctic and their responses to climate change -Atmospheric studies on Arctic change and its global impacts -Ecosystem studies of the Arctic ocean declining Sea ice -Projection of Arctic Sea ice responding to availability of Arctic sea route (* ** ***) *Changes in the Arctic ocean and mechanisms on catastrophic reduction of Arctic sea ice cover **Coordinated observational and modeling studies on the basic structure and variability of the Arctic sea ice-ocean system ***Sea ice prediction and construction of ice navigation support system for the Arctic sea route. Although GRENE Arctic project aims to product scientific contribution in a concentrated program during 2011-2016, Japanese Arctic research community established Japan Consortium for Arctic Environmental Research (JCAR) in May

  4. Challenges of climate change: an Arctic perspective.

    PubMed

    Corell, Robert W

    2006-06-01

    Climate change is being experienced particularly intensely in the Arctic. Arctic average temperature has risen at almost twice the rate as that of the rest of the world in the past few decades. Widespread melting of glaciers and sea ice and rising permafrost temperatures present additional evidence of strong Arctic warming. These changes in the Arctic provide an early indication of the environmental and societal significance of global consequences. The Arctic also provides important natural resources to the rest of the world (such as oil, gas, and fish) that will be affected by climate change, and the melting of Arctic glaciers is one of the factors contributing to sea level rise around the globe. An acceleration of these climatic trends is projected to occur during this century, due to ongoing increases in concentrations of greenhouse gases in the Earth's atmosphere. These Arctic changes will, in turn, impact the planet as a whole.

  5. Rapid Environmental Change Drives Increased Land Use by an Arctic Marine Predator

    PubMed Central

    Atwood, Todd C.; Peacock, Elizabeth; McKinney, Melissa A.; Lillie, Kate; Wilson, Ryan; Douglas, David C.; Miller, Susanne; Terletzky, Pat

    2016-01-01

    In the Arctic Ocean’s southern Beaufort Sea (SB), the length of the sea ice melt season (i.e., period between the onset of sea ice break-up in summer and freeze-up in fall) has increased substantially since the late 1990s. Historically, polar bears (Ursus maritimus) of the SB have mostly remained on the sea ice year-round (except for those that came ashore to den), but recent changes in the extent and phenology of sea ice habitat have coincided with evidence that use of terrestrial habitat is increasing. We characterized the spatial behavior of polar bears spending summer and fall on land along Alaska’s north coast to better understand the nexus between rapid environmental change and increased use of terrestrial habitat. We found that the percentage of radiocollared adult females from the SB subpopulation coming ashore has tripled over 15 years. Moreover, we detected trends of earlier arrival on shore, increased length of stay, and later departure back to sea ice, all of which were related to declines in the availability of sea ice habitat over the continental shelf and changes to sea ice phenology. Since the late 1990s, the mean duration of the open-water season in the SB increased by 36 days, and the mean length of stay on shore increased by 31 days. While on shore, the distribution of polar bears was influenced by the availability of scavenge subsidies in the form of subsistence-harvested bowhead whale (Balaena mysticetus) remains aggregated at sites along the coast. The declining spatio-temporal availability of sea ice habitat and increased availability of human-provisioned resources are likely to result in increased use of land. Increased residency on land is cause for concern given that, while there, bears may be exposed to a greater array of risk factors including those associated with increased human activities. PMID:27249673

  6. Rapid environmental change drives increased land use by an Arctic marine predator

    USGS Publications Warehouse

    Atwood, Todd C.; Peacock, Elizabeth; McKinney, Melissa A.; Lillie, Kate; Wilson, Ryan R.; Douglas, David C.; Miller, Susanne; Terletzky, Pat

    2016-01-01

    In the Arctic Ocean’s southern Beaufort Sea (SB), the length of the sea ice melt season (i.e., period between the onset of sea ice break-up in summer and freeze-up in fall) has increased substantially since the late 1990s. Historically, polar bears (Ursus maritimus) of the SB have mostly remained on the sea ice year-round (except for those that came ashore to den), but recent changes in the extent and phenology of sea ice habitat have coincided with evidence that use of terrestrial habitat is increasing. We characterized the spatial behavior of polar bears spending summer and fall on land along Alaska’s north coast to better understand the nexus between rapid environmental change and increased use of terrestrial habitat. We found that the percentage of radiocollared adult females from the SB subpopulation coming ashore has tripled over 15 years. Moreover, we detected trends of earlier arrival on shore, increased length of stay, and later departure back to sea ice, all of which were related to declines in the availability of sea ice habitat over the continental shelf and changes to sea ice phenology. Since the late 1990s, the mean duration of the open-water season in the SB increased by 36 days, and the mean length of stay on shore increased by 31 days. While on shore, the distribution of polar bears was influenced by the availability of scavenge subsidies in the form of subsistence-harvested bowhead whale (Balaena mysticetus) remains aggregated at sites along the coast. The declining spatio-temporal availability of sea ice habitat and increased availability of human-provisioned resources are likely to result in increased use of land. Increased residency on land is cause for concern given that, while there, bears may be exposed to a greater array of risk factors including those associated with increased human activities.

  7. Rapid Environmental Change Drives Increased Land Use by an Arctic Marine Predator.

    PubMed

    Atwood, Todd C; Peacock, Elizabeth; McKinney, Melissa A; Lillie, Kate; Wilson, Ryan; Douglas, David C; Miller, Susanne; Terletzky, Pat

    2016-01-01

    In the Arctic Ocean's southern Beaufort Sea (SB), the length of the sea ice melt season (i.e., period between the onset of sea ice break-up in summer and freeze-up in fall) has increased substantially since the late 1990s. Historically, polar bears (Ursus maritimus) of the SB have mostly remained on the sea ice year-round (except for those that came ashore to den), but recent changes in the extent and phenology of sea ice habitat have coincided with evidence that use of terrestrial habitat is increasing. We characterized the spatial behavior of polar bears spending summer and fall on land along Alaska's north coast to better understand the nexus between rapid environmental change and increased use of terrestrial habitat. We found that the percentage of radiocollared adult females from the SB subpopulation coming ashore has tripled over 15 years. Moreover, we detected trends of earlier arrival on shore, increased length of stay, and later departure back to sea ice, all of which were related to declines in the availability of sea ice habitat over the continental shelf and changes to sea ice phenology. Since the late 1990s, the mean duration of the open-water season in the SB increased by 36 days, and the mean length of stay on shore increased by 31 days. While on shore, the distribution of polar bears was influenced by the availability of scavenge subsidies in the form of subsistence-harvested bowhead whale (Balaena mysticetus) remains aggregated at sites along the coast. The declining spatio-temporal availability of sea ice habitat and increased availability of human-provisioned resources are likely to result in increased use of land. Increased residency on land is cause for concern given that, while there, bears may be exposed to a greater array of risk factors including those associated with increased human activities.

  8. Interaction webs in arctic ecosystems: Determinants of arctic change?

    PubMed

    Schmidt, Niels M; Hardwick, Bess; Gilg, Olivier; Høye, Toke T; Krogh, Paul Henning; Meltofte, Hans; Michelsen, Anders; Mosbacher, Jesper B; Raundrup, Katrine; Reneerkens, Jeroen; Stewart, Lærke; Wirta, Helena; Roslin, Tomas

    2017-02-01

    How species interact modulate their dynamics, their response to environmental change, and ultimately the functioning and stability of entire communities. Work conducted at Zackenberg, Northeast Greenland, has changed our view on how networks of arctic biotic interactions are structured, how they vary in time, and how they are changing with current environmental change: firstly, the high arctic interaction webs are much more complex than previously envisaged, and with a structure mainly dictated by its arthropod component. Secondly, the dynamics of species within these webs reflect changes in environmental conditions. Thirdly, biotic interactions within a trophic level may affect other trophic levels, in some cases ultimately affecting land-atmosphere feedbacks. Finally, differential responses to environmental change may decouple interacting species. These insights form Zackenberg emphasize that the combination of long-term, ecosystem-based monitoring, and targeted research projects offers the most fruitful basis for understanding and predicting the future of arctic ecosystems.

  9. Coordinated scenarios for a transdisciplinary assessment of the scientific understanding of Arctic environmental change

    NASA Astrophysics Data System (ADS)

    Ammann, C. M.; Holland, M. M.

    2016-12-01

    The Arctic is undergoing an exceptionally rapid transformation. Trying to predict or project the consequences of this change is pushing nearly every discipline in the physical, biogeochemical and social sciences towards the limits of their current understanding. Adequate data is missing to test and validate models for capturing a state of the Arctic system that we have not observed. But even more challenging is the systems-level evaluation, where impacts can quickly lead to unexpected outcomes with cascading repercussions throughout the different components and subcomponents of the environment. One approach to test our understanding, and to expose gaps in current observation strategies, modeling approaches as well as planning tools (e.g., forecast workflows, or decision frameworks) is to carefully design a small number of coordinated scenarios of plausible future states of the system, and then to study their diverse, potential impacts. A coordination of the scenarios is essential so that all disciplinary perspectives can be arranged around a common state, assumptions can be aligned, and a transdisciplinary conversation can be advanced from a common platform to form a comprehensive assessment of our knowledge. This presentation is a call to the community to join and assist the SEARCH program in designing effective scenarios that can be used for cross-cutting investigation of current limitations in our scientific understanding of how the Arctic environment might change, and what consequences these changes might bring to the physical, biological and social environments.

  10. Changing sources and environmental factors reduce the rates of decline of organochlorine pesticides in the Arctic atmosphere

    NASA Astrophysics Data System (ADS)

    Becker, S.; Halsall, C. J.; Tych, W.; Kallenborn, R.; Schlabach, M.; Manø, S.

    2012-05-01

    An extensive database of organochlorine (OC) pesticide concentrations measured at the Norwegian Arctic monitoring station at Ny-Ålesund, Svalbard, was analysed to assess longer-term trends in the Arctic atmosphere. Dynamic Harmonic Regression (DHR) is employed to investigate the seasonal and cyclical behaviour of chlordanes, DDTs and hexachlorobenzene (HCB), and to isolate underlying inter-annual trends. Although a simple comparison of annual mean concentrations (1994-2005) suggest a decline for all of the OCs investigated, the longer-term trends identified by DHR only show a significant decline for p,p'-DDT. Indeed, HCB shows an increase from 2003-2005. This is thought to be due to changes in source types and the presence of impurities in current use pesticides, together with retreating sea ice affecting air-water exchange. Changes in source types were revealed by using isomeric ratios for the chlordanes and DDTs. Declining trends in ratios of trans-chlordane/cis-chlordane (TC/CC) indicate a shift from primary sources, to more "weathered" secondary sources, whereas an increasing trend in o,p'-DDT/p,p'-DDT ratios indicate a shift from use of technical DDT to dicofol. Continued monitoring of these OC pesticides is required to fully understand the influence of a changing climate on the behaviour and environmental cycling of these chemicals in the Arctic as well as possible impacts from "new" sources.

  11. Communicating Arctic Change (Invited)

    NASA Astrophysics Data System (ADS)

    Serreze, M.

    2009-12-01

    Nowhere on the planet are emerging signals of climate change more visible than in the Arctic. Rapid warming, a quickly shrinking summer sea ice cover, and thawing permafrost, will have impacts that extend beyond the Arctic and may reverberate around the globe. The National Snow and Ice Data Center (NSIDC) of the University of Colorado has taken a leading role in trying to effectively communicate the science and importance of Arctic change. Our popular “Sea Ice News and Analysis” web site tracks the Arctic’s shrinking ice cover and provides scientific analysis with language that is accurate yet accessible to a wide audience. Our Education Center provides accessible information on all components of the Earth’s cryosphere, the changes being seen, and how scientists conduct research. A challenge faced by NSIDC is countering the increasing level of confusion and misinformation regarding Arctic and global change, a complex problem that reflects the low level of scientific literacy by much of the public, the difficulties many scientists face in communicating their findings in accurate but understandable terms, and efforts by some groups to deliberately misrepresent and distort climate change science. This talk will outline through examples ways in which NSIDC has been successful in science communication and education, as well as lessons learned from failures.

  12. Frequent Fires in Ancient Shrub Tundra: Implications of Paleorecords for Arctic Environmental Change

    PubMed Central

    Higuera, Philip E.; Brubaker, Linda B.; Anderson, Patricia M.; Brown, Thomas A.; Kennedy, Alison T.; Hu, Feng Sheng

    2008-01-01

    Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birch-dominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/− 90 s.d.; n = 44). Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleofires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21st century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as on land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere. PMID:18320025

  13. Frequent fires in ancient shrub tundra: implications of paleorecords for arctic environmental change.

    PubMed

    Higuera, Philip E; Brubaker, Linda B; Anderson, Patricia M; Brown, Thomas A; Kennedy, Alison T; Hu, Feng Sheng

    2008-03-05

    Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birch-dominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/- 90 s.d.; n = 44). Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleofires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21(st) century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as on land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere.

  14. Arctic rivers water runoff change

    NASA Astrophysics Data System (ADS)

    Simonov, Y.; Khristoforov, A.

    2009-04-01

    Northern rivers water runoff plays great role in hydrological regime of Arctic Ocean and also influences the life quality of population of the arctic region. Investigation of spatial and temporal variability of arctic rivers runoff and also estimation of its runoff change will help to forecast and minimize possible negative effect of climate change in the Arctic region in ecological and economical scale. Statistical analysis of long-term fluctuations of runoff characteristics (annual runoff, spring flood, summer and winter runoff) and its major climate factors in general showed that climate change resulted in statistically significant increase of variances and autocorrelation in the second half of 20th century. In the same time statistically significant trends of mean annual runoff reflect the common influence of climate factors and manmade load on water recourses of the Arctic region. Rather tight correlation dependencies between long-term fluctuation of runoff characteristics and its major climate factors were built for the parts of the Arctic watershed, where manmade load level is low. Such correlation dependencies were significantly improved by taking into account spatial variability of northern region environmental conditions. Gained equations were used to estimate possible future water runoff change under climate change. Multi-model climate projections under A2 emission scenario were used to estimate future change of climate characteristics. In the result of such estimation annual water runoff may increase on 5-30% in the second half of 21st century compared with baseline period from low water management parts of Arctic watershed. Influence of major climate factors change on water runoff characteristics variability was more accurately checked by using conceptual hydrological model of Hydrometeorological scientific center of Russia and. This hydrological model was used on averaged size watersheds (around 20 000 km2) of Severnaya Dvina basin together with

  15. Arctic Change Information for a Broad Audience

    NASA Astrophysics Data System (ADS)

    Soreide, N. N.; Overland, J. E.; Calder, J.

    2002-12-01

    Demonstrable environmental changes have occurred in the Arctic over the past three decades. NOAA's Arctic Theme Page is a rich resource web site focused on high latitude studies and the Arctic, with links to widely distributed data and information focused on the Arctic. Included is a collection of essays on relevant topics by experts in Arctic research. The website has proven useful to a wide audience, including scientists, students, teachers, decision makers and the general public, as indicated through recognition by USA Today, Science magazine, etc. (http://www.arctic.noaa.gov) Working jointly with NSF and the University of Washington's Polar Science Center as part of the Study of Environmental Arctic Change (SEARCH) program, NOAA has developed a website for access to pan-Arctic time series spanning diverse data types including climate indices, atmospheric, oceanic, sea ice, terrestrial, biological and fisheries. Modest analysis functions and more detailed analysis results are provided. (http://www.unaami.noaa.gov/). This paper will describe development of an Artic Change Detection status website to provide a direct and comprehensive view of previous and ongoing change in the Arctic for a broad climate community. For example, composite metrics are developed using principal component analysis based on 86 multivariate pan-Arctic time series for seven data types. Two of these metrics can be interpreted as a regime change/trend component and an interdecadal component. Changes can also be visually observed through tracking of 28 separate biophysical indicators. Results will be presented in the form of a web site with relevant, easily understood, value-added knowledge backed by peer review from Arctic scientists and scientific journals.

  16. Methane turnover and environmental change from Holocene biomarker records in a thermokarst lake in Arctic Alaska

    USGS Publications Warehouse

    Elvert, Marcus; Pohlman, John; Becker, Kevin W.; Gaglioti, Benjamin V.; Hinrichs, Kai-Uwe; Wooller, Matthew J.

    2016-01-01

    Arctic lakes and wetlands contribute a substantial amount of methane to the contemporary atmosphere, yet profound knowledge gaps remain regarding the intensity and climatic control of past methane emissions from this source. In this study, we reconstruct methane turnover and environmental conditions, including estimates of mean annual and summer temperature, from a thermokarst lake (Lake Qalluuraq) on the Arctic Coastal Plain of northern Alaska for the Holocene by using source-specific lipid biomarkers preserved in a radiocarbon-dated sediment core. Our results document a more prominent role for methane in the carbon cycle when the lake basin was an emergent fen habitat between ~12,300 and ~10,000 cal yr BP, a time period closely coinciding with the Holocene Thermal Maximum (HTM) in North Alaska. Enhanced methane turnover was stimulated by relatively warm temperatures, increased moisture, nutrient supply, and primary productivity. After ~10,000 cal yr BP, a thermokarst lake with abundant submerged mosses evolved, and through the mid-Holocene temperatures were approximately 3°C cooler. Under these conditions, organic matter decomposition was attenuated, which facilitated the accumulation of submerged mosses within a shallower Lake Qalluuraq. Reduced methane assimilation into biomass during the mid-Holocene suggests that thermokarst lakes are carbon sinks during cold periods. In the late-Holocene from ~2700 cal yr BP to the most recent time, however, temperatures and carbon deposition rose and methane oxidation intensified, indicating that more rapid organic matter decomposition and enhanced methane production could amplify climate feedback via potential methane emissions in the future.

  17. Tracking Biological and Ecosystem Responses to Changing Environmental Conditions in the Pacific Arctic

    NASA Astrophysics Data System (ADS)

    Grebmeier, J. M.; Cooper, L. W.; Frey, K. E.; Moore, S. E.

    2014-12-01

    Changing seasonal sea ice conditions and seawater temperatures strongly influence biological processes and marine ecosystems at high latitudes. In the Pacific Arctic, persistent regions termed "hotspots", are localized areas with high benthic macroinfaunal biomass that have been documented over four decades (see Figure). These regions are now being more formally tracked to relate physical forcing and ecosystem response as an Arctic Distributed Biological Observatory (DBO) supported by the US National Ocean Policy Implementation Plan and international partners. These hotspots are important foraging areas for upper trophic level benthic feeders, such as marine mammals and seabirds. South of St. Lawrence Island (SLI) in the northern Bering Sea, benthic feeding spectacled eiders, bearded seals and walruses are important winter consumers of infauna, such as bivalves and polychaetes. Gray whales have historically been a major summer consumer of benthic amphipods in the Chirikov Basin to the north of SLI, although summertime sightings of gray whales declined in the Chirikov from the 1980s up until at least 2002. The SE Chukchi Sea hotspot, as are the other hotspots, is maintained by export of high chlorophyll a that is produced locally as well as advected by water masses transiting northward through the system. Both walrus and gray whales are known to forage in this hotspot seasonally on high biomass levels of benthic prey. Notably the center of the highest benthic biomass regions has shifted northward in three of the DBO hotspots in recent years. This has coincided with changing sediment grain size, an indicator of current speed, and is also likely a response to changes in primary production in the region. Studies of these broad biological responses to changing physical drivers have been facilitated through development of the DBO cooperative effort by both US and international scientists. The DBO includes a series of coordinated, multi-trophic level observations that

  18. Seasonal thickness changes of Arctic sea ice north of Svalbard and implications for satellite remote sensing, ecosystem, and environmental management

    NASA Astrophysics Data System (ADS)

    Gerland, S.; Rösel, A.; King, J.; Spreen, G.; Divine, D.; Eltoft, T.; Gallet, J. C.; Hudson, S. R.; Itkin, P.; Krumpen, T.; Liston, G. E.; Merkouriadi, I.; Negrel, J.; Nicolaus, M.; Polashenski, C.; Assmy, P.; Barber, D. G.; Duarte, P.; Doulgeris, A. P.; Haas, C.; Hughes, N.; Johansson, M.; Meier, W.; Perovich, D. K.; Provost, C.; Richter-Menge, J.; Skourup, H.; Wagner, P.; Wilkinson, J.; Granskog, M. A.; Steen, H.

    2016-12-01

    Sea-ice thickness is a crucial parameter to consider when assessing the status of Arctic sea ice, whether for environmental management, monitoring projects, or regional or pan-arctic assessments. Modern satellite remote sensing techniques allow us to monitor ice extent and to estimate sea-ice thickness changes; but accurate quantifications of sea-ice thickness distribution rely on in situ and airborne surveys. From January to June 2015, an international expedition (N-ICE2015) took place in the Arctic Ocean north of Svalbard, with the Norwegian research vessel RV Lance frozen into drifting sea ice. In total, four drifts, with four different floes were made during that time. Sea-ice and snow thickness measurements were conducted on all main ice types present in the region, first year ice, multiyear ice, and young ice. Measurement methods included ground and helicopter based electromagnetic surveys, drillings, hot-wire installations, snow-sonde transects, snow stakes, and ice mass balance and snow buoys. Ice thickness distributions revealed modal thicknesses in spring between 1.6 and 1.7 m, which is lower than reported for the region from comparable studies in 2009 (2.4 m) and 2011 (1.8 m). Knowledge about the ice thickness distribution in a region is crucial to the understanding of climate processes, and also relevant to other disciplines. Sea-ice thickness data collected during N-ICE2015 can also give us insights into how ice and snow thicknesses affect ecosystem processes. In this presentation, we will explore the influence of snow cover and ocean properties on ice thickness, and the role of sea-ice thickness in air-ice-ocean interactions. We will also demonstrate how information about ice thickness aids classification of different sea ice types from SAR satellite remote sensing, which has real-world applications for shipping and ice forecasting, and how sea ice thickness data contributes to climate assessments.

  19. Atmospheric aspects of Arctic change

    NASA Astrophysics Data System (ADS)

    Overland, J. E.

    2011-12-01

    Three important features of recent Arctic change are the rather uniform pattern of Arctic temperature amplification in response to greenhouse gas forcing, the modification of atmospheric temperature and wind patterns over newly sea-ice-free regions, and the possible increased linkage between Arctic climate and sub-arctic weather. An important argument for anthropogenic forcing of recent Arctic change is the model predicted rather uniform increases in Arctic temperatures, in contrast to more regional temperature maximums associated with intrinsic climate variability patterns such as those which occurred during the 1930s Arctic warming. Sea-ice-free areas at the end of summer are allowing: added heat and moisture transport into the troposphere as documented during the recent Japanese vessel Mirai cruises, decreased boundary layer stratification, and modification of wind flow through thermal wind processes. Winter 2009-2010 and December 2010 showed a unique connectivity between the Arctic and more southern weather when the typical polar vortex was replaced by high geopotential heights over the central Arctic and low heights over mid-latitudes that resulted in record snow and low temperatures, a Warm Arctic-Cold Continents pattern. A major challenge of Arctic meteorology is to understand the interaction of forced changes such as loss of sea ice and land impacts with intrinsic climate patterns such as the North Atlantic Oscillation and Pacific North American climate patterns. Could persistent shifts in Arctic climate be triggered by a combination of a gradual upward trend in temperature, an extreme event e.g. fortuitous timing in the natural variability of the atmospheric or ocean general circulation, and Arctic specific feedbacks? Scientific progress on both issues requires sustained decadal observations.

  20. Arctic soil microbial diversity in a changing world.

    PubMed

    Blaud, Aimeric; Lerch, Thomas Z; Phoenix, Gareth K; Osborn, A Mark

    2015-12-01

    The Arctic region is a unique environment, subject to extreme environmental conditions, shaping life therein and contributing to its sensitivity to environmental change. The Arctic is under increasing environmental pressure from anthropogenic activity and global warming. The unique microbial diversity of Arctic regions, that has a critical role in biogeochemical cycling and in the production of greenhouse gases, will be directly affected by and affect, global changes. This article reviews current knowledge and understanding of microbial taxonomic and functional diversity in Arctic soils, the contributions of microbial diversity to ecosystem processes and their responses to environmental change. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. Geo-Environmental Change and the United States Military: How History Can Inform Future Arctic Operations

    DTIC Science & Technology

    2012-05-17

    and the Northern Sea Route, extraction of potential oil and gas resources, and expanded fishing and tourism .‖ 6 The Arctic‘s vast natural resources...sudden and substantial increase in commercial shipping, marine tourism , and large passenger vessels in the Arctic poses significant challenges to the...doctrinal adaptation before the tactical and strategic 32 Department of Defense, JP 1-02: Department of Defense Dictionary of Military and Associated Terms

  2. Advancing Integrated Understanding of Treeline Response to Environmental Change: the Alpine and Arctic Treeline Ecotone Network

    NASA Astrophysics Data System (ADS)

    Cairns, D. M.; Kueppers, L. M.; Millar, C. I.

    2013-12-01

    Upper elevation and northern treeline ecotones are boundary zones between forest and arctic or alpine tundra. Although presence of upright trees has defined the treeline per se, treeline is more accurately an ecotone structured by complex interactions among vegetation, soils, animals, climate, snow, topography, and disturbance regimes. The position and character of the treeline ecotone are important regulators of the land surface energy balance, biodiversity, and the cycling of carbon and water at high latitudes and elevations. The goal of the Alpine and Arctic Treeline Ecotone Network (AATE-Net) is to create a community of practice for treeline science across traditionally disparate fields of study. The objectives are to synthesize the state of knowledge around four scientific bottlenecks, identify pressing data gaps, broaden the perspectives of individual researchers, and foster a community-driven approach to alpine and Arctic treeline science. In pursuit of this goal and these objectives, the AATE-Net will bring together ecologists, ecosystem scientists, geographers, ecophysiologists, climatologists, hydrologists, and others with interests in treeline and ecotones in general to solidify our understanding of treeline dynamics across domains of time and space. Since treelines are globally distributed, interactions and partnerships with emerging treeline initiatives in Europe and elsewhere will be key components of the AATE-Net.

  3. Improving coordination and integration of observations of Arctic change

    NASA Astrophysics Data System (ADS)

    Perovich, Donald; Payne, John; Eicken, Hajo

    2012-10-01

    U.S. Arctic Observing Coordination Workshop;Anchorage, Alaska, 20-22 March 2012 The Arctic is undergoing tremendous changes. Permafrost is thawing, ice sheets are melting, and sea ice is thinning and retreating. These changes are impacting ecosystems and human activities. Observing, understanding, and responding to these changes are the central themes of the U.S. Interagency Study of Environmental Arctic Change (SEARCH, http://www.arcus.org/search/index.php). SEARCH brings together academic and government agency scientists and stakeholders to prioritize, plan, conduct, and synthesize research focused on Arctic environmental change. The U.S. Arctic Observing Coordination Workshop (http://www.arcus.org/search/meetings/2012/coordination-workshop/) focused on two key themes for cross-disciplinary and cross-agency collaboration: (1) understanding and predicting sea ice changes and their consequences for ecosystems, human activities, and climate and (2) determining consequences of loss and warming of shallow permafrost on Arctic and global systems.

  4. Advancing High Spatial and Spectral Resolution Remote Sensing for Observing Plant Community Response to Environmental Variability and Change in the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Vargas Zesati, Sergio A.

    The Arctic is being impacted by climate change more than any other region on Earth. Impacts to terrestrial ecosystems have the potential to manifest through feedbacks with other components of the Earth System. Of particular concern is the potential for the massive store of soil organic carbon to be released from arctic permafrost to the atmosphere where it could exacerbate greenhouse warming and impact global climate and biogeochemical cycles. Even though substantial gains to our understanding of the changing Arctic have been made, especially over the past decade, linking research results from plot to regional scales remains a challenge due to the lack of adequate low/mid-altitude sampling platforms, logistic constraints, and the lack of cross-scale validation of research methodologies. The prime motivation of this study is to advance observational capacities suitable for documenting multi-scale environmental change in arctic terrestrial landscapes through the development and testing of novel ground-based and low altitude remote sensing methods. Specifically this study addressed the following questions: • How well can low-cost kite aerial photography and advanced computer vision techniques model the microtopographic heterogeneity of changing tundra surfaces? • How does imagery from kite aerial photography and fixed time-lapse digital cameras (pheno-cams) compare in their capacity to monitor plot-level phenological dynamics of arctic vegetation communities? • Can the use of multi-scale digital imaging systems be scaled to improve measurements of ecosystem properties and processes at the landscape level? • How do results from ground-based and low altitude digital remote sensing of the spatiotemporal variability in ecosystem processes compare with those from satellite remote sensing platforms? Key findings from this study suggest that cost-effective alternative digital imaging and remote sensing methods are suitable for monitoring and quantifying plot to

  5. Climate Change, Globalization and Geopolitics in the New Maritime Arctic

    NASA Astrophysics Data System (ADS)

    Brigham, L. W.

    2011-12-01

    Early in the 21st century a confluence of climate change, globalization and geopolitics is shaping the future of the maritime Arctic. This nexus is also fostering greater linkage of the Arctic to the rest of the planet. Arctic sea ice is undergoing a historic transformation of thinning, extent reduction in all seasons, and reduction in the area of multiyear ice in the central Arctic Ocean. Global Climate Model simulations of Arctic sea ice indicate multiyear ice could disappear by 2030 for a short period of time each summer. These physical changes invite greater marine access, longer seasons of navigation, and potential, summer trans-Arctic voyages. As a result, enhanced marine safety, environmental protection, and maritime security measures are under development. Coupled with climate change as a key driver of regional change is the current and future integration of the Arctic's natural wealth with global markets (oil, gas and hard minerals). Abundant freshwater in the Arctic could also be a future commodity of value. Recent events such as drilling for hydrocarbons off Greenland's west coast and the summer marine transport of natural resources from the Russian Arctic to China across the top of Eurasia are indicators of greater global economic ties to the Arctic. Plausible Arctic futures indicate continued integration with global issues and increased complexity of a range of regional economic, security and environmental challenges.

  6. Public Perceptions of Arctic Change

    NASA Astrophysics Data System (ADS)

    Hamilton, L.

    2014-12-01

    What does the general US public know, or think they know, about Arctic change? Two broad nationwide surveys in 2006 and 2010 addressed this topic in general terms, before and after the International Polar Year (IPY). Since then a series of representative national or statewide surveys have carried this research farther. The new surveys employ specific questions that assess public knowledge of basic Arctic facts, along with perceptions about the possible consequences of future Arctic change. Majorities know that late-summer Arctic sea ice area has declined compared with 30 years ago, although substantial minorities -- lately increasing -- believe instead that it has now recovered to historical levels. Majorities also believe that, if the Arctic warms in the future, this will have major effects on the weather where they live. Their expectation of local impacts from far-away changes suggests a degree of global thinking. On the other hand, most respondents do poorly when asked whether melting Arctic sea ice, melting Greenland/Antarctic land ice, or melting Himalayan glaciers could have more effect on sea level. Only 30% knew or guessed the right answer to this question. Similarly, only 33% answered correctly on a simple geography quiz: whether the North Pole could best be described as ice a few feet or yards thick floating over a deep ocean, ice more than a mile thick over land, or a rocky, mountainous landscape. Close analysis of response patterns suggests that people often construct Arctic "knowledge" on items such as sea ice increase/decrease from their more general ideology or worldview, such as their belief (or doubt) that anthropogenic climate change is real. When ideology or worldviews provide no guidance, as on the North Pole or sealevel questions, the proportion of accurate answers is no better than chance. These results show at least casual public awareness and interest in Arctic change, unfortunately not well grounded in knowledge. Knowledge problems seen on

  7. The Effects of Environmental Change on an Arctic Native Community: Evaluation Using Local Cultural Perceptions

    ERIC Educational Resources Information Center

    McBeath, Jerry; Shepro, Carl E.

    2007-01-01

    This article presents the research conducted by the authors in an Inupiat Eskimo village on the Alaska North Slope and describes the research in two substantive parts. In the first section, the authors present what subsistence hunters and fishers observed concerning changes to seas, lands, and inland lakes and rivers. Then, they mention changes of…

  8. The Effects of Environmental Change on an Arctic Native Community: Evaluation Using Local Cultural Perceptions

    ERIC Educational Resources Information Center

    McBeath, Jerry; Shepro, Carl E.

    2007-01-01

    This article presents the research conducted by the authors in an Inupiat Eskimo village on the Alaska North Slope and describes the research in two substantive parts. In the first section, the authors present what subsistence hunters and fishers observed concerning changes to seas, lands, and inland lakes and rivers. Then, they mention changes of…

  9. Changing Arctic ecosystems: ecology of loons in a changing Arctic

    USGS Publications Warehouse

    Uher-Koch, Brian; Schmutz, Joel; Whalen, Mary; Pearce, John M.

    2014-01-01

    The U.S. Geological Survey (USGS) Changing Arctic Ecosystems (CAE) initiative informs key resource management decisions for Arctic Alaska by providing scientific information on current and future ecosystem response to a changing climate. From 2010 to 2014, a key study area for the USGS CAE initiative has been the Arctic Coastal Plain of northern Alaska. This region has experienced rapid warming during the past 30 years, leading to the thawing of permafrost and changes to lake and river systems. These changes, and projections of continued change, have raised questions about effects on wildlife populations that rely on northern lake ecosystems, such as loons. Loons rely on freshwater lakes for nesting habitat and the fish and invertebrates inhabiting the lakes for food. Loons live within the National Petroleum Reserve-Alaska (NPR-A) on Alaska’s northern coast, where oil and gas development is expected to increase. Research by the USGS examines how breeding loons use the Arctic lake ecosystem and the capacity of loons to adapt to future landscape change.

  10. Decision Making For Sustainable Futures In A Rapidly Changing Arctic

    NASA Astrophysics Data System (ADS)

    Chabay, I.

    2016-12-01

    Observing, understanding, and predicting effects of rapid climate change in the Arctic are crucial as the circumpolar region becomes more accessible and demand grows for commercial development and resource extraction. Climate change effects - including changes in ocean ice coverage, Arctic weather patterns, permafrost conditions, and coastal erosion - are a consequence of fossil fuel use outside the Arctic, while at the same time the changes open greater access to the Arctic's rich resources, including oil and gas. This offers new opportunities for livelihoods and development of Arctic communities, but inevitably also introduces substantially increased environmental, social, and economic risks. I will outline the rationale for and the process of our transdisciplinary project in engaging with a wide range of actors in the Arctic and beyond. The purpose of the project is to support informed and effective decision making for sustainable futures that is contextually appropriate through co-design and co-production of knowledge with rights-holders and stakeholders.

  11. Arctic Sea Ice Changes 2011-2012

    NASA Image and Video Library

    Animation showing changes in monthly Arctic sea ice volume using data from ESA's CryoSat-2 (red dots) and estimates from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) (solid li...

  12. Changing Arctic Ocean freshwater pathways.

    PubMed

    Morison, James; Kwok, Ron; Peralta-Ferriz, Cecilia; Alkire, Matt; Rigor, Ignatius; Andersen, Roger; Steele, Mike

    2012-01-04

    Freshening in the Canada basin of the Arctic Ocean began in the 1990s and continued to at least the end of 2008. By then, the Arctic Ocean might have gained four times as much fresh water as comprised the Great Salinity Anomaly of the 1970s, raising the spectre of slowing global ocean circulation. Freshening has been attributed to increased sea ice melting and contributions from runoff, but a leading explanation has been a strengthening of the Beaufort High--a characteristic peak in sea level atmospheric pressure--which tends to accelerate an anticyclonic (clockwise) wind pattern causing convergence of fresh surface water. Limited observations have made this explanation difficult to verify, and observations of increasing freshwater content under a weakened Beaufort High suggest that other factors must be affecting freshwater content. Here we use observations to show that during a time of record reductions in ice extent from 2005 to 2008, the dominant freshwater content changes were an increase in the Canada basin balanced by a decrease in the Eurasian basin. Observations are drawn from satellite data (sea surface height and ocean-bottom pressure) and in situ data. The freshwater changes were due to a cyclonic (anticlockwise) shift in the ocean pathway of Eurasian runoff forced by strengthening of the west-to-east Northern Hemisphere atmospheric circulation characterized by an increased Arctic Oscillation index. Our results confirm that runoff is an important influence on the Arctic Ocean and establish that the spatial and temporal manifestations of the runoff pathways are modulated by the Arctic Oscillation, rather than the strength of the wind-driven Beaufort Gyre circulation.

  13. Time varying arctic climate change amplification

    SciTech Connect

    Chylek, Petr; Dubey, Manvendra K; Lesins, Glen; Wang, Muyin

    2009-01-01

    During the past 130 years the global mean surface air temperature has risen by about 0.75 K. Due to feedbacks -- including the snow/ice albedo feedback -- the warming in the Arctic is expected to proceed at a faster rate than the global average. Climate model simulations suggest that this Arctic amplification produces warming that is two to three times larger than the global mean. Understanding the Arctic amplification is essential for projections of future Arctic climate including sea ice extent and melting of the Greenland ice sheet. We use the temperature records from the Arctic stations to show that (a) the Arctic amplification is larger at latitudes above 700 N compared to those within 64-70oN belt, and that, surprisingly; (b) the ratio of the Arctic to global rate of temperature change is not constant but varies on the decadal timescale. This time dependence will affect future projections of climate changes in the Arctic.

  14. Stable oxygen and hydrogen isotope analyses of bowhead whale baleen as biochemical recorders of migration and arctic environmental change

    NASA Astrophysics Data System (ADS)

    deHart, Pieter A. P.; Picco, Candace M.

    2015-06-01

    An analysis of the stable isotopes of oxygen (δ18O) and hydrogen (δD) was used to examine the linkage between sea ice concentration and the migration of western arctic bowhead whales (Balaena mysticetus; WABW). We compared δ18O and δD variability along the length of WABW baleen with isotopic values of zooplankton prey from different WABW habitat, with published δ13C and δ15N data, and with historical sea ice records. Zooplankton signatures varied widely (δ18O = -13‰-56‰; δD = -220‰ to -75‰), with regional separation between winter (Bering Sea) and summer (eastern Beaufort Sea) habitats of WABW observable in δD. The δ18O and δD of WABW varied significantly along the length of baleen (δ18O = 8-18‰; δD = -180 to -80‰), confirming seasonal migration and reflecting distinct regional dietary variation in isotopes. WABW migration appears to have varied concomitant with temporal sea ice concentration (SIC) changes; in years with high SIC, the difference in δD of WABW baleen between seasonal habitats was significantly greater than low SIC periods. This work shows that SIC is not only a determinant of habitat accessibility for WABW, but baleen may also be a record of historical SIC and Arctic climate.

  15. Monitoring and observing Arctic coastal change (Invited)

    NASA Astrophysics Data System (ADS)

    Couture, N. J.; Overduin, P. P.; Lantuit, H.; Forbes, D. L.; Solomon, S. M.

    2009-12-01

    While Arctic coasts may be less affected by anthropogenic activities than their more temperate counterparts, they experience greater variation in environmental forcings due to the rapidity and scale of climatic warming at high latitudes. In designing and developing coastal monitoring and observing programs, there is a need to consider several systems -- marine, terrestrial, and atmospheric - as well as their impacts on humans and how they are in turn impacted by humans. Monitoring is made more complex by the fact that observations are being made at the boundaries of the systems where interactions with other systems occur. A variety of monitoring approaches are required in order to capture changes in different system elements, at different temporal and spatial scales. Most observation programs monitor biophysical parameters since they govern most other components of the coastal environment. The variables and indices relevant to coastal monitoring at various levels (global, circum-Arctic, national, regional, and local) are considered, as are the different methods of data collection. In order to better respond to coastal change, the current focus on modelling in Arctic coastal areas is on the development of a coastal erosion model specific to permafrost-dominated coasts. Because of the variety of approaches and processes needed to predict erosion, efforts are now being directed towards nesting and linking the existing models. Many of these were originally developed for temperate coasts but have been modified to account for Arctic conditions such as the presence of sea ice and ground ice, whereas others have been developed specifically for application in cold regions. Differences between monitoring strategies in Arctic vs. temperate locations include the need to focus on the duration of open water during which wave and storm activity are important, the location of the sea ice and its effect on wave fetch, how warmer water and air temperatures influence coastal strength

  16. Changing Arctic ecosystems--research to understand and project changes in marine and terrestrial ecosystems of the Arctic

    USGS Publications Warehouse

    Geiselman, Joy; DeGange, Anthony R.; Oakley, Karen; Derksen, Dirk; Whalen, Mary

    2012-01-01

    Ecosystems and their wildlife communities are not static; they change and evolve over time due to numerous intrinsic and extrinsic factors. A period of rapid change is occurring in the Arctic for which our current understanding of potential ecosystem and wildlife responses is limited. Changes to the physical environment include warming temperatures, diminishing sea ice, increasing coastal erosion, deteriorating permafrost, and changing water regimes. These changes influence biological communities and the ways in which human communities interact with them. Through the new initiative Changing Arctic Ecosystems (CAE) the U.S. Geological Survey (USGS) strives to (1) understand the potential suite of wildlife population responses to these physical changes to inform key resource management decisions such as those related to the Endangered Species Act, and (2) provide unique insights into how Arctic ecosystems are responding under new stressors. Our studies examine how and why changes in the ice-dominated ecosystems of the Arctic are affecting wildlife and will provide a better foundation for understanding the degree and manner in which wildlife species respond and adapt to rapid environmental change. Changes to Arctic ecosystems will be felt broadly because the Arctic is a production zone for hundreds of species that migrate south for the winter. The CAE initiative includes three major research themes that span Arctic ice-dominated ecosystems and that are structured to identify and understand the linkages between physical processes, ecosystems, and wildlife populations. The USGS is applying knowledge-based modeling structures such as Bayesian Networks to integrate the work.

  17. Changes in the Arctic: Background and Issues for Congress

    DTIC Science & Technology

    2016-12-07

    countries regarding the management of Arctic fish stocks. Changes in the Arctic could affect threatened and endangered species . Under the Endangered ...territorial disputes; commercial shipping through the Arctic; Arctic oil, gas, and mineral exploration; endangered Arctic species ; and increased military...Ocean. Protected Species167 Concern over development of the Arctic relates to how such development might affect threatened and endangered species

  18. Observed Changes at the Surface of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ortmeyer, M.; Rigor, I.

    2004-12-01

    The Arctic has long been considered a harbinger of global climate change since simulations with global climate models predict that if the concentration of CO2 in the atmosphere doubles, the Arctic would warm by more than 5°C, compared to a warming of 2°C for subpolar regions (Manabe et al., 1991). And indeed, studies of the observational records show polar amplification of the warming trends (e.g. Serreze and Francis, 2004). These temperature trends are accompanied by myriad concurrent changes in Arctic climate. One of the first indicators of Arctic climate change was found by Walsh et al. (1996) using sea level pressure (SLP) data from the International Arctic Buoy Programme (IABP, http://iabp.apl.washington.edu). In this study, they showed that SLP over the Arctic Ocean decreased by over 4 hPa from 1979 - 1994. The decreases in SLP (winds) over the Arctic Ocean, forced changes in the circulation of sea ice and the surface ocean currents such that the Beaufort Gyre is reduced in size and speed (e.g. Rigor et al., 2002). Data from the IABP has also been assimilated into the global surface air temperature (SAT) climatologies (e.g. Jones et al. 1999), and the IABP SAT analysis shows that the temperature trends noted over land extend out over the Arctic Ocean. Specifically, Rigor et al. (2000) found warming trends in SAT over the Arctic Ocean during win¬ter and spring, with values as high as 2°C/decade in the eastern Arctic during spring. It should be noted that many of the changes in Arctic climate were first observed or explained using data from the IABP. The observations from IABP have been one of the cornerstones for environmental forecasting and studies of climate and climate change. These changes have a profound impact on wildlife and people. Many species and cultures depend on the sea ice for habitat and subsistence. Thus, monitoring the Arctic Ocean is crucial not only for our ability to detect climate change, but also to improve our understanding of the

  19. The changing seasonal climate in the Arctic

    PubMed Central

    Bintanja, R.; van der Linden, E. C.

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities. PMID:23532038

  20. The changing seasonal climate in the Arctic.

    PubMed

    Bintanja, R; van der Linden, E C

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities.

  1. Integration of New Observation Techniques, Remote Sensing, and High Resolution Modelling for Improved Quantification of Rapid Environmental Change at a Canadian Arctic Watershed

    NASA Astrophysics Data System (ADS)

    Marsh, P.; Toure, A.; Baltzer, J. L.; Sonnentag, O.; Berg, A. A.; Derksen, C.; Walker, B.; Wilcox, E.

    2016-12-01

    Multi-decade observations at a research watershed in the western Canadian Arctic has demonstrated rapid environmental change, but has also shown that our quantification of, and understanding of, these changes is greatly limited by both the large errors involved in many observation data sets and the limitations of standard models to operate at the extremely high resolution required. This paper will outline an expanding research program being developed at the Trail Valley Creek research watershed south of Tuktoyaktuk, NWT with the gaol to overcome these limitations. Although this watershed has existing high quality observations, the following example will illustrate the challenges faced in understanding the ongoing changes. As might be expected, the climate at this location is dramatically warming, but it is also drying, and the active layer is deepening, shrub patches are both infilling and expanding, the end of winter snow cover is expanding in shrub patches and possibly decreasing in slope drifts, and snowmelt rate is changing. However, the resulting decrease in streamflow and delayed melt runoff, is unexpected and hard to explain. Although we can postulate why these changes are occurring, the observations at this site, among the best in the Canadian Arctic, are not sufficient to allow us to fully explain the ongoing changes. Our experience at Trail Valley Creek suggests that in order to improve our understanding and predictive ability, we need enhanced field observations and models. This paper will outline how we are developing such a program at Trail Valley Creek with field observations across a range of scales (a network of cosmic ray sensors, eddy covariance measurements, and sap flow sensors for example); enhanced remote sensing using lidar, optical and radar methods from Unmanned Aerial Systems, aircraft and satellites; and high resolution, physics based, snow, permafrost and hydrologic models.

  2. The influence of global climate change on the environmental fate of persistent organic pollutants: A review with emphasis on the Northern Hemisphere and the Arctic as a receptor

    NASA Astrophysics Data System (ADS)

    Ma, Jianmin; Hung, Hayley; Macdonald, Robie W.

    2016-11-01

    Following worldwide bans and restrictions on the use of many persistent organic pollutants (POPs) from the late 1970s, their regional and global distributions have become governed increasingly by phase partitioning between environmental reservoirs, such as air, water, soil, vegetation and ice, where POPs accumulated during the original applications. Presently, further transport occurs within the atmospheric and aquatic reservoirs. Increasing temperatures provide thermodynamic forcing to drive these chemicals out of reservoirs, like soil, vegetation, water and ice, and into the atmosphere where they can be transported rapidly by winds and then recycled among environmental media to reach locations where lower temperatures prevail (e.g., polar regions and high elevations). Global climate change, widely considered as global warming, is also manifested by changes in hydrological systems and in the cryosphere; with the latter now exhibiting widespread loss of ice cover on the Arctic Ocean and thawing of permafrost. All of these changes alter the cycling and fate of POPs. There is abundant evidence from observations and modeling showing that climate variation has an effect on POPs levels in biotic and abiotic environments. This article reviews recent progress in research on the effects of climate change on POPs with the intention of promoting awareness of the importance of interactions between climate and POPs in the geophysical and ecological systems.

  3. Arctic Ecosystem Integrated Survey (Arctic Eis): Marine ecosystem dynamics in the rapidly changing Pacific Arctic Gateway

    NASA Astrophysics Data System (ADS)

    Mueter, Franz J.; Weems, Jared; Farley, Edward V.; Sigler, Michael F.

    2017-01-01

    Arctic Marine Ecosystems are undergoing rapid changes associated with ice loss and surface warming resulting from human activities (IPCC, 2013). The most dramatic changes include an earlier ice retreat and a longer ice-free season, particularly on Arctic inflow shelves such as the Barents Sea in the Atlantic Arctic and the northern Bering Sea and Chukchi Sea in the Pacific Arctic, the two major gateways into the Arctic (Danielson et al., 2016; Frey et al., 2015; Serreze et al., 2007; Wood et al., 2015). The retreat of Arctic sea ice has opened access to the Arctic marine environment and its resources, particularly during summer, and among other changes has brought with it increased research activities. For the Pacific Arctic region, these activities have led to several recent compendiums examining physical, biogeochemical, and biological patterns and trends in this rapidly changing environment (Arrigo, 2015, 2016; Arrigo et al., 2014; Bluhm et al., 2010; Dunton et al., 2014; Grebmeier and Maslowski, 2014; Hopcroft and Day, 2013; Moore and Stabeno, 2015).

  4. Changes in the Arctic: Background and Issues for Congress

    DTIC Science & Technology

    2017-01-05

    countries regarding the management of Arctic fish stocks. Changes in the Arctic could affect threatened and endangered species . Under the Endangered ...shipping through the Arctic; Arctic oil, gas, and mineral exploration; endangered Arctic species ; and increased military operations in the Arctic could...Protected Species165 Concern over development of the Arctic relates to how such development might affect threatened and endangered species . Under the

  5. Climate Change: Science and Policy in the Arctic Climate Change: Science and Policy in the Arctic

    NASA Astrophysics Data System (ADS)

    Bigras, S. C.

    2009-12-01

    participation of indigenous peoples in the development and management process. The effective application of accumulated climate change knowledge requires development of a policy framework that can address cumulative effects and take into account various stakeholders, multi-jurisdictional regulations and interests, environmental impacts and other concerns specific to the Arctic. Fundamental to such a framework are responsible economic development, sustainable communities, the commitment to achieving consensus between parties, and the use of traditional knowledge. One way to facilitate collaborative policy making is to increase international co-operation between Northerners, indigenous peoples, scientists, politicians and policy makers. The International Polar Year (IPY) 2007-2008 proved a solid stepping-stone for multinational collaborations. Clear communication with politicians and policy-makers is challenging but essential, despite the lingering uncertainties in climate-change science. Public awareness helps considerably in getting messages to politicians, and it is therefore important that scientists and researchers share their results not only with colleagues but also with the general public.

  6. NASA's Arctic-Boreal Vulnerability Experiment: A large-scale study of environmental change in Western North America and its implications for ecological systems and society

    NASA Astrophysics Data System (ADS)

    Kasischke, E. S.; Hayes, D. J.; Griffith, P. C.; Larson, E. K.; Wickland, D. E.

    2013-12-01

    Climate change in high northern latitudes is unfolding faster than anywhere else on Earth, resulting in widespread changes in landscape structure and ecosystem function in the Arctic-Boreal Region (ABR). Recognizing its sensitivity, vulnerability and global importance, national- and international-level scientific efforts are now advancing our ability to observe, understand and model the complex, multi-scale processes that drive the ABR's natural and social systems. Long at the edge of our mental map of the world, environmental change in the ABR is increasingly becoming the focus of numerous policy discussions at the highest levels of decision-making. To improve our understanding of environmental change and its impacts in the ABR, the Terrestrial Ecology Program of the U.S. National Aeronautics and Space Administration (NASA) is planning its next major field campaign for Western Canada and Alaska. The field campaign will be based on the Arctic-Boreal Vulnerability Experiment (ABoVE) concept as described in the Revised Executive Summary from the ABoVE Scoping Study Report. The original Scoping Study Report provided the proof-of-concept demonstration of scientific importance and feasibility for this large-scale study. In early 2013, NASA announced the selection of the ABoVE Science Definition Team, which is charged with developing the Concise Experiment Plan for the campaign. Here, we outline the conceptual basis for ABoVE and present the compelling rationale explaining the scientific and societal importance of the study. We present the current status of the planning process, which includes development of the science questions to drive ABoVE research; the study design for the field campaign to address them; and the interagency and international collaborations necessary for implementation. The ABoVE study will focus on 1) developing a fuller understanding of ecosystem vulnerability to climate change in the ABR, and 2) providing the scientific information required to

  7. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    DOE Data Explorer

    Bob Busey; Larry Hinzman

    2012-04-01

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  8. Identifying uncertainties in Arctic climate change projections

    NASA Astrophysics Data System (ADS)

    Hodson, Daniel L. R.; Keeley, Sarah P. E.; West, Alex; Ridley, Jeff; Hawkins, Ed; Hewitt, Helene T.

    2013-06-01

    Wide ranging climate changes are expected in the Arctic by the end of the 21st century, but projections of the size of these changes vary widely across current global climate models. This variation represents a large source of uncertainty in our understanding of the evolution of Arctic climate. Here we systematically quantify and assess the model uncertainty in Arctic climate changes in two CO2 doubling experiments: a multimodel ensemble (CMIP3) and an ensemble constructed using a single model (HadCM3) with multiple parameter perturbations (THC-QUMP). These two ensembles allow us to assess the contribution that both structural and parameter variations across models make to the total uncertainty and to begin to attribute sources of uncertainty in projected changes. We find that parameter uncertainty is an major source of uncertainty in certain aspects of Arctic climate. But also that uncertainties in the mean climate state in the 20th century, most notably in the northward Atlantic ocean heat transport and Arctic sea ice volume, are a significant source of uncertainty for projections of future Arctic change. We suggest that better observational constraints on these quantities will lead to significant improvements in the precision of projections of future Arctic climate change.

  9. SEARCH: Study of Environmental Arctic Change—A System-scale, Cross-disciplinary Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Eicken, H.; Fox, S. E.

    2012-12-01

    SEARCH is an interdisciplinary and interagency program that works with academic and government agency scientists to plan, conduct, and synthesize studies of arctic change. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. Towards this end, SEARCH: 1. Generates and synthesizes research findings and promotes arctic science and scientific discovery across disciplines and among agencies. 2. Identifies emerging issues in arctic environmental change. 3. Provides information resources to arctic stakeholders, policy-makers, and the public to help them respond to arctic environmental change. 4. Coordinates with national arctic science programs integral to SEARCH goals. 5. Facilitates research activities across local-to-global scales with stakeholder concerns incorporated from the start of the planning process. 6. Represents the U.S. arctic environmental change science community in international and global change research initiatives. Specific current activities include: Arctic Observing Network (AON) - coordinating a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. Arctic Sea Ice Outlook ¬- an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. In April, the SEARCH Science Steering Committee (SSC) released a set of draft 5-year goals and objectives for review by the broader arctic science community. The goals and objectives will direct the SEARCH program in the next five years. The draft SEARCH goals focus on four areas: ice-diminished Arctic Ocean, warming

  10. Future Arctic climate changes: Adaptation and mitigation time scales

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Wang, Muyin; Walsh, John E.; Stroeve, Julienne C.

    2014-02-01

    The climate in the Arctic is changing faster than in midlatitudes. This is shown by increased temperatures, loss of summer sea ice, earlier snow melt, impacts on ecosystems, and increased economic access. Arctic sea ice volume has decreased by 75% since the 1980s. Long-lasting global anthropogenic forcing from carbon dioxide has increased over the previous decades and is anticipated to increase over the next decades. Temperature increases in response to greenhouse gases are amplified in the Arctic through feedback processes associated with shifts in albedo, ocean and land heat storage, and near-surface longwave radiation fluxes. Thus, for the next few decades out to 2040, continuing environmental changes in the Arctic are very likely, and the appropriate response is to plan for adaptation to these changes. For example, it is very likely that the Arctic Ocean will become seasonally nearly sea ice free before 2050 and possibly within a decade or two, which in turn will further increase Arctic temperatures, economic access, and ecological shifts. Mitigation becomes an important option to reduce potential Arctic impacts in the second half of the 21st century. Using the most recent set of climate model projections (CMIP5), multimodel mean temperature projections show an Arctic-wide end of century increase of +13°C in late fall and +5°C in late spring for a business-as-usual emission scenario (RCP8.5) in contrast to +7°C in late fall and +3°C in late spring if civilization follows a mitigation scenario (RCP4.5). Such temperature increases demonstrate the heightened sensitivity of the Arctic to greenhouse gas forcing.

  11. The Long and Winding Road of Arctic Change Research

    NASA Astrophysics Data System (ADS)

    Mark, S.

    2016-12-01

    Greenland ice sheet contribute to sea level rise? These questions are at the heart of evolving research on the Arctic's role as a responder and a driver of environmental change. But we should remember that without the insights, passion and collective effort of those that preceded us and laid the foundations, we would not be in position to answer them.

  12. The Arctic Report Card: Communicating the State of the Rapidly Changing Arctic to a Diverse Audience via the Worldwide Web

    NASA Astrophysics Data System (ADS)

    Jeffries, M. O.; Richter-Menge, J.; Overland, J. E.; Soreide, N. N.

    2013-12-01

    Rapid change is occurring throughout the Arctic environmental system. The goal of the Arctic Report Card is to communicate the nature of the many changes to a diverse audience via the Worldwide Web. First published in 2006, the Arctic Report Card is a peer-reviewed publication containing clear, reliable and concise scientific information on the current state of the Arctic environment relative to observational records. Available only online, it is intended to be an authoritative source for scientists, teachers, students, decision-makers, policy-makers and the general public interested in the Arctic environment and science. The Arctic Report Card is organized into five sections: Atmosphere; Sea Ice & Ocean; Marine Ecosystem; Terrestrial Ecosystem; Terrestrial Cryosphere. Arctic Report Card 2012, the sixth annual update, comprised 20 essays on physical and biological topics prepared by an international team of 141 scientists from 15 different countries. For those who want a quick summary, the Arctic Report Card home page provides highlights of key events and findings, and a short video that is also available on YouTube. The release of the Report Card each autumn is preceded by a NOAA press release followed by a press conference, when the Web site is made public. The release of Arctic Report Card 2012 at an AGU Fall Meeting press conference on 5 December 2012 was subsequently reported by leading media organizations. The NOAA Arctic Web site, of which the Report Card is a part, is consistently at the top of Google search results for the keyword 'arctic', and the Arctic Report Card Web site tops search results for keyword "arctic report" - pragmatic indications of a Web site's importance and popularity. As another indication of the Web site's impact, in December 2012, the month when the 2012 update was released, the Arctic Report Card Web site was accessed by 19,851 unique sites in 105 countries, and 4765 Web site URLs referred to the Arctic Report Card. The 2012 Arctic

  13. Impacts of Climate and UV Change on Arctic Freshwater Ecosystems

    NASA Astrophysics Data System (ADS)

    Wrona, F. J.; Prowse, T. D.; Reist, J. D.

    2004-05-01

    An overview is provided of the key findings of the Arctic Climate Impact Assessment (ACIA), which is an international project of the Arctic Council and the International Arctic Science Committee (IASC), to evaluate and synthesize knowledge on climate variability, climate change, and increased ultraviolet radiation and their consequences. Predicted changes in climate and UV in the Arctic are expected to have far-reaching impacts on the hydrology and ecology of freshwater ecosystems. Key effects include changes in the distribution, abundance and ecology of aquatic species in various trophic levels, dramatic alterations in the physical environment that makes up their habitat, changes to the chemical properties of that environment, and alterations to the processes that act on and within freshwater ecosystems. Interactions of climatic variables, such as temperature and precipitation, with freshwater ecosystems are highly complex and hence can be propagated through ecosystems in ways that are often difficult to predict. This is partly because of our still relatively poor understanding of the structure and function of arctic freshwater systems and their basic interrelationships with climate and other environmental variables, as well as by a paucity of long-term freshwater monitoring sites and integrated hydro-ecological research programs in the Arctic. Predictions of hydro-ecological impacts are further complicated by synergistic and cumulative effects.

  14. Atmospheric dynamics: Arctic winds of change

    NASA Astrophysics Data System (ADS)

    Notz, Dirk

    2016-09-01

    The Earth's climate evolves in response to both externally forced changes and internal variability. Now research suggests that both drivers combine to set the pace of Arctic warming caused by large-scale sea-ice loss.

  15. Satellite Observed Changes in the Arctic

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Parkinson, Claire L.

    2004-01-01

    The Arctic is currently considered an area in transformation. Glaciers have been retreating, permafrost has been diminishing, snow covered areas have been decreasing, and sea ice and ice sheets have been thinning. This paper provides an overview of the unique role that satellite sensors have contributed in the detection of changes in the Arctic and demonstrates that many of the changes are not just local but a pan-Arctic phenomenon. Changes from the upper atmosphere to the surface are discussed and it is apparent that the magnitude of the trends tends to vary from region to region and from season to season. Previous reports of a warming Arctic and a retreating perennial ice cover have also been updated, and results show that changes are ongoing. Feedback effects that can lead to amplification of the signals and the role of satellite data in enhancing global circulation models are also discussed.

  16. Death of an Arctic Mixed Phase Cloud: How Changes in the Arctic Environment Influence Cloud Properties and Cloud Radiative Feedbacks

    NASA Astrophysics Data System (ADS)

    Roesler, E. L.; Posselt, D. J.

    2012-12-01

    Arctic mixed phase stratocumulus clouds exert an important influence on the radiative budget over the Arctic ocean and sea ice. Field programs and numerical experiments have shown the properties of these clouds to be sensitive to changes in the surface properties, thermodynamic environment, and aerosols. While it is clear that Arctic mixed-phase clouds respond to changes in the Arctic environment, uncertainty remains as to how climate warming will affect the cloud micro- and macrophysical properties. This is in no small part due to the fact that there are nonlinear interactions between changes in atmospheric and surface properties and changes in cloud characteristics. In this study, large-eddy simulations are performed of an arctic mixed phase cloud observed during the Indirect and Semi-Direct Aerosol Campaign. A parameter-space-filling uncertainty quantification technique is used to rigorously explore how simulated arctic mixed phase clouds respond to changes in the properties of the environment. Specifically, the cloud ice and aerosol concentration, surface sensible and latent heat fluxes, and large scale temperature, water vapor, and vertical motion are systematically changed, and the properties of the resulting clouds are examined. It is found that Arctic mixed phase clouds exhibit four characteristic behaviors: stability, growth, decay, and dissipation. Sets of environmental and surface properties that lead to the emergence of each type of behavior are presented, and the implications for the response of Arctic clouds to changes in climate are explored.

  17. Revealing Interactions between Human Resources, Quality of Life and Environmental Changes within Socially-oriented Observations : Results from the IPY PPS Arctic Project in the Russian North

    NASA Astrophysics Data System (ADS)

    Vlasova, Tatiana

    2010-05-01

    Socially-oriented Observations (SOO) in the Russian North have been carried out within multidisciplinary IPY PPS Arctic project under the leadership of Norway and supported by the Research Council of Norway as well as Russian Academy of Sciences. The main objective of SOO is to increase knowledge and observation of changes in quality of life conditions (state of natural environment including climate and biota, safe drinking water and foods, well-being, employment, social relations, access to health care and high quality education, etc.) and - to reveal trends in human capital and capacities (health, demography, education, creativity, spiritual-cultural characteristics and diversity, participation in decision making, etc.). SOO have been carried out in industrial cities as well as sparsely populated rural and nature protection areas in observation sites situated in different bioms (from coastal tundra to southern taiga zone) of Murmansk, Arkhangelsk Oblast and Republic of Komi. SOO were conducted according to the international protocol included in PPS Arctic Manual. SOO approaches based both on local people's perceptions and statistics help to identify main issues and targets for life quality, human capital and environment improvement and thus to distinguish leading SOO indicators for further monitoring. SOO have revealed close interaction between human resources, quality of life and environmental changes. Negative changes in human capital (depopulation, increasing unemployment, aging, declining physical and mental health, quality of education, loss of traditional knowledge, marginalization etc.), despite peoples' high creativity and optimism are becoming the major driving force effecting both the quality of life and the state of environment and overall sustainability. Human induced disturbances such as uncontrolled forests cuttings and poaching are increasing. Observed rapid changes in climate and biota (ice and permafrost melting, tundra shrubs getting taller and

  18. Schools In Board - Bridging Arctic Research And Environmental Science Education

    NASA Astrophysics Data System (ADS)

    Barber, D. G.; Barber, L.

    2008-12-01

    Schools on Board (www.arcticnet.ulaval.ca) was created in 2002 to address the outreach objectives of a network of Canadian scientists conducting research in the High Arctic. The program was piloted with great success with the 2004 research program called the Canadian Arctic Shelf Study (CASES). Since then, the S/B program continues as an integral outreach program of the Canadian Network of Centres of Excellence (NCE) known as ArcticNet. The primary objective of the program is to bridge Arctic climate change research with science and environmental education in the public school system. It is a vehicle for scientists and graduate students to share their research program with high schools and the general public. The program encourages schools to include Arctic Sciences into their science programs by linking Arctic research to existing curriculum, providing resources and opportunities to send high school students and teachers into the Arctic to participate in a science expedition on board the Canadian research icebreaker CCGS Amundsen. The field program is an adventure into Arctic research that exposes students and teachers to the objectives and methods of numerous science teams representing a number of research disciplines and institutions from across Canada and beyond. Face-to-face interactions with scientists of all levels (masters, PhD's, researchers, CRC chairs), hands-on experiences in the field and in the labs, and access to state-of-the-art scientific instrumentation, combine to create a powerful learning environment. In addition to hands-on research activities the program introduces participants to many aspects of Canada's North, including local knowledge related to climate change, culture, history, and politics - within the educational program on the ship and the planned visits to Northern communities. During International Polar Year (IPY) Schools on Board collaborated with international researchers and northern agencies from 11 countries to offer one

  19. Environmental accounting for Arctic shipping - a framework building on ship tracking data from satellites.

    PubMed

    Mjelde, A; Martinsen, K; Eide, M; Endresen, Ø

    2014-10-15

    Arctic shipping is on the rise, leading to increased concern over the potential environmental impacts. To better understand the magnitude of influence to the Arctic environment, detailed modelling of emissions and environmental risks are essential. This paper describes a framework for environmental accounting. A cornerstone in the framework is the use of Automatic Identification System (AIS) ship tracking data from satellites. When merged with ship registers and other data sources, it enables unprecedented accuracy in modelling and geographical allocation of emissions and discharges. This paper presents results using two of the models in the framework; emissions of black carbon (BC) in the Arctic, which is of particular concern for climate change, and; bunker fuels and wet bulk carriage in the Arctic, of particular concern for oil spill to the environment. Using the framework, a detailed footprint from Arctic shipping with regards to operational emissions and potential discharges is established. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. How does climate change influence Arctic mercury?

    PubMed

    Stern, Gary A; Macdonald, Robie W; Outridge, Peter M; Wilson, Simon; Chételat, John; Cole, Amanda; Hintelmann, Holger; Loseto, Lisa L; Steffen, Alexandra; Wang, Feiyue; Zdanowicz, Christian

    2012-01-01

    Recent studies have shown that climate change is already having significant impacts on many aspects of transport pathways, speciation and cycling of mercury within Arctic ecosystems. For example, the extensive loss of sea-ice in the Arctic Ocean and the concurrent shift from greater proportions of perennial to annual types have been shown to promote changes in primary productivity, shift foodweb structures, alter mercury methylation and demethylation rates, and influence mercury distribution and transport across the ocean-sea-ice-atmosphere interface (bottom-up processes). In addition, changes in animal social behavior associated with changing sea-ice regimes can affect dietary exposure to mercury (top-down processes). In this review, we address these and other possible ramifications of climate variability on mercury cycling, processes and exposure by applying recent literature to the following nine questions; 1) What impact has climate change had on Arctic physical characteristics and processes? 2) How do rising temperatures affect atmospheric mercury chemistry? 3) Will a decrease in sea-ice coverage have an impact on the amount of atmospheric mercury deposited to or emitted from the Arctic Ocean, and if so, how? 4) Does climate affect air-surface mercury flux, and riverine mercury fluxes, in Arctic freshwater and terrestrial systems, and if so, how? 5) How does climate change affect mercury methylation/demethylation in different compartments in the Arctic Ocean and freshwater systems? 6) How will climate change alter the structure and dynamics of freshwater food webs, and thereby affect the bioaccumulation of mercury? 7) How will climate change alter the structure and dynamics of marine food webs, and thereby affect the bioaccumulation of marine mercury? 8) What are the likely mercury emissions from melting glaciers and thawing permafrost under climate change scenarios? and 9) What can be learned from current mass balance inventories of mercury in the Arctic? The

  1. Arctic Climate Change: Where Reality Exceeds Expectations

    NASA Astrophysics Data System (ADS)

    Serreze, M. C.

    2007-12-01

    It was probably around the year 2000 when I had an epiphany. A realization, after years of sitting on the fence, that the changes unfolding in the Arctic were too persistent, and too coherent among different parts of the system, to be simply dismissed as natural climate fluctuations. Seven years have passed, and despite imprints of natural variability , the Arctic has continued along a warming path. The emerging surprise is the rapidity of change. In many ways, it seems that reality has exceeded expectations, and that our vision of the Arctic's future is already upon us. The most visually striking evidence of rapid change is the Arctic's shrinking sea ice cover. While climate models tell us that sea ice extent should already be declining in response to greenhouse gas loading, observed trends are much steeper - we are perhaps 30 years ahead of schedule. Climate models also tell us that largely as a result of sea ice loss, Arctic warming will be outsized compared to the rest of the northern hemisphere. However, this so-called Arctic Amplification is already here. The signal appears to be firm, and growing in strength. In turn, the Greenland ice sheet seems to be stirring in ways quite unexpected ten years ago, with disturbing implications for sea level rise. Why is the Arctic changing so rapidly? What are the missing pieces of the puzzle? Given where we stand today, might we realize a seasonally ice free Arctic Ocean as soon as 30 years from now? This Nye lecture will attempt to shed some light on these issues.

  2. The Arctic Grand Challenge: Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Wilkniss, P. E.

    2003-12-01

    Trouble in polar paradise (Science, 08/30/02), significant changes in the Arctic environment are scientifically documented (R.E. Moritz et al. ibid.). More trouble, lots more, "abrupt climate change," (R. B. Alley, et al. Science 03/28/03). R. Corell, Arctic Climate Impact Assessment team (ACIA), "If you want to see what will happen in the rest of the world 25 years from now just look what's happening in the Arctic," (Arctic Council meeting, Iceland, 08/03). What to do? Make abrupt Arctic climate change a grand challenge for the IPY-4 and beyond! Scientifically:Describe the "state" of the Arctic climate system as succinctly as possible and accept it as the point of departure.Develop a hypothesis and criteria what constitutes "abrupt climate change," in the Arctic that can be tested with observations. Observations: Bring to bear existing observations and coordinate new investments in observations through an IPY-4 scientific management committee. Make the new Barrow, Alaska, Global Climate Change Research Facility a major U.S. contribution and focal point for the IPY-4 in the U.S Arctic. Arctic populations, Native peoples: The people of the North are living already, daily, with wrenching change, encroaching on their habitats and cultures. For them "the earth is faster now," (I. Krupnik and D. Jolly, ARCUS, 2002). From a political, economic, social and entirely realistic perspective, an Arctic grand challenge without the total integration of the Native peoples in this effort cannot succeed. Therefore: Communications must be established, and the respective Native entities must be approached with the determination to create well founded, well functioning, enduring partnerships. In the U.S. Arctic, Barrow with its long history of involvement and active support of science and with the new global climate change research facility should be the focal point of choice Private industry: Resource extraction in the Arctic followed by oil and gas consumption, return the combustion

  3. Sensitivity of Arctic carbon in a changing climate

    Treesearch

    A. David McGuire; Henry P. Huntington; Simon. Wilson

    2009-01-01

    The Arctic has been warming rapidly in the past few decades. A key question is how that warming will affect the cycling of carbon (C) in the Arctic system. At present, the Arctic is a global sink for C. If that changes and the Arctic becomes a carbon source, global climate warming may speed up.

  4. Environmental contaminants and human health in the Canadian Arctic.

    PubMed

    Donaldson, S G; Van Oostdam, J; Tikhonov, C; Feeley, M; Armstrong, B; Ayotte, P; Boucher, O; Bowers, W; Chan, L; Dallaire, F; Dallaire, R; Dewailly, E; Edwards, J; Egeland, G M; Fontaine, J; Furgal, C; Leech, T; Loring, E; Muckle, G; Nancarrow, T; Pereg, D; Plusquellec, P; Potyrala, M; Receveur, O; Shearer, R G

    2010-10-15

    The third Canadian Arctic Human Health Assessment conducted under the Canadian Northern Contaminants Program (NCP), in association with the circumpolar Arctic Monitoring and Assessment Programme (AMAP), addresses concerns about possible adverse health effects in individuals exposed to environmental contaminants through a diet containing country foods. The objectives here are to: 1) provide data on changes in human contaminant concentrations and exposure among Canadian Arctic peoples; 2) identify new contaminants of concern; 3) discuss possible health effects; 4) outline risk communication about contaminants in country food; and 5) identify knowledge gaps for future contaminant research and monitoring. The nutritional and cultural benefits of country foods are substantial; however, some dietary studies suggest declines in the amount of country foods being consumed. Significant declines were found for most contaminants in maternal blood over the last 10 years within all three Arctic regions studied. Inuit continue to have the highest levels of almost all persistent organic pollutants (POPs) and metals among the ethnic groups studied. A greater proportion of people in the East exceed Health Canada's guidelines for PCBs and mercury, although the proportion of mothers exceeding these guidelines has decreased since the previous assessment. Further monitoring and research are required to assess trends and health effects of emerging contaminants. Infant development studies have shown possible subtle effects of prenatal exposure to heavy metals and some POPs on immune system function and neurodevelopment. New data suggest important beneficial effects on brain development for Inuit infants from some country food nutrients. The most successful risk communication processes balance the risks and benefits of a diet of country food through input from a variety of regional experts and the community, to incorporate the many socio-cultural and economic factors to arrive at a risk

  5. Using Domestic and Free-Ranging Arctic Canid Models for Environmental Molecular Toxicology Research.

    PubMed

    Harley, John R; Bammler, Theo K; Farin, Federico M; Beyer, Richard P; Kavanagh, Terrance J; Dunlap, Kriya L; Knott, Katrina K; Ylitalo, Gina M; O'Hara, Todd M

    2016-02-16

    The use of sentinel species for population and ecosystem health assessments has been advocated as part of a One Health perspective. The Arctic is experiencing rapid change, including climate and environmental shifts, as well as increased resource development, which will alter exposure of biota to environmental agents of disease. Arctic canid species have wide geographic ranges and feeding ecologies and are often exposed to high concentrations of both terrestrial and marine-based contaminants. The domestic dog (Canis lupus familiaris) has been used in biomedical research for a number of years and has been advocated as a sentinel for human health due to its proximity to humans and, in some instances, similar diet. Exploiting the potential of molecular tools for describing the toxicogenomics of Arctic canids is critical for their development as biomedical models as well as environmental sentinels. Here, we present three approaches analyzing toxicogenomics of Arctic contaminants in both domestic and free-ranging canids (Arctic fox, Vulpes lagopus). We describe a number of confounding variables that must be addressed when conducting toxicogenomics studies in canid and other mammalian models. The ability for canids to act as models for Arctic molecular toxicology research is unique and significant for advancing our understanding and expanding the tool box for assessing the changing landscape of environmental agents of disease in the Arctic.

  6. SEARCH: Study of Environmental Arctic Change—A System-scale, Cross-disciplinary Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Eicken, H.; Fox, S. E.; Search Science Steering Committee

    2010-12-01

    The Study of Environmental Arctic Change (SEARCH) is a multi-agency effort to understand system-scale arctic change. Interrelated environmental changes in the Arctic are affecting ecosystems and living resources and are impacting local and global communities. The SEARCH program is guided by the Science Steering Committee (SSC), the Interagency Program Management Committee (IPMC), and focused panels. Over 150 projects and activities contribute to SEARCH implementation. The Observing Change component is underway through the National Science Foundation’s (NSF) Arctic Observing Network (AON), NOAA-sponsored atmospheric and sea ice observations, and other relevant national and international efforts. The Understanding Change component of SEARCH consists of modeling and analysis efforts, with strong linkages to relevant programs such as NSF’s Arctic System Science (ARCSS) Program. The SEARCH Sea Ice Outlook (http://www.arcus.org/search/seaiceoutlook/index.php) is an "Understanding Change" synthesis effort that aims to advance our understanding of the arctic sea ice system. The Responding to Change element currently includes initial planning efforts by the International Study of Arctic Change (ISAC) program as well as a newly-launched "Sea Ice for Walrus Outlook," which is a weekly report of sea ice conditions geared to Alaska Native walrus subsistence hunters, coastal communities, and others interested in sea ice and walrus (http://www.arcus.org/search/siwo). SEARCH is sponsored by eight U.S. agencies, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the Department of Energy (DOE), the Department of the Interior (DOI), the Smithsonian Institution, and the U.S. Department of Agriculture (USDA). The U.S. Arctic Research Commission participates as an IPMC observer. For further information, please visit the website: http

  7. Will Arctic ground squirrels impede or accelerate climate-induced vegetation changes to the Arctic tundra?

    NASA Astrophysics Data System (ADS)

    Dalton, J.; Flower, C. E.; Brown, J.; Gonzalez-Meler, M. A.; Whelan, C.

    2014-12-01

    Considerable attention has been given to the climate feedbacks associated with predicted vegetation shifts in the Arctic tundra in response to global environmental change. However, little is known regarding the extent to which consumers can facilitate or respond to shrub expansion. Arctic ground squirrels, the largest and most northern ground squirrel, are abundant and widespread throughout the North American tundra. Their broad diet of seeds, flowers, herbage, bird's eggs and meat speaks to the need to breed, feed, and fatten in a span of some 12-16 weeks that separate their 8-9 month bouts of hibernation with the potential consequence to impact ecosystem dynamics. Therefore Arctic ground squirrels are a good candidate to evaluate whether consumers are mere responders (bottom-up effects) or drivers (top-down) of the observed and predicted vegetation changes. As a start towards this question, we measured the foraging intensity (giving-up densities) of Arctic ground squirrels in experimental food patches within which the squirrels experience diminishing returns as they seek the raisins and peanuts that we provided at the Toolik Lake field station in northern Alaska. If the squirrels show their highest feeding intensity in the shrubs, they may impede vegetation shifts by slowing the establishment and expansion of shrubs in the tundra. Conversely, if they show their lowest feeding intensity within shrub dominated areas, they may accelerate vegetation shifts. We found neither. Feeding intensity varied most among transects and times of day, and least along a tundra-to-shrub vegetation gradient. This suggests that the impacts of squirrels will be heterogeneous - in places responders and in others drivers. We should not be surprised then to see patches of accelerated and impeded vegetation changes in the tundra ecosystem. Some of these patterns may be predictable from the foraging behavior of Arctic ground squirrels.

  8. The Intersection of Environmental Variability, Policy, and Human Values: International Treaties, Yukon River Salmon, and Food Security in a Changing Arctic (Invited)

    NASA Astrophysics Data System (ADS)

    Gerlach, S.; Loring, P. A.; Murray, M. S.

    2009-12-01

    2009 was a particularly devastating year for rural communities of the Yukon River in Alaska. For a number of reasons, including annual variability in Chinook and Chum salmon runs, imperfect monitoring and information, “best practices” management decisions by regulatory agencies, and international treaty obligations related to conservation and total allowable catch allocation, the smokehouses and freezers of many Alaska Native families, particularly those in up-river communities in the Yukon Flats region, are empty; a problem that has prompted Alaska’s Governor Sean Parnell to ask the US Federal Government to declare a disaster. However, depending on whom you ask, this year’s management of these resources, which provide food security and enable self-reliance in rural communities, may be evaluated as a failure or as a success. How can we reconcile an institutional assessment that claims success as defined in terms of internationally-agreed upon conservation and escapement goals, with the negative economic and health impacts on communities? We use this case to illustrate how the whole Yukon River watershed and drainage, including Alaska and Canada, provides an elegant, geographic context for the discussion and analysis of the human dimensions of environmental change and regional sustainability. Policymakers have arguably gone to great lengths to reconcile competing ‘uses’ of the Yukon River, including commercial and subsistence uses as well as conservation goals, but while managers continue to strive to be ‘adaptive learners’ in their approach to balancing these goals, the impacts on rural communities are immediate and cumulative, synergistic, temporally and spatially scaled, and directly related to rural livelihoods, community health, well-being and sustainability. The cost of this ‘adaptive’ process may be too high, both for the ecosystem and for the people who live there. Are we asking too much of the Yukon River? Are we asking too much of the

  9. The Arctic Ocean's seasonal cycle must change

    NASA Astrophysics Data System (ADS)

    Carton, James; Ding, Yanni

    2015-04-01

    This paper discusses anticipated changes to the seasonal cycle of the Arctic Ocean along with Arctic surface climate due to the reduction of seasonal sea ice cover expected in the 21st century. Net surface shortwave radiation is a function of surface reflectivity and atmospheric transparency as well as solar declination. Recent observational studies and modeling results presented here strongly suggest that this excess heat in the summer is currently being stored locally in the form of ocean warming and sea ice melt. This heat is lost in winter/spring through surface loss through longwave and turbulent processes causing ocean cooling and the refreezing of sea ice. A striking feature of Arctic climate during the 20th century has been the enhanced warming experienced during winter in response to increases in anthropogenic greenhouse gasses. The amplitude of the seasonal cycle of surface air temperature is declining by gradually warming winter temperatures relative to summer temperatures. Bintanja and van der Linden (2013) show this process will eventually cause the 30C seasonal change in air temperature to reduce by half as seasonal sea ice disappears. The much weaker seasonal cycle of ocean temperature, which is controlled by the need to store excess surface heat seasonally, is also going to be affected by the loss of sea ice but in quite different ways. In particular the ocean will need to compensate for the loss of seasonal heat storage by the ice pack. This study examines consequences for the Arctic Ocean stratification and circulation in a suite of CMIP5 models under future emissions scenarios relative to their performance during the 20th century and to explore a range of model ocean responses to declining sea ice cover on the Arctic Ocean.

  10. The Northern Bering Sea: An Arctic Ecosystem in Change

    NASA Astrophysics Data System (ADS)

    Grebmeier, J. M.; Cooper, L. W.

    2004-12-01

    Arctic systems can be rich and diverse habitats for marine life in spite of the extreme cold environment. Benthic faunal populations and associated biogeochemical cycling processes are influenced by sea-ice extent, seawater hydrography (nutrients, salinity, temperature, currents), and water column production. Benthic organisms on the Arctic shelves and margins are long-term integrators of overlying water column processes. Because these organisms have adapted to living at cold extremes, it is reasonable to expect that these communities will be among the most susceptible to climate warming. Recent observations show that Arctic sea ice in the North American Arctic is melting and retreating northward earlier in the season and the timing of these events can have dramatic impacts on the biological system. Changes in overlying primary production, pelagic-benthic coupling, and benthic production and community structure can have cascading effects to higher trophic levels, particularly benthic feeders such as walruses, gray whales, and diving seaducks. Recent indicators of contemporary Arctic change in the northern Bering Sea include seawater warming and reduction in ice extent that coincide with our time-series studies of benthic clam population declines in the shallow northern Bering shelf in the 1990's. In addition, declines in benthic amphipod populations have also likely influenced the movement of feeding gray whales to areas north of Bering Strait during this same time period. Finally a potential consequence of seawater warming and reduced ice extent in the northern Bering Sea could be the northward movement of bottom feeding fish currently in the southern Bering Sea that prey on benthic fauna. This would increase the feeding pressure on the benthic prey base and enhance competition for this food source for benthic-feeding marine mammals and seabirds. This presentation will outline recent biological changes observed in the northern Bering Sea ecosystem as documented in

  11. Research Applications of Data from Arctic Ocean Drifting Platforms: The Arctic Buoy Program and the Environmental Working Group CD's.

    NASA Astrophysics Data System (ADS)

    Moritz, R. E.; Rigor, I.

    2006-12-01

    ABSTRACT: The Arctic Buoy Program was initiated in 1978 to measure surface air pressure, surface temperature and sea-ice motion in the Arctic Ocean, on the space and time scales of synoptic weather systems, and to make the data available for research, forecasting and operations. The program, subsequently renamed the International Arctic Buoy Programme (IABP), has endured and expanded over the past 28 years. A hallmark of the IABP is the production, dissemination and archival of research-quality datasets and analyses. These datasets have been used by the authors of over 500 papers on meteorolgy, sea-ice physics, oceanography, air-sea interactions, climate, remote sensing and other topics. Elements of the IABP are described briefly, including measurements, analysis, data dissemination and data archival. Selected highlights of the research applications are reviewed, including ice dynamics, ocean-ice modeling, low-frequency variability of Arctic air-sea-ice circulation, and recent changes in the age, thickness and extent of Arctic Sea-ice. The extended temporal coverage of the data disseminated on the Environmental Working Group CD's is important for interpreting results in the context of climate.

  12. Climate change and the ecology and evolution of Arctic vertebrates.

    PubMed

    Gilg, Olivier; Kovacs, Kit M; Aars, Jon; Fort, Jérôme; Gauthier, Gilles; Grémillet, David; Ims, Rolf A; Meltofte, Hans; Moreau, Jérôme; Post, Eric; Schmidt, Niels Martin; Yannic, Glenn; Bollache, Loïc

    2012-02-01

    Climate change is taking place more rapidly and severely in the Arctic than anywhere on the globe, exposing Arctic vertebrates to a host of impacts. Changes in the cryosphere dominate the physical changes that already affect these animals, but increasing air temperatures, changes in precipitation, and ocean acidification will also affect Arctic ecosystems in the future. Adaptation via natural selection is problematic in such a rapidly changing environment. Adjustment via phenotypic plasticity is therefore likely to dominate Arctic vertebrate responses in the short term, and many such adjustments have already been documented. Changes in phenology and range will occur for most species but will only partly mitigate climate change impacts, which are particularly difficult to forecast due to the many interactions within and between trophic levels. Even though Arctic species richness is increasing via immigration from the South, many Arctic vertebrates are expected to become increasingly threatened during this century.

  13. Environmental effects of a rare rain event in the high Arctic

    NASA Astrophysics Data System (ADS)

    Lund, Magnus; Abermann, Jakob; Skov, Kirstine

    2017-04-01

    Projections of future Arctic climate indicate an intensified hydrological cycle with more precipitation. This will have a number of implications for Arctic ecosystem processes, including glacier mass balance, river discharge and tundra ecosystem functioning. At the high Arctic Zackenberg Research Station, northeast Greenland, a comprehensive climate change and ecosystem monitoring programme has been running since 1996, covering glaciological, terrestrial, limnic and marine compartments (www.zackenberg.dk). During 2015, we observed record high annual precipitation in Zackenberg. Almost one-quarter of the annual precipitation fell during a unique nine-day long rain event in August. This study focusses on various inter-related ecosystem processes affected by the exceptional rain event: Increased river discharge resulting in high transport of suspended sediments and dissolved organic carbon. Late summer soil wetting and prolonged reduction of incoming shortwave radiation altering the surface energy balance and decreasing ecosystem carbon uptake. As precipitation is predicted to increase in the Arctic in near future, extreme rain events as the one observed in August 2015 in Zackenberg can be expected to become more frequent. As such, the environmental effects we observe and are able to quantify, constitute an important showcase for the response of Arctic ecosystems to climatic changes. It also demonstrates the importance of integrated, long-term environmental monitoring programmes in the Arctic.

  14. Arctic ecosystems in a changing climate: An ecophysiological perspective

    SciTech Connect

    Chapin, F.S. III; Jefferies, R.L.; Reynolds, J.F.; Shaver, G.R.; Svoboda, J.

    1992-01-01

    This book is an international synthesis of studies on arctic ecosystems, a region where climatic change is greatest, presenting the interrelationship between climate change and ecosystems. In addition to chapters dealing specifically with climatic change issues, important background information on arctic ecosystems and vegetation is given. Individual contributions are arranged into four parts: The Arctic System; Carbon Balance; Water and Nutrient Balance; and Interactions. An brief introduction, summary, and a useful index are also included.

  15. Role of Greenland meltwater in the changing Arctic

    NASA Astrophysics Data System (ADS)

    Dukhovskoy, Dmitry; Proshutinsky, Andrey; Timmermans, Mary-Louise; Myers, Paul; Platov, Gennady; Bamber, Jonathan; Curry, Beth; Somavilla, Raquel

    2016-04-01

    Observational data show that the Arctic ocean-ice-atmosphere system has been changing over the last two decades. Arctic change is manifest in the atypical behavior of the climate indices in the 21st century. Before the 2000s, these indices characterized the quasi-decadal variability of the Arctic climate related to different circulation regimes. Between 1948 and 1996, the Arctic atmospheric circulation alternated between anticyclonic circulation regimes and cyclonic circulation regimes with a period of 10-15 years. Since 1997, however, the Arctic has been dominated by an anticyclonic regime. Previous studies indicate that in the 20th century, freshwater and heat exchange between the Arctic Ocean and the sub-Arctic seas were self-regulated and their interactions were realized via quasi-decadal climate oscillations. What physical processes in the Arctic Ocean - sub-Arctic ocean-ice-atmosphere system are responsible for the observed changes in Arctic climate variability? The presented work is motivated by our hypothesis that in the 21st century, these quasi-decadal oscillations have been interrupted as a result of an additional freshwater source associated with Greenland Ice Sheet melt. Accelerating since the early 1990s, the Greenland Ice Sheet mass loss exerts a significant impact on thermohaline processes in the sub-Arctic seas. Surplus Greenland freshwater, the amount of which is about a third of the freshwater volume fluxed into the region during the 1970s Great Salinity Anomaly event, can spread and accumulate in the sub-Arctic seas influencing convective processes there. It is not clear, however, whether Greenland freshwater can propagate into the interior convective regions in the Labrador Sea and the Nordic Seas. In order to investigate the fate and pathways of Greenland freshwater in the sub-Arctic seas and to determine how and at what rate Greenland freshwater propagates into the convective regions, several numerical experiments using a passive tracer to

  16. Human adaptation responses to a rapidly changing Arctic: A research context for building system resilience

    NASA Astrophysics Data System (ADS)

    Chapin, T.; Brinkman, T. J.

    2016-12-01

    Although human behavior accounts for more uncertainty in future trajectories in climate change than do biophysical processes, most climate-change research fails to include human actions in research design and implementation. This is well-illustrated in the Arctic. At the global scale, arctic processes strongly influence the strength of biophysical feedbacks between global human emissions and the rate of climate warming. However, most human actions in the arctic have little effect on these feedbacks, so research can contribute most effectively to reduction in arctic warming through improved understanding of the strength of arctic-global biophysical feedbacks, as in NASA's ABoVE program, and its effective communication to policy makers and the public. In contrast, at the local to regional scale within the arctic, human actions may influence the ecological and societal consequences of arctic warming, so research benefits from active stakeholder engagement in research design and implementation. Human communities and other stakeholders (government and NGOs) respond heterogeneously to socioeconomic and environmental change, so research that documents the range of historical and current adaptive responses to change provides insights on the resilience (flexibility of future options) of social-ecological processes in the arctic. Alaskan communities have attempted a range of adaptive responses to coastal erosion (e.g., seasonal migration, protection in place, relocation), wildfire (fire suppression to use of fire to manage wildlife habitat or landscape heterogeneity), declining sea ice (e.g., new hunting technology, sea ice observations and predictions), and changes in wildlife and fish availability (e.g., switch to harvest of alternative species, harvest times, or harvest locations). Research that draws on both traditional and western knowledge facilitates adaptation and predictions of the likely societal consequences of climate change in the Arctic. Effective inclusion of

  17. Changing Arctic ecosystems: resilience of caribou to climatic shifts in the Arctic

    USGS Publications Warehouse

    Gustine, David; Adams, Layne; Whalen, Mary; Pearce, John

    2014-01-01

    The U.S. Geological Survey (USGS) Changing Arctic Ecosystems (CAE) initiative strives to inform key resource management decisions for Arctic Alaska by providing scientific information and forecasts for current and future ecosystem response to a warming climate. Over the past 5 years, a focal area for the USGS CAE initiative has been the North Slope of Alaska. This region has experienced a warming trend over the past 60 years, yet the rate of change has been varied across the North Slope, leading scientists to question the future response and resilience of wildlife populations, such as caribou (Rangifer tarandus), that rely on tundra habitats for forage. Future changes in temperature and precipitation to coastal wet sedge and upland low shrub tundra are expected, with unknown consequences for caribou that rely on these plant communities for food. Understanding how future environmental change may affect caribou migration, nutrition, and reproduction is a focal question being addressed by the USGS CAE research. Results will inform management agencies in Alaska and people that rely on caribou for food.

  18. Land-Cover and Land-Use Change Under Changing Climate in the Eurasian Arctic

    NASA Astrophysics Data System (ADS)

    Gutman, G.; Groisman, P.; Reissell, A.

    2008-12-01

    This presentation is an overview of the studies conducted in the framework of the NASA Land-Cover/Land- Use Change Program focused on the Eurasian Arctic. It includes discussion of vegetation changes under climate warming and implications to carbon cycle, changes in environmental pollution, hydrologic cycle, and impacts on society. Climate change can affect land cover in the Arctic through changes in the surface reflectivity and hydrology due to changes in snow melt timing; impacts of black carbon emitted by fires and settled on bright surfaces; changes in sea ice and the consequent change in ocean circulation affecting vegetation cover patterns indirectly; and changes in the amounts of greenhouse gases emission due to permafrost melting, especially in peatlands, as warming progresses. The Arctic Eurasia is being affected by global and regional external factors that are causing its change and the positive feedbacks to this forcing may further exaggerate the situation. If the warming trend continues it will have a tremendous impact on all aspects of land cover in the Arctic region with considerable consequences at the global scale. It will cause significant changes in the natural land cover, and perhaps even greater changes in the areas where the land cover has already been considerably modified by human activities. Major changes have already taken place in how land is used in the Arctic. In many regions, there has been a clear shift from the land use practiced by indigenous people to intensive exploitation of the land for commercial and industrial uses. Results on the climate/environment - land-cover interactions will be presented.

  19. Land-Cover and Land-Use Change under Changing Climate in the Eurasian Arctic

    NASA Astrophysics Data System (ADS)

    Gutman, G.

    2009-04-01

    An overview of the studies conducted in the framework of the NASA Land-Cover/Land- Use Change Program focused on the Eurasian Arctic will be presented. It includes discussion of vegetation changes under climate warming and implications to carbon cycle, changes in environmental pollution, hydrologic cycle, and impacts on society. Climate change can affect land cover in the Arctic through changes in the surface reflectivity and hydrology due to changes in snow melt timing; impacts of black carbon emitted by fires and settled on bright surfaces; changes in sea ice and the consequent change in ocean circulation affecting vegetation cover patterns indirectly; and changes in the amounts of greenhouse gases emission due to permafrost melting, especially in peatlands, as warming progresses. The Arctic Eurasia is being affected by global and regional external factors that are causing its change and the positive feedbacks to this forcing may further exaggerate the situation. If the warming trend continues it will have a tremendous impact on all aspects of land cover in the Arctic region with considerable consequences at the global scale. It will cause significant changes in the natural land cover, and perhaps even greater changes in the areas where the land cover has already been considerably modified by human activities. Major changes have already taken place in how land is used in the Arctic. In many regions, there has been a clear shift from the land use practiced by indigenous people to intensive exploitation of the land for commercial and industrial uses. Results on the climate/environment - land-cover interactions will be presented.

  20. Effects of climate change on Arctic marine mammal health.

    PubMed

    Burek, Kathy A; Gulland, Frances M D; O'Hara, Todd M

    2008-03-01

    The lack of integrated long-term data on health, diseases, and toxicant effects in Arctic marine mammals severely limits our ability to predict the effects of climate change on marine mammal health. The overall health of an individual animal is the result of complex interactions among immune status, body condition, pathogens and their pathogenicity, toxicant exposure, and the various environmental conditions that interact with these factors. Climate change could affect these interactions in several ways. There may be direct effects of loss of the sea ice habitat, elevations of water and air temperature, and increased occurrence of severe weather. Some of the indirect effects of climate change on animal health will likely include alterations in pathogen transmission due to a variety of factors, effects on body condition due to shifts in the prey base/food web, changes in toxicant exposures, and factors associated with increased human habitation in the Arctic (e.g., chemical and pathogen pollution in the runoff due to human and domestic-animal wastes and chemicals and increased ship traffic with the attendant increased risks of ship strike, oil spills, ballast pollution, and possibly acoustic injury). The extent to which climate change will impact marine mammal health will also vary among species, with some species more sensitive to these factors than others. Baseline data on marine mammal health parameters along with matched data on the population and climate change trends are needed to document these changes.

  1. What an Arctic terrestrial MIP tells about changes and differences in Arctic subsurface hydrology

    NASA Astrophysics Data System (ADS)

    Saito, K.

    2015-12-01

    The spatial and temporal characteristics of Arctic hydrology have been investigated in the GTMIP activity (https://ads.nipr.ac.jp/gtmip/gtmip.html), conducted as a part of GRENE Arctic Climate Change Project in Japan. The activity has two stages, one on local and the other on the circum-Arctic scales. Stage 1 is site simulations for the period of 1980-2013 for four Arctic observation sites, i.e., Fairbanks/AK, Kevo/Finland, Yakutsuk and Tiksi in Siberia, focusing on process evaluations with observation. Stage 2 is pan-arctic simulations for 1850-2100 with 0.5x0.5 degree resolution, targeting at the responses of Arctic terrestrial to global climate change. At both stages multiple terrestrial models have been participating (16+ for Stage 1; 10 for Stage 2), ranging from physically-oriented process models to biogeochemical models to ESM-compatible ecosystem models. The results are delineating a) spatial variations and temporal changes in subsurface thermal and hydrological states, and subsequently the ecosystem in different climatic/ecosystem zones (e.g., Kevo is underlain by seasonally frozen ground while others by permafrost; Tiksi is in tundra whole others in taiga; these two sites are Arctic while the other two sub-Arctic), and b) the differences and similarities in the reproducibility among models with respect to the target of the models (e.g., physical, or biogeochemical) and to the complexity of implemented processes.

  2. Past changes in Arctic terrestrial ecosystems, climate and UV radiation.

    PubMed

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus

    2004-11-01

    that are apparently without precedent during the Pleistocene is likely to be considerable, particularly as their exposure to co-occurring environmental changes (such as enhanced levels of UV-B, deposition of nitrogen compounds from the atmosphere, heavy metal and acidic pollution, radioactive contamination, increased habitat fragmentation) is also without precedent.

  3. Changing characteristics of arctic pressure ridges

    NASA Astrophysics Data System (ADS)

    Wadhams, Peter; Toberg, Nick

    2012-04-01

    the continuity and linearity of the ridge crest. Many such episodes over a number of years can cause the ridge to become simply a series of blocks. This has implications for ridge strength and for permeability to spilled oil. As the percentage of MY ice in the Arctic diminishes, Arctic ridging will be more and more dominated by FY ridges, and we discuss the implications of this change of character of the ice underside in the light of the statistics that we have generated for the two types of ridge.

  4. New views on changing Arctic vegetation

    NASA Astrophysics Data System (ADS)

    Kennedy, Robert E.

    2012-03-01

    As climate changes, how will terrestrial vegetation respond? Because the fates of many biogeochemical, hydrological and economic cycles depend on vegetation, this question is fundamental to climate change science but extremely challenging to address. This is particularly true in the Arctic, where temperature change has been most acute globally (IPCC 2007) and where potential feedbacks to carbon, energy and hydrological cycles have important implications for the rest of the Earth system (Chapin et al 2000). It is well known that vegetation is tightly coupled to precipitation and temperature (Whittaker 1975), but predicting the response of vegetation to changes in climate involves much more than invoking the limitations of climate envelopes (Thuiller et al 2008). Models must also consider efficacy of dispersal, soil constraints, ecological interactions, possible CO2 fertilization impacts and the changing impact of other, more proximal anthropogenic effects such as pollution, disturbance, etc (Coops and Waring 2011, Lenihan et al 2008, Scheller and Mladenoff 2005). Given this complexity, a key test will be whether models can match empirical observations of changes that have already occurred. The challenge is finding empirical observations of change that are appropriate to test hypothesized impacts of climate change. As climate gradually changes across broad bioclimatic gradients, vegetation condition may change gradually as well. To capture these gradual trends, observations need at least three characteristics: (1) they must quantify a vegetation attribute that is expected to change, (2) they must measure that attribute in exactly the same way over long periods of time, and (3) they must sample diverse communities at geographic scales commensurate with the scale of expected climatic shifts. Observation networks meeting all three criteria are rare anywhere on the globe, but particularly so in remote areas. For this reason, satellite images have long been used as a

  5. Arctic root-associated fungal community composition reflects environmental filtering.

    PubMed

    Blaalid, Rakel; Davey, Marie L; Kauserud, Håvard; Carlsen, Tor; Halvorsen, Rune; Høiland, Klaus; Eidesen, Pernille B

    2014-02-01

    There is growing evidence that root-associated fungi have important roles in Arctic ecosystems. Here, we assess the diversity of fungal communities associated with roots of the ectomycorrhizal perennial herb Bistorta vivipara on the Arctic archipelago of Svalbard and investigate whether spatial separation and bioclimatic variation are important structuring factors of fungal community composition. We sampled 160 plants of B. vivipara from 32 localities across Svalbard. DNA was extracted from entire root systems, and 454 pyrosequencing of ITS1 amplicons was used to profile the fungal communities. The fungal communities were predominantly composed of Basidiomycota (55% of reads) and Ascomycota (35%), with the orders Thelephorales (24%), Agaricales (13.8%), Pezizales (12.6%) and Sebacinales (11.3%) accounting for most of the reads. Plants from the same site or region had more similar fungal communities to one another than plants from other sites or regions, and sites clustered together along a weak latitudinal gradient. Furthermore, a decrease in per-plant OTU richness with increasing latitude was observed. However, no statistically significant spatial autocorrelation between sites was detected, suggesting that environmental filtering, not dispersal limitation, causes the observed patterns. Our analyses suggest that while latitudinal patterns in community composition and richness might reflect bioclimatic influences at global spatial scales, at the smaller spatial scale of the Svalbard archipelago, these changes more likely reflect varied bedrock composition and associated edaphic factors. The need for further studies focusing on identifying those specific bioclimatic and edaphic factors structuring root-associated fungal community composition at both global and local scales is emphasized.

  6. Environmental radioactivity in the Arctic, Antarctic

    SciTech Connect

    Palmer, H.

    1993-12-01

    This conference on radioactivity in the Arctic and Antarctic was held in Kirkenes, Norway and sponsored by the Norwegian Radiation Protection Authority and the Department of Radiation Physics, Sweden's University of Lund. Radioactivity in the Arctic is the result of both natural phenomena and human activities. Natural or background radioactivity is a result of the breakdown and erosion of rocks that contain naturally radioactive minerals. But the levels introduced by dumping, weapons testing, and industrial activities far exceed such natural levels. Conference delegates cited such contamination sources as: Chernobyl's nuclear reactor accident; Wastes from fuel reprocessing plants at Sellafield (UK) and La Hague (France); Weapons testing in and around Novaya Zemlya; Ocean dumping of reactors, waste containers, and liquid wastes; Runoff from watersheds containing soil and organic material contaminated by atmospheric fallout; Atmospheric fallout from decades of weapons tests by various nations; and, Accidents involving nuclear submarines. The potential for increased radioactive pollution is of great concern and these questions were addressed by several speakers.

  7. Seasonal differences in the response of Arctic cyclones to climate change in CESM1

    NASA Astrophysics Data System (ADS)

    Day, Jonathan J.; Holland, Marika M.; Hodges, Kevin I.

    2017-06-01

    The dramatic warming of the Arctic over the last three decades has reduced both the thickness and extent of sea ice, opening opportunities for business in diverse sectors and increasing human exposure to meteorological hazards in the Arctic. It has been suggested that these changes in environmental conditions have led to an increase in extreme cyclones in the region, therefore increasing this hazard. In this study, we investigate the response of Arctic synoptic scale cyclones to climate change in a large initial value ensemble of future climate projections with the CESM1-CAM5 climate model (CESM-LE). We find that the response of Arctic cyclones in these simulations varies with season, with significant reductions in cyclone dynamic intensity across the Arctic basin in winter, but with contrasting increases in summer intensity within the region known as the Arctic Ocean cyclone maximum. There is also a significant reduction in winter cyclogenesis events within the Greenland-Iceland-Norwegian sea region. We conclude that these differences in the response of cyclone intensity and cyclogenesis, with season, appear to be closely linked to changes in surface temperature gradients in the high latitudes, with Arctic poleward temperature gradients increasing in summer, but decreasing in winter.

  8. Arctic Cities and Climate Change: A Geographic Impact Assessment

    NASA Astrophysics Data System (ADS)

    Shiklomanov, N. I.; Streletskiy, D. A.

    2014-12-01

    Arctic climate change is a concern for the engineering community, land-use planners and policy makers as it may have significant impacts on socio-economic development and human activities in the northern regions. A warmer climate has potential for a series of positive economic effects, such as development of maritime transportation, enhanced agricultural production and decrease in energy consumption. However, these potential benefits may be outwaited by negative impacts related to transportation accessibility and stability of existing infrastructure, especially in permafrost regions. Compared with the Arctic zones of other countries, the Russian Arctic is characterized by higher population, greater industrial development and urbanization. Arctic urban areas and associated industrial sites are the location of some of intense interaction between man and nature. However, while there is considerable research on various aspects of Arctic climate change impacts on human society, few address effects on Arctic cities and their related industries. This presentation overviews potential climate-change impacts on Russian urban environments in the Arctic and discusses methodology for addressing complex interactions between climatic, permafrost and socio-economic systems at the range of geographical scales. We also provide a geographic assessment of selected positive and negative climate change impacts affecting several diverse Russian Arctic cities.

  9. Ecological dynamics across the Arctic associated with recent climate change

    Treesearch

    Eric Post; Mads C. Forchhammer; M. Syndonia Bret-Harte; Terry V. Callaghan; Torben R. Christensen; Bo Elberling; Anthony D. Fox; Olivier Gilg; David S. Hik; Toke T. Høye; Rolf A. Ims; Erik Jeppesen; David R. Klein; Jesper Madsen; A. David McGuire; Søren Rysgaard; Daniel E. Schindler; Ian Stirling; Mikkel P. Tamstorf; Nicholas J.C. Tyler; Rene van der Wal; Jeffrey Welker; Philip A. Wookey; Niels Martin Schmidt; Peter. Aastrup

    2009-01-01

    At the close of the Fourth International Polar Year, we take stock of the ecological consequences of recent climate change in the Arctic, focusing on effects at population, community, and ecosystem scales. Despite the buffering effect of landscape heterogeneity, Arctic ecosystems and the trophic relationships that structure them have been severely perturbed. These...

  10. Impacts of projected sea ice changes on trans-Arctic navigation

    NASA Astrophysics Data System (ADS)

    Stephenson, S. R.; Smith, L. C.

    2012-12-01

    Reduced Arctic sea ice continues to be a palpable signal of global change. Record lows in September sea ice extent from 2007 - 2011 have fueled speculation that trans-Arctic navigation routes may become physically viable in the 21st century. General Circulation Models project a nearly ice-free Arctic Ocean in summer by mid-century; however, how reduced sea ice will realistically impact navigation is not well understood. Using the ATAM (Arctic Transportation Accessibility Model) we present simulations of 21st-century trans-Arctic voyages as a function of climatic (ice) conditions and vessel class. Simulations are based on sea ice projections for three climatic forcing scenarios (RCP 4.5, 6.0, and 8.5 W/m^2) representing present-day and mid-century conditions, assuming Polar Class 6 (PC6) and open-water vessels (OW) with medium and no ice-breaking capability, respectively. Optimal least-cost routes (minimizing travel time while avoiding ice impassible to a given vessel class) between the North Atlantic and the Bering Strait were calculated for summer months of each time window. While Arctic navigation depends on other factors besides sea ice including economics, infrastructure, bathymetry, current, and weather, these projections should be useful for strategic planning by governments, regulatory and environmental agencies, and the global maritime industry to assess potential changes in the spatial and temporal ranges of Arctic marine operations.

  11. Arctic indigenous peoples as representations and representatives of climate change.

    PubMed

    Martello, Marybeth Long

    2008-06-01

    Recent scientific findings, as presented in the Arctic Climate Impact Assessment (ACIA), indicate that climate change in the Arctic is happening now, at a faster rate than elsewhere in the world, and with major implications for peoples of the Arctic (especially indigenous peoples) and the rest of the planet. This paper examines scientific and political representations of Arctic indigenous peoples that have been central to the production and articulation of these claims. ACIA employs novel forms and strategies of representation that reflect changing conceptual models and practices of global change science and depict indigenous peoples as expert, exotic, and at-risk. These portrayals emerge alongside the growing political activism of Arctic indigenous peoples who present themselves as representatives or embodiments of climate change itself as they advocate for climate change mitigation policies. These mutually constitutive forms of representation suggest that scientific ways of seeing the global environment shape and are shaped by the public image and voice of global citizens. Likewise, the authority, credibility, and visibility of Arctic indigenous activists derive, in part, from their status as at-risk experts, a status buttressed by new scientific frameworks and methods that recognize and rely on the local experiences and knowledges of indigenous peoples. Analyses of these relationships linking scientific and political representations of Arctic climate change build upon science and technology studies (STS) scholarship on visualization, challenge conventional notions of globalization, and raise questions about power and accountability in global climate change research.

  12. Environmental Implications of Maritime Vessel Intensification in Arctic Waters

    NASA Astrophysics Data System (ADS)

    Stevenson, T. C.; Banis, D.; Sheard, W.

    2016-12-01

    In 2016, the Arctic experienced some of the warmest monthly temperatures on record. Record high temperatures in the Arctic continue to cause rapid sea ice declines, opening new areas of ocean to commercial exploitation and transportation and causing significant reductions in critical sea ice habitats used by iconic species. Elevated maritime vessel traffic in the Arctic is projected to increase black carbon emissions, encourage the spread of invasive species, increase mammal strikes, intensify conflict with smaller subsistence boats, and heighten oil spill risks. The Arctic Council, an intergovernmental organization concerned with sustainable development and environmental protection, is working with member countries, indigenous participants and other groups on developing networks of marine protected areas within ecologically or biologically important areas. To help inform that process, we analyzed vessel traffic and marine protected area coverage occurring within ecologically or biologically significant areas in the circumpolar Arctic. Our preliminary findings suggest vessel traffic within ecologically or biologically significant areas were highest around Iceland, Norway, Russia and United States but differed by vessel type. The density of fishing vessels occurring within ecologically or biologically important areas were highest near Norway, Iceland, Faroe Islands, parts of Greenland and United States, whereas vessels carrying liquefied natural gas and oil were concentrated near Norway and Russia. The percentage of area covered by marine protected areas within ecologically or biologically significant areas was low, with the exception of places like Wrangel Island, Svalbard, and areas around Greenland. These findings are important because it illustrates ecologically or biologically significant areas in the Arctic are vulnerable to projected vessel traffic intensification and the level of protection afforded by marine protected areas is relatively low.

  13. Building resilience and adaptation to manage Arctic change.

    PubMed

    Chapin, F Stuart; Hoel, Michael; Carpenter, Steven R; Lubchenco, Jane; Walker, Brian; Callaghan, Terry V; Folke, Carl; Levin, Simon A; Mäler, Karl-Göran; Nilsson, Christer; Barrett, Scott; Berkes, Fikret; Crépin, Anne-Sophie; Danell, Kjell; Rosswall, Thomas; Starrett, David; Xepapadeas, Anastasios; Zimov, Sergey A

    2006-06-01

    Unprecedented global changes caused by human actions challenge society's ability to sustain the desirable features of our planet. This requires proactive management of change to foster both resilience (sustaining those attributes that are important to society in the face of change) and adaptation (developing new socioecological configurations that function effectively under new conditions). The Arctic may be one of the last remaining opportunities to plan for change in a spatially extensive region where many of the ancestral ecological and social processes and feedbacks are still intact. If the feasibility of this strategy can be demonstrated in the Arctic, our improved understanding of the dynamics of change can be applied to regions with greater human modification. Conditions may now be ideal to implement policies to manage Arctic change because recent studies provide the essential scientific understanding, appropriate international institutions are in place, and Arctic nations have the wealth to institute necessary changes, if they choose to do so.

  14. Using an Environmental Intelligence Framework to Evaluate the Impacts of Ocean Acidification in the Arctic

    NASA Astrophysics Data System (ADS)

    Mathis, J. T.; Baskin, M.; Cross, J.

    2016-12-01

    The highly productive coastal seas of the Arctic Ocean are located in areas that are projected to experience strong global change, including rapid transitions in temperature and ocean acidification-driven changes in pH and other chemical parameters. Many of the marine organisms that may be most intensely affected by ocean acidification (OA) and other environmental stressors contribute substantially to the commercial fisheries of the Bering Sea and traditional subsistence food supplies across the Arctic. This could represent a looming challenge in many communities as the average prevalence of household food insecurity and very low food security in Alaska are already 12 percent and 4.3 percent, respectively. Here, we evaluate the patterns of dependence on marine resources within Alaska's Arctic that could be negatively impacted by OA and current community characteristics to assess the potential risk to the fishery sector from OA. We used a risk assessment framework to analyze an earth-system global model of ocean chemistry, fisheries harvest data, and demographic information. The analysis showed that regions around Alaska vary in their vulnerability to OA, but that each one will have to deal with possible impacts. Therefore, OA merits consideration in policy planning, as it may represent another challenge to Alaskan communities, some of which are already under acute socio-economic strains. With this in mind, we will present a number of adaptation strategies for communities living throughout Alaska's Arctic that could be applicable to other Arctic regions.

  15. Climate change effects on human health in a gender perspective: some trends in Arctic research.

    PubMed

    Natalia, Kukarenko

    2011-01-01

    Climate change and environmental pollution have become pressing concerns for the peoples in the Arctic region. Some researchers link climate change, transformations of living conditions and human health. A number of studies have also provided data on differentiating effects of climate change on women's and men's well-being and health. To show how the issues of climate and environment change, human health and gender are addressed in current research in the Arctic. The main purpose of this article is not to give a full review but to draw attention to the gaps in knowledge and challenges in the Arctic research trends on climate change, human health and gender. A broad literature search was undertaken using a variety of sources from natural, medical, social science and humanities. The focus was on the keywords. Despite the evidence provided by many researchers on differentiating effects of climate change on well-being and health of women and men, gender perspective remains of marginal interest in climate change, environmental and health studies. At the same time, social sciences and humanities, and gender studies in particular, show little interest towards climate change impacts on human health in the Arctic. As a result, we still observe the division of labour between disciplines, the disciplinary-bound pictures of human development in the Arctic and terminology confusion. Efforts to bring in a gender perspective in the Arctic research will be successful only when different disciplines would work together. Multidisciplinary research is a way to challenge academic/disciplinary homogeneity and their boundaries, to take advantage of the diversity of approaches and methods in production of new integrated knowledge. Cooperation and dialogue across disciplines will help to develop adequate indicators for monitoring human health and elaborating efficient policies and strategies to the benefit of both women and men in the Arctic. Global Health Action 2011. © 2011 Kukarenko

  16. Climate change effects on human health in a gender perspective: some trends in Arctic research

    PubMed Central

    Natalia, Kukarenko

    2011-01-01

    Background Climate change and environmental pollution have become pressing concerns for the peoples in the Arctic region. Some researchers link climate change, transformations of living conditions and human health. A number of studies have also provided data on differentiating effects of climate change on women's and men's well-being and health. Objective To show how the issues of climate and environment change, human health and gender are addressed in current research in the Arctic. The main purpose of this article is not to give a full review but to draw attention to the gaps in knowledge and challenges in the Arctic research trends on climate change, human health and gender. Methods A broad literature search was undertaken using a variety of sources from natural, medical, social science and humanities. The focus was on the keywords. Results Despite the evidence provided by many researchers on differentiating effects of climate change on well-being and health of women and men, gender perspective remains of marginal interest in climate change, environmental and health studies. At the same time, social sciences and humanities, and gender studies in particular, show little interest towards climate change impacts on human health in the Arctic. As a result, we still observe the division of labour between disciplines, the disciplinary-bound pictures of human development in the Arctic and terminology confusion. Conclusion Efforts to bring in a gender perspective in the Arctic research will be successful only when different disciplines would work together. Multidisciplinary research is a way to challenge academic/disciplinary homogeneity and their boundaries, to take advantage of the diversity of approaches and methods in production of new integrated knowledge. Cooperation and dialogue across disciplines will help to develop adequate indicators for monitoring human health and elaborating efficient policies and strategies to the benefit of both women and men in the Arctic

  17. Implications of Arctic Sea Ice Reduction on Arctic Tropospheric Chemical Change (Invited)

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.

    2009-12-01

    We examine the drastic reduction of Arctic sea ice in this decade and discuss the potential implications on bromine, ozone, and mercury change in the Arctic troposphere. We are witnessing extraordinary change in the Arctic sea ice cover. In the context of a half century change, perennial sea ice, the class of thicker and older ice important to the stability of Arctic sea ice, has been declining precipitously in this decade. Perennial ice extent declines at rate of 0.5 million km2 per decade in the 1970s-1990s while there is no discernable trend in the 1950s-1960s. Abruptly, the rate of decrease has tripled to 1.5 million km2 per decade in the 2000s. A record was set in the reduction of Arctic perennial ice extent in winter 2008. By 1 March 2008, perennial ice extent was reduced by one million km2 compared to that at the same time in 2007, which continued the precipitous declining trend observed in this decade. While the record low of total ice extent in summer 2007 is a historical mark of sea ice loss, the distribution and extent of different sea ice classes in spring (March-May) are critical information to understand the implications of sea ice reduction on photochemical processes, such as bromine explosions, ozone depletion episodes (ODEs), gaseous elementary mercury depletion episodes (MDEs), which occur at the time of polar sunrise. In this regard, the drastic reduction of perennial ice means that the Arctic becomes dominated by seasonal ice consisting of thinner ice, more leads, polynyas, frost flowers, and salty snow (due to seawater spray from open water), representing the overall saltier condition of the Arctic sea ice cover conducive to ice-mediated chemical processes leading to Arctic tropospheric ODEs and MDEs. To date (2009), the extent of perennial sea ice remains low and the extent of the thinner and saltier seasonal ice continues to dominate the Arctic sea ice cover. The shift of the state of Arctic sea ice cover to the dominance domain of seasonal

  18. Revolatilization of persistent organic pollutants in the Arctic induced by climate change

    NASA Astrophysics Data System (ADS)

    Ma, Jianmin; Hung, Hayley; Tian, Chongguo; Kallenborn, Roland

    2011-08-01

    Persistent organic pollutants (POPs) are organic compounds produced by human activities that are resistant to environmental degradation. They include industrial chemicals, such as polychlorinated biphenyls, and pesticides, such as dichlorodiphenyltrichloroethane. Owing to their persistence in the environment, POPs are transported long distances in the atmosphere, accumulating in regions such as the Arctic, where low temperatures induce their deposition. Here the compounds accumulate in wildlife and humans, putting their health at risk. The concentrations of many POPs have decreased in Arctic air over the past few decades owing to restrictions on their production and use. As the climate warms, however, POPs deposited in sinks such as water and ice are expected to revolatilize into the atmosphere, and there is evidence that this process may have already begun for volatile compounds. Here we show that many POPs, including those with lower volatilities, are being remobilized into the air from repositories in the Arctic region as a result of sea-ice retreat and rising temperatures. We analysed records of the concentrations of POPs in Arctic air since the early 1990s and compared the results with model simulations of the effect of climate change on their atmospheric abundances. Our results indicate that a wide range of POPs have been remobilized into the Arctic atmosphere over the past two decades as a result of climate change, confirming that Arctic warming could undermine global efforts to reduce environmental and human exposure to these toxic chemicals.

  19. Ecological dynamics across the Arctic associated with recent climate change.

    PubMed

    Post, Eric; Forchhammer, Mads C; Bret-Harte, M Syndonia; Callaghan, Terry V; Christensen, Torben R; Elberling, Bo; Fox, Anthony D; Gilg, Olivier; Hik, David S; Høye, Toke T; Ims, Rolf A; Jeppesen, Erik; Klein, David R; Madsen, Jesper; McGuire, A David; Rysgaard, Søren; Schindler, Daniel E; Stirling, Ian; Tamstorf, Mikkel P; Tyler, Nicholas J C; van der Wal, Rene; Welker, Jeffrey; Wookey, Philip A; Schmidt, Niels Martin; Aastrup, Peter

    2009-09-11

    At the close of the Fourth International Polar Year, we take stock of the ecological consequences of recent climate change in the Arctic, focusing on effects at population, community, and ecosystem scales. Despite the buffering effect of landscape heterogeneity, Arctic ecosystems and the trophic relationships that structure them have been severely perturbed. These rapid changes may be a bellwether of changes to come at lower latitudes and have the potential to affect ecosystem services related to natural resources, food production, climate regulation, and cultural integrity. We highlight areas of ecological research that deserve priority as the Arctic continues to warm.

  20. Holocene climate change in Arctic Canada and Greenland

    NASA Astrophysics Data System (ADS)

    Briner, Jason P.; McKay, Nicholas P.; Axford, Yarrow; Bennike, Ole; Bradley, Raymond S.; de Vernal, Anne; Fisher, David; Francus, Pierre; Fréchette, Bianca; Gajewski, Konrad; Jennings, Anne; Kaufman, Darrell S.; Miller, Gifford; Rouston, Cody; Wagner, Bernd

    2016-09-01

    This synthesis paper summarizes published proxy climate evidence showing the spatial and temporal pattern of climate change through the Holocene in Arctic Canada and Greenland. Our synthesis includes 47 records from a recently published database of highly resolved Holocene paleoclimate time series from the Arctic (Sundqvist et al., 2014). We analyze the temperature histories represented by the database and compare them with paleoclimate and environmental information from 54 additional published records, mostly from datasets that did not fit the selection criteria for the Arctic Holocene database. Combined, we review evidence from a variety of proxy archives including glaciers (ice cores and glacial geomorphology), lake sediments, peat sequences, and coastal and deep-marine sediments. The temperature-sensitive records indicate more consistent and earlier Holocene warmth in the north and east, and a more diffuse and later Holocene thermal maximum in the south and west. Principal components analysis reveals two dominant Holocene trends, one with early Holocene warmth followed by cooling in the middle Holocene, the other with a broader period of warmth in the middle Holocene followed by cooling in the late Holocene. The temperature decrease from the warmest to the coolest portions of the Holocene is 3.0 ± 1.0 °C on average (n = 11 sites). The Greenland Ice Sheet retracted to its minimum extent between 5 and 3 ka, consistent with many sites from around Greenland depicting a switch from warm to cool conditions around that time. The spatial pattern of temperature change through the Holocene was likely driven by the decrease in northern latitude summer insolation through the Holocene, the varied influence of waning ice sheets in the early Holocene, and the variable influx of Atlantic Water into the study region.

  1. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    SciTech Connect

    Maslowski, Wieslaw

    2016-10-17

    This project aims to develop, apply and evaluate a regional Arctic System model (RASM) for enhanced decadal predictions. Its overarching goal is to advance understanding of the past and present states of arctic climate and to facilitate improvements in seasonal to decadal predictions. In particular, it will focus on variability and long-term change of energy and freshwater flows through the arctic climate system. The project will also address modes of natural climate variability as well as extreme and rapid climate change in a region of the Earth that is: (i) a key indicator of the state of global climate through polar amplification and (ii) which is undergoing environmental transitions not seen in instrumental records. RASM will readily allow the addition of other earth system components, such as ecosystem or biochemistry models, thus allowing it to facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts. As such, RASM is expected to become a foundation for more complete Arctic System models and part of a model hierarchy important for improving climate modeling and predictions.

  2. Climate Change in the North American Arctic: A One Health Perspective.

    PubMed

    Dudley, Joseph P; Hoberg, Eric P; Jenkins, Emily J; Parkinson, Alan J

    2015-12-01

    Climate change is expected to increase the prevalence of acute and chronic diseases among human and animal populations within the Arctic and subarctic latitudes of North America. Warmer temperatures are expected to increase disease risks from food-borne pathogens, water-borne diseases, and vector-borne zoonoses in human and animal populations of Arctic landscapes. Existing high levels of mercury and persistent organic pollutant chemicals circulating within terrestrial and aquatic ecosystems in Arctic latitudes are a major concern for the reproductive health of humans and other mammals, and climate warming will accelerate the mobilization and biological amplification of toxic environmental contaminants. The adverse health impacts of Arctic warming will be especially important for wildlife populations and indigenous peoples dependent upon subsistence food resources from wild plants and animals. Additional research is needed to identify and monitor changes in the prevalence of zoonotic pathogens in humans, domestic dogs, and wildlife species of critical subsistence, cultural, and economic importance to Arctic peoples. The long-term effects of climate warming in the Arctic cannot be adequately predicted or mitigated without a comprehensive understanding of the interactive and synergistic effects between environmental contaminants and pathogens in the health of wildlife and human communities in Arctic ecosystems. The complexity and magnitude of the documented impacts of climate change on Arctic ecosystems, and the intimacy of connections between their human and wildlife communities, makes this region an appropriate area for development of One Health approaches to identify and mitigate the effects of climate warming at the community, ecosystem, and landscape scales.

  3. Arctic museum collections - Special issue: The Beringian coevolution project: Holistic collections of mammals and associated parasites reveal novel perspectives on evolutionary and environmental change in the North

    USGS Publications Warehouse

    Cook, Joseph A.; Galbreath, Kurt E.; Campbell, Mariel; Carrière, Susanne; Colella, Jocelyn P.; Dawson, Natalie G.; Dunnum, Jonathan L.; Eckerlin, Ralph P.; Greiman, Stephen E.; Fedorov, Vadim; Haas, Genevieve M. S.; Haukisalmi, Voitto; Henttonen, Heikki; Hope, Andrew G.; Jackson, Donavan; Jung, Tom; Koehler, Anson V.; Kinsella, John M.; Krejsa, Dianna; Kutz, Susan J.; Liphardt, Schuyler; MacDonald, Stephen O.; Malaney, Jason L.; Makarikov, Arseny; Martin, Jon; McLean, Bryan S.; Mulders, Robert; Nyamsuren, Batsaikhan; Talbot, Sandra; Tkach, Vasyl V.; Tsvetkova, Albina; Toman, Heather M; Waltari, Eric C.; Whitman, Jackson S.; Hoberg, Eric P.

    2017-01-01

    The Beringian Coevolution Project (BCP), a field program underway in the high northern latitudes since 1999, has focused on building key scientific infrastructure for integrated specimen-based studies on mammals and their associated parasites. BCP has contributed new insights across temporal and spatial scales into how ancient climate and environmental change have shaped faunas, emphasizing processes of assembly, persistence, and diversification across the vast Beringian region. BCP collections also represent baseline records of biotic diversity from across the northern high latitudes at a time of accelerated environmental change. These specimens and associated data form an unmatched resource for identifying hidden diversity, interpreting past responses to climate oscillations, documenting contemporary conditions, and anticipating outcomes for complex biological systems in a regime of ecological perturbation. Because of its dual focus on hosts and parasites, the BCP record also provides a foundation for comparative analyses that can document the effects of dynamic change on the geographic distribution, transmission dynamics, and emergence of pathogens. By using specific examples from carnivores, shrews, lagomorphs, rodents and their associated parasites, we demonstrate how broad, integrated field collections provide permanent infrastructure that informs policy decisions regarding human impact and the effect of climate change on natural populations.

  4. Environmental Drivers of the Canadian Arctic Megabenthic Communities

    PubMed Central

    Roy, Virginie; Iken, Katrin; Archambault, Philippe

    2014-01-01

    Environmental gradients and their influence on benthic community structure vary over different spatial scales; yet, few studies in the Arctic have attempted to study the influence of environmental gradients of differing spatial scales on megabenthic communities across continental-scales. The current project studied for the first time how megabenthic community structure is related to several environmental factors over 2000 km of the Canadian Arctic, from the Beaufort Sea to northern Baffin Bay. Faunal trawl samples were collected between 2007 and 2011 at 78 stations from 30 to 1000 m depth and patterns in biomass, density, richness, diversity, and taxonomic composition were examined in relation to indirect/spatial gradients (e.g., depth), direct gradients (e.g., bottom oceanographic variables), and resource gradients (e.g., food supply proxies). Six benthic community types were defined based on their biomass-based taxonomic composition. Their distribution was significantly, but moderately, associated with large-scale (100–1000 km) environmental gradients defined by depth, physical water properties (e.g., bottom salinity), and meso-scale (10–100 km) environmental gradients defined by substrate type (hard vs. soft) and sediment organic carbon content. We did not observe a strong decline of bulk biomass, density and richness with depth or a strong increase of those community characteristics with food supply proxies, contrary to our hypothesis. We discuss how local- to meso-scale environmental conditions, such as bottom current regimes and polynyas, sustain biomass-rich communities at specific locations in oligotrophic and in deep regions of the Canadian Arctic. This study demonstrates the value of considering the scales of variability of environmental gradients when interpreting their relevance in structuring of communities. PMID:25019385

  5. Synthesizing International Understanding of Changes in the Arctic Hydrological System

    NASA Astrophysics Data System (ADS)

    Pundsack, J. W.; Vorosmarty, C. J.; Hinzman, L. D.

    2009-12-01

    There are several notable gaps in our current level of understanding of Arctic hydrological systems. At the same time, rapidly emerging data sets, technologies, and modeling resources provide us with an unprecedented opportunity to move substantially forward. The Arctic Community-Wide Hydrological Analysis and Monitoring Program (Arctic-CHAMP), funded by NSF/ARCSS, was established to initiate a major effort to improve our current monitoring of water cycle variables, and to foster collaboration with the many relevant U.S. and international arctic research initiatives. These projects, funded under ARCSS through the ‘Freshwater Integration (FWI) study’, links CHAMP, the Arctic/Subarctic Ocean Fluxes (ASOF) Programme, and SEARCH. As part of the overall synthesis and integration efforts of the NSF-ARCSS Freshwater Integration (FWI) study, the program carried-out a major International Synthesis Capstone Workshop in Fall 2009 as an International Polar Year (IPY) affiliated meeting. The workshop, "Synthesizing International Understanding of Changes in the Arctic Hydrological System,” was held 30 September to 4 October 2009 in Stockholm at the Beijer Auditorium of the Royal Swedish Academy. The workshop was sponsored by the NSF-ARCSS Arctic-CHAMP Science Management Office (City College of New York / Univ. of New Hampshire), the International Study of Arctic Change (ISAC), and the International Arctic Research Center (IARC; Univ. of Alaska Fairbanks). The overarching goals of the meeting were to stage a post-IPY lessons-learned workshop with co-equal numbers of FWI, IPY, and ICARP-II researchers, using insights from recent scientific findings, data, and strategies to afford synthesis. The workshop aimed to: (1) take stock of recent advances in our understanding of changes in the Arctic hydrological system; (2) identify key remaining research gaps / unanswered questions; and (3) gather insight on where to focus future research efforts/initiatives (nationally and

  6. Adapting Research Agendas and Observing Programs for Responding to Arctic Change

    NASA Astrophysics Data System (ADS)

    Murray, M. S.; Schlosser, P.; van der Watt, L. M.; Fahnestock, J.; Rajdev, V.; Ibarguchi, G.; Spiers, K.

    2014-12-01

    This paper presents a synthesis of data related to two types of response to arctic change: 1) The response of the research community to societal needs for information around arctic change; and 2) The response of stakeholder communities to engagement efforts designed to improve scientific observations for the purposes of adaptation, mitigation and management of arctic change. In the first instance we focus on how the research trajectory has changed across all disciplines during the period from 2003 to present, and present quantitative data demonstrating a shift in orientation and purpose. In the second instance we illustrate from two case studies wherein stakeholder engagement has been critical to framing objectives for and outcomes from environmental observing programs in ways that lead to solutions for coping with change.

  7. Arctic Ocean outflow shelves in the changing Arctic: A review and perspectives

    NASA Astrophysics Data System (ADS)

    Michel, Christine; Hamilton, Jim; Hansen, Edmond; Barber, David; Reigstad, Marit; Iacozza, John; Seuthe, Lena; Niemi, Andrea

    2015-12-01

    Over the past decade or so, international research efforts, many of which were part of the International Polar Year, have accrued our understanding of the Arctic outflow shelves. The Arctic outflow shelves, namely the East Greenland Shelf (EGS) and the Canadian Arctic Archipelago (CAA), serve as conduits through which Arctic sea ice and waters and their properties are exported to the North Atlantic. These shelves play an important role in thermohaline circulation and global circulation patterns, while being influenced by basin-scale and regional changes taking place in the Arctic. Here, we synthesize the current knowledge on key forcings of primary production and ecosystem processes on the outflow shelves, as they influence their structure and functionalities and, consequently their role in Arctic Ocean productivity and global biogeochemical cycles. For the CAA, a fresh outlook on interannual and decadal physical and biological time-series reveals recent changes in productivity patterns, while an extensive analysis of sea ice conditions over the past 33 years (1980-2012) demonstrates significant declines in multi-year ice and a redistribution of ice types. For the EGS, our analysis shows that sea ice export strongly contributes to structuring spatially diverse productivity regimes. Despite the large heterogeneity in physical and biological processes within and between the outflow shelves, a conceptual model of productivity regimes is proposed, helping identify general productivity patterns and key forcings. The different productivity regimes are expected to respond differently to current and future Arctic change, providing a useful basis upon which to develop predictive scenarios of future productivity states. Current primary production estimates for both outflow shelves very likely underestimate their contribution to total Arctic production.

  8. Climate change and zoonotic infections in the Russian Arctic

    PubMed Central

    Revich, Boris; Tokarevich, Nikolai; Parkinson, Alan J.

    2012-01-01

    Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in the Russian Arctic, focusing on the potential climate related emergence of such diseases as tick-borne encephalitis, tularemia, brucellosis, leptospirosis, rabies, and anthrax. PMID:22868189

  9. Climate change and zoonotic infections in the Russian Arctic.

    PubMed

    Revich, Boris; Tokarevich, Nikolai; Parkinson, Alan J

    2012-07-23

    Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in the Russian Arctic, focusing on the potential climate related emergence of such diseases as tick-borne encephalitis, tularemia, brucellosis, leptospirosis, rabies, and anthrax.

  10. Climate change and zoonotic infections in the Russian Arctic.

    PubMed

    Revich, Boris; Tokarevich, Nikolai; Parkinson, Alan J

    2012-01-01

    Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in the Russian Arctic, focusing on the potential climate related emergence of such diseases as tick-borne encephalitis, tularemia, brucellosis, leptospirosis, rabies, and anthrax.

  11. Arctic Ocean freshwater content changes and their causes

    NASA Astrophysics Data System (ADS)

    Ivanov, V.; Polyakov, I. V.; Alexeev, V.; Belchansky, G. I.; Dmitrenko, I. A.; Kirillov, S.; Korablev, A.; Steele, M.; Timokhov, L. A.; Yashayaev, I.

    2006-12-01

    Recent observations show dramatic changes of the Arctic atmosphere-ice-ocean system. Here we demonstrate, through the analysis of a vast collection of previously unsynthesized observational data, that over the 20th century the central Arctic Ocean became increasingly saltier whereas long-term freshwater content (FWC) trends over the Siberian shelf show general freshening tendency. These FWC trends are modulated by strong decadal and multidecadal fluctuations with sustained and widespread spatiotemporal patterns. Associated with the multidecadal variability, the FWC record shows two periods in the 1920-30s and in recent decades when the central Arctic Ocean was saltier and two periods in the earlier century and in the 1940-70s when it was fresher. The FWC anomalies excited on arctic shelves (including anomalies resulting from river discharge inputs) and those caused by net atmospheric precipitation were too small to trigger long-term FWC variations in the central Arctic Ocean; to the contrary, they act to moderate the observed long-term central- basin FWC changes. Variability of the intermediate Atlantic Water did not have strong impact on changes of the upper Arctic Ocean water masses. Ice-ocean interactions were the key processes in shaping long-term upper Arctic Ocean FWC changes. The combined effect of ice production and melt resulted in a cumulative loss of 15 thousand cubic km of fresh water over the last 21 years. Strength of the outflow of the arctic waters (not FWC anomalies) dominates the supply of Arctic fresh water to sub-polar basins. Finally, since the high- latitude fresh water plays a crucial role in establishing and regulating global thermohaline circulation, the multi- decadal fluctuations of the freshwater content discussed here should be considered when assessing long-term climate change and variability.

  12. Changing Arctic Ice Cover and Water Resources in the American West

    NASA Astrophysics Data System (ADS)

    Sewall, J. O.; Sloan, L. C.

    2004-12-01

    Over the last century, Arctic sea ice cover has decreased dramatically and many researchers expect that future greenhouse warming will exacerbate this trend. The prospect of a warmer Arctic with less ice raises many environmental and economic questions, one of which is: How will reduced Arctic ice cover affect extrapolar climates? Previous research suggests that a reduction in Arctic sea ice corresponding to that projected for the year 2050 could drive a 50 - 100% increase in annual evaporation minus precipitation (E-P) in the American West. The projected 2050 ice cover that drives this response in E-P is characterized by a significant decrease in ice concentrations in the Greenland, Iceland, and Norwegian (GIN) seas and an increase in ice concentration in the Davis Strait. In addition, sea surface temperatures in the GIN seas increase and those in the Fram and Davis Straits decrease significantly. A recent series of sensitivity studies shows that changes in the precipitation regime over the American West, while sensitive to individual anomalies, are responding as much to the combined pattern of multiple anomalies as to the magnitude and sign of individual anomalies. This result highlights the complexity of predicting climate impacts of, or responses to, changes in Arctic surface conditions and suggests that continued research into the relationship between the Arctic and global climate is extremely important if we hope to quantify future climate change.

  13. Arctic climate change: Greenhouse warming unleashed

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten

    2016-04-01

    Human activity alters the atmospheric composition, which leads to global warming. Model simulations suggest that reductions in emission of sulfur dioxide from Europe since the 1970s could have unveiled rapid Arctic greenhouse gas warming.

  14. Arctic Synthesis Collaboratory: A Virtual Organization for Transformative Research and Education on a Changing Arctic

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.; Wiggins, H. V.; Hinzman, L.; Holland, M.; Murray, M. S.; Vörösmarty, C.; Loring, A. J.

    2008-12-01

    About the Arctic Synthesis Collaboratory The Arctic Synthesis Collaboratory concept, developed through a series of NSF-funded workshops and town hall meetings, is envisioned as a cyber-enabled, technical, organizational, and social-synthesis framework to foster: • Interactions among interdisciplinary experts and stakeholders • Integrated data analysis and modeling activities • Training and development of the arctic science community • Delivery of outreach, education, and policy-relevant resources Scientific Rationale The rapid rate of arctic change and our incomplete understanding of the arctic system present the arctic community with a grand scientific challenge and three related issues. First, a wealth of observations now exists as disconnected data holdings, which must be coordinated and synthesized to fully detect and assess arctic change. Second, despite great strides in the development of arctic system simulations, we still have incomplete capabilities for modeling and predicting the behavior of the system as a whole. Third, policy-makers, stakeholders, and the public are increasingly making demands of the science community for forecasts and guidance in mitigation and adaptation strategies. Collaboratory Components The Arctic Synthesis Collaboratory is organized around four integrated functions that will be established virtually as a distributed set of activities, but also with the advantage of existing facilities that could sponsor some of the identified activities. Community Network "Meeting Grounds:" The Collaboratory will link distributed individuals, organizations, and activities to enable collaboration and foster new research initiatives. Specific activities could include: an expert directory, social networking services, and virtual and face-to-face meetings. Data Integration, Synthesis, and Modeling Activities: The Collaboratory will utilize appropriate tools to enable the combination of data and models. Specific activities could include: a web

  15. Recent Changes in the Arctic Melt Season

    NASA Technical Reports Server (NTRS)

    Stroeve, Julienne; Markus, Thorsten; Meier, Walter N.; Miller, Jeff

    2007-01-01

    Melt-season duration, melt-onset and freeze-up dates are derived from satellite passive microwave data and analyzed from 1979 to 2005 over Arctic sea ice. Results indicate a shift towards a longer melt season, particularly north of Alaska and Siberia, corresponding to large retreats of sea ice observed in these regions. Although there is large interannual and regional variability in the length of the melt season, the Arctic is experiencing an overall lengthening of the melt season at a rate of about 2 weeks decade(sup -1). In fact, all regions in the Arctic (except for the central Arctic) have statistically significant (at the 99% level or higher) longer melt seasons by greater than 1 week decade(sup -1). The central Arctic shows a statistically significant trend (at the 98% level) of 5.4 days decade(sup -1). In 2005 the Arctic experienced its longest melt season, corresponding with the least amount of sea ice since 1979 and the warmest temperatures since the 1880s. Overall, the length of the melt season is inversely correlated with the lack of sea ice seen in September north of Alaska and Siberia, with a mean correlation of -0.8.

  16. Development of Exhibit on Arctic Climate Change Called The Arctic: A Friend Acting Strangely Exhibition

    SciTech Connect

    Stauffer, Barbara W.

    2006-04-01

    The exhibition, The Arctic: A Friend Acting Strangely, was developed at the Smithsonian Institution’s National Museum of Natural History (NMNH) as a part of the museum’s Forces of Change exhibit series on global change. It opened to the public in Spring 2006, in conjunction with another Forces of Change exhibit on the Earth’s atmosphere called Change Is in the Air. The exhibit was a 2000 square-foot presentation that explored the forces and consequences of the changing Arctic as documented by scientists and native residents alike. Native peoples of the Arctic have always lived with year-to-year fluctuations in weather and ice conditions. In recent decades, they have witnessed that the climate has become unpredictable, the land and sea unfamiliar. An elder in Arctic Canada recently described the weather as uggianaqtuq —an Inuit word that can suggest strange, unexpected behavior, sometimes described as that of “a friend acting strangely.” Scientists too have been documenting dramatic changes in the Arctic. Air temperatures have warmed over most—though not all—of the Arctic since the 1950s; Arctic precipitation may have increased by as much as 8%; seasonal melting of the Greenland Ice Sheet has increased on average by 16% since 1979; polar-orbiting satellites have measured a 15¬–20% decline in sea ice extent since the 1970s; aircraft reconnaissance and ship observations show a steady decrease in sea ice since the 1950s. In response to this warming, plant distributions have begun to shift and animals are changing their migration routes. Some of these changes may have beneficial effects while others may bring hardship or have costly implications. And, many scientists consider arctic change to be a ‘bell-weather’ for large-scale changes in other regions of the world. The exhibition included text, photos artifacts, hands-on interactives and other exhibitry that illustrated the changes being documented by indigenous people and scientists alike.

  17. Pan-Arctic observations in GRENE Arctic Climate Change Research Project and its successor

    NASA Astrophysics Data System (ADS)

    Yamanouchi, Takashi

    2016-04-01

    We started a Japanese initiative - "Arctic Climate Change Research Project" - within the framework of the Green Network of Excellence (GRENE) Program, funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), in 2011. This Project targeted understanding and forecasting "Rapid Change of the Arctic Climate System and its Global Influences." Four strategic research targets are set by the Ministry: 1. Understanding the mechanism of warming amplification in the Arctic; 2. Understanding the Arctic climate system for global climate and future change; 3. Evaluation of the impacts of Arctic change on the weather and climate in Japan, marine ecosystems and fisheries; 4. Projection of sea ice distribution and Arctic sea routes. Through a network of universities and institutions in Japan, this 5-year Project involves more than 300 scientists from 39 institutions and universities. The National Institute of Polar Research (NIPR) works as the core institute and The Japan Agency for Marine- Earth Science and Technology (JAMSTEC) joins as the supporting institute. There are 7 bottom up research themes approved: the atmosphere, terrestrial ecosystems, cryosphere, greenhouse gases, marine ecology and fisheries, sea ice and Arctic sea routes and climate modeling, among 22 applications. The Project will realize multi-disciplinal study of the Arctic region and connect to the projection of future Arctic and global climatic change by modeling. The project has been running since the beginning of 2011 and in those 5 years pan-Arctic observations have been carried out in many locations, such as Svalbard, Russian Siberia, Alaska, Canada, Greenland and the Arctic Ocean. In particular, 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard, and intensive atmospheric observations were carried out in 2014 and 2015. In addition, the Arctic Ocean cruises by R/V "Mirai" (belonging to JAMSTEC) and other icebreakers belonging to other

  18. A Friend Acting Strangely: an Exhibition on Climate Change in the Arctic

    NASA Astrophysics Data System (ADS)

    Stauffer, B. W.; Fitzhugh, W. W.; Krupnik, I.; Mannes, J.; Rusk, K.

    2003-12-01

    The Arctic: A Friend Acting Strangely is a new exhibit being developed at the Smithsonian Institution's National Museum of Natural History (NMNH) as a part of the museum's Forces of Change exhibit series on global change issues. The exhibit will open to the public in Summer 2004 and is the third component of the series. The other two components are about El Niño (El Niño's Powerful Reach) and atmospheric chemistry (Change is in the Air). The Arctic exhibit's underlying theme is that current global change is causing such rapid shifts in Arctic weather and the polar environment that it has become `strange,' - or unpredictable - to its residents. The speed of change in Arctic ice and climate patterns, ocean and terrestrial ecosystems, and wildlife creates a great challenge for polar scientists; but it also advances beyond the experience and memory of northern indigenous people, who know it so well. The key issues the NMNH team faces in preparing the new exhibit are: how to document and display the forces and consequences of rapid change; how to make complex scientific processes and research comprehensible to visitors; and how to engage the general public in the on-going discussion. Because current shifts in the Arctic environment have been observed and recorded in much detail by scientists and Native residents alike, this topic offers unique opportunities beyond the museum presentation, including outreach through public programs and the Internet. The exhibit is being developed jointly by the NMNH Arctic Studies Center and Office of the Exhibits, and in close collaboration with NOAA' Office of Arctic Research, NSF' new Study of Environmental Arctic Change (SEARCH) initiative, and NASA's Earth Science Enterprise. Exhibit components will include objects, text, graphic panels, video, and a computer interactive. Special efforts will be made to present the voices and opinions of Arctic indigenous people who experience new challenges to their traditional subsistence

  19. Changes in the Arctic: Background and Issues for Congress

    DTIC Science & Technology

    2016-05-12

    3). More broadly, physical changes in the Arctic include warming ocean, soil , and air temperatures; melting permafrost; shifting vegetation and...Resources, hearing on Arctic Resources and American Competitiveness, 114th Cong., 1st sess., June 16, 2015, at http://naturalresources.house.gov...extent of the continental margin beyond the 200-mile limit depends on the position of the foot of the continental slope, the thickness of sediments , and

  20. Introduction to the eastern Arctic Marine Environmental Studies Program

    SciTech Connect

    Sutterlin, N.; Snow, N.

    1982-01-01

    Main problems are formulated and a study technique is characterized for the environmental protection program (EPP) of the eastern marine area of the Canadian Arctic in the area of physical-geographical (oceanography, meteorology, geomorphology) and biological sciences (microbiology, phytoand zooplankton, benthos, fish, birds and mammals, including white bear) which will be implemented in relation to realization of the extensive plans examined by the Canadian government back in 1977 for development of the large oil and gas resources of this part of the country. With regard for the severity of the ice and climate situation, it is planned to conduct studies of the EPP in the Canadian Arctic with the use of the entire modern scientific and technical potential, from ships and radar units to Earth satellites. Financing and supervision of the research on the EPP come from the government of the country, academic organizations and private firms. The research results will be published by the company Petro-Canada under the title ''Arctic.''

  1. Environmental Factors Influencing Arctic Halogen Chemistry During Late Spring

    NASA Astrophysics Data System (ADS)

    Burd, J.; Nghiem, S. V.; Simpson, W. R.

    2015-12-01

    Reactive halogen radicals (e.g. Br, Cl atoms and their oxides, BrO, ClO) are important oxidizers in the troposphere that decrease atmospheric pollutants and deplete tropospheric ozone, affecting the abundance of other oxidizers such as the hydroxyl radical. During Arctic springtime, the heterogeneous chemical cycles (often called the "bromine explosion") produce high levels of bromine monoxide (BrO), through reactions on saline snow, ice, and/or aerosol surfaces. Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) measured BrO at Barrow, AK, from 2008-2009 and 2012-2015, as well at various locations above the frozen Arctic Ocean with O-Buoys in 2008 and 2011-2015. Observed BrO levels drop suddenly during late spring (May-June) and generally do not recover, which indicates the bromine explosion cycle can no longer produce significant amounts of BrO. We have established, through an objective algorithm, the local day of year of this drop in BrO as the "seasonal end." Additionally, in about half of the years, "recurrence" events were observed where BrO levels recover for at least a day. This study investigates the environmental factors influencing seasonal end and recurrence events including: temperature, relative humidity, precipitation and snowmelt. Analysis of BrO and air temperature revealed the temperature reaches 0°C within five days of the seasonal end event; however, temperatures drop below freezing during a recurrence event. In addition, there are periods where the temperature remains below freezing, but no recurrence event is observed. This BrO and temperature analysis indicates above-freezing air temperature prevents reactive bromine release; however, it is not the only environmental factor influencing this heterogeneous recycling. Further analysis of additional environmental influences on the bromine explosion cycle could help to better understand and model bromine chemistry in the Arctic.

  2. Environmental controls on Pan-Arctic wetland methane emissions

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Bohn, Theodore; Lettenmaier, Dennis

    2015-04-01

    Environmental conditions such as soil temperature and moisture, incident solar radiation, and atmospheric carbon dioxide concentration are important environmental controls on methane emissions from northern wetlands. We investigated the spatio-temporal distributions of influence of these factors over northern wetland methane emissions via the Variable Infiltration Capacity (VIC) model. We simulated methane emissions from wetlands across the Pan-Arctic domain over the period 1948-2006, with annual average emissions of 35.1±6.7 TgCH4/year. From control simulations that each held one environmental factor constant, we characterized sensitivities to air temperature, precipitation, incident long- and short-wave radiation, and atmospheric [CO2] as a function of average summer air temperature and precipitation. Trade-offs between air temperature and precipitation caused maximal emissions to occur along a line in precipitation-temperature space with a slope of approximately 13 mm month-1 / K, leading to separation of wetlands into various combinations of water-limited and temperature-limited regimes. Emissions from relatively warm and dry wetlands in the southern (permafrost-free) portion of the domain tended to be positively correlated with precipitation and negatively correlated with air temperature, while emissions from wetter and colder wetlands further north (permafrost) tended to be positively correlated with air temperature. Over the period 1960-2006, emissions increased by 20%, over 90% of which can be attributed to climate change, with summer air temperatures explaining the majority of the variance. We estimated future emissions in response to CMIP5 model projections under the RCP4.5 scenario via two methods: (1) the VIC model and (2) the temperature- and precipitation-dependent sensitivities computed from the historical simulation. The two methods yielded similar projections of emissions, with end-of-century emissions at 142% of present-day levels, accompanied by

  3. Expanded record of Quaternary oceanographic change: Amerasian Arctic Ocean

    USGS Publications Warehouse

    Ishman, S.E.; Polyak, L.V.; Poore, R.Z.

    1996-01-01

    Four sediment cores collected from the Northwind and Mendeleyev ridges, Arctic Ocean, from 1089 m to 1909 m water depth, provide an oceanographic record extending back into the Matuyama reversed polarity chron. Benthic foraminiferal analyses show four prominent assemblage zones: Bolivina arctica, Cassidulina teretis, Bulimina aculeata, and Oridorsalis tener from the upper Matuyama reversed polarity chronozone through the Brunhes normal polarity chronozone. These assemblage zones represent depth-dependent benthic foraminiferal biofacies changes associated with oceanographic events that occurred in the Amerasian basin at ??? 780 and 300 ka, and indicate oceanographic influence from the North Atlantic. Recognition of these benthic assemblage zones in Arctic cores from the Alpha Ridge indicates that the benthic foraminiferal zonations in intermediate to deep water (>1000 m) Arctic cores may be more useful than preexisting lithostratigraphic zonations and should provide important information pertaining to the Quaternary paleoceanographic evolution of the Arctic Ocean.

  4. Glacier Changes in the Russian High Arctic.

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Willis, M. J.; Melkonian, A. K.; Golos, E. M.; Stewart, A.; Ornelas, G.; Ramage, J. M.

    2014-12-01

    We provide new surveys of ice speeds and surface elevation changes for ~40,000 km2 of glaciers and ice caps at the Novaya Zemlya (NovZ) and Severnaya Zemlya (SevZ) Archipelagoes in the Russian High Arctic. The contribution to sea level rise from this ice is expected to increase as the region continues to warm at above average rates. We derive ice speeds using pixel-tracking on radar and optical imagery, with additional information from InSAR. Ice speeds have generally increased at outlet glaciers compared to those measured using interferometry from the mid-1990s'. The most pronounced acceleration is at Inostrantseva Glacier, one of the northernmost glaciers draining into the Barents Sea on NovZ. Thinning rates over the last few decades are derived by regressing stacked elevations from multiple Digital Elevations Models (DEMs) sourced from ASTER and Worldview stereo-imagery and cartographically derived DEMs. DEMs are calibrated and co-registered using ICESat returns over bedrock. On NovZ thinning of between 60 and 100 meters since the 1950s' is common. Similar rates between the late 1980s' and the present are seen at SevZ. We examine in detail the response of the outlet glaciers of the Karpinsky and Russanov Ice Caps on SevZ to the rapid collapse of the Matusevich Ice Shelf in the late summer of 2012. We do not see a dynamic thinning response at the largest feeder glaciers. This may be due to the slow response of the cold polar glaciers to changing boundary conditions, or the glaciers may be grounded well above sea level. Speed increases in the interior are difficult to assess with optical imagery as there are few trackable features. We therefore use pixel tracking on Terra SARX acquisitions before and after the collapse of the ice shelf to compute rates of flow inland, at slow moving ice. Interior ice flow has not accelerated in response to the collapse of the ice shelf but interior rates at the Karpinsky Ice Cap have increased by about 50% on the largest outlet

  5. Step changes in persistent organic pollutants over the Arctic and their implications

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Huang, T.; Wang, L.; Gao, H.; Ma, J.

    2015-01-01

    While some persistent organic pollutants (POPs) have been declining globally due to their worldwide ban since the 1980s, the declining trends of many of these toxic chemicals become less significant and in some cases their ambient air concentrations, e.g., polychlorinated biphenyls (PCBs), showed observable increase since 2000, disagreeing with their declining global emissions and environmental degradation. As part of the efforts to assess the influences of environmental factors on long-term trend of POPs in the Arctic, step change points in the time series of ambient POPs atmospheric concentrations collected from four arctic monitoring sites were examined using various statistical techniques. Results showed that the step change points of these POPs data varied in different years and at different sites. Most step change points were found in 2001-2002 and 2007-2008, respectively. In particular, the step change points of many PCBs for 2007-2008 were coincident with the lowest arctic sea ice concentration occurring in this period of time during the 2000s. The perturbations of air concentration and water-air exchange fluxes of several selected POPs averaged over the Arctic, simulated by a POPs mass balance perturbation model, switched from negative to positive from the early 2000s, indicating a tendency for reversal of POPs from deposition to volatilization which coincides with a positive to negative reversal of arctic sea ice extent anomalies from 2001. Perturbed ice-air exchange flux of PCB-28 and 153 showed an increasing trend and the negative to positive reversal in 2007, the year with the lowest arctic sea ice concentration. On the other hand, perturbed ice-air exchange flux of α-hexachlorocyclohexane (HCH) decreased over the period of 1995 through 2012, likely owing to its lower Henry's law constant which indicates its relatively lower tendency for volatilization from ice to air.

  6. Step changes in persistent organic pollutants over the Arctic and their implications

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Huang, T.; Wang, L.; Gao, H.; Ma, J.

    2015-03-01

    While some persistent organic pollutants (POPs) have been declining globally due to their worldwide ban since the 1980s, the declining trends of many of these toxic chemicals become less significant and in some cases their ambient air concentrations, e.g., polychlorinated biphenyls (PCBs), showed observable increase during the 2000s, disagreeing with their declining global emissions and environmental degradation. As part of the efforts to assess the influences of environmental factors on the long-term trend of POPs in the Arctic, step change points in the time series of ambient POP atmospheric concentrations collected from four arctic monitoring sites were examined using various statistical techniques. Results showed that the step change points of these POP data varied in different years and at different sites. Most step change points were found in 2001-2002 and 2007-2008. In particular, the step change points of many PCBs for 2007-2008 were coincident with the lowest arctic sea ice concentration occurring during the 2000s. The perturbations of air concentration and water-air exchange fluxes of several selected POPs averaged over the Arctic, simulated by a POP mass balance perturbation model, switched from negative to positive during the early 2000s, indicating a tendency for reversal of POPs from deposition to volatilization which coincides with a positive to negative reversal of arctic sea ice extent anomalies from 2001. Perturbed ice-air exchange flux of PCB 28 and 153 showed an increasing trend and a negative to positive reversal in 2007, the year with the lowest arctic sea ice concentration. On the other hand, perturbed ice-air exchange flux of α-hexachlorocyclohexane decreased over the period of 1995 to 2012, likely owing to its lower Henry's law constant which indicates its relatively lower tendency for volatilization from ice to air.

  7. Primary hepatocytes from Arctic char (Salvelinus alpinus) as a relevant Arctic in vitro model for screening contaminants and environmental extracts.

    PubMed

    Petersen, Karina; Hultman, Maria T; Tollefsen, Knut Erik

    2017-06-01

    Contaminants find their way to the Arctic through long-range atmospheric transport, transport via ocean currents, and through increased anthropogenic activity. Some of the typical pollutants reaching the Arctic (PAHs, PCBs) are known to induce cytochrome P450 1a (CYP1A) protein expression and ethoxyresorufin-O-deethylase (EROD) activity through the aryl hydrocarbon receptor (AhR). In addition, some endocrine disrupting chemicals (EDCs) such as estrogen mimics (xenoestrogens) have been documented in Arctic areas and they may interfere with natural sexual development and reproduction. In vitro assays that are capable of detecting effects of such pollutants, covering multiple endpoints, are generally based on mammalian or temperate species and there are currently no well-characterized cell-based in vitro assays for effect assessment from Arctic fish species. The present study aimed to develop a high-throughput and multi-endpoint in vitro assay from Arctic char (Salvelinus alpinus) to provide a non-animal (alternative) testing method for an ecologically relevant Arctic species. A method for isolation and exposure of primary hepatocytes from Arctic char for studying the toxic effects and mode of action (MoA) of pollutants was applied and validated. The multi-versatility of the bioassay was assessed by classical biomarker responses such as cell viability (membrane integrity and metabolic activity), phase I detoxification (CYP1A protein expression, EROD activity) and estrogen receptor (ER) mediated vitellogenin (Vtg) protein expression using a selection of model compounds, environmental pollutants and an environmental extract containing a complex mixture of pollutants. Primary hepatocytes from Arctic char were successfully isolated and culture conditions optimized to identify the most optimal assay conditions for covering multiple endpoints. The hepatocytes responded with concentration-dependent responses to all of the model compounds, most of the environmental pollutants

  8. How Do We Know that the Arctic is Changing?

    NASA Astrophysics Data System (ADS)

    Overland, J. E.

    2009-12-01

    In these times of drowning polar bears and talk of trans-Arctic shipping , it may seem strange to discuss the reality of Arctic change, yet attribution is formidable task for the Arctic because of the difficult in separating persistent trends from the background of large multi-year natural climate variability. I address this issue through application of four scientific standards: Methodology (induction, deduction, and falsification), Evidence (reliability, peer review, consistency of multiple sources), Performance (predictive, consistent over time, useful) and Community (best explanation among competing hypotheses) (Oreskes 2007). These standards address three questions: is change occurring, which is the most consistent among a range of possible causes, and are these causes predictive? At the end of the 20th and beginning of the 21st century the Arctic-wide pattern of warming is distinct from the regional, natural variability patterns of temperature anomalies that were seen earlier in the 20th century. Many of today’s Arctic changes were predicted in the 1980 modeling paper by Manabe and Stouffer based on deduction from theoretical principles. The recent sea ice reduction of summer 2007 and 2008 Arctic, arctic-wide temperature amplification, and consilient evidence from permafrost, biological impacts, and other indicators support the conclusion that recent changes are likely caused by a combination of an emerging greenhouse gas contribution, fortuitous timing in the natural variability of the atmospheric general circulation, and positive feedbacks associated with a reduction in sea ice and increases in ocean heat storage, in contrast to competing hypotheses of natural variability alone or solar variability. Future uncertainty remains regarding cloud forcing, the timing of natural variability, and non-linear surprises.

  9. Communicating Climate and Ecosystem Change in the Arctic

    NASA Astrophysics Data System (ADS)

    Soreide, N. N.; Overland, J. E.; Calder, J. A.; Rodionov, S.

    2005-12-01

    There is an explosion of interest in Northern Hemisphere climate, highlighting the importance of recent changes in the Arctic on mid-latitude climate and its impact on marine and terrestrial ecosystems. Traditional sea ice and tundra dominated arctic ecosystems are being reorganizing into warmer sub-arctic ecosystem types. Over the previous two years we have developed a comprehensive, near real-time arctic change detection protocol to track physical and biological changes for presentation on the web: http://www.arctic.noaa.gov/detect. The effort provides a continuous update to the Arctic Climate Impact Assessment (ACIA) Report, released in November 2004. Principles for the protocol include an accessible narrative style, scientifically credible and objective indicators, notes multiple uses for the information, acknowledges uncertainties, and balances having too many indicators-which leads to information overload-and too few-which does not capture the complexity of the system. Screening criteria include concreteness, public awareness, being understandable, availability of historical time series, and sensitivity. The site provides sufficient information for an individual to make their own assessment regarding the balance of the evidence for tracking change. The product provides an overview, recent news, links to many arctic websites, and highlights climate, global impacts, land and marine ecosystems, and human consequences. Since its inception a year ago, it has averaged about 9000 hits an day on the web, and is a major information source as determined by Google search. The future direction focuses on understanding the causes for change. In spring 2005 we also presented a near real-time ecological and climatic surveillance website for the Bering Sea: www.beringclimate.noaa.gov. The site provides up-to-date information which ties northward shifts of fish, invertebrate and marine mammal populations to physical changes in the Arctic. This site is more technical than the

  10. The Contribution to Arctic Climate Change from Countries in the Arctic Council

    NASA Astrophysics Data System (ADS)

    Schultz, T.; MacCracken, M. C.

    2013-12-01

    The conventional accounting frameworks for greenhouse gas (GHG) emissions used today, established under the Kyoto Protocol 25 years ago, exclude short lived climate pollutants (SLCPs), and do not include regional effects on the climate. However, advances in climate science now suggest that mitigation of SLCPs can reduce up to 50% of global warming by 2050. It has also become apparent that regions such as the Arctic have experienced a much greater degree of anthropogenic warming than the globe as a whole, and that efforts to slow this warming could benefit the larger effort to slow climate change around the globe. A draft standard for life cycle assessment (LCA), LEO-SCS-002, being developed under the American National Standards Institute process, has integrated the most recent climate science into a unified framework to account for emissions of all radiatively significant GHGs and SLCPs. This framework recognizes four distinct impacts to the oceans and climate caused by GHGs and SLCPs: Global Climate Change; Arctic Climate Change; Ocean Acidification; and Ocean Warming. The accounting for Arctic Climate Change, the subject of this poster, is based upon the Absolute Regional Temperature Potential, which considers the incremental change to the Arctic surface temperature resulting from an emission of a GHG or SLCP. Results are evaluated using units of mass of carbon dioxide equivalent (CO2e), which can be used by a broad array of stakeholders, including scientists, consumers, policy makers, and NGOs. This poster considers the contribution to Arctic Climate Change from emissions of GHGs and SLCPs from the eight member countries of the Arctic Council; the United States, Canada, Russia, Denmark, Finland, Iceland, Norway, and Sweden. Of this group of countries, the United States was the largest contributor to Arctic Climate Change in 2011, emitting 9600 MMT CO2e. This includes a gross warming of 11200 MMT CO2e (caused by GHGs, black and brown carbon, and warming effects

  11. Arctic BioMap: Building Participatory Technologies for Community-Specific Environmental Monitoring and Decision Making in the North

    NASA Astrophysics Data System (ADS)

    Murray, M. S.; Panikkar, B.; Liang, S.; Kutz, S.

    2016-12-01

    The Arctic continues to undergo unprecedented and accelerated system-wide environmental change. For people who live in the north this presents challenges to resource management, subsistence, health and well-being, and yet, there is very little community-specific data on wildlife (including wildlife health), local environmental conditions and emerging hazards in Northern Canada. A novel approach that integrates community expertise with developing technologies can simplify data collection and improve understanding of current and future conditions. It can also improve our ability to manage and adapt to the rapidly transforming Arctic. Arctic BioMap is a data platform for real-time monitoring and a geospatial informational database of wildlife and environmental information useful for assessment, research, management, and education. It enables monitoring of wildlife and environmental variables including hazards to inform decision-making at multiples scales. Using participatory technologies Arctic BioMap incorporates indigenous research needs and the ensuing data can be used to inform policy making. Arctic BioMap provides a forum for continuous exchange and communication among community members, scientists, resources managers, and other stakeholders.

  12. 76 FR 50490 - Draft Comprehensive Conservation Plan and Draft Environmental Impact Statement, Arctic National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... Fish and Wildlife Service Draft Comprehensive Conservation Plan and Draft Environmental Impact... conservation plan (CCP) and draft environmental impact statement (DEIS) for the Arctic National Wildlife Refuge... Refuge System, consistent with sound principles of fish and wildlife management, conservation, legal...

  13. The seasonal cycle of the Arctic Ocean under climate change

    NASA Astrophysics Data System (ADS)

    Carton, James A.; Ding, Yanni; Arrigo, Kevin R.

    2015-09-01

    The seasonal cycle of Arctic Ocean temperature is weak due to the insulating and light-scattering effects of sea ice cover and the moderating influence of the seasonal storage and release of heat through ice melting and freezing. The retreat of sea ice and other changes in recent decades is already warming surface air temperatures in winter. These meteorological changes raise the question of how the seasonal cycle of the ocean may change. Here we present results from coupled climate model simulations showing that the loss of sea ice will dramatically increase the amplitude of the seasonal cycle of sea surface temperature in the Arctic Ocean. Depending on the rate of growth of atmospheric greenhouse gases, the seasonal range in Arctic sea surface temperature may exceed 10°C by year 2300, greatly increasing the stratification of the summer mixed layer.

  14. Reconstruction of paleoceanographic changes in the western Arctic Ocean duing the late Quaternary: Results from RV Araon and RV Polarstern

    NASA Astrophysics Data System (ADS)

    Nam, S.; Kim, S.; Schreck, M.; Lee, B.; Niessen, F.; Stein, R. H.; Matthiessen, J. J.; Mackensen, A.

    2013-12-01

    The recent warming Arctic has fundamental effects on various scales as global (albedo, sea level, thermohaline circulation), hemispheric (mid-latitude weather/climate), and local (sedimentary, hydrographic, and cryospheric conditions). The extent and thickness of Arctic sea ice have dramatically reduced due to the amplified response of the Arctic Ocean to rapid global warming. The rapid melting of Arctic sea ice allowed us to enhance the research activities in the western Arctic using ice-breaking research vessels to unravel the present and past climate and oceanographic changes in seasonally ice-free open water conditions. Paleoclimate/paleoceanographic records estimated from the western Arctic sediments are crucial factors to understand the past and present oceanographic and environmental changes and thus it could be used as the base data sets for a reliable prediction of future climate changes on global scales. Within this context, KOPRI recently initiated a new research program (K-Polar) for understanding recent environmental changes and reconstructing glacial history and paleoceanographic changes in the western Arctic using ice-breaker ';R.V. ARAON'. The Pacific sector of the Arctic Ocean is particularly pronounced area with rapid and large extent reduction of the Arctic sea ice and relatively low SSS (comparing to Atlantic sector) due to sea-ice melting along with continental runoff. K-Polar program aims to: acquire shallow seismic data and retrieve long undisturbed sediment cores from the Chukchi Borderland-the Mendeleev Ridge-East Siberian continental margin using the ';R.V. ARAON', and establish a reliable stratigraphy of key sediment cores; then to reconstruct glacial history and high-resolution paleoceanographic changes in the western Arctic during the Quaternary glacial-interglacial cycles based on precise stratigraphic data and climate-driven multiple proxies. In summary, we will introduce current preliminary results estimated from sediment cores taken

  15. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic?

    PubMed

    Nielsen, Uffe N; Wall, Diana H

    2013-03-01

    The polar regions are experiencing rapid climate change with implications for terrestrial ecosystems. Here, despite limited knowledge, we make some early predictions on soil invertebrate community responses to predicted twenty-first century climate change. Geographic and environmental differences suggest that climate change responses will differ between the Arctic and Antarctic. We predict significant, but different, belowground community changes in both regions. This change will be driven mainly by vegetation type changes in the Arctic, while communities in Antarctica will respond to climate amelioration directly and indirectly through changes in microbial community composition and activity, and the development of, and/or changes in, plant communities. Climate amelioration is likely to allow a greater influx of non-native species into both the Arctic and Antarctic promoting landscape scale biodiversity change. Non-native competitive species could, however, have negative effects on local biodiversity particularly in the Arctic where the communities are already species rich. Species ranges will shift in both areas as the climate changes potentially posing a problem for endemic species in the Arctic where options for northward migration are limited. Greater soil biotic activity may move the Arctic towards a trajectory of being a substantial carbon source, while Antarctica could become a carbon sink. © 2013 Blackwell Publishing Ltd/CNRS.

  16. A new way to study the changing Arctic ecosystem

    SciTech Connect

    Hubbard, Susan

    2011-01-01

    Berkeley Lab scientists Susan Hubbard and Margaret Torn discuss the proposed Next Generation Ecosystem Experiment, which is designed to answer one of the most urgent questions facing researchers today: How will a changing climate impact the Arctic, and how will this in turn impact the planet's climate? More info: http://newscenter.lbl.gov/feature-stories/2011/09/14/alaska-climate-change/

  17. A new way to study the changing Arctic ecosystem

    ScienceCinema

    Hubbard, Susan

    2016-07-12

    Berkeley Lab scientists Susan Hubbard and Margaret Torn discuss the proposed Next Generation Ecosystem Experiment, which is designed to answer one of the most urgent questions facing researchers today: How will a changing climate impact the Arctic, and how will this in turn impact the planet's climate? More info: http://newscenter.lbl.gov/feature-stories/2011/09/14/alaska-climate-change/

  18. Building Partnerships and Research Collaborations to Address the Impacts of Arctic Change: The North Atlantic Climate Change Collaboration (NAC3)

    NASA Astrophysics Data System (ADS)

    Polk, J.; North, L. A.; Strenecky, B.

    2015-12-01

    Changes in Arctic warming influence the various atmospheric and oceanic patterns that drive Caribbean and mid-latitude climate events, including extreme events like drought, tornadoes, and flooding in Kentucky and the surrounding region. Recently, the establishment of the North Atlantic Climate Change Collaboration (NAC3) project at Western Kentucky University (WKU) in partnership with the University of Akureyri (UNAK), Iceland Arctic Cooperation Network (IACN), and Caribbean Community Climate Change Centre (CCCCC) provides a foundation from which to engage students in applied research from the local to global levels and more clearly understand the many tenets of climate change impacts in the Arctic within both a global and local community context. The NAC3 project encompasses many facets, including joint international courses, student internships, economic development, service learning, and applied research. In its first phase, the project has generated myriad outcomes and opportunities for bridging STEM disciplines with other fields to holistically and collaboratively address specific human-environmental issues falling under the broad umbrella of climate change. WKU and UNAK students desire interaction and exposure to other cultures and regions that are threatened by climate change and Iceland presents a unique opportunity to study influences such as oceanic processes, island economies, sustainable harvest of fisheries, and Arctic influences on climate change. The project aims to develop a model to bring partners together to conduct applied research on the complex subject of global environmental change, particularly in the Arctic, while simultaneously focusing on changing how we learn, develop community, and engage internationally to understand the impacts and find solutions.

  19. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Global climate change may affect wolves in Canada's High Arctic (80DG N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena.

  20. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Gobal climate change may affect wolves in Canada's High Arctic (80?? N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However, when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena. ?? 2004 Kluwer Academic Publishers.

  1. One Health - a strategy for resilience in a changing arctic.

    PubMed

    Ruscio, Bruce A; Brubaker, Michael; Glasser, Joshua; Hueston, Will; Hennessy, Thomas W

    2015-01-01

    The circumpolar north is uniquely vulnerable to the health impacts of climate change. While international Arctic collaboration on health has enhanced partnerships and advanced the health of inhabitants, significant challenges lie ahead. One Health is an approach that considers the connections between the environment, plant, animal and human health. Understanding this is increasingly critical in assessing the impact of global climate change on the health of Arctic inhabitants. The effects of climate change are complex and difficult to predict with certainty. Health risks include changes in the distribution of infectious disease, expansion of zoonotic diseases and vectors, changing migration patterns, impacts on food security and changes in water availability and quality, among others. A regional network of diverse stakeholder and transdisciplinary specialists from circumpolar nations and Indigenous groups can advance the understanding of complex climate-driven health risks and provide community-based strategies for early identification, prevention and adaption of health risks in human, animals and environment. We propose a regional One Health approach for assessing interactions at the Arctic human-animal-environment interface to enhance the understanding of, and response to, the complexities of climate change on the health of the Arctic inhabitants.

  2. One Health - a strategy for resilience in a changing arctic.

    PubMed

    Ruscio, Bruce A; Brubaker, Michael; Glasser, Joshua; Hueston, Will; Hennessy, Thomas W

    2015-01-01

    The circumpolar north is uniquely vulnerable to the health impacts of climate change. While international Arctic collaboration on health has enhanced partnerships and advanced the health of inhabitants, significant challenges lie ahead. One Health is an approach that considers the connections between the environment, plant, animal and human health. Understanding this is increasingly critical in assessing the impact of global climate change on the health of Arctic inhabitants. The effects of climate change are complex and difficult to predict with certainty. Health risks include changes in the distribution of infectious disease, expansion of zoonotic diseases and vectors, changing migration patterns, impacts on food security and changes in water availability and quality, among others. A regional network of diverse stakeholder and transdisciplinary specialists from circumpolar nations and Indigenous groups can advance the understanding of complex climate-driven health risks and provide community-based strategies for early identification, prevention and adaption of health risks in human, animals and environment. We propose a regional One Health approach for assessing interactions at the Arctic human-animal-environment interface to enhance the understanding of, and response to, the complexities of climate change on the health of the Arctic inhabitants.

  3. The Hydrologic Cycle Response to Rapid Arctic Vegetation Change

    NASA Astrophysics Data System (ADS)

    Snyder, P. K.

    2008-12-01

    Over the last fifty years, the Northern Hemisphere high latitude land areas have warmed at rates well in excess of what can be explained by the atmospheric rise in greenhouse gases alone. Changes in the albedo of the ocean and land, whether from the loss of Arctic Ocean sea ice, changes in land cover, or changes in winter precipitation patterns account for much of the amplified warming. Although the loss of sea ice is directly related to greenhouse gas warming and low-level winds, changes in the discharge of freshwater from Arctic river basins are also responsible. While changes in river discharge can be related to precipitation, snow and ice melt, and human modification of the landscape, natural vegetation changes due to warming may also be altering the land surface hydrologic cycle and contributing to changes in the flux of freshwater to the Arctic Ocean. Satellite imagery has shown that the Arctic is becoming greener, which not only affects the surface and lower-tropospheric energy budget, but also modifies the hydrologic cycle through altering the partitioning of transpiration and plant-soil evaporation. This leads to changes in precipitation recycling and runoff, which can ultimately affect the discharge of freshwater. To illustrate this mechanism, results of a land cover change and precipitation-recycling analysis using North American Regional Reanalysis data will be presented for the Mackenzie Basin in North America. Additionally, results from a dynamic global vegetation model will be presented to evaluate the potential consequences of continued extreme warming and land cover changes to the discharge of freshwater to the Arctic Ocean.

  4. Alaska's Arctic Landscapes: Land cover, Monitoring and Assessing Arctic Ecosystems and their Change Agents

    NASA Astrophysics Data System (ADS)

    Guyer, P. S.

    2013-12-01

    The challenge for agencies who manage the 89,000 square miles constituting Alaska's arctic ecoregion is in understanding what, where and to what extent important ecosystems exist. How do each of these ecosystems function? What are the key components of these ecosystems? How are they affected by the changing climate, fire, permafrost changes and development? Answers to these management questions come not from one specific project or program but from a series of data gathering efforts. Landcover mapping of Alaska's arctic using satellite imagery began in the mid 1990's. Over the past three years the land cover has been updated using additional ground truth data and the most up to date image processing software. In 2012, the updated map was used for the first time to select sites for an inventory and monitoring pilot project. The project established a baseline of information for long-term monitoring of regional ecological components. That same year the Bureau of Land Management began a Rapid Ecoregional Assessment across the North Slope of Alaska. This effort will utilize the known environments established by the land cover map and will model the effects of climate change, fire, permafrost change and development. The assessment and modeling effort will show how the effect of these change agents would shape long term conservation, restoration and development efforts. These interactions together will advance the understanding of the arctic ecoregion its values, processes and functions and how the agents of change will shape the future.

  5. Arctic Sea Ice Changes, Interactions, and Feedbacks on the Arctic Climate during the Satellite Era

    NASA Astrophysics Data System (ADS)

    Wang, X.; Key, J. R.; Liu, Y.

    2011-12-01

    Of all the components of the Earth climate system, the cryosphere is arguably the least understood even though it is a very important indicator and an effective modulator of regional and global climate change. Changes in sea ice will significantly affect exchanges of momentum, heat, and mass between the ocean and the atmosphere, and have profound socio-economic impacts on transportation, fisheries, hunting, polar animal habitat and more. In the last three decades, the Arctic underwent significant changes in sea ice as part of the accelerated global climate change. With the recently developed One-dimensional Thermodynamic Ice Model (OTIM), sea and lake ice thickness and trends can be reasonably estimated. The OTIM has been extensively validated against submarine and moored upward-looking sonar measurements, meteorological station measurements, and comprehensive numerical model simulations. The Extended AVHRR Polar Pathfinder (APP-x) dataset has 25 climate parameters covering surface, cloud, and sea ice properties as well as surface and top-of-atmosphere radiative fluxes for the period 1982 - 2004 over the Arctic and Antarctic at 25 km resolution. The OTIM has been used with APP-x dataset for Arctic sea ice thickness and volume estimation. Statistical analysis of spatial and temporal distributions and trends in sea ice extent, thickness, and volume over the satellite period has been performed, along with the temporal analysis of first year and multiple year sea ice extent changes. Preliminary results show clear evidence that Arctic sea ice has been experiencing significant changes over the last two decades of the 20th century. The Arctic sea ice has been shrinking unexpectedly fast with the declines in sea ice extent, thickness, and volume, most apparent in the fall season. Moreover, satellites provide an unprecedented opportunity to observe Arctic sea ice and its changes with high spatial and temporal coverage that is making it an ideal data source for mitigating

  6. Changes in the Arctic: Background and Issues for Congress

    DTIC Science & Technology

    2012-02-27

    willingness to establish and maintain a military presence in the high north. U.S. military forces , particularly the Navy and Coast Guard, have...42 U.S. Military Forces and Operations...Greenland Ice Sheet. These and many other phenomena are forcing change and uncertainty in traditional Arctic populations, present challenges and

  7. Changes in the Arctic: Background and Issues for Congress

    DTIC Science & Technology

    2011-04-07

    indicated a willingness to establish and maintain a military presence in the high north. U.S. military forces , particularly the Navy and Coast Guard, have...34 U.S. Military Forces and Operations... forcing change and uncertainty in traditional Arctic populations, present challenges and opportunities for industry and commerce, and have the

  8. An environmental DNA assay for detecting Arctic grayling in the upper Missouri River basin, North America

    Treesearch

    K. J. Carim; J. C. S. Dysthe; Michael Young; Kevin McKelvey; Michael Schwartz

    2016-01-01

    The upper Missouri River basin in the northwestern US contains disjunct Arctic grayling (Thymallus arcticus) populations of conservation concern. To assist efforts aimed at understanding Artic grayling distribution, we developed a quantitative PCR assay to detect the presence of Arctic grayling DNA in environmental samples. The assay amplified low...

  9. Enhancing NASA's Contribution to Arctic Terrestrial Hydrology and the Study of Polar Change

    NASA Astrophysics Data System (ADS)

    Walsh, J. E.; Elfring, C.; Vorosmarty, C. J.; McGuire, A. D.

    2001-12-01

    In a recent report by the National Academies, an interdisciplinary committee assessed NASA's polar geophysical datasets in the context of the science questions driving the Earth Science Enterprise (ESE) and other avenues of polar research. The report examines data sets in terms of the major ESE themes: ongoing changes in polar climate and the biosphere, forcings of the polar climate system, responses and feedbacks to the forcing, consequences of change in the polar regions, and prediction of such changes. It includes a matrix of science needs and available data sets and, from that, identifies high-priority measurement needs, many of which are directly relevant to Arctic hydrology. The greatest needs are improved measurements of polar precipitation, surface albedo, freshwater discharge from terrestrial regions, surface temperatures and turbulent fluxes, permafrost extent and dynamics, ocean salinity, ice sheet mass flux, land surface (especially vegetative) characteristics, and sea ice thickness. For Arctic hydrological studies, key needs include surface radiation parameters (albedo, roughness), especially with regard to the timing of ice-out in rivers and lakes, the associated pulse of freshwater discharge, biogeochemical fluxes, and aquatic biology. There is a particular need for pan-Arctic datasets of vegetative characteristics such as leaf area index, structural composition, canopy density, albedo, disturbance characteristics, wetland extent, and nitrogen deposition. Pan-Arctic information of this type will require novel efforts in the synthesis of different products, often from different sensors. Such information, as well as high-resolution surface elevation and topography, is needed for Arctic land system models that include hydrology and ecosystem dynamics. Key changes to be anticipated or predicted by these models include changes in water supplies from snow and snow-fed rivers, effects of physical environmental change on terrestrial productivity and

  10. Arctic Sea Ice and Its Changes during the Satellite Period

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, Y.; Key, J. R.

    2009-12-01

    Sea ice is a very important indicator and an effective modulator of regional and global climate change. Changes in sea ice will significantly affect the complex exchanges of momentum, heat, and mass between sea and the atmosphere, along with profound socio-economic influences due to its role in transportation, fisheries, hunting, polar animal habitat. Over the last two decades of the 20th century, the Arctic underwent significant changes in sea ice as part of the accelerated global warming of that period. More accurate, consistent, and detailed ice thickness, extent, and volume data are critical for a wide range of applications including climate change detection, climate modeling, and operational applications such as shipping and hazard mitigation. Satellite data provide an unprecedented opportunity to estimate and monitor Arctic sea ice routinely with relatively high spatial and temporal resolutions. In this study, a One-dimensional Thermodynamic Ice Model (OTIM) has been developed to estimate sea ice thickness based on the surface energy balance at a thermo-equilibrium state, containing all components of the surface energy balance. The OTIM has been extensively validated against submarine Upward-Looking Sonar (ULS) measurements, meteorological station measurements, and comprehensive numerical model simulations. Overall, OTIM-estimated sea ice thickness is accurate to within about 20% error when compared to submarine ULS ice thickness measurements and Canadian meteorological station measurements for ice less than 3 m. Along with sea ice extent information from the SSM/I, the Arctic sea ice volume can be estimated for the satellite period from 1984 to 2004. The OTIM has been used with satellite data from the extended Advanced Very High Resolution Radiometer (AVHRR) Polar Pathfinder (APP-x) products for the Arctic sea ice thickness, and sequentially sea ice volume estimations, and following statistical analysis of spatial and temporal distribution and trends in sea

  11. Changing seasonality of Arctic hydrology disrupts key biotic linkages in Arctic aquatic ecosystems.

    NASA Astrophysics Data System (ADS)

    Deegan, L.; MacKenzie, C.; Peterson, B. J.; Fishscape Project

    2011-12-01

    Arctic grayling (Thymallus arcticus) is an important circumpolar species that provide a model system for understanding the impacts of changing seasonality on arctic ecosystem function. Grayling serve as food for other biota, including lake trout, birds and humans, and act as top-down controls in stream ecosystems. In Arctic tundra streams, grayling spend their summers in streams but are obligated to move back into deep overwintering lakes in the fall. Climatic change that affects the seasonality of river hydrology could have a significant impact on grayling populations: grayling may leave overwintering lakes sooner in the spring and return later in the fall due to a longer open water season, but the migration could be disrupted by drought due to increased variability in discharge. In turn, a shorter overwintering season may impact lake trout dynamics in the lakes, which may rely on the seasonal inputs of stream nutrients in the form of migrating grayling into these oligotrophic lakes. To assess how shifting seasonality of Arctic river hydrology may disrupt key trophic linkages within and between lake and stream components of watersheds on the North Slope of the Brooks Mountain Range, Alaska, we have undertaken new work on grayling and lake trout population and food web dynamics. We use Passive Integrated Transponder (PIT) tags coupled with stream-width antenna units to monitor grayling movement across Arctic tundra watersheds during the summer, and into overwintering habitat in the fall. Results indicate that day length may prime grayling migration readiness, but that flooding events are likely the cue grayling use to initiate migration in to overwintering lakes. Many fish used high discharge events in the stream as an opportunity to move into lakes. Stream and lake derived stable isotopes also indicate that lake trout rely on these seasonally transported inputs of stream nutrients for growth. Thus, changes in the seasonality of river hydrology may have broader

  12. Interdisciplinary cooperation on impacts of climate change in the Arctic

    NASA Astrophysics Data System (ADS)

    Wardell, Lois; Chen, Linling; Strey, Sara

    2012-09-01

    Impact of Climate Change on Resources, Maritime Transport and Geopolitics in the Arctic and the Svalbard Area; Svalbard, Norway, 21-28 August 2011 Drastic changes in the Arctic climate directly relate to resource and transport development and complex geopolitical challenges in the Arctic. To encourage future interdisciplinary cooperation among political, social, and climate scientists, 30 early-career researchers from varied backgrounds—including climate change, resources, polar maritime transport, and geopolitics—assembled in Svalbard, Norway. Ola Johannessen, president of the Norwegian Scientific Academy of Polar Research, led this diverse group to highlight the importance of collaboration across disciplines for broadening the terms in which assessments are defined, thus collapsing distinctions between the physical and the human Arctic. He also highlighted the feasibility of conducting effective assessment exercises within short time frames. The group was also mentored by Willy Østreng, author of Science Without Boundaries: Interdisciplinarity in Research, Society, and Politics, who aided participants in understanding the process of interdisciplinary collaboration rather than creating an assemblage of discrete findings.

  13. Losing ground: past history and future fate of Arctic small mammals in a changing climate.

    PubMed

    Prost, Stefan; Guralnick, Robert P; Waltari, Eric; Fedorov, Vadim B; Kuzmina, Elena; Smirnov, Nickolay; van Kolfschoten, Thijs; Hofreiter, Michael; Vrieling, Klaas

    2013-06-01

    According to the IPCC, the global average temperature is likely to increase by 1.4-5.8 °C over the period from 1990 to 2100. In Polar regions, the magnitude of such climatic changes is even larger than in temperate and tropical biomes. This amplified response is particularly worrisome given that the so-far moderate warming is already impacting Arctic ecosystems. Predicting species responses to rapid warming in the near future can be informed by investigating past responses, as, like the rest of the planet, the Arctic experienced recurrent cycles of temperature increase and decrease (glacial-interglacial changes) in the past. In this study, we compare the response of two important prey species of the Arctic ecosystem, the collared lemming and the narrow-skulled vole, to Late Quaternary climate change. Using ancient DNA and Ecological Niche Modeling (ENM), we show that the two species, which occupy similar, but not identical ecological niches, show markedly different responses to climatic and environmental changes within broadly similar habitats. We empirically demonstrate, utilizing coalescent model-testing approaches, that collared lemming populations decreased substantially after the Last Glacial Maximum; a result consistent with distributional loss over the same period based on ENM results. Given this strong association, we projected the current niche onto future climate conditions based on IPCC 4.0 scenarios, and forecast accelerating loss of habitat along southern range boundaries with likely associated demographic consequences. Narrow-skulled vole distribution and demography, by contrast, was only moderately impacted by past climatic changes, but predicted future changes may begin to affect their current western range boundaries. Our work, founded on multiple lines of evidence suggests a future of rapidly geographically shifting Arctic small mammal prey communities, some of whom are on the edge of existence, and whose fate may have ramifications for the

  14. Arctic Ocean freshwater as a trigger for abrupt climate change

    NASA Astrophysics Data System (ADS)

    Bradley, Raymond; Condron, Alan; Coletti, Anthony

    2016-04-01

    The cause of the Younger Dryas cooling remains unresolved despite decades of debate. Current arguments focus on either freshwater from Glacial Lake Agassiz drainage through the St Lawrence or the MacKenzie river systems. High resolution ocean modeling suggests that freshwater delivered to the North Atlantic from the Arctic Ocean through Fram Strait would have had more of an impact on Atlantic Meridional Overturning Circulation (AMOC) than freshwater from the St Lawrence. This has been interpreted as an argument for a MacKenzie River /Lake Agassiz freshwater source. However, it is important to note that although the modeling identifies Fram Strait as the optimum location for delivery of freshwater to disrupt the AMOC, this does not mean the freshwater source came from Lake Agassiz. Another potential source of freshwater is the Arctic Ocean ice cover itself. During the LGM, ice cover was extremely thick - many tens of meters in the Canada Basin (at least), resulting in a hiatus in sediment deposition there. Extreme ice thickness was related to a stagnant circulation, very low temperatures and continuous accumulation of snow on top of a base of sea-ice. This resulted in a large accumulation of freshwater in the Arctic Basin. As sea-level rose and a more modern circulation regime became established in the Arctic, this freshwater was released from the Arctic Ocean through Fram Strait, leading to extensive sea-ice formation in the North Atlantic (Greenland Sea) and a major reduction in the AMOC. Here we present new model results and a review of the paleoceanographic evidence to support this hypothesis. The bottom line is that the Arctic Ocean was likely a major player in causing abrupt climate change in the past, via its influence on the AMOC. Although we focus here on the Younger Dryas, the Arctic Ocean has been repeatedly isolated from the world ocean during glacial periods of the past. When these periods of isolation ended, it is probable that there were significant

  15. Concept Study: Exploration and Production in Environmentally Sensitive Arctic Areas

    SciTech Connect

    Shirish Patil; Rich Haut; Tom Williams; Yuri Shur; Mikhail Kanevskiy; Cathy Hanks; Michael Lilly

    2008-12-31

    The Alaska North Slope offers one of the best prospects for increasing U.S. domestic oil and gas production. However, this region faces some of the greatest environmental and logistical challenges to oil and gas production in the world. A number of studies have shown that weather patterns in this region are warming, and the number of days the tundra surface is adequately frozen for tundra travel each year has declined. Operators are not allowed to explore in undeveloped areas until the tundra is sufficiently frozen and adequate snow cover is present. Spring breakup then forces rapid evacuation of the area prior to snowmelt. Using the best available methods, exploration in remote arctic areas can take up to three years to identify a commercial discovery, and then years to build the infrastructure to develop and produce. This makes new exploration costly. It also increases the costs of maintaining field infrastructure, pipeline inspections, and environmental restoration efforts. New technologies are needed, or oil and gas resources may never be developed outside limited exploration stepouts from existing infrastructure. Industry has identified certain low-impact technologies suitable for operations, and has made improvements to reduce the footprint and impact on the environment. Additional improvements are needed for exploration and economic field development and end-of-field restoration. One operator-Anadarko Petroleum Corporation-built a prototype platform for drilling wells in the Arctic that is elevated, modular, and mobile. The system was tested while drilling one of the first hydrate exploration wells in Alaska during 2003-2004. This technology was identified as a potentially enabling technology by the ongoing Joint Industry Program (JIP) Environmentally Friendly Drilling (EFD) program. The EFD is headed by Texas A&M University and the Houston Advanced Research Center (HARC), and is co-funded by the National Energy Technology Laboratory (NETL). The EFD

  16. Arctic Security: An Adaptive Approach for a Changing Climate

    DTIC Science & Technology

    2009-04-01

    Arctic Environment Protection Strategy ANWR – Arctic National Wildlife Refuge AON – Arctic Observation Network CAFE – Corporate Average Fuel...environmentalists over drilling in the Arctic National Wildlife Refuge ( ANWR ), a 19 million acre refuge on the Arctic Coast estimated by the USGS to hold

  17. Ecosystem responses to climate change at a Low Arctic and a High Arctic long-term research site.

    PubMed

    Hobbie, John E; Shaver, Gaius R; Rastetter, Edward B; Cherry, Jessica E; Goetz, Scott J; Guay, Kevin C; Gould, William A; Kling, George W

    2017-02-01

    Long-term measurements of ecological effects of warming are often not statistically significant because of annual variability or signal noise. These are reduced in indicators that filter or reduce the noise around the signal and allow effects of climate warming to emerge. In this way, certain indicators act as medium pass filters integrating the signal over years-to-decades. In the Alaskan Arctic, the 25-year record of warming of air temperature revealed no significant trend, yet environmental and ecological changes prove that warming is affecting the ecosystem. The useful indicators are deep permafrost temperatures, vegetation and shrub biomass, satellite measures of canopy reflectance (NDVI), and chemical measures of soil weathering. In contrast, the 18-year record in the Greenland Arctic revealed an extremely high summer air-warming of 1.3 °C/decade; the cover of some plant species increased while the cover of others decreased. Useful indicators of change are NDVI and the active layer thickness.

  18. Arctic Sea Ice Trafficability - New Strategies for a Changing Icescape

    NASA Astrophysics Data System (ADS)

    Dammann, Dyre Oliver

    Sea ice is an important part of the Arctic social-environmental system, in part because it provides a platform for human transportation and for marine flora and fauna that use the ice as a habitat. Sea ice loss projected for coming decades is expected to change ice conditions throughout the Arctic, but little is known about the nature and extent of anticipated changes and in particular potential implications for over-ice travel and ice use as a platform. This question has been addressed here through an extensive effort to link sea ice use and key geophysical properties of sea ice, drawing upon extensive field surveys around on-ice operations and local and Indigenous knowledge for the widely different ice uses and ice regimes of Utqiagvik, Kotzebue, and Nome, Alaska.. A set of nine parameters that constrain landfast sea ice use has been derived, including spatial extent, stability, and timing and persistence of landfast ice. This work lays the foundation for a framework to assess and monitor key ice-parameters relevant in the context of ice-use feasibility, safety, and efficiency, drawing on different remote-sensing techniques. The framework outlines the steps necessary to further evaluate relevant parameters in the context of user objectives and key stakeholder needs for a given ice regime and ice use scenario. I have utilized this framework in case studies for three different ice regimes, where I find uses to be constrained by ice thickness, roughness, and fracture potential and develop assessment strategies with accuracy at the relevant spatial scales. In response to the widely reported importance of high-confidence ice thickness measurements, I have developed a new strategy to estimate appropriate thickness compensation factors. Compensation factors have the potential to reduce risk of misrepresenting areas of thin ice when using point-based in-situ assessment methods along a particular route. This approach was tested on an ice road near Kotzebue, Alaska, where

  19. Ecotoxicological risk assessment of environmental pollutants in the Arctic.

    PubMed

    Brunström, B; Halldin, K

    2000-03-15

    Concentrations of such persistent organic pollutants (POPs) as polychlorinated biphenyls (PCBs) are high in certain Arctic animal species. The polar bear, Arctic fox, and glaucous gull may be exposed to PCB levels above lowest-observed-adverse-effect-level (LOAEL) values for adverse effects on reproduction in mammals and birds. However, the dioxin-like congeners seem to be major contributors to the reproductive effects of PCBs and the relative concentrations of these congeners are low in polar bears. Temporal trends for POPs in Arctic wildlife and the sensitivities of Arctic species to these compounds determine the risk for future adverse health effects.

  20. Arctic and Antarctic Sea Ice Changes and Impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.

    2013-12-01

    The extent of springtime Arctic perennial sea ice, important to preconditioning summer melt and to polar sunrise photochemistry, continues its precipitous reduction in the last decade marked by a record low in 2012, as the Bromine, Ozone, and Mercury Experiment (BROMEX) was conducted around Barrow, Alaska, to investigate impacts of sea ice reduction on photochemical processes, transport, and distribution in the polar environment. In spring 2013, there was further loss of perennial sea ice, as it was not observed in the ocean region adjacent to the Alaskan north coast, where there was a stretch of perennial sea ice in 2012 in the Beaufort Sea and Chukchi Sea. In contrast to the rapid and extensive loss of sea ice in the Arctic, Antarctic sea ice has a trend of a slight increase in the past three decades. Given the significant variability in time and in space together with uncertainties in satellite observations, the increasing trend of Antarctic sea ice may arguably be considered as having a low confidence level; however, there was no overall reduction of Antarctic sea ice extent anywhere close to the decreasing rate of Arctic sea ice. There exist publications presenting various factors driving changes in Arctic and Antarctic sea ice. After a short review of these published factors, new observations and atmospheric, oceanic, hydrological, and geological mechanisms contributed to different behaviors of sea ice changes in the Arctic and Antarctic are presented. The contribution from of hydrologic factors may provide a linkage to and enhance thermal impacts from lower latitudes. While geological factors may affect the sensitivity of sea ice response to climate change, these factors can serve as the long-term memory in the system that should be exploited to improve future projections or predictions of sea ice changes. Furthermore, similarities and differences in chemical impacts of Arctic and Antarctic sea ice changes are discussed. Understanding sea ice changes and

  1. Interdecadal changes in snow depth on Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Webster, Melinda A.; Rigor, Ignatius G.; Nghiem, Son V.; Kurtz, Nathan T.; Farrell, Sinead L.; Perovich, Donald K.; Sturm, Matthew

    2014-08-01

    Snow plays a key role in the growth and decay of Arctic sea ice. In winter, it insulates sea ice from cold air temperatures, slowing sea ice growth. From spring to summer, the albedo of snow determines how much insolation is absorbed by the sea ice and underlying ocean, impacting ice melt processes. Knowledge of the contemporary snow depth distribution is essential for estimating sea ice thickness and volume, and for understanding and modeling sea ice thermodynamics in the changing Arctic. This study assesses spring snow depth distribution on Arctic sea ice using airborne radar observations from Operation IceBridge for 2009-2013. Data were validated using coordinated in situ measurements taken in March 2012 during the Bromine, Ozone, and Mercury Experiment (BROMEX) field campaign. We find a correlation of 0.59 and root-mean-square error of 5.8 cm between the airborne and in situ data. Using this relationship and IceBridge snow thickness products, we compared the recent results with data from the 1937, 1954-1991 Soviet drifting ice stations. The comparison shows thinning of the snowpack, from 35.1 ± 9.4 to 22.2 ± 1.9 cm in the western Arctic, and from 32.8 ± 9.4 to 14.5 ± 1.9 cm in the Beaufort and Chukchi seas. These changes suggest a snow depth decline of 37 ± 29% in the western Arctic and 56 ± 33% in the Beaufort and Chukchi seas. Thinning is negatively correlated with the delayed onset of sea ice freezeup during autumn.

  2. Adapting to a Changing World: The United States, Climate Change, and the Arctic Maritime Commons

    DTIC Science & Technology

    2007-11-05

    climate change . In the next two decades, portions of the Arctic will be largely ice free for many months of the summer. With the retreat of the Arctic ice, new direct shipping routes between the Atlantic and Pacific will open. Additionally, this will bring access to a wealth of untapped natural resources, including 25% of the world’s remaining undiscovered reserves of oil and natural gas. Changes in the Arctic have already brought a growing surge of maritime claims and commercial activity. The neighboring nations of Canada, Denmark, Norway, and Russia seek to extend

  3. Making Data Visible: Satellite Observations of Arctic Change (SOAC)

    NASA Astrophysics Data System (ADS)

    Beitler, J.; Tanner, S.; Barrett, A. P.; Savoie, M. H.; Wilcox, H.; Hoyer, T.; Beam, K.

    2014-12-01

    A new Web site, Satellite Observations of Arctic Change (SOAC, http://nsidc.org/soac), was developed to open up NASA Earth science data that show changes taking place in the Arctic over time to a broader range of users. The site was designed to be used by decision makers, teachers, non-specialist scientists, and the motivated public without the need for technical tools or expertise in manipulating data. The data are displayed on interactive maps, allowing users to explore how and where conditions in the Arctic have changed from the 1970s to the present. Users may animate a time series, zoom in or out, and view a bar graph of anomalies over time. Supporting pages provide brief scientific discussion and background to help users understand the data and the significance of the changes. Links to the source data and documentation are also included. Initial data products for SOAC include anomalies associated with near-surface air temperature; water vapor; sea ice concentration; snow cover; and several others. The potential for use and for inclusion of more data will be discussed.

  4. Examining Differences in Arctic and Antarctic Sea Ice Change

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Rigor, I. G.; Clemente-Colon, P.; Neumann, G.; Li, P.

    2015-12-01

    The paradox of the rapid reduction of Arctic sea ice versus the stability (or slight increase) of Antarctic sea ice remains a challenge in the cryospheric science research community. Here we start by reviewing a number of explanations that have been suggested by different researchers and authors. One suggestion is that stratospheric ozone depletion may affect atmospheric circulation and wind patterns such as the Southern Annular Mode, and thereby sustaining the Antarctic sea ice cover. The reduction of salinity and density in the near-surface layer may weaken the convective mixing of cold and warmer waters, and thus maintaining regions of no warming around the Antarctic. A decrease in sea ice growth may reduce salt rejection and upper-ocean density to enhance thermohalocline stratification, and thus supporting Antarctic sea ice production. Melt water from Antarctic ice shelves collects in a cool and fresh surface layer to shield the surface ocean from the warmer deeper waters, and thus leading to an expansion of Antarctic sea ice. Also, wind effects may positively contribute to Antarctic sea ice growth. Moreover, Antarctica lacks of additional heat sources such as warm river discharge to melt sea ice as opposed to the case in the Arctic. Despite of these suggested explanations, factors that can consistently and persistently maintains the stability of sea ice still need to be identified for the Antarctic, which are opposed to factors that help accelerate sea ice loss in the Arctic. In this respect, using decadal observations from multiple satellite datasets, we examine differences in sea ice properties and distributions, together with dynamic and thermodynamic processes and interactions with land, ocean, and atmosphere, causing differences in Arctic and Antarctic sea ice change to contribute to resolving the Arctic-Antarctic sea ice paradox.

  5. Climate change effects on hydroecology of arctic freshwater ecosystems.

    PubMed

    Prowse, Terry D; Wrona, Frederick J; Reist, James D; Gibson, John J; Hobbie, John E; Lévesque, Lucie M J; Vincent, Warwick F

    2006-11-01

    In general, the arctic freshwater-terrestrial system will warm more rapidly than the global average, particularly during the autumn and winter season. The decline or loss of many cryospheric components and a shift from a nival to an increasingly pluvial system will produce numerous physical effects on freshwater ecosystems. Of particular note will be reductions in the dominance of the spring freshet and changes in the intensity of river-ice breakup. Increased evaporation/evapotranspiration due to longer ice-free seasons, higher air/water temperatures and greater transpiring vegetation along with increase infiltration because of permafrost thaw will decrease surface water levels and coverage. Loss of ice and permafrost, increased water temperatures and vegetation shifts will alter water chemistry, the general result being an increase in lotic and lentic productivity. Changes in ice and water flow/levels will lead to regime-specific increases and decreases in habitat availability/quality across the circumpolar Arctic.

  6. Reconstruction of Centennial and Millennial-scale Climate and Environmental Variability during the Holocene in the Central Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Rolland, N.; Porinchu, D.; MacDonald, G.; Moser, K.

    2007-12-01

    The Arctic and sub-Arctic regions are experiencing dramatic changes in surface temperature, sea-ice extent, glacial melt, river discharge, soil carbon storage and snow cover. According to the IPCC high latitude regions are expected to warm between 4°C and 7°C over the next 100 years. The magnitude of warming and the rate at which it occurs will dwarf any previous warming episodes experienced by latitude regions over the last 11,000 years. It is critical that we improve our understanding of how the Arctic and sub-Arctic regions responded to past periods of warming, especially in light of the changes these regions will be experiencing over the next 100 years. One of the lines of evidence increasingly utilized in multi-proxy paleolimnological research is the Chironomidae (Insecta: Diptera). Also known as non-biting midge flies, chironomids are ubiquitous, frequently the most abundant insects found in freshwater ecosystems and very sensitive to environmental conditions. This research uses Chironomidae to quantitatively characterize climate and environmental conditions of the continental interior of Arctic Canada during the Holocene. Spanning four major vegetation zones (boreal forest, forest-tundra, birch tundra and herb tundra), the surface samples of 80 lakes recovered from the central Canadian Arctic were used to assess the relationship of 22 environmental variables with the chironomid distribution. Redundancy analysis (RDA) identified four variables, total Kjeldahl nitrogen (TKN), pH, summer surface water temperature (SSWT) and depth, which best explain the variance in the distribution of chironomids within these ecoregions. In order to provide new quantitative estimates of SSWT, a 1-component weighted average partial least square (WA-PLS) model was developed (r2jack = 0.76, RMSEP = 1.42°C) and applied downcore in two low arctic continental Nunavut lakes located approximately 50 km and 200 km north of modern treeline. This robust midge-inferred temperature

  7. Behavioral Ecology of Narwhals in a Changing Arctic

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Behavioral ecology of narwhals in a changing Arctic... ecology in the pack ice of Baffin Bay. We will collect data on the species’ acoustic, movement, and diving ecology in the offshore pack ice of Baffin...Bay over a 4 year long research program with three ecological focus areas (acoustic ecology , sea ice ecology , and foraging ecology ). Our

  8. Arctic marine mammals and climate change: impacts and resilience.

    PubMed

    Moore, Sue E; Huntington, Henry P

    2008-03-01

    Evolutionary selection has refined the life histories of seven species (three cetacean [narwhal, beluga, and bowhead whales], three pinniped [walrus, ringed, and bearded seals], and the polar bear) to spatial and temporal domains influenced by the seasonal extremes and variability of sea ice, temperature, and day length that define the Arctic. Recent changes in Arctic climate may challenge the adaptive capability of these species. Nine other species (five cetacean [fin, humpback, minke, gray, and killer whales] and four pinniped [harp, hooded, ribbon, and spotted seals]) seasonally occupy Arctic and subarctic habitats and may be poised to encroach into more northern latitudes and to remain there longer, thereby competing with extant Arctic species. A synthesis of the impacts of climate change on all these species hinges on sea ice, in its role as: (1) platform, (2) marine ecosystem foundation, and (3) barrier to non-ice-adapted marine mammals and human commercial activities. Therefore, impacts are categorized for: (1) ice-obligate species that rely on sea ice platforms, (2) ice-associated species that are adapted to sea ice-dominated ecosystems, and (3) seasonally migrant species for which sea ice can act as a barrier. An assessment of resilience is far more speculative, as any number of scenarios can be envisioned, most of them involving potential trophic cascades and anticipated human perturbations. Here we provide resilience scenarios for the three ice-related species categories relative to four regions defined by projections of sea ice reductions by 2050 and extant shelf oceanography. These resilience scenarios suggest that: (1) some populations of ice-obligate marine mammals will survive in two regions with sea ice refugia, while other stocks may adapt to ice-free coastal habitats, (2) ice-associated species may find suitable feeding opportunities within the two regions with sea ice refugia and, if capable of shifting among available prey, may benefit from

  9. Conservation of Arctic marine mammals faced with climate change.

    PubMed

    Ragen, Timothy J; Huntington, Henry P; Hovelsrud, Grete K

    2008-03-01

    On a daily basis, societies are making decisions that will influence the effects of climate change for decades or even centuries to come. To promote informed management of the associated risks, we review available conservation measures for Arctic marine mammals, a group that includes some of the most charismatic species on earth. The majority of available conservation measures (e.g., restrictions on hunting, protection of essential habitat areas from development, reduction of incidental take) are intended to address the effects of increasing human activity in the Arctic that are likely to follow decreasing sea ice and rising temperatures. As important as those measures will be in the effort to conserve Arctic marine mammals and ecosystems, they will not address the primary physical manifestations of climate change, such as loss of sea ice. Short of actions to prevent climate change, there are no known conservation measures that can be used to ensure the long-term persistence of these species and ecosystems as we know them today.

  10. Cold shock induction of recombinant Arctic environmental genes.

    PubMed

    Bjerga, Gro Elin Kjæreng; Williamson, Adele Kim

    2015-08-19

    Heterologous expression of psychrophilic enzymes in E. coli is particularly challenging due to their intrinsic instability. The low stability is regarded as a consequence of adaptation that allow them to function at low temperatures. Recombinant production presents a significant barrier to their exploitation for commercial applications in industry. As part of an enzyme discovery project we have investigated the utility of a cold-shock inducible promoter for low-temperature expression of five diverse genes derived from the metagenomes of marine Arctic sediments. After evaluation of their production, we further optimized for soluble production by building a vector suite from which the environmental genes could be expressed as fusions with solubility tags. We found that the low-temperature optimized system produced high expression levels for all putatively cold-active proteins, as well as reducing host toxicity for several candidates. As a proof of concept, activity assays with one of the candidates, a putative chitinase, showed that functional protein was obtained using the low-temperature optimized vector suite. We conclude that a cold-shock inducible system is advantageous for the heterologous expression of psychrophilic proteins, and may also be useful for expression of toxic mesophilic and thermophilic proteins where properties of the proteins are deleterious to the host cell growth.

  11. Islands of the Arctic

    NASA Astrophysics Data System (ADS)

    Overpeck, Jonathan

    2004-02-01

    Few environments on Earth are changing more dramatically than the Arctic. Sea ice retreat and thinning is unprecedented in the period of the satellite record. Surface air temperatures are the warmest in centuries. The biology of Arctic lakes is changing like never before in millennia. Everything is pointing to the meltdown predicted by climate model simulations for the next 100 years. At the same time, the Arctic remains one of the most pristine and beautiful places on Earth. For both those who know the Arctic and those who want to know it, this book is worth its modest price. There is much more to the Arctic than its islands, but there's little doubt that Greenland and the major northern archipelagos can serve as a great introduction to the environment and magnificence of the Arctic. The book uses the islands of the Arctic to give a good introduction to what the Arctic environment is all about. The first chapter sets the stage with an overview of the geography of the Arctic islands, and this is followed by chapters that cover many key aspects of the Arctic: the geology (origins), weather and climate, glaciers, ice sheets, sea ice, permafrost and other frozen ground issues, coasts, rivers, lakes, animals, people, and environmental impacts. The material is pitched at a level well suited for the interested layperson, but the book will also appeal to those who study the science of the Arctic.

  12. Chemical Clues of a Changing Upper Arctic Ocean Circulation: A tribute to John M. Edmond

    NASA Astrophysics Data System (ADS)

    Falkner, K. K.

    2001-12-01

    Chemical Clues of a Changing Upper Arctic Ocean Circulation: A tribute to John M. Edmond In April 2000, an international research team, supported by the National Science Foundation (NSF), embarked on a five-year program to undertake atmosphere-ice-ocean observations at distributed locations in the high Arctic Ocean. The first temporary camp at the North Pole that year laid the groundwork for taking the pulse of the Arctic Ocean and learning how the world's northernmost sea helps regulate global climate. The Arctic Ocean has been affected in recent years by dramatic thinning of sea ice and shifts in ocean circulation which seem to be related to a pattern of change in the atmospheric circulation of the Northern Hemisphere. The objective of the "North Pole Environmental Observatory" or NPEO is to document further change and to understand what is controlling the Arctic system. Among other things, the NPEO includes a hydrographic component in which Twin Otter aircraft are landed on the ice at targeted stations in order to record ocean properties and take water samples through holes drilled in the ice. I am responsible for contributing chemical measurements to deciphering upper ocean circulation patterns under the ice. Properties analyzed thus far include salinity, nutrients, oxygen, oxygen isotopic composition of water and barium. Results are posted at http://chemoc.oce.orst.edu/users/kfalkner/index.html this web-site by year. This site is linked to the main project web-site where additional information about NPEO can be found. In my AGU presentation, I will describe the challenging field program and summarize implications of the chemical data to date. The news of John Edmond's untimely death reached me while I was en route to the North Pole camp this past April. Seemingly endless hours on a Canadian Hercules allowed me to reflect on the many influences John had on me as his graduate student and beyond. One thing is certain; there was no way in hell I'd have been

  13. Climate change and sexual size dimorphism in an Arctic spider.

    PubMed

    Høye, Toke Thomas; Hammel, Jörg U; Fuchs, Thomas; Toft, Søren

    2009-08-23

    Climate change is advancing the onset of the growing season and this is happening at a particularly fast rate in the High Arctic. However, in most species the relative fitness implications for males and females remain elusive. Here, we present data on 10 successive cohorts of the wolf spider Pardosa glacialis from Zackenberg in High-Arctic, northeast Greenland. We found marked inter-annual variation in adult body size (carapace width) and this variation was greater in females than in males. Earlier snowmelt during both years of its biennial maturation resulted in larger adult body sizes and a skew towards positive sexual size dimorphism (females bigger than males). These results illustrate the pervasive influence of climate on key life-history traits and indicate that male and female responses to climate should be investigated separately whenever possible.

  14. Climate change and sexual size dimorphism in an Arctic spider

    PubMed Central

    Høye, Toke Thomas; Hammel, Jörg U.; Fuchs, Thomas; Toft, Søren

    2009-01-01

    Climate change is advancing the onset of the growing season and this is happening at a particularly fast rate in the High Arctic. However, in most species the relative fitness implications for males and females remain elusive. Here, we present data on 10 successive cohorts of the wolf spider Pardosa glacialis from Zackenberg in High-Arctic, northeast Greenland. We found marked inter-annual variation in adult body size (carapace width) and this variation was greater in females than in males. Earlier snowmelt during both years of its biennial maturation resulted in larger adult body sizes and a skew towards positive sexual size dimorphism (females bigger than males). These results illustrate the pervasive influence of climate on key life-history traits and indicate that male and female responses to climate should be investigated separately whenever possible. PMID:19435831

  15. Role of land-surface changes in arctic summer warming

    USGS Publications Warehouse

    Chapin, F. S.; Sturm, M.; Serreze, M.C.; McFadden, J.P.; Key, J.R.; Lloyd, A.H.; McGuire, A.D.; Rupp, T.S.; Lynch, A.H.; Schimel, J.P.; Beringer, J.; Chapman, W.L.; Epstein, H.E.; Euskirchen, E.S.; Hinzman, L.D.; Jia, G.; Ping, C.-L.; Tape, K.D.; Thompson, C.D.C.; Walker, D.A.; Welker, J.M.

    2005-01-01

    A major challenge in predicting Earth's future climate state is to understand feedbacks that alter greenhouse-gas forcing. Here we synthesize field data from arctic Alaska, showing that terrestrial changes in summer albedo contribute substantially to recent high-latitude warming trends. Pronounced terrestrial summer warming in arctic Alaska correlates with a lengthening of the snow-free season that has increased atmospheric heating locally by about 3 watts per square meter per decade (similar in magnitude to the regional heating expected over multiple decades from a doubling of atmospheric CO2). The continuation of current trends in shrub and tree expansion could further amplify this atmospheric heating by two to seven times.

  16. The state of climate change adaptation in the Arctic

    NASA Astrophysics Data System (ADS)

    Ford, James D.; McDowell, Graham; Jones, Julie

    2014-10-01

    The Arctic climate is rapidly changing, with wide ranging impacts on natural and social systems. A variety of adaptation policies, programs and practices have been adopted to this end, yet our understanding of if, how, and where adaptation is occurring is limited. In response, this paper develops a systematic approach to characterize the current state of adaptation in the Arctic. Using reported adaptations in the English language peer reviewed literature as our data source, we document 157 discrete adaptation initiatives between 2003 and 2013. Results indicate large variations in adaptation by region and sector, dominated by reporting from North America, particularly with regards to subsistence harvesting by Inuit communities. Few adaptations were documented in the European and Russian Arctic, or have a focus on the business and economy, or infrastructure sectors. Adaptations are being motivated primarily by the combination of climatic and non-climatic factors, have a strong emphasis on reducing current vulnerability involving incremental changes to existing risk management processes, and are primarily initiated and led at the individual/community level. There is limited evidence of trans-boundary adaptations or initiatives considering potential cross-scale/sector impacts.

  17. A New Perspective on Changing Arctic Marine Ecosystems: Panarchy Adaptive Cycles in Pan-Arctic Spatial and Temporal Scales

    NASA Astrophysics Data System (ADS)

    Wiese, F. K.; Huntington, H. P.; Carmack, E.; Wassmann, P. F. J.; Leu, E. S.; Gradinger, R.

    2016-02-01

    Changes in the physical/biological interactions in the Arctic are occurring across a variety of spatial and temporal scales and may be mitigated or strengthened based on varying rates of evolutionary adaptation. A novel way to view these interactions and their social relevance is through the systems theory perspective of "Panarchy" proposed by Gunderson and Holling. Panarchy is an interdisciplinary approach in which structures, scales and linkages of complex-adaptive systems, including those of nature (e.g. ocean), humans (e.g. economics), and combined social-ecological systems (e.g. institutions that govern natural resource use), are mapped across multiple space and time scales in continual and interactive adaptive cycles of growth, accumulation, restructuring and renewal. In complex-adaptive systems the dynamics at a given scale are generally dominated by a small number of key internal variables that are forced by one or more external variables. The stability of such a system is characterized by its resilience, i.e. its capacity to absorb disturbance and re-organize while undergoing change, so as to retain essentially similar function, structure, identity and feedbacks. It is in the capacity of a system to cope with pressures and adversities such as exploitation, warming, governance restrictions, competition, etc. that resilience embraces human and natural systems as complex entities continually adapting through cycles of change. In this paper we explore processes at four linked spatial domains in the Arctic Ocean and link it to ecosystem resilience and re-organization characteristics. From this we derive a series of hypotheses concerning the biological responses to future physical changes and suggest ways how Panarchy theory can be applied to observational strategies to help detect early signs of environmental shifts affecting marine system services and functions. We close by discussing possible implications of the Panarchy framework for policy and governance.

  18. The changing seasonal cycle of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Carton, J.; Ding, Y.

    2015-12-01

    The seasonal cycle of Arctic Ocean temperature is weak due to the insulating and light scattering effects of sea ice cover and the moderating influence of the seasonal storage and release of heat through ice melting and freezing. The retreat of sea ice and other changes in recent decades is already warming surface air temperatures in winter. We our analysis of future change with an examination of the dominant processes in the seasonal response of the Arctic Ocean and sea ice to surface forcing as they appear in historical simulations of 14 CMIP5 climate models. In both models and observations the seasonal heat budget is dominated by a local balance between net surface heating and storage in the heat content of the ocean and in melting/freezing of sea ice. Observations suggest ocean heat storage is more important than sea ice melt, while in most models sea ice melt dominates. The dominant balance in the seasonal freshwater budget is the exchange of freshwater between the liquid ocean and sea ice. At its peak this rate of exchange exceeds 2Sv. The appearance of sea ice and also ocean stratification in both the heat and freshwater budgets provides two links between the budgets and two mechanisms for feedback. Our analysis of the seasonal cycle in the coming centuries suggests that the loss of sea ice will dramatically increase the amplitude of the seasonal cycle of sea surface temperature in the Arctic Ocean. Depending on the rate of growth of atmospheric greenhouse gases the seasonal range in Arctic sea surface temperature may exceed 10°C by year 2300, greatly increasing the stratification of the summer mixed layer.

  19. The Importance of Earth Observations and Data Collaboration within Environmental Intelligence Supporting Arctic Research

    NASA Technical Reports Server (NTRS)

    Casas, Joseph

    2017-01-01

    Within the IARPC Collaboration Team activities of 2016, Arctic in-situ and remote earth observations advanced topics such as :1) exploring the role for new and innovative autonomous observing technologies in the Arctic; 2) advancing catalytic national and international community based observing efforts in support of the National Strategy for the Arctic Region; and 3) enhancing the use of discovery tools for observing system collaboration such as the U.S. National Oceanic and Atmospheric Administration (NOAA) Arctic Environmental Response Management Application (ERMA) and the U.S. National Aeronautics and Space Administration (NASA) Arctic Collaborative Environment (ACE) project geo reference visualization decision support and exploitation internet based tools. Critical to the success of these earth observations for both in-situ and remote systems is the emerging of new and innovative data collection technologies and comprehensive modeling as well as enhanced communications and cyber infrastructure capabilities which effectively assimilate and dissemination many environmental intelligence products in a timely manner. The Arctic Collaborative Environment (ACE) project is well positioned to greatly enhance user capabilities for accessing, organizing, visualizing, sharing and producing collaborative knowledge for the Arctic.

  20. Changes in winter warming events in the Nordic Arctic Region

    NASA Astrophysics Data System (ADS)

    Vikhamar-Schuler, Dagrun; Isaksen, Ketil; Haugen, Jan Erik; Bjerke, Jarle Werner; Tømmervik, Hans

    2015-04-01

    In recent years winter warming events are frequently reported from Arctic areas. Extraordinarily warm weather episodes, occasionally combined with intense rainfall, cause severe ecological disturbance and great challenges for Arctic infrastructure. For example, the formation of ground ice due to winter rain or melting prevents reindeer from grazing, leads to vegetation browning, and impacts soil temperatures. The infrastructure may be affected by avalanches and floods resulting from intense snowmelt. The aim of our analysis is to study changes in warm spells during winter in the Nordic Arctic Region, here defined as the regions in Norway, Sweden and Finland north of the Arctic circle (66.5°N), including the Arctic islands Svalbard and Jan Mayen. Within this study area we have selected the longest available high quality observation series with daily temperature and precipitation. For studying future climate we use available regionally downscaled scenarios. We analyse three time periods: 1) the past 50-100 years, 2) the present (last 15 years, 2000-2014) and 3) the future (next 50-100 years). We define an extended winter season (October-April) and further divide it into three subseasons: 1) Early winter (October and November), 2) Mid-winter (December, January and February) and 3) Late-winter (March and April). We identify warm spells using two different classification criteria: a) days with temperature above 0°C (the melting temperature); and b) days with temperature in excess of the 90th percentile of the 1985-2014 temperature for each subseason. Both wet and dry warm spells are analysed. We compare the results for the mainland stations (maritime and inland stations) with the Arctic islands. All stations have very high frequency of warm weather events in the period 1930-1940s and for the last 15 years (2000-2014). For the most recent period the largest increase in number of warm spells are observed at the northernmost stations. We also find a continuation of this

  1. Behavioral responses of beluga whales (Delphinapterus leucas) to environmental variation in an Arctic estuary.

    PubMed

    Anderson, Paul A; Poe, Russell B; Thompson, Laura A; Weber, Nansen; Romano, Tracy A

    2017-09-16

    Some Arctic estuaries serve as substrate rubbing sites for beluga whales (Delphinapterus leucas) in the summer, representing a specialized resource for the species. Understanding how environmental variation affects the species' behavior is essential to management of these habitats in coming years as the climate changes. Spatiotemporal and environmental variables were recorded for behavioral observations, during which focal groups of whales in an estuary were video-recorded for enumeration and behavioral analysis. Multiple polynomial linear regression models were optimized to identify the effects of spatiotemporal and environmental conditions on group size, composition, and the frequency of behaviors being performed. Results suggest that belugas take advantage of environmental variation to express behaviors that 1) protect young, e.g., bringing calves close to shore during cloudier days, obscuring visualization from terrestrial predators; 2) avoid predation, e.g., rubbing against substrates at higher Beaufort sea states to obscure visualization, and resting during low tides while swimming on outgoing tides to avoid stranding; and 3) optimize bioenergetic resources, e.g., swimming during lower Beaufort sea states and clearer days. Predictive models like the ones presented in this study can inform conservation management strategies as environmental conditions change in future years. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Environmental Oceanography of the Arctic Ocean and Its Marginal Seas

    DTIC Science & Technology

    2007-11-02

    the understanding of biogeochemical cycles in the high Arctic Ocean. The first Russian, US naval joint cruise failed to survey the Northern Sea of... Okhotsk , however, assisted by SakhNIRO, Salhaline, Russia, we have been able to continue the vital investigation of this fascinating ocean. Our...publication focused on the productivity, eddy formation in the Arctic Basin and the Okhotsk Sea’s dichothermal layer.

  3. Modelling the impact of climate change on the atmospheric transport and the fate of persistent organic pollutants in the Arctic

    NASA Astrophysics Data System (ADS)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Silver, J. D.; Brandt, J.

    2015-06-01

    The Danish Eulerian Hemispheric Model (DEHM) was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs) to the Arctic and their environmental fate within the Arctic. Three sets of simulations were performed, one with present day emissions and initial environmental concentrations from a 20-year spin-up simulation, one with present day emissions and with initial environmental concentrations set to zero and one without emissions but with initial environmental concentrations from the 20-year spin-up simulation. Each set of simulations consisted of two 10-year time slices representing the present (1990-2000) and future (2090-2100) climate conditions. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES (Special Report on Emissions Scenarios) A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 55 % lower across the Northern Hemisphere at the end of the 2090s than in the 1990s. The mass of HCHs within the Arctic was predicted to be up to 38 % higher, whereas the change in mass of the PCBs was predicted to range from 38 % lower to 17 % higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depends on the physical-chemical properties of the compounds. Previous model

  4. Respiratory changes due to extreme cold in the Arctic environment

    NASA Astrophysics Data System (ADS)

    Bandopadhyay, P.; Selvamurthy, W.

    1993-03-01

    Effects of acute exposure and acclimatisation to cold stress on respiratory functions were investigated in healthy tropical Indian men ( n=10). Initial baseline recordings were carried out at Delhi and thereafter serially thrice at the arctic region and once on return to Delhi. For comparison the respiratory functions were also evaluated on Russian migrants (RM; n=7) and Russian natives (RN; n=6). The respiratory functions were evaluated using standard methodology on a Vitalograph: In Indians, there was an initial decrease in lung vital capacity (VC), forced vital capacity (FVC), forced expiratory volume 1st s (FEV1), peak expiratory flow rate (PEFR) and maximum voluntary ventilation (MVV) on acute exposure to cold stress, followed by gradual recovery during acclimatisation for 4 weeks and a further significant improvement after 9 weeks of stay at the arctic region. On return to India all the parameters reached near baseline values except for MVV which remained slightly elevated. RM and RN showed similar respiratory functions at the beginning of acute cold exposure at the arctic zone. RN showed an improvement after 10 weeks of stay whereas RM did not show much change. The respiratory responses during acute cold exposure are similar to those of initial altitude responses.

  5. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system

    USGS Publications Warehouse

    McGuire, A.D.; Chapin, F. S.; Walsh, J.E.; Wirth, C.; ,

    2006-01-01

    The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The balance of evidence suggests that positive feedbacks to global warming will likely dominate in the Arctic during the next 50 to 100 years. However, the negative feedbacks associated with changing the freshwater balance of the Arctic Ocean might abruptly launch the planet into another glacial period on longer timescales. In light of uncertainties and the vulnerabilities of the climate system to responses in the Arctic, it is important that we improve our understanding of how integrated regional changes in the Arctic will likely influence the evolution of the global climate system. Copyright ?? 2006 by Annual Reviews. All rights reserved.

  6. Climate change impacts on seals and whales in the North Atlantic Arctic and adjacent shelf seas.

    PubMed

    Kovacs, Kit M; Lydersen, Christian

    2008-01-01

    In a warmer Arctic, endemic marine mammal species will face extreme levels of habitat change, most notably a dramatic reduction in sea ice. Additionally, the physical environmental changes, including less ice and increased water (and air) temperatures will result in alterations to the forage base of arctic marine mammals, including density and distributional shifts in their prey, as well as potential losses of some of their traditionally favoured fat-rich prey species. In addition they are likely to face increased competition from invasive temperate species, increased predation from species formerly unable to access them in areas of extensive sea ice or simply because the water temperature was restrictive, increased disease risk and perhaps also increased risks from contaminants. Over the coming decades it is also likely that arctic marine mammals will face increased impacts from human traffic and development in previously inaccessible, ice-covered areas. Impacts on ice-associated cetaceans are difficult to predict because the reasons for their affiliation with sea ice are not clearly understood. But, it is certain that ice-breeding seals will have marked, or total, breeding-habitat loss in their traditional breeding areas and will certainly undergo distributional changes and in all probability abundance reductions. If species are fixed in traditional spatial and temporal cycles, and are unable to shift them within decadal time scales, some populations will go extinct. In somewhat longer time frames, species extinctions can also be envisaged.

  7. Scenarios use to engage scientists and decision-makers in a changing Arctic

    NASA Astrophysics Data System (ADS)

    Lee, O. A.; Eicken, H.; Payne, J. F.

    2015-12-01

    Scenarios provide a framework to develop more adaptive Arctic policies that allow decision makers to consider the best available science to address complex relationships and key uncertainties in drivers of change. These drivers may encompass biophysical factors such as climate change, socioeconomic drivers, and wild-cards that represent low likelihood but influential events such as major environmental disasters. We outline some of the lessons learned from the North Slope Science Initiative (NSSI) scenarios project that could help in the development of adaptive science-based policies. Three spatially explicit development scenarios were identified corresponding to low, medium and high resource extraction activities on the North Slope and adjacent seas. In the case of the high energy development scenario science needs were focused on new technology, oil spill response, and the effects of offshore activities on marine mammals important for subsistence. Science needs related to community culture, erosion, permafrost degradation and hunting and trapping on land were also identified for all three scenarios. The NSSI science needs will guide recommendations for future observing efforts, and data from these observing activities could subsequently improve policy guidance for emergency response, subsistence management and other issues. Scenarios at pan-Arctic scales may help improve the development of international policies for resilient northern communities and encourage the use of science to reduce uncertainties in plans for adapting to change in the Arctic.

  8. Global Environmental Change Symposium

    NASA Astrophysics Data System (ADS)

    Bush, Susan M.

    The global environmental warming issue has been catapulted to the forefront of media attention as a result of the drought of 1988 and extremely warm temperatures. NASA scientist James Hansen testified last year that the warming trend has begun and that part of the temperature rise is due to gases such as carbon dioxide, methane, and chlorofluro-carbons (CFCs) being released into the atmosphere by human activity.In response to recent scientific speculation on the issue, the National Academy of Sciences, Washington, D.C., hosted the symposium Global Environmental Change April 24 as part of their annual meeting. Speakers included Bert Bolin, University of Stockholm; Robert White, National Academy of Engineering; Stephen Schneider, National Center for Atmospheric Research; and Peter Raven, Missouri Botanical Garden. Moderator was Russell Train, World Wildlife Fund.

  9. Evidence and implications of recent climate change in northern Alaska and other arctic regions.

    Treesearch

    Larry D. Hinzman; Neil D. Bettez; W. Robert Bolton; F. Stuart Chapin; Mark B. Dyurgerov; Chris L. Fastie; Brad Griffith; Robert D. Hollister; Allen Hope; Henry P. Huntington; Anne M. Jensen; Gensuou J. Jia; Torre Jorgenson; Douglas L. Kane; David R. Klein; Gary Kofinas; Amanda H. Lynch; Andrea H. Lloyd; A. David McGuire; Frederick E. Nelson; Walter C. Oechel; Thomas E. Osterkamp; Charles H. Racine; Vladimir E. Romanovsky; Robert S. Stone; Douglas A. Stow; Matthew Sturm; Craig E. Tweedie; George L. Vourlitis; Marilyn D. Walker; Donald A. Walker; Patrick J. Webber; Jeffrey M. Welker; Kevin S. Winker; Kenji. Yoshikawa

    2005-01-01

    The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth...

  10. On the potential for climate change impacts on marine anthropogenic radioactivity in the Arctic regions.

    PubMed

    Karcher, Michael; Harms, Ingo; Standring, William J F; Dowdall, Mark; Strand, Per

    2010-08-01

    Current predictions as to the impacts of climate change in general and Arctic climate change in particular are such that a wide range of processes relevant to Arctic contaminants are potentially vulnerable. Of these, radioactive contaminants and the processes that govern their transport and fate may be particularly susceptible to the effects of a changing Arctic climate. This paper explores the potential changes in the physical system of the Arctic climate system as they are deducible from present day knowledge and model projections. As a contribution to a better preparedness regarding Arctic marine contamination with radioactivity we present and discuss how a changing marine physical environment may play a role in altering the current understanding pertaining to behavior of contaminant radionuclides in the marine environment of the Arctic region. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Idiosyncratic Responses of High Arctic Plants to Changing Snow Regimes

    PubMed Central

    Rumpf, Sabine B.; Semenchuk, Philipp R.; Dullinger, Stefan; Cooper, Elisabeth J.

    2014-01-01

    The Arctic is one of the ecosystems most affected by climate change; in particular, winter temperatures and precipitation are predicted to increase with consequent changes to snow cover depth and duration. Whether the snow-free period will be shortened or prolonged depends on the extent and temporal patterns of the temperature and precipitation rise; resulting changes will likely affect plant growth with cascading effects throughout the ecosystem. We experimentally manipulated snow regimes using snow fences and shoveling and assessed aboveground size of eight common high arctic plant species weekly throughout the summer. We demonstrated that plant growth responded to snow regime, and that air temperature sum during the snow free period was the best predictor for plant size. The majority of our studied species showed periodic growth; increases in plant size stopped after certain cumulative temperatures were obtained. Plants in early snow-free treatments without additional spring warming were smaller than controls. Response to deeper snow with later melt-out varied between species and categorizing responses by growth forms or habitat associations did not reveal generic trends. We therefore stress the importance of examining responses at the species level, since generalized predictions of aboveground growth responses to changing snow regimes cannot be made. PMID:24523859

  12. Idiosyncratic responses of high Arctic plants to changing snow regimes.

    PubMed

    Rumpf, Sabine B; Semenchuk, Philipp R; Dullinger, Stefan; Cooper, Elisabeth J

    2014-01-01

    The Arctic is one of the ecosystems most affected by climate change; in particular, winter temperatures and precipitation are predicted to increase with consequent changes to snow cover depth and duration. Whether the snow-free period will be shortened or prolonged depends on the extent and temporal patterns of the temperature and precipitation rise; resulting changes will likely affect plant growth with cascading effects throughout the ecosystem. We experimentally manipulated snow regimes using snow fences and shoveling and assessed aboveground size of eight common high arctic plant species weekly throughout the summer. We demonstrated that plant growth responded to snow regime, and that air temperature sum during the snow free period was the best predictor for plant size. The majority of our studied species showed periodic growth; increases in plant size stopped after certain cumulative temperatures were obtained. Plants in early snow-free treatments without additional spring warming were smaller than controls. Response to deeper snow with later melt-out varied between species and categorizing responses by growth forms or habitat associations did not reveal generic trends. We therefore stress the importance of examining responses at the species level, since generalized predictions of aboveground growth responses to changing snow regimes cannot be made.

  13. Postglacial environmental succession of Nettilling Lake (Baffin Island, Canadian Arctic) inferred from biogeochemical and microfossil proxies

    NASA Astrophysics Data System (ADS)

    Narancic, Biljana; Pienitz, Reinhard; Chapligin, Bernhard; Meyer, Hanno; Francus, Pierre; Guilbault, Jean-Pierre

    2016-09-01

    Nettilling Lake (Baffin Island, Nunavut) is currently the largest lake in the Canadian Arctic Archipelago. Despite its enormous size, this freshwater system remains little studied until the present-day. Existing records from southern Baffin Island indicate that in the early postglacial period, the region was submerged by the postglacial Tyrell Sea due to isostatic depression previously exerted by the Laurentide Ice Sheet. However, these records are temporally and spatially discontinuous, relying on qualitative extrapolation. This paper presents the first quantitative reconstruction of the postglacial environmental succession of the Nettilling Lake basin based on a 8300 yr-long high resolution sedimentary record. Our multi-proxy investigation of the glacio-isostatic uplift and subsequent changes in paleosalinity and sediment sources is based on analyses of sediment fabric, elemental geochemistry (μ-XRF), diatom assemblage composition, as well as on the first diatom-based oxygen isotope record from the eastern Canadian Arctic. Results indicate that the Nettilling Lake basin experienced a relatively rapid and uniform marine invasion in the early Holocene, followed by progressive freshening until about 6000 yr BP when limnological conditions similar to those of today were established. Our findings present evidence for deglacial processes in the Foxe Basin that were initiated at least 400yrs earlier than previously thought.

  14. Environmental Pollution and Climatic Change,

    DTIC Science & Technology

    anthropogenic modification of global climage , numerical experiment of climatic change , cooling in the northern hemisphere, environmental influence on the Japan...The paper discusses environmental pollution and climatic change . Discussions begin on atmospheric pollution on a global scale, followed by

  15. Allowable and critical risks of the Arctic development in terms of global climate change

    NASA Astrophysics Data System (ADS)

    Bolsunovskaya, Y.; Volodina, D.; Sentsov, A.

    2016-09-01

    The Arctic development is accompanied by different high risks which basically arise due to natural and technogenic factors. The changes in the Arctic cryosphere are commonly considered the most serious ones by the international scientific community. In our study we regard the changes in Arctic cryosphere as natural risks. Due to the fact that complex ice conditions, on the one hand, present the serious obstacle to Arctic resources development and, on the other hand, serve as indicator of alarming global climate change, the current research proposes the risk analysis based on the analytical model, with the risks being classified by their level of impact.

  16. A Pan-Arctic Assessment of High-Latitude Lake Change ~25 Years Apart

    NASA Astrophysics Data System (ADS)

    Sheng, Y.; Smith, L. C.; Li, J.; Lyons, E. A.; Wang, J.

    2011-12-01

    The Arctic and Sub-Arctic regions are the home to the world's largest quantity of terrestrial lakes. These lakes play a preeminent role in the global water cycle and balance, are sensitive to global warming, and are vital for human and animal water supply. However, they are poorly observed, and a uniform lake inventory is unavailable at the pan-Arctic scale. Though there have been studies of Arctic lake dynamics at local scales, the general picture of Arctic lake change stays unclear. A systematic regional-scale assessment of Arctic lake change in the past ~30 years is crucial for us to address "How have Arctic lakes responded to global warming?" The presentation reports a systematic effort of high-latitude (45N and north) lake inventory using recently available high-resolution satellite imagery. Since Arctic lakes are abundant in small-size classes and their seasonality varies from region to region, pan-Arctic lake mapping requires the use of thousands of cloud-free Landsat images acquired in lake-stable seasons. Nearly eight million lakes have been mapped in various landscapes of the pan-Arctic using automated lake identification algorithms with high replicability. Lake-abundant regions are selected using a systematic sampling strategy to detect decadal lake change using the mid-1970s and circa-2000 Landsat imagery. Spatial patterns of the observed lake dynamics are analyzed at regional scales and the relationship between lake abundance and size distribution is investigated.

  17. Propaganda, News, or Education: Reporting Changing Arctic Sea Ice Conditions

    NASA Astrophysics Data System (ADS)

    Leitzell, K.; Meier, W.

    2010-12-01

    The National Snow and Ice Data Center provides information on Arctic sea ice conditions via the Arctic Sea Ice News & Analysis (ASINA) website. As a result of this effort to explain climatic data to the general public, we have attracted a huge amount of attention from our readers. Sometimes, people write to thank us for the information and the explanation. But people also write to accuse us of bias, slant, or outright lies in our posts. The topic of climate change is a minefield full of political animosity, and even the most carefully written verbiage can appear incomplete or biased to some audiences. Our strategy has been to report the data and stick to the areas in which our scientists are experts. The ASINA team carefully edits our posts to make sure that all statements are based on the science and not on opinion. Often this means using some technical language that may be difficult for a layperson to understand. However, we provide concise definitions for technical terms where appropriate. The hope is that by communicating the data clearly, without an agenda, we can let the science speak for itself. Is this an effective strategy to communicate clearly about the changing climate? Or does it downplay the seriousness of climate change? By writing at a more advanced level and avoiding oversimplification, we require our readers to work harder. But we may also maintain the attention of skeptics, convincing them to read further and become more knowledgeable about the topic.

  18. Spring Snow Melt Timing and Changes over Arctic Lands

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Robinson, D. A.; Hall, D. K.; Estilow, T. W.

    2006-01-01

    Spring snow cover over Arctic lands has, on average, melted approximately 4-7 days earlier since the late 1980s compared to the previous 20 years. The earlier disappearance of snow has been identified in non-mountainous regions at the 60 deg and 70 deg N parallels over Eurasia and North America using visible satellite observations of continental snow cover extent (SCE) mapped by the National Oceanic and Atmospheric Administration. The change was greater in the farthest north continental locations. Northern hemisphere SCE declined by almost 10% (May) to 20% (June) between the two intervals. At latitude 70 deg N, eight segments of longitude (each 10 deg in width) show significant (negative) trends. However, only two longitudinal segments at 60 deg N show significant trends, (one positive and one negative). SCE changes coincide with increasing spring warmth and the earlier diminution of sea ice in the last several decades. However, while sea ice has continued to decrease during this recent interval, snowmelt dates in the Arctic changed in a step-like fashion during the mid to late 1980s and have remained much the same since that time.

  19. Identifying climate change threats to the arctic archaeological record

    NASA Astrophysics Data System (ADS)

    Murray, Maribeth; Jensen, Anne; Friesen, Max

    2011-05-01

    Global Climate Change and the Polar Archaeological Record; Tromsø, Norway, 15-16 February 2011 ; A workshop was held at the Institute of Archaeology and Social Anthropology, University of Tromsø, in Norway, to catalyze growing concern among polar archaeologists about global climate change and attendant threats to the polar archaeological and paleoecological records. Arctic archaeological sites contain an irreplaceable record of the histories of the many societies that have lived in the region over past millennia. Associated paleoecological deposits provide powerful proxy evidence for paleoclimate and ecosystem structure and function and direct evidence of species diversity, distributions, and genetic variability. Archaeological records can span most of the Holocene (the past ∼12,000 years), depending upon location, and paleoecological records extend even further. Most are largely unstudied, and, although extremely vulnerable to destruction, they are poorly monitored and not well protected. Yet these records are key to understanding how the Arctic has functioned as a system, how humans were integrated into it, and how humans may have shaped it. Such records provide a wide range of data that are not obtainable from sources such as ice and ocean cores; these data are needed for understanding the past, assessing current and projecting future conditions, and adapting to ongoing change.

  20. Climigration? Population and Climate Change in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Hamilton, L.; Saito, K.; Loring, P. A.; Lammers, R. B.; Huntington, H.

    2016-12-01

    Residents of towns and villages in Arctic Alaska live on "the front line of climate change." Some communities face immediate threats from erosion and flooding associated with thawing permafrost, increasing river flows, and reduced sea ice protection of shorelines. The term climigration, referring to migration caused by climate change, originally was coined for these places. Although initial applications emphasized the need for government relocation policies, it has elsewhere been applied more broadly to encompass unplanned migration as well. Some historical movements have been attributed to climate change, but closer study tends to find multiple causes, making it difficult to quantify the climate contribution. Clearer attribution might come from comparisons of migration rates among places that are similar in most respects, apart from known climatic impacts. We apply this approach using annual 1990-2014 time series on 43 Arctic Alaska towns and villages. Within-community time plots show no indication of enhanced out-migration from the most at-risk communities. More formally, there is no significant difference between net migration rates of at-risk and other places, testing several alternative classifications. Although climigration is not detectable to date, growing risks make either planned or unplanned movements unavoidable in the near future.

  1. Climigration? Population and climate change in Arctic Alaska.

    PubMed

    Hamilton, Lawrence C; Saito, Kei; Loring, Philip A; Lammers, Richard B; Huntington, Henry P

    2016-01-01

    Residents of towns and villages in Arctic Alaska live on "the front line of climate change." Some communities face immediate threats from erosion and flooding associated with thawing permafrost, increasing river flows, and reduced sea ice protection of shorelines. The term climigration, referring to migration caused by climate change, originally was coined for these places. Although initial applications emphasized the need for government relocation policies, it has elsewhere been applied more broadly to encompass unplanned migration as well. Some historical movements have been attributed to climate change, but closer study tends to find multiple causes, making it difficult to quantify the climate contribution. Clearer attribution might come from comparisons of migration rates among places that are similar in most respects, apart from known climatic impacts. We apply this approach using annual 1990-2014 time series on 43 Arctic Alaska towns and villages. Within-community time plots show no indication of enhanced out-migration from the most at-risk communities. More formally, there is no significant difference between net migration rates of at-risk and other places, testing several alternative classifications. Although climigration is not detectable to date, growing risks make either planned or unplanned movements unavoidable in the near future.

  2. Changes in trophic position affect rates of contaminant decline at two seabird colonies in the Canadian Arctic.

    PubMed

    Braune, Birgit M; Gaston, Anthony J; Hobson, Keith A; Grant Gilchrist, H; Mallory, Mark L

    2015-05-01

    Some Arctic food web structures are being affected by climate change with potential consequences for long-term trends of environmental contaminants. We examined the effects of changes in trophic position of an Arctic-breeding seabird, the thick-billed murre (Uria lomvia), on declining rates of six major organochlorines (hexachlorobenzene, heptachlor epoxide, oxychlordane, dieldrin, p,p'-DDE and Σ69PCB) at two breeding colonies in the Canadian Arctic, one in northern Hudson Bay and one in the high Arctic. As a result of a change in diet, murres breeding in Hudson Bay lowered their trophic position during 1993-2013. After adjusting for the change in trophic position using egg δ(15)N values, the rates of decline in concentrations of all six organochlorines were reduced in the Hudson Bay murre eggs. In contrast, the murres at the high Arctic colony experienced an increase in trophic position which resulted in an increase in the rates of decline for all adjusted concentrations, except for p,p'-DDE and Σ69PCB which remained relatively unchanged. This suggests that the dramatic reduction in emissions of these compounds during the 1970s/1980s had a greater influence on the time trends than changes in diet at the high Arctic colony. Linkages between climate change and food web processes are complex, and may have serious consequences for our understanding of contaminant temporal trends. Valid trends can be deduced only when these factors have been taken into account. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  3. Arctic Sea Ice Thickness Distribution as an Indicator of Arctic Climate Change - Synthesis of Model Results and Observations

    NASA Astrophysics Data System (ADS)

    Maslowski, Wieslaw; Clement Kinney, Jaclyn; Jakacki, Jaromir; Osinski, Robert; Zwally, Jay

    2010-05-01

    The Arctic region is an integral part of the Earth's climate system through its influence on global surface energy and moisture fluxes and on atmospheric and oceanic circulation. Within the Arctic, its sea ice cover is possibly the most sensitive indicator of the polar amplified global warming and of the state of Arctic climate system as a whole. Hence changes in Arctic climate and the decline of multi-year sea ice cover have significant ramifications to the entire pan-Arctic region and beyond. Having the recorded average global surface temperature about 0.54°C (0.96°F) above the 20th Century average the decade of 2000-2009 has been the warmest of the 130-year record, with the maximum positive temperatures anomalies in the northern high latitude regions. Satellite records of the Arctic sea ice show a decreasing and accelerating trend in ice extent and concentration since the late 1979, as a result of the global warming. More importantly there is growing evidence that the Arctic sea ice thickness and volume have been decreasing at even faster rate. This means that our knowledge of the Arctic sea ice melt might be significantly biased due to the interpretation of 2-dimensional sea ice extent / concentration records only instead of ice thickness and volume. The rates of recent ice thickness and volume melt derived from our pan-Arctic coupled ice-ocean model results combined with recent remotely sensed data suggest an accelerating negative trend. This trend is robust and lends credence to the postulation that the Arctic not only might but it is likely to be ice-free during the summer in the near future. However, global climate models vary widely in their predictions of warming and the rate of Arctic ice melt, suggesting it may take anywhere from a couple of decades to more than a century to melt most of the summer sea ice cover. Also many regional models are limited in their representation of the rapid Arctic sea ice thinning and volume loss. The inability of models

  4. Annotated bibliography of the Northwest Territories action on water component of the Arctic environmental strategy

    SciTech Connect

    Goodwin, R.

    1998-01-01

    Water-related research conducted under the 1991--97 Arctic Environmental Strategy resulted in the production of 215 publications listed in this bibliography. The main section sorts citations by author and then by title. All citations are annotated and are keyed to the database of the Arctic Science and Technology Information System (ASTIS). The bibliography has three indexes that refer back to the main section: Subject, geographic area, and title. Topics covered include Northwest Territories hydrology, environmental fate of contaminants, water quality, snow, the water cycle, modelling, and limnology.

  5. Annotated bibliography of the Northwest Territories action on water component of the Arctic environmental strategy

    SciTech Connect

    Goodwin, R.

    1998-12-31

    Water-related research conducted under the 1991--97 Arctic Environmental Strategy resulted in the production of 215 publications listed in this bibliography. The main section sorts citations by author and then by title. All citations are annotated and are keyed to the database of the Arctic Science and Technology Information System (ASTIS). The bibliography has three indexes that refer back to the main section: Subject, geographic area, and title. Topics covered include Northwest Territories hydrology, environmental fate of contaminants, water quality, snow, the water cycle, modelling, and limnology.

  6. Patterns and processes influencing helminth parasites of Arctic coastal communities during climate change.

    PubMed

    Galaktionov, K V

    2017-07-01

    This review analyses the scarce available data on biodiversity and transmission of helminths in Arctic coastal ecosystems and the potential impact of climate changes on them. The focus is on the helminths of seabirds, dominant parasites in coastal ecosystems. Their fauna in the Arctic is depauperate because of the lack of suitable intermediate hosts and unfavourable conditions for species with free-living larvae. An increasing proportion of crustaceans in the diet of Arctic seabirds would result in a higher infection intensity of cestodes and acanthocephalans, and may also promote the infection of seabirds with non-specific helminths. In this way, the latter may find favourable conditions for colonization of new hosts. Climate changes may alter the composition of the helminth fauna, their infection levels in hosts and ways of transmission in coastal communities. Immigration of boreal invertebrates and fish into Arctic seas may allow the circulation of helminths using them as intermediate hosts. Changing migratory routes of animals would alter the distribution of their parasites, facilitating, in particular, their trans-Arctic transfer. Prolongation of the seasonal 'transmission window' may increase the parasitic load on host populations. Changes in Arctic marine food webs would have an overriding influence on the helminths' circulation. This process may be influenced by the predicted decreased of salinity in Arctic seas, increased storm activity, coastal erosion, ocean acidification, decline of Arctic ice, etc. Greater parasitological research efforts are needed to assess the influence of factors related to Arctic climate change on the transmission of helminths.

  7. Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory.

    PubMed

    Yu, Qin; Epstein, Howard; Engstrom, Ryan; Walker, Donald

    2017-03-08

    Satellite remote sensing data have indicated a general 'greening' trend in the arctic tundra biome. However, the observed changes based on remote sensing are the result of multiple environmental drivers, and the effects of individual controls such as warming, herbivory, and other disturbances on changes in vegetation biomass, community structure, and ecosystem function remain unclear. We apply ArcVeg, an arctic tundra vegetation dynamics model, to estimate potential changes in vegetation biomass and net primary production (NPP) at the plant community and functional type levels. ArcVeg is driven by soil nitrogen output from the Terrestrial Ecosystem Model, existing densities of Rangifer populations, and projected summer temperature changes by the NCAR CCSM4.0 general circulation model across the Arctic. We quantified the changes in aboveground biomass and NPP resulting from (i) observed herbivory only; (ii) projected climate change only; and (iii) coupled effects of projected climate change and herbivory. We evaluated model outputs of the absolute and relative differences in biomass and NPP by country, bioclimate subzone, and floristic province. Estimated potential biomass increases resulting from temperature increase only are approximately 5% greater than the biomass modeled due to coupled warming and herbivory. Such potential increases are greater in areas currently occupied by large or dense Rangifer herds such as the Nenets-occupied regions in Russia (27% greater vegetation increase without herbivores). In addition, herbivory modulates shifts in plant community structure caused by warming. Plant functional types such as shrubs and mosses were affected to a greater degree than other functional types by either warming or herbivory or coupled effects of the two.

  8. Human health implications of environmental contaminants in Arctic Canada: A review.

    PubMed

    Van Oostdam, J; Donaldson, S G; Feeley, M; Arnold, D; Ayotte, P; Bondy, G; Chan, L; Dewaily, E; Furgal, C M; Kuhnlein, H; Loring, E; Muckle, G; Myles, E; Receveur, O; Tracy, B; Gill, U; Kalhok, S

    2005-12-01

    The objectives of this paper are to: assess the impact of exposure to current levels of environmental contaminants in the Canadian Arctic on human health; identify the data and knowledge gaps that need to be filled by future human health research and monitoring; examine how these issues have changed since our first assessment [Van Oostdam, J., Gilman, A., Dewailly, E., Usher, P., Wheatley, B., Kuhnlein, H. et al., 1999. Human health implications of environmental contaminants in Arctic Canada: a review. Sci Total Environ 230, 1-82]. The primary exposure pathway for contaminants for various organochlorines (OCs) and toxic metals is through the traditional northern diet. Exposures tend to be higher in the eastern than the western Canadian Arctic. In recent dietary surveys among five Inuit regions, mean intakes by 20- to 40-year-old adults in Baffin, Kivalliq and Inuvialuit communities exceeded the provisional tolerable daily intakes (pTDIs) for the OCs, chlordane and toxaphene. The most recent findings in NWT and Nunavut indicate that almost half of the blood samples from Inuit mothers exceeded the level of concern value of 5 microg/L for PCBs, but none exceeded the action level of 100 microg/L. For Dene/Métis and Caucasians of the Northwest Territories exposure to OCs are mostly below this level of concern. Based on the exceedances of the pTDI and of various blood guidelines, mercury and to a lesser extent lead (from the use of lead shot in hunting game) are also concerns among Arctic peoples. The developing foetus is likely to be more sensitive to the effects of OCs and metals than adults, and is the age groups of greatest risk in the Arctic. Studies of infant development in Nunavik have linked deficits in immune function, an increase in childhood respiratory infections and birth weight to prenatal exposure to OCs. Balancing the risks and benefits of a diet of country foods is very difficult. The nutritional benefits of country food and its contribution to the

  9. Climate change and natural hazards in the Arctic

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Eichelberger, L. P.

    2015-12-01

    Climate change is motivating much of the science research in the Arctic. Natural hazards, which have always been with us and can be influenced by climate, also pose a serious threat to sustainability of Arctic communities, the Native cultures they support, and the health and wellbeing of their residents. These are themes of the US Chairship of the Arctic Council. For example, repetitive floods, often associated with spring ice jams, are a particularly severe problem for river communities. People live near rivers because access to food, water and river transportation support an indigenous subsistence lifestyle. Some settlement sites for Indigenous Peoples were mandated by distant authorities without regard to natural hazards, in Alaska no less than in other countries. Thus bad policy of the past casts a long shadow into the future. Remote communities are subject to multiple challenges, including natural hazards, access to education, and limited job opportunities. These intersect to reproduce structural vulnerability and have over time created a need for substantial support from government. In the past 40 years, the themes of "sustainability" and "self reliance" have become prominent strategies for governance at both state and local levels. Communities now struggle to demonstrate their sustainability while grappling with natural hazards and chronic poverty. In the extreme, the shifting of responsibility to resource-poor communities can be called "structural violence". Accepting the status quo can mean living without sanitation and reliable water supply, leading to the high observed rates of disease not normally encountered in developed countries. Many of the efforts to address climate change and natural hazards are complementary: monitoring the environment; forecasting extreme events; and community-based participatory research and planning. Natural disaster response is complementary to the Arctic Council's Search and Rescue (SAR) initiative, differing in that those

  10. Arctic hillslope hydrologic response to changing water storage conditions

    NASA Astrophysics Data System (ADS)

    Rushlow, C. R.; Godsey, S.

    2013-12-01

    Solute transport from terrestrial to aquatic environments depends on dynamics of water storage and flux. In the arctic, these dynamics are related to changes in permafrost and hydrological conditions that vary with climate across multiple scales. In order to predict the continued trajectory of arctic landscape and ecosystem evolution, observed changes to the hydrologic regime and riverine nutrient fluxes require properly scaled, mechanistic explanations. We address this issue at the hillslope scale by quantifying hydrologic response to changing storage as part of a collaborative effort to understand the coupled hydrology and biogeochemistry of arctic hillslopes. Hillslopes underlain by continuous permafrost experience gradual, summer-season increases in potential water storage through active layer thaw, as well as stochastic changes in available water storage as soil moisture conditions change due to storm events, evapotranspiration, and subsurface flow. Preferential flowpaths called water tracks are ubiquitous features draining arctic hillslopes and are the focus of our study. We predict that water track hydrologic response to precipitation is a function of snowmelt or storm characteristics and available storage. We hypothesize that ¬the ratio of runoff to precipitation will decrease as available storage increases, whether due to the seasonal increase in active layer thaw, or an extended dry period. Intensive snow and thaw depth surveys on a water track on the hillslopes of the Upper Kuparuk River watershed in northern Alaska during May to June 2013 reveal that snow persisted one week longer in a water track than the adjacent hillslope, and thus active layer thaw initiated earlier on the adjacent hillslope. Despite this earlier thaw timing, thaw depth in the water track exceeded that on the non-track hillslope within five days of being uncovered. Thaw, and thus subsurface storage, in water tracks remained greater than the rest of the hillslope for at least the

  11. Changing trends in carbon dioxide exchange components in three Arctic tundra sites

    NASA Astrophysics Data System (ADS)

    Mbufong, Herbert; Lund, Magnus; Christensen, Torben; Jackowicz-Korczynski, Marcin; Parmentier, Frans-Jan; Dolman, Han; van der Molen, Michiel; Tamstorf, Mikkel

    2014-05-01

    This paper aims to investigate the interannual variability in carbon flux components in a High, Low and Sub Arctic tundra site. By identifying trends in different tundra types, we can better understand the possible future response of Arctic tundra under climatic change. The timing and length of seasons, alongside environmental controls, have been examined to assess their effect on the seasonal carbon budgets of these sites. Data was collected using the micrometeorological eddy covariance technique from three Arctic tundra sites in Greenland (74.47 °N), Siberia (70.82 °N) and Sweden (68.33 °N). We have hypothesized that the interannual trends in net ecosystem exchange (NEE) components will vary between the different tundra types in this study and will most likely be driven by temperature, vegetation characteristics (NDVI) and season phenology (start and length of seasons). Our results will present the evolution of the seasonal budgets (Thaw, pre-green, green, post-green seasons) of NEE components; and the drivers of these trends over 6 years (2003 - 2008) in these three sites. These and more will be presented at the conference.

  12. Future distribution of Arctic char Salvelinus alpinus in Sweden under climate change: effects of temperature, lake size and species interactions.

    PubMed

    Hein, Catherine L; Ohlund, Gunnar; Englund, Göran

    2012-01-01

    Novel communities will be formed as species with a variety of dispersal abilities and environmental tolerances respond individually to climate change. Thus, models projecting future species distributions must account for species interactions and differential dispersal abilities. We developed a species distribution model for Arctic char Salvelinus alpinus, a freshwater fish that is sensitive both to warm temperatures and to species interactions. A logistic regression model using lake area, mean annual air temperature (1961-1990), pike Esox lucius and brown trout Salmo trutta occurrence correctly classified 95 % of 467 Swedish lakes. We predicted that Arctic char will lose 73 % of its range in Sweden by 2100. Predicted extinctions could be attributed both to simulated temperature increases and to projected pike invasions. The Swedish mountains will continue to provide refugia for Arctic char in the future and should be the focus of conservation efforts for this highly valued fish.

  13. The Distributed Biological Observatory (DBO)-A Change Detection Array in the Pacific Arctic Sector

    NASA Astrophysics Data System (ADS)

    Grebmeier, J. M.; Moore, S. E.; Cooper, L. W.; Frey, K. E.; Pickart, R. S.

    2011-12-01

    The Pacific sector of the Arctic Ocean is experiencing major reductions in seasonal sea ice extent and increases in sea surface temperatures. One of the key uncertainties in this region is how the marine ecosystem will respond to seasonal shifts in the timing of spring sea ice retreat and/or delays in fall sea ice formation. Variations in upper ocean water hydrography, planktonic production, pelagic-benthic coupling and sediment carbon cycling are all influenced by sea ice and temperature changes. Climate changes are likely to result in shifts in species composition and abundance, northward range expansions, and changes in lower trophic level productivity that can directly cascade and affect the life cycles of higher trophic level organisms. Several regionally critical marine sites in the Pacific Arctic sector that have very high biomass and are focused foraging points for apex predators have been re-occupied during multiple international cruises. The data documenting the importance of these ecosystem "hotspots" provide a growing marine time-series from the northern Bering Sea to Barrow Canyon at the boundary of the Chukchi and Beaufort seas. Results from these studies show spatial changes in carbon production and export to the sediments as indicated by infaunal community composition and biomass, shifts in sediment grain size on a S-to-N latitudinal gradient, and range extensions for lower trophic levels and further northward migration of higher trophic organisms, such as gray whales. There is also direct evidence of negative impacts on ice dependent species, such as walrus and polar bears. To more systematically track the broad biological response to sea ice retreat and associated environmental change, an international consortium of scientists are developing a "Distributed Biological Observatory" (DBO) that includes selected biological measurements at multiple trophic levels. The DBO currently focuses on five regional biological "hotspot" locations along a

  14. Recent Changes in Primary Production in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Arrigo, K. R.

    2015-12-01

    Over the last decade and a half, the continued loss of sea is in the Arctic ocean has led to a dramatic increase in marine net primary production (NPP). Increased annual NPP is often, but not always, associated with reduced sea-ice extent and a longer phytoplankton growing season (fewer days of ice cover). However, spatial patterns of enhanced annual NPP suggest that increased nutrient fluxes may also play a role. For instance, the greatest increases in Arctic NPP have been observed on the interior shelves in waters near the shelfbreak. These are areas where additional nutrients may become increasingly available as the sea ice retreats toward the pole, facilitated by increased shelfbreak upwelling. The eastern Arctic, which receives a large fraction of the high-nutrient Pacific water, exhibits an unusual pattern whereby increased annual NPP in more upstream waters of the Chukchi and Beaufort seas is offset by lower annual NPP in downstream regions of the Greenland Sea. The reason for the decline in NPP in downstream waters is unclear, especially if upstream nutrient supplies and NPP are increasing. Perhaps higher NPP on the Chukchi shelf has caused an increase in the rate of sediment denitrification, resulting in larger losses of fixed nitrogen. This would require that the large increase in annual NPP in the Beaufort Sea be driven by some other nutrient source, perhaps local shelfbreak upwelling. More efficient utilization of these nutrients, due perhaps to longer growing seasons, could eventually reduce inventories downstream, resulting in no change in annual NPP in the Baffin sector and a decline over the outflow shelves near Greenland. This is consistent with the observation that large increases in Chukchi Sea NPP preceded significant declines in Greenland Sea waters by more than a year. More work needs to be done to understand the factors responsible for both the large-scale and the small-scale patterns in annual NPP.

  15. Changing climate: Geothermal evidence from permafrost in the Alaskan Arctic

    USGS Publications Warehouse

    Lachenbruch, A.H.; Marshall, B.V.

    1986-01-01

    Temperature profiles measured in permafrost in northernmost Alaska usually have anomalous curvature in the upper 100 meters or so. When analyzed by heat-conduction theory, the profiles indicate a variable but widespread secular warming of the permafrost surface, generally in the range of 2 to 4 Celsius degrees during the last few decades to a century. Although details of the climatic change cannot be resolved with existing data, there is little doubt of its general magnitude and timing; alternative explanations are limited by the fact that heat transfer in cold permafrost is exclusively by conduction. Since models of greenhouse warming predict climatic change will be greatest in the Arctic and might already be in progress, it is prudent to attempt to understand the rapidly changing thermal regime in this region.

  16. Methane emissions from Alaska arctic tundra in response to climatic change

    SciTech Connect

    Livingston, G.P.; Morrissey, L.A.

    1992-03-01

    In situ observations of methane emissions from the Alaska North Slope in 1987 and 1989 provide insight into the environmental interactions regulating methane emissions and into the local- and regional-scale response of the arctic tundra to interannual environmental variability. Inferences regarding climate change are based on in situ measurements of methane emissions, regional landscape characterizations derived from Landsat Multispectral Scanner satellite data, and projected regional scale emissions based on observed interannual temperature differences and simulated changes in the spatial distribution of methane emissions. Results suggest that biogenic methane emissions from arctic tundra will be significantly perturbed by climatic change, leading to warmer summer soil temperatures and to vertical displacement of the regional water table. The effect of increased soil temperatures on methane emissions resulting from anaerobic decomposition in northern wetlands will be to both increase total emissions and to increase interannual and seasonal variability. The magnitude of these effects will be determined by those factors affecting the areal distribution of methane emission rates through regulation of the regional water table. At local scales, the observed 4.7 C increase in mid-summer soil temperatures between 1987 and 1989 resulted in a 3.2-fold increase in the rate of methane emissions from anaerobic soils.

  17. Shifting mirrors: adaptive changes in retinal reflections to winter darkness in Arctic reindeer.

    PubMed

    Stokkan, Karl-Arne; Folkow, Lars; Dukes, Juliet; Neveu, Magella; Hogg, Chris; Siefken, Sandra; Dakin, Steven C; Jeffery, Glen

    2013-12-22

    Arctic reindeer experience extreme changes in environmental light from continuous summer daylight to continuous winter darkness. Here, we show that they may have a unique mechanism to cope with winter darkness by changing the wavelength reflection from their tapetum lucidum (TL). In summer, it is golden with most light reflected back directly through the retina, whereas in winter it is deep blue with less light reflected out of the eye. The blue reflection in winter is associated with significantly increased retinal sensitivity compared with summer animals. The wavelength of reflection depends on TL collagen spacing, with reduced spacing resulting in shorter wavelengths, which we confirmed in summer and winter animals. Winter animals have significantly increased intra-ocular pressure, probably produced by permanent pupil dilation blocking ocular drainage. This may explain the collagen compression. The resulting shift to a blue reflection may scatter light through photoreceptors rather than directly reflecting it, resulting in elevated retinal sensitivity via increased photon capture. This is, to our knowledge, the first description of a retinal structural adaptation to seasonal changes in environmental light. Increased sensitivity occurs at the cost of reduced acuity, but may be an important adaptation in reindeer to detect moving predators in the dark Arctic winter.

  18. Shifting mirrors: adaptive changes in retinal reflections to winter darkness in Arctic reindeer

    PubMed Central

    Stokkan, Karl-Arne; Folkow, Lars; Dukes, Juliet; Neveu, Magella; Hogg, Chris; Siefken, Sandra; Dakin, Steven C.; Jeffery, Glen

    2013-01-01

    Arctic reindeer experience extreme changes in environmental light from continuous summer daylight to continuous winter darkness. Here, we show that they may have a unique mechanism to cope with winter darkness by changing the wavelength reflection from their tapetum lucidum (TL). In summer, it is golden with most light reflected back directly through the retina, whereas in winter it is deep blue with less light reflected out of the eye. The blue reflection in winter is associated with significantly increased retinal sensitivity compared with summer animals. The wavelength of reflection depends on TL collagen spacing, with reduced spacing resulting in shorter wavelengths, which we confirmed in summer and winter animals. Winter animals have significantly increased intra-ocular pressure, probably produced by permanent pupil dilation blocking ocular drainage. This may explain the collagen compression. The resulting shift to a blue reflection may scatter light through photoreceptors rather than directly reflecting it, resulting in elevated retinal sensitivity via increased photon capture. This is, to our knowledge, the first description of a retinal structural adaptation to seasonal changes in environmental light. Increased sensitivity occurs at the cost of reduced acuity, but may be an important adaptation in reindeer to detect moving predators in the dark Arctic winter. PMID:24174115

  19. Climate change on arctic environment, ecosystem services and society (CLICHE)

    NASA Astrophysics Data System (ADS)

    Weckström, J.; Korhola, A.; Väliranta, M.; Seppä, H.; Luoto, M.; Tuittila, E.-S.; Leppäranta, M.; Kahilainen, K.; Saarinen, J.; Heikkinen, H.

    2012-04-01

    The predicted climate warming has raised many questions and concerns about its impacts on the environment and society. As a respond to the need of holistic studies comprising both of these areas, The Academy of Finland launched The Finnish Research Programme on Climate Change (FICCA 2011-2014) in spring 2010 with the main aim to focus on the interaction between the environment and society. Ultimately 11 national consortium projects were funded (total budget 12 million EUR). Here we shortly present the main objectives of the largest consortium project "Climate change on arctic environment, ecosystem services and society" (CLICHE). The CLICHE consortium comprises eight interrelated work packages (treeline, diversity, peatlands, snow, lakes, fish, tourism, and traditional livelihoods), each led by a prominent research group and a team leader. The research consortium has three main overall objectives: 1) Investigate, map and model the past, present and future climate change-induced changes in central ecosystems of the European Arctic with unprecedented precision 2) Deepen our understanding of the basic principles of ecosystem and social resilience and dynamics; identify key taxa, structures or processes that clearly indicate impending or realised global change through their loss, occurrence or behaviour, using analogues from the past (e.g. Holocene Thermal Maximum, Medieval Warm Period), experiments, observations and models 3) Develop adaptation and mitigation strategies to minimize the adverse effects of climate change on local communities, traditional livelihoods, fisheries, and tourism industry, and promote sustainable development of local community structures and enhance the quality of life of local human populations. As the project has started only recently no final results are available yet. However, the fieldwork as well as the co-operation between the research teams has thus far been very successful. Thus, the expectations for the final outcome of the project

  20. Global environmental change

    SciTech Connect

    Corell, R.W.; Anderson, P.A.

    1990-01-01

    Fifty years ago the buzz words in science were [open quotes]atomic energy,[close quotes] and the general mood of the public, in those more naive days, was that the earth is so large that it could take any kind of human abuse. The advance of science and technology since then has proved that this is not the case. It is now common sense, even to the layperson, that the earth's environment is delicate and needs careful protection if future generations are to enjoy it. The buzz words now are [open quotes]global change.[close quotes] This book is the outcome of the Workshop on the Science of Global Environmental Change sponsored by the North Atlantic Treaty Organization (NATO) and is one of the NATO's Advanced Science Institute Series books. It is essentially a collection of the lectures given in the workshop. The workshop was apparently not intended for in-depth scientific discussions but to review the overall current research situation and to identify future research needs. Accordingly, the papers collected in this volume are basically of this nature.

  1. Modelling impact of climate change on atmospheric transport and fate of persistent organic pollutants in the Arctic

    NASA Astrophysics Data System (ADS)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Silver, J. D.; Brandt, J.

    2015-03-01

    The Danish Eulerian Hemispheric Model (DEHM) was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs) to the Artic and their environmental fate within the Arctic. Two sets of simulations were performed, one with initial environmental concentrations from a 20 year spin-up simulation and one with initial environmental concentrations set to zero. Each set of simulations consisted of two ten-year time slices representing the present (1990-2000) and future (2090-2100) climate conditions. The same POP emissions were applied in all simulations to ensure that the difference in predicted concentrations for each set of simulations only arises from the difference in climate input. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 20% higher across the Northern Hemisphere. The mass of HCHs within the Arctic was predicted to be up to 39% higher, whereas the change in mass of the PCBs was predicted to range from 14% lower to 17% higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depend on the physical-chemical properties of the compounds. Previous model studies have predicted that the effect of a changed climate on

  2. Dynamics of recent climate change in the Arctic.

    PubMed

    Moritz, Richard E; Bitz, Cecilia M; Steig, Eric J

    2002-08-30

    The pattern of recent surface warming observed in the Arctic exhibits both polar amplification and a strong relation with trends in the Arctic Oscillation mode of atmospheric circulation. Paleoclimate analyses indicate that Arctic surface temperatures were higher during the 20th century than during the preceding few centuries and that polar amplification is a common feature of the past. Paleoclimate evidence for Holocene variations in the Arctic Oscillation is mixed. Current understanding of physical mechanisms controlling atmospheric dynamics suggests that anthropogenic influences could have forced the recent trend in the Arctic Oscillation, but simulations with global climate models do not agree. In most simulations, the trend in the Arctic Oscillation is much weaker than observed. In addition, the simulated warming tends to be largest in autumn over the Arctic Ocean, whereas observed warming appears to be largest in winter and spring over the continents.

  3. The role of sea ice in shaping recent Arctic Ocean freshwater content changes

    NASA Astrophysics Data System (ADS)

    Polyakov, I. V.

    2006-12-01

    Over the past several decades, the Arctic and sub-Arctic regions have undergone substantial changes. Available records point to the fact that over the 20th century the central Arctic Ocean became increasingly saltier. These freshwater content (FWC) trends are modulated by strong decadal and multidecadal fluctuations with sustained and widespread spatiotemporal patterns. Ice-ocean interactions were the key processes in shaping long-term upper Arctic Ocean FWC changes. Ice production was the dominant contributor to the salinification over the recent decades; ice melting was the major moderator of the observed salinification of the upper Arctic Ocean. Their combined effect resulted in a cumulative loss of 15 thousand cubic km of fresh water over the last 21 years. Strength of the outflow of the arctic fresh water and ice dominates the supply of Arctic fresh water to sub-polar basins. This enhanced high-latitude forcing should be considered when assessing long-term climate change and variability in the Arctic and sub-Arctic regions.

  4. Arctic circulation regimes

    PubMed Central

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.

    2015-01-01

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  5. Arctic circulation regimes.

    PubMed

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. © 2015 The Authors.

  6. Hydrological and temperature change in Arctic Siberia during the intensification of Northern Hemisphere Glaciation

    NASA Astrophysics Data System (ADS)

    Keisling, Benjamin A.; Castañeda, Isla S.; Brigham-Grette, Julie

    2017-01-01

    The Pliocene epoch represents an analog for future climate, with atmospheric carbon dioxide concentrations and continental configurations similar to present. Although the presence of multiple positive feedbacks in polar regions leads to amplified climatic changes, conditions in the Pliocene terrestrial Arctic are poorly characterized. High latitude sedimentary records indicate that dramatic glacial advance and decay occurred in the Pliocene Arctic, with attendant effects on global sea-level. Understanding these deposits and their implications for Earth's future requires developing a sense of climatic evolution across the Pliocene-Pleistocene transition and during the intensification of Northern Hemisphere Glaciation (iNHG) ∼2.7 million yr ago (Ma). Here we reconstruct Arctic terrestrial environmental change from 2.82-2.41 Ma (Marine Isotope Stages (MIS) G10-95) using the distribution of branched glycerol dialkyl glycerol tetraethers (brGDGTs) and the isotopic composition of plant leaf waxes (δDwax) in a sedimentary archive from Lake El'gygytgyn, Northeast Russia. Our records reveal changes in proxy behavior across this interval that we attribute to changing boundary conditions, including sea level, sea ice, vegetation and pCO2 during different MISs. We find that brGDGT temperatures and δDwax are decoupled for most of the record, although both show an increasing range of glacial-interglacial variability following iNHG. δDwax is stable from MIS G10-G4 despite changes in vegetation and temperature, suggesting different sources or pathways for moisture to Lake El'gygytgyn during the Late Pliocene.

  7. Modes of Arctic Ocean Change from GRACE, ICESat and the PIOMAS and ECCO2 Models of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Peralta Ferriz, C.; Morison, J. H.; Bonin, J. A.; Chambers, D. P.; Kwok, R.; Zhang, J.

    2012-12-01

    EOF analysis of month-to-month variations in GRACE derived Arctic Ocean bottom pressure (OBP) with trend and seasonal variation removed yield three dominant modes. The first mode is a basin wide variation in mass associated with high atmospheric pressure (SLP) over Scandinavia mainly in winter. The second mode is a shift of mass from the central Arctic Ocean to the Siberian shelves due to low pressure over the basins, associated with the Arctic Oscillation. The third mode is a shift in mass between the Eastern and Western Siberian shelves, related to strength of the Beaufort High mainly in summer, and to eastward alongshore winds on the Barents Sea in winter. The PIOMAS and ECCO2 modeled OBP show fair agreement with the form of these modes and provide context in terms of variations in sea surface height SSH. Comparing GRACE OBP from 2007 to 2011 with GRACE OBP from 2002 to 2006 reveals a rising trend over most of the Arctic Ocean but declines in the Kara Sea region and summer East Siberian Sea. ECCO2 bears a faint resemblance to the observed OBP change but appears to be biased negatively. In contrast, PIOMAS SSH and ECCO2 especially, show changes between the two periods that are muted but similar to ICESat dynamic ocean topography and GRACE-ICESat freshwater trends from 2005 through 2008 [Morison et al., 2012] with a rising DOT and freshening in the Beaufort Sea and a trough with decreased freshwater on the Russian side of the Arctic Ocean. Morison, J., R. Kwok, C. Peralta-Ferriz, M. Alkire, I. Rigor, R. Andersen, and M. Steele (2012), Changing Arctic Ocean freshwater pathways, Nature, 481(7379), 66-70.

  8. Arctic marine fishes and their fisheries in light of global change.

    PubMed

    Christiansen, Jørgen S; Mecklenburg, Catherine W; Karamushko, Oleg V

    2014-02-01

    In light of ocean warming and loss of Arctic sea ice, harvested marine fishes of boreal origin (and their fisheries) move poleward into yet unexploited parts of the Arctic seas. Industrial fisheries, already in place on many Arctic shelves, will radically affect the local fish species as they turn up as unprecedented bycatch. Arctic marine fishes are indispensable to ecosystem structuring and functioning, but they are still beyond credible assessment due to lack of basic biological data. The time for conservation actions is now, and precautionary management practices by the Arctic coastal states are needed to mitigate the impact of industrial fisheries in Arctic waters. We outline four possible conservation actions: scientific credibility, 'green technology', legitimate management and overarching coordination. © 2013 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  9. Ice Mass Changes in the Russian High Arctic

    NASA Astrophysics Data System (ADS)

    Willis, M. J.; Melkonian, A. K.; Pritchard, M. E.; Golos, E. M.

    2012-12-01

    The ~2000 glaciers and icecaps on the islands of the Russian High Arctic cover a total area of about 55,600 km2. Infrequent studies have indicated that these glaciers have lost a total of ~100 km3 of ice, equivalent to about 0.3 mm of sea level, since 1960. Recent GRACE observations suggest that the Severnaya Zemlya Archipelago and Franz Josef Archipelago are approximately in balance, while the "Main Ice Sheet" of the Novaya Zemlya archipelago is losing mass at a small rate. This glacier complex, on the northern island of the archipelago is the largest ice mass in Europe (23,800 km2) and the third largest polar ice masses on the planet after the Antarctic and Greenland Ice sheets. The glaciers, ice caps and icefields of the Russian High Arctic are a major reservoir of fresh water and under climate scenarios that involve warming, a potentially increasing source of mass for sea level rise. We examine the response of the glaciers of the Russian High Arctic to recent, pronounced atmospheric warming. Digitized topographic maps, ASTER Digital Elevation Models (DEMs), cloud free ICESat returns and several DEMs calculated from recent high-resolution imagery pairs are used to provide a time-series and maps of ice surface elevation change rates between the mid-1980s' and 2012 for the "Main Ice Sheet" on Novaya Zemlya and the Franz Josef Land Archipelago. DEMs are co-registered to a common horizontal base and corrected for biases due to varying reference frames and datums. Elevation change rates are calculated on a pixel-by-pixel basis and are integrated over each ice complex to provide volume change rates. Volume rates are converted to mass rates assuming an ice density of 900 kg/m3. Glacier speeds are derived from pairs of ASTER images between 2000 and 2012 and from higher resolution imagery between 2010 and 2012. Cloudy conditions often hamper our ability to make good pairs and problems occur when there are no bedrock outcrops, which are typically used to check for

  10. Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime

    NASA Astrophysics Data System (ADS)

    Wrona, Frederick J.; Johansson, Margareta; Culp, Joseph M.; Jenkins, Alan; Mârd, Johanna; Myers-Smith, Isla H.; Prowse, Terry D.; Vincent, Warwick F.; Wookey, Philip A.

    2016-03-01

    Numerous international scientific assessments and related articles have, during the last decade, described the observed and potential impacts of climate change as well as other related environmental stressors on Arctic ecosystems. There is increasing recognition that observed and projected changes in freshwater sources, fluxes, and storage will have profound implications for the physical, biogeochemical, biological, and ecological processes and properties of Arctic terrestrial and freshwater ecosystems. However, a significant level of uncertainty remains in relation to forecasting the impacts of an intensified hydrological regime and related cryospheric change on ecosystem structure and function. As the terrestrial and freshwater ecology component of the Arctic Freshwater Synthesis, we review these uncertainties and recommend enhanced coordinated circumpolar research and monitoring efforts to improve quantification and prediction of how an altered hydrological regime influences local, regional, and circumpolar-level responses in terrestrial and freshwater systems. Specifically, we evaluate (i) changes in ecosystem productivity; (ii) alterations in ecosystem-level biogeochemical cycling and chemical transport; (iii) altered landscapes, successional trajectories, and creation of new habitats; (iv) altered seasonality and phenological mismatches; and (v) gains or losses of species and associated trophic interactions. We emphasize the need for developing a process-based understanding of interecosystem interactions, along with improved predictive models. We recommend enhanced use of the catchment scale as an integrated unit of study, thereby more explicitly considering the physical, chemical, and ecological processes and fluxes across a full freshwater continuum in a geographic region and spatial range of hydroecological units (e.g., stream-pond-lake-river-near shore marine environments).

  11. Biogeographic responses of the copepod Calanus glacialis to a changing Arctic marine environment.

    PubMed

    Feng, Zhixuan; Ji, Rubao; Ashjian, Carin; Campbell, Robert; Zhang, Jinlun

    2017-09-04

    Dramatic changes have occurred in the Arctic Ocean over the past few decades, especially in terms of sea ice loss and ocean warming. Those environmental changes may modify the planktonic ecosystem with changes from lower to upper trophic levels. This study aimed to understand how the biogeographic distribution of a crucial endemic copepod species, Calanus glacialis, may respond to both abiotic (ocean temperature) and biotic (phytoplankton prey) drivers. A copepod individual-based model coupled to an ice-ocean-biogeochemical model was utilized to simulate temperature- and food-dependent life cycle development of C. glacialis annually from 1980 to 2014. Over the 35-year study period, the northern boundaries of modeled diapausing C. glacialis expanded poleward and the annual success rates of C. glacialis individuals attaining diapause in a circumpolar transition zone increased substantially. Those patterns could be explained by a lengthening growth season (during which time food is ample) and shortening critical development time (the period from the first feeding stage N3 to the diapausing stage C4). The biogeographic changes were further linked to large-scale oceanic processes, particularly diminishing sea ice cover, upper ocean warming, and increasing and prolonging food availability, which could have potential consequences to the entire Arctic shelf/slope marine ecosystems. © 2017 John Wiley & Sons Ltd.

  12. Backyard of the rich north: the climate change-related vicious circle of the Arctic zone.

    PubMed

    Varis, Olli

    2006-06-01

    The Arctic zone is full of controversies, unknowns, contrasts, and challenges. The following example is enlightening. Saudi Arabia is a country that has been considered to have almost unlimited possibilities because of its enormous oil earnings. The country has US$60 thousand million purchasing power parity oil income each year for its mere 22 million inhabitants. Astonishingly, the Arctic zone's income from oil, gas, and minerals is at least as large as that of Saudi Arabia, modestly estimated, but the Arctic has less than 4 million people. Most money, however, flows away from the tundra, yet social and environmental problems remain there. A part of the side effect of consuming these resources-largely fossil fuels-returns to the Arctic in the form of greenhouse warming and all its consequences. The Arctic zone now warms at approximately double the rate of the world average.

  13. Climate change in the North American Arctic: A one health perspective

    USDA-ARS?s Scientific Manuscript database

    Climate change is expected to increase the prevalence of acute and chronic diseases among human and animal populations within the Arctic and sub-Arctic latitudes of North America. Warmer temperatures are expected to increase disease risks from food-borne pathogens, water-borne diseases, and vector-...

  14. Holocene Climate Change in Arctic Canada and Greenland

    NASA Astrophysics Data System (ADS)

    Briner, J. P.; McKay, N.; Axford, Y.; Bennike, O.; Bradley, R. S.; de Vernal, A.; Fisher, D. A.; Francus, P.; Fréchette, B.; Gajewski, K. J.; Jennings, A. E.; Kaufman, D. S.; Miller, G. H.; Rouston, C.; Wagner, B.

    2015-12-01

    We summarize the spatial and temporal pattern of climate change through the Holocene in Arctic Canada and Greenland. Our synthesis includes 47 records from a recent database of highly resolved, quantitative Holocene climate records from the Arctic (Sundqvist et al., 2014). We plot the temperature histories represented by the records in the database and compare them with paleoclimate information based on 53 additional records. Combined, the records include a variety of climate proxy types that range from ice (ice cores), land (lake and peat sequences) and marine (ocean sediment cores and coastal sediments) environments. The temperature-sensitive records indicate more consistent and earlier Holocene warmth in the north and east, and a more diffuse and later Holocene thermal maximum in the south and west. Principal components analysis reveals two dominant Holocene trends, one with early Holocene warmth followed by cooling in the middle Holocene, the other with a broader period of warmth in the middle Holocene followed by cooling in the late Holocene. The temperature decrease from the warmest to the coolest portions of the Holocene is 3.0±1.0°C on average (n=11 records). The Greenland Ice Sheet retracted to its minimum extent between 5 and 3 ka, consistent with many sites from around Greenland depicting a switch from warm to cool conditions around that time. The spatial pattern of temperature change through the Holocene was likely driven by the decrease in northern latitude summer insolation through the Holocene, the varied influence of waning ice sheets in the early Holocene, and the variable influx of Atlantic Water into the study region.

  15. Relationship between environmental conditions and rates of coastal erosion in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Barnhart, K. R.; Anderson, R. S.; Overeem, I.; Wobus, C. W.; Clow, G. D.; Urban, F. E.; LeWinter, A. L.; Stanton, T. P.

    2012-12-01

    Rates of coastal cliff erosion are a function of the geometry and substrate of the coast; storm frequency, duration, magnitude, and wave field; and regional sediment sources. In the Arctic, the duration of sea ice-free conditions limits the time over which coastal erosion can occur, and sea water temperature modulates erosion rates where ice content of coastal bluffs is high. Predicting how coastal erosion rates in this environment will respond to future climate change requires that we first understand modern coastal erosion rates. Arctic coastlines are responding rapidly to climate change. Remotely sensed observations of coastline position indicate that the mean annual erosion rate along a 60-km reach of Alaska's Beaufort Sea coast, characterized by high ice content and small grain size, doubled from 7 m yr-1 for the period 1955-1979 to 14 m yr-1 for 2002-2007. Over the last 30 years the duration of the open water season expanded from ˜45 days to ˜95 days, increasing exposure of permafrost bluffs to seawater by a factor of 2.5. Time-lapse photography indicates that coastal erosion in this environment is a halting process: most significant erosion occurs during storm events in which local water level is elevated by surge, during which instantaneous submarine erosion rates can reach 1-2 m/day. In contrast, at times of low water, or when sea ice is present, erosion rates are negligible. We employ a 1D coastal cross-section numerical model of the erosion of ice-rich permafrost bluffs to explore the sensitivity of the system to environmental drivers. Our model captures the geometry and style of coastal erosion observed near Drew Point, Alaska, including insertion of a melt-notch, topple of ice-wedge-bounded blocks, and subsequent degradation of these blocks. Using consistent rules, we test our model against the temporal pattern of coastal erosion over two periods: the recent past (~30 years), and a short (~2 week) period in summer 2010. Environmental conditions used

  16. Effectively Communicating Information about Dynamically Changing Arctic Sea Ice to the Public through the Global Fiducials Program

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Friesen, B.; Wilson, E.; Noble, S.

    2015-12-01

    On July 15, 2009, the National Academy of Sciences (NAS) released a report, Scientific Value of Arctic Sea Ice Imagery Derived Products, advocating public release of Arctic images derived from classified data. In the NAS press release that announced the release, report lead Stephanie Pfirman states "To prepare for a possibly ice-free Arctic and its subsequent effects on the environment, economy, and national security, it is critical to have accurate projections of changes over the next several decades." In the same release NAS President Ralph Cicerone states "We hope that these images are the first of many that could help scientists learn how the changing climate could impact the environment and our society." The same day, Secretary of the Interior Ken Salazar announced that the requested images had been released and were available to the public on a US Geological Survey Global Fiducials Program (GFP) Library website (http://gfl.usgs.gov). The website was developed by the USGS to provide public access to the images and to support environmental analysis of global climate-related science. In the statement describing the release titled, Information Derived from Classified Materials Will Aid Understanding of Changing Climate, Secretary Salazar states "We need the best data from all places if we are to meet the challenges that rising carbon emissions are creating. This information will be invaluable to scientists, researchers, and the public as we tackle climate change." Initially about 700 Arctic sea ice images were released. Six years later, the number exceeds 1,500. The GFP continues to facilitate the acquisition of new Arctic sea ice imagery from US National Imagery Systems. This example demonstrates how information about dynamically changing Arctic sea ice continues to be effectively communicated to the public by the GFP. In addition to Arctic sea ice imagery, the GFP has publicly released imagery time series of more than 125 other environmentally important

  17. Changes in Arctic and Antarctic Sea Ice as a Microcosm of Global Climate Change

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2014-01-01

    Polar sea ice is a key element of the climate system and has now been monitored through satellite observations for over three and a half decades. The satellite observations reveal considerable information about polar ice and its changes since the late 1970s, including a prominent downward trend in Arctic sea ice coverage and a much lesser upward trend in Antarctic sea ice coverage, illustrative of the important fact that climate change entails spatial contrasts. The decreasing ice coverage in the Arctic corresponds well with contemporaneous Arctic warming and exhibits particularly large decreases in the summers of 2007 and 2012, influenced by both preconditioning and atmospheric conditions. The increasing ice coverage in the Antarctic is not as readily explained, but spatial differences in the Antarctic trends suggest a possible connection with atmospheric circulation changes that have perhaps been influenced by the Antarctic ozone hole. The changes in the polar ice covers and the issues surrounding those changes have many commonalities with broader climate changes and their surrounding issues, allowing the sea ice changes to be viewed in some important ways as a microcosm of global climate change.

  18. Gender specific reproductive strategies of an arctic key species (Boreogadus saida) and implications of climate change.

    PubMed

    Nahrgang, Jasmine; Varpe, Oystein; Korshunova, Ekaterina; Murzina, Svetlana; Hallanger, Ingeborg G; Vieweg, Ireen; Berge, Jørgen

    2014-01-01

    The Arctic climate is changing at an unprecedented rate. What consequences this may have on the Arctic marine ecosystem depends to a large degree on how its species will respond both directly to elevated temperatures and more indirectly through ecological interactions. But despite an alarming recent warming of the Arctic with accompanying sea ice loss, reports evaluating ecological impacts of climate change in the Arctic remain sparse. Here, based upon a large-scale field study, we present basic new knowledge regarding the life history traits for one of the most important species in the entire Arctic, the polar cod (Boreogadus saida). Furthermore, by comparing regions of contrasting climatic influence (domains), we present evidence as to how its growth and reproductive success is impaired in the warmer of the two domains. As the future Arctic is predicted to resemble today's Atlantic domains, we forecast changes in growth and life history characteristics of polar cod that will lead to alteration of its role as an Arctic keystone species. This will in turn affect community dynamics and energy transfer in the entire Arctic food chain.

  19. Gender Specific Reproductive Strategies of an Arctic Key Species (Boreogadus saida) and Implications of Climate Change

    PubMed Central

    Nahrgang, Jasmine; Varpe, Øystein; Korshunova, Ekaterina; Murzina, Svetlana; Hallanger, Ingeborg G.; Vieweg, Ireen; Berge, Jørgen

    2014-01-01

    The Arctic climate is changing at an unprecedented rate. What consequences this may have on the Arctic marine ecosystem depends to a large degree on how its species will respond both directly to elevated temperatures and more indirectly through ecological interactions. But despite an alarming recent warming of the Arctic with accompanying sea ice loss, reports evaluating ecological impacts of climate change in the Arctic remain sparse. Here, based upon a large-scale field study, we present basic new knowledge regarding the life history traits for one of the most important species in the entire Arctic, the polar cod (Boreogadus saida). Furthermore, by comparing regions of contrasting climatic influence (domains), we present evidence as to how its growth and reproductive success is impaired in the warmer of the two domains. As the future Arctic is predicted to resemble today's Atlantic domains, we forecast changes in growth and life history characteristics of polar cod that will lead to alteration of its role as an Arctic keystone species. This will in turn affect community dynamics and energy transfer in the entire Arctic food chain. PMID:24871481

  20. Ecological risk analysis as a key factor in environmental safety system development in the Arctic region of the Russian Federation

    NASA Astrophysics Data System (ADS)

    Bolsunovskaya, Y. A.; Bolsunovskaya, L. M.

    2015-02-01

    Due to specific natural and climatic conditions combined with human intervention, the Arctic is regarded as a highly sensitive region to any environmental pressures. Arctic projects require continuous environmental monitoring. This poses for the government of the Russian Federation (RF) a tremendous task concerning the formation and implementation of sustainable nature management policy within the international framework. The current article examines the basic constraints to the effective ecological safety system implementation in the Arctic region of the RF. The ecological risks and their effects which influence the sustainable development of the region were analyzed. The model of complex environmental safety system was proposed.

  1. Climate Change Experiments in Arctic Ecosystems: Scientific Strategy and Design Criteria

    NASA Astrophysics Data System (ADS)

    Wullschleger, S. D.; Hinzman, L. D.; McGuire, A. D.; Oberbauer, S. F.; Oechel, W. C.; Norby, R. J.; Thornton, P. E.; Schuur, E. A.; Shugart, H. H.; Walsh, J. E.; Wilson, C. J.

    2010-12-01

    Arctic and subarctic ecosystems are sensitive to changes in climate. These are among the largest and coldest of all ecosystems and are perceived by many as especially vulnerable to environmental change. Warming, in particular, is expected to be greatest in northern latitudes with potentially significant consequences for tundra, taiga, and peat lands. Observational evidence suggests that warming is already affecting physical and ecological processes in high-latitude ecosystems. Models predict that permafrost degradation and the northward expansion of shrubs into tundra represent important feedbacks on climate. Manipulative experiments can help understand the vulnerability of ecosystems to climate warming. Previous attempts to manipulate the environment of ecosystems in arctic and subarctic regions have focused on warming plant and soils, but treatments have been limited to small scales and modest increases in temperature. Manipulating the environment at larger scales and exposing ecosystems to higher temperatures for longer periods of time will be required to fully describe the physical, chemical, and biological mechanisms that govern land-atmosphere interactions. A variety of logistical and engineering challenges must be overcome and new approaches developed before we can address the questions being asked of the scientific community especially as we continue to move toward large-scale and long-term experiments. In light of the many uncertainties that surround the response of high-latitude ecosystems to global climate change, it is important that the scientific community consider how manipulative experiments can address and resolve ecosystem impacts and feedbacks to climate. A workshop sponsored by the Department of Energy, Office of Science was recently held at the University of Alaska, Fairbanks. The goal of the workshop was to highlight conclusions from observational and modeling studies about the response of arctic and subarctic ecosystems to a changing climate

  2. Changing Arctic ecosystems--the role of ecosystem changes across the Boreal-Arctic transition zone on the distribution and abundance of wildlife populations

    USGS Publications Warehouse

    McNew, Lance; Handel, Colleen; Pearce, John; DeGange, Anthony R.; Holland-Bartels, Leslie; Whalen, Mary

    2013-01-01

    Arctic and boreal ecosystems provide important breeding habitat for more than half of North America’s migratory birds as well as many resident species. Northern landscapes are projected to experience more pronounced climate-related changes in habitat than most other regions. These changes include increases in shrub growth, conversion of tundra to forest, alteration of wetlands, shifts in species’ composition, and changes in the frequency and scale of fires and insect outbreaks. Changing habitat conditions, in turn, may have significant effects on the distribution and abundance of wildlife in these critical northern ecosystems. The U.S. Geological Survey (USGS) is conducting studies in the Boreal–Arctic transition zone of Alaska, an environment of accelerated change in this sensitive margin between Arctic tundra and boreal forest.

  3. Arctic Climate Change: A Tale of Two Cod Species

    EPA Science Inventory

    Arctic cod play an important role in the Arctic trophic hierarchy as the consumer of primary productivity and a food source for many marine fish and mammals. Shifts in their distribution and abundance could have cascading affects in the marine environment. This paper investigates...

  4. Arctic Climate Change: A Tale of Two Cod Species

    EPA Science Inventory

    Arctic cod play an important role in the Arctic trophic hierarchy as the consumer of primary productivity and a food source for many marine fish and mammals. Shifts in their distribution and abundance could have cascading affects in the marine environment. This paper investigates...

  5. Changes in the Arctic: Background and Issues for Congress

    DTIC Science & Technology

    2013-04-25

    extents of 2007 and 2012. The 2007 minimum sea ice extent was influenced by warm Arctic temperatures and warm, moist winds blowing from the North...2012 Chicago Summit – likely at the insistence of Canada. See “NATO in the Arctic: Challenges and Opportunities,” by Luke Coffee , Heritage

  6. Changes in the Arctic: Background and Issues for Congress

    DTIC Science & Technology

    2012-08-01

    of 2007. The 2007 record minimum sea ice extent was influenced by warm Arctic temperatures and warm, moist winds blowing from the North Pacific into...Canada. See “NATO in the Arctic: Challenges and Opportunities,” by Luke Coffee , Heritage Foundation Issue Brief No. 3646, June 22, 2012. 183 “Russia

  7. MODIS-Derived Nighttime Arctic Land-Surface Temperature Nascent Trends and Non-Stationary Changes

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald

    2014-05-01

    Arctic nighttime Land-Surface Temperatures (LST) derived by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard the NASA Terra and Aqua satellites are investigated. We use the local equator crossing times of 22:30 and 01:30, respectively, in the analysis of changes, trends and variations on the Arctic region and within 120-degree sectors. We show increases in the number of days above 0C and significant LST increase over decades of March 2000 through 2010 (MODIS Terra) and July 2002 through 2012 (MODIS Aqua). The MODIS Aqua nighttime Arctic LST change, +0.2 +/- 0.2C with P-value of 0.01 indicates a reduction relative to the MODIS Terra nighttime Arctic land-surface temperature change, +1.8 +/- 0.3C with P-value of 0.01. This reduction is a decadal non-stationary component of the Arctic land-surface temperature changes. The reduction is greatest, -1.3 +/- 0.2C with P-value of 0.01 in the Eastern Russia - Western North American sector of the Arctic during the July 2002 through 2012. Ref.: Muskett, R.R., "MODIS-Derived Nighttime Arctic Land-Surface Temperature Nascent Trends and Non-Stationary Changes," American Journal of Climate Change, in press January 2014. http://www.scirp.org/journal/ajcc/

  8. Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations

    NASA Astrophysics Data System (ADS)

    Jaiser, Ralf; Nakamura, Tetsu; Handorf, Dörthe; Romanowsky, Erik; Dethloff, Klaus; Ukita, Jinro; Yamazaki, Koji

    2017-04-01

    In recent years, Arctic regions showcased the most pronounced signals of a changing climate: Sea ice is reduced by more the ten percent per decade. At the same time, global warming trends have their maximum in Arctic latitudes often labled Arctic Amplification. There is strong evidence that amplified Arctic changes feed back into mid-latitudes in winter. We identified mechanisms that link recent Arctic changes through vertically propagating planetary waves to events of a weakened stratospheric polar vortex. Related anomalies propagate downward and lead to negative AO-like situations in the troposphere. European winter climate is sensitive to negative AO situations in terms of cold air outbreaks that are likely to occur more often in that case. These results based on ERA-Interim reanalysis data do not allow to dismiss other potential forcing factors leading to observed mid-latitude climate changes. Nevertheless, properly designed Atmospheric General Circulation Model (AGCM) experiments with AFES and ECHAM6 are able to reproduce observed atmospheric circulation changes if only observed sea ice changes in the Arctic are prescribed. This allows to deduce mechanisms that explain how Arctic Amplification can lead to a negative AO response via a stratospheric pathway. Further investigation of these mechanisms may feed into improved prediction systems.

  9. Environmental control on the paleo- and environmental magnetic record on the Yermak Plateau, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Wiers, Steffen; Snowball, Ian; O'Regan, Matt; Almqvist, Bjarne

    2017-04-01

    The Yermak Plateau, situated north of Svalbard, has been recognized as one of several places in the Arctic Ocean where paleomagnetism yields controversial results. Despite low sedimentation rates, excursional paleomagnetic directions have been reconstructed from many cores in the region. Commonly reported geomagnetic excursions, i.e. Laschamp, Norwegian-Greenland-Sea and Blake, show considerably longer durations and younger ages compared to established short-lived geomagnetic polarity microchrons. An environmental control on the paleomagnetic record, connected to self-reversal during maghemitization of titanomagnetite has been proposed as one explanation for the wide occurrence of anomalous paleomagnetic data in the Arctic Ocean, but it remains unclear what mechanisms are responsible. Without independent stratigraphic control and independent dating it is difficult to distinguish between true and false records of the paleomagnetic field. Here we present a paleo- and environmental magnetic record from an 8.6 m long oriented Kasten core (PS92/39-02) collected at 1464 m water depth on the Yermak Plateau (81.94°N 13.82°E). The density and magnetic susceptibility fit well into the regional stratigraphy and allow for correlation of different parameters with independently dated records. During AF demagnetization zones with a weak-medium gyro-remanence and/or spurious ARM acquisition were observed at fields above 70 mT, but in some instances above 50 mT, coinciding with shallow to positive inclination zones. Based on a gyro-cleaned record the initial paleomagnetic age model fits well into the regional constraints. The top of the core was assigned to be recent, the first observed excursion was assigned to Laschamp (ca. 41ka), the second to Norwegian-Greenland Sea (ca. 70-80 ka) and the top of the third to Blake (ca. 110 ka). With no excursions observed below Blake, the bottom of the sediment sequence was assumed to be younger than 180 ka (the age of the Iceland Basin

  10. Additive impacts of experimental climate change increase risk to an ectotherm at the Arctic's edge

    USGS Publications Warehouse

    Davenport, Jon M.; Hossack, Blake R.; Fishback, LeeAnn

    2017-01-01

    Globally, Arctic and Subarctic regions have experienced the greatest temperature increases during the last 30 years. These extreme changes have amplified threats to the freshwater ecosystems that dominate the landscape in many areas by altering water budgets. Several studies in temperate environments have examined the adaptive capacity of organisms to enhance our understanding of the potential repercussions of warming and associated accelerated drying for freshwater ecosystems. However, few experiments have examined these impacts in Arctic or Subarctic freshwater ecosystems, where the climate is changing most rapidly. To evaluate the capacity of a widespread ectotherm to anticipated environmental changes, we conducted a mesocosm experiment with wood frogs (Rana sylvatica) in the Canadian Subarctic. Three warming treatments were fully crossed with three drying treatments to simulate a range of predicted changes in wetland environments. We predicted wetland warming and drying would act synergistically, with water temperature partially compensating for some of the negative effects of accelerated drying. Across all drying regimes, a 1 °C increase in water temperature increased the odds of survival by 1.79, and tadpoles in 52-day and 64-day hydroperiod mesocosms were 4.1–4.3 times more likely to survive to metamorphosis than tadpoles in 45-day mesocosms. For individuals who survived to metamorphosis, there was only a weak negative effect of temperature on size. As expected, increased temperatures accelerated tadpole growth through day 30 of the experiment. Our results reveal that one of the dominant herbivores in Subarctic wetlands, wood frog tadpoles, are capable of increasing their developmental rates in response to increased temperature and accelerated drying, but only in an additive manner. The strong negative effects of drying on survival, combined with lack of compensation between these two environmental drivers, suggest changes in the aquatic environment

  11. Multivariate benthic ecosystem functioning in the Arctic - benthic fluxes explained by environmental parameters in the southeastern Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Link, H.; Chaillou, G.; Forest, A.; Piepenburg, D.; Archambault, P.

    2012-11-01

    The effects of climate change on Arctic marine ecosystems and their biogeochemical cycles are difficult to predict given the complex physical, biological and chemical interactions among the ecosystem components. To predict the impact of future changes on benthic biogeochemical fluxes in the Arctic, it is important to understand the influence of short-term (seasonal to annual), long-term (annual to decadal) and other environmental variability on their spatial distribution. In summer 2009, we measured fluxes of dissolved oxygen, nitrate, nitrite, ammonia, soluble reactive phosphate and silicic acid at the sediment-water interface at eight sites in the southeastern Beaufort Sea at water depths from 45 to 580 m to address the following question and hypotheses using a statistical approach: (1) What is the spatial variation of benthic boundary fluxes (sink and source)? (2) The classical proxy of benthic activity, oxygen flux, does not determine overall spatial variation in fluxes. (3) A different combination of environmental conditions that vary either on a long-term (decadal) or short-term (seasonal to annual) scale determine each single flux. And (4) A combination of environmental conditions varying on the short and long-term scale drive the overall spatial variation in benthic boundary fluxes. The spatial pattern of the measured benthic boundary fluxes was heterogeneous. Multivariate analysis of flux data showed that no single or reduced combination of fluxes could explain the majority of spatial variation. We tested the influence of eight environmental parameters: sinking flux of particulate organic carbon above the bottom, sediment surface Chl a (both short-term), porosity, surface manganese and iron concentration, bottom water oxygen concentrations (all long-term), phaeopigments (intermediate-term influence) and Δ13Corg (terrestrial influence) on benthic fluxes. Short-term environmental parameters were most important for explaining oxygen, ammonium and nitrate

  12. Environmentalism and Social Change.

    ERIC Educational Resources Information Center

    Tiemann, Adrian R.

    A high level of individual concern with environmental issues characterizes the ecological crisis of the 1970s. In spite of this increased public involvement, however, many basic problems facing humans as they interact with the environment have remained constant throughout history. For example, the sometimes conflicting concepts of scarcity,…

  13. Future Arctic temperature change resulting from a range of aerosol emissions scenarios

    SciTech Connect

    Wobus, Cameron; Flanner, Mark; Sarofim, Marcus C.; Moura, Maria Cecilia P.; Smith, Steven J.

    2016-05-17

    The Arctic temperature response to emissions of aerosols – specifically black carbon (BC), organic carbon (OC), and sulfate – depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly on the blend of emissions sources being targeted. We use recently published equilibrium Arctic temperature response factors for BC, OC, and sulfate to estimate the range of present-day and future Arctic temperature changes from seven different aerosol emissions scenarios. Globally, Arctic temperature changes calculated from all of these emissions scenarios indicate that present-day emissions from the domestic and transportation sectors generate the majority of present-day Arctic warming from BC. However, in all of these scenarios, this warming is more than offset by cooling resulting from SO2 emissions from the energy sector. Thus, long-term climate mitigation strategies that are focused on reducing carbon dioxide (CO2) emissions from the energy sector could generate short-term, aerosol-induced Arctic warming. As a result, a properly phased approach that targets BC-rich emissions from the transportation sector as well as the domestic sectors in key regions – while simultaneously working toward longer-term goals of CO2 mitigation – could potentially avoid some amount of short-term Arctic warming.

  14. Future Arctic temperature change resulting from a range of aerosol emissions scenarios

    DOE PAGES

    Wobus, Cameron; Flanner, Mark; Sarofim, Marcus C.; ...

    2016-05-17

    The Arctic temperature response to emissions of aerosols – specifically black carbon (BC), organic carbon (OC), and sulfate – depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly on the blend of emissions sources being targeted. We use recently published equilibrium Arctic temperature response factors for BC, OC, and sulfate to estimate the range of present-day and future Arctic temperature changes from seven different aerosol emissions scenarios. Globally, Arctic temperature changes calculated from all of these emissions scenarios indicate that present-day emissions frommore » the domestic and transportation sectors generate the majority of present-day Arctic warming from BC. However, in all of these scenarios, this warming is more than offset by cooling resulting from SO2 emissions from the energy sector. Thus, long-term climate mitigation strategies that are focused on reducing carbon dioxide (CO2) emissions from the energy sector could generate short-term, aerosol-induced Arctic warming. As a result, a properly phased approach that targets BC-rich emissions from the transportation sector as well as the domestic sectors in key regions – while simultaneously working toward longer-term goals of CO2 mitigation – could potentially avoid some amount of short-term Arctic warming.« less

  15. Rapid Arctic Changes due to Infrastructure and Climate (RATIC) in the Russian North

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Kofinas, G.; Raynolds, M. K.; Kanevskiy, M. Z.; Shur, Y.; Ambrosius, K.; Matyshak, G. V.; Romanovsky, V. E.; Kumpula, T.; Forbes, B. C.; Khukmotov, A.; Leibman, M. O.; Khitun, O.; Lemay, M.; Allard, M.; Lamoureux, S. F.; Bell, T.; Forbes, D. L.; Vincent, W. F.; Kuznetsova, E.; Streletskiy, D. A.; Shiklomanov, N. I.; Fondahl, G.; Petrov, A.; Roy, L. P.; Schweitzer, P.; Buchhorn, M.

    2015-12-01

    The Rapid Arctic Transitions due to Infrastructure and Climate (RATIC) initiative is a forum developed by the International Arctic Science Committee (IASC) Terrestrial, Cryosphere, and Social & Human working groups for developing and sharing new ideas and methods to facilitate the best practices for assessing, responding to, and adaptively managing the cumulative effects of Arctic infrastructure and climate change. An IASC white paper summarizes the activities of two RATIC workshops at the Arctic Change 2014 Conference in Ottawa, Canada and the 2015 Third International Conference on Arctic Research Planning (ICARP III) meeting in Toyama, Japan (Walker & Pierce, ed. 2015). Here we present an overview of the recommendations from several key papers and posters presented at these conferences with a focus on oil and gas infrastructure in the Russian north and comparison with oil development infrastructure in Alaska. These analyses include: (1) the effects of gas- and oilfield activities on the landscapes and the Nenets indigenous reindeer herders of the Yamal Peninsula, Russia; (2) a study of urban infrastructure in the vicinity of Norilsk, Russia, (3) an analysis of the effects of pipeline-related soil warming on trace-gas fluxes in the vicinity of Nadym, Russia, (4) two Canadian initiatives that address multiple aspects of Arctic infrastructure called Arctic Development and Adaptation to Permafrost in Transition (ADAPT) and the ArcticNet Integrated Regional Impact Studies (IRIS), and (5) the effects of oilfield infrastructure on landscapes and permafrost in the Prudhoe Bay region, Alaska.

  16. Future Arctic temperature change resulting from a range of aerosol emissions scenarios

    NASA Astrophysics Data System (ADS)

    Wobus, Cameron; Flanner, Mark; Sarofim, Marcus C.; Moura, Maria Cecilia P.; Smith, Steven J.

    2016-06-01

    The Arctic temperature response to emissions of aerosols -- specifically black carbon (BC), organic carbon (OC), and sulfate -- depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly on the blend of emissions sources being targeted. We use recently published equilibrium Arctic temperature response factors for BC, OC, and sulfate to estimate the range of present-day and future Arctic temperature changes from seven different aerosol emissions scenarios. Globally, Arctic temperature changes calculated from all of these emissions scenarios indicate that present-day emissions from the domestic and transportation sectors generate the majority of present-day Arctic warming from BC. However, in all of these scenarios, this warming is more than offset by cooling resulting from SO2 emissions from the energy sector. Thus, long-term climate mitigation strategies that are focused on reducing carbon dioxide (CO2) emissions from the energy sector could generate short-term, aerosol-induced Arctic warming. A properly phased approach that targets BC-rich emissions from the transportation sector as well as the domestic sectors in key regions -- while simultaneously working toward longer-term goals of CO2 mitigation -- could potentially avoid some amount of short-term Arctic warming.

  17. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Tremblay, Jean-Éric; Anderson, Leif G.; Matrai, Patricia; Coupel, Pierre; Bélanger, Simon; Michel, Christine; Reigstad, Marit

    2015-12-01

    The main environmental factors driving spatial patterns, variability and change in primary production (PP) in the Arctic Ocean are reviewed. While instantaneous PP rates are predominantly influenced by the local factors affecting light penetration through clouds, sea ice and water, net PP (NPP) at the annual scale is conditioned by a hierarchy of remote and local processes that affect nutrient supply and light availability in general. Nutrient supply sets spatial differences in realized or potential trophic status (i.e. oligotrophic or eutrophic), whereas light availability modulates PP within each regime. Horizontal nutrient supply through Atlantic and Pacific ocean gateways differ markedly, which is explained by their position at opposite ends of the global meridional overturning circulation and imbalanced nitrogen (N) cycling in the Pacific sector. Nutrient supply by rivers is locally important, but does not appear to sustain a major portion of overall pan-Arctic NPP so far. Horizontal nutrient inputs to the surface Arctic Ocean are eventually transferred to the halocline through winter convection and the decomposition of settling organic matter. The subsequent re-injection of these nutrients to the euphotic zone varies by two orders of magnitude across sectors, depending on the strength and persistence of the vertical stratification. Such differences in nutrient delivery are commensurate with those of PP and NPP rates. Widespread N deficiency in surface waters fosters the occurrence and seasonal persistence of subsurface layers of maximum chlorophyll a (SCM) and phytoplankton carbon biomass in several sectors. The contribution of these layers to NPP is possibly higher in the Arctic than in thermally-stratified waters of the subtropical gyres due to a combination of extreme acclimation to low light and a shallow nitracline in the former. The overall impacts of SCM layers on biogeochemical fluxes remain to be quantified directly, both regionally and at the pan-Arctic

  18. Long-term changes in pigmentation of arctic Daphnia provide potential for reconstructing aquatic UV exposure

    NASA Astrophysics Data System (ADS)

    Nevalainen, Liisa; Rantala, Marttiina V.; Luoto, Tomi P.; Ojala, Antti E. K.; Rautio, Milla

    2016-07-01

    Despite the biologically damaging impacts of solar ultraviolet radiation (UV) in nature, little is known about its natural variability, forcing mechanisms, and long-term effects on ecosystems and organisms. Arctic zooplankton, for example the aquatic keystone genus Daphnia (Crustacea, Cladocera) responds to biologically damaging UV by utilizing photoprotective strategies, including pigmentation. We examined the preservation and content of UV-screening pigments in fossil Daphnia remains (ephippia) in two arctic lake sediment cores from Cornwallis Island (Lake R1), Canada, and Spitsbergen (Lake Fugledammen), Svalbard. The aims were to document changes in the degree of UV-protective pigmentation throughout the past centuries, elucidate the adaptive responses of zooplankton to long-term variations in UV exposure, and estimate the potential of fossil zooplankton pigments in reconstructing aquatic UV regimes. The spectroscopic absorbance measurements of fossil Daphnia ephippia under UV (280-400 nm) and visible light (400-700 nm) spectral ranges indicated that melanin (absorbance maxima at UV wavebands 280-350 nm) and carotenoids (absorbance maxima at 400-450 nm) pigments were preserved in the ephippia in both sediment cores. Downcore measurements of the most important UV-protective pigment melanin (absorbance measured at 305 and 340 nm) showed marked long-term variations in the degree of melanisation. These variations likely represented long-term trends in aquatic UV exposure and were positively related with solar radiation intensity. The corresponding trends in melanisation and solar activity were disrupted at the turn of the 20th century in R1, but remained as strong in Fugledammen. The reversed trends in the R1 core were simultaneous with a significant aquatic community reorganization taking place in the lake, suggesting that recent environmental changes, likely related to climate warming had a local effect on pigmentation strategies. This time horizon is also

  19. Environmental impacts of shipping in 2030 with a particular focus on the Arctic region

    NASA Astrophysics Data System (ADS)

    Dalsøren, S. B.; Samset, B. H.; Myhre, G.; Corbett, J. J.; Minjares, R.; Lack, D.; Fuglestvedt, J. S.

    2012-10-01

    We quantify the concentrations change of atmospheric pollutants and Radiative Forcing (RF) of short-lived components due to shipping emissions of NOx, SOx, CO, NMVOCs, BC and OC. A set of models is used to evaluate the period 2004-2030. This time period reflects expected increasing traffic in the Arctic region. Two datasets for ship emissions are used that may characterize the potential impact from shipping and the degree to which shipping controls may mitigate impacts: A high (HIGH) scenario and a low scenario with Maximum Feasible Reduction (MFR) of black carbon in the Arctic. In MFR, BC emissions in the Arctic are reduced with 70% representing a combination technology performance and/or reasonable advances in single-technology performance. Both scenarios result in moderate to substantial increases in concentrations of pollutants both globally and in the Arctic. Exceptions are black carbon in the MFR scenario, and sulfur species and organic carbon in both scenarios due to the future phase-in of current regulation that reduces fuel sulfur content. In the season with potential transit traffic through the Arctic in 2030 significant increases occur for all pollutants in large parts of the Arctic. Net global RFs from 2004-2030 of 53 mW m-2 (HIGH) and 73 mW m-2 (MFR) are similar to those found for preindustrial to present net global aircraft RF. The found warming contrasts the cooling from historical ship emissions. The reason for this difference and the higher global forcing for the MFR scenario is mainly the reduced future fuel sulfur content resulting in less cooling from sulfate aerosols. Arctic regional forcing is largest in the HIGH scenario because other components become locally more important in polar latitudes. In the HIGH scenario ozone dominates the RF during Arctic summer and the transit season. RF due to BC in air, and snow and ice becomes of significance in Arctic spring. For the HIGH scenario the net Arctic RF during spring is 5 times higher than in

  20. Environmental impacts of shipping in 2030 with a particular focus on the Arctic region

    NASA Astrophysics Data System (ADS)

    Dalsøren, S. B.; Samset, B. H.; Myhre, G.; Corbett, J. J.; Minjares, R.; Lack, D.; Fuglestvedt, J. S.

    2013-02-01

    We quantify the concentrations changes and Radiative Forcing (RF) of short-lived atmospheric pollutants due to shipping emissions of NOx, SOx, CO, NMVOCs, BC and OC. We use high resolution ship emission inventories for the Arctic that are more suitable for regional scale evaluation than those used in former studies. A chemical transport model and a RF model are used to evaluate the time period 2004-2030, when we expect increasing traffic in the Arctic region. Two datasets for ship emissions are used that characterize the potential impact from shipping and the degree to which shipping controls may mitigate impacts: a high (HIGH) scenario and a low scenario with Maximum Feasible Reduction (MFR) of black carbon in the Arctic. In MFR, BC emissions in the Arctic are reduced with 70% representing a combination technology performance and/or reasonable advances in single-technology performance. Both scenarios result in moderate to substantial increases in concentrations of pollutants both globally and in the Arctic. Exceptions are black carbon in the MFR scenario, and sulfur species and organic carbon in both scenarios due to the future phase-in of current regulation that reduces fuel sulfur content. In the season with potential transit traffic through the Arctic in 2030 we find increased concentrations of all pollutants in large parts of the Arctic. Net global RFs from 2004-2030 of 53 mW m-2 (HIGH) and 73 mW m-2 (MFR) are similar to those found for preindustrial to present net global aircraft RF. The found warming contrasts with the cooling from historical ship emissions. The reason for this difference and the higher global forcing for the MFR scenario is mainly the reduced future fuel sulfur content resulting in less cooling from sulfate aerosols. The Arctic RF is largest in the HIGH scenario. In the HIGH scenario ozone dominates the RF during the transit season (August-October). RF due to BC in air, and snow and ice becomes significant during Arctic spring. For the HIGH

  1. Arctic climate sensitivity to changes in North Pacific and North Atlantic ocean heat flux

    NASA Astrophysics Data System (ADS)

    Praetorius, S. K.; Rugenstein, M.; Caldeira, K.

    2016-12-01

    Paleoclimate records indicate abrupt swings in Arctic temperature that were coeval with abrupt changes in sea surface temperature (SST) in both the North Pacific and North Atlantic oceans throughout the late Pleistocene, suggesting a strong coupling between extratropical ocean heat flux and Arctic climate. While the processes that contribute to Arctic amplification, including surface-albedo, cloud, and temperature feedbacks, are generally well-established, the relative impacts of changes in ocean heat flux sourced from different ocean basins on poleward heat transfer and Arctic climate feedbacks are not well understood. We employ simulations with the Community Earth System Model version 1.0.4 using a slab ocean configuration with modified ocean-to-atmosphere heat fluxes sourced from the North Pacific and North Atlantic (30-60°N) to determine the sensitivity of Arctic amplification processes to zonal heterogeneities in northern hemisphere SST patterns. We find that a local heat flux magnitude equivalent to a globally averaged +1 W/m2 sourced from the North Pacific results in greater Arctic surface warming/cooling and sea ice decline/advance than the equivalent heat flux perturbation originating from the North Atlantic. We attribute this response primarily to greater net moisture transfer between the North Pacific and Arctic (relative to the North Atlantic simulations) in response to changes in surface ocean heat flux, with accompanying impacts on cloud, sea ice, and temperature feedbacks that amplify the Arctic surface temperature response. In the case of a positive ocean-to-atmosphere heat flux anomaly from the North Pacific, greater moisture transport into the Arctic results in: 1) enhanced sensible and latent heat transfer to the Arctic 2) enhanced low cloud formation and attendant surface infrared radiation in the Arctic, and 3) enhanced area of sea ice decline, which is promoted by the first two processes and further amplifies surface warming through the ice

  2. Response of Arctic sea level and hydrography to hydrological regime change over boreal catchments

    NASA Astrophysics Data System (ADS)

    Tourian, Mohammad J.; Sneeuw, Nico; Losch, Martin; Rabe, Benjamin

    2016-04-01

    Changes in freshwater influx into the Arctic Ocean are a key driver of regional dynamics and sea level change in the Arctic waters. Low-salinity surface waters maintain a strong stratification in the Arctic. This halocline largely shields the cool polar surface water and sea ice from the warmer waters of Atlantic origin below and, hence, inhibits vertical heat fluxes of heat, salt and nutrients. Recently observed changes in the freshwater content of the upper Arctic Ocean raise the question of the effect of these changes on the region. Changes in the freshwater budget affect regional steric sea level, but also the modified ocean dynamics may change sea level through mass transports within the Arctic. One component of the freshwater budget is continental runoff. The hydrological regime of river runoff appears to be non-stationary. There is both interannual variability and a significantly positive trend since the 1970s. The decreasing Arctic sea-ice cover may be a possible reason for the non-stationary behavior of runoff, especially in coastal and marginal seas. The decrease of sea ice due to global warming would lead to cloud formation and, indeed, increased precipitation. During the warmer season, increased precipitation would lead to more discharge of freshwater to the Arctic shelves and basins. The observational record of discharge into the Arctic Ocean, however, is still too sparse to address important science questions about the long-term behavior and development of Arctic sea level and climate. Given the insufficient monitoring from in situ gauge networks, and without any outlook of improvement, spaceborne approaches are currently being investigated. In this contribution we assess the long-term behavior of monthly runoff time series obtained from hydro-geodetic approaches and explore the effects of interannual runoff variability and long term trends on ocean model simulations.

  3. The Potential Impact of Hydrologic Change on Humans in the Arctic

    NASA Astrophysics Data System (ADS)

    White, D.; Alessa, L.; Hinzman, L.; Schweitzer, P.

    2003-12-01

    Freshwater is critical to the sustainability of humans in the Arctic. Water used for drinking or cleaning can promote good health or propagate disease. Water supports the plants and animals used for subsistence harvest. Water prevents or promotes access to food or shelter. Water has always been and will always be integral to the culture of humans in the Arctic. In the past 30 years, the climate in the Arctic has warmed appreciably and there is evidence for a significant polar amplification of global warming in the future. Recent studies suggest that climate change will have a significant impact on arctic hydrology. Changes in the hydrologic cycle will affect both the presence of surface water and the thermal balance in soil. While preliminary evidence suggests a changing climate will have a significant impact on the hydrologic cycle in arctic regions, very little evidence is available to predict how the quality and quantity of freshwater available to humans is likely to change. Even less is understood about how hydrologic changes will affect the health, sustainability, and culture of humans in the Arctic. The overall objective of the this research is to understand the vital role of freshwater in the lives of humans in the Arctic, how it has changed in the recent past, and how it is likely to change in the future. We seek to build a model that will allow us to predict climate-induced changes in the hydrologic cycle and their effects on water quality and availability. We will then attempt to understand how these changes will impact the life and culture of people in the Arctic. This study will take place on the Seward Peninsula where climate induced changes in the hydrologic cycle are already being observed. We will draw upon community interaction, historical documentation, field observations, laboratory experimentation, and computer modeling to achieve the project goals.

  4. Arctic cities and climate change: climate-induced changes in stability of Russian urban infrastructure built on permafrost

    NASA Astrophysics Data System (ADS)

    Shiklomanov, Nikolay; Streletskiy, Dmitry; Swales, Timothy

    2014-05-01

    Planned socio-economic development during the Soviet period promoted migration into the Arctic and work force consolidation in urbanized settlements to support mineral resources extraction and transportation industries. These policies have resulted in very high level of urbanization in the Soviet Arctic. Despite the mass migration from the northern regions during the 1990s following the collapse of the Soviet Union and the diminishing government support, the Russian Arctic population remains predominantly urban. In five Russian Administrative regions underlined by permafrost and bordering the Arctic Ocean 66 to 82% (depending on region) of the total population is living in Soviet-era urban communities. The political, economic and demographic changes in the Russian Arctic over the last 20 years are further complicated by climate change which is greatly amplified in the Arctic region. One of the most significant impacts of climate change on arctic urban landscapes is the warming and degradation of permafrost which negatively affects the structural integrity of infrastructure. The majority of structures in the Russian Arctic are built according to the passive principle, which promotes equilibrium between the permafrost thermal regime and infrastructure foundations. This presentation is focused on quantitative assessment of potential changes in stability of Russian urban infrastructure built on permafrost in response to ongoing and future climatic changes using permafrost - geotechnical model forced by GCM-projected climate. To address the uncertainties in GCM projections we have utilized results from 6 models participated in most recent IPCC model inter-comparison project. The analysis was conducted for entire extent of Russian permafrost-affected area and on several representative urban communities. Our results demonstrate that significant observed reduction in urban infrastructure stability throughout the Russian Arctic can be attributed to climatic changes and that

  5. Long Term Statistical Measurements of Environmental Acoustics Parameters in the Arctic. AEAS Report Number 2. Low Frequency Transmission Loss Measurements in the Central Arctic Ocean.

    DTIC Science & Technology

    2014-09-26

    RD-RI56 576 LONG TERM STATISTICAL MEASUREMENTS OF ENVIRONMENTAL 1/2 ACOUSTICS PRAMETERS I..(U) POLRR RESEARCH LAB INC CARPINTERIA CA B M BUCK 15 JAN...BUREAU Of STANDARDS-1963-A I l I E ".-.’ .’ In :j: Lona Term Statistical Measurements of Environmental Acoustics Parameters in the Arctic - AEAS...No - Lo Frequency Transmission ’>:--’.-’- , .- ’ ,. ’.*- Lona Term Statistical Measurements ofcean Environmental Acoustics Parameters ,..-’, in the

  6. Nonlinear response of mid-latitude weather to the changing Arctic

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Dethloff, Klaus; Francis, Jennifer A.; Hall, Richard J.; Hanna, Edward; Kim, Seong-Joong; Screen, James A.; Shepherd, Theodore G.; Vihma, Timo

    2016-11-01

    Are continuing changes in the Arctic influencing wind patterns and the occurrence of extreme weather events in northern mid-latitudes? The chaotic nature of atmospheric circulation precludes easy answers. The topic is a major science challenge, as continued Arctic temperature increases are an inevitable aspect of anthropogenic climate change. We propose a perspective that rejects simple cause-and-effect pathways and notes diagnostic challenges in interpreting atmospheric dynamics. We present a way forward based on understanding multiple processes that lead to uncertainties in Arctic and mid-latitude weather and climate linkages. We emphasize community coordination for both scientific progress and communication to a broader public.

  7. New record shows pronounced changes in Arctic Ocean circulation and climate

    NASA Astrophysics Data System (ADS)

    Darby, D.; Bischof, J.; Cutter, G.; de Vernal, A.; Hillaire-Marcel, C.; Dwyer, G.; McManus, J.; Osterman, L.; Polyak, L.; Poore, R.

    Does the Arctic Ocean surface circulation north of Alaska oscillate to and fro like a slow washing machine on millennial timescales? New evidence from the sediment record over the last 10,000 years suggests that it does and that in the recent past, the western Arctic Ocean was much warmer than it is today.Similar Holocene climatic fluctuations are seen in many records worldwide, yet their origin remains enigmatic. Modeling and observational studies suggest that the Arctic may play an important role in these climate fluctuations through changes in surface albedo, modifications of oceanic thermohaline circulation, and changes in biogeochemical cycling of nutrients and radiatively important gases [PARCS, 1999].

  8. Assessing the Resource Gap in a Changing Arctic

    DTIC Science & Technology

    2013-04-01

    changing global climate. Environmental changes have brought new challenges and opportunities including transportation, tourism , exploration, and...access to previously inaccessible natural resources. These new opportunities will result in increased human activity in the region from tourism to...transportation, tourism , exploration, and access to previously inaccessible natural resources. These new opportunities will result in increased human

  9. Regional Arctic System Model (RASM): A Tool to Advance Understanding and Prediction of Arctic Climate Change at Process Scales

    NASA Astrophysics Data System (ADS)

    Maslowski, W.; Roberts, A.; Osinski, R.; Brunke, M.; Cassano, J. J.; Clement Kinney, J. L.; Craig, A.; Duvivier, A.; Fisel, B. J.; Gutowski, W. J., Jr.; Hamman, J.; Hughes, M.; Nijssen, B.; Zeng, X.

    2014-12-01

    The Arctic is undergoing rapid climatic changes, which are some of the most coordinated changes currently occurring anywhere on Earth. They are exemplified by the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Global Climate and Global Earth System Models (GC/ESMs) are in broad agreement with these changes, the rate of change in the GC/ESMs remains outpaced by observations. Reasons for that stem from a combination of coarse model resolution, inadequate parameterizations, unrepresented processes and a limited knowledge of physical and other real world interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the GC/ESM limitations in simulating observed seasonal to decadal variability and trends in the sea ice cover and climate. RASM is a high resolution, fully coupled, pan-Arctic climate model that uses the Community Earth System Model (CESM) framework. It uses the Los Alamos Sea Ice Model (CICE) and Parallel Ocean Program (POP) configured at an eddy-permitting resolution of 1/12° as well as the Weather Research and Forecasting (WRF) and Variable Infiltration Capacity (VIC) models at 50 km resolution. All RASM components are coupled via the CESM flux coupler (CPL7) at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled earth system model, which due to the additional constraints from lateral boundary conditions and nudging within a regional model domain facilitates detailed comparisons with observational statistics that are not possible with GC/ESMs. In this talk, we will emphasize the utility of RASM to understand sensitivity to variable parameter space, importance of critical processes, coupled feedbacks and ultimately to reduce uncertainty in arctic climate change projections.

  10. Ecological effects of environmental change.

    PubMed

    Luque, Gloria M; Hochberg, Michael E; Holyoak, Marcel; Hossaert, Martine; Gaill, Françoise; Courchamp, Franck

    2013-05-01

    This Special Issue of Ecology Letters presents contributions from an international meeting organised by Centre National de la Recherche Scientifique (CNRS) and Ecology Letters on the broad theme of ecological effects of global environmental change. The objectives of these articles are to synthesise, hypothesise and illustrate the ecological effects of environmental change drivers and their interactions, including habitat loss and fragmentation, pollution, invasive species and climate change. A range of disciplines is represented, including stoichiometry, cell biology, genetics, evolution and biodiversity conservation. The authors emphasise the need to account for several key ecological factors and different spatial and temporal scales in global change research. They also stress the importance of ecosystem complexity through approaches such as functional group and network analyses, and of mechanisms and predictive models with respect to environmental responses to global change across an ecological continuum: population, communities and ecosystems. Lastly, these articles provide important insights and recommendations for environmental conservation and management, as well as highlighting future research priorities.

  11. Influence of Climate Change on Extratropical Cyclones and Resulting Effects on Arctic Hydrology

    NASA Astrophysics Data System (ADS)

    Finnis, J.; Serreze, M. C.; Holland, M. M.; John, C. J.

    2005-12-01

    The freshwater content of the Arctic Ocean is of concern in climate studies, due to its potential influence on deep water formation in the North Atlantic and, as a result, on global thermohaline circulation. The ultimate short-term source of this freshwater is high latitude precipitation, whether it falls directly into the Arctic Ocean, is delivered as runoff via the Arctic river network, or is carried by interbasin ocean currents. Much of this precipitation is produced during the passage of extratropical cyclones, and changes in the intensity, frequency or preferred locations of these events can lead to critical changes in the spatial and temporal distributions of this precipitation. Using output from version three of the Community Climate System Model (CCSM), a coupled general circulation model, the effects of climate change on the character and frequency of these storms will be discussed and related to changes in source terms of the Arctic Ocean freshwater budget.

  12. Changes in temperature and tracer distributions within the Arctic Ocean: results from the 1994 Arctic Ocean section

    NASA Astrophysics Data System (ADS)

    Carmack, Eddy C.; Aagaard, Knut; Swift, James H.; MacDonald, Robie W.; McLaughlin, Fiona A.; Peter Jones, E.; Perkin, Ronald G.; Smith, John N.; Ellis, Katherine M.; Killius, Linus R.

    Major changes in temperature and tracer properties within the Arctic Ocean are evident in a comparison of data obtained during the 1994 Arctic Ocean Section to earlier measurements. (1) Anomalously warm and well-ventilated waters are now found in the Nansen, Amundsen and Makarov basins, with the largest temperature differences, as much as 1 °C, in the core of the Atlantic layer (200-400 m). Thus thermohaline transition appears to follow from two distinct mechanisms: narrow (order 100 km), topographically-steered cyclonic flows that rapidly carry new water around the perimeters of the basins; and multiple intrusions, 40-60 m thick, which extend laterally into the basin interiors. (2) Altered nutrient distributions that within the halocline distinguish water masses of Pacific and Atlantic origins likewise point to a basin-wide redistribution of properties. (3) Distributions of CFCs associated with inflows from adjacent shelf regions and from the Atlantic demonstrate recent ventilation to depths exceeding 1800 m. (4) Concentrations of the pesticide HCH in the surface and halocline layers are supersaturated with respect to present atmospheric concentrations and show that the ice-capped Arctic Ocean is now a source to the global atmosphere of this contaminant. (5) The radionuclide 129I is now widespread throughout the Arctic Ocean. Although the current level of 129I level poses no significant radiological threat, its rapid arrival and wide distribution illustrate the speed and extent to which waterborne contaminants are dispersed within the Arctic Ocean on pathways along which other contaminants can travel from western European or Russian sources.

  13. Seasonal Changes in the Marine Production Cycles in Response to Changes in Arctic Sea Ice and Upper Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Spitz, Y. H.; Ashjian, C. J.; Campbell, R. G.; Steele, M.; Zhang, J.

    2011-12-01

    Significant seasonal changes in arctic sea ice have been observed in recent years, characterized by unprecedented summer melt-back. As summer sea ice extent shrinks to record low levels, the peripheral seas of the Arctic Ocean are exposed much earlier to atmospheric surface heat flux, resulting in longer and warmer summers with more oceanic heat absorption. The changing seasonality in the arctic ice/ocean system will alter the timing, magnitude, duration, and pattern of marine production cycles by disrupting key trophic linkages and feedbacks in planktonic food webs. We are using a coupled pan-arctic Biology/Ice/Ocean Modeling and Assimilation System (BIOMAS) to investigate the changes in the patterns of seasonality in the arctic physical and biological system. Focus on specific regions of the Arctic, such as the Chukchi Sea, the Beaufort Sea and the adjacent central Arctic, reveals that changes in the timing of the spring bloom, its duration and the response of the secondary producers vary regionally. The major changes are, however, characterized by an earlier phytoplankton bloom and a slight increase of the biomass. In addition, the largest response in the secondary producers is seen in the magnitude of the microzooplankton concentration as well as in the period (early summer to late fall) over which the microzooplankton is present.

  14. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic using a High-Resolution Regional Arctic Climate System Model

    SciTech Connect

    Lettenmaier, Dennis P

    2013-04-08

    Primary activities are reported in these areas: climate system component studies via one-way coupling experiments; development of the Regional Arctic Climate System Model (RACM); and physical feedback studies focusing on changes in Arctic sea ice using the fully coupled model.

  15. Modeling shrub expansion under changing climate across Arctic tundra of North America

    NASA Astrophysics Data System (ADS)

    Mekonnen, Z. A.; Riley, W. J.; Grant, R. F.

    2016-12-01

    Recent changes in species composition and increased shrub abundance in particular has been reported as a result of amplified warming in Arctic tundra. Despite these changes, the driving factors that control recent Arctic shrubification and its future trajectory remain largely uncertain. Here, we used an ecosystem model, ecosys, to mechanistically represent and explain the underlying processes of how plant functional types (PFTs) change under climate change in recent decades and in the 21st century across the Arctic tundra of North America (NA). Modeled changes in productivity of shrubs were corroborated by observed changes across different sites of the NA Arctic tundra. Preliminary modeling results are consistent with observations, showing 20 - 30 % increase in shrub productivity over the past 30 years, across the selected sites. Recent and projected warming was modeled to increase thawing of the permafrost that deepened the thaw layer, thus increasing nutrient availability and enhancing shrub growth across the Arctic tundra. Although there was spatial heterogeneity and contrasting modeled responses of co-existing Arctic PFTs, warming resulted in overall increases in shrub abundance and a reduction in growth of non-vascular plants across the tundra. A particular increase in productivity of deciduous vs. evergreen shrubs was modeled through differences in resource investment and carbon and nutrients retention in leaves. We also discuss biophysical effects of shrub cover changes associated with differences in albedo and latent heat fluxes.

  16. Sensitivity of the carbon cycle in the Arctic to climate change

    Treesearch

    A.D. McGuire; L.G. Anderson; T.R. Christensen; S. Dallimore; L. Guo; D.J. Hayes; M. Heimann; T.D. Lorenson; R.W. Macdonald; N. Roulet

    2009-01-01

    The recent warming in the Arctic is affecting a broad spectrum of physical, ecological, and human/cultural systems that may be irreversible on century time scales and have the potential to cause rapid changes in the earth system. The response of the carbon cycle of the Arctic to changes in climate is a major issue of global concern, yet there has not been a...

  17. Climate Change in the Arctic and it's Geopolitical Consequence - The Analysis of the European Union Perspective

    NASA Astrophysics Data System (ADS)

    Łuszczuk, Michał

    2011-01-01

    The article presents and briefly analyses the issue of the European Union's perspective on the problems of the climate change in the Arctic region and its geopolitical consequences. Offering an overview of the main documents in this area, the article concludes that the EU policy towards the Arctic is closely related with perceiving the climate change in polar regions not only in terms of new possibilities, but also as a source of new threats for the international environment

  18. Climate Change in the Arctic And It's Geopolitical Consequence - The Analysis of the European Union Perspective

    NASA Astrophysics Data System (ADS)

    Łuszczuk, Michał

    2011-01-01

    The article presents and briefly analyses the issue of the European Union's perspective on the problems of the climate change in the Arctic region and its geopolitical consequences. Offering an overview of the main documents in this area, the article concludes that the EU policy towards the Arctic is closely related with perceiving the climate change in polar regions not only in terms of new possibilities, but also as a source of new threats for the international environment.

  19. Ecological niche modeling of rabies in the changing Arctic of Alaska.

    PubMed

    Huettmann, Falk; Magnuson, Emily Elizabeth; Hueffer, Karsten

    2017-03-20

    Rabies is a disease of global significance including in the circumpolar Arctic. In Alaska enzootic rabies persist in northern and western coastal areas. Only sporadic cases have occurred in areas outside of the regions considered enzootic for the virus, such as the interior of the state and urbanized regions. Here we examine the distribution of diagnosed rabies cases in Alaska, explicit in space and time. We use a geographic information system (GIS), 20 environmental data layers and provide a quantitative non-parsimonious estimate of the predicted ecological niche, based on data mining, machine learning and open access data. We identify ecological correlates and possible drivers that determine the ecological niche of rabies virus in Alaska. More specifically, our models show that rabies cases are closely associated with human infrastructure, and reveal an ecological niche in remote northern wilderness areas. Furthermore a model utilizing climate modeling suggests a reduction of the current ecological niche for detection of rabies virus in Alaska, a state that is disproportionately affected by a changing climate. Our results may help to better inform public health decisions in the future and guide further studies on individual drivers of rabies distribution in the Arctic.

  20. Holocene environmental change in Kamchatka: A synopsis

    NASA Astrophysics Data System (ADS)

    Brooks, S. J.; Diekmann, B.; Jones, V. J.; Hammarlund, D.

    2015-11-01

    We present a synthesis of the results of a multiproxy, multisite, palaeoecological study of Holocene environmental change in Kamchatka, Far East Russia, details of which are presented elsewhere in the volume. We summarise the results of the analyses of pollen, diatom, chironomid, and testate amoebae assemblages, together with stable isotopes of oxygen and carbon, and sediment characteristics from the sediments of five lakes and a peat succession on a latitudinal gradient of the Kamchatka Peninsula, to infer environmental change and establish the major climate forcers and climatic teleconnections. There are synchronous shifts in the assemblage composition of most of the biota and across most sites at 6.5-6.2 ka BP, 5.2 ka BP, 4.0 ka BP, and 3.5 ka BP, suggesting a response to strong regional climate forcing at these times. These dates correspond to the warmest part of the Holocene Thermal Maximum (HTM) (6.5-6.2 ka BP), the beginning of the Neoglacial cooling (5.2 ka BP), the coolest and wettest part of the Neoglacial (4.0 ka BP), and a switch to warmer and drier conditions at 3.5 ka BP. Our results provide evidence for the penetration and domination of different air masses at different periods during the Holocene. Cool and dry periods in winter (e.g., at 6.0 ka BP) were driven by a relatively weak pressure gradient between the Siberian High and the Aleutian Low, whereas cool, wet periods in winter (e.g., the Neoglacial and during the LIA) developed when these two systems increased in strength. Warm, dry, continental periods in summer (e.g., at 2.5 ka BP) were driven by a weakening of the Siberian High. We find that the timing of the HTM in Kamchatka is later than in the Eurasian arctic but similar to northern Europe and the sub-arctic part of eastern Siberia. This progressive onset of the HTM was due to the effects of postglacial ice-sheet decay that modulated the routes of westerly storm tracks in Eurasia. A major ecosystem driver was the Siberian dwarf pine Pinus

  1. Multivariate benthic ecosystem functioning in the Arctic - benthic fluxes explained by environmental parameters in the southeastern Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Link, H.; Chaillou, G.; Forest, A.; Piepenburg, D.; Archambault, P.

    2013-09-01

    The effects of climate change on Arctic marine ecosystems and their biogeochemical cycles are difficult to predict given the complex physical, biological and chemical interactions among the ecosystem components. We studied benthic biogeochemical fluxes in the Arctic and the influence of short-term (seasonal to annual), long-term (annual to decadal) and other environmental variability on their spatial distribution to provide a baseline for estimates of the impact of future changes. In summer 2009, we measured fluxes of dissolved oxygen, nitrate, nitrite, ammonia, soluble reactive phosphate and silicic acid at the sediment-water interface at eight sites in the southeastern Beaufort Sea at water depths from 45 to 580 m. The spatial pattern of the measured benthic boundary fluxes was heterogeneous. Multivariate analysis of flux data showed that no single or reduced combination of fluxes could explain the majority of spatial variation, indicating that oxygen flux is not representative of other nutrient sink-source dynamics. We tested the influence of eight environmental parameters on single benthic fluxes. Short-term environmental parameters (sinking flux of particulate organic carbon above the bottom, sediment surface Chl a) were most important for explaining oxygen, ammonium and nitrate fluxes. Long-term parameters (porosity, surface manganese and iron concentration, bottom water oxygen concentrations) together with δ13Corg signature explained most of the spatial variation in phosphate, nitrate and nitrite fluxes. Variation in pigments at the sediment surface was most important to explain variation in fluxes of silicic acid. In a model including all fluxes synchronously, the overall spatial distribution could be best explained (57%) by the combination of sediment Chl a, phaeopigments, δ13Corg, surficial manganese and bottom water oxygen concentration. We conclude that it is necessary to consider long-term environmental variability along with rapidly ongoing

  2. Evidence and implications of recent climate change in Northern Alaska and other Arctic regions

    USGS Publications Warehouse

    Hinzman, L.D.; Bettez, N.D.; Bolton, W.R.; Chapin, F.S.; Dyurgerov, M.B.; Fastie, C.L.; Griffith, B.; Hollister, R.D.; Hope, A.; Huntington, H.P.; Jensen, A.M.; Jia, G.J.; Jorgenson, T.; Kane, D.L.; Klein, D.R.; Kofinas, G.; Lynch, A.H.; Lloyd, A.H.; McGuire, A.D.; Nelson, Frederick E.; Oechel, W.C.; Osterkamp, T.E.; Racine, C.H.; Romanovsky, V.E.; Stone, R.S.; Stow, D.A.; Sturm, M.; Tweedie, C.E.; Vourlitis, G.L.; Walker, M.D.; Walker, D.A.; Webber, P.J.; Welker, J.M.; Winker, K.S.; Yoshikawa, K.

    2005-01-01

    The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth system and how humans will need to adapt. Our holistic review presents a broad array of evidence that illustrates convincingly; the Arctic is undergoing a system-wide response to an altered climatic state. New extreme and seasonal surface climatic conditions are being experienced, a range of biophysical states and processes influenced by the threshold and phase change of freezing point are being altered, hydrological and biogeochemical cycles are shifting, and more regularly human sub-systems are being affected. Importantly, the patterns, magnitude and mechanisms of change have sometimes been unpredictable or difficult to isolate due to compounding factors. In almost every discipline represented, we show how the biocomplexity of the Arctic system has highlighted and challenged a paucity of integrated scientific knowledge, the lack of sustained observational and experimental time series, and the technical and logistic constraints of researching the Arctic environment. This study supports ongoing efforts to strengthen the interdisciplinarity of arctic system science and improve the coupling of large scale experimental manipulation with sustained time series observations by incorporating and integrating novel technologies, remote sensing and modeling. ?? Springer 2005.

  3. Changes in evaporation and potential hazards associated with ice accretion in a "New Arctic"

    NASA Astrophysics Data System (ADS)

    Boisvert, L.

    2016-12-01

    The Arctic sea ice acts as a barrier between the ocean and atmosphere inhibiting the exchange of heat, momentum, and moisture. Recently, the Arctic has seen unprecedented declines in the summer sea ice area, changing to a "New Arctic" climate system, one that is dominated by processes affected by large ice-free areas for the majority of the year as the melt season lengthens. Using atmospheric data from the Atmospheric Infrared Sounder (AIRS) instrument, we found that accompanying this loss of sea ice, the Arctic is becoming warmer and wetter. Evaporation, which plays an important role in the Arctic energy budget, water vapor feedback, and Arctic amplification, is also changing. The largest increases seen in evaporation are in the Arctic coastal seas during the spring and fall where there has been a reduction in sea ice cover and an increase in sea surface temperatures. Increases in evaporation also correspond to increases in low-level clouds. In this "New Arctic" transportation and shipping throughout the Arctic Ocean is becoming a more viable option as the areas in which ships can travel and the time period for ship travel continue to increase. There are various hazards associated with Arctic shipping, one being ice accretion. Ice accretion is the build up of ice on the surface of ships as they travel through regions of specific meteorological conditions unique to high-latitude environments. Besides reduced visibility, this build up of ice can cause ships to sink or capsize (by altering the ships center of gravity) depending on the severity and/or the location of ice build-up. With these changing atmospheric conditions in the Arctic, we expect there have been increases in the ice accretion potential over recent years, and an increase in the likelihood of high, and potentially dangerous ice accretion rates. Improved understanding of how this rapid loss of sea ice affects the "New Arctic" climate system, how evaporation is changing and how ice accretion could change

  4. Boundary layer stability and Arctic climate change: a feedback study using EC-Earth

    NASA Astrophysics Data System (ADS)

    Bintanja, R.; van der Linden, E. C.; Hazeleger, W.

    2012-12-01

    Amplified Arctic warming is one of the key features of climate change. It is evident in observations as well as in climate model simulations. Usually referred to as Arctic amplification, it is generally recognized that the surface albedo feedback governs the response. However, a number of feedback mechanisms play a role in AA, of which those related to the prevalent near-surface inversion have received relatively little attention. Here we investigate the role of the near-surface thermal inversion, which is caused by radiative surface cooling in autumn and winter, on Arctic warming. We employ idealized climate change experiments using the climate model EC-Earth together with ERA-Interim reanalysis data to show that boundary-layer mixing governs the efficiency by which the surface warming signal is `diluted' to higher levels. Reduced vertical mixing, as in the stably stratified inversion layer in Arctic winter, thus amplifies surface warming. Modelling results suggest that both shortwave—through the (seasonal) interaction with the sea ice feedback—and longwave feedbacks are affected by boundary-layer mixing, both in the Arctic and globally, with the effect on the shortwave feedback dominating. The amplifying effect will decrease, however, with climate warming because the surface inversion becomes progressively weaker. We estimate that the reduced Arctic inversion has slowed down global warming by about 5% over the past 2 decades, and we anticipate that it will continue to do so with ongoing Arctic warming.

  5. Boundary layer stability and Arctic climate change: a feedback study using EC-Earth

    NASA Astrophysics Data System (ADS)

    Bintanja, R.; van der Linden, E. C.; Hazeleger, W.

    2012-04-01

    Amplified Arctic warming is one of the key features of climate change. It is evident in observations as well as in climate model simulations. Usually referred to as Arctic amplification, it is generally recognized that the surface albedo feedback governs the response. However, a number of feedback mechanisms play a role in AA, of which those related to the prevalent near-surface inversion have received relatively little attention. Here we investigate the role of the near-surface thermal inversion, which is caused by radiative surface cooling in autumn and winter, on Arctic warming. We employ idealized climate change experiments using the climate model EC-Earth together with ERA-Interim reanalysis data to show that boundarylayer mixing governs the efficiency by which the surface warming signal is 'diluted' to higher levels. Reduced vertical mixing, as in the stably stratified inversion layer in Arctic winter, thus amplifies surface warming. Modelling results suggest that both shortwave—through the (seasonal) interaction with the sea ice feedback—and longwave feedbacks are affected by boundary-layer mixing, both in the Arctic and globally, with the effect on the shortwave feedback dominating. The amplifying effect will decrease, however, with climate warming because the surface inversion becomes progressively weaker. We estimate that the reduced Arctic inversion has slowed down global warming by about 5% over the past 2 decades, and we anticipate that it will continue to do so with ongoing Arctic warming.

  6. Elevation Changes of Ice Caps in the Canadian Arctic Archipelago

    NASA Technical Reports Server (NTRS)

    Abdalati, W.; Krabill, W.; Frederick, E.; Manizade, S.; Martin, C.; Sonntag, J.; Swift, R.; Thomas, R.; Yungel, J.; Koerner, R.

    2004-01-01

    Precise repeat airborne laser surveys were conducted over the major ice caps in the Canadian Arctic Archipelago in the spring of 1995 and 2000 in order to measure elevation changes in the region. Our measurements reveal thinning at lower elevations (below 1600 m) on most of the ice caps and glaciers, but either very little change or thickening at higher elevations in the ice cap accumulation zones. Recent increases in precipitation in the area can account for the slight thickening where it was observed, but not for the thinning at lower elevations. For the northern ice caps on the Queen Elizabeth Islands, thinning was generally less than 0.5 m/yr , which is consistent with what would be expected from the warm temperature anomalies in the region for the 5-year period between surveys and appears to be a continuation of a trend that began in the mid 1980s. Further south, however, on the Barnes and Penny ice caps on Baffin Island, this thinning was much more pronounced at over 1 m/yr in the lower elevations. Here temperature anomalies were very small, and the thinning at low elevations far exceeds any associated enhanced ablation. The observations on Barnes, and perhaps Penny are consistent with the idea that the observed thinning is part of a much longer term deglaciation, as has been previously suggested for Barnes Ice Cap. Based on the regional relationships between elevation and elevation-change in our data, the 1995-2000 mass balance for the region is estimated to be 25 cu km/yr of ice, which corresponds to a sea level increase of 0.064 mm/ yr . This places it among the more significant sources of eustatic sea level rise, though not as substantial as Greenland ice sheet, Alaskan glaciers, or the Patagonian ice fields.

  7. Elevation changes of ice caps in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Abdalati, W.; Krabill, W.; Frederick, E.; Manizade, S.; Martin, C.; Sonntag, J.; Swift, R.; Thomas, R.; Yungel, J.; Koerner, R.

    2004-12-01

    Precise repeat airborne laser surveys were conducted over the major ice caps in the Canadian Arctic Archipelago in the spring of 1995 and 2000 in order to measure elevation changes in the region. Our measurements reveal thinning at lower elevations (below 1600 m) on most of the ice caps and glaciers but either very little change or thickening at higher elevations in the ice cap accumulation zones. Recent increases in precipitation in the area can account for the slight thickening where it was observed but not for the thinning at lower elevations. For the northern ice caps on the Queen Elizabeth Islands, thinning was generally <0.5 m yr-1, which is consistent with what would be expected from the warm temperature anomalies in the region for the 5 year period between surveys, and appears to be a continuation of a trend that began in the mid-1980s. Farther south, however, on the Barnes and Penny ice caps on Baffin Island, this thinning was much more pronounced at over 1 m yr-1 in the lower elevations. Here temperature anomalies were very small, and the thinning at low elevations far exceeds any associated enhanced ablation. The observations on Barnes, and perhaps Penny, are consistent with the idea that the observed thinning is part of a much longer term deglaciation, as has been previously suggested for Barnes ice cap. On the basis of the regional relationships between elevation and elevation change in our data, the 1995-2000 mass balance for the archipelago is estimated to be -25 km3 yr-1 of ice, which corresponds to a sea level increase of 0.064 mm yr-1. This places it among the more significant sources of eustatic sea level rise, though not as substantial as the Greenland ice sheet, Alaskan glaciers, or the Patagonian ice fields.

  8. Land-Cover and Land-Use Change (LCLUC) Interactions with Climate in the Eurasian Arctic: Past and new projects in the NASA LCLUC program

    NASA Astrophysics Data System (ADS)

    Gutman, G.

    2009-12-01

    An overview of the studies conducted in the framework of the NASA Land-Cover/Land- Use Change Program focused on the Eurasian Arctic will be presented. It includes discussion of vegetation changes under climate warming and implications to carbon cycle, changes in environmental pollution, hydrologic cycle, and impacts on society. Climate change can affect land cover in the Arctic through changes in the surface reflectivity and hydrology due to changes in snow melt timing; impacts of black carbon emitted by fires and settled on bright surfaces; changes in sea ice and the consequent change in ocean circulation affecting vegetation cover patterns indirectly; and changes in the amounts of greenhouse gases emission due to permafrost melting, especially in peat lands, as warming progresses. The Arctic Eurasia is being affected by global and regional external factors that are causing its change and the positive feedbacks to this forcing may further exaggerate the situation. If the warming trend continues it will have a tremendous impact on all aspects of land cover in the Arctic region with considerable consequences at the global scale. It will cause significant changes in the natural land cover, and perhaps even greater changes in the areas where the land cover has already been considerably modified by human activities. Major changes have already taken place in how land is used in the Arctic. In many regions, there has been a clear shift from the land use practiced by indigenous people to intensive exploitation of the land for commercial and industrial uses. This presentation will synthesize the results of the past NASA LCLUC projects and will showcase some new additions to the program that are relevant to the Arctic climate/environment - land-cover interactions.

  9. Marine Transportation Implications of the Last Arctic Sea Ice Refuge

    NASA Astrophysics Data System (ADS)

    Brigham, L. W.

    2010-12-01

    Marine access is increasing throughout the Arctic Ocean and the 'Last Arctic Sea Ice Refuge' may have implications for governance and marine use in the region. Arctic marine transportation is increasing due to natural resource developemnt, increasing Arctic marine tourism, expanded Arctic marine research, and a general linkage of the Arctic to the gloabl economy. The Arctic Council recognized these changes with the release of the Arctic Marine Shipping Assessment of 2009. This key study (AMSA)can be viewed as a baseline assessment (using the 2004 AMSA database), a strategic guide for a host of stakeholders and actors, and as a policy document of the Arctic Council. The outcomes of AMSA of direct relevance to the Ice Refuge are within AMSA's 17 recommendations provided under three themes: Enhancing Arctic Marine Safety, Protecting Arctic People and the Environment, and Building the Arctic Marine Infrastructure. Selected recommendations of importance to the Ice Refuge include: a mandatory polar navigation code; identifying areas of heightened ecological and cultural significance; potential designation of special Arctic marine areas; enhancing the tracking and monitoring of Arctic marine traffic; improving circumpolar environmental response capacity; developing an Arctic search and rescue agreement; and, assessing the effects of marine transportation on marine mammals. A review will be made of the AMSA outcomes and how they can influence the governance, marine use, and future protection of this unique Arctic marine environment.

  10. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Barber, David G.; Hop, Haakon; Mundy, Christopher J.; Else, Brent; Dmitrenko, Igor A.; Tremblay, Jean-Eric; Ehn, Jens K.; Assmy, Philipp; Daase, Malin; Candlish, Lauren M.; Rysgaard, Søren

    2015-12-01

    The Marginal Ice Zone (MIZ) of the Arctic Ocean is changing rapidly due to a warming Arctic climate with commensurate reductions in sea ice extent and thickness. This Pan-Arctic review summarizes the main changes in the Arctic ocean-sea ice-atmosphere (OSA) interface, with implications for primary- and secondary producers in the ice and the underlying water column. Changes in the Arctic MIZ were interpreted for the period 1979-2010, based on best-fit regressions for each month. Trends of increasingly open water were statistically significant for each month, with quadratic fit for August-November, illustrating particularly strong seasonal feedbacks in sea-ice formation and decay. Geographic interpretations of physical and biological changes were based on comparison of regions with significant changes in sea ice: (1) The Pacific Sector of the Arctic Ocean including the Canada Basin and the Beaufort, Chukchi and East Siberian seas; (2) The Canadian Arctic Archipelago; (3) Baffin Bay and Hudson Bay; and (4) the Barents and Kara seas. Changes in ice conditions in the Barents sea/Kara sea region appear to be primarily forced by ocean heat fluxes during winter, whereas changes in the other sectors appear to be more summer-autumn related and primarily atmospherically forced. Effects of seasonal and regional changes in OSA-system with regard to increased open water were summarized for photosynthetically available radiation, nutrient delivery to the euphotic zone, primary production of ice algae and phytoplankton, ice-associated fauna and zooplankton, and gas exchange of CO2. Changes in the physical factors varied amongst regions, and showed direct effects on organisms linked to sea ice. Zooplankton species appear to be more flexible and likely able to adapt to variability in the onset of primary production. The major changes identified for the ice-associated ecosystem are with regard to production timing and abundance or biomass of ice flora and fauna, which are related to

  11. Arctic shrubification mediates the impacts of warming climate on changes to tundra vegetation

    NASA Astrophysics Data System (ADS)

    Mod, Heidi K.; Luoto, Miska

    2016-12-01

    Climate change has been observed to expand distributions of woody plants in many areas of arctic and alpine environments—a phenomenon called shrubification. New spatial arrangements of shrubs cause further changes in vegetation via changing dynamics of biotic interactions. However, the mediating influence of shrubification is rarely acknowledged in predictions of tundra vegetation change. Here, we examine possible warming-induced landscape-level vegetation changes in a high-latitude environment using species distribution modelling (SDM), specifically concentrating on the impacts of shrubification on ambient vegetation. First, we produced estimates of current shrub and tree cover and forecasts of their expansion under climate change scenarios to be incorporated to SDMs of 116 vascular plants. Second, the predictions of vegetation change based on the models including only abiotic predictors and the models including abiotic, shrub and tree predictors were compared in a representative test area. Based on our model predictions, abundance of woody plants will expand, thus decreasing predicted species richness, amplifying species turnover and increasing the local extinction risk for ambient vegetation. However, the spatial variation demonstrated in our predictions highlights that tundra vegetation can be expected to show a wide variety of different responses to the combined effects of warming and shrubification, depending on the original plant species pool and environmental conditions. We conclude that realistic forecasts of the future require acknowledging the role of shrubification in warming-induced tundra vegetation change.

  12. The Arctic Boreal Vulnerability Experiment: Observing, Understanding, and Predicting Social-Ecological Change in the Far North

    NASA Astrophysics Data System (ADS)

    Mack, M. C.; Goetz, S. J.; Kasischke, E. S.; Kimball, J. S.; Boelman, N.

    2015-12-01

    In the high northern latitudes, climate is warming more rapidly than anywhere else on Earth, transforming vulnerable arctic tundra and boreal forest landscapes. These changes are altering the structure and function of energy, water and carbon cycles, producing significant feedbacks to regional and global climate through changes in energy, water and carbon cycles. These changes are also challenging local and global society. At the local level, communities seek to adapt to new social-ecological regimes. At the global level, changing arctic and boreal systems are increasing becoming the focus of policy discussions at all levels of decision-making. National and international scientific efforts associated with a new NASA field campaign, the Arctic-Boreal Vulnerability Experiment (ABOVE) will advance our ability to observe, understand and predict the complex, multiscale and non-linear processes that are confronting the natural and social systems in this rapidly changing region. Over the next decade, the newly assembled ABOVE Science Team will pursue this overarching question: "How vulnerable or resilient are ecosystems and society to environmental change in the Arctic and boreal region of western North America?" Through integration of remote sensing and in situ observations with modeling of both ecological and social systems, the ABOVE Science Team will advance an interdisciplinary understanding of the Far North. In this presentation, we will discuss the conceptual basis for the ABOVE Field Campaign, describe Science Team composition and timeline, and update the community on activities. In addition, we will reflect on the visionary role of Dr. Diane Wickland, retired NASA Terrestrial Ecology Program Manager and lead of the Carbon Cycle & Ecosystems Focus Area, in the development and commencement of ABOVE.

  13. The influence of changing seasonality and snow cover on arctic ground squirrel phenology.

    NASA Astrophysics Data System (ADS)

    Barnes, B.; Sheriff, M.; Kenagy, J.; Buck, L.; Team Squirrel

    2011-12-01

    A warming climate in the Arctic may have asymmetrical effects on seasonality, depending on the timing and extent of snow cover. Warm autumns that delay the onset of persistent snow cover will lengthen growing seasons of some plants and, combined with continuing access to fallen seeds, berries, and leaves, extend feeding opportunities for ground foragers. Warming in spring should advance when the ground becomes snow free and the onset of plant productivity, leading overall to a longer growing season. However, if winter and spring precipitation increase, as is predicted in climate models, the amount and seasonal extent of snow pack will increase, which will delay melt and lead to delayed springs. Either of these scenarios may develop regionally, depending on local weather, snow, and wind. Since 1996, we have been investigating the timing of annual events in natural populations of arctic ground squirrels, Urocitellus parryii, living at two nearby sites (Toolik and Atigun, 68o38'N) in arctic Alaska that greatly differ in timing and duration of snow cover. Since arctic ground squirrels are highly dependent on snow free ground for foraging, we predicted that these environmental differences will have had major impacts on life histories and timing of annual events on the local populations. Precision in dates of the beginning and end of hibernation, use of heterothermy, and birth of young were determined by temperature-sensitive data loggers implanted into juvenile and adult animals of both sexes. Weather stations, snow cameras, and transects for plant phenology are in place at both locations, although record lengths differ. While across the past 15 years annual timing of hibernation and breeding has not shown significant trends at either site, the two populations have differed consistently in hibernation timing and length of active season, and they show a 13 day difference in average timing of reproduction. These results reveal a substantial flexibility of timing of the

  14. Environmental changes and violent conflict

    NASA Astrophysics Data System (ADS)

    Bernauer, Thomas; Böhmelt, Tobias; Koubi, Vally

    2012-03-01

    This letter reviews the scientific literature on whether and how environmental changes affect the risk of violent conflict. The available evidence from qualitative case studies indicates that environmental stress can contribute to violent conflict in some specific cases. Results from quantitative large-N studies, however, strongly suggest that we should be careful in drawing general conclusions. Those large-N studies that we regard as the most sophisticated ones obtain results that are not robust to alternative model specifications and, thus, have been debated. This suggests that environmental changes may, under specific circumstances, increase the risk of violent conflict, but not necessarily in a systematic way and unconditionally. Hence there is, to date, no scientific consensus on the impact of environmental changes on violent conflict. This letter also highlights the most important challenges for further research on the subject. One of the key issues is that the effects of environmental changes on violent conflict are likely to be contingent on a set of economic and political conditions that determine adaptation capacity. In the authors' view, the most important indirect effects are likely to lead from environmental changes via economic performance and migration to violent conflict.

  15. Adaptation strategies to climate change in the Arctic: a global patchwork of reactive community-scale initiatives

    NASA Astrophysics Data System (ADS)

    Loboda, Tatiana V.

    2014-11-01

    Arctic regions have experienced and will continue to experience the greatest rates of warming compared to any other region of the world. The people living in the Arctic are considered among most vulnerable to the impacts of environmental change ranging from decline in natural resources to increasing mental health concerns (IPCC 2014 Climate Change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press)). A meta-analysis study by Ford et al (2014 Environ. Res. Lett. 9 104005) has assessed the volume, scope and geographic distribution of reported in the English language peer-reviewed literature initiatives for adaptation to climate change in the Arctic. Their analysis highlights the reactive nature of the adopted policies with a strong emphasis on local and community-level policies mostly targeting indigenous population in Canada and Alaska. The study raises concerns about the lack of monitoring and evaluation mechanism to track the success rate of the existing policies and the need for long-term strategic planning in adaption policies spanning international boundaries and including all groups of population.

  16. Implications of a Changing Arctic on Summertime Surface Seawater pCO2 Variations in the Eastern Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Burgers, T.; Miller, L. A.; Thomas, H.; Else, B. G. T.; Gosselin, M.; Papakyriakou, T. N.

    2015-12-01

    Arctic marine carbonate chemistry and rates of air-sea CO2 exchange are anticipated to be affected by current changes in sea-ice structure and extent, freshwater inputs, ocean circulation patterns, and the seasonality of phytoplankton blooms. This study examines how such changes will impact rates of air-sea CO2 exchange in northern Baffin Bay, Nares Strait, and the eastern Canadian Arctic Archipelago. This complex oceanographic region includes the North Water polynya; one of the most biologically productive areas in the Arctic Ocean, and the convergence site of the warm West Greenland Current with cold exported Arctic waters. Continuous measurements of atmospheric and surface seawater CO2 (pCO2) were collected onboard the Canadian Coast Guard Ship Amundsen during its 2013 and 2014 summer cruises. Surface seawater pCO2 displayed considerable variability (145 - 389 ppm), but never exceeded atmospheric concentrations. Calculated CO2 fluxes ranged from 0 to -45 mmol m-2 day-1 (oceanic uptake), and were estimated using the Sweeney et al. (2007) parameterization with in-situ wind speed measurements. Ancillary measurements of chlorophyll a reveal low productivity in surface waters during mid-summer with isolated sub-surface blooms. This is likely the result of nutrient limitation within the highly stratified polar mixed layer (PML). Measurements of stable oxygen isotope ratios (δ18O) and total alkalinity were used to estimate freshwater inputs (sea-ice melt vs. meteoric water) to the PML. These and in-situ observations of sea ice cover were used to interpret seawater pCO2 variations. Surface waters influenced by sea-ice melt exhibit lower pCO2 than those influenced by meteoric water. The results of this investigation shed light on the future role of this region as a summertime sink of atmospheric CO2.

  17. Ice-cover is the principal driver of ecological change in High Arctic lakes and ponds.

    PubMed

    Griffiths, Katherine; Michelutti, Neal; Sugar, Madeline; Douglas, Marianne S V; Smol, John P

    2017-01-01

    Recent climate change has been especially pronounced in the High Arctic, however, the responses of aquatic biota, such as diatoms, can be modified by site-specific environmental characteristics. To assess if climate-mediated ice cover changes affect the diatom response to climate, we used paleolimnological techniques to examine shifts in diatom assemblages from ten High Arctic lakes and ponds from Ellesmere Island and nearby Pim Island (Nunavut, Canada). The sites were divided a priori into four groups ("warm", "cool", "cold", and "oasis") based on local elevation and microclimatic differences that result in differing lengths of the ice-free season, as well as about three decades of personal observations. We characterized the species changes as a shift from Condition 1 (i.e. a generally low diversity, predominantly epipelic and epilithic diatom assemblage) to Condition 2 (i.e. a typically more diverse and ecologically complex assemblage with an increasing proportion of epiphytic species). This shift from Condition 1 to Condition 2 was a consistent pattern recorded across the sites that experienced a change in ice cover with warming. The "warm" sites are amongst the first to lose their ice covers in summer and recorded the earliest and highest magnitude changes. The "cool" sites also exhibited a shift from Condition 1 to Condition 2, but, as predicted, the timing of the response lagged the "warm" sites. Meanwhile some of the "cold" sites, which until recently still retained an ice raft in summer, only exhibited this shift in the upper-most sediments. The warmer "oasis" ponds likely supported aquatic vegetation throughout their records. Consequently, the diatoms of the "oasis" sites were characterized as high-diversity, Condition 2 assemblages throughout the record. Our results support the hypothesis that the length of the ice-free season is the principal driver of diatom assemblage responses to climate in the High Arctic, largely driven by the establishment of new

  18. Ice-cover is the principal driver of ecological change in High Arctic lakes and ponds

    PubMed Central

    Griffiths, Katherine; Michelutti, Neal; Sugar, Madeline; Douglas, Marianne S. V.; Smol, John P.

    2017-01-01

    Recent climate change has been especially pronounced in the High Arctic, however, the responses of aquatic biota, such as diatoms, can be modified by site-specific environmental characteristics. To assess if climate-mediated ice cover changes affect the diatom response to climate, we used paleolimnological techniques to examine shifts in diatom assemblages from ten High Arctic lakes and ponds from Ellesmere Island and nearby Pim Island (Nunavut, Canada). The sites were divided a priori into four groups (“warm”, “cool”, “cold”, and “oasis”) based on local elevation and microclimatic differences that result in differing lengths of the ice-free season, as well as about three decades of personal observations. We characterized the species changes as a shift from Condition 1 (i.e. a generally low diversity, predominantly epipelic and epilithic diatom assemblage) to Condition 2 (i.e. a typically more diverse and ecologically complex assemblage with an increasing proportion of epiphytic species). This shift from Condition 1 to Condition 2 was a consistent pattern recorded across the sites that experienced a change in ice cover with warming. The “warm” sites are amongst the first to lose their ice covers in summer and recorded the earliest and highest magnitude changes. The “cool” sites also exhibited a shift from Condition 1 to Condition 2, but, as predicted, the timing of the response lagged the “warm” sites. Meanwhile some of the “cold” sites, which until recently still retained an ice raft in summer, only exhibited this shift in the upper-most sediments. The warmer “oasis” ponds likely supported aquatic vegetation throughout their records. Consequently, the diatoms of the “oasis” sites were characterized as high-diversity, Condition 2 assemblages throughout the record. Our results support the hypothesis that the length of the ice-free season is the principal driver of diatom assemblage responses to climate in the High Arctic

  19. Biological response to climate change in the Arctic Ocean: The view from the past

    USGS Publications Warehouse

    Cronin, Thomas M.; Cronin, Matthew A.

    2017-01-01

    The Arctic Ocean is undergoing rapid climatic changes including higher ocean temperatures, reduced sea ice, glacier and Greenland Ice Sheet melting, greater marine productivity, and altered carbon cycling. Until recently, the relationship between climate and Arctic biological systems was poorly known, but this has changed substantially as advances in paleoclimatology, micropaleontology, vertebrate paleontology, and molecular genetics show that Arctic ecosystem history reflects global and regional climatic changes over all timescales and climate states (103–107 years). Arctic climatic extremes include 25°C hyperthermal periods during the Paleocene-Eocene (56–46 million years ago, Ma), Quaternary glacial periods when thick ice shelves and sea ice cover rendered the Arctic Ocean nearly uninhabitable, seasonally sea-ice-free interglacials and abrupt climate reversals. Climate-driven biological impacts included large changes in species diversity, primary productivity, species’ geographic range shifts into and out of the Arctic, community restructuring, and possible hybridization, but evidence is not sufficient to determine whether or when major episodes of extinction occurred.

  20. Climate Change Effects on Iron Availability to Arctic Phytoplankton

    NASA Astrophysics Data System (ADS)

    Maldonado, Maria Teresa; Li, Jingxuan; Semeniuk, David; Schuback, Nina; Hoppe, Clara; AWI/UBC Collaboration

    2016-09-01

    Phytoplankton, unicellular algae, are responsible for 50% of earth's photosynthesis, and for a significant consumption of atmospheric CO2. Iron (Fe) is essential for phytoplankton, but is extremely depleted in seawater, limiting photosynthesis in 30% of the global ocean. Oceanic Fe bioavailability is determined by physical and chemical processes. The Arctic Ocean is experiencing the greatest decrease in seawater pH (termed ocean acidification). Simultaneously, ice retreat is promoting higher light intensity in Arctic Ocean. We investigated the effects of ocean acidification and high light on Fe availability to Arctic phytoplankton. Iron uptake rates by plankton, using the radionuclide 55Fe, were used as a proxy for Fe bioavailability. In an Arctic summer research cruise, we measured Fe uptake by two phytoplankton populations subjected to two light levels, as well as present CO2 levels (400ppm) or those expected by 2100 (1100 ppm). Our results demonstrated that high CO2 decreases Fe availability, while high light increases it, suggesting that future Fe bioavailability might be similar to present day. However, the detrimental effects of high CO2 were more pronounced in the plankton population exposed to higher seawater temperature. Future studies should investigate the interaction among light, CO2 and temperature on the Fe physiology of Arctic phytoplankton.

  1. Projected changes in regional climate extremes arising from Arctic sea ice loss

    NASA Astrophysics Data System (ADS)

    Screen, James A.; Deser, Clara; Sun, Lantao

    2015-08-01

    The decline in Arctic sea ice cover has been widely documented and it is clear that this change is having profound impacts locally. An emerging and highly uncertain area of scientific research, however, is whether such Arctic change has a tangible effect on weather and climate at lower latitudes. Of particular societal relevance is the open question: will continued Arctic sea ice loss make mid-latitude weather more extreme? Here we analyse idealized atmospheric general circulation model simulations, using two independent models, both forced by projected Arctic sea ice loss in the late twenty-first century. We identify robust projected changes in regional temperature and precipitation extremes arising solely due to Arctic sea ice loss. The likelihood and duration of cold extremes are projected to decrease over high latitudes and over central and eastern North America, but to increase over central Asia. Hot extremes are projected to increase in frequency and duration over high latitudes. The likelihood and severity of wet extremes are projected to increase over high latitudes, the Mediterranean and central Asia; and their intensity is projected to increase over high latitudes and central and eastern Asia. The number of dry days over mid-latitude Eurasia and dry spell duration over high latitudes are both projected to decrease. There is closer model agreement for projected changes in temperature extremes than for precipitation extremes. Overall, we find that extreme weather over central and eastern North America is more sensitive to Arctic sea ice loss than over other mid-latitude regions. Our results are useful for constraining the role of Arctic sea ice loss in shifting the odds of extreme weather, but must not be viewed as deterministic projections, as they do not account for drivers other than Arctic sea ice loss.

  2. Sea Ice Drift in the Arctic Ocean. Seasonal Variability and Long-Term Changes

    NASA Astrophysics Data System (ADS)

    Pavlov, V.; Pavlova, O.

    2010-12-01

    Variability in the drift of sea ice in the Arctic Ocean is an important parameter that can be used to characterise the thermodynamic processes in the Arctic. Knowledge of the features of sea ice drift in the Arctic Ocean is necessary for climate research, for an improved understanding of polar ecology and as an aid to human activity in the Arctic Ocean. Monthly mean sea ice drift velocities, computed from Advanced Very High Resolution Radiometer (AVHRR), Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave/Imager (SSM/I), and International Arctic Buoy Programme (IABP) buoy data, are used to investigate the spatial and temporal variability of ice motion in the Arctic Ocean and Nordic Seas from 1979. Sea ice drift in the Arctic Ocean is characterized by strong seasonal and inter-annual variability. The results of combined statistical analysis of sea ice velocities and wind fields over the Arctic Ocean suggest that the seasonal changes of local wind are a predominant factor in the formation of the sea ice velocities annual cycle. Sea ice drift velocities mirror seasonal changes of the wind in the Arctic, reaching a maximum in December, with a minimum in June. In the central part of the Arctic Ocean and in the area near the Canadian shore the amplitude of this variation is not more than 2 cm/ sec. The maximum amplitudes are found in the Fram Strait (9-10 cm/sec), Beaufort Gyre (6-7 cm/sec) and the northern part of Barents Sea (5-6 cm/sec). Low frequency variations of sea ice drift velocities, with periods of 2.0-2.5 yrs and 5.0-6.0 yrs, are related to reorganization of the atmospheric circulation over the Arctic. There is evidence that the average sea ice velocity for the whole of the Arctic Ocean is increasing, with a positive trend for the period of last three decades. Trends of the monthly mean ice drift velocities are positive almost everywhere in the Arctic Ocean. In the Baffin Bay, Fram Strait and Barents Sea regions, sea ice velocities

  3. Sensitivity of the carbon cycle in the Arctic to climate change

    USGS Publications Warehouse

    McGuire, A. David; Anderson, Leif G.; Christensen, Torben R.; Dallimore, Scott; Guo, Laodong; Hayes, Daniel J.; Heimann, Martin; Lorenson, T.D.; Macdonald, Robie W.; Roulet, Nigel

    2009-01-01

    The recent warming in the Arctic is affecting a broad spectrum of physical, ecological, and human/cultural systems that may be irreversible on century time scales and have the potential to cause rapid changes in the earth system. The response of the carbon cycle of the Arctic to changes in climate is a major issue of global concern, yet there has not been a comprehensive review of the status of the contemporary carbon cycle of the Arctic and its response to climate change. This review is designed to clarify key uncertainties and vulnerabilities in the response of the carbon cycle of the Arctic to ongoing climatic change. While it is clear that there are substantial stocks of carbon in the Arctic, there are also significant uncertainties associated with the magnitude of organic matter stocks contained in permafrost and the storage of methane hydrates beneath both subterranean and submerged permafrost of the Arctic. In the context of the global carbon cycle, this review demonstrates that the Arctic plays an important role in the global dynamics of both CO2 and CH4. Studies suggest that the Arctic has been a sink for atmospheric CO2 of between 0 and 0.8 Pg C/yr in recent decades, which is between 0% and 25% of the global net land/ocean flux during the 1990s. The Arctic is a substantial source of CH4 to the atmosphere (between 32 and 112 Tg CH4/yr), primarily because of the large area of wetlands throughout the region. Analyses to date indicate that the sensitivity of the carbon cycle of the Arctic during the remainder of the 21st century is highly uncertain. To improve the capability to assess the sensitivity of the carbon cycle of the Arctic to projected climate change, we recommend that (1) integrated regional studies be conducted to link observations of carbon dynamics to the processes that are likely to influence those dynamics, and (2) the understanding gained from these integrated studies be incorporated into both uncoupled and fully coupled carbon

  4. Environmental constraints on transpiration and stomatal conductance in a Siberian Arctic boreal forest

    NASA Astrophysics Data System (ADS)

    Kropp, Heather; Loranty, Michael; Alexander, Heather D.; Berner, Logan T.; Natali, Susan M.; Spawn, Seth A.

    2017-03-01

    Boreal forest ecosystems are experiencing changes in plant productivity that are likely to continue with ongoing climate change. Transpiration (T) and canopy stomatal conductance (gc) are a key influence on plant productivity, and a better understanding of drivers and limitations of T and gc is necessary for constraining estimates of boreal ecosystem change. We describe patterns in T and gc of a deciduous conifer, Larix cajanderi, in an arctic boreal forest in northeastern Russia across three growing seasons from 2013 to 2015. We examine the influence of environmental drivers on gc using a phenomenological model. T was highly variable across days and varied between 0.03 and 0.75 L m-2 d-1. T and gc largely covaried with daily fluctuations in air temperature and vapor pressure deficit. gc was highly suppressed on days when the vapor pressure deficits exceeded 0.75 kPa with an average daily gc of 37.55 mmol m-2 s-1, and the average daily gc was almost double (71.25 mmol m-2 s-1) when vapor pressure deficits stayed below 0.75 kPa. Daily variation in gc was significantly related to air temperature, permafrost thaw depth, and past precipitation. The influence of past precipitation and permafrost thaw depth on gc indicates that belowground conditions relating to soil moisture status are a key limitation for T. Such limitations on gc and T suggest that soil water and plant water stress play an important role in plant productivity and water relations in far northeastern Siberia.

  5. Future Climate Change Will Favour Non-Specialist Mammals in the (Sub)Arctics

    PubMed Central

    Hof, Anouschka R.; Jansson, Roland; Nilsson, Christer

    2012-01-01

    Arctic and subarctic (i.e., [sub]arctic) ecosystems are predicted to be particularly susceptible to climate change. The area of tundra is expected to decrease and temperate climates will extend further north, affecting species inhabiting northern environments. Consequently, species at high latitudes should be especially susceptible to climate change, likely experiencing significant range contractions. Contrary to these expectations, our modelling of species distributions suggests that predicted climate change up to 2080 will favour most mammals presently inhabiting (sub)arctic Europe. Assuming full dispersal ability, most species will benefit from climate change, except for a few cold-climate specialists. However, most resident species will contract their ranges if they are not able to track their climatic niches, but no species is predicted to go extinct. If climate would change far beyond current predictions, however, species might disappear. The reason for the relative stability of mammalian presence might be that arctic regions have experienced large climatic shifts in the past, filtering out sensitive and range-restricted taxa. We also provide evidence that for most (sub)arctic mammals it is not climate change per se that will threaten them, but possible constraints on their dispersal ability and changes in community composition. Such impacts of future changes in species communities should receive more attention in literature. PMID:23285098

  6. Future climate change will favour non-specialist mammals in the (sub)arctics.

    PubMed

    Hof, Anouschka R; Jansson, Roland; Nilsson, Christer

    2012-01-01

    Arctic and subarctic (i.e., [sub]arctic) ecosystems are predicted to be particularly susceptible to climate change. The area of tundra is expected to decrease and temperate climates will extend further north, affecting species inhabiting northern environments. Consequently, species at high latitudes should be especially susceptible to climate change, likely experiencing significant range contractions. Contrary to these expectations, our modelling of species distributions suggests that predicted climate change up to 2080 will favour most mammals presently inhabiting (sub)arctic Europe. Assuming full dispersal ability, most species will benefit from climate change, except for a few cold-climate specialists. However, most resident species will contract their ranges if they are not able to track their climatic niches, but no species is predicted to go extinct. If climate would change far beyond current predictions, however, species might disappear. The reason for the relative stability of mammalian presence might be that arctic regions have experienced large climatic shifts in the past, filtering out sensitive and range-restricted taxa. We also provide evidence that for most (sub)arctic mammals it is not climate change per se that will threaten them, but possible constraints on their dispersal ability and changes in community composition. Such impacts of future changes in species communities should receive more attention in literature.

  7. Arctic Aerosols and Climate Change: A Time Series Analysis at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Taylor, A. K.; Quinn, P.; Bates, T. S.; Schulz, K.; Upchurch, L.

    2016-12-01

    In the Arctic, anthropogenic aerosols transported from lower latitude source regions contribute to the phenomenon known as Arctic Haze. These aerosols are primarily composed of sulfate and both directly and indirectly affect Arctic climate by scattering incoming radiation and altering cloud radiative properties. Long-term measurements of haze season aerosols at various Arctic stations have established significant decreases in non-sea salt (nss) sulfate (SO4=) over time and have demonstrated the importance of accounting for changes in nss SO4= concentrations in future climate projections. Here, trends in nss SO4= at Barrow, Alaska are extended from 2008 to 2012 to further assess the impact of changing aerosol chemical composition on Arctic climate. During the haze season, measurements indicate a decrease in nss SO4= by 20.8% from 1998 to 2012, translating to a +0.04 Wm-2 increase in radiative forcing. In the summer, however, nss SO4= has increased at a rate of 2.5% per year, likely due to an increase in the biogenic production of dimethylsulfide (DMS) related to warmer temperatures and reduced sea ice extent. These results ultimately supplement previous research and accentuate the linkage between aerosol chemical composition and Arctic climate change.

  8. Breast cancer in the Arcticchanges over the past decades

    PubMed Central

    Fredslund, Stine Overvad; Bonefeld-Jørgensen, Eva Cecilie

    2012-01-01

    The purpose of this study is to review the current literatures on breast cancer (BC) in the Arctic, especially the trends in incidence during the last decades and the possible explanations. The design of this study is a literature review. The scientific literature concerning BC were reviewed, especially focusing on the Arctic and the special conditions that exist in this region. Breast cancer incidence is increasing all over the world, including in the Arctic. The enormous transition in health conditions and lifestyle in the Arctic might be contributing to the known risk factors. In Greenland, the age at menarche has diminished by 3 years during the course of 100 years, and the number of children per women as well as the duration of breastfeeding is decreasing. Obesity and intake of saturated fat is increasing and the intake of traditional food rich in unsaturated fat and vitamin D decreasing. Smoking and alcohol consumption in the Arctic has been relatively high but is now decreasing. More focus on genetic susceptibility in relation to BC has identified the specific BRCA1 founder mutation in the Greenlandic population, which might appear to be an important risk factor. However, the known established risk factors alone cannot account for the increasing trend observed. Studies suggest that environmental contaminants such as persistent organic pollutants (POPs) including perfluorinated compounds increase the risk of BC possibly in conjunction with certain genetic polymorphisms involved in carcinogen activation. The lipophilic POPs such as polychlorinated biphenyls and organochlorine pesticides are found at very high levels in the Arctic population. Several factors can explain the increasing incidence of BC in the Arctic. The transition in lifestyle and health conditions unfortunately increases the known risk factors of BC. Moreover, the population of the Arctic might show up to be especially vulnerable because of the contemporary high burden of POPs and genetic

  9. Changes in Seasonal and Extreme Arctic Cyclone Events in the CMIP5 Climate Models

    NASA Astrophysics Data System (ADS)

    Hori, M. E.

    2015-12-01

    Cyclone activities are governed by many boundary conditions, such as the underlying SST or sea ice, the relative heating between the continent and the ocean, and their relative location against the jet stream to name a few. All these factors and their seasonal march is prone to change under the future global warming condition. Especially in the Arctic, the timing of sea ice melting and freezing, seasonal change in snow cover, and the location of upper level jets all contribute towards a change in cyclone seasonal distribution and extreme events. Here, we use a Langrangean method of detecting cyclones and their activity under the historical and rcp 4.5 scenario of 8 CMIP5 climate models to assess the change in Arctic cyclone activities. We find that while the models show weaker cyclone activities than observation and inter-model difference is large in some cases, they simulate the seasonal cycle and extreme events reasonably well. In the winter season under the global warming scenario, many models exhibits a northeastward shift in mid-latitude storm track resulting in mode cyclones entering the Arctic from the mid-latitudes. There is also a marked increase in the number of cyclones in the Barents/Kara Sea where correlation with sea ice is suspected. During the summer season, a large change in the Arctic cyclone activity located near the North Pole is evident in many models. This change in Arctic cyclone is due to contribution of more cyclogenesis within the Arctic circle. In this presentation, we also look at other seasons and the seasonal march of the cyclone activity within the Arctic and its interaction with the mid-latitudes. We also document the change in extreme events under the climate models.

  10. Dangerous climate change and the importance of adaptation for the Arctic's Inuit population

    NASA Astrophysics Data System (ADS)

    Ford, James D.

    2009-04-01

    The Arctic's climate is changing rapidly, to the extent that 'dangerous' climate change as defined by the United Nations Framework on Climate Change might already be occurring. These changes are having implications for the Arctic's Inuit population and are being exacerbated by the dependence of Inuit on biophysical resources for livelihoods and the low socio-economic-health status of many northern communities. Given the nature of current climate change and projections of a rapidly warming Arctic, climate policy assumes a particular importance for Inuit regions. This paper argues that efforts to stabilize and reduce greenhouse gas emissions are urgent if we are to avoid runaway climate change in the Arctic, but unlikely to prevent changes which will be dangerous for Inuit. In this context, a new policy discourse on climate change is required for Arctic regions—one that focuses on adaptation. The paper demonstrates that states with Inuit populations and the international community in general has obligations to assist Inuit to adapt to climate change through international human rights and climate change treaties. However, the adaptation deficit, in terms of what we know and what we need to know to facilitate successful adaptation, is particularly large in an Arctic context and limiting the ability to develop response options. Moreover, adaptation as an option of response to climate change is still marginal in policy negotiations and Inuit political actors have been slow to argue the need for adaptation assistance. A new focus on adaptation in both policy negotiations and scientific research is needed to enhance Inuit resilience and reduce vulnerability in a rapidly changing climate.

  11. Changing Arctic ecosystems: sea ice decline, permafrost thaw, and benefits for geese

    USGS Publications Warehouse

    Flint, Paul; Whalen, Mary; Pearce, John M.

    2014-01-01

    Through the Changing Arctic Ecosystems (CAE) initiative, the U.S. Geological Survey (USGS) strives to inform resource management decisions for Arctic Alaska by providing scientific information on current and future ecosystem response to a warming climate. A key area for the USGS CAE initiative has been the Arctic Coastal Plain of northern Alaska. This region has experienced a warming trend over the past 30 years, leading to reductions in sea ice and thawing of permafrost. Loss of sea ice has increased ocean wave action, leading to erosion and salt water inundation of coastal habitats. Saltwater tolerant plants are now thriving in these areas and this appears to be a positive outcome for geese in the Arctic. This finding is contrary to the deleterious effects that declining sea ice is having on habitats of ice-dependent animals, such as polar bear and walrus.

  12. Small species indicate big changes? Arctic report card

    USDA-ARS?s Scientific Manuscript database

    As Arctic climate warms, how will terrestrial ecosystems and the communities that they support respond in the coming decades? Small mammals including shrews and their associated parasites can serve as key indicators and proxies of accelerating perturbation, contributing to general models for anticip...

  13. The Endangered Arctic, the Arctic as Resource Frontier: Canadian News Media Narratives of Climate Change and the North.

    PubMed

    Stoddart, Mark C J; Smith, Jillian

    2016-08-01

    The Arctic is one of the most radically altered parts of the world due to climate change, with significant social and cultural impacts as a result. Using discourse network analysis and qualitative textual analysis of articles published in the Globe and Mail and National Post during the period 2006 to 2010, we identify and analyze key frames that interpret the implications of climate change on the Arctic. We examine Canadian national news media coverage to ask: How does the Arctic enter media coverage of climate change? Is there evidence of a climate justice discourse in relation to regional disparities in the risks and harms of climate change between northern and southern Canada? Climate change in the Arctic is often framed through the lens of Canadian national interests, which downplays climate-related social impacts that are already occurring at subnational political and geographical scales. L'Arctique est une des régions du monde la plus radicalement altérée par le changement climatique, menant comme résultat des importants changements sociaux et culturels. En utilisant l'analyse des réseaux de discours ainsi que l'analyse textuelle qualitative des articles publiés dans le Globe and Mail et le National Post de 2006 à 2010, nous identifions and analysons des cadres clés qui servent à interpréter les conséquences du changement climatique dans l'Arctique. Nous examinons la couverture des médias nationaux canadiens pour pouvoir demander : comment est-ce que l'Arctique s'insère dans la couverture médiatique du changement climatique? Est-ce qu'il y a de la preuve d'un discours de la justice climatique en relation des disparités régionales des risques et méfaits du changement climatique entre le Canada du nord et du sud? Le changement climatique dans l'Arctique est souvent encadré à travers le prisme des intérêts nationaux canadiens, ce qui minimise les impacts sociaux reliés au climat qui se produisent actuellement aux échelons sous

  14. Sulphur in the Arctic environment (3): environmental impact.

    PubMed

    Kashulina, G; Reimann, C; Banks, D

    2003-01-01

    Long term, high level airborne emissions of pollutants from nickel industries on the Kola Peninsula (NW Russia) have resulted in widespread ecosystem injury up to almost complete vegetation eradication within nearest surroundings of the smelters. Although SO2 is the prevailing component of the emissions, it is only part of a much more complex chemical emission spectrum in the region. In addition to acidic gases, industry also emits potentially toxic elements (e.g. metals) which being less volatile than SO2, are deposited within the immediate region in significant concentrations. Additionally, it appears that sources of base cations (co-emission by smelters, sea aerosols, other industries) are adequate to prevent environmental acidification on the regional scale. Acidification of soils and waters appeared only as single cases in the immediate vicinity of the smelters and is not believed to be a major mechanism of environmental deterioration. Proposed critical concentrations (5 microg/m(3)) of SO2 for the northern ecosystems are exceeded over a large area and direct exposure to SO2 is believed to be the possible mechanism of vegetation damage.

  15. Arctic Vortex changes alter the sources and isotopic values of precipitation in northeastern US

    Treesearch

    Tamir Puntsag; Myron J. Mitchell; John L. Campbell; Eric S. Klein; Gene E. Likens; Jeffrey M. Welker

    2016-01-01

    Altered atmospheric circulation, reductions in Arctic sea ice, ocean warming, and changes in evaporation and transpiration are driving changes in the global hydrologic cycle. Precipitation isotopic (δ18O and δ2H) measurements can help provide a mechanistic understanding of hydrologic change at global and regional scales. To...

  16. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.

    PubMed

    Ernakovich, Jessica G; Hopping, Kelly A; Berdanier, Aaron B; Simpson, Rodney T; Kachergis, Emily J; Steltzer, Heidi; Wallenstein, Matthew D

    2014-10-01

    Global climate change is already having significant impacts on arctic and alpine ecosystems, and ongoing increases in temperature and altered precipitation patterns will affect the strong seasonal patterns that characterize these temperature-limited systems. The length of the potential growing season in these tundra environments is increasing due to warmer temperatures and earlier spring snow melt. Here, we compare current and projected climate and ecological data from 20 Northern Hemisphere sites to identify how seasonal changes in the physical environment due to climate change will alter the seasonality of arctic and alpine ecosystems. We find that although arctic and alpine ecosystems appear similar under historical climate conditions, climate change will lead to divergent responses, particularly in the spring and fall shoulder seasons. As seasonality changes in the Arctic, plants will advance the timing of spring phenological events, which could increase plant nutrient uptake, production, and ecosystem carbon (C) gain. In alpine regions, photoperiod will constrain spring plant phenology, limiting the extent to which the growing season can lengthen, especially if decreased water availability from earlier snow melt and warmer summer temperatures lead to earlier senescence. The result could be a shorter growing season with decreased production and increased nutrient loss. These contrasting alpine and arctic ecosystem responses will have cascading effects on ecosystems, affecting community structure, biotic interactions, and biogeochemistry.

  17. Recent oceanic changes in the Arctic in the context of long-term observations.

    PubMed

    Polyakov, Igor V; Bhatt, Uma S; Walsh, John E; Abrahamsen, E Povl; Pnyushkov, Andrey V; Wassmann, Paul F

    2013-12-01

    This synthesis study assesses recent changes of Arctic Ocean physical parameters using a unique collection of observations from the 2000s and places them in the context of long-term climate trends and variability. Our analysis demonstrates that the 2000s were an exceptional decade with extraordinary upper Arctic Ocean freshening and intermediate Atlantic water warming. We note that the Arctic Ocean is characterized by large amplitude multi-decadal variability in addition to a long-term trend, making the link of observed changes to climate drivers problematic. However, the exceptional magnitude of recent high-latitude changes (not only oceanic, but also ice and atmospheric) strongly suggests that these recent changes signify a potentially irreversible shift of the Arctic Ocean to a new climate state. These changes have important implications for the Arctic Ocean's marine ecosystem, especially those components that are dependent on sea ice or that have temperature-dependent sensitivities or thresholds. Addressing these and other questions requires a carefully orchestrated combination of sustained multidisciplinary observations and advanced modeling.

  18. Arctic sea ice and climate change--will the ice disappear in this century?

    PubMed

    Johannessen, O M; Miles, M W

    2000-01-01

    A consensus among climate change prediction scenarios using coupled ocean-climate general circulation models (GCMs) is enhanced warming in the Arctic. This suggests that changes in the Arctic sea ice cover may provide early indications of global warming. Observational evidence of substantial changes in the ice cover has been found recently using data from satellites and submarines. Satellite-borne microwave sensor data analyses have established a 3% per decade decrease in the spatial extent of the Arctic ice cover in the past 20 years. Moreover, a 7% per decade decrease in thicker, multi-year (perennial) ice pack has been revealed. This apparent transformation is corroborated by independent data that indicate substantial decreases in the average ice thickness from 3.1 to 1.8 m from the 1950s/1970s to the mid 1990s, averaging about 4 cm per year. It remains uncertain whether these observed changes are manifestations of global warming or are the result of anomalous atmospheric circulation--or both. However, if the recent trends continue, the Arctic sea ice cover could disappear this century, at least in summer, with important consequences for the regional and global ocean-climate system. This article synthesizes recent variability and trends in Arctic sea ice in the perspective of global climate change, and discusses their potential ramifications.

  19. Environmental Limits of Tall Shrubs in Alaska's Arctic National Parks.

    PubMed

    Swanson, David K

    2015-01-01

    We sampled shrub canopy volume (height times area) and environmental factors (soil wetness, soil depth of thaw, soil pH, mean July air temperature, and typical date of spring snow loss) on 471 plots across five National Park Service units in northern Alaska. Our goal was to determine the environments where tall shrubs thrive and use this information to predict the location of future shrub expansion. The study area covers over 80,000 km2 and has mostly tundra vegetation. Large canopy volumes were uncommon, with volumes over 0.5 m3/m2 present on just 8% of plots. Shrub canopy volumes were highest where mean July temperatures were above 10.5°C and on weakly acid to neutral soils (pH of 6 to 7) with deep summer thaw (>80 cm) and good drainage. On many sites, flooding helped maintain favorable soil conditions for shrub growth. Canopy volumes were highest where the typical snow loss date was near 20 May; these represent sites that are neither strongly wind-scoured in the winter nor late to melt from deep snowdrifts. Individual species varied widely in the canopy volumes they attained and their response to the environmental factors. Betula sp. shrubs were the most common and quite tolerant of soil acidity, cold July temperatures, and shallow thaw depths, but they did not form high-volume canopies under these conditions. Alnus viridis formed the largest canopies and was tolerant of soil acidity down to about pH 5, but required more summer warmth (over 12°C) than the other species. The Salix species varied widely from S. pulchra, tolerant of wet and moderately acid soils, to S. alaxensis, requiring well-drained soils with near neutral pH. Nearly half of the land area in ARCN has mean July temperatures of 10.5 to 12.5°C, where 2°C of warming would bring temperatures into the range needed for all of the potential tall shrub species to form large canopies. However, limitations in the other environmental factors would probably prevent the formation of large shrub canopies

  20. USGS Arctic Science Strategy

    USGS Publications Warehouse

    Shasby, Mark; Smith, Durelle

    2015-07-17

    The United States is one of eight Arctic nations responsible for the stewardship of a polar region undergoing dramatic environmental, social, and economic changes. Although warming and cooling cycles have occurred over millennia in the Arctic region, the current warming trend is unlike anything recorded previously and is affecting the region faster than any other place on Earth, bringing dramatic reductions in sea ice extent, altered weather, and thawing permafrost. Implications of these changes include rapid coastal erosion threatening villages and critical infrastructure, potentially significant effects on subsistence activities and cultural resources, changes to wildlife habitat, increased greenhouse-gas emissions from thawing permafrost, threat of invasive species, and opening of the Arctic Ocean to oil and gas exploration and increased shipping. The Arctic science portfolio of the U.S. Geological Survey (USGS) and its response to climate-related changes focuses on landscapescale ecosystem and natural resource issues and provides scientific underpinning for understanding the physical processes that shape the Arctic. The science conducted by the USGS informs the Nation's resource management policies and improves the stewardship of the Arctic Region.

  1. USGS Arctic science strategy

    USGS Publications Warehouse

    Shasby, Mark; Smith, Durelle

    2015-07-17

    The United States is one of eight Arctic nations responsible for the stewardship of a polar region undergoing dramatic environmental, social, and economic changes. Although warming and cooling cycles have occurred over millennia in the Arctic region, the current warming trend is unlike anything recorded previously and is affecting the region faster than any other place on Earth, bringing dramatic reductions in sea ice extent, altered weather, and thawing permafrost. Implications of these changes include rapid coastal erosion threatening villages and critical infrastructure, potentially significant effects on subsistence activities and cultural resources, changes to wildlife habitat, increased greenhouse-gas emissions from thawing permafrost, threat of invasive species, and opening of the Arctic Ocean to oil and gas exploration and increased shipping. The Arctic science portfolio of the U.S. Geological Survey (USGS) and its response to climate-related changes focuses on landscapescale ecosystem and natural resource issues and provides scientific underpinning for understanding the physical processes that shape the Arctic. The science conducted by the USGS informs the Nation's resource management policies and improves the stewardship of the Arctic Region.

  2. The Arctic Research Consortium of the United States (ARCUS): Connecting Arctic Research

    NASA Astrophysics Data System (ADS)

    Rich, R. H.; Wiggins, H. V.; Creek, K. R.; Sheffield Guy, L.

    2015-12-01

    This presentation will highlight the recent activities of the Arctic Research Consortium of the United States (ARCUS) to connect Arctic research. ARCUS is a nonprofit membership organization of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broader science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of ARCUS projects include: Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. PolarTREC (Teachers and Researchers Exploring and Collaborating) - a program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. ArcticInfo mailing list, Witness the Arctic newsletter, and the Arctic Calendar - communication tools for the arctic science community to keep apprised of relevant news, meetings, and announcements. Coordination for the Study of Environmental Arctic Change (SEARCH) program, which aims to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. More information about these and other ARCUS activities can be found at the ARCUS website at

  3. Shifts in the distribution of molting Spectacled Eiders (Somateria fischeri) indicate ecosystem change in the Arctic

    USGS Publications Warehouse

    Sexson, Matthew; Petersen, Margaret; Greg A. Breed,; Powell, Abby N.

    2016-01-01

    Shifts in the distribution of benthivorous predators provide an indication of underlying environmental changes in benthic-mediated ecosystems. Spectacled Eiders (Somateria fischeri) are benthivorous sea ducks that spend the nonbreeding portion of their annual cycle in the Bering, Chukchi, Beaufort, and East Siberian seas. Sea ducks generally molt in biologically productive areas with abundant prey. If the distribution of eiders at molting areas matches prey abundance, spatial shifts may indicate changes in environmental conditions in the Arctic. We used a randomization procedure to test for shifts in the distribution of satellite telemetry locations received from Spectacled Eiders in the 1990s and 2008–2011 within 4 late-summer, ice-free molting areas: Indigirka–Kolyma, northern Russia; Ledyard Bay, eastern Chukchi Sea; Norton Sound, northeastern Bering Sea; and Mechigmenskiy Gulf, northwestern Bering Sea. We also tested for interannual and interdecadal changes in dive depth required to reach prey, which might affect the energetic costs of foraging during the molting period. Transmitter-marked birds used each molting area in each year, although the distribution of Spectacled Eiders shifted within each area. Interdecadal shifts in Ledyard Bay and Norton Sound decreased dive depth in recent years, although minor differences in depth were biologically negligible in relation to the energetic expense of feather growth. Shifts in Mechigmenskiy Gulf and Indigirka–Kolyma did not occur consistently within or among decades, which suggests greater interannual variability among environmental factors that influence distribution in these areas. Shifts in each molting area suggest dynamic ecosystem processes, with implications for Spectacled Eiders if changes result in novel competition or predation, or in shifting prey regimes.

  4. 78 FR 70573 - Notice to Terminate the Environmental Impact Statement on a Gates of the Arctic National Park and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ....00.1] Notice to Terminate the Environmental Impact Statement on a Gates of the Arctic National Park and Preserve General Management Plan Amendment AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The National Park Service (NPS) is terminating the Wilderness Study and Environmental Impact...

  5. Response of Arctic temperature to changes in emissions of short-lived climate forcers

    NASA Astrophysics Data System (ADS)

    Sand, M.; Berntsen, T. K.; von Salzen, K.; Flanner, M. G.; Langner, J.; Victor, D. G.

    2016-03-01

    There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased at twice the global rate, largely as a result of ice-albedo and temperature feedbacks. Although deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short-lived climate forcers (SLCFs; refs ,). Politically, action on SLCFs may be particularly promising because the benefits of mitigation are seen more quickly than for mitigation of CO2 and there are large co-benefits in terms of improved air quality. This Letter is one of the first to systematically quantify the Arctic climate impact of regional SLCFs emissions, taking into account black carbon (BC), sulphur dioxide (SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs), organic carbon (OC) and tropospheric ozone (O3), and their transport processes and transformations in the atmosphere. This study extends the scope of previous works by including more detailed calculations of Arctic radiative forcing and quantifying the Arctic temperature response. We find that the largest Arctic warming source is from emissions within the Asian nations owing to the large absolute amount of emissions. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible mitigation scenario for SLCFs, phased in from 2015 to 2030, could cut warming by 0.2 (+/-0.17) K in 2050.

  6. Pan-Arctic river discharge: Prioritizing monitoring of future climate change hot spots

    NASA Astrophysics Data System (ADS)

    Bring, Arvid; Shiklomanov, Alexander; Lammers, Richard B.

    2017-01-01

    The Arctic freshwater cycle is changing rapidly, which will require adequate monitoring of river flows to detect, observe, and understand changes and provide adaptation information. There has, however, been little detail about where the greatest flow changes are projected, and where monitoring therefore may need to be strengthened. In this study, we used a set of recent climate model runs and an advanced macro-scale hydrological model to analyze how flows across the continental pan-Arctic are projected to change and where the climate models agree on significant changes. We also developed a method to identify where monitoring stations should be placed to observe these significant changes, and compared this set of suggested locations with the existing network of monitoring stations. Overall, our results reinforce earlier indications of large increases in flow over much of the Arctic, but we also identify some areas where projections agree on significant changes but disagree on the sign of change. For monitoring, central and eastern Siberia, Alaska, and central Canada are hot spots for the highest changes. To take advantage of existing networks, a number of stations across central Canada and western and central Siberia could form a prioritized set. Further development of model representation of high-latitude hydrology would improve confidence in the areas we identify here. Nevertheless, ongoing observation programs may consider these suggested locations in efforts to improve monitoring of the rapidly changing Arctic freshwater cycle.

  7. Pan-Arctic River Discharge: Where Can We Improve Monitoring of Future Change?

    NASA Astrophysics Data System (ADS)

    Bring, A.; Shiklomanov, A. I.; Lammers, R. B.

    2016-12-01

    The Arctic freshwater cycle is changing rapidly, which will require adequate monitoring of river flow to detect, observe and understand changes and provide adaptation information. There has however been little detail about where the greatest flow changes are projected, and where monitoring therefore may need to be strengthened. In this study, we used a set of recent climate model runs and an advanced macro-scale hydrological model to analyze how flows across the continental pan-Arctic are projected to change, and where the climate models agree on significant changes. We also developed a method to identify where monitoring stations should be placed to observe these significant changes, and compared this set of suggested locations with the existing network of monitoring stations. Overall, our results reinforce earlier indications of large increases in flow over much of the Arctic, but we also identify some areas where projections agree on significant changes but disagree on the sign of change. For monitoring, central and eastern Siberia, Alaska and central Canada are hot spots for the highest changes. To take advantage of existing networks, a number of stations across central Canada and western and central Siberia could form a prioritized set. Further development of model representation of high-latitude hydrology would improve confidence in the areas we identify here. Nevertheless, ongoing observation programs may consider these suggested locations in efforts to improve monitoring of the rapidly changing Arctic freshwater cycle.

  8. Social and Economic Research in the U.S. Arctic. The Man in the Arctic Program.

    ERIC Educational Resources Information Center

    Morehouse, Thomas A.

    The next 25 years will see dramatic changes in the U.S. Arctic and sub-Arctic. Some major forces generating these changes are national energy demands, Alaska oil and gas development, environmental conservation pressures, and the reallocation of over 200 million acres of U.S. public land among Federal, State, and private interests. To provide…

  9. Social and Economic Research in the U.S. Arctic. The Man in the Arctic Program.

    ERIC Educational Resources Information Center

    Morehouse, Thomas A.

    The next 25 years will see dramatic changes in the U.S. Arctic and sub-Arctic. Some major forces generating these changes are national energy demands, Alaska oil and gas development, environmental conservation pressures, and the reallocation of over 200 million acres of U.S. public land among Federal, State, and private interests. To provide…

  10. Pan-Svalbard growth rate variability and environmental regulation in the Arctic bivalve Serripes groenlandicus

    NASA Astrophysics Data System (ADS)

    Carroll, Michael L.; Ambrose, William G.; Levin, Benjamin S.; Locke V, William L.; Henkes, Gregory A.; Hop, Haakon; Renaud, Paul E.

    2011-11-01

    Growth histories contained in the shells of bivalves provide continuous records of environmental and biological information over lifetimes spanning decades to centuries, thereby linking ecosystem responses to both natural and anthropogenic climatic variations over a range of scales. We examined growth rates and temporal growth patterns of 260 individuals of the circumpolar Greenland Smooth Cockle ( Serripes groenlandicus) collected between 1997 and 2009 from 11 sites around the Svalbard Archipelago. These sites encompass a range of oceanographic and environmental conditions, from strongly Atlantic-influenced conditions on the west coast to high-Arctic conditions in northeast Svalbard. Absolute growth was up to three times greater at the most strongly Atlantic-influenced locations compared to the most Arctic-influenced areas, and growth performance was highest at sites closest to the West Spitsbergen Current. We also developed growth chronologies up to 34 years in length extending back to 1974. Standardized growth indices (SGI) exhibited substantial inter-site variability, but there were also common temporal features including steadily increasing growth from the late 1980's to the mid-1990's followed by a marked shift from relatively greater to poorer growth in the mid-1990's and from 2004 to 2008. This pattern was consistent with phase-shifts in large-scale climatic drivers. Interannual variability in SGI was also related to local manifestations of the large-scale drivers, including sea temperature and sea ice extent. The temporal growth pattern at Rijpfjorden, on northeast Svalbard, was broadly representative (R = 0.81) of the entire dataset. While there were site-related differences in the specific relationships between growth and environmental parameters, the aggregated dataset indicated an overriding regional driver of bivalve growth: the Arctic Climate Regime Index (ACRI). These results demonstrate that sclerochronological proxies can be useful retrospective

  11. Mapping Arctic Ocean Coastline Change With Landsat Archive Data And Object-Based Image Analysis

    NASA Astrophysics Data System (ADS)

    Hulslander, D.

    2010-12-01

    The melting of arctic permafrost is a significant effect of climate change. The combination of rising sea level, longer periods of ice-free conditions in the Arctic Ocean and melting permafrost can greatly accelerate coastline changes in general and arctic coastal erosion in particular. Anderson et al. (2009; Geology News) have measured erosion rates of 15 m per year at sites along the Alaskan Arctic Ocean coastline dominated by ice-cemented peats and silt-rich permafrost. With over 45,000 km of Arctic Ocean coastline, it is important that coastline movement and transgressive oceanic regimes be mapped and tracked with accurate data. Determining historic coastal erosion rates for this region is as important as mapping the current extent of the phenomenon to create as complete a picture as possible and locate where rapid erosion is an emergent process. The extent of the area involved combined with its inaccessibility and inhospitable conditions makes geologic remote sensing an appropriate tool for characterizing Arctic Ocean coastal erosion. Traditional weaknesses associated with using remote sensing in the geosciences have included a lack of historical data or baseline information as well as difficulties in systematization of feature mapping. Using object-based image analysis on Landsat archive data can overcome these issues and may allow for a potential multi-decadal map of Arctic Ocean coastline changes. The Landsat family of sensors (MSS 1-3 and TM/ETM 4, 5, and 7) have been providing imagery as frequently as every 16 days since July 1972. The frequent revisits maximize the chance of getting cloud-free imagery at least once per year in most study areas. Also, Landsat data are well characterized, extensively studied, and freely available from the USGS EROS Data Center Archive, making it an ideal and stable source of data for mapping the Arctic Ocean coastline. Delineating large sections of coastline from imagery by hand digitization would be impractical due to the

  12. Climate Change, Degradation of Permafrost, and Hazards to Infrastructure in the Circumpolar Arctic.

    NASA Astrophysics Data System (ADS)

    Anisimov, O.

    2001-12-01

    Warming, thawing and disappearance of permafrost have accelerated in recent decades damaging engineered structures and raising public concerns. By the middle of the 21st century anthropogenic climate change may cause 2 to 3 C warming of the frozen ground, 10% to 16% reduction of the total permafrost area, 30% to 50% deepening of the active-layer thickness, and shifts between the permafrost zones due to cumulative effect of changing surface temperature, soil moisture, and vegetation. Such changes will have important implications for northern engineering and infrastructure built upon permafrost. The foundations supporting engineered structures are designed for the constant climatic conditions with construction-specific safety factor, which in the practice of the cold-region engineering varies typically from 5% to 60% with respect to the bearing capacity. In the zone of discontinuous permafrost a 2.0 C rise in air temperature may decrease the bearing capacity of frozen ground under buildings by more than a half. This may have important consequences for the infrastructure and particularly for residential buildings constructed in the permafrost zone between 1950 and 1990 in northern Russian cities Vorkuta, Yakytsk, Norylsk, and Magadan. Many of them are already weakened or damaged, which may in part be attributed to the effect of climate change. Susceptibility of permafrost to environmental hazards associated with thermokarst, ground settlement, and other destructive cryogenic processes may be crudely evaluated using the geocryological hazard index, which is the combination of the predicted for the future climate relative change in the active-layer thickness and the ground ice content. Predictive maps constructed for scenarios of climate change indicated that several population centers (Barrow, Inuvik), river terminals on the arctic coast of Russia (Salekhard, Igarka, Dudinka, Tiksi), and gas production complexes with associated infrastructure in northwest Siberia fall

  13. Relevance of hydro-climatic change projection and monitoring for assessment of water cycle changes in the Arctic.

    PubMed

    Bring, Arvid; Destouni, Georgia

    2011-06-01

    Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes.

  14. Arctic Warmth Becomes a Mid-Latitude Chill: Using Online Data To Teach Climate Change Science

    NASA Astrophysics Data System (ADS)

    Eichorn, David N.

    Climate change education is a growing sub-discipline of science education. This research reports on the use of the fundamental principles of atmospheric science to explain the potential impact of regional climate change across global latitudes. Since the Arctic is responding to climate change faster than any other place on earth, it offers us a real-time opportunity to teach the larger scale impacts of abrupt regional scale change. In this research I merged elements of both the atmospheric and climate sciences into an online course. The course uses principles of meteorology to teach climate change science and demonstrate cause and effect relationships within the atmosphere. Students learn how climate change in one part of the world impacts weather elsewhere through the use of animated and descriptive video lectures that explain basic atmospheric thermodynamics processes. This paper includes a lesson plan that shows how climatic warming in the Arctic causes colder US winter weather. Formative and summative evaluations taken from course evaluations and exams suggest using meteorology to teach climate change is an effective way to educate students in high school and undergraduate college level courses about cross latitudinal influences of climate change. Keywords: Climate Change, Global Warming, Arctic, Climate Literacy, Lesson Plan, Arctic Oscillation, Education

  15. Behavioral Ecology of Narwhals in a Changing Arctic

    DTIC Science & Technology

    2013-09-30

    What are the spatial and temporal trends in the occurrence of killer whales in West Greenland? Given the loss of annual sea ice and purported...increase in killer whales in the Canadian Arctic, do killer whale catch and observation data from West Greenland follow this trend and have narwhals been...sampling in the Northeast Atlantic have documented killer whales (Orcinus orca), the largest delphinid, produce whistles with the highest

  16. Behavioral Ecology of Narwhals in a Changing Arctic

    DTIC Science & Technology

    2012-09-30

    studies using wide-band acoustic sampling in the Northeast Atlantic have documented killer whales (Orcinus orca ), the largest delphinid, produce whistles...hot spots? 4. Predation: What are the spatial and temporal trends in the occurrence of killer whales in West Greenland? Given the loss of annual...sea ice and purported increase in killer whales in the Canadian Arctic, do killer whale catch and observation data from West Greenland follow this

  17. Behavioral Ecology of Narwhals in a Changing Arctic

    DTIC Science & Technology

    2011-09-30

    spots? 4. Predation: What are the spatial and temporal trends in the occurrence of killer whales in West Greenland? Given the loss of annual sea...ice and purported increase in killer whales in the Canadian Arctic, do killer whale catch and observation data from West Greenland follow this trend... killer whales (Orcinus orca), the largest delphinid, produce whistles with the highest fundamental frequencies ever reported (Samarra et al. In Press

  18. Global warming is changing the dynamics of Arctic host-parasite systems.

    PubMed

    Kutz, S J; Hoberg, E P; Polley, L; Jenkins, E J

    2005-12-22

    Global climate change is altering the ecology of infectious agents and driving the emergence of disease in people, domestic animals, and wildlife. We present a novel, empirically based, predictive model for the impact of climate warming on development rates and availability of an important parasitic nematode of muskoxen in the Canadian Arctic, a region that is particularly vulnerable to climate change. Using this model, we show that warming in the Arctic may have already radically altered the transmission dynamics of this parasite, escalating infection pressure for muskoxen, and that this trend is expected to continue. This work establishes a foundation for understanding responses to climate change of other host-parasite systems, in the Arctic and globally.

  19. Changing arctic ecosystems—What is causing the rapid increase of snow geese in northern Alaska?

    USGS Publications Warehouse

    Hupp, Jerry W.; Ward, David H.; Whalen, Mary E.; Pearce, John M.

    2015-09-10

    Through the Changing Arctic Ecosystems (CAE) initiative, the U.S. Geological Survey (USGS) informs key resource management decisions for Arctic Alaska by providing scientific information on current and future ecosystem response to a warming climate. The Arctic Coastal Plain (ACP) of northern Alaska is a key study area within the USGS CAE initiative. This region has experienced a warming trend over the past decades, leading to decreased sea ice, permafrost thaw, and an advancement of spring phenology. The number of birds on the ACP also is changing, marked by increased populations of the four species of geese that nest in the region. The Snow Goose (Chen caerulescens) is the most rapidly increasing of these species. USGS CAE research is quantifying these changes and their implications for management agencies.

  20. Global warming is changing the dynamics of Arctic host–parasite systems

    PubMed Central

    Kutz, S.J; Hoberg, E.P; Polley, L; Jenkins, E.J

    2005-01-01

    Global climate change is altering the ecology of infectious agents and driving the emergence of disease in people, domestic animals, and wildlife. We present a novel, empirically based, predictive model for the impact of climate warming on development rates and availability of an important parasitic nematode of muskoxen in the Canadian Arctic, a region that is particularly vulnerable to climate change. Using this model, we show that warming in the Arctic may have already radically altered the transmission dynamics of this parasite, escalating infection pressure for muskoxen, and that this trend is expected to continue. This work establishes a foundation for understanding responses to climate change of other host–parasite systems, in the Arctic and globally. PMID:16321777

  1. Regional variability in sea ice melt in a changing Arctic

    PubMed Central

    Perovich, Donald K.; Richter-Menge, Jacqueline A.

    2015-01-01

    In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover. PMID:26032323

  2. Regional variability in sea ice melt in a changing Arctic.

    PubMed

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2015-07-13

    In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover.

  3. Fire and ecosystem change in the Arctic across the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Denis, E. H.; Pedentchouk, N.; Schouten, S.; Pagani, M.; Freeman, K. H.

    2016-12-01

    Fire, an important component of ecosystems at a range of spatial and temporal scales, affects vegetation distribution, the carbon cycle, and climate. In turn, climate influences fuel composition (e.g., amount and type of vegetation), fuel availability (e.g., vegetation that can burn based on precipitation and temperature), and ignition sources (e.g., lightning). Climate studies predict increased wildfire activity in future decades, but mechanisms that control the relationship between climate and fire are complex. Reconstructing environmental conditions during past warming events (e.g., the Paleocene-Eocene Thermal Maximum (PETM)) will help elucidate climate-vegetation-fire relationships that are expressed over long durations (1,000 - 10,000 yrs). The abrupt global warming during the PETM dramatically altered vegetation and hydrologic patterns, and, possibly, fire occurrence. To investigate coincident changes in climate, vegetation, and fire occurrence, we studied biomarkers, including polycyclic aromatic hydrocarbons (PAHs), terpenoids, and alkanes from the PETM interval at IODP site 302 (the Lomonosov Ridge) in the Arctic Ocean. Both pollen and biomarker records indicate angiosperms abundance increased during the PETM relative to gymnosperms, reflecting a significant ecological shift to angiosperm-dominated vegetation. PAH abundances increased relative to plant biomarkers throughout the PETM, which suggests PAH production increased relative to plant productivity. Increased PAH production associated with the angiosperm vegetation shift indicates a greater prevalence of more fire-prone species. A time lag between increased moisture transport (based on published δD of n-alkanes data) to the Arctic and increased angiosperms and PAH production suggests wetter conditions, followed by increased air temperatures, favored angiosperms and combined to enhance fire occurrence.

  4. How Will Aerosol-Cloud Interactions Change in an Ice-Free Arctic Summer?

    NASA Astrophysics Data System (ADS)

    Gilgen, Anina; Katty Huang, Wan Ting; Ickes, Luisa; Lohmann, Ulrike

    2016-04-01

    Future temperatures in the Arctic are expected to increase more than the global mean temperature, which will lead to a pronounced retreat in Arctic sea ice. Before mid-century, most sea ice will likely have vanished in late Arctic summers. This will allow ships to cruise in the Arctic Ocean, e.g. to shorten their transport passage or to extract oil. Since both ships and open water emit aerosol particles and precursors, Arctic clouds and radiation may be affected via aerosol-cloud and cloud-radiation interactions. The change in radiation feeds back on temperature and sea ice retreat. In addition to aerosol particles, also the temperature and the open ocean as a humidity source should have a strong effect on clouds. The main goal of this study is to assess the impact of sea ice retreat on the Arctic climate with focus on aerosol emissions and cloud properties. To this purpose, we conducted ensemble runs with the global climate model ECHAM6-HAM2 under present-day and future (2050) conditions. ECHAM6-HAM2 was coupled with a mixed layer ocean model, which includes a sea ice model. To estimate Arctic aerosol emissions from ships, we used an elaborated ship emission inventory (Peters et al. 2011); changes in aerosol emissions from the ocean are calculated online. Preliminary results show that the sea salt aerosol and the dimethyl sulfide burdens over the Arctic Ocean significantly increase. While the ice water path decreases, the total water path increases. Due to the decrease in surface albedo, the cooling effect of the Arctic clouds becomes more important in 2050. Enhanced Arctic shipping has only a very small impact. The increase in the aersol burden due to shipping is less pronounced than the increase due to natural emissions even if the ship emissions are increased by a factor of ten. Hence, there is hardly an effect on clouds and radiation caused by shipping. References Peters et al. (2011), Atmos. Chem. Phys., 11, 5305-5320

  5. Community-driven research on environmental sources of H. pylori infection in arctic Canada

    PubMed Central

    Hastings, Emily V; Yasui, Yutaka; Hanington, Patrick; Goodman, Karen J; Working Group, The CANHelp

    2014-01-01

    The role of environmental reservoirs in H. pylori transmission remains uncertain due to technical difficulties in detecting living organisms in sources outside the stomach. Residents of some Canadian Arctic communities worry that contamination of the natural environment is responsible for the high prevalence of H. pylori infection in the region. This analysis aims to estimate associations between exposure to potential environmental sources of biological contamination and prevalence of H. pylori infection in Arctic Canada. Using data from 3 community-driven H. pylori projects in the Northwest and Yukon Territories, we estimated effects of environmental exposures on H. pylori prevalence, using odds ratios (OR) and 95% confidence intervals (CI) from multilevel logistic regression models to adjust for household and community effects. Investigated exposures include: untreated drinking water; livestock; dogs; cats; mice or mouse droppings in the home; cleaning fish or game. Our analysis did not identify environmental exposures associated clearly with increased H. pylori prevalence, except any exposure to mice or mouse droppings (OR = 4.6, CI = 1.2–18), reported by 11% of participants. Our multilevel models showed H. pylori clustering within households, but environmental exposures accounted for little of this clustering; instead, much of it was accounted for by household composition (especially: having infected household members; number of children). Like the scientific literature on this topic, our results do not clearly implicate or rule out environmental reservoirs of H. pylori; thus, the topic remains a priority for future research. Meanwhile, H. pylori prevention research should seek strategies for reducing direct transmission from person to person. PMID:25483330

  6. Community-driven research on environmental sources of H. pylori infection in arctic Canada.

    PubMed

    Hastings, Emily V; Yasui, Yutaka; Hanington, Patrick; Goodman, Karen J

    2014-01-01

    The role of environmental reservoirs in H. pylori transmission remains uncertain due to technical difficulties in detecting living organisms in sources outside the stomach. Residents of some Canadian Arctic communities worry that contamination of the natural environment is responsible for the high prevalence of H. pylori infection in the region. This analysis aims to estimate associations between exposure to potential environmental sources of biological contamination and prevalence of H. pylori infection in Arctic Canada. Using data from 3 community-driven H. pylori projects in the Northwest and Yukon Territories, we estimated effects of environmental exposures on H. pylori prevalence, using odds ratios (OR) and 95% confidence intervals (CI) from multilevel logistic regression models to adjust for household and community effects. Investigated exposures include: untreated drinking water; livestock; dogs; cats; mice or mouse droppings in the home; cleaning fish or game. Our analysis did not identify environmental exposures associated clearly with increased H. pylori prevalence, except any exposure to mice or mouse droppings (OR = 4.6, CI = 1.2-18), reported by 11% of participants. Our multilevel models showed H. pylori clustering within households, but environmental exposures accounted for little of this clustering; instead, much of it was accounted for by household composition (especially: having infected household members; number of children). Like the scientific literature on this topic, our results do not clearly implicate or rule out environmental reservoirs of H. pylori; thus, the topic remains a priority for future research. Meanwhile, H. pylori prevention research should seek strategies for reducing direct transmission from person to person.

  7. Arctic and subarctic environmental analyses utilizing ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Anderson, D. M. (Principal Investigator); Mckim, H. L.; Gatto, L. W.; Haugen, R. K.; Crowder, W. K.; Slaughter, C. W.; Marlar, T. L.

    1974-01-01

    The author has identified the following significant results. ERTS-1 imagery provides a means of distinguishing and monitoring estuarine surface water circulation patterns and changes in the relative sediment load of discharging rivers on a regional basis. Physical boundaries mapped from ERTS-1 imagery in combination with ground truth obtained from existing small scale maps and other sources resulted in improved and more detailed maps of permafrost terrain and vegetation for the same area. Snowpack cover within a research watershed has been analyzed and compared to ground data. Large river icings along the proposed Alaska pipeline route from Prudhoe Bay to the Brooks Range have been monitored. Sea ice deformation and drift northeast of Point Barrow, Alaska have been measured during a four day period in March and shore-fast ice accumulation and ablation along the west coast of Alaska have been mapped for the spring and early summer seasons.

  8. The fate of the Arctic seaweed Fucus distichus under climate change: an ecological niche modeling approach.

    PubMed

    Jueterbock, Alexander; Smolina, Irina; Coyer, James A; Hoarau, Galice

    2016-03-01

    Rising temperatures are predicted to melt all perennial ice cover in the Arctic by the end of this century, thus opening up suitable habitat for temperate and subarctic species. Canopy-forming seaweeds provide an ideal system to predict the potential impact of climate-change on rocky-shore ecosystems, given their direct dependence on temperature and their key role in the ecological system. Our primary objective was to predict the climate-change induced range-shift of Fucus distichus, the dominant canopy-forming macroalga in the Arctic and subarctic rocky intertidal. More specifically, we asked: which Arctic/subarctic and cold-temperate shores of the northern hemisphere will display the greatest distributional change of F. distichus and how will this affect niche overlap with seaweeds from temperate regions? We used the program MAXENT to develop correlative ecological niche models with dominant range-limiting factors and 169 occurrence records. Using three climate-change scenarios, we projected habitat suitability of F. distichus - and its niche overlap with three dominant temperate macroalgae - until year 2200. Maximum sea surface temperature was identified as the most important factor in limiting the fundamental niche of F. distichus. Rising temperatures were predicted to have low impact on the species' southern distribution limits, but to shift its northern distribution limits poleward into the high Arctic. In cold-temperate to subarctic regions, new areas of niche overlap were predicted between F. distichus and intertidal macroalgae immigrating from the south. While climate-change threatens intertidal seaweeds in warm-temperate regions, seaweed meadows will likely flourish in the Arctic intertidal. Although this enriches biodiversity and opens up new seaweed-harvesting grounds, it will also trigger unpredictable changes in the structure and functioning of the Arctic intertidal ecosystem.

  9. Climate change in the marine Arctic in the early 21st century

    NASA Astrophysics Data System (ADS)

    Alekseev, Genrikh; Pnyushkov, Andrey; Ivanov, Nikolai; Balakin, Andrey

    2010-05-01

    The enhanced warming in the Arctic began in the middle of 1990s and maximized in 2007. During this period an abrupt shrinking of the summer ice extent occurred and significant positive anomaly of temperature in Atlantic Water (AW) layer in the Arctic Basin expanded over larger area. This climate shift coincided with the resumption of intensive field studies in the Arctic Ocean. The observations collected during the last two decades and especially in the frame of IPY 2007/08 international projects provided an enormous database of oceanographic, sea ice and atmospheric data that makes it possible to determine the climate shift in the marine Arctic, to compare the recent anomalies to those in 1970s and to link the Arctic climate shift to the global climate change. Observations show that since 1990 the surface air temperature (SAT) in the marine Arctic increased rapidly. The CMIP3 ensemble of climate models is seemed to underestimate the rise of SAT especially in summer. Time series of the AW layer parameters along with its pathway over the Arctic Basin during the period of 1930-2009 were compiled in order to trace the development of anomalies. Mean decadal oceanographic fields for 1990s and 2000s and for 2007 year were produced and its anomalies from 1970s were estimated. Rapid climate changes in the marine Arctic in 1990-2000s can not be accounted solely for the anthropogenic effect since the actually observed changes exceed the predictions of the global climate models. Our analysis emphasizes an important role of the increasing summer heat fluxes, as well as the influence of low latitude ocean variability and the solar activity. Other conclusion is that abrupt warming in the marine Arctic stopped in 2008-2009 and it is necessary to continue the monitoring of further changes. The studies were fulfilled in the frame of the AARI IPY projects, Applied Science Program of the Roshydromet and with support of the Russian Foundation for Basic Research (projects 06-05-64054a

  10. Biogeochemical Indicators in High- and Low-Arctic Marine and Terrestrial Avian Community Changes: Comparative Isotopic (13C, 15N, and 34S) Studies in Alaska and Greenland

    NASA Astrophysics Data System (ADS)

    Causey, D.; Bargmann, N. A.; Burnham, K. K.; Burnham, J. L.; Padula, V. M.; Johnson, J. A.; Welker, J. M.

    2011-12-01

    Understanding the complex dynamics of environmental change in northern latitudes is of paramount importance today, given documented rapid shifts in sea ice, plant phenology, temperatures, deglaciation, and habitat fidelity. This knowledge is particularly critical for Arctic avian communities, which are integral components by which biological teleconnections are maintained between the mid and northern latitudes. Furthermore, Arctic birds are fundamental to Native subsistence lifestyles and a focus for conservation activities. Avian communities of marine and terrestrial Arctic environments represent a broad spectrum of trophic levels, from herbivores (eg., geese Chen spp.), planktivores (eg., auklets Aethia spp.), and insectivores (eg., passerines: Wheatears Oenanthe spp., Longspurs Calcarius spp.), to predators of marine invertebrates (eg., eiders Somateria spp.), nearshore and offshore fish (eg., cormorants Phalacrocorax spp, puffins Fratercula spp.), even other bird species (eg., gulls Larus spp., falcons Peregrinus spp.). This diversity of trophic interconnections is an integral factor in the dynamics of Arctic ecosystem ecology, and they are key indicators for the strength and trajectories of change. We are especially interested in their feeding ecology, using stable isotope-diet relations to examine historical diets and to predict future feeding ecology by this range of species. Since 2009, we have been studying the foodweb ecology using stable isotopes (δ13C, δ15N, δ34S) of contemporaneous coastal and marine bird communities in High Arctic (Northwest Greenland) and Low Arctic (western Aleutian Islands, AK). We are quantifying the isotopic values of blood, organ tissues, and feathers, and have carried out comparisons between native and lipid-extracted samples. Although geographically distant, these communities comprise similar taxonomic and ecological congeners, including several species common to both (eg., Common Eider, Black-legged Kittiwake, Northern

  11. Endocrine-disrupting chemicals and climate change: A worst-case combination for arctic marine mammals and seabirds?

    PubMed

    Jenssen, Bjørn Munro

    2006-04-01

    The effects of global change on biodiversity and ecosystem functioning encompass multiple complex dynamic processes. Climate change and exposure to endocrine-disrupting chemicals (EDCs) are currently regarded as two of the most serious anthropogenic threats to biodiversity and ecosystems. We should, therefore, be especially concerned about the possible effects of EDCs on the ability of Arctic marine mammals and seabirds to adapt to environmental alterations caused by climate change. Relationships between various organochlorine compounds, necessary such as polychlorinated biphenyls, dichlorophenyldichloroethylene, hexachlorobenzene, and oxychlordane, and hormones in Arctic mammals and seabirds imply that these chemicals pose a threat to endocrine systems of these animals. The most pronounced relationships have been reported with the thyroid hormone system, but effects are also seen in sex steroid hormones and cortisol. Even though behavioral and morphological effects of persistent organic pollutants are consistent with endocrine disruption, no direct evidence exists for such relationships. Because different endocrine systems are important for enabling animals to respond adequately to environmental stress, EDCs may interfere with adaptations to increased stress situations. Such interacting effects are likely related to adaptive responses regulated by the thyroid, sex steroid, and glucocorticosteroid systems.

  12. Potential changes in arctic seasonality and plant communities may impact tundra soil chemistry and carbon dynamics

    NASA Astrophysics Data System (ADS)

    Crow, S.; Cooper, E.; Beilman, D.; Filley, T.; Reimer, P.

    2009-04-01

    were dominated by cinnamyl-lignin forms that are easily degraded and thus not likely to persist as SOM. In contrast, roots and branches were comprised of more decay-resistant vanillyl and syringyl forms of lignin-derived phenols. Leaves of woody species were 10 times more concentrated in cutin/suberin-derived aliphatics than roots (which could provide a direct source of potentially stabilized C into the mineral soil). In the upper soil horizon, the MRT of isolated roots and organic debris was about 50 yr and the ‘resistant' C (i.e., C resistant to digestion in 6N HCl acid) was about 500 yr. In the lower soil horizon, the MRT of the ‘resistant' C was about 3500 yr, indicating that long-term C storage occurs in the near-surface layers of Arctic soil where environmental changes are likely to have a strong impact. Observed warming in high latitudes is most pronounced over land and a series of positive feedbacks between climate and net primary productivity are developing. Litter input quality may provide a rare negative feedback within this system and whether these feedbacks will ultimately result in SOM accumulation or losses due to increases in decomposition of older, stabilized C is unknown.

  13. Future change in ocean productivity: Is the Arctic the new Atlantic?

    NASA Astrophysics Data System (ADS)

    Yool, A.; Popova, E. E.; Coward, A. C.

    2015-12-01

    One of the most characteristic features in ocean productivity is the North Atlantic spring bloom. Responding to seasonal increases in irradiance and stratification, surface phytopopulations rise significantly, a pattern that visibly tracks poleward into summer. While blooms also occur in the Arctic Ocean, they are constrained by the sea-ice and strong vertical stratification that characterize this region. However, Arctic sea-ice is currently declining, and forecasts suggest this may lead to completely ice-free summers by the mid-21st century. Such change may open the Arctic up to Atlantic-style spring blooms, and do so at the same time as Atlantic productivity is threatened by climate change-driven ocean stratification. Here we use low and high-resolution instances of a coupled ocean-biogeochemistry model, NEMO-MEDUSA, to investigate productivity. Drivers of present-day patterns are identified, and changes in these across a climate change scenario (IPCC RCP 8.5) are analyzed. We find a globally significant decline in North Atlantic productivity (> -20%) by 2100, and a correspondingly significant rise in the Arctic (> +50%). However, rather than the future Arctic coming to resemble the current Atlantic, both regions are instead transitioning to a common, low nutrient regime. The North Pacific provides a counterexample where nutrients remain high and productivity increases with elevated temperature. These responses to climate change in the Atlantic and Arctic are common between model resolutions, suggesting an independence from resolution for key impacts. However, some responses, such as those in the North Pacific, differ between the simulations, suggesting the reverse and supporting the drive to more fine-scale resolutions. This article was corrected on 5 JAN 2016. See the end of the full text for details.

  14. The changing Arctic carbon cycle: using the past to understand terrestrial-aquatic linkages

    NASA Astrophysics Data System (ADS)

    Anderson, N. J.; van Hardenbroek, M.; Jones, V.; McGowan, S.; Langdon, P. G.; Whiteford, E.; Turner, S.; Edwards, M. E.

    2016-12-01

    Predicted shifts in terrestrial vegetation cover associated with Arctic warming are altering the delivery and processing of carbon to aquatic ecosystems. This process could determine whether lakes are net carbon sources or sinks and, because lake density is high in many Arctic areas, may alter regional carbon budgets. Lake sediment records integrate information from within the lake and its catchment and can be used quantify past vegetation shifts associated with known climatic episodes of warmer (Holocene Thermal Maximum) and cooler (Neoglacial) conditions. We analysed sediment cores located in different Arctic vegetation biomes (tundra, shrub, forested) in Greenland, Norway and Alaska and used biochemical (algal pigments, stable isotopes) remains to evaluate whether past vegetation shifts were associated with changes in ecosystem carbon processing and biodiversity. When lake catchments were sparsely vegetated and soil vegetation was limited ultra-violet radiation (UVR) screening pigments indicate clear lake waters, scarce dissolved organic carbon/ matter (DOC/M). Moderate vegetation development (birch scrub in Norway; herb tundra in Greenland) appears to enhance delivery of DOM to lakes, and to stimulate algal production which is apparently linked to heterotrophic carbon processing pathways (e.g. algal mixotrophy, nutrient release via the microbial loop). Mature forest cover (in Alaska and Norway) supressed lake autotrophic production, most likely because coloured DOM delivered from catchment vegetation limited light availability. During wetter periods when mires developed lake carbon processing also changed, indicating that hydrological delivery of terrestrial DOM is also important. Therefore, future changes in Arctic vegetation and precipitation patterns are highly likely to alter the way that arctic ecosystems process carbon. Our approach provides an understanding of how ecosystem diversity and carbon processing respond to past climate change and the difficulty

  15. One Health – a strategy for resilience in a changing arctic

    PubMed Central

    Ruscio, Bruce A.; Brubaker, Michael; Glasser, Joshua; Hueston, Will; Hennessy, Thomas W.

    2015-01-01

    The circumpolar north is uniquely vulnerable to the health impacts of climate change. While international Arctic collaboration on health has enhanced partnerships and advanced the health of inhabitants, significant challenges lie ahead. One Health is an approach that considers the connections between the environment, plant, animal and human health. Understanding this is increasingly critical in assessing the impact of global climate change on the health of Arctic inhabitants. The effects of climate change are complex and difficult to predict with certainty. Health risks include changes in the distribution of infectious disease, expansion of zoonotic diseases and vectors, changing migration patterns, impacts on food security and changes in water availability and quality, among others. A regional network of diverse stakeholder and transdisciplinary specialists from circumpolar nations and Indigenous groups can advance the understanding of complex climate-driven health risks and provide community-based strategies for early identification, prevention and adaption of health risks in human, animals and environment. We propose a regional One Health approach for assessing interactions at the Arctic human–animal–environment interface to enhance the understanding of, and response to, the complexities of climate change on the health of the Arctic inhabitants. PMID:26333722

  16. Prediction of Changes in Arctic Benthic Ecosystems on the Basis of Large Scale Study of Benthic Biomass Size Spectra

    NASA Astrophysics Data System (ADS)

    Mazurkiewicz, M.; Włodarska-Kowalczuk, M.; Górska, B.; Renaud, P.

    2016-02-01

    Body size is a fundamental biological unit that is closely coupled to key ecological properties and processes. Decline in organisms' body-size has been predicted to be "the third universal response to global warming" (alongside changes in phenology and distribution of species) in both aquatic and terrestrial systems. Some result from pelagic studies (of zooplankton and ichthyofauna) support that hypothesis. Increasing temperature results in higher abundance of smaller organisms, associated with warmer water masses or in higher proportion of juveniles vs. adults. As climate change is most dramatic at the polar regions, we aimed to present the first assessment of Benthic Biomass Size Spectra (BBSS) in both Arctic and lower latitude locations to determine possible future effects of global warming on Arctic benthic ecosystems. The study was conducted in 6 Norwegian fiords representing a wide geographical range - from 60°N up to 80°N (Raunefjorden, Balsfjorden, Ullsfjorden, Hornsund fjord, Kongsfjorden and Rijpfjorden). We hypothesize that decreasing temperature along the latitudinal gradient is reflected in organism size, here analyzed at the community level. At each location we collected three macrobenthic samples using van Veen grab, acquired hydrological settings, and collected sediments for geochemical analyses (grain size, organic matter descriptors). All macrobenthic organisms were identified and measured using microscope-based Image Analyses System. Using volumetric formulas we calculated the biovolume of each organism. For each location we plotted the BBSS. Individual biomass values were used to estimate the secondary production. The variability in size structures and functioning (production) of the studied communities were related to the environmental settings. The results are used to predict the possible effects climate warming related environmental changes on the benthic communities in Arctic coastal waters.

  17. Climate warming induced changes in terrestrial Arctic river ice thickness and phenology

    NASA Astrophysics Data System (ADS)

    PARK, H.; Yoshikawa, Y.; Oshima, K.; Yang, D.

    2016-12-01

    Arctic river is one of the major components of the global cryosphere and has a distinctive seasonal cycle characterized by freezeup and growth during fall and winter, followed by breakup with spring thawing. This seasonality is closely related to atmospheric heat fluxes. The recent increase in Arctic surface temperature can affect the river ice thickness and phenological dates. However, there are significant knowledge gaps in our understanding of the river-ice dynamics. Therefore, we assessed changes in ice sheet thickness, the timing of ice freezing and melting in Arctic terrestrial rivers during the period 1979-2010, based on observations and a hydrological model. The model can estimate ice thickness and water temperature using air temperature, snow depth, and river discharge. The calculated ice thickness was compared with in situ observations, showing generally higher correlations. The calculated maximum ice thickness indicated a decreasing trend over the pan-Arctic rivers. The timing of ice breakup was advanced, while the ice freezeup was later, consequently longer ice-free period. These changes were mostly significant during the recent decades when the increase in air temperature was significant. Model experiments made with various scenarios represented that snow depth is an important factor for winter river ice growth, while ice phenological timing is dominated by seasonal air temperature. This study addresses that Arctic river ice is shrinking as a consequence of regional climate warming and coincident with other cryospheric components, including permafrost, glaciers, and sea ice.

  18. High Arctic paleoenvironmental and Paleoclimatic changes in the Mid-Cretaceous

    NASA Astrophysics Data System (ADS)

    Herrle, Jens; Schröder-Adams, Claudia; Selby, David; Du Vivier, Alice; Flögel, Sascha; McAnena, Alison; Davis, William; Pugh, Adam; Galloway, Jennifer; Hofmann, Peter; Wagner, Thomas

    2014-05-01

    Although major progress in Cretaceous (145-66 Ma) paleoclimate and paleoceanography has been made during the last decades (e.g., Hay, 2008, 2011; Föllmi, 2012 and references therein), our knowledge of high latitudinal environmental change remains largely unknown compared to low- and mid-latitude marine and terrestrial environments. Drilling the Arctic Ocean remains challenging and expensive, whereas the Sverdrup Basin provides excellent exposures on land. To fully understand the climate and paleoceanographic dynamics of the warm, equable greenhouse world of the Cretaceous Period it is important to determine polar paleotemperatures and to study paleoceanographic changes in a well-established and continuous bio- and chemostratigraphic context. Exceptional exposures of Cretaceous sediments on the central to southern part of Axel Heiberg Island at a Cretaceous paleolatitude of about 71°N (Tarduno et al., 1998) provide a unique window on the Cretaceous Arctic paleoenvironment and climate history (Schröder-Adams et al., 2014). Here we present high-resolution records combining sedimentological studies, U-Pb zircon geochronology, marine organic carbon isotopes and initial 187Os/188Os data, TEX86-derived sea-surface temperatures (SST) and climate modelling, that constrain the timing and magnitude of major Oceanic Anoxic Events (OAEs) and climate events constructed from a ~1.8 km sedimentary succession exposed on Axel Heiberg and Ellef Ringnens islands in the Canadian Arctic Archipelago. The first high latitude application of initial 187Os/188Os data are agreeable with global profiles (Du Vivier et al., 2014) indicating the widespread magmatic pulse of the Caribbean Large Igneous Province (LIP) at the onset of OAE2 but also record the emplacement of local High Arctic LIP prior to the OAE2 in the Sverdrup Basin. Initial SST data suggest a slightly lower meridional temperature gradient during the Middle/Late Albian compared to present and a similar to the present one during

  19. Environmental change in moorland landscapes

    NASA Astrophysics Data System (ADS)

    Holden, J.; Shotbolt, L.; Bonn, A.; Burt, T. P.; Chapman, P. J.; Dougill, A. J.; Fraser, E. D. G.; Hubacek, K.; Irvine, B.; Kirkby, M. J.; Reed, M. S.; Prell, C.; Stagl, S.; Stringer, L. C.; Turner, A.; Worrall, F.

    2007-05-01

    Moorlands are unique environments found in uplands of the temperate zone including in the UK, New Zealand and Ireland, and in some high altitude tropical zones such as the Andean páramos. Many have been managed through grazing, burning or drainage practices. However, there are a number of other environmental and social factors that are likely to drive changes in management practice over the next few decades. Some moorlands have been severely degraded and in some countries conservation and restoration schemes are being attempted, particularly to revegetate bare soils. Native or non-native woodland planting may increase in some moorland environments while atmospheric deposition of many pollutants may also vary. Moorland environments are very sensitive to changes in management, climate or pollution. This paper reviews how environmental management change, such as changes in grazing or burning practices, may impact upon moorland processes based on existing scientific understanding. It also reviews the impacts of changes in climate and atmospheric deposition chemistry. The paper focuses on the UK moorlands as a case study of moorland landscapes that are in different states of degradation. Future research that is required to improve our understanding of moorland processes is outlined. The paper shows that there is a need for more holistic and spatial approaches to understanding moorland processes and management. There is also a need to develop approaches that combine understanding of interlinked social and natural processes.

  20. Shrinking lakes of the Arctic: Spatial relationships and trajectory of change

    NASA Astrophysics Data System (ADS)

    Carroll, M. L.; Townshend, J. R. G.; DiMiceli, C. M.; Loboda, T.; Sohlberg, R. A.

    2011-10-01

    Over the past 3 decades the Arctic has seen substantial warming. Previous local to regional scale studies have shown a considerable reduction in the size of lakes in this region. The subsequent exposure of carbon- and methane-rich sediments and the direct changes in surface albedo feed back into the drivers of regional and global climate change. Understanding and quantifying changes in the Arctic is a critical component of climate modeling due to the cooling effect of the Arctic on the global climate. The current work utilizes global satellite data from the Moderate Resolution Imaging Spectro-radiometer (MODIS) instrument to investigate changes in lakes across Canada between 2000 and 2009. The results show a net reduction of more than 6,700 km2 in the surface area of water in lakes across Canada. Modest gains in the southern regions are offset by larger losses in surface area farther north. Additionally, spatial analysis shows that the lakes showing change are clustered in groups. This suggests that local variability may play a role in the observed changes. Further work is needed to extend the analysis to the circumpolar Arctic.

  1. Changes in cold tolerance due to a 14-day stay in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Livingstone, S. D.; Romet, T.; Keefe, A. A.; Nolan, R. W.

    1996-12-01

    Responses to cold exposure tests both locally and of the whole body were examined in subjects who stayed in the Arctic (average maximum and minimum temperatures -11 and -21° C respectively) for 14 days of skiing and sleeping in tents. These changes were compared to responses in subjects living working in Ottawa, Canada (average max. and min. temperatures -5 and -11° C respectively). The tests were done before the stay in the Arctic (Pre), immediately after the return (Post 1) and approximately 32 days after the return (Post 2). For the whole-body cold exposure each subject, wearing only shorts and lying on a rope mesh cot, was exposed to an ambient temperature of 10° C. There was no consistent response in the changes of metabolic or body temperature to this exposure in either of groups and, in addition, the changes over time were variable. Cold induced vasodilatation (CIVD) was determined by measuring temperature changes in the middle finger of the nondominant hand upon immersion in ice water for 30 min. CIVD was depressed after the Arctic exposure whilst during the Post 2 testing, although variable, did not return to the Pre values; the responses of the control group were similar. These results indicate that normal seasonal changes may be as important in adaptation as a stay in the Arctic. Caution is advised in the separation of seasonal effects when examining the changes in adaptation after exposure to a cold environment.

  2. Changing Arctic Snow Cover: A Review of Recent Developments and Assessment of Future Needs for Observations, Modelling, and Impacts

    NASA Technical Reports Server (NTRS)

    Bokhorst, Stef; Pedersen, Stine Hojlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W.; Brown, Ross D.; Ehrich, Dorothee; Essery, Richard L. H.; Heilig, Achim; Ingvander, Susanne; Johansson, Cecilia; Johansson, Margareta; Jonsdottir, Svala Ingibjorg; Inga, Niila; Luojus, Kari; Macelloni, Giovanni; Mariash, Heather; McLennan, Donald; Rosqvist, Gunhild Ninis; Sato, Atsushi; Savela, Hannele; Schneebeli, Martin; Sokolov, Aleksandr; Sokratov, Sergey A.; Terzago, Silivia; Vikhamar-Schuler, Dagrun; Williamson, Scott; Qui, Yubao; Callaghan, Terry V.

    2016-01-01

    Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.

  3. Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts.

    PubMed

    Bokhorst, Stef; Pedersen, Stine Højlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W; Brown, Ross D; Ehrich, Dorothee; Essery, Richard L H; Heilig, Achim; Ingvander, Susanne; Johansson, Cecilia; Johansson, Margareta; Jónsdóttir, Ingibjörg Svala; Inga, Niila; Luojus, Kari; Macelloni, Giovanni; Mariash, Heather; McLennan, Donald; Rosqvist, Gunhild Ninis; Sato, Atsushi; Savela, Hannele; Schneebeli, Martin; Sokolov, Aleksandr; Sokratov, Sergey A; Terzago, Silvia; Vikhamar-Schuler, Dagrun; Williamson, Scott; Qiu, Yubao; Callaghan, Terry V

    2016-09-01

    Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.

  4. Changing Arctic Snow Cover: A Review of Recent Developments and Assessment of Future Needs for Observations, Modelling, and Impacts

    NASA Technical Reports Server (NTRS)

    Bokhorst, Stef; Pedersen, Stine Hojlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W.; Brown, Ross D.; Ehrich, Dorothee; Essery, Richard L. H.; Heilig, Achim; Ingvander, Susanne; hide

    2016-01-01

    Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.

  5. Effects of environmental variation and spatial distance on bacteria, archaea and viruses in sub-polar and arctic waters.

    PubMed

    Winter, Christian; Matthews, Blake; Suttle, Curtis A

    2013-08-01

    We investigated the influence of environmental parameters and spatial distance on bacterial, archaeal and viral community composition from 13 sites along a 3200-km long voyage from Halifax to Kugluktuk (Canada) through the Labrador Sea, Baffin Bay and the Arctic Archipelago. Variation partitioning was used to disentangle the effects of environmental parameters, spatial distance and spatially correlated environmental parameters on prokaryotic and viral communities. Viral and prokaryotic community composition were related in the Labrador Sea, but were independent of each other in Baffin Bay and the Arctic Archipelago. In oceans, the dominant dispersal mechanism for prokaryotes and viruses is the movement of water masses, thus, dispersal for both groups is passive and similar. Nevertheless, spatial distance explained 7-19% of the variation in viral community composition in the Arctic Archipelago, but was not a significant predictor of bacterial or archaeal community composition in either sampling area, suggesting a decoupling of the processes regulating community composition within these taxonomic groups. According to the metacommunity theory, patterns in bacterial and archaeal community composition suggest a role for species sorting, while patterns of virus community composition are consistent with species sorting in the Labrador Sea and suggest a potential role of mass effects in the Arctic Archipelago. Given that, a specific prokaryotic taxon may be infected by multiple viruses with high reproductive potential, our results suggest that viral community composition was subject to a high turnover relative to prokaryotic community composition in the Arctic Archipelago.

  6. Effects of environmental variation and spatial distance on Bacteria, Archaea and viruses in sub-polar and arctic waters

    PubMed Central

    Winter, Christian; Matthews, Blake; Suttle, Curtis A

    2013-01-01

    We investigated the influence of environmental parameters and spatial distance on bacterial, archaeal and viral community composition from 13 sites along a 3200-km long voyage from Halifax to Kugluktuk (Canada) through the Labrador Sea, Baffin Bay and the Arctic Archipelago. Variation partitioning was used to disentangle the effects of environmental parameters, spatial distance and spatially correlated environmental parameters on prokaryotic and viral communities. Viral and prokaryotic community composition were related in the Labrador Sea, but were independent of each other in Baffin Bay and the Arctic Archipelago. In oceans, the dominant dispersal mechanism for prokaryotes and viruses is the movement of water masses, thus, dispersal for both groups is passive and similar. Nevertheless, spatial distance explained 7–19% of the variation in viral community composition in the Arctic Archipelago, but was not a significant predictor of bacterial or archaeal community composition in either sampling area, suggesting a decoupling of the processes regulating community composition within these taxonomic groups. According to the metacommunity theory, patterns in bacterial and archaeal community composition suggest a role for species sorting, while patterns of virus community composition are consistent with species sorting in the Labrador Sea and suggest a potential role of mass effects in the Arctic Archipelago. Given that, a specific prokaryotic taxon may be infected by multiple viruses with high reproductive potential, our results suggest that viral community composition was subject to a high turnover relative to prokaryotic community composition in the Arctic Archipelago. PMID:23552622

  7. Response of Arctic Temperature to Changes in Emissions of Short-Lived Climate Forcers

    NASA Astrophysics Data System (ADS)

    Sand, M.; Berntsen, T.; von Salzen, K.; Flanner, M.; Langner, J.; Victor, D. G.

    2014-12-01

    There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased twice the global rate, largely due to ice albedo and temperature feedbacks. While deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short lived climate forcers (SLCFs). Politically, action on SLCFs may be particularly promising because the benefits of mitigation appear promptly and there are large co-benefits in terms of improved air quality. This study is the first to systematically quantify the Arctic climate impact of regional SLCF emissions, taking into account BC, sulphur dioxide (SO2), nitrogen oxides (NOx), volatile hydrocarbons (VOC), organic carbon (OC) and tropospheric ozone, their transport processes and transformations in the atmosphere. Using several chemical transport models we perform detailed radiative forcing calculations from emissions of these species. Geographically we separate emissions into seven source regions that correspond with the national groupings of the Arctic Council, the leading body organizing international policy in the region (the United States, Canada, the Nordic countries, the rest of Europe, Russia, East and South Asia, and the rest of the world). We look at six main sectors known to account for [nearly all] of these emissions: households (domestic), energy/industry/waste, transport, agricultural fires, grass/forest fires, and gas flaring. We find that the largest Arctic warming source is from emissions within the Asian nations. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible SLCFs mitigation scenario, phased in from 2015 through 2030, can cut warming by 0.2 K in 2050.

  8. Response of Arctic Temperature to Changes in Emissions of Short-Lived Climate Forcers

    NASA Astrophysics Data System (ADS)

    Sand, M.; Berntsen, T.; von Salzen, K.; Flanner, M.; Langner, J.; Victor, D. G.

    2015-12-01

    There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased twice the global rate, largely due to ice albedo and temperature feedbacks. While deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short lived climate forcers (SLCFs). Politically, action on SLCFs may be particularly promising because the benefits of mitigation appear promptly and there are large co-benefits in terms of improved air quality. This study is the first to systematically quantify the Arctic climate impact of regional SLCF emissions, taking into account BC, sulphur dioxide (SO2), nitrogen oxides (NOx), volatile hydrocarbons (VOC), organic carbon (OC) and tropospheric ozone, their transport processes and transformations in the atmosphere. Using several chemical transport models we perform detailed radiative forcing calculations from emissions of these species. Geographically we separate emissions into seven source regions that correspond with the national groupings of the Arctic Council, the leading body organizing international policy in the region (the United States, Canada, the Nordic countries, the rest of Europe, Russia, East and South Asia, and the rest of the world). We look at six main sectors known to account for [nearly all] of these emissions: households (domestic), energy/industry/waste, transport, agricultural fires, grass/forest fires, and gas flaring. We find that the largest Arctic warming source is from emissions within the Asian nations. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible SLCFs mitigation scenario, phased in from 2015 through 2030, can cut warming by 0.2 K in 2050.

  9. Influence of climate change on the Arctic Contamination Potential

    NASA Astrophysics Data System (ADS)

    Hansen, Kaj M.; Christensen, Jesper H.; Brandt, Jørgen

    2014-05-01

    Using the Danish Eulerian Hemispheric Model (DEHM) we have calculated the Arctic Contamination Potential (ACP). ACP is defined as the sum of masses in the arctic surface compartments (soil, vegetation, snow and water) at the end of a ten year simulated period normalised either with the total mass within the model domain of with the total amount emitted into the atmosphere during the ten year simulation. In this study we use the emission normalized ACP termed eACP. We have calculated the eACP for the physical-chemical phase space spanned by compounds with log Koa between 3 and 12 and log Kaw between -4 and 3 and for each point in this phase space grid we have included a perfectly persistent compound in the model. DEHM is a 3-D atmospheric chemistry-transport model modelling the atmospheric transport of four chemical groups: a group with SOx-NOx-VOC-ozone chemistry, a group with primary particulates group, a mercury chemistry group, and finally a group with Persistent Organic Pollutants with 2-d surface compartments (soil, vegetation, ocean water and a dynamic temporal snow cover) with inter-compartmental mass exchange process parameterizations. The model domain covers the Northern Hemisphere and thus includes all important source areas for the Arctic. The spatial horizontal resolution of the model system in this work is 150km x 150km and the model includes 20 vertical levels up to approximately 15km above the surface. The model system was run with meteorology obtain from ECHAM5/MPI-OM (SRES A1B scenario) for two decades: 1990-1999 and 2090-2099. Highest potential (12%) for reaching the Arctic surface compartments for the 1990s is seen for compounds with low log Koa and low log Kaw values. These are relative water soluble compounds referred to as "swimmers". For the 2090s, the overall pattern of the ACP phase space is similar to the pattern for the 1990s. ACP is generally larger for the 2090s than for the 1990s, with a maximum of 15%.

  10. Sea-ice information co-management: Planning for sustainable multiple uses of ice-covered seas in a rapidly changing Arctic

    NASA Astrophysics Data System (ADS)

    Eicken, H.; Lovecraft, A. L.

    2012-12-01

    A thinner, less extensive and more mobile summer sea-ice cover is a major element and driver of Arctic Ocean change. Declining summer sea ice presents Arctic stakeholders with substantial challenges and opportunities from the perspective of sustainable ocean use and derivation of sea-ice or ecosystem services. Sea-ice use by people and wildlife as well as its role as a major environmental hazard focuses the interests and concerns of indigenous hunters and Arctic coastal communities, resource managers and the maritime industry. In particular, rapid sea-ice change and intensifying offshore industrial activities have raised fundamental questions as to how best to plan for and manage multiple and increasingly overlapping ocean and sea ice uses. The western North American Arctic - a region that has seen some of the greatest changes in ice and ocean conditions in the past three decades anywhere in the North - is the focus of our study. Specifically, we examine the important role that relevant and actionable sea-ice information can play in allowing stakeholders to evaluate risks and reconcile overlapping and potentially competing interests. Our work in coastal Alaska suggests that important prerequisites to address such challenges are common values, complementary bodies of expertise (e.g., local or indigenous knowledge, engineering expertise, environmental science) and a forum for the implementation and evaluation of a sea-ice data and information framework. Alongside the International Polar Year 2007-08 and an associated boost in Arctic Ocean observation programs and platforms, there has been a movement towards new governance bodies that have these qualities and can play a central role in guiding the design and optimization of Arctic observing systems. To help further the development of such forums an evaluation of the density and spatial distribution of institutions, i.e., rule sets that govern ocean use, as well as the use of scenario planning and analysis can serve as

  11. Arctic tipping points: governance in turbulent times.

    PubMed

    Young, Oran R

    2012-02-01

    Interacting forces of climate change and globalization are transforming the Arctic. Triggered by a non-linear shift in sea ice, this transformation has unleashed mounting interest in opportunities to exploit the region's natural resources as well as growing concern about environmental, economic, and political issues associated with such efforts. This article addresses the implications of this transformation for governance, identifies limitations of existing arrangements, and explores changes needed to meet new demands. It advocates the development of an Arctic regime complex featuring flexibility across issues and adaptability over time along with an enhanced role for the Arctic Council both in conducting policy-relevant assessments and in promoting synergy in interactions among the elements of the emerging Arctic regime complex. The emphasis throughout is on maximizing the fit between the socioecological features of the Arctic and the character of the governance arrangements needed to steer the Arctic toward a sustainable future.

  12. Naval Research Laboratory Arctic Initiatives

    DTIC Science & Technology

    2011-06-01

    Initiatives • Naval Arctic Environmental Research – Improved Physical Understanding – Integrated Arctic Modeling and Prediction – Developing New ...of the Arctic environment and important coupled processes operating in the Arctic region • Development of a new , dynamic, fully-integrated Arctic...longer lead times, including the use of satellite SAR data for assimilation into integrated models • Generation of new technologies (platforms

  13. The Arctic sea ice in climate models - variability and anthropogenic climate change

    NASA Astrophysics Data System (ADS)

    Behrens, L.; Martin, T.; Semenov, V.; Latif, M.

    2012-04-01

    Changes due to global warming are particularly obvious in the Arctic. The IPCC-Report of 2007 shows, that the warming in the Arctic is twice as strong as the mean global warming. We investigate changes in the Arctic sea ice in a set of 19 CMIP-3 Models with a focus on the entire Arctic as well as for different regions. In all regions, the models predict a reduction in sea ice extent, sea ice thickness and sea ice volume during the period 1900-2100. Furthermore, changes are obvious in the amplitude and phase of the seasonal cycle. The phase of the seasonal maximum ice extent occurs later in the year. However, this effect is not visible for the sea ice thickness and the sea ice volume. For the sea ice extent, the amplitude of the seasonal cycle increases in nearly all regions, because of the strongest sea ice extent decrease in September. In the entire Arctic, the amplitude of sea ice volume shows a damping because of the reduction of sea ice volume is stronger in March than in September. All model projections show a strong discrepancies in different regions. However, a multi model mean estimates are comparable with observational data for the entire Arctic. In smaller regions, the differences between the multi model mean and the observational data are large. The local sensitivity against global warming has been investigated. Here, we analyze the difference between different periods for the sea ice extent and the surface air temperature. A seasonal dependence of the sensitivity has been found in all models. The differences between the model predictions are smaller in winter in comparison to summer season. However, in the regions Barents Sea and Greenland-Iceland-Norwegian Sea the models sensitivities are very different in all season.

  14. Impacts of Arctic Climate Change on Tundra Fire Regimes at Interannual to Millennial Timescales

    NASA Astrophysics Data System (ADS)

    Hu, F.; Young, A. M.; Chipman, M. L.; Duffy, P.; Higuera, P. E.

    2014-12-01

    Tundra burning is emerging as a key process in the rapidly changing Arctic, and knowledge of tundra fire-regime responses to climate change is essential for projecting Earth system dynamics. This presentation will focus on climate-fire relationships in the Arctic, spatiotemporal patterns of Holocene tundra burning, and the effects of tundra burning on carbon cycling. Analysis of historical records reveals that across the Arctic, tundra burning occurred primarily in areas where mean summer temperature exceeded 9 °C and total summer precipitation was below 115 mm. In Alaska, summer temperature and precipitation explain >90% of the interannual variability in tundra area burned from AD 1950-2009, with thresholds of 10.5 °C and 140 mm. These patterns imply tipping points in tundra fire-regime responses to climate change. The frequency of tundra fires has varied greatly across space and through time. Approximately 1.0% of the circum-Arctic tundra burned from AD 2002-2013, and 4.5% of the Alaskan tundra burned from AD 1950-2009. The latter encompassed ecoregions with fire rotation periods ranging from ~400 to 13,640 years. Charcoal analysis of lake sediments also shows that Arctic tundra can sustain a wide range of fire regimes. Fires were rare on the Alaskan North Slope throughout the Holocene, implying that the climate thresholds evident in the historical records have seldom been crossed. In contrast, in areas of NW Alaska, tundra has burned regularly at 100-250 year intervals during the late Holocene. Tundra burning may cause sudden releases of the enormous amount of Arctic soil C. Charcoal particles from recent burns yielded 14C ages of AD 1952-2006. Thus the C consumed in recent fires may recover through vegetation succession. However, our results suggest that in areas that have burned multiple times in recent decades, old soil C is vulnerable to future fires.

  15. Canadian Basin freshwater sources and changes: Results from the 2005 Arctic Ocean Section

    NASA Astrophysics Data System (ADS)

    Newton, Robert; Schlosser, Peter; Mortlock, Richard; Swift, James; MacDonald, Robie

    2013-04-01

    We present measurements of oxygen isotope ratios and nutrient concentrations along the 2005 Arctic Ocean Section aboard the icebreaker Oden. The data are used to estimate freshwater contributions from meteoric water (mainly river runoff), sea-ice meltwater, and Chukchi Sea shelf water, itself a combination of Pacific and indigenous Arctic water types. Nutrients ratios are combined to form quasi-conservative water-mass tracers (phosphate-star, N-star, and the empirical Arctic N-P relationship) and used along with salinity and δ18O, which are conservative in the ocean interior. Disagreements between two different freshwater analyses in the Western Arctic are largely resolved using a salinity-dependent Redfield ratio, a new estimate of the Pacific end-member, and an analysis of the Bering Strait inflow contribution to detraining shelf waters. Freshwater components from 2005 are placed into the context of the overlapping 1994 Arctic Ocean Section (aboard the Louis St. Laurent) and a time series of hydrographic/tracer casts between 1987 and 1992 in the Canada Basin. Compared to 1987-1994; the 2005 transect exhibits increased meteoric water concentrations in the northern part of the Canadian Basin and a decrease in the southern part. This pattern is related to changes in the distribution of wind-stress curl during the several years prior to each sampling campaign. In addition, a previously observed correlation between sea-ice formation and river runoff disappears over the Central Arctic in 2005, a change that we attribute to a northward shift of sea-ice formation. Resampling approximately every 3 years should resolve the dynamics driving changes in freshwater and nutrient distributions.

  16. Severity of climate change dictates the direction of biophysical feedbacks of vegetation change to Arctic climate

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxin; Jansson, Christer; Miller, Paul; Smith, Ben; Samuelsson, Patrick

    2014-05-01

    Vegetation-climate feedbacks induced by vegetation dynamics under climate change alter biophysical properties of the land surface that regulate energy and water exchange with the atmosphere. Simulations with Earth System Models applied at global scale suggest that the current warming in the Arctic has been amplified, with large contributions from positive feedbacks, dominated by the effect of reduced surface albedo as an increased distribution, cover and taller stature of trees and shrubs mask underlying snow, darkening the surface. However, these models generally employ simplified representation of vegetation dynamics and structure and a coarse grid resolution, overlooking local or regional scale details determined by diverse vegetation composition and landscape heterogeneity. In this study, we perform simulations using an advanced regional coupled vegetation-climate model (RCA-GUESS) applied at high resolution (0.44×0.44° ) over the Arctic Coordinated Regional Climate Downscaling Experiment (CORDEX-Arctic) domain. The climate component (RCA4) is forced with lateral boundary conditions from EC-EARTH CMIP5 simulations for three representative concentration pathways (RCP 2.6, 4.5, 8.5). Vegetation-climate response is simulated by the individual-based dynamic vegetation model (LPJ-GUESS), accounting for phenology, physiology, demography and resource competition of individual-based vegetation, and feeding variations of leaf area index and vegetative cover fraction back to the climate component, thereby adjusting surface properties and surface energy fluxes. The simulated 2m air temperature, precipitation, vegetation distribution and carbon budget for the present period has been evaluated in another paper. The purpose of this study is to elucidate the spatial and temporal characteristics of the biophysical feedbacks arising from vegetation shifts in response to different CO2 concentration pathways and their associated climate change. Our results indicate that the

  17. Arctic sea ice cover in connection with climate change

    NASA Astrophysics Data System (ADS)

    Alekseev, G. V.; Aleksandrov, E. I.; Glok, N. I.; Ivanov, N. E.; Smolyanitsky, V. M.; Kharlanenkova, N. E.; Yulin, A. V.

    2015-12-01

    Recently published studies on key issues in the evolution of Arctic sea ice cover are reviewed and attempts to answer disputable questions are made in the research part of the work. It is shown that climate warming, manifested in an increase in the surface air temperature, and reduction in the ice cover develop with a high degree of agreement in summer. Based on this fact, anomalies of the September ice-cover area have been retrieved from 1900. They show a significant decrease in the 1930-1940s, which is almost twice as low as in 2007-2012. The influence of fluctuations in the flow of warm and salty Atlantic water is noted in variations in the winter maximum of the ice-cover area in the Barents Sea. An accelerated positive trend has been ascertained for the air temperature in late autumn-early winter in 1993-2012 due to an increase in the open water area in late summer. Inherent regularities of the ice-cover-area variability made it possible to develop a prediction of the monthly values of sea-ice extent with a head time from 6 months to 2 years. Their strong correlation with summer air temperature is used to estimate the onset of summer ice clearance in the Arctic.

  18. Variability and Change in Seasonal Water Storage in the Major Arctic Draining Eurasian River Systems

    NASA Astrophysics Data System (ADS)

    Serreze, M. C.; Barrett, A. P.

    2015-12-01

    Variability and change in seasonal water storage in the major Arctic-draining watersheds of Eurasia (Ob. Yenisei and Lena) are assessed in several ways using a combination of storage estimates from the NASA GRACE satellite system, gauged runoff and output from the NASA MERRA atmospheric reanalysis. The study is motivated by the pronounced environmental changes observed in the northern high latitudes and recognition of the climatic importance of changes in hydrology both within and beyond the region. Monthly storage changes based on GRACE gravimetric measurements (2002-2015) and from a water balance approach for the same period calculating storage changes as a residual using gauged runoff along with aerologically-determined net precipitation (atmospheric vapor flux convergence minus the time change in atmospheric precipitable water) from MERRA are generally in good agreement. Agreement is also good for calculations in which aerologically-determined net precipitation is replaced with the MERRA forecasts of precipitation and evapotranspiration. On average, the storage in each of the three watersheds examined (the Ob, Yenisei and Lena) peaks in March and is at a minimum in September. However, this seasonal cycle, primarily driven by snowpack storage through autumn and winter, and snowmelt through spring and summer, varies considerably from year to year in amplitude, phase and between the three watersheds in response to variability in precipitation, evapotranspiration, and near surface air temperature. As assessed over the longer period 1979-2015 covered by MERRA, there is evidence that in response to rising air temperatures influencing precipitation phase and snow storage, peak storage has shifted to earlier in the winter. While recent work provides evidence for a link between increased autumn snowfall over Eurasia and reduced autumn sea ice extent that provides for a moisture source, the effect of increased snowfall is not clearly apparent in water storage.

  19. Population limitation in a non-cyclic arctic fox population in a changing climate.

    PubMed

    Pálsson, Snæbjörn; Hersteinsson, Páll; Unnsteinsdóttir, Ester R; Nielsen, Ólafur K

    2016-04-01

    Arctic foxes Vulpes lagopus (L.) display a sharp 3- to 5-year fluctuation in population size where lemmings are their main prey. In areas devoid of lemmings, such as Iceland, they do not experience short-term fluctuations. This study focusses on the population dynamics of the arctic fox in Iceland and how it is shaped by its main prey populations. Hunting statistics from 1958-2003 show that the population size of the arctic fox was at a maximum in the 1950s, declined to a minimum in the 1970s, and increased steadily until 2003. Analysis of the arctic fox population size and their prey populations suggests that fox numbers were limited by rock ptarmigan numbers during the decline period. The recovery of the arctic fox population was traced mostly to an increase in goose populations, and favourable climatic conditions as reflected by the Subpolar Gyre. These results underscore the flexibility of a generalist predator and its responses to shifting food resources and climate changes.

  20. Influence of Arctic sea-ice and greenhouse gas concentration change on the West African Monsoon.

    NASA Astrophysics Data System (ADS)

    Monerie, Paul-Arthur; Oudar, Thomas; Sanchez-Gomez, Emilia; Terray, Laurent

    2016-04-01

    The Sahelian precipitation are projected to increase in the CNRM-CM5 coupled climate model due to a strengthening of the land-Sea temperature gradient, the increase in the North Atlantic temperature and the deepening of the Heat Low. Arctic Sea-Ice loss impacts the low-level atmospheric circulation through a decrease in the northward heat transport. Some authors have linked the sea-ice loss to a poleward shift of the InterTropical Convergence Zone. Within the CMIP5 models the effect of these mechanisms are not distinguishable and it is difficult to understand the effect of the Arctic sea-ice loss on the West African Monsoon so far. We performed several sensitivity experiments with the CNRM-CM5 coupled climate models by modifying the arctic sea-ice extent and/or the greenhouse gas concentration. We then investigated separately the impact of Arctic sea-ice loss and greenhouse gas concentration increases on the West African Monsoon. The increase in greenhouse gas explains the northward shift and the strengthening of the monsoon. Its effect is stronger with a sea-ice free Arctic that leads to an increase in North Atlantic temperature and in Sahelian precipitation at the end of the rainy season (September-October). We argue that the decrease in sea-ice extent, in the context of the global warming, may moistens the Sahel during the rainy season by changing the pressure, winds and moisture fluxes at low-level.

  1. The Distributed Biological Observatory (DBO): A Change Detection Array in the Pacific Arctic Region

    NASA Astrophysics Data System (ADS)

    Grebmeier, J. M.; Moore, S. E.; Cooper, L. W.; Frey, K. E.; Pickart, R. S.

    2012-12-01

    The Pacific region of the Arctic Ocean is experiencing major reductions in seasonal sea ice extent and increases in sea surface temperatures. One of the key uncertainties in this region is how the marine ecosystem will respond to seasonal shifts in the timing of spring sea ice retreat and/or delays in fall sea ice formation. Climate changes are likely to result in shifts in species composition and abundance, northward range expansions, and changes in lower trophic level productivity that can directly cascade and affect the life cycles of higher trophic level organisms. The developing Distributed Biological Observatory (DBO) is composed of focused biological and oceanographic sampling at biological "hot spot" sites for lower and higher trophic organisms on a latitudinal S-to-N array. The DBO is being developed by an international consortium of scientists in the Pacific Arctic as a change detection array to systematically track the broad biological response to sea ice retreat and associated environmental change. Coordinated ship-based observations over various seasons, together with satellite and mooring data collections at the designated sites, can provide an early detection system for biological and ecosystem response to climate warming. The data documenting the importance of these ecosystem "hotspots" provide a growing marine time-series from the northern Bering Sea to Barrow Canyon at the boundary of the Chukchi and Beaufort seas. Results from these studies show spatial changes in carbon production and export to the sediments as indicated by infaunal community composition and biomass, shifts in sediment grain size on a S-to-N latitudinal gradient, and range extensions for lower trophic levels and further northward migration of higher trophic organisms, such as gray whales. There is also direct evidence of negative impacts on ice dependent species, such as walrus and polar bears. As a ramp up to a fully operational observatory, hydrographic transects and select

  2. The Taimyr Peninsula and the Severnaya Zemlya archipelago, Arctic Russia: a synthesis of glacial history and palaeo-environmental change during the Last Glacial cycle (MIS 5e-2)

    NASA Astrophysics Data System (ADS)

    Möller, Per; Alexanderson, Helena; Funder, Svend; Hjort, Christian

    2015-01-01

    We here suggest a glacial and climate history of the Taimyr Peninsula and Severnaya Zemlya archipelago in arctic Siberia for the last about 150 000 years (ka). Primarily it is based on results from seven field seasons between 1996 and 2012, to a large extent already published in papers referred to in the text - and on data presented by Russian workers from the 1930s to our days and by German colleagues working there since the 1990s. Although glaciations even up here often started in the local mountains, their culminations in this region invariably seems to have centred on the shallow Kara Sea continental shelf - most likely due to expanding marine ice-shelves grounding there, as a combined effect of thickening ice and eustatically lowered sea-levels. The most extensive glaciation so far identified in this region (named the Taz glaciation) took place during Marine Isotope Stage 6 (MIS 6), i.e. being an equivalent to the late Saale/Illinoian glaciations. It reached c. 400 km southeast of the Kara Sea coast, across and well beyond the Byrranga Mountain range and ended c. 130 ka. It was followed by the MIS 5e (Karginsky/Eemian) interglacial, with an extensive marine transgression to 140 m above present sea level - facilitated by strong isostatic downloading during the preceding glaciation. During the latest (Zyryankan/Weichselian/Wisconsinan) glacial cycle followed a series of major glacial advances. The earliest and most extensive, culminating c. 110-100 ka (MIS 5d-5e), also reached south of the Byrranga mountains and its post-glacial marine limit there was c. 100 m a.s.l. The later glacial phases (around 70-60 ka and 20 ka) terminated at the North Taimyr Ice Marginal Zone (NTZ), along or some distance inland from the present northwest coast of Taimyr. They dammed glacial lakes, which caused the Taimyr River to flow southwards where to-day it flows northwards into the Kara Sea. The c. 20 ka glacial phase, contemporary with the maximum (LGM) glaciation in NW Europe

  3. Arctic Change and Mid-latitude Weather Extremes in the CESM Large Ensemble Project

    NASA Astrophysics Data System (ADS)

    Peings, Y.; Cattiaux, J.; Magnusdottir, G.

    2015-12-01

    In this work we explore the linkage between the Arctic amplification (the fact that surface temperature in the Arctic is increasing twice as fast as elsewhere) and atmospheric modes of variability such as the Northern Annular mode (NAM) using the simulations from the CESM large ensemble project. Ensemble members span the 1920-2100 period, using historical forcing (1920-2005) and RCP8.5 forcing (2006-2100). We examine the change in occurrence of extreme events in the mid-latitudes at the end of the 21st century, especially for cold spells in winter. Possible links between trends in the NAM, jet stream variability, storm tracks, atmospheric blocking, etc... and the amplitude of the 21st-century Arctic amplification in each member of the large ensemble are investigated.

  4. The effect on Arctic climate of atmospheric meridional energy-transport changes studied based on the CESM climate model

    NASA Astrophysics Data System (ADS)

    Grand Graversen, Rune

    2016-04-01

    The Arctic amplification of global warming and the pronounced Arctic sea-ice retreat constitute some of the most alarming signs of global climate change. These Arctic changes are likely a consequence of a combination of several processes, for instance enhanced uptake of solar radiation in the Arctic due to a lowering of the planetary albedo, and increase in the local Arctic greenhouse effect due to enhanced moister flux from lower latitudes. Many of the proposed processes appear to be dependent on each other, for instance an increase in water-vapour advection to the Arctic enhances the greenhouse effect in the Arctic and the longwave radiation to the surface which melts the sea ice and causes an increase in absorption of solar radiation. The effects of albedo changes have been investigated in earlier studies based on model experiments designed to examine these effects specifically. Here we instead focus on the effects of meridional transport changes into the Arctic, both of water vapour and dry-static energy. Hence we here present results of model experiments with the CESM climate model designed specifically to extract the effects of the changes of the two transport components.

  5. Tracking and responding to a changing Arctic sea-ice cover: How ice users can help the scientific community design better observing systems (Louis Agassiz Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Eicken, Hajo

    2010-05-01

    The Arctic sea-ice cover is undergoing a major transformation, with substantial reductions in summer ice extent reflecting changes in ice thickness, age, and circulation. These changes are impacting Arctic ecosystems and a range of human activities. Anticipating and responding to such impacts, exacerbated by increasing economic activity in parts of the Arctic, requires a foundation of environmental observations and model predictions. Recent increases in industrial activities such as shipping and resource development in parts of the Arctic have further highlighted the need for an integrated observing system. In the case of a changing sea-ice cover, how would one best design and optimize such a system? One of the challenges is to meet the information needs of the scientific community in furthering fundamental understanding of the Arctic system, as well as those of key stakeholders and society, helping them to prepare for and respond to Arctic change. This presentation focuses on how the concept of sea-ice system services, i.e., the uses and benefits (or harm) derived from sea ice, may help guide the implementation of an effective observing system. Principal service categories are (1) sea ice as climate regulator, marine hazard, and coastal buffer; (2) transportation and use of ice as a platform; (3) cultural services obtained from the "icescape"; and (4) support of food webs and biological diversity by sea ice. An analysis of the different ice services provided to different user groups can help prioritize different types of observations and determine optimal measurement strategies. Moreover, the focus on different uses of the ice cover may also help synthesize fundamental and applied research to help Arctic communities adapt in a changing environment. Alaska has experienced some of the most substantial changes in sea-ice conditions throughout the Arctic over the past three decades and is used to illustrate the concepts discussed above. Specifically, we have examined

  6. Projected changes in wildlife habitats in Arctic natural areas of northwest Alaska

    Treesearch

    Bruce G. Marcot; M.Torre Jorgenson; James P. Lawler; Colleen M. Handel; Anthony R. DeGange

    2015-01-01

    We project the effects of transitional changes among 60 vegetation and other land cover types (Becotypes^) in northwest Alaska over the 21st century on habitats of 162 bird and 39 mammal species known or expected to occur regularly in the region. This analysis, encompassing a broad suite of arctic and boreal wildlife species, entailed building wildlifehabitat matrices...

  7. Advancing NOAA NWS Arctic Program Development

    NASA Astrophysics Data System (ADS)

    Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Meyers, J. C.; Churma, M.; Thoman, R.

    2016-12-01

    Environmental changes in the Arctic require changes in the way the National Oceanic and Atmospheric Administration (NOAA) delivers hydrological and meteorological information to prepare the region's societies and indigenous population for emerging challenges. These challenges include changing weather patterns, changes in the timing and extent of sea ice, accelerated soil erosion due to permafrost decline, increasing coastal vulnerably, and changes in the traditional food supply. The decline in Arctic sea ice is opening new opportunities for exploitation of natural resources, commerce, tourism, and military interest. These societal challenges and economic opportunities call for a NOAA integrated approach for delivery of environmental information including climate, water, and weather data, forecasts, and warnings. Presently the NOAA Arctic Task Force provides leadership in programmatic coordination across NOAA line offices. National Weather Service (NWS) Alaska Region and the National Centers for Environmental Prediction (NCEP) provide the foundational operational hydro-meteorological products and services in the Arctic. Starting in 2016, NOAA's NWS will work toward improving its role in programmatic coordination and development through assembling an NWS Arctic Task Team. The team will foster ties in the Arctic between the 11 NWS national service programs in climate, water, and weather information, as well as between Arctic programs in NWS and other NOAA line offices and external partners. One of the team outcomes is improving decision support tools for the Arctic. The Local Climate Analysis Tool (LCAT) currently has more than 1100 registered users, including NOAA staff and technical partners. The tool has been available online since 2013 (http://nws.weather.gov/lcat/ ). The tool links trusted, recommended NOAA data and analytical capabilities to assess impacts of climate variability and climate change at local levels. A new capability currently being developed will

  8. Recent and Predicted Changes in Pan-Arctic Vegetation Properties and Their Climate Feedback Implications

    NASA Astrophysics Data System (ADS)

    Goetz, S. J.

    2014-12-01

    Arctic surface air temperatures have risen at approximately twice the global rate, generating a range of ecosystem responses and associated climate feedbacks. Well-documented examples include changes in vegetation productivity, fire disturbance, the expansion of woody shrubs into tundra, and associated changes in surface albedo and net surface shortwave radiative forcing. I will briefly review these and other changes across the pan-Arctic domain using a combination of field measurements and satellite remote sensing observations. I will examine the evidence for change that has already occurred and also discuss predictions of likely future ecosystem responses under different climate change scenarios. I will identify research and data needs that would help to resolve discrepancies and disparities that have been reported. In particular I will address the current potential and limitations of vegetation distribution models and the data sets that inform them. Notably, model predictions indicate rapid shifts to larger woody growth-forms, rapid colonization due to long-distance dispersal, and favorable conditions for recruitment following disturbances like tundra fire and permafrost degradation. Future albedo, evapotranspiration and aboveground biomass will change with the redistribution of Arctic vegetation, and the climate feedbacks of these ecosystem changes can be significant. Albedo and net surface shortwave radiation changes will dominate the influence on climate, largely due to the snow masking effects of taller vegetation. The carbon implications of ecosystem change will likely be dominated by processes that influence permafrost thaw vulnerability, but predictions also indicate that vegetation in the Arctic will affect climate primarily as a biophysical medium (i.e. via albedo change). As with thawing permafrost, predicted vegetation changes would exacerbate currently amplified rates of warming. New research efforts focused on the Arctic will address the research

  9. Delivering Global Environmental Change Science Through Documentary Film

    NASA Astrophysics Data System (ADS)

    Dodgson, K.; Byrne, J. M.; Graham, J. R.

    2010-12-01

    Communicating authentic science to society presents a significant challenge to researchers. This challenge stems from unfortunate misrepresentation and misunderstanding in the mainstream media, particularly in relation to science on global environmental change. This has resulted in a lower level of confidence and interest amongst audiences in regards to global environmental change and anthropogenic climate change discussions. This project describes a new form of documentary film that aspires to break this trend and increase audiences’ interest, reinvigorating discussion about global environmental change. The documentary film adopts a form that marries traditional scientific presentation with the high entertainment value of narrative storytelling. This format maintains the authenticity of the scientific message and ensures audience engagement throughout the entire presentation due to the fact that a sense of equality and intimacy between the audience and the scientists is achieved. The film features interviews with scientists studying global environmental change and opens with a comparison of authentic scientific information and the mainstream media’s presentation, and subsequent public opinion. This enables an analysis of the growing disconnect between society and the scientific community. Topics investigated include: Arctic ice melt, coastal zone hypoxia, tropical cyclones and acidification. Upon completion of the film, public and private screenings with predetermined audience demographics will be conducted using a short, standardized survey to gain feedback regarding the audience’s overall review of the presentation. In addition to the poster, this presentation features an extended trailer for the documentary film.

  10. Monitoring Sea Ice Conditions and Use in Arctic Alaska to Enhance Community Adaptation to Change

    NASA Astrophysics Data System (ADS)

    Druckenmiller, M. L.; Eicken, H.

    2010-12-01

    Sea ice changes in the coastal zone, while less conspicuous in relation to the dramatic thinning and retreat of perennial Arctic sea ice, can be more readily linked to local impacts. Shorefast ice is a unique area for interdisciplinary research aimed at improving community adaptation to climate through local-scale environmental observations. Here, geophysical monitoring, local Iñupiat knowledge, and the documented use of ice by the Native hunting community of Barrow, Alaska are combined to relate coastal ice processes and morphologies in the Chukchi Sea to ice stability and community adaption strategies for travel, hunting, and risk assessment. A multi-year effort to map and survey the community’s seasonal ice trails, alongside a detailed record of shorefast ice conditions, provides insight into how hunters evaluate the evolution of ice throughout winter and spring. Various data sets are integrated to relate the annual accretion history of the local ice cover to both measurements of ice thickness and topography and hunter observations of ice types and hazards. By relating changes in the timing of shorefast ice stabilization, offshore ice conditions, and winter wind patterns to ice characteristics in locations where spring bowhead whaling occurs, we are working toward an integrated scientific product compatible with the perspective of local ice experts. A baseline for assessing future change and community climate-related vulnerabilities may not be characterized by single variables, such as ice thickness, but rather by how changes in observable variables manifest in impacts to human activities. This research matches geophysical data to ice-use to establish such a baseline. Documenting human-environment interactions will allow future monitoring to illustrate how strategies for continued community ice-use are indicative of or responsive to change, and potentially capable of incorporating science products as additional sources of useable information.

  11. White Arctic vs. Blue Arctic: Making Choices

    NASA Astrophysics Data System (ADS)

    Pfirman, S. L.; Newton, R.; Schlosser, P.; Pomerance, R.; Tremblay, B.; Murray, M. S.; Gerrard, M.

    2015-12-01

    As the Arctic warms and shifts from icy white to watery blue and resource-rich, tension is arising between the desire to restore and sustain an ice-covered Arctic and stakeholder communities that hope to benefit from an open Arctic Ocean. If emissions of greenhouse gases to the atmosphere continue on their present trend, most of the summer sea ice cover is projected to be gone by mid-century, i.e., by the time that few if any interventions could be in place to restore it. There are many local as well as global reasons for ice restoration, including for example, preserving the Arctic's reflectivity, sustaining critical habitat, and maintaining cultural traditions. However, due to challenges in implementing interventions, it may take decades before summer sea ice would begin to return. This means that future generations would be faced with bringing sea ice back into regions where they have not experienced it before. While there is likely to be interest in taking action to restore ice for the local, regional, and global services it provides, there is also interest in the economic advancement that open access brings. Dealing with these emerging issues and new combinations of stakeholders needs new approaches - yet environmental change in the Arctic is proceeding quickly and will force the issues sooner rather than later. In this contribution we examine challenges, opportunities, and responsibilities related to exploring options for restoring Arctic sea ice and potential pathways for their implementation. Negotiating responses involves international strategic considerations including security and governance, meaning that along with local communities, state decision-makers, and commercial interests, national governments will have to play central roles. While these issues are currently playing out in the Arctic, similar tensions are also emerging in other regions.

  12. Spatial variability of factors influencing coastal change in the Western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Manson, G. K.; Solomon, S. M.; Forbes, D. L.; Atkinson, D. E.; Craymer, M.

    2005-06-01

    Coastal change in the western Canadian Arctic is influenced by coastal morphology, relative sea-level trend and sea-ice and storm climates. The spatial variability of these factors tends to follow general east west trends suggesting similar trends in coastal erosion hazard, processes and rates of coastal change. The spatial variability in the causes of coastal change is examined in the communities of Tuktoyaktuk, Sachs Harbour, Holman and Kugluktuk.

  13. Changes in forcing factors affecting coastal and shallow water erosion in the future Arctic climate change projections.

    NASA Astrophysics Data System (ADS)

    Dobrynin, Mikhail; Razumov, Sergey; Brovkin, Victor; Ilyina, Tatiana; Grigoriev, Mikhail

    2016-04-01

    Driving factors of seabed and coastal erosion in the Arctic can be classified as thermal and mechanical. Thermal factors such as air and ocean temperatures affect the seabed and coastal ground temperatures. Mechanical factors such as ocean currents and surface gravity waves contribute to the seabed and costal erosion due to shear stress. Due to polar amplification, the Arctic experiences strong increase in air and water temperature, sea-ice loss and changes in the ocean and atmospheric circulation, temperature and wind distribution. These climatic changes lead to changes in factors driving seabed and coastal erosion, which is expected to accelerate in the shallow Arctic regions such as the Laptev sea and East Siberian sea. In these regions, the coastal line to a large extent consists of frozen rocks, sediments and organic soils including ground ice. The increase of erosion rate of the coastal line will increase the release of organic and inorganic matter from thawed permafrost. Dynamics of thermal and mechanical drivers of seabed and coastal erosion in the present and future climate change (RCP8.5 scenario) simulated by the CMIP5 version of the MPI Earth system model and wave model WAM will be presented. Special attention will be given to changes in the air temperature, wind dynamics and development of new waves system in the ``ice-free'' Arctic and its role in the seabed and coastal erosion.

  14. Changing snow cover in tundra ecosystems tips the Arctic carbon balance

    NASA Astrophysics Data System (ADS)

    Zona, D.; Hufkens, K.; Gioli, B.; Kalhori, A. A. M.; Oechel, W. C.

    2014-12-01

    The Arctic environment has witnessed important changes due to global warming, resulting in increased surface air temperatures and rain events which both exacerbate snow cover deterioration (Semmens et al, 2013; Rennert et al, 2009; White et al, 2007; Min et al, 2008; Sharp et al, 2013; Schaeffer et al, 2013). Snow cover duration is declining by almost 20% per decade, a far higher rate than model estimates (Derksen and Brown, 2012). Concomitant with increasing temperatures and decreasing snow cover duration, the length of the arctic growing season is reported to have increased by 1.1 - 4.9 days per decade since 1951 (Menzel et al, 2006), and, plant productivity and CO2 uptake from arctic vegetation are strongly influenced by changes in growing season length (Myneni et al., 1997; Schaefer et al., 2005; Euskirchen et al., 2006). Based on more than a decade of eddy flux measurements in Arctic tundra ecosystems across the North slope of Alaska, and remotely sensed snow cover data, we show that earlier snow melt in the spring increase C uptake while an extended snow free period in autumn is associated with a higher C loss. Here we present the impacts of changes in snow cover dynamics between spring and autumn in arctic tundra ecosystems on the carbon dynamics and net C balance of the Alaskan Arctic. ReferencesDerksen, C., Brown R. (2012) Geophys. Res. Lett., doi:10.1029/2012GL053387 Euskirchen, E.S., et al. (2006) Glob. Change Biol., 12, 731-750. Menzel, A., et al. 2006. Glob. Change Biol., 12, 1969-1976. Min SK, Zhang X, Zweirs F (2008) Science 320: 518-520. Rennert K J, Roe G, Putkonen J and Bitz C M (2009) J. Clim. 22 2302-15. Schaefer, K., Denning A.S., Leonard O. (2005) Global Biogeochem. Cycles, 19, GB3017. Schaeffer, S. M., Sharp, E., Schimel, J. P. & Welker, J. M. (2013). Soil- plant N processes in a High Arctic ecosystem, NW Greenland are altered by long-term experimental warming and higher rainfall. Glob. Change Biol., 11, 3529-39. doi: 10.1111/gcb.12318

  15. Chemical change in the arctic vortex during AASE 2

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.; Jucks, Kenneth W.; Johnson, David G.; Chance, Kelly V.

    1994-01-01

    We measured column abundances of HF, HCl, O3, HNO3, and H2O on the NASA DC-8 during the AASE II campaign, using thermal emission spectroscopy. We made multiple traversals of the Arctic vortex and surroundings. Using HF as a tracer, we remove the effects of subsidence from the measured column abundances; perturbations in the resulting column abundances are attributed to chemical processing. We find that by January 1992 the stratospheric column in the vortex had been chemically depleted by about (55+/-10)% in HCl and (35+/-10)% in O3, and enhanced by about (15+/-10)% in HNO3 and (0+/-10)% in H2O.

  16. Climate change impacts on wildlife in a High Arctic archipelago - Svalbard, Norway.

    PubMed

    Descamps, Sébastien; Aars, Jon; Fuglei, Eva; Kovacs, Kit M; Lydersen, Christian; Pavlova, Olga; Pedersen, Åshild Ø; Ravolainen, Virve; Strøm, Hallvard

    2017-02-01

    The Arctic is warming more rapidly than other region on the planet, and the northern Barents Sea, including the Svalbard Archipelago, is experiencing the fastest temperature increases within the circumpolar Arctic, along with the highest rate of sea ice loss. These physical changes are affecting a broad array of resident Arctic organisms as well as some migrants that occupy the region seasonally. Herein, evidence of climate change impacts on terrestrial and marine wildlife in Svalbard is reviewed, with a focus on bird and mammal species. In the terrestrial ecosystem, increased winter air temperatures and concomitant increases in the frequency of 'rain-on-snow' events are one of the most important facets of climate change with respect to impacts on flora and fauna. Winter rain creates ice that blocks access to food for herbivores and synchronizes the population dynamics of the herbivore-predator guild. In the marine ecosystem, increases in sea temperature and reductions in sea ice are influencing the entire food web. These changes are affecting the foraging and breeding ecology of most marine birds and mammals and are associated with an increase in abundance of several temperate fish, seabird and marine mammal species. Our review indicates that even though a few species are benefiting from a warming climate, most Arctic endemic species in Svalbard are experiencing negative consequences induced by the warming environment. Our review emphasizes the tight relationships between the marine and terrestrial ecosystems in this High Arctic archipelago. Detecting changes in trophic relationships within and between these ecosystems requires long-term (multidecadal) demographic, population- and ecosystem-based monitoring, the results of which are necessary to set appropriate conservation priorities in relation to climate warming.

  17. Prediction of Arctic plant phenological sensitivity to climate change from historical records.

    PubMed

    Panchen, Zoe A; Gorelick, Root

    2017-03-01

    The pace of climate change in the Arctic is dramatic, with temperatures rising at a rate double the global average. The timing of flowering and fruiting (phenology) is often temperature dependent and tends to advance as the climate warms. Herbarium specimens, photographs, and field observations can provide historical phenology records and have been used, on a localised scale, to predict species' phenological sensitivity to climate change. Conducting similar localised studies in the Canadian Arctic, however, poses a challenge where the collection of herbarium specimens, photographs, and field observations have been temporally and spatially sporadic. We used flowering and seed dispersal times of 23 Arctic species from herbarium specimens, photographs, and field observations collected from across the 2.1 million km(2) area of Nunavut, Canada, to determine (1) which monthly temperatures influence flowering and seed dispersal times; (2) species' phenological sensitivity to temperature; and (3) whether flowering or seed dispersal times have advanced over the past 120 years. We tested this at different spatial scales and compared the sensitivity in different regions of Nunavut. Broadly speaking, this research serves as a proof of concept to assess whether phenology-climate change studies using historic data can be conducted at large spatial scales. Flowering times and seed dispersal time were most strongly correlated with June and July temperatures, respectively. Seed dispersal times have advanced at double the rate of flowering times over the past 120 years, reflecting greater late-summer temperature rises in Nunavut. There is great diversity in the flowering time sensitivity to temperature of Arctic plant species, suggesting climate change implications for Arctic ecological communities, including altered community composition, competition, and pollinator interactions. Intraspecific temperature sensitivity and warming trends varied markedly across Nunavut and could

  18. Arctic Climate and Water Change: Model and Observation Relevance for Assessment and Adaptation

    NASA Astrophysics Data System (ADS)

    Bring, Arvid; Destouni, Georgia

    2014-05-01

    The Arctic is subject to growing economic and political interest. Meanwhile, its climate and water systems are in rapid transformation. In this paper, we review and extend a set of studies on climate model results, hydro-climatic change, and hydrological monitoring systems. Results indicate that general circulation model (GCM) projections of drainage basin temperature and precipitation have improved between two model generations. However, some inaccuracies remain for precipitation projections. When considering geographical priorities for monitoring or adaptation efforts, our results indicate that future projections by GCMs and recent observations diverge regarding the basins where temperature and precipitation changes currently are the most pronounced and where they will be so in the future. Regarding late twentieth-century discharge changes in major Arctic rivers, data generally show excess of water relative to precipitation changes. This indicates a possible contribution to sea-level rise of river water that was previously stored in permafrost or groundwater. The river contribution to the increasing Arctic Ocean freshwater inflow is similar in magnitude to the separate contribution from glaciers, which underlines the importance of considering all possible sources of freshwater when assessing sea-level change. We further investigate monitoring systems and find a lack of harmonized water chemistry data, which limits the ability to understand the origin and transport of nutrients, carbon and sediment to the sea. To provide adequate information for research and policy, Arctic hydrological and hydrochemical monitoring needs to be extended, better integrated and made more accessible. Further water-focused data and modeling efforts are required to resolve the source of excess discharge in Arctic rivers. Finally, improvements in climate model parameterizations are needed, in particular for precipitation projections.

  19. Climate change alters leaf anatomy, but has no effects on volatile emissions from Arctic plants.

    PubMed

    Schollert, Michelle; Kivimäenpää, Minna; Valolahti, Hanna M; Rinnan, Riikka

    2015-10-01

    Biogenic volatile organic compound (BVOC) emissions are expected to change substantially because of the rapid advancement of climate change in the Arctic. BVOC emission changes can feed back both positively and negatively on climate warming. We investigated the effects of elevated temperature and shading on BVOC emissions from arctic plant species Empetrum hermaphroditum, Cassiope tetragona, Betula nana and Salix arctica. Measurements were performed in situ in long-term field experiments in subarctic and high Arctic using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analysed by gas chromatography-mass spectrometry. In order to assess whether the treatments had resulted in anatomical adaptations, we additionally examined leaf anatomy using light microscopy and scanning electron microscopy. Against expectations based on the known temperature and light-dependency of BVOC emissions, the emissions were barely affected by the treatments. In contrast, leaf anatomy of the studied plants was significantly altered in response to the treatments, and these responses appear to differ from species found at lower latitudes. We suggest that leaf anatomical acclimation may partially explain the lacking treatment effects on BVOC emissions at plant shoot-level. However, more studies are needed to unravel why BVOC emission responses in arctic plants differ from temperate species.

  20. Climate change and emissions impacts on atmospheric PAH transport to the Arctic.

    PubMed

    Friedman, Carey L; Zhang, Yanxu; Selin, Noelle E

    2014-01-01

    We investigate effects of 2000-2050 emissions and climate changes on the atmospheric transport of three polycyclic aromatic hydrocarbons (PAHs): phenanthrene (PHE), pyrene (PYR), and benzo[a]pyrene (BaP). We use the GEOS-Chem model coupled to meteorology from a general circulation model and focus on impacts to northern hemisphere midlatitudes and the Arctic. We project declines in anthropogenic emissions (up to 20%) and concentrations (up to 37%), with particle-bound PAHs declining more, and greater declines in midlatitudes versus the Arctic. Climate change causes relatively minor increases in midlatitude concentrations for the more volatile PHE and PYR (up to 4%) and decreases (3%) for particle-bound BaP. In the Arctic, all PAHs decline slightly under future climate (up to 2%). Overall, we observe a small 2050 "climate penalty" for volatile PAHs and "climate benefit" for particle-bound PAHs. The degree of penalty or benefit depends on competition between deposition and surface-to-air fluxes of previously deposited PAHs. Particles and temperature have greater impacts on future transport than oxidants, with particle changes alone accounting for 15% of BaP decline under 2050 emissions. Higher temperatures drive increasing surface-to-air fluxes that cause PHE and PYR climate penalties. Simulations suggest ratios of more-to-less volatile species can be used to diagnose signals of climate versus emissions and that these signals are best observed in the Arctic.

  1. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models

    PubMed Central

    Holland, Marika M.; Landrum, Laura

    2015-01-01

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. PMID:26032318

  2. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.

    PubMed

    Holland, Marika M; Landrum, Laura

    2015-07-13

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state.

  3. Effects of climate change and UV radiation on fisheries for arctic freshwater and anadromous species.

    PubMed

    Reist, James D; Wrona, Frederick J; Prowse, Terry D; Dempson, J Brian; Power, Michael; Köck, Günter; Carmichael, Theresa J; Sawatzky, Chantelle D; Lehtonen, Hannu; Tallman, Ross F

    2006-11-01

    Fisheries for arctic freshwater and diadromous fish species contribute significantly to northern economies. Climate change, and to a lesser extent increased ultraviolet radiation, effects in freshwaters will have profound effects on fisheries from three perspectives: quantity of fish available, quality of fish available, and success of the fishers. Accordingly, substantive adaptation will very likely be required to conduct fisheries sustainably in the future as these effects take hold. A shift to flexible and rapidly responsive 'adaptive management' of commercial fisheries will be necessary; local land- and resource-use patterns for subsistence fisheries will change; and, the nature, management and place for many recreational fisheries will change. Overall, given the complexity and uncertainty associated with climate change and related effects on arctic freshwaters and their biota, a much more conservative approach to all aspects of fishery management will be required to ensure ecosystems and key fished species retain sufficient resiliency and capacity to meet future changes.

  4. Decadal Changes in Arctic Radiative Forcing from Aerosols and Tropospheric Ozone

    NASA Astrophysics Data System (ADS)

    Breider, T. J.; Mickley, L. J.; Jacob, D. J.; Payer Sulprizio, M.; Croft, B.; Ridley, D. A.; Ge, C.; Yang, Q.; Bitz, C. M.; McConnell, J.; Sharma, S.; Skov, H.; Eleftheriadis, K.

    2014-12-01

    Annual average Arctic sea ice coverage has declined by 3.6% per decade since the 1980s, but factors driving this trend are uncertain. Long-term surface observations and ice core records suggest recent, large declines in the Arctic atmospheric burden of sulfate aerosol, which may account in part for the warming trend. The decline in black carbon (BC) aerosol in the Arctic during the same period may partly offset the warming due to decreases in sulfate. Here we use the GEOS-Chem chemical transport model together with a detailed inventory of historical anthropogenic trace gas and primary aerosol emissions to quantify changes in Arctic radiative forcing from tropospheric ozone and aerosol between 1980 and 2010. Previous studies have reported an increasing trend in observed ozone at 500 hPa over Canada, but our simulation shows no significant trend. Over Europe, good agreement is found with observed long-term trends in sulfate in surface air (observed = -0.14±0.02 μg m-3 yr-1, model = -0.13±0.01 μg m-3 yr-1), while the observed trend in sulfate in precipitation (-0.20±0.03 μg m-3 yr-1) is underestimated by 40%. At Alert, the timing of the observed decline in sulfate after 1991 is well captured in the simulation, but the observed trend between 1991 and 2001 (-36.3±4.1 ng m-3 yr-1) is underestimated by 26%. BC observations at remote Arctic surface stations are biased low throughout 1980-2010 by a factor of 2. At Greenland ice cores, observed 1980-2010 trends in sulfate deposition are underestimated by 35%. The smaller model bias in observed sulfate and BC deposition at ice cores in southern Greenland (5% and 65%) compared to northern Greenland (56% and 90%) indicates greater uncertainty in pollution emissions from Eurasian sources. We estimate a surface radiative forcing from atmospheric aerosols in the Arctic during 2008 of -0.51 W m-2. The forcing is largest in spring (-1.36 W m-2) and dominated by sulfate aerosol (87%). We will quantify the contributions to the

  5. Changes in viral and bacterial communities during the ice-melting season in the coastal Arctic (Kongsfjorden, Ny-Ålesund).

    PubMed

    De Corte, Daniele; Sintes, Eva; Yokokawa, Taichi; Herndl, Gerhard J

    2011-07-01

    Microbial communities in Arctic coastal waters experience dramatic changes in environmental conditions during the spring to summer transition period, potentially leading to major variations in the relationship between viral and prokaryotic communities. To document these variations, a number of physico-chemical and biological parameters were determined during the ice-melting season in the coastal Arctic (Kongsfjorden, Ny-Ålesund, Spitsbergen). The bacterial and viral abundance increased during the spring to summer transition period, probably associated to the increase in temperature and the development of a phytoplankton bloom. The increase in viral abundance was less pronounced than the increase in prokaryotic abundance; consequently, the viral to prokaryotic abundance ratio decreased. The bacterial and viral communities were stratified as determined by Automated Ribosomal Intergenic Spacer Analysis and Randomly Amplified Polymorphic DNA-PCR respectively. Both the bacterial and viral communities were characterized by a relatively low number of operational taxonomic units (OTUs). Despite the apparent low complexity of the bacterial and viral communities, the link between these two communities was weak over the melting season, as suggested by the different trends of prokaryotic and viral abundance during the sampling period. This weak relationship between the two communities might be explained by UV radiation and suspended particles differently affecting the viruses and prokaryotes in the coastal Arctic during this period. Based on our results, we conclude that the viral and bacterial communities in the Arctic were strongly affected by the variability of the environmental conditions during the transition period between spring and summer.

  6. Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980

    NASA Astrophysics Data System (ADS)

    Breider, Thomas J.; Mickley, Loretta J.; Jacob, Daniel J.; Ge, Cui; Wang, Jun; Payer Sulprizio, Melissa; Croft, Betty; Ridley, David A.; McConnell, Joseph R.; Sharma, Sangeeta; Husain, Liaquat; Dutkiewicz, Vincent A.; Eleftheriadis, Konstantinos; Skov, Henrik; Hopke, Phillip K.

    2017-03-01

    Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near-term climate-forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS-Chem global chemical transport model to construct a 3-D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2-3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005-2010 Arctic shortwave radiative forcing (RF) of -0.19 ± 0.05 W m-2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (-1.17 ± 0.10 W m-2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from -0.67 ± 0.06 W m-2 to -0.19 ± 0.05 W m-2, yielding a net TOA RF of +0.48 ± 0.06 W m-2. The