Science.gov

Sample records for arctic kara sea

  1. Furfural-based polymers for the sealing of reactor vessels dumped in the Arctic Kara Sea

    SciTech Connect

    HEISER,J.H.; COWGILL,M.G.; SIVINTSEV,Y.V.; ALEXANDROV,V.P.; DYER,R.S.

    1996-10-07

    Between 1965 and 1988, 16 naval reactor vessels were dumped in the Arctic Kara Sea. Six of the vessels contained spent nuclear fuel that had been damaged during accidents. In addition, a container holding {approximately} 60% of the damaged fuel from the No. 2 reactor of the atomic icebreaker Lenin was dumped in 1967. Before dumping, the vessels were filled with a solidification agent, Conservant F, in order to prevent direct contact between the seawater and the fuel and other activated components, thereby reducing the potential for release of radionuclides into the environment. The key ingredient in Conservant F is furfural (furfuraldehyde). Other constituents vary, depending on specific property requirements, but include epoxy resin, mineral fillers, and hardening agents. In the liquid state (prior to polymerization) Conservant F is a low viscosity, homogeneous resin blend that provides long work times (6--9 hours). In the cured state, Conservant F provides resistance to water and radiation, has high adhesion properties, and results in minimal gas evolution. This paper discusses the properties of Conservant F in both its cured and uncured states and the potential performance of the waste packages containing spent nuclear fuel in the Arctic Kara Sea.

  2. 2009/2010 Eurasian Cold Winter and Loss of Arctic Sea-ice over Barents/Kara Sea

    NASA Astrophysics Data System (ADS)

    Shim, T.; Kim, B.; Kim, S.

    2012-12-01

    In 2009/2010 winter, a few extreme cold events and heavy snowfall occurred over central North America, north western Europe, and East Asia exerting a severe social and economic impacts. In this study, we performed modeling experiments to examine the role of substantially reduced Arctic sea-ice over Barents/Kara Sea on the 2009/2010 cold winters. Although several previous studies investigated cause of the extreme events and emphasized the large snow-covered area over Siberia in autumn 2009, we note that the area extent of Arctic sea-ice over Barents/Kara sea in autumn 2009 was anomalously low and the possible impact from Arctic for the extreme cold events has not been presented. To investigate the influence from the Arctic, we designed three model runs using Community Atmosphere Model Version 3 (CAM3). Each simulation differs by the prescribed surface boundary conditions: (a) CTRL - climatological seasonal cycle of sea surface temperature (SST) and sea-ice concentration (SIC) are prescribed everywhere, (b) EXP_65N - SST and SIC inside the Arctic circle (north of 65°N) are replaced by 2009/2010 values. Elsewhere, the climatology is used, (c) EXP_BK - Same with (b) except that SIC and SST are fixed only over Barents/Kara Sea where the sea-ice area dropped significantly in 2009/2010 winter. Model results from EXP_65N and EXP_BK commonly showed a large increase of air temperature in the lower troposphere where Arctic sea-ice showed a large reduction. Also, compared with the observation, model successfully captured thickened geopotential height in the Arctic and showed downstream wave propagation toward midlatitude. From the analysis, we reveal that this large dipolar Arctic-midlatitude teleconnection pattern in the upper troposphere easily propagate upward and played a role in the weakening of polar vortex. This is also confirmed in the observation. However, the timing of excitation of upward propagating wave in EXP_65N and EXP_BK were different and thus the timing of

  3. 1993-94-95 Kara sea field experiments and analysis. 1995 progress report to onr Arctic Nuclear Waste Assessment Program

    SciTech Connect

    Phillips, G.W.; August, R.A.; King, S.E.; Young, D.K.; Bennett, R.H.

    1996-01-14

    This progress report covers field work and laboratory analysis efforts for quantifying the environmental threat of radioactive waste released in the Arctic seas adjacent to the former Soviet Union and for studying the various transport mechanisms by which this radioactivity could effect populations of the U.S. and other countries bordering the Arctic. We obtained water, sediment, biological samples and oceanographic data from several cruises to the Kara Sea and adjacent waters and conducted detailed laboratory analyses of the samples for radionuclides and physical biological properties. In addition, we obtained water and sediment samples and conducted on site low level radionuclide analysis on the Angara, Yenisey River system which drains a major part of the Siberian industrial heartland and empties into the Kara Sea. We report on radionuclide concentrations, on radionuclide transport and scrubbing by sediments, on adsorption by suspended particles, on transport by surface and benthic boundary layer currents, on the effects of benthic and demersal organisms, on studies of long term monitoring in the Arctic, and on an interlaboratory calibration for radionuclide analysis.

  4. Atlantic water flow into the Arctic Ocean through the St. Anna Trough in the northern Kara Sea

    NASA Astrophysics Data System (ADS)

    Dmitrenko, Igor A.; Rudels, Bert; Kirillov, Sergey A.; Aksenov, Yevgeny O.; Lien, Vidar S.; Ivanov, Vladimir V.; Schauer, Ursula; Polyakov, Igor V.; Coward, Andrew; Barber, David G.

    2015-07-01

    The Atlantic Water flow from the Barents and Kara seas to the Arctic Ocean through the St. Anna Trough (SAT) is conditioned by interaction between Fram Strait branch water circulating in the SAT and Barents Sea branch water—both of Atlantic origin. Here we present data from an oceanographic mooring deployed on the eastern flank of the SAT from September 2009 to September 2010 as well as CTD (conductivity-temperature-depth) sections across the SAT. A distinct vertical density front over the SAT eastern slope deeper than ˜50 m is attributed to the outflow of Barents Sea branch water to the Arctic Ocean. In turn, the Barents Sea branch water flow to the Arctic Ocean is conditioned by two water masses defined by relative low and high fractions of the Atlantic Water. They are also traceable in the Nansen Basin downstream of the SAT entrance. A persistent northward current was recorded in the subsurface layer along the SAT eastern slope with a mean velocity of 18 cm s-1 at 134-218 m and 23 cm s-1 at 376-468 m. Observations and modeling suggest that the SAT flow has a significant density-driven component. It is therefore expected to respond to changes in the cross-trough density gradient conditioned by interaction between the Fram Strait and Barents Sea branches. Further modeling efforts are necessary to investigate hydrodynamic instability and eddy generation caused by the interaction between the SAT flow and the Arctic Ocean Fram Strait branch water boundary current.

  5. Kara Sea freshwater transport through Vilkitsky Strait: Variability, forcing, and further pathways toward the western Arctic Ocean from a model and observations

    NASA Astrophysics Data System (ADS)

    Janout, Markus A.; Aksenov, Yevgeny; Hölemann, Jens A.; Rabe, Benjamin; Schauer, Ursula; Polyakov, Igor V.; Bacon, Sheldon; Coward, Andrew C.; Karcher, Michael; Lenn, Yueng-Djern; Kassens, Heidemarie; Timokhov, Leonid

    2015-07-01

    Siberian river water is a first-order contribution to the Arctic freshwater budget, with the Ob, Yenisey, and Lena supplying nearly half of the total surface freshwater flux. However, few details are known regarding where, when, and how the freshwater transverses the vast Siberian shelf seas. This paper investigates the mechanism, variability, and pathways of the fresh Kara Sea outflow through Vilkitsky Strait toward the Laptev Sea. We utilize a high-resolution ocean model and recent shipboard observations to characterize the freshwater-laden Vilkitsky Strait Current (VSC), and shed new light on the little-studied region between the Kara and Laptev Seas, characterized by harsh ice conditions, contrasting water masses, straits, and a large submarine canyon. The VSC is 10-20 km wide, surface intensified, and varies seasonally (maximum from August to March) and interannually. Average freshwater (volume) transport is 500 ± 120 km3 a-1 (0.53 ± 0.08 Sv), with a baroclinic flow contribution of 50-90%. Interannual transport variability is explained by a storage-release mechanism, where blocking-favorable summer winds hamper the outflow and cause accumulation of freshwater in the Kara Sea. The year following a blocking event is characterized by enhanced transports driven by a baroclinic flow along the coast that is set up by increased freshwater volumes. Eventually, the VSC merges with a slope current and provides a major pathway for Eurasian river water toward the western Arctic along the Eurasian continental slope. Kara (and Laptev) Sea freshwater transport is not correlated with the Arctic Oscillation, but rather driven by regional summer pressure patterns.

  6. Biomarker distributions in surface sediments from the Kara and Laptev seas (Arctic Ocean): indicators for organic-carbon sources and sea-ice coverage

    NASA Astrophysics Data System (ADS)

    Xiao, Xiaotong; Fahl, Kirsten; Stein, Ruediger

    2013-11-01

    Studies of spatial and temporal changes in modern and past sea-ice occurrence may help to understand the processes controlling the recent decrease in Arctic sea-ice cover. Here, we determined concentrations of IP25, a novel biomarker proxy for sea ice developed in recent years, phytoplankton-derived biomarkers (brassicasterol and dinosterol) and terrigenous biomarkers (campesterol and β-sitosterol) in the surface sediments from the Kara and Laptev seas to estimate modern spatial (seasonal) sea-ice variability and organic-matter sources. C25-HBI dienes and trienes were determined as additional palaeoenvironmental proxies in the study area. Furthermore, a combined phytoplankton-IP25 biomarker approach (PIP25 index) is used to reconstruct the modern sea-ice distribution more quantitatively. The terrigenous biomarkers reach maximum concentrations in the coastal zones and estuaries, reflecting the huge discharge by the major rivers Ob, Yenisei and Lena. Maxima in phytoplankton biomarkers indicating increased primary productivity were found in the seasonally ice-free central part of the Kara and Laptev seas. Neither IP25 nor PIP25, however, shows a clear and simple correlation with satellite sea-ice distribution in our study area due to the complex environmental conditions in our study area and the transportation process of sea-ice diatom in the water column. Differences in the diene/IP25 and triene/IP25 ratios point to different sources of these HBIs and different environmental conditions. The diene/IP25 ratio seems to correlate positively with sea-surface temperature, while negatively with salinity distributions.

  7. Genesis and spatial distribution of suspended particulate matter concentrations in the Kara Sea during maximum reduction of the Arctic ice sheet

    NASA Astrophysics Data System (ADS)

    Kravchishina, M. D.; Lein, A. Yu.; Sukhanova, I. N.; Artem'ev, V. A.; Novigatsky, A. N.

    2015-07-01

    The suspended particulate matter (SPM) distribution in the water column of the Kara Sea including the Ob and Yenisei river estuaries was investigated in September 2007 and 2011, i.e., during periods of the maximum reduction of drift ice in the Arctic Ocean. The increased SPM concentrations in the surface layer of the Ob Estuary (26 and 16 mg/L on average in the fresh and saline (3-10 psu) water, respectively) were revealed in 2007 as compared with its values available from previous publications. The SPM concentrations and share of the terrigenous component in the latter in the Ob Estuary (2007) was =10 times higher than in the estuary of the Yenisei River (2011). The SPM concentration decreased exponentially in response to fresh and saline water mixing in the marginal filter (MF) areas of these rivers. The main transformation of the SPM composition at the transition from estuary to shelf waters took place within the salinity frontal zone (coagulation and sorption stage of the MF). The impact of terrigenous material on marine SPM composition in 2011 decreased in the northerly direction. The anomalous desalination of the sea surface layer in 2007 resulted in significant lightening of the organic carbon isotopic composition in the western part of the Kara Sea. This means that the impact of terrigenous material on SPM composition insignificantly decreased in the northerly direction. It was shown that mineral matter was distributed from the northeastern extremity of the Novaya Zemlya Archipelago in the northeasterly direction. At the same time, mineral particles transported by rivers from West and East Siberia prevail in the terrigenous SPM constituent in the Kara Sea up to 76°30' N. Our data indicated that the processes of cross-shelf SPM transport in the Kara Sea were controlled by bottom topography.

  8. Leaching of radionuclides from furfural-based polymers used to solidify reactor compartments and components disposed of in the Arctic Kara Sea

    SciTech Connect

    HEISER,J.H.; SIVINTSEV,Y.; ALEXANDROV,V.P.; DYER,R.S.

    1999-09-01

    Within the course of operating its nuclear navy, the former Soviet Union (FSU) disposed of reactor vessels and spent nuclear fuel (SNF) in three fjords on the east coast of Novaya Zemlya and in the open Kara Sea within the Novaya Zemlya Trough during the period 1965 to 1988. The dumping consisted of 16 reactors, six of which contained SNF and one special container that held ca. 60% of the damaged SNF and the screening assembly from the No. 2 reactor of the atomic icebreaker Lenin. At the time, the FSU considered dumping of decommissioned nuclear submarines with damaged cores in the bays of and near by the Novaya Zemlya archipelago in the Arctic Kara Sea to be acceptable. To provide an additional level of safety, a group of Russian scientists embarked upon a course of research to develop a solidification agent that would provide an ecologically safe barrier. The barrier material would prevent direct contact of seawater with the SNF and the resultant leaching and release of radionuclides. The solidification agent was to be introduced by flooding the reactors vessels and inner cavities. Once introduced the agent would harden and form an impermeable barrier. This report describes the sample preparation of several ``Furfurol'' compositions and their leach testing using cesium 137 as tracer.

  9. Possible criticality of marine reactors dumped in the Kara Sea

    SciTech Connect

    Warden, J.M.; Mount, M.; Lynn, N.M.

    1997-05-01

    The largest inventory of radioactive materials dumped in the Kara Sea by the former Soviet Union comes from the spent nuclear fuel (SNF) of seven marine reactors. Using corrosion models derived for the International Arctic Seas Assessment Project (IASAP), the possibility of some of the SNF achieving criticality through structural and material changes has been investigated. Although remote, the possibility cannot at this stage be ruled out.

  10. Nutrients in the Kara Sea: Distribution, Variability, and Budgets.

    NASA Astrophysics Data System (ADS)

    Novikhin, A.

    2003-04-01

    The Kara Sea is located far to the north from the Polar circle on the shallow Siberian shelf. The climate conditions of the sea are severe and the sea is covered by ice during most part of the year. Changeable hydrometeorological, ice, and biological conditions, complicated bottom relief, indented shoreline and numerous islands form a multilayered and mosaic water column structure in the Kara Sea. One of the remarkable features of the Kara Sea is a large continental runoff, which consists of about 40 % of total river runoff into the Arctic seas. The great Siberian rivers Ob and Yenisei transport more than 150 million tones of suspended and dissolved organic and inorganic matter to the sea every year. This additional nutrient influx plays an important ecological role, because it stimulates primary production. The river runoff is one of the main sources of the terrestrial organic matter for the Kara Sea. To study nutrient variability and distributions the data set from the US-Russian Electronic Hydrochemical Atlas of the Arctic Ocean which containing more than 15000 stations from 1906 till 2000 and the new data, obtained in the Russian-German expeditions were used. The main results of the studies of nutrient spatial and temporal variability in the river plume area and also in the deep troughs St. Anna, Voronin, and Novozemelsky are reported. Nutrient budgeting studies in the Ob and Yenisei estuaries reveal that the Ob Gulf is net production of inorganic nitrogen and phosphorus. The Yenisei Gulf is net removal of inorganic nitrogen and phosphorus during the year.

  11. Polychaeta of the Kara and Pechora seas: Data of the 2012 trawl survey.

    PubMed

    Frolova, E A; Syomin, V L

    2016-07-01

    The species composition of the polychaetes derived from ichthyological and Sigsbee trawls in the Pechora and Kara seas in 2012 was studied and compared with the grab survey data of 1993-1995. The distribution of the large sabellidae, nektobenthic, and bathypelagic species that are poorly caught by a grab has been determined for the first time. Changes that were observed in the biogeographical polychaete structure in the Kara Sea (a higher proportion of the boreal species and a lower proportion of the Arctic species) may reflect a response of zoobenthos to the Arctic warming in the late 20th and early 21st centuries. PMID:27595826

  12. Mechanism of seasonal Arctic sea ice evolution and Arctic amplification

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Yul; Hamlington, Benjamin D.; Na, Hanna; Kim, Jinju

    2016-09-01

    Sea ice loss is proposed as a primary reason for the Arctic amplification, although the physical mechanism of the Arctic amplification and its connection with sea ice melting is still in debate. In the present study, monthly ERA-Interim reanalysis data are analyzed via cyclostationary empirical orthogonal function analysis to understand the seasonal mechanism of sea ice loss in the Arctic Ocean and the Arctic amplification. While sea ice loss is widespread over much of the perimeter of the Arctic Ocean in summer, sea ice remains thin in winter only in the Barents-Kara seas. Excessive turbulent heat flux through the sea surface exposed to air due to sea ice reduction warms the atmospheric column. Warmer air increases the downward longwave radiation and subsequently surface air temperature, which facilitates sea surface remains to be free of ice. This positive feedback mechanism is not clearly observed in the Laptev, East Siberian, Chukchi, and Beaufort seas, since sea ice refreezes in late fall (November) before excessive turbulent heat flux is available for warming the atmospheric column in winter. A detailed seasonal heat budget is presented in order to understand specific differences between the Barents-Kara seas and Laptev, East Siberian, Chukchi, and Beaufort seas.

  13. The contribution and spatial distribution of Ob and Yenisei runoff on surface layer of the Kara Sea.

    NASA Astrophysics Data System (ADS)

    Polukhin, A.; Makkaveev, P.

    2012-04-01

    On degree of influence of river runoff on water area of the Kara Sea in general it is possible to consider as uniform estuary of two largest Siberian rivers - Ob and Yenisei. The Kara Sea has 41 % of all river runoff from a land in Arctic ocean or 56 % of a river runoff of the rivers of the Siberian sector of Arctic regions. From them of 37 % belong to waters from The Obskaya Guba (the Ob, the Taz, the Pur) and 46 % to waters of Yenisei. Spatial distribution of a river flow and its interaction with sea waters is in many respects defines various and changeable hydrometeorological conditions of the Kara Sea. Hydrochemical researches of the Kara Sea were included into the works of complex expedition in 59th cruise of R/V "Academic Mstislav Keldysh" (on September, 11th - on October, 7th, 2011). This data supplements results of expeditions of Institute of oceanology RAS to the Kara Sea in the autumn 1993 and 2007. In these cruises were met and described lenses of fresh water contained Ob and Yenisei waters defined on hydrochemical parameters. Difference of the data of 2011 from last years is that sampling for researches of distribution of river flow (on silicon, and the general alkalinity) was spent in flowing system from horizon of 1-1,5 m on a course of a vessel with high frequency of sampling. Such technique of sampling allows to investigate a surface water area with high discretness which plays the main role in definition of the contribution of waters of Ob and Yenisei in surface water layer of the Kara Sea. The analysis of the data shows that the area of distribution and the relative contribution of waters of a different origin considerably changes from year to year. It is connected with considerable interannual variability of hydrometeorological conditions and in particular with the general circulation of waters of the Kara Sea. River flow distribution on the surface of the Kara Sea is difficult enough. Nevertheless, distinctions in a chemical compound of waters

  14. The lithosphere-scale density and temperature configuration beneath the Barents Sea and Kara Sea region

    NASA Astrophysics Data System (ADS)

    Klitzke, Peter; Faleide, Jan Inge; Sippel, Judith; Scheck-Wenderoth, Magdalena

    2014-05-01

    The Barents and Kara Sea region on the European Arctic shelf is bounded by the Proterozoic East-European Craton in the south and the young Cenozoic passive margins in the north and the west. Poly-orogenic episodes in late Precambrian to late Paleozoic times have led to amalgamation of the crystalline basement, which subsequently experienced multiple phases of subsidence resulting in the formation of ultra-deep sedimentary basins. These deep basins vary strongly in their configuration across the shelf. In the southwestern Barents Sea numerous narrow and fault-bounded rift basins are defined while the eastern Barents Sea and southern Kara Sea are marked by a wide and bowl-shaped sag basin. A key to understand the evolution and the causative mechanisms behind uplift and subsidence in the Barents Sea and Kara Sea is the present-day lithospheric density configuration. In a first step, a 3D structural model was developed resolving five sedimentary units, the crystalline crust and the lithospheric mantle. To provide best constrained geometries for the resulting 3D-structural model, interpreted seismic refraction and reflection data, geological maps and previously published 3D-models were analysed and integrated. The sedimentary units were assigned lithology-dependent matrix densities and porosities to calculate bulk densities which also consider the effects of erosion, compaction but also in response to published maximum ice sheet thickness. The density configuration of the lithospheric mantle and the asthenosphere down to 250 km depth is derived using an existing velocity-density model. To calculate an initial density configuration of the crystalline crust, the concept of Pratt's isostasy is applied. Finally, the gravitational response of the corresponding 3D-model is calculated and compared with the observed gravity field to further investigate the composition of the crust and the configuration of potential high-density bodies in the deeper lithosphere. To assess the

  15. Modeling the potential radionuclide transport by the Ob and Yenisey Rivers to the Kara Sea.

    PubMed

    Paluszkiewicz, T; Hibler, L F; Richmond, M C; Bradley, D J; Thomas, S A

    2001-01-01

    A major portion of the former Soviet Union (FSU) nuclear program is located in the West Siberian Basin. Among the many nuclear facilities are three production reactors and the spent nuclear fuel reprocessing sites, Mayak, Tomsk-7, and Krasnoyarsk-26, which together are probably responsible for the majority of the radioactive contamination found in the Ob and Yenisey River systems that feed into the Arctic Ocean through the Kara Sea. This manuscript describes ongoing research to estimate radionuclide fluxes to the Kara Sea from these river systems. Our approach is to apply a hierarchy of simple models that use existing and forthcoming data to quantify the transport and fate of radionuclide contaminants via various environmental pathways. We present an initial quantification of the contaminant inventory, hydrology, meteorology, and sedimentology of the Ob River system and preliminary conclusions from portions of the Ob River model. PMID:11601529

  16. Lithosphere-scale 3D gravity modelling of the Barents Sea and Kara Sea

    NASA Astrophysics Data System (ADS)

    Klitzke, P.; Faleide, J.; Sippel, J.; Scheck-Wenderoth, M.

    2013-12-01

    The Barents - Kara Sea region covers the major part of the European Arctic shelf. Its northern and western boundaries are young passive margins which originate from early Paleocene-Eocene opening of the Eurasia Basin and the Norwegian-Greenland Sea. In contrast, the basement of the Barents and Kara shelves has been consolidated much earlier, during three major late Precambrian to Permian orogenies. Additionally, the shelf experienced multiple episodes of localised subsidence which resulted in the formation of ultra-deep sedimentary basins varying strongly in their geometry between different subregions. Consequently, the preserved sedimentary record is interrupted by major megasequence boundaries that are well-described in the western Barents Sea. Using this subdivision for the sedimentary record, we traced four major megasequence boundaries across the Barents and Kara shelves by analysing interpreted seismic refraction and reflection data, geological maps and previously published 3D-models. We integrate this shallow information into a 3D geological model and complement the latter downward with the top crystalline crust, the Moho and a new lithosphere-asthenosphere boundary. The sedimentary units have been assigned physical properties considering the respective lithology to calculate a depth-dependent density distribution. Thereby, the obtained bulk densities also account for late Cenozoic uplift/erosion and the maximum Pleistocene ice sheet thickness. For the lithospheric mantle, the density distribution is constrained by an earlier published velocity model (Levshin et al., 2007). On the base of isostatic calculations and 3D gravity modelling the density configuration of the crystalline crust and the geometry of potential high-density bodies is investigated. Finally, we correlate preserved sediment maxima and reconstructed erosion maps with subsedimentary velocity and density variations to gain new insights into the development of Barents and Kara Sea basins

  17. Depth-integrated and depth-resolved models of Kara Sea primary production

    NASA Astrophysics Data System (ADS)

    Demidov, A. B.; Mosharov, S. A.; Artemyev, V. A.; Stupnikova, A. N.; Simakova, U. V.; Vazyulya, S. V.

    2016-07-01

    Primary production (PP) models of the Kara Sea are developed based on data collected on fall expeditions (September-October 1993, 2007, and 2011) and their precision assessment utilizes the dataset collected in September 2013. The algorithms for different model types (depth-integrated and depth-resolved) are compared. The depth-resolved model performs slightly better than the depth-integrated one (the rootmean- square-difference (RMSD) are 0.29 and 0.31, respectively). These algorithms utilize the daily assimilation number (DAN) and photosynthetic efficiency (ψ) as the model coefficients, and surface chlorophyll a (chl a) and photosynthetically active radiation (PAR) as input variables. These algorithms perform better than the models that use chl a alone. Our results suggest that an increase in the performance of the Kara Sea PP models depends on the input of the photophysiological characteristics of phytoplankton (DAN and ψ) and PAR. To a lesser extent, this concerns the advantages of the depth-resolved model over the depth-integrated one. The constructed region-specific Kara Sea PP models combined with satellite-derived chl a and PAR can be used to estimate annual values and long-term variation of PP in hydrologically and hydrochemically similar waters of the Arctic Ocean.

  18. A dynamical model of Kara Sea land-fast ice

    NASA Astrophysics Data System (ADS)

    Olason, Einar

    2016-05-01

    This paper introduces modifications to the traditional viscous-plastic sea-ice dynamical model, which are necessary to model land-fast ice in the Kara Sea in a realistic manner. The most important modifications are an increase in the maximum viscosity from the standard value of ζmax=>(2.5×108s>)P to ζmax=>(1013s>)P, and to use a solver for the momentum equation capable of correctly solving for small ice velocities (the limit here is set to 10-4 m/s). Given these modifications, a necessary condition for a realistic fast-ice simulation is that the yield curve give sufficient uniaxial compressive strength. This is consistent with the idea that land-fast ice in the Kara Sea forms primarily via static arching. The modified model is tested and tuned using forcing data and observations from 1997 and 1998. The results show that it is possible to model land-fast ice using this model with the modifications mentioned above. The model performs well in terms of modeled fast-ice extent, but suffers from unrealistic break-ups during the start and end of the fast-ice season. The main results are that fast ice in the Kara Sea is supported by arching of the ice, the arches footers resting on a chain of islands off shore.

  19. The fate of gas hydrates in the Barents Sea and Kara Sea region

    NASA Astrophysics Data System (ADS)

    Klitzke, Peter; Scheck-Wenderoth, Magdalena; Schicks, Judith; Luzi-Helbing, Manja; Cacace, Mauro; Jacquey, Antoine; Sippel, Judith; Faleide, Jan Inge

    2016-04-01

    The Barents Sea and Kara Sea are located in the European Arctic. Recent seismic lines indicate the presence of gas hydrates in the Barents Sea and Kara Sea region. Natural gas hydrates contain huge amounts of methane. Their stability is mainly sensitive to pressure and temperature conditions which make them susceptible for climate change. When not stable, large volumes of methane will be released in the water column and - depending on the water depth - may also be released into the atmosphere. Therefore, studying the evolution in time and space of the gas hydrates stability zone in the Barents Sea region is of interest for both environmental impact and energy production. In this study, we assess the gas hydrate inventory of the Barents Sea and Kara Sea under the light of increasing ocean bottom temperatures in the next 200 years. Thereby, we make use of an existing 3D structural and thermal model which resolves five sedimentary units, the crystalline crust and the lithospheric mantle. The sedimentary units are characterised by the prevailing lithology and porosity including effects of post-depositional erosion which strongly affect the local geothermal gradient. Governing equations for the conductive 3D thermal field and momentum balance have been integrated in a massively parallel finite-element-method based framework (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly on unstructured meshes. First we calculate the present-day steady-state 3D thermal field. Subsequently, we use the latter as initial condition to calculate the transient 3D thermal field for the next 200 years considering an ocean temperature model as upper boundary. Temperature and load distributions are then used to calculate the thickness of the gas hydrate stability zone for each time step. The results show that the gas hydrate stability zone strongly varies in the region due to the local geothermal gradient changes. The latter

  20. Impact of continental runoff and melted sea ice on spatial distribution of carbonate parameters and nutrients in the Kara and Laptev Seas

    NASA Astrophysics Data System (ADS)

    Polukhin, Alexander; Kostyleva, Anna; Protsenko, Elizaveta; Stepanova, Svetlana; Yakubov, Shamil; Makkaveev, Petr

    2016-04-01

    It is well-known that the Kara and Laptev seas are strongly affected by large amount of fresh water coming from the great Siberian rivers (the Ob' River, the Yenisei River and the Lena River). Expeditions of the Shirshov Institute of Oceanology were directed on investigation of freshening of these two Arctic seas. We have large collection of data (CTD, nutrients, carbonate system parameters) from the Kara Sea expeditions (1993, 2007, 2011, 2013, 2014 years) and the newest data from the last expedition to the Kara and Laptev Seas in 2015. Employment of these materials along with archival data on mentioned seas gives us an opportunity to trace variability of hydrochemical parameters in conditions of changing climate. From year to year in our expeditions we see reduction of sea-ice cover on the water area of the Kara Sea, changes in freshwater discharge and different seasonal variability of hydrochemical structure under influence of continental runoff. Moreover we notice some falling of carbonate system parameters such as pH and alkalinity. Hereby we can estimate processes of acidification in the Russian Arctic and reveal main stressors. This work is supported by Russian Science Foundation (project №14-50-00095).

  1. A seasonal comparison of zooplankton communities in the Kara Sea - With special emphasis on overwintering traits

    NASA Astrophysics Data System (ADS)

    Kosobokova, Ksenia Nikolaevna; Hirche, Hans-Juergen

    2016-06-01

    Siberian marginal seas cover large parts of the marine Arctic and host unique zooplankton communities. Detailed knowledge of their community structure and life history traits is a prerequisite to predict their response to ongoing and future climate and anthropogenic changes although winter data is extremely rare. Here data are presented from winter samples (February and April) in four biogeographic regions of the Kara Sea. Comparison of community composition and zooplankton abundance/biomass with data collected during summer showed lower diversity in winter, mainly due to the absence of freshwater species. In contrast to many other northern regions, seasonal biomass differences were relatively small. Year-round high biomass is maintained through a large share of small copepod species and constantly high share of the chaetognath Parasagitta elegans. An advanced state of gonad maturation and reproduction was observed in winter in herbivorous, omnivorous, and carnivorous species, e.g. the copepods Calanus glacialis, Drepanopus bungei, Limnocalanus macrurus, Oithona similis, Pseudocalanus major, Pseudocalanus minutus/acuspes, Paraeuchaeta glacialis, Microcalanus pygmaeus, and euphausiids, hydromedusae, and pteropods. Meroplanktonic larvae of nudibranchia, polychaeta and bivalvia were also registered. Close to the Yenisei mouth, abundance of eggs and larvae of various taxa exceeded older stages. Our data show that the brackish-water zone of the Kara Sea hosts specific communities with omnivorous species efficiently exploiting local resources during the winter and utilizing them for winter reproduction.

  2. Pechora-Kara Seas coast hydrometeorological stress evolution and intensification in recent 35 years

    NASA Astrophysics Data System (ADS)

    Shabanova, Natalia; Ogorodov, Stanislav

    2016-04-01

    Long-term variability of hydrometeorological factors of coastal dynamics in Pechora-Kara region is discussed basing on the station observation data for the 1979 - 2013 period. The dynamics of Arctic seashore and underwater slope composed of dispersive permafrost ground is determined by hydrometeorological factors, namely, waves and wave currents action coupled to thermal abrasion, which are active during ice-free period. Hydrometeorological stress (forcing) - the combined wave and thermal action together with ice and sea level conditions - is analyzed through air thawing and freezing indexes (sum of summer and winter temperatures), mean annual temperature, wind velocity and directions frequency, ice-free period duration and wave energy flux, calculated by Popov-Sovershaev method [1]. Within climate change, the hydrometeorological stress at the Arctic coast is changing together with coastal retreat rate. The research showed that the coastal dynamics hydrometeorological factors in Pechora and Kara Seas experienced sub-decadal fluctuations. The thermal indicators as well as wave action had heightened values in 1980ies, decreased in 1990ies, and unprecedentedly increased in the first decade of 2000ies. It is noticeable, that all the constitutes of hydrometeorological forcing experience simultaneously oscillations (except sea level), and hence facilitate and weaken the coastal dynamics all together and at the same time. In 2006-2013 the hydrometeorological stress is by 30 - 50% higher if compared to 1979 - 2013 mean. There are some coastal retreat rate data of field observation and satellite images analyses fortifying the coastal retreat acceleration in 2006 - 2013 and deceleration in the 1990-ies. [1] Popov, B. and Sovershaev, V., 1982. Nekotoryye cherty dinamiki arkticheskikh beregov Azii. Voprosy geografii 119 (Morskie berega (Sea coasts)): 105-116. (In Russian)

  3. Human impact on dynamics of Barents and Kara Seas Coasts

    NASA Astrophysics Data System (ADS)

    Ogorodov, Stanislav

    2013-04-01

    The coasts of Barents and Kara Seas which are composed of unconsolidated deposits have poor erosion resistance qualities. In natural conditions such coasts may retreat with a rate of 1 to 2 m a year. Under the influence of human activities this rate can double and even triple. Over the last twenty years the human impact on the natural coastal geosystems has noticeably increased due to the latest oil and gas developments on the sea shelf and coasts of the Russian North. A range of facilities - oil custody terminals for drilling and production platforms, submerged pipelines, ports and other industrial features and residential infrastructure - are currently being operated in the coastal and shelf zones. In most of the cases no morphodynamic or lithodynamic features of the coastal zone had been taken into account during the construction or operation of these facilities. This results in a disturbance of the sediment transport in the coastal zone, which triggers active erosion of both the shore itself and the coastal slope beneath. The operated facilities themselves are then threatened as their destruction is possible and often no new facilities can be constructed in the disturbed area. The operating companies have to bear forced nonmanufacturing expenses to protect or move their facilities of oil and gas industry to new areas. We may cite here three instances for Barents and Kara Seas where human impact has already brought in negative effects. One of the examples is Varandey Coast of the Barents Sea. From 1979 to 2012 a deliberate destruction of the dune chain of the barrier beach by vehicle traffic and a removal of the beach material for construction needs led to a quick intensification of the coastal retreat here. And now, storm surges without hindrance penetrate inland for several kilometers. Let's move further east to the Kara Sea: on to Kharasavey Coast to the Yamal Peninsula. A large-scale extraction of sediments from the coastal slope has resulted in a depletion

  4. On the link between Barents-Kara sea ice variability and European blocking

    NASA Astrophysics Data System (ADS)

    Ruggieri, P.; Buizza, R.; Visconti, G.

    2016-05-01

    This study examines the connection between the variability of sea ice concentration in the Barents and Kara (B-K) seas and winter European weather on an intraseasonal time scale. Low sea ice regimes in autumn and early winter over the B-K seas are shown to affect the strength and position of the polar vortex, and increase the frequency of blocking regimes over the Euro-Atlantic sector in late winter. A hypothesis is presented on the mechanism that links sea ice over the B-K seas and circulation regimes in the North Atlantic, and is investigated considering 34 years of European Centre for Medium-Range Weather Forecasts reanalysis data. Four key steps have been identified, starting from a local response of the near-surface fluxes and modification of the upper tropospheric wave pattern, to the stratospheric adjustment and the tropospheric response in the North Atlantic. The proposed mechanism explains the delayed, late winter response of the North Atlantic Oscillation to the late autumn sea ice reduction, which has been found both in observations and model experiments. It also provides valuable insights on how the reduction of Arctic sea ice can influence the position of the tropospheric jet in the Euro-Atlantic sector.

  5. New atmospheric methane observations in the Kara, Laptev, and East Siberian Seas during SWERUS-C3

    NASA Astrophysics Data System (ADS)

    Thornton, B. F.; Crill, P. M.; Semiletov, I. P.

    2014-12-01

    We present a first look at a new, extensive dataset of atmospheric methane observations during the SWERUS-C3 cruise in July and August 2014. The path of the icebreaker Oden during the expedition traversed the Arctic Ocean across the Kara, Laptev and East Siberian Seas from Tromsø, Norway to Barrow, Alaska. Atmospheric methane and carbon dioxide concentrations were measured at 1 Hz resolution throughout the journey. Air was sampled at four different heights, ranging from 9 to 35 m above the sea surface. At limited stations when the ship was anchored in shallow waters of the Laptev Sea, additional in situ measurements were made at 4 m above the sea surface. Further, in-situ isotopic observations of (delta)13C-methane and (delta)D-methane were made throughout the journey. This unprecedented dataset of atmospheric methane across the outer Russian Arctic continental shelf seas may help us to make top-down estimations of methane release from the ice-covered Kara, Laptev, and East Siberian Seas to the atmosphere.

  6. Sorption of radioactive contaminants by sediment from the Kara Sea

    SciTech Connect

    Fuhrmann, M.; Zhou, H.; Neiheisel, J.; Dyer, R.

    1995-02-01

    The purpose of this study is to quantify some of the parameters needed to perform near-field modeling of sites in the Kara Sea that were impacted by the disposal of radioactive waste. The parameters of interest are: the distribution coefficients (K{sub d}) for several important radionuclides, the mineralogy of the sediment, and the relationship of K{sub d} to liquid to solid ratio. Sediment from the Kara Sea (location: 73{degrees} 00` N, 58{degrees} 00` E) was sampled from a depth of 287 meters on August 23/24, 1992, during a joint Russian/Norwegian scientific cruise. Analysis of the material included mineralogy, grain size and total organic carbon. Uptake kinetics were determined for {sup 85}Sr, {sup 99}Tc, {sup 125}I, {sup 137}Cs, {sup 210}Pb, {sup 232}U, and {sup 241}Am and distribution coefficients (K{sub d}) were determined for these radionuclides using batch type experiments. Sorption isotherms were developed for {sup 85}Sr, {sup 99}Tc, and {sup 137}Cs to examine the effect that varying the concentration of a tracer has on the quantity of that tracer taken up by the solid. The effect of liquid to solid ratio on the uptake of contaminants was determined for {sup 99}Tc and {sup 137}Cs. In another set of experiments, the sediment was separated into four size fractions and uptake was determined for each fraction for {sup 85}Sr, {sup 99}Tc, and {sup 137}Cs. In addition, the sediment was analyzed to determine if it contains observable concentrations of anthropogenic radionuclides.

  7. Phytoplankton succession in the Ob-Yenisei Shallow zone of the Kara Sea based on Russian databases

    NASA Astrophysics Data System (ADS)

    Makarevich, P. R.; Larionov, V. V.; Moiseev, D. V.

    2015-07-01

    Here, data about the taxonomic composition and spatial distribution of planktonic microalgae in the Ob Bay and the southern Kara Sea in north Russia were analyzed during all hydrological seasons over 11 years (1996-2006). Data were obtained through detailed in situ observations. These data are part of our arctic phytoplankton database. Phytoplankton inhabiting the near shore continental area of the Kara Sea exhibited four phases in the annual succession cycle: a prevernal phase (cryoflora bloom), a vernal phase (ice-edge bloom), a summer-fall phase (mixed synthesis phase), and a winter phase (dormant phase). These phases were clearly differentiated based on the composition of dominant phytoplankton species complexes and quantitative characteristics (i.e., microalgal number and biomass). In the study region, which is completely covered by ice for most of the year (from October to June), the process of primary production begins at the same time as in ice-free coastal areas. Sub-ice blooming and growth of cryoflora initiate beneath the ice cover, long before it breaks down. In addition, from July to October, high phytoplankton biomass was recorded in Ob Bay and in areas adjacent to the Ob-Yenisei shallows. This information provides quantitative evidence for the higher productivity of waters off the Obestuary, compared to other coastal areas in the Kara Sea. The main factor responsible for this phenomenon is the permanent (during the warm season) transport of living and dead organic matter by river runoff to shelf waters.

  8. Tectonic structure, seismic stratigraphy and hydrocarbon potential of the North Kara Basin (Russian Arctic)

    NASA Astrophysics Data System (ADS)

    Verzhbitsky, V.; Kosenkova, N.; Murzin, R.; Vasilyev, V.; Malysheva, S.; Komissarov, D.; Ananyev, V.; Roslov, Yu.; Khudoley, A.

    2012-04-01

    North Kara shelf represents one of the remote and still poorly studied sedimentary megabasins of Russian West Arctic. North Kara area lacks any offshore wells so the understanding of its structure is based on the geology of adjacent East Barents Basin, as well as surrounding land areas (Taimyr, Severnaya and Novaya Zemlya fold belts) and stratigraphic columns of the scattered Arctic Islands. It is widely believed that North Kara shelf is mostly composed of Riphean-Paleozoic sedimentary units, underlain by Precambrian basement (North Kara massif), and represents one of the most promising areas of the Russian Arctic for hydrocarbon (mostly oil) discoveries. Our study is based on the reinterpretation of several regional seismic lines acquired by Sevmorgeo. We used the main Paleozoic and Mesozoic tectonic events known for Severnaya Zemlya Archipelago and Taimyr Peninsula for interpretation of the age of main seismic complexes/boundaries within the North Kara sedimentary cover (first of all within the Priseverozemelsky Trough). We correlated the sharp angular unconformity in the lower part of sedimentary succession with Cambrian/Ordovician unconformity described earlier on the nearby Severnaya Zemlya onshore domain. It is likely that the pre-Ordovician tectonic event corresponds to the Late Baikalian (Timanian) orogeny, which took place on Timan-Pechora and Novaya Zemlya areas. Above the unconformity we proposed the occurrence of Ordovician-Silurian shelfal sedimentary sequence of ~ 2 km thickness. This strata are overlain by thick (~3-4 km) progradational unit. It is likely that this sequence should correspond to molassic deposits of old red sandstones, related to the regional Caledonian orogeny. We believe that general structural pattern of the North Kara region was formed in Late Carboniferous-Early Permian time as a result of Kara massif/Siberian Craton collision-related Hercynian orogeny of Taimyr-Severnaya Zemlya domain. This event led to gentle folding of the

  9. Trends in trace organic and metal concentrations in the Pechora and Kara Seas and adjacent rivers

    SciTech Connect

    Brooks, J.M.; Champ, M.A.; Wade, T.L.; Kennicutt, M.C. II; Chambers, L.; Davis, T.

    1995-12-31

    Trace organic (pesticides, PCBs, PAHs and dioxin/furan) and trace metal concentrations have been measured in surficial sediment and tissue (i.e., clam, fish liver and flesh) samples from the Pechora and Kara Seas and their adjacent rivers -- Pechora, Ob and Yenisey Rivers. Total PAH, PCB and total DDT and chlordane concentrations ranged in surficial sediments from n.d. to 810 ppb, n.d.--8.7 ppb, n.d.--1.2 ppb, and n.d.--1.2 ppb, respectively, in a suite of 40 samples from the Kara Sea and its adjacent rivers. The highest concentrations of many of the trace organic and metal contaminants were found in the lower part of the Yenisey River below the salt wedge. Some trace metals (As for example) were elevated in the Pechora River dispositional plume region. Dioxin ranged from 1.36 to 413 ppt in a subset of 20 sediment samples. Higher trace organic contaminant concentrations compared to sediments were found in tissue samples from the region, especially fish liver samples. Concentrations as high as 1,114 ppb total PAHs, 89 ppb chlordane, 1,011 ppb for total DDT and 663 ppb PCBs were found in some fish liver samples. Dioxin concentrations in tissue samples ranged from 11.7 to 61 ppt. Concentrations of many trace organic and metal contaminants in these Russian marginal seas are influenced by inputs from these large Arctic rivers. Many organic contaminant concentrations in sediments are low, however detecting these compounds in tissue show they are bioavailable.

  10. Macrobenthos of Yenisei Bay and the adjacent Kara Sea shelf

    NASA Astrophysics Data System (ADS)

    Galkin, S. V.; Vedenin, A. A.

    2015-07-01

    Trawl samples were collected in the northern region of Yenisei Bay and adjacent parts of the Kara Sea shelf. A total of eight stations were taken. We found more than 200 species of benthic organisms. A consecutive replacement of benthic communities is observed when going to the north from the Ob and Yenisei estuaries to the open parts of the sea. We could distinguish four different species complexes in the investigated area: a brackish-water complex where Saduria entomon is dominant; an intermediate complex where S. sibirica, S. sabini and Portlandia aestuariorum are dominant; a transitional complex with P. arctica as a dominant species and with a small amount of Ophiocten sericeum; a marine complex where O. sericeum is dominant. When salinity increased, some brackish-water species were replaced by related euryhaline species. One such example was the replacement of brackish-water Saduria entomon isopods by two euryhaline species: S. sibirica and S. sabini. The consecutive replacement of benthic communities showed a break near Sverdrup Island. In this area the marine complex was replaced by a transitional complex with P. arctica.

  11. Springtime microwave emissivity changes in the southern Kara Sea

    NASA Technical Reports Server (NTRS)

    Crane, Robert G.; Anderson, Mark R.

    1994-01-01

    Springtime microwave brightness temperatures over first-year ice are examined for the southern Kara Sea. Snow emissivity changes are revealed by episodic drops in the 37- to 18-GHz brightness temperature gradient ratio measured by the Nimbus 7 scanning multichannel microwave radiometer. We suggest that the negative gradient ratios in spring 1982 result from increased scatter at 37 GHz due to the formation of a near-surface hoar layer. This interpretation is supported by the results of a surface radiation balance model that shows the melt signature occurring at below freezing temperatures but under clear-sky conditions with increased solar input to the surface. Published observations from the Greenland ice cap show a surface hoar layer forming under similar atmospheric conditions owing to the increased penetration and absorption of solar radiation just below the surface layer. In spring/early summer 1984 similar gradient ratio signatures occur. They appear to be due to several days of freeze-thaw cycling following the movement of a low-pressure system through the region. These changes in surface emissivity represent the transition from winter to summer conditions (as defined by the microwave response) and are shown to be regional in extent and to vary with the synoptic circulations.

  12. Integrated multidisciplinary processing and interpretation of geophysical data acquired on transects in Barents and Kara seas

    NASA Astrophysics Data System (ADS)

    Roslov, Yu. V.; Sakoulina, T. S.

    2003-04-01

    INTEGRATED MULTIDISCIPLINARY PROCESSING AND INTERPRETATION OF GEOPHYSICAL DATA ACQUIRED ON TRANSECTS IN BARENTS AND KARA SEAS Yu.V. Roslov (1), T.S. Sakoulina (1) (1 - SEVMORGEO State Geophysical Co., 36 Rosenstein St, 198095, St Petersburg, Russia, roslov @sevmorgeo.com) According to Russian arctic offshore transect program State Company Sevmorgeo in cooperation with other Russian state companies carry out multidisciplinary investigations on transects 1-AR and 2-AR in Barents and Kara Seas. Investigations include the following geophysical methods: 4C wide angle refraction/reflection profiling (WARRP), CDP seismic, airborn and/or marine gravity and magnetic. Three levels of the integration has been used on processing and interpretation stage. First, different approaches of kinematic inverse problem and tomographic reconstruction have been applied for kinematic parameters of 4C WARRP data processing. That has allowed extracting of maximum information from the data acquired. As a result stable P and S velocity models have been obtained. Second, dynamic WARRP image focused mainly on Moho boundary has been integrated with CDP image in order to improve the sedimentary layer structure. Third, seismic images have been proven with gravity and magnetic data reaching the model, which fits to observed potential fields. Also gravity and magnetic data successfully fill out information gap in the places where there is a lack of seismic data. Some original technologies of data processing have been developed in the framework of the project. Finally, within the range defined by the data processed the integrated geological-geophysical images the Kara-Barents Shelf Plate structure whole Earth crust thickness along transects 1-AR and 2-AR have been obtained. New geophysical data acquired have forced reviewing of our nderstanding of Barents region geological structure. First of all it concern to south and north Barents depressions. South Barents depression is well known as a geological

  13. Macrobenthos of the southern part of St. Anna trough and the adjacent Kara Sea shelf

    NASA Astrophysics Data System (ADS)

    Galkin, S. V.; Vedenin, A. A.; Minin, K. V.; Rogacheva, A. V.; Molodtsova, T. N.; Rajskiy, A. K.; Kucheruk, N. V.

    2015-07-01

    Taxonomic composition and ecological structure of benthic communities of the southern part of St. Anna Trough were investigated during the 54th and 59th cruises of RV Akademik Mstislav Keldysh. Material was collected using Sigsbee trawl at 10 stations arranged in two transects (depth range 57-554 m). It was shown that benthic communities of the western arm of the St. Anna Trough differ considerably from the communities of the eastern arm. The western arm communities develop under the influence of active near-bottom hydrodynamics in conditions of rugged topography and a coarse-grained sediment or hard substrate. The wastern arm of the trough is characterized by the predomination of the soft sediment, smooth topography, and weak currents. In the western arm of the trough the influence of the Barents Sea fauna is traced down to the edge of the internal shelf (about 150 m depth). The community of the eastern arm of the trough situated out from the direct influence of the Barents Sea waters represents a continuation of the Ophiocten sericeum community, typical for external Kara Sea shelf. With increasing depth, Ophiopleura borealis becomes the dominant species of the community. In the greatest explored depths some deep-water High-Arctic species, such as echinoids Pourtalesia jeffreysi, were observed. The major factors determining the distribution of benthic communities in the investigated area are the microrelief pattern, the sediment structure, and near-bottom hydrodynamics.

  14. Characteristics of radionuclide accumulation in benthic organisms and fish of the Barents and Kara Seas

    SciTech Connect

    Matishov, G.G.; Matishov, D.G.; Rissanen, C.

    1995-05-01

    Artificial radionuclides play a specific role in the hydrochemical, geochemical, and hydrobiological processes that are currently occurring in the western Arctic. The existing data on radioactive contamination of different plant and animal species inhabiting the sea shelf are fragmentary. Hence, it was difficult to follow the transformation of radionuclides during their transmission along food chains, from phyto- and zoo-plankton to benthos, fish, birds, and marine mammals. In 1990-1994, the Murmansk Institute of Marine Biology organized expeditions to collect samples of residues on the sea floor and also of benthos, benthic fish, macrophytes, and other organisms inhabiting the shelf of the Barents and Kara Seas. These samples were tested for cesium-137, cesium-134, strontium-90, plutonium-239, plutonium-240, americium-241, and cobalt-60 in Rovaniemi (Finland) by the regional radiation administration of the Finnish Centre for Radiation and Nuclear Safety. Over 1000 tests were made. Their results provided new data on the content and distribution of these radionuclides among different components of marine ecosystems. 7 refs.

  15. Distribution of trace gases and aerosols in the troposphere over West Siberia and Kara Sea

    NASA Astrophysics Data System (ADS)

    Belan, Boris D.; Arshinov, Mikhail Yu.; Paris, Jean-Daniel; Nédélec, Philippe; Ancellet, Gérard; Pelon, Jacques; Berchet, Antoine; Arzoumanian, Emmanuel; Belan, Sergey B.; Penner, Johannes E.; Balin, Yurii S.; Kokhanenko, Grigorii; Davydov, Denis K.; Ivlev, Georgii A.; Kozlov, Artem V.; Kozlov, Alexander S.; Chernov, Dmitrii G.; Fofonov, Alexader V.; Simonenkov, Denis V.; Tolmachev, Gennadii

    2015-04-01

    The Arctic is affected by climate change much stronger than other regions of the globe. Permafrost thawing can lead to additional methane release, which enhances the greenhouse effect and warming, as well as changes of Arctic tundra ecosystems. A great part of Siberian Arctic is still unexplored. Ground-based investigations are difficult to be carried out in this area due to it is an out-of-the-way place. So, in spite of the high cost, aircraft-based in-situ measurements can provide a good opportunity to fill up the gap in data on the atmospheric composition over this region. The ninth YAK-AEROSIB campaign was focused on the airborne survey of Arctic regions of West Siberia. It was performed in October 2014. During the campaign, the high-precision in-situ measurements of CO2, CH4, CO, O3, black carbon and aerososls, including aerosol lidar profiles, have been carried out in the Siberian troposphere from Novosibirsk to Kara Sea. Vertical distributions of the above atmospheric constituents will be presented. This work was supported by LIA YAK-AEROSIB, CNRS (France), the French Ministry of Foreign Affairs, CEA (France), the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); State contracts of the Ministry of Education and Science of Russia No. 14.604.21.0100, (RFMTFIBBB210290) and No. 14.613.21.0013 (RFMEFI61314X0013); Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; and Russian Foundation for Basic Research (grants No. 14-05-00526 and 14-05-00590).

  16. A 3D gravity and thermal model for the Barents Sea and Kara Sea

    NASA Astrophysics Data System (ADS)

    Klitzke, Peter; Sippel, Judith; Faleide, Jan Inge; Scheck-Wenderoth, Magdalena

    2016-08-01

    In the frame of this study, we investigate the lithosphere-scale 3D physical state of the Barents Sea and Kara Sea region. Therefore, we test an existing 3D structural model against the gravitational field by considering the heterogeneous upper mantle to further assess the structural and density configuration of the continental crystalline crust. The resulting 3D density configuration of the crust is discussed in terms of its relationships with the spatial distribution of tectonically different domains. In addition, it provides the base for a lithology-controlled parameterisation of the crust with thermal properties to calculate the 3D conductive thermal field. The deeper thermal field is controlled by the depth configuration of the lithosphere-asthenosphere boundary. Accordingly, deeper isotherms such as the 450 °C isotherm deepen from below the rifted SW Barents Sea towards the intracratonic basins of the eastern Barents Sea and Kara Sea, indicating an increase of the lithospheric strength in the same direction. Temperature measurements of the upper 800 m below the SW Barents Sea reveal an increased thermal gradient which cannot be reproduced by a steady-state 3D conductive model alone. Beside fault-induced fluid flow to be active there, an alternative scenario could involve a phase of subsidence long enough to increase the temperature of the upper 800 m, followed by an uplift and erosion phase that prevented the positive thermal anomaly to propagate towards larger depths. The final lithosphere-scale 3D model is the first to integrate the geological, density and thermal configuration of the entire Barents Sea and Kara Sea region and hence provides an ideal base for future thermomechanical studies addressing, for instance, questions on the present-day, past and future relationships between lithospheric strength and deformation.

  17. Skill improvement of dynamical seasonal Arctic sea ice forecasts

    NASA Astrophysics Data System (ADS)

    Krikken, Folmer; Schmeits, Maurice; Vlot, Willem; Guemas, Virginie; Hazeleger, Wilco

    2016-05-01

    We explore the error and improve the skill of the outcome from dynamical seasonal Arctic sea ice reforecasts using different bias correction and ensemble calibration methods. These reforecasts consist of a five-member ensemble from 1979 to 2012 using the general circulation model EC-Earth. The raw model reforecasts show large biases in Arctic sea ice area, mainly due to a differently simulated seasonal cycle and long term trend compared to observations. This translates very quickly (1-3 months) into large biases. We find that (heteroscedastic) extended logistic regressions are viable ensemble calibration methods, as the forecast skill is improved compared to standard bias correction methods. Analysis of regional skill of Arctic sea ice shows that the Northeast Passage and the Kara and Barents Sea are most predictable. These results show the importance of reducing model error and the potential for ensemble calibration in improving skill of seasonal forecasts of Arctic sea ice.

  18. Implementation of remote sensing data in research of coastal dynamics at the Baydaratskaya Bay, Kara Sea

    NASA Astrophysics Data System (ADS)

    Kuznetsov, D. E.; Belova, N.; Noskov, A.; Ogorodov, S.

    2011-12-01

    The development of Arctic coastal regions is now in progress due to significant amount of hydrocarbon deposits discovered. In high latitudes, natural hazards such as coastal erosion and thermoerosion, deflation, linear erosion and thermal denudation, ice gouging can make petroleum production and transport unprofitable. A prominent feature of Kara Sea, as well as other Arctic seas, is the development of coast in permafrost conditions. Despite the long ice period (up to 9 months), during the ice free period coastal dynamics are very intensive. If pipeline landfall site occurs at a shore section with high retreat rate (1 - 3m/year and higher), danger of pipeline damage due to exposure, line sagging and mechanical deformations becomes high. Protective measures may appear inefficient, since shore sections with active coastal erosion are subject not only to bluff retreat, but also to nearshore zone and coastal slope erosion. Exposed pipeline sections also get in danger of sea ice effect. For correct definition of coastal dynamics setting we use dual approach. The first part is perennial instrumental monitoring of shore morphology, relying on system of benchmarks used for repeated measures, together with in-field geomorphologic expertise. Measures include direct observations and geodetic leveling onshore and echosounding offshore. Being the most precise method, direct measurements are expensive. The other drawback is that they can't give an overview of long-span tendencies of coastal evolution for prolonged shore sections, which is essential for shore deformation forecast complying with lifetime of structures (usually 30 to 50 years). This is where the importance of the 2nd part, analysis of the different time remote sensing data, becomes decisive. Most important sources of remote sensing data include Corona imagery from 1960s - 70s, aerial photos of different times (but most of them are inaccessible for Russian Arctic coast), Landsat imagery (covering a long time span

  19. Polycyclic aromatic hydrocarbons (PAHs) in bottom sediments of the Kara Sea shelf, Gulf of Ob and Yenisei Bay.

    PubMed

    Dahle, Salve; Savinov, Vladimir M; Matishov, Gennadij G; Evenset, Anita; Naes, Kristoffer

    2003-05-01

    PAH concentration and distribution has been examined in surface sediments samples from the Kara Sea, Russia. The study includes 13 samples from the South-eastern Kara Sea shelf, one sample from the south-western part of the sea, 4 samples from the Baydaratskaya Bay, 5 samples from the Gulf of Ob and 4 samples from the Yenisei Bay, collected in August-September 1993-1994. Cluster analysis and principal component analysis (PCA) were used to identify common patterns and possible sources of PAHs. The total PAH concentration (sum of two- to six-ring aromatic hydrocarbons) in the Kara Sea sediments was generally lower than in the Barents Sea sediments and comparable to the levels in the Pechora and White seas. Two- and three-ring aromatic hydrocarbons predominated in Kara Sea sediments, which indicate a relatively stronger petrogenic origin than that in the adjacent seas. The highest total PAH concentrations within the Kara Sea were found in sediments from the Yenisei Bay and in the South-western part of the Kara Sea in the Eastern Novaya Zemlya Trough. The PAHs of the Yenisei Bay sediments were dominated by perylene and PAHs of petrogenic origin, but had also a strong indication of PAHs of pyrogenic origin. The dominating PAH group in the South-western part of the Kara Sea were four- to six-ring aromatic hydrocarbons, indicating pyrogenic origin. Perylene levels were high in all the Kara Sea samples, and highest levels were found in areas of strong terrigenous influence. The most probable source is decaying peat products being transported to the Kara Sea by both large and small rivers. PMID:12699918

  20. Characteristics of short-period internal waves in the Kara Sea inferred from satellite SAR data

    NASA Astrophysics Data System (ADS)

    Kozlov, I. E.; Kudryavtsev, V. N.; Zubkova, E. V.; Zimin, A. V.; Chapron, B.

    2015-12-01

    In this paper we present the results of short-period internal wave (SIW) observations in the Kara Sea on the basis of satellite ENVISAT ASAR data between July and October 2007. Altogether, 248 internal wave (IW) packets and solitons are identified in 89 SAR images. Detailed spatial statistics of IW signatures and their properties in the Kara Sea is presented. The primary regions of IW activity are the areas near the Kara Gates Strait, the southeastern part of the Novaya Zemlya Trough, and in the vicinity of Cape Zhelaniya. We identify the regions where large IW packets are observed with wavelengths up to 2-3 km and the front length exceeding 200 km. The mean interpacket distance for observed IWs is about 20 km, but it may reach 50-60 km. Consequent IW packets are observed to travel up to 500 km from the presumed generation points. The results of satellite observations are compared with results of previous studies.

  1. Propagation and transformation of waters of the surface desalinated layer in the Kara Sea

    NASA Astrophysics Data System (ADS)

    Zatsepin, A. G.; Kremenetskiy, V. V.; Kubryakov, A. A.; Stanichny, S. V.; Soloviev, D. M.

    2015-07-01

    A new method for the calculating propagation of brackish waters from the Ob-Yenisei estuary in the Kara Sea is proposed. This method is based on satellite altimetry measurements and meteorological data. Surface currents in the upper layer are estimated as the sum of geostrophic and parameterized wind-driven transport. Geostrophic velocities are calculated using altimetry-derived sea-level anomalies and mean dynamic topography. The method has been used previously to calculate surface currents in the Black Sea [7, 12]. In this paper it has been successfully verified on the basis of comparisons with field observations of surface salinity and satellite images of sea-surface chlorophyll in the Kara Sea.

  2. Arctic Sea Ice Maximum 2011

    NASA Video Gallery

    AMSR-E Arctic Sea Ice: September 2010 to March 2011: Scientists tracking the annual maximum extent of Arctic sea ice said that 2011 was among the lowest ice extents measured since satellites began ...

  3. Offshore permafrost decay and massive seabed methane escape in water depths >20 m at the South Kara Sea shelf

    NASA Astrophysics Data System (ADS)

    Portnov, A.; Mienert, J.; Cherkashov, G. A.

    2013-12-01

    migrate. Discontinuous and local permafrost areas may exist further offshore in up to 115 m water depth. This study provides one of the key examples of an Arctic marine shelf where seafloor gas release is widespread and where permafrost degradation is an ongoing process. These initial results provided targets for drilling and data acquisition in the summer of 2013 and for future research cruises in the Kara Sea. A better understanding of hydrocarbon seepage at the seafloor is important for assessing both the natural release of gas to the atmosphere and the hydrocarbon potential for new exploration regions like the Kara Sea.

  4. The influence of climate change on the intensity of ice gouging at the Kara Sea bottom by hummocky formations

    NASA Astrophysics Data System (ADS)

    Ogorodov, Stanislav; Arkhipov, Vasily; Kokin, Osip; Natalia, Shabanova

    2016-04-01

    Sea ice as a zonal factor is an important passive and active relief-forming agent in the coastal-shelf zone of the Arctic and other freezing seas. The most dangerous process in relation to the hydrotechnical facilities is ice gouging - destructive mechanical impact of the ice of the ground, connected with the dynamics of the ice cover, formation of hummocks and stamukhas under the influence of hydrometeorologic factors and of the relief of the coastal-shelf zone. Underestimation of the ice gouging intensity can lead to damage of the engineering facilities, while excessive deepening increases the expenses of the construction. Finding the optimal variant and, by this, decreasing the risks of extreme situations is a relevant task of the science and practice. This task is complicated by the fact that the oil and gas infrastructure within the coastal and shelf areas of the freezing seas is currently being developed in the conditions of global climate change. In the present work, several results of the repeated sounding of bottom ice gouging microrelief within the area of the underwater pipeline crossing of the Baydaratskaya Bay, Kara Sea, are presented. Based on the results of the monitoring, as well as the analysis of literature sources and modeling it has been established that under the conditions of climate warming and sea ice reduction, the zone of the most intensive ice gouging is shifted landwards, on shallower water areas.

  5. Relating Regional Arctic Sea Ice and climate extremes over Europe

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Grosfeld, Klaus; Lohmann, Gerrit; Scholz, Patrick

    2016-04-01

    The potential increase of temperature extremes under climate change is a major threat to society, as temperature extremes have a deep impact on environment, hydrology, agriculture, society and economy. Hence, the analysis of the mechanisms underlying their occurrence, including their relationships with the large-scale atmospheric circulation and sea ice concentration, is of major importance. At the same time, the decline in Arctic sea ice cover during the last 30 years has been widely documented and it is clear that this change is having profound impacts at regional as well as planetary scale. As such, this study aims to investigate the relation between the autumn regional sea ice concentration variability and cold winters in Europe, as identified by the numbers of cold nights (TN10p), cold days (TX10p), ice days (ID) and consecutive frost days (CFD). We analyze the relationship between Arctic sea ice variation in autumn (September-October-November) averaged over eight different Arctic regions (Barents/Kara Seas, Beaufort Sea, Chukchi/Bering Seas, Central Arctic, Greenland Sea, Labrador Sea/Baffin Bay, Laptev/East Siberian Seas and Northern Hemisphere) and variations in atmospheric circulation and climate extreme indices in the following winter season over Europe using composite map analysis. Based on the composite map analysis it is shown that the response of the winter extreme temperatures over Europe is highly correlated/connected to changes in Arctic sea ice variability. However, this signal is not symmetrical for the case of high and low sea ice years. Moreover, the response of temperatures extreme over Europe to sea ice variability over the different Arctic regions differs substantially. The regions which have the strongest impact on the extreme winter temperature over Europe are: Barents/Kara Seas, Beaufort Sea, Central Arctic and the Northern Hemisphere. For the years of high sea ice concentration in the Barents/Kara Seas there is a reduction in the number

  6. Recent State of Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Rigor, I. G.; Clemente-Colón, P.; Perovich, D. K.; Richter-Menge, J. A.; Chao, Y.; Neumann, G.; Ortmeyer, M.

    2008-12-01

    Route, and most of two routes of the Northwest Passage, north and south of Victoria Island, which facilitated ice retreat and the opening of waterways this summer. Most importantly, the shift from a perennial to a seasonal ice covered Arctic Ocean significantly decreases the overall surface albedo resulting in enhanced solar heat absorption in spring and summer, which further decreases the Arctic ice pack through the ice albedo feedback mechanism. In early September 2008, a major melt event occurred over a large region extending from the Beaufort Sea across the Kara Sea toward the Laptev Sea, with active melt areas encroaching in the NP vicinity. This melt event was caused by an advection of warm air from the south, which melted and pushed sea ice away at the same time. At that time, the total extent of Arctic sea ice was about 0.5 million km2 (size of Spain) larger than that at the same time last year.

  7. Human impact on dynamics of western coast of Yamal, Kara sea

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Dmitry; Noskov, Alexey; Belova, Nataliya; Kamalov, Anatoly; Arkhipov, Vasily; Ogorodov, Stanislav

    2010-05-01

    The western coast of Yamal around the site of Bovanenkovo-Ukhta gas pipeline landfall (Baydarata bay, Kara sea) consists of two types of shore, with specific kind of human impact for each of them. These are low and gentle accumulative shores, which in this case are most influenced since the landfall site is situated within this type, and high bluffy abrasion shores. The heaviness of impact depends on degree of anthropogenic activity influencing the topography (this degree relates to proximity to main construction sites and intensity of human activity), and natural relief features, mainly its resistance to anthropogenic destruction and ability to restore itself. Accumulative shores are more resistant to destruction; main morphogenetic processes are marine accumulation (mainly within tideland) and aeolian transport, especially in areas without vegetation (tideland, beach and often the onshore sand bar). In the meantime, most part of construction (dams, roads, buildings, infrastructural sites) is located within accumulative coast, since it's generally more stable and good for construction. Abrasion coast is more prone to destruction because of human activity, but is much less subject to human impact since no direct construction activity is held here, and main types of this impact are usually traffic of heavy motor transport and allocation of construction waste (often brought by the sea). There are the following types of direct human impact on topography at pipeline landfall construction sites: 1) construction of large artificial accumulative bodies (dams, banks, sand deposits), which leads to additional sediment inflow at the site; 2) creation of negative forms like pits and trenches while taking sand material for construction (leads to erosion and decrease in tideland and beach width, rebuilding of submerged bar system); 3) change of surface properties during construction and traffic, destruction or suppression of vegetation (leads to activation of erosion). The

  8. Methane Release and Pingo-Like Feature Across the South kara Sea Shels, an Area of Thawing Offshore Permafrost

    NASA Astrophysics Data System (ADS)

    Serov, P.; Portnov, A.; Mienert, J.

    2015-12-01

    Thawing subsea permafrost controls methane release from the Russian Arctic shelf having a considerable impact on the climate-sensitive Arctic environment. Our recent studies revealed extensive gas release over an area of at least 7500 km2and presence of pingo-like features (PLFs), showing severe methane leakage, in the South Kara Sea in water depths >20m (Serov et al., 2015). Specifically, we detected shallow methane ebullition sites expressed in water column acoustic anomalies (gas flares and gas fronts) and areas of increased dissolved methane concentrations in bottom water, which might be sufficient sources of carbon for seawater-atmosphere exchange. A study of nature and source of leaking gas was focused on two PLFs, which are acoustically transparent circular mounds towering 5-9 m above the surrounding seafloor. One PLF (PLF 2) connects to biogenic gas from deeper sources, which is reflected in δ13CCH4 values ranging from -55,1‰ to -88,0‰ and δDCH4values varied from -175‰ to -246‰. Low organic matter content (0.52-1.69%) of seafloor sediments restricts extensive in situ methane production. The formation of PLF 2 is directly linked to the thawing of subsea permafrost and, possibly, decomposition of permafrost related gas hydrates. High accumulations of biogenic methane create the necessary forces to push the remaining frozen layers upwards and, therefore, form a topographic feature. We speculate that PLF 1, which shows ubiquitously low methane concentrations, is either a relict submerged terrestrial pingo, or a PLF lacking the necessary underlying methane accumulations. Our model of glacial-interglacial permafrost evolution supports a scenario in which subsea permafrost tapers seaward and pinches out at 20m isobaths, controlling observed methane emissions and development of PLFs. Serov. P., A. Portnov, J. Mienert, P. Semenov, and P. Ilatovskaya (2015), Methane release from pingo-like features across the South Kara Sea shelf, an area of thawnig

  9. Hydrochemical characteristics of the waters in the western part of the Kara Sea

    NASA Astrophysics Data System (ADS)

    Makkaveev, P. N.; Melnikova, Z. G.; Polukhin, A. A.; Stepanova, S. V.; Khlebopashev, P. V.; Chultsova, A. L.

    2015-07-01

    Hydrochemical study in the Kara Sea was part of the program of the integrated expedition of the 59th cruise of the RV Akademik Mstislav Keldysh. Primary hydrochemical surveys were performed on the sections in the Yenisei Gulf, along the eastern and western branches of the St. Anna Trough, and across the Novozemel'skii Trough. Moreover, a flow-through system throughout, in which pH values of the surface waters were measured and samples for hydrochemical analyses were collected, was operated during vessel movement. A wide set of hydrochemical analyses was carried out, including tests for key nutrients (silicon and different forms of nitrogen and phosphorus), dissolved oxygen, and values of pH and total alkalinity. The report describes the hydrochemical conditions in the southwestern part of the Kara Sea. The basic results are presented and compared to those of the preceding integrated expeditions (49th cruise of the RV Dmitrii Mendeleev in 1993 and 54th cruise of the RV Akademik Mstislav Keldysh in 2007).

  10. Arctic Sea ice model sensitivities.

    SciTech Connect

    Peterson, Kara J.; Bochev, Pavel Blagoveston; Paskaleva, Biliana Stefanova

    2010-12-01

    Arctic sea ice is an important component of the global climate system and, due to feedback effects, the Arctic ice cover is changing rapidly. Predictive mathematical models are of paramount importance for accurate estimates of the future ice trajectory. However, the sea ice components of Global Climate Models (GCMs) vary significantly in their prediction of the future state of Arctic sea ice and have generally underestimated the rate of decline in minimum sea ice extent seen over the past thirty years. One of the contributing factors to this variability is the sensitivity of the sea ice state to internal model parameters. A new sea ice model that holds some promise for improving sea ice predictions incorporates an anisotropic elastic-decohesive rheology and dynamics solved using the material-point method (MPM), which combines Lagrangian particles for advection with a background grid for gradient computations. We evaluate the variability of this MPM sea ice code and compare it with the Los Alamos National Laboratory CICE code for a single year simulation of the Arctic basin using consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent, root mean square (RMS) ice speed, central Arctic ice thickness,and central Arctic ice speed with respect to ten different dynamic and thermodynamic parameters are evaluated both individually and in combination using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). We find similar responses for the two codes and some interesting seasonal variability in the strength of the parameters on the solution.

  11. Methane release from pingo-like features across the South Kara Sea shelf, an area of thawing offshore permafrost

    NASA Astrophysics Data System (ADS)

    Serov, Pavel; Portnov, Alexey; Mienert, Jurgen; Semenov, Peter; Ilatovskaya, Polina

    2015-08-01

    The Holocene marine transgression starting at ~19 ka flooded the Arctic shelves driving extensive thawing of terrestrial permafrost. It thereby promoted methanogenesis within sediments, the dissociation of gas hydrates, and the release of formerly trapped gas, with the accumulation in pressure of released methane eventually triggering blowouts through weakened zones in the overlying and thinned permafrost. Here we present a range of geophysical and chemical scenarios for the formation of pingo-like formations (PLFs) leading to potential blowouts. Specifically, we report on methane anomalies from the South Kara Sea shelf focusing on two PLFs imaged from high-resolution seismic records. A variety of geochemical methods are applied to study concentrations and types of gas, its character, and genesis. PLF 1 demonstrates ubiquitously low-methane concentrations (14.2-55.3 ppm) that are likely due to partly unfrozen sediments with an ice-saturated internal core reaching close to the seafloor. In contrast, PLF 2 reveals anomalously high-methane concentrations of >120,000 ppm where frozen sediments are completely absent. The methane in all recovered samples is of microbial and not of thermogenic origin from deep hydrocarbon sources. However, the relatively low organic matter content (0.52-1.69%) of seafloor sediments restricts extensive in situ methane production. As a consequence, we hypothesize that the high-methane concentrations at PLF 2 are due to microbial methane production and migration from a deeper source.

  12. Arctic Sea Ice Minimum, 2015

    NASA Video Gallery

    This animation shows the evolution of the Arctic sea ice cover from its wintertime maximum extent, which was reached on Feb. 25, 2015, and was the lowest on record, to its apparent yearly minimum, ...

  13. 2013 Arctic Sea Ice Minimum

    NASA Video Gallery

    After an unusually cold summer in the northernmost latitudes, Arctic sea ice appears to have reached its annual minimum summer extent for 2013 on Sept. 13, the NASA-supported National Snow and Ice ...

  14. Bacterial and primary production in the pelagic zone of the Kara Sea

    NASA Astrophysics Data System (ADS)

    Sazhin, A. F.; Romanova, N. D.; Mosharov, S. A.

    2010-10-01

    Data on the bacterial and primary production, which were obtained simultaneously for the same water samples, are presented for three regions of the Kara Sea. The samples were collected for the transect westwards of the Yamal Peninsula, along the St. Anna Trough, and the transect in Ob Bay. Direct counts of the DAPI-stained bacterial cells were performed. The bacterial production and grazing rates were determined using a direct method when metabolic inhibitors vancomycin and penicillin were added. The primary production rates were estimated using the 14C method. The average primary production was 112.6, 58.5, and 28.7 mg C m-2 day-1, and the bacterial production was 12.8, 48.9, and 81.6 mg C m-2 day-1 along the Yamal Peninsula, the St. Anna Trough, and Ob Bay, respectively. The average bacterial carbon demand was 34.6, 134.5, and 220.4 mg C m-2 day-1 for these regions, respectively. The data obtained lead us to conclude that the phytoplankton-synthesized organic matter is generally insufficient to satisfy the bacterial carbon demand and may be completely assimilated via the heterotrophic processes in the marine ecosystems. Therefore, the bacterial activity and, consequently, the amount of the synthesized biomass (i.e., the production) both depend directly on the phytoplankton’s condition and activity. We consider these relationships to be characteristics of the Kara Sea’s biota.

  15. Weakening of the Stratospheric Polar Vortex by Arctic Sea-Ice Loss

    SciTech Connect

    Kim, Baek-Min; Son, Seok-Woo; Min, Seung-Ki; Jeong, Jee-Hoon; Kim, Seong-Joong; Zhang, Xiangdong; Shim, Taehyoun; Yoon, Jin-Ho

    2014-09-02

    Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea ice, the mechanism that links sea ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea ice cover during early winter months (November-December), especially over the Barents-Kara seas, enhance the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January- February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.

  16. Storm Surge Climatology of the Arctic Marginal Seas

    NASA Astrophysics Data System (ADS)

    Proshutinsky, T.; Proshutinsky, A.; Maslanik, J.; Solomon, S.; Ashik, I.

    2002-12-01

    The shore of the arctic seas are generally of low relief and the combination of waves and high water levels during late summer and fall storms before the development of significant sea-ice cover can be particularly damaging to shorelines. Gravel barrier beaches can be overwashed and eroded while bluffs consisting of unlithified ice-bonded sediment and segregated ice can fail and retreat. Storm surge climatology of the arctic marginal seas is investigated based on observational data and 2-D coupled ice-ocean barotropic model results. Meteorological forcing is calculated based on NCAR/NCEP reanalysis data for 1948-present period. The spatial resolution of the model is 13.89 km. The sea ice conditions (concentration and thickness) are prescribed on the mean monthly basis. The model was calibrated based on the strongest storm surges observed in the Kara, Laptev, East-Siberian, Chukchi and Beaufort Seas. Simulation results are in relatively good agreement with observations of sea level heights and ice drift. Detailed studies showed that the spatial and temporal resolutions of the NCEP/NCAR sea level pressure data (2.5x2.5 degree, 6 hours) are too low and can not reproduce well extreme conditions typical for the relatively small polar cyclones but storm surge event frequency is reproduce very well. The results of this study can be used to aid current and future scenario risk assessments of coastal flooding and costal erosion rates.

  17. Radioactive contamination from dumped nuclear waste in the Kara Sea--results from the joint Russian-Norwegian expeditions in 1992-1994.

    PubMed

    Salbu, B; Nikitin, A I; Strand, P; Christensen, G C; Chumichev, V B; Lind, B; Fjelldal, H; Bergan, T D; Rudjord, A L; Sickel, M; Valetova, N K; Føyn, L

    1997-08-25

    Russian-Norwegian expeditions to the Kara Sea and to dumping sites in the fjords of Novaya Zemlya have taken place annually since 1992. In the fjords, dumped objects were localised with sonar and ROV equipped with underwater camera. Enhanced levels of 137Cs, 60Co, 90Sr and 239,240Pu in sediments close to dumped containers in the Abrosimov and Stepovogo fjords demonstrated that leaching from dumped material has taken place. The contamination was inhomogeneously distributed and radioactive particles were identified in the upper 10 cm of the sediments. 137Cs was strongly associated with sediments, while 90Sr was more mobile. The contamination was less pronounced in the areas where objects presumed to be reactor compartments were located. The enhanced level of radionuclides observed in sediments close to the submarine in Stepovogo fjord in 1993 could, however, not be confirmed in 1994. Otherwise, traces of 60Co in sediments were observed in the close vicinity of all localised objects. Thus, the general level of radionuclides in waters, sediments and biota in the fjords is, somewhat higher or similar to that of the open Kara Sea, i.e. significantly lower than in other adjacent marine systems (e.g. Irish Sea, Baltic Sea, North Sea). The main sources contributing to radioactive contamination were global fallout from atmospheric nuclear weapon tests, river transport from Ob and Yenisey, marine transport of discharges from Sellafield, UK and fallout from Chernobyl. Thus, the radiological impact to man and the arctic environment of the observed leakages from dumped radioactive waste today, is considered to be low. Assuming all radionuclides are released from the waste, preliminary assessments indicate a collective dose to the world population of less than 50 man Sv.

  18. Emschermannia ramificata-a new genus and species of solitary entoproct from the Kara Sea, Russia.

    PubMed

    Borisanova, Anastasia O

    2016-02-24

    A new genus and species of solitary entoproct, Emschermannia ramificata, is described from the Kara Sea. It is an epibiont of the nephtyid polychaete Aglaophamus malmgreni, collected from 25-472 m depth. The species is about 250-300 μm long, with 8-10 tentacles, and buds are formed from a frontal area of the calyx. The calyx and stalk are not separated from each other by a cuticular septum, and a star-cell complex is absent. Emschermannia ramificata attaches to a substratum via a basal plate from which pseudostolons grow. Zooidal morphology conforms to that of the Loxosomatidae, but the attachment structure is unique among solitary entoprocts; it resembles basal plates and stolons of colonial entoprocts, but pseudostolons of Emschermannia serve only for attachment, not for budding. Overall, the morphology of Emschermannia may be considered intermediate between that of solitary and colonial forms, with relevance to evolutionary development within Entoprocta.

  19. Arctic Sea Ice Model Sensitivities

    NASA Astrophysics Data System (ADS)

    Peterson, K. J.; Bochev, P.; Paskaleva, B.

    2010-12-01

    Arctic sea ice is an important component of the global climate system and, due to feedback effects, the Arctic ice cover is changing rapidly. Predictive mathematical models are of paramount importance for accurate estimates of the future ice trajectory. However, the sea ice components of Global Climate Models (GCMs) vary significantly in their prediction of the future state of Arctic sea ice and have generally underestimated the rate of decline in minimum sea ice extent seen over the past thirty years. One of the contributing factors to this variability is the sensitivity of the sea ice state to internal model parameters. A new sea ice model that holds some promise for improving sea ice predictions incorporates an anisotropic elastic-decohesive rheology and dynamics solved using the material-point method (MPM), which combines Lagrangian particles for advection with a background grid for gradient computations. We evaluate the variability of this MPM sea ice code and compare it with the Los Alamos National Laboratory CICE code for a single year simulation of the Arctic basin using consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent, root mean square (RMS) ice speed, central Arctic ice thickness,and central Arctic ice speed with respect to ten different dynamic and thermodynamic parameters are evaluated both individually and in combination using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). We find similar responses for the two codes and some interesting seasonal variability in the strength of the parameters on the solution. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

  20. Radionuclide bioconcentration factors and sediment partition coefficients in Arctic Seas subject to contamination from dumped nuclear wastes

    SciTech Connect

    Fisher, N.S. . Marine Sciences Research Center); Fowler, S.W.; Boisson, F.; Carroll, J. . Marine Environment Lab.); Rissanen, K. ); Salbu, B. . Lab. for Analytical Chemistry); Sazykina, T.G. ); Sjoeblom, K.L. )

    1999-06-15

    The disposal of large quantities of radioactive wastes in Arctic Seas by the former Soviet Union has prompted interest in the behavior of long-lived radionuclides in polar waters. Previous studies on the interactions of radionuclides prominent in radioactive wastes have focused on temperate waters; the extent to which the bioconcentration factors and sediment partitioning from these earlier studies could be applied to risk assessment analyses involving high latitude systems is unknown. Here the authors present concentrations in seawater and calculated in situ bioconcentration factors for [sup 90]Sr, [sup 137]Cs, and [sup 239+240]Pu (the three most important radionuclides in Arctic risk assessment models) in macroalgae, crustaceans, bivalve molluscs, sea birds, and marine mammals as well as sediment K[sub d] values for 13 radionuclides and other elements in samples taken from the Kara and Barents Seas. The data analysis shows that, typically, values for polar and temperate waters are comparable, but exceptions include 10-fold higher concentration factors for [sup 239+240]Pu in Arctic brown macroalgae, 10-fold lower K[sub d] values for [sup 90]Sr in Kara Sea sediment than in typical temperate coastal sediment, and 100-fold greater Ru K[sub d] values in Kara Sea sediment. For most elements application of temperate water bioconcentration factors and K[sub d] values to Arctic marine systems appears to be valid.

  1. AMSR2 Daily Arctic Sea Ice - 2014

    NASA Video Gallery

    In this animation, the daily Arctic sea ice and seasonal land cover change progress through time, from March 21, 2014 through the 3rd of August, 2014. Over the water, Arctic sea ice changes from da...

  2. The influence of winter cloud on summer sea ice in the Arctic, 1983-2013

    NASA Astrophysics Data System (ADS)

    Letterly, Aaron; Key, Jeffrey; Liu, Yinghui

    2016-03-01

    Arctic sea ice extent has declined dramatically over the last two decades, with the fastest decrease and greatest variability in the Beaufort, Chukchi, and East Siberian Seas. Thinner ice in these areas is more susceptible to changes in cloud cover, heat and moisture advection, and surface winds. Using two climate reanalyses and satellite data, it is shown that increased wintertime surface cloud forcing contributed to the 2007 summer sea ice minimum. An analysis over the period 1983-2013 reveals that reanalysis cloud forcing anomalies in the East Siberian and Kara Seas precondition the ice pack and, as a result, explain 25% of the variance in late summer sea ice concentration. This finding was supported by Moderate Resolution Imaging Spectroradiometer cloud cover anomalies, which explain up to 45% of the variance in sea ice concentration. Results suggest that winter cloud forcing anomalies in this area have predictive capabilities for summer sea ice anomalies across much of the central and Eurasian Arctic.

  3. Climate-sensitive subsea permafrost and related gas expulsions on the South Kara Sea shelf. Field studies and modeling results.

    NASA Astrophysics Data System (ADS)

    Portnov, Alexey; Mienert, Jurgen; Serov, Pavel

    2015-04-01

    Thawing subsea permafrost controls methane release bearing a considerable impact on the climate-sensitive Arctic environment. Significant expulsion of methane into shallow Russian shelf areas may continue to rise into the atmosphere on the Arctic shelves in response to intense degradation of relict subsea permafrost. The release of formerly trapped gas, essentially methane, is linked to the permafrost evolution. Modeling of the permafrost at the West Yamal shelf allowed describing its evolution from the Late Pleistocene to Holocene. During the previous work we detected extensive emissions of free gas into the water column at the boundary between today's shallow water permafrost and deeper water non-permafrost areas. These gas expulsions formed seismic and hydro-acoustic anomalies on the high-resolution seismic records. We supposed that in the water depths <20m continuous ice-bearing permafrost plays a role of a seal through which gas can not migrate. We integrate 1D modeling results of relict permafrost distributions with these field data from the South Kara Sea. Modeling results suggest a highly-dynamic permafrost system that directly responds to even minor variations of lower and upper boundary conditions, e.g. heat flux from below and/or bottom water temperature changes from above. We present several scenarios of permafrost evolution and show that potentially minimal modern extent of the permafrost at the West Yamal shelf is limited by ~17 m isobaths, whereas maximal probable extent coincides with ~100 m isobaths. The model also predicts seaward tapering of relict permafrost with its maximal thickness 275-390 m near the shore line. We also present sensitivity analysis which define the wider range of modeling results depending on the changing input parameters (e.g. geothermal heat flux, bottom water temperature, porosity of the sediments). The model adapts well to corresponding field data, providing crucial information about the modern permafrost conditions

  4. Characteristics of Arctic Ocean ice determined from SMMR data for 1979 - Case studies in the seasonal sea ice zone

    NASA Technical Reports Server (NTRS)

    Anderson, M. R.; Crane, R. G.; Barry, R. G.

    1985-01-01

    Sea ice data derived from the Scanning Multichannel Microwave Radiometer are examined for sections of the Arctic Ocean during early summer 1979. The temporary appearance of spuriously high multiyear ice fractions in the seasonal ice zones of the Kara and Barents Seas is a result of surface melt phenomena and the relative responses of the different channels to these effects. These spurious signatures can provide early identification of melt onset and additional information on surface characteristics.

  5. Polar Climate: Arctic sea ice

    USGS Publications Warehouse

    Stone, R.S.; Douglas, David C.; Belchansky, G.I.; Drobot, S.D.

    2005-01-01

    Recent decreases in snow and sea ice cover in the high northern latitudes are among the most notable indicators of climate change. Northern Hemisphere sea ice extent for the year as a whole was the third lowest on record dating back to 1973, behind 1995 (lowest) and 1990 (second lowest; Hadley Center–NCEP). September sea ice extent, which is at the end of the summer melt season and is typically the month with the lowest sea ice extent of the year, has decreased by about 19% since the late 1970s (Fig. 5.2), with a record minimum observed in 2002 (Serreze et al. 2003). A record low extent also occurred in spring (Chapman 2005, personal communication), and 2004 marked the third consecutive year of anomalously extreme sea ice retreat in the Arctic (Stroeve et al. 2005). Some model simulations indicate that ice-free summers will occur in the Arctic by the year 2070 (ACIA 2004).

  6. Arctic Ocean sea ice drift origin derived from artificial radionuclides.

    PubMed

    Cámara-Mor, P; Masqué, P; Garcia-Orellana, J; Cochran, J K; Mas, J L; Chamizo, E; Hanfland, C

    2010-07-15

    Since the 1950s, nuclear weapon testing and releases from the nuclear industry have introduced anthropogenic radionuclides into the sea, and in many instances their ultimate fate are the bottom sediments. The Arctic Ocean is one of the most polluted in this respect, because, in addition to global fallout, it is impacted by regional fallout from nuclear weapon testing, and indirectly by releases from nuclear reprocessing facilities and nuclear accidents. Sea-ice formed in the shallow continental shelves incorporate sediments with variable concentrations of anthropogenic radionuclides that are transported through the Arctic Ocean and are finally released in the melting areas. In this work, we present the results of anthropogenic radionuclide analyses of sea-ice sediments (SIS) collected on five cruises from different Arctic regions and combine them with a database including prior measurements of these radionuclides in SIS. The distribution of (137)Cs and (239,240)Pu activities and the (240)Pu/(239)Pu atom ratio in SIS showed geographical differences, in agreement with the two main sea ice drift patterns derived from the mean field of sea-ice motion, the Transpolar Drift and Beaufort Gyre, with the Fram Strait as the main ablation area. A direct comparison of data measured in SIS samples against those reported for the potential source regions permits identification of the regions from which sea ice incorporates sediments. The (240)Pu/(239)Pu atom ratio in SIS may be used to discern the origin of sea ice from the Kara-Laptev Sea and the Alaskan shelf. However, if the (240)Pu/(239)Pu atom ratio is similar to global fallout, it does not provide a unique diagnostic indicator of the source area, and in such cases, the source of SIS can be constrained with a combination of the (137)Cs and (239,240)Pu activities. Therefore, these anthropogenic radionuclides can be used in many instances to determine the geographical source area of sea-ice.

  7. [Metagenomic Analysis of Microbial Communities of the Sediments of the Kara Sea Shelf and the Yenisei Bay].

    PubMed

    Mamaeva, E V; Galach'yants, Yu P; Khabudaev, K V; Petrova, D P; Pogodaeva, T V; Khodzher, T B; Zemskaya, T I

    2016-01-01

    Microbial diversity in the sediments of the Kara Sea shelf and the southern Yenisei Bay, differing in pore water mineralization, was studied using massive parallel pyrosequencing according to the 454 (Roche) technology. Members of the same phyla (Cyanobacteria, Verrucomicrobia, Actinobacteria, Proteobacteria, and Bacteroidetes) predominated in bacterial communities of the sediments, while their ratio and taxonomic composition varied within the phyla and depended on pore water mineralization. Increasing salinity gradient was found to coincide with increased share of the γ-Proteobacteria and decreased abundance of α- and β-Proteo- bacteria, as well as of the phyla Verrucomicrobia, Chloroflexi, Chlorobi, and Acidobacteria. Archaeal diversity was lower, with Thaumarchaeota predominant in the sediments with high and low mineralization, while Crenarchaeota predominated in moderately mineralized sediments. Microbial communities of the Kara Sea shelf and Yenisei Gulf sediments were found to contain the organisms capable of utilization of a broad spectrum of carbon sources, including gaseous and petroleum hydrocarbons. PMID:27476207

  8. Arctic Sea Ice, Summer 2014

    NASA Video Gallery

    An animation of daily Arctic sea ice extent in summer 2014, from March 21, 2014 to Sept. 17, 2014 – when the ice appeared to reach it’s minimum extent for the year. It’s the sixth lowest minimum se...

  9. Comparison of modelled and observed Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Bobylev, Leonid; Kuzmina, Svetlana; Johannessen, Ola M.

    2010-05-01

    When considering the climate projections one of the most important issues is how well models reproduce variability and change of the main climate parameters, e.g. sea ice. To address this issue the comparative analysis of observed and modelled sea ice coverage and thickness was performed. Modelled sea ice extent and thickness data for the comparison are represented by results of simulation runs of IPCC AR4 models. Observed data for sea ice coverage - area and extent, are Chapman and Walsh data and data from satellite passive microwave measurements available continuously since November 1978. Observed sea ice thickness data are Kwok and Rothrock data from submarines for 1975-2000 and from ICESat satellite for 2003-2008. Annual cycle of observed and modelled monthly mean sea ice extent (SIE) showed that, generally, models overestimate SIE. Disagreement between simulated and observed results is larger during late winter, spring and earlier summer. Annual cycle of observed and modelled linear trends of SIE showed that negative trend rates reach their maxima in July-August, revealing significant decreases in summer SIE. Simulated trend rates are two times smaller then observed. Thus, the observed sea ice extent decreases faster than modelled. Comparison of observed and modelled annual cycle of SIE for the different Arctic seas showed that for the Barents sea models overestimate sea ice during the whole year. For other seas models overestimate SIE only for summer and early fall. For all other seasons they underestimate Arctic sea ice. The mean differences between observed and modelled sea ice concentration in the Arctic is the largest in Barents, Kara, Laptev and East-Siberian seas and exceeds 80%. The comparison of observed and modelled sea ice thickness showed that, generally, observed values lie within the area of the model spread. But the negative trend of observed thicknesses significantly higher than that of models. So, the Arctic sea ice thickness, like its area

  10. Arctic Sea Ice Changes 2011-2012

    NASA Video Gallery

    Animation showing changes in monthly Arctic sea ice volume using data from ESA's CryoSat-2 (red dots) and estimates from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) (solid li...

  11. Geochemical and radiation conditions in coastal landscapes of the Kara Sea Gulf (Novaya Zemlya Archipelago)

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Velichkin, V. I.; Miroshnikov, A. Yu.; Krupskaya, V. V.; Asadulin, En. E.; Semenkov, I. N.; Usacheva, A. A.; Zakusin, S. V.; Terskaya, E. V.

    2016-03-01

    This work considers terrestrial coastal landscapes of Abrosimov and Stepovoi gulfs and Yuzhnii (Southern) Island in the Novaya Zemlya Archipelago in the Kara Sea. These areas are dominated by horizons of slightly acidic leptosols and lithic leptosols of 10 cm thick (Stepovoi Gulf) and those of weak skeleton acidic lithic leptosols of 10-15 cm thick (Abrosimov Gulf) covered by moss-shrub assemblages. Kaolinite is formed in a rhizosphere fine earth layer; illite is formed along the leptosol sequence. The studied coastal landscapes are characterized by low accumulation potential of chemical elements, including radionuclides, at higher contents of them. Elements such as Fe and Ti are dispersed in sols, whereas P, S, Cl, Cu, Pb, and Zn are accumulated in soils in minor amounts. Plants accumulate S, P, Cl, Sr, Zn, and 137Cs in minor amounts as well. Elements such as Ti, Mn, Fe, Cr, V, Co, Ni, Cu, Rb, Zr, Ba, Th, Y, Nb, Pb, and As are attributed to the group of weak biological adsorption. The specific 137Cs activity (Bq kg-1) amounts to 10-150 in plants, 10-300 in moor leptosol horizons, and 1-40 in mull horizons.

  12. Numerical simulation study of polar low in Kara sea: developing mechanisms evaluation

    NASA Astrophysics Data System (ADS)

    Verezemskaya, Polina; Stepanenko, Victor

    2016-04-01

    The study focuses on investigating the mechanisms of interaction between potential vorticity's anomalies and latent heat release as polar low development factors. The polar low observed in Kara sea 29th -30th September 2008 is analyzed using numerical modeling (WRF ARW model) and observational data (IR cloudiness and microwave water vapor and surface wind speeds from MODIS (Aqua)). Two numerical experiments with 5 km spatial resolution were conducted with microphisical scheme turned on and off to assess the role of latent heat on vortex intensification. The quality of modelling was estimated by comparing WRF output and the satellite data. Based on reference experiment (with microphysical parameterization turned on) and observational data PL developed in vertically stable, non-baroclinic atmosphere and characterized by very low surface heat fluxes. «Dry» experiment results suggests that without latent heat source in the middle troposphere polar low intensifies slower, than in reality. In order to divide low- and upper-level forcing within PL dynamics we used attribution concept based on the quasi-geostrophic omega-equation. To ensure that QG theory is applicable for this PL case, we estimate correlation between the modeled and QG vertical speed field obtained from omega-equation using finite-differences method.

  13. Ice retreat in the Russian Arctic seas and assessment of the availability of the Northern Sea Route from satellite passive microwave observations

    NASA Astrophysics Data System (ADS)

    Shalina, E. V.

    2015-12-01

    This paper presents data on the sea ice area decline in the Northern Hemisphere and in the Russian Arctic seas, on the Northern Sea Route in particular, calculated from passive microwave satellite data. Observations show that the Arctic sea ice has reduced by an average of 5% per decade from November 1978 to the present day. It is noted that, since 2007, the highest sea ice area variability has been observed, which increases the uncertainty of the forecast of the ice coverage in the Arctic seas and thus increases risk for ships in ice-covered waters of northern seas. It is demonstrated that the decrease in summer sea ice area, observed at the end of the melt season, is much more intense than the total decrease in the Arctic sea ice area. On average it is 13% for September for the Arctic as a whole and from 24 to 40% per decade for the seas of the Russian Arctic. The study of changes in the ice conditions in the Northern Sea Route has been carried out for one of the optimal sailing routes. The results indicate a decrease in the ice concentration on the route in the summer months and almost complete route opening in September for the period from 2008 and 2012. It is shown that data from microwave radiometers can be used in the study of ice conditions in the Kara Gates and Vilkitsky Strait. The ice concentration reduction in both water channels is indicated. In the Kara Gates it is 15% and in the Vilkitsky Strait it is 9.5% per decade.

  14. Estimated inventory of radionuclides in former Soviet Union naval reactors dumped in the Kara Sea

    SciTech Connect

    Mount, M.E.; Sheaffer, M.K.; Abbott, D.T.

    1993-07-01

    Radionuclide inventories have been estimated for the reactor cores, reactor components, and primary system corrosion products in the former Soviet Union naval reactors dumped at the Abrosimov Inlet, Tsivolka Inlet, Stepovoy Inlet, Techeniye Inlet, and Novaya Zemlya Depression sites in the Kara Sea between 1965 and 1988. For the time of disposal, the inventories are estimated at 69 to 111 kCi of actinides plus daughters and 3,053 to 7,472 kCi of fission products in the reactor cores, 917 to 1,127 kCi of activation products in the reactor components, and 1.4 to 1.6 kCi of activation products in the primary system corrosion products. At the present time, the inventories are estimated to have decreased to 23 to 38 kCi of actinides plus daughters and 674 to 708 kCi of fission products in the reactor cores, 124 to 126 kCi of activation products in the reactor components, and 0.16 to 0.17 kCi of activation products in the primary system corrosion products. Twenty years from now, the inventories are projected to be 11 to 18 kCi of actinides plus daughters and 415 to 437 kCi of fission products in the reactor cores, 63.5 to 64 kCi of activation products in the reactor components, and 0.014 to 0.015 kCi of activation products in the primary system corrosion products. All actinide activities are estimated to be within a factor of two.

  15. Structure of phytoplankton communities in the Yenisei estuary and over the adjacent Kara Sea shelf

    NASA Astrophysics Data System (ADS)

    Sukhanova, I. N.; Flint, M. V.; Sergeeva, V. M.; Druzhkova, E. I.; Nedospasov, A. A.

    2015-11-01

    Material was collected in the Yenisei estuary and over the adjacent Kara Sea shelf at a quasimeridional transect from 71°49'70″ to 75°59'93″ N in September 2011. The structural characteristics of the phytoplankton community were determined by latitudinal zonality of environmental conditions. Two well-distinguished phytocenoses—freshwater and marine—were found in this region. Phytoplankton in the freshwater part of the estuary was composed solely of the freshwater algae species and was distinguished by the highest numbers (up to 2 × 106 cell/L) and biomass (up to 1.4 mg/L). The marine phytocenoses over the Yenisei shoal was composed of marine neritic species; the abundance and biomass of phytoplankton in this area were significantly lower (0.2 × 106 cell/L and 0.4 mg/L, respectively). The area of intensive interaction of riverine and marine waters—the estuarine frontal zone, with ~130 km latitudinal extension (from 72° to 74° N)—was characterized by a sharp halocline, which separated the desalinated upper layer from the underlying marine water. Freshwater algal species predominated above the halocline, whereas marine species predominated below. The lower border of the euphotic layer was located 8 to 15 m below the halocline. The niche between the halocline and the lower border of the euphotic layer was characterized by high nutrient concentrations, which together with sufficient illumination determined the intensive development of phytoplankton and high values of primary production.

  16. Arctic Sea Ice Variability and Trends, 1979-2006

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.

    2008-01-01

    Analysis of Arctic sea ice extents derived from satellite passive-microwave data for the 28 years, 1979-2006 yields an overall negative trend of -45,100 +/- 4,600 km2/yr (-3.7 +/- 0.4%/decade) in the yearly averages, with negative ice-extent trends also occurring for each of the four seasons and each of the 12 months. For the yearly averages the largest decreases occur in the Kara and Barents Seas and the Arctic Ocean, with linear least squares slopes of -10,600 +/- 2,800 km2/yr (-7.4 +/- 2.0%/decade) and -10,100 +/- 2,200 km2/yr (-1.5 +/- 0.3%/decade), respectively, followed by Baffin Bay/Labrador Sea, with a slope of -8,000 +/- 2,000 km2/yr) -9.0 +/- 2.3%/decade), the Greenland Sea, with a slope of -7,000 +/- 1,400 km2/yr (-9.3 +/- 1.9%/decade), and Hudson Bay, with a slope of -4,500 +/- 900 km2/yr (-5.3 +/- 1.1%/decade). These are all statistically significant decreases at a 99% confidence level. The Seas of Okhotsk and Japan also have a statistically significant ice decrease, although at a 95% confidence level, and the three remaining regions, the Bering Sea, Canadian Archipelago, and Gulf of St. Lawrence, have negative slopes that are not statistically significant. The 28-year trends in ice areas for the Northern Hemisphere total are also statistically significant and negative in each season, each month, and for the yearly averages.

  17. Dipole Anomaly in the Winter Arctic Atmosphere and Its Association with Sea Ice Motion.

    NASA Astrophysics Data System (ADS)

    Wu, Bingyi; Wang, Jia; Walsh, John E.

    2006-01-01

    This paper identified an atmospheric circulation anomaly dipole structure anomaly in the Arctic atmosphere and its relationship with winter sea ice motion, based on the International Arctic Buoy Program (IABP) dataset (1979 98) and datasets from the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) for the period 1960 2002. The dipole anomaly corresponds to the second-leading mode of EOF of monthly mean sea level pressure (SLP) north of 70°N during the winter season (October March) and accounts for 13% of the variance. One of its two anomalous centers is stably occupied between the Kara Sea and Laptev Sea; the other is situated from the Canadian Archipelago through Greenland extending southeastward to the Nordic seas. The dipole anomaly differs from one described in other papers that can be attributed to an eastward shift of the center of action of the North Atlantic Oscillation. The finding shows that the dipole anomaly also differs from the “Barents Oscillation” revealed in a study by Skeie. Since the dipole anomaly shows a strong meridionality, it becomes an important mechanism to drive both anomalous sea ice exports out of the Arctic Basin and cold air outbreaks into the Barents Sea, the Nordic seas, and northern Europe.When the dipole anomaly remains in its positive phase, that is, negative SLP anomalies appear between the Kara Sea and the Laptev Sea with concurrent positive SLP over from the Canadian Archipelago extending southeastward to Greenland, there are large-scale changes in the intensity and character of sea ice transport in the Arctic basin. The significant changes include a weakening of the Beaufort gyre, an increase in sea ice export out of the Arctic basin through Fram Strait and the northern Barents Sea, and enhanced sea ice import from the Laptev Sea and the East Siberian Sea into the Arctic basin. Consequently, more sea ice appears in the Greenland and the Barents Seas during the

  18. Microbial uncultured community of bottom sediments from the bays of Gydan and Yenisei of the Kara Sea

    NASA Astrophysics Data System (ADS)

    Mamaeva, E. V.; Suslova, M. Yu.; Pogodaeva, T. V.; Parfenova, V. V.; Zemskaya, T. I.

    2014-05-01

    Using methods of molecular biology (PCR and cloning), we studied the diversity of microorganisms in the surface layers of bottom sediments from the bays of Gydan and Yenisei of the Kara Sea, which have different component composition of the pore water and mineralization level. Representatives of the domains Bacteria and Archaea were identified based on the analysis of the 16S rRNA gene fragment nucleotide sequences. The composition of the community of microorganisms in the bottom sediments changed with the changing salinity gradient of the pore waters. The phylogenetic analysis of the nucleotide sequences showed that the composition of the microbial communities in the southern parts of these bays was affected by fresh-water flows from rivers and streams from the lakes within the catchment area, whereas that in the northern parts was influenced by sea waters. The results indicate the presence of bacteria in the bottom sediments that are capable of using a wide range of substrates as a carbon source including hydrocarbons and organochlorine and aromatic compounds. These data can also indicate the presence of different pollutants in the sediments of these areas and the potential ability of bacteria to degrade chemical compounds that enter the waters and bottom sediments of the Kara Sea.

  19. Arctic Sea Ice Reemergence: The Role of Large-Scale Oceanic and Atmospheric Variability

    NASA Astrophysics Data System (ADS)

    Bushuk, M.; Giannakis, D.; Majda, A.

    2014-12-01

    Arctic sea ice reemergence is a phenomenon in which spring sea ice anomalies are positively correlated with fall anomalies, despite a loss of correlation over the intervening summer months. Pan-Arctic sea ice reemergence is present in both observations and global climate models (GCMs), yet the amplitude and regional details of the reemergence signals vary substantially. In this work, a novel data analysis technique, coupled Nonlinear Laplacian Spectral Analysis (NLSA), is employed to study the spatiotemporal co-variability of sea ice concentration, sea surface temperature (SST), and sea level pressure (SLP) in the Arctic. NLSA modes are obtained for observational data and GCM output, and are used to examine the statistical characteristics and physical mechanisms of sea ice reemergence. It is found that lagged correlation features of the raw sea ice data can be efficiently reproduced using low-dimensional families of modes. These families provide an SST-sea ice reemergence mechanism, in which melt season (spring) sea ice anomalies are imprinted as SST anomalies and stored over the summer months, allowing for sea ice anomalies of the same sign to reappear in the growth season (fall). Moreover, the ice anomalies of each family exhibit clear phase relationships between the Barents-Kara, Bering, and Labrador seas. These regional phase relationships have a natural explanation via the SLP patterns and associated geostrophic winds of each family, which closely resemble the Arctic Oscillation and Arctic Dipole Anomaly. Additionally, the winter-to-winter persistence of these SLP patterns suggests another plausible mechanism for sea ice reemergence.

  20. Regional seasonal forecasts of the Arctic sea ice in two coupled climate models

    NASA Astrophysics Data System (ADS)

    Chevallier, Matthieu; Guémas, Virginie; Salas y Mélia, David; Doblas-Reyes, Francisco

    2015-04-01

    The predictive capabilities of two state-of-the-art coupled atmosphere-ocean global climate models (CNRM-CM5.1 and EC-Earth v2.3) in seasonal forecasting of the Arctic sea ice will be presented with a focus on regional skill. 5-month hindcasts of September sea ice area in the Arctic peripherial seas (Barents-Kara seas, Laptev-East Siberian seas, Chukchi sea and Beaufort sea) and March sea ice area in the marginal ice zones (Barents, Greenland, Labrador, Bering and Okhotsk sea) have been produced over the period 1990-2009. Systems mainly differ with respect to the initialization strategy, the ensemble generation techniques and the sea ice components. Predictive skill, assessed in terms of actual and potential predictability, is comparable in the two systems for both summer and winter hindcasts. Most interestingly, the multi-model prediction is often better than individual predictions in several sub-basins, including the Barents sea in the winter and most shelf seas in the summer. Systematic biases are also reduced using the multi-model predictions. Results from this study show that a regional zoom of global seasonal forecasts could be useful for operational needs. This study also show that the multi-model approach may be the step forward in producing accurate and reliable seasonal forecasts based on coupled global climate models.

  1. Peculiarities of the primary production process in the Kara Sea at the end of the vegetation season

    NASA Astrophysics Data System (ADS)

    Mosharov, S. A.; Demidov, A. B.; Simakova, U. V.

    2016-01-01

    Research was implemented from September 15 through October 4, 2011 in the Kara Sea along transects located southeastwards Novaya Zemlya, in the St. Anna Trough, the Yenisei River estuary, and the adjacent shelf. The concentration of chlorophyll a was the highest in the photic zone (0.05-2.30 mg/m3, on average, 0.80 ± 0.37 mg/m3). The maximal concentration of Chl a at most of the stations located in the water layer of 7-30 m. Integral primary production in the water column varied from 3.0 to 151.0 mg C/m2 per day, on average, 37.2 ± 36.6 mg C/m2 per day. The maximal rate of primary production at most of the stations has been observed for the surface layer of the water column. Within the upper mixed water layer, relative primary production was from 31 to 100% (on average, 77 ± 20%). The most productive zone was the waters along Yenisei transect. In the estuary and at the adjacent shelf, primary production was 50 mg C/m2 per day, exceeding the range observed for other areas by 1.5-2.0 times. The concentrations of silica and nitrogen together with light regime and water temperature were the major limiting factors affecting the primary production rate in the Kara Sea in autumn.

  2. The effects of resolving the Canadian Arctic Archipelago in a finite element sea ice model

    NASA Astrophysics Data System (ADS)

    Lietaer, Olivier; Fichefet, Thierry; Legat, Vincent

    Though narrow straits may have a strong influence on the large-scale sea ice mass balance, they are often crudely represented in coarse resolution sea ice models. Unstructured meshes, with their natural ability to fit boundaries and locally increase the mesh resolution, propose an alternative framework to capture the complex oceanic areas formed by coasts and islands. In this paper, we develop a finite element sea ice model to investigate the sensitivity of the Arctic sea ice cover features to the resolution of the narrow straits constituting the Canadian Arctic Archipelago. The model is a two-level dynamic-thermodynamic sea ice model, including a viscous-plastic rheology. It is run over 1979-2005, forced by daily NCEP/NCAR reanalysis data. Confronting qualitatively numerical experiments with observations shows a good agreement with satellite and buoys measurements. Due to its simple representation of the oceanic interactions, the model overestimates the sea ice extent during winter in the southernmost parts of the Arctic, while the Baffin Bay and Kara Sea remain ice-covered during summer. In order to isolate the benefits from resolving the Canadian Arctic Archipelago, a numerical experiment is performed where we artificially close the archipelago. Focusing on the large-scale sea ice thickness pattern, no significant change is found in our model, except in the close surroundings of the archipelago. However, the local and short-term influences of the ice exchanges are nonnegligible. In particular, we show that the ice volume associated to the Canadian Arctic Archipelago represents 10% of the Northern Hemisphere sea ice volume and that the annual mean ice export towards Baffin Bay amounts to 125 km 3 yr -1, which may play an important role on the convective overturning in the Labrador Sea.

  3. Loss of sea ice in the Arctic.

    PubMed

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2009-01-01

    The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.

  4. Influence of global climatic processes on environment The Arctic seas

    NASA Astrophysics Data System (ADS)

    Kholmyansky, Mikhael; Anokhin, Vladimir; Kartashov, Alexandr

    2016-04-01

    One of the most actual problems of the present is changes of environment of Arctic regions under the influence of global climatic processes. Authors as a result of the works executed by them in different areas of the Russian Arctic regions, have received the materials characterising intensity of these processes. Complex researches are carried out on water area and in a coastal zone the White, the Barents, the Kara and the East-Siberian seas, on lake water areas of subarctic region since 1972 on the present. Into structure of researches enter: hydrophysical, cryological observations, direct measurements of temperatures, the analysis of the drill data, electrometric definitions of the parametres of a frozen zone, lithodynamic and geochemical definitions, geophysical investigations of boreholes, studying of glaciers on the basis of visual observations and the analysis of photographs. The obtained data allows to estimate change of temperature of a water layer, deposits and benthonic horizon of atmosphere for last 25 years. On the average they make 0,38⁰C for sea waters, 0,23⁰C for friable deposits and 0,72⁰C for atmosphere. Under the influence of temperature changes in hydrosphere and lithosphere of a shelf cryolithic zone changes the characteristics. It is possible to note depth increase of roof position of the cryolithic zone on the most part of the studied water area. Modern fast rise in temperature high-ice rocks composing coast, has led to avalanche process thermo - denudation and to receipt in the sea of quantity of a material of 1978 three times exceeding level Rise in temperature involves appreciable deviation borders of the Arctic glacial covers. On our monitoring measurements change of the maintenance of oxygen in benthonic area towards increase that is connected with reduction of the general salinity of waters at the expense of fresh water arriving at ice thawing is noticed. It, in turn, leads to change of a biogene part of ecosystem. The executed

  5. Skill improvement of seasonal Arctic sea ice forecasts using bias-correction and ensemble calibration

    NASA Astrophysics Data System (ADS)

    Krikken, Folmer; Hazeleger, Wilco; Vlot, Willem; Schmeits, Maurice; Guemas, Virginie

    2016-04-01

    We explore the standard error and skill of dynamical seasonal sea ice forecasts of the Arctic using different bias-correction and ensemble calibration methods. The latter is often used in weather forecasting, but so far has not been applied to Arctic sea ice forecasts. We use seasonal predictions of Arctic sea ice of a 5-member ensemble forecast using the fully coupled GCM EC-Earth, with model initial states obtained by nudging towards ORAS4 and ERA-Interim. The raw model forecasts contain large biases in total sea ice area, especially during the summer months. This is mainly caused by a difference in average seasonal cycle between EC-Earth and observations, which translates directly into the forecasts yielding large biases. Further errors are introduced by the differences in long term trend between the observed sea ice, and the uninitialised EC-earth simulation. We find that extended logistic regression (ELR) and heteroscedastic extended logistic regression (HELR) both prove viable ensemble calibration methods, and improve the forecasts substantially compared to standard bias correction techniques. No clear distinction between ELR and HELR is found. Forecasts starting in May have higher skill (CRPSS > 0 up to 5 months lead time) than forecasts starting in August (2-3 months) and November (2-3 months), with trend-corrected climatology as reference. Analysis of regional skill in the Arctic shows distinct differences, where mainly the Arctic ocean and the Kara and Barents sea prove to be one of the more predictable regions with skilful forecasts starting in May up to 5-6 months lead time. Again, forecasts starting in August and November show much lower regional skill. Overall, it is still difficult to beat relative simple statistical forecasts, but by using ELR and HELR we are getting reasonably close to skilful seasonal forecasts up to 12 months lead time. These results show there is large potential, and need, for using ensemble calibration in seasonal forecasts of

  6. Influence of sea ice on Arctic precipitation.

    PubMed

    Kopec, Ben G; Feng, Xiahong; Michel, Fred A; Posmentier, Eric S

    2016-01-01

    Global climate is influenced by the Arctic hydrologic cycle, which is, in part, regulated by sea ice through its control on evaporation and precipitation. However, the quantitative link between precipitation and sea ice extent is poorly constrained. Here we present observational evidence for the response of precipitation to sea ice reduction and assess the sensitivity of the response. Changes in the proportion of moisture sourced from the Arctic with sea ice change in the Canadian Arctic and Greenland Sea regions over the past two decades are inferred from annually averaged deuterium excess (d-excess) measurements from six sites. Other influences on the Arctic hydrologic cycle, such as the strength of meridional transport, are assessed using the North Atlantic Oscillation index. We find that the independent, direct effect of sea ice on the increase of the percentage of Arctic sourced moisture (or Arctic moisture proportion, AMP) is 18.2 ± 4.6% and 10.8 ± 3.6%/100,000 km(2) sea ice lost for each region, respectively, corresponding to increases of 10.9 ± 2.8% and 2.7 ± 1.1%/1 °C of warming in the vapor source regions. The moisture source changes likely result in increases of precipitation and changes in energy balance, creating significant uncertainty for climate predictions.

  7. Influence of sea ice on Arctic precipitation

    PubMed Central

    Kopec, Ben G.; Feng, Xiahong; Michel, Fred A.; Posmentier, Eric S.

    2016-01-01

    Global climate is influenced by the Arctic hydrologic cycle, which is, in part, regulated by sea ice through its control on evaporation and precipitation. However, the quantitative link between precipitation and sea ice extent is poorly constrained. Here we present observational evidence for the response of precipitation to sea ice reduction and assess the sensitivity of the response. Changes in the proportion of moisture sourced from the Arctic with sea ice change in the Canadian Arctic and Greenland Sea regions over the past two decades are inferred from annually averaged deuterium excess (d-excess) measurements from six sites. Other influences on the Arctic hydrologic cycle, such as the strength of meridional transport, are assessed using the North Atlantic Oscillation index. We find that the independent, direct effect of sea ice on the increase of the percentage of Arctic sourced moisture (or Arctic moisture proportion, AMP) is 18.2 ± 4.6% and 10.8 ± 3.6%/100,000 km2 sea ice lost for each region, respectively, corresponding to increases of 10.9 ± 2.8% and 2.7 ± 1.1%/1 °C of warming in the vapor source regions. The moisture source changes likely result in increases of precipitation and changes in energy balance, creating significant uncertainty for climate predictions. PMID:26699509

  8. Arctic Sea Ice from March to August 2016

    NASA Video Gallery

    In this animation, the daily Arctic sea ice and seasonal land cover change progress through time, from the prior sea ice maximum March 24, 2016, through Aug. 13, 2016. The Arctic sea ice cover like...

  9. Multi-year Arctic Sea Ice

    NASA Video Gallery

    The most visible change in the Arctic region in recent years has been the rapid decline of the perennial ice cover. The perennial ice is the portion of the sea ice floating on the surface of the oc...

  10. Arctic Cyclone Breaks Up Sea Ice

    NASA Video Gallery

    A powerful storm wreaked havoc on the Arctic sea ice cover in August 2012. This visualization shows the strength and direction of the winds and their impact on the ice: the red vectors represent th...

  11. Approaching the 2015 Arctic Sea Ice Minimum

    NASA Video Gallery

    As the sun sets over the Arctic, the end of this year’s melt season is quickly approaching and the sea ice cover has already shrunk to the fourth lowest in the satellite record. With possibly some ...

  12. Remote Sensing of the Arctic Seas.

    ERIC Educational Resources Information Center

    Weeks, W. F.; And Others

    1986-01-01

    Examines remote sensing of the arctic seas by discussing: (1) passive microwave sensors; (2) active microwave sensors; (3) other types of sensors; (4) the future deployment of sensors; (5) data buoys; and (6) future endeavors. (JN)

  13. Monitoring Arctic Sea ice using ERTS imagery. [Bering Sea, Beaufort Sea, Canadian Archipelago, and Greenland Sea

    NASA Technical Reports Server (NTRS)

    Barnes, J. C.; Bowley, C. J.

    1974-01-01

    Because of the effect of sea ice on the heat balance of the Arctic and because of the expanding economic interest in arctic oil and other minerals, extensive monitoring and further study of sea ice is required. The application of ERTS data for mapping ice is evaluated for several arctic areas, including the Bering Sea, the eastern Beaufort Sea, parts of the Canadian Archipelago, and the Greenland Sea. Interpretive techniques are discussed, and the scales and types of ice features that can be detected are described. For the Bering Sea, a sample of ERTS imagery is compared with visual ice reports and aerial photography from the NASA CV-990 aircraft.

  14. SONARC: A Sea Ice Monitoring and Forecasting System to Support Safe Operations and Navigation in Arctic Seas

    NASA Astrophysics Data System (ADS)

    Stephenson, S. R.; Babiker, M.; Sandven, S.; Muckenhuber, S.; Korosov, A.; Bobylev, L.; Vesman, A.; Mushta, A.; Demchev, D.; Volkov, V.; Smirnov, K.; Hamre, T.

    2015-12-01

    Sea ice monitoring and forecasting systems are important tools for minimizing accident risk and environmental impacts of Arctic maritime operations. Satellite data such as synthetic aperture radar (SAR), combined with atmosphere-ice-ocean forecasting models, navigation models and automatic identification system (AIS) transponder data from ships are essential components of such systems. Here we present first results from the SONARC project (project term: 2015-2017), an international multidisciplinary effort to develop novel and complementary ice monitoring and forecasting systems for vessels and offshore platforms in the Arctic. Automated classification methods (Zakhvatkina et al., 2012) are applied to Sentinel-1 dual-polarization SAR images from the Barents and Kara Sea region to identify ice types (e.g. multi-year ice, level first-year ice, deformed first-year ice, new/young ice, open water) and ridges. Short-term (1-3 days) ice drift forecasts are computed from SAR images using feature tracking and pattern tracking methods (Berg & Eriksson, 2014). Ice classification and drift forecast products are combined with ship positions based on AIS data from a selected period of 3-4 weeks to determine optimal vessel speed and routing in ice. Results illustrate the potential of high-resolution SAR data for near-real-time monitoring and forecasting of Arctic ice conditions. Over the next 3 years, SONARC findings will contribute new knowledge about sea ice in the Arctic while promoting safe and cost-effective shipping, domain awareness, resource management, and environmental protection.

  15. Arctic sea ice decline: Introduction

    NASA Astrophysics Data System (ADS)

    DeWeaver, Eric T.

    By any measure, the loss of Arctic sea ice cover in September 2007 was spectacular. The National Snow and Ice Data Center (NSIDC) called it a loss "the size of Alaska and Texas combined," in comparison to the 1979-2000 September mean. Record-breaking minima in sea ice extent are not unexpected, given the declining trend of the past 30 years and its recent acceleration [e.g., Meier et al., 2007; Deser and Teng, this volume]. But the 2007 minimum was remarkable even compared to the decline, a full four standard deviations below the trend line (H. Stern, quoted by Schweiger et al. [2008]). Kerr [2007] reported an Alaska-sized loss compared to the previous record low in 2005, which was itself an Alaska-sized retreat from the value at the beginning of the satellite era in 1979. Deser and Teng point out that the loss between September 2006 and September 2007 is as large as the entire September extent loss from 1979 to 2006.

  16. Arctic sea ice melt, the Polar vortex, and mid-latitude weather: Are they connected?

    NASA Astrophysics Data System (ADS)

    Vihma, Timo; Overland, James; Francis, Jennifer; Hall, Richard; Hanna, Edward; Kim, Seong-Joong

    2015-04-01

    The potential of recent Arctic changes to influence broader hemispheric weather is a difficult and controversial topic with considerable skepticism, as time series of potential linkages are short (<10 years) and the signal-to-noise ratio relative to chaotic weather events is small. A way forward is through further understanding of potential atmospheric dynamic mechanisms. Although not definitive of change in a statistical or in a causality sense, the exceptionally warm Arctic winters since 2007 do contain increased variability according to some climate indices, with six negative (and two positive) Arctic Oscillation atmospheric circulation index events that created meridional flow reaching unusually far north and south. High pressure anomalies developed east of the Ural Mountains in Russia in response to sea-ice loss in the Barents/Kara Seas, which initiated eastward-propagating wave trains of high and low pressure that advected cold air over central and eastern Asia. Increased Greenland blocking and greater geopotential thickness related to low-level temperatures increases led to northerly meridional flow into eastern North America, inducing persistent cold periods. Arctic connections in Europe and western North America are less clear. The quantitative impact of potential Arctic change on mid-latitude weather will not be resolved within the foreseeable future, yet new approaches to high-latitude atmospheric dynamics can contribute to improved extended range forecasts as outlined by the WMO/Polar Prediction Program and other international activities.

  17. Is recent Eurasian winter cooling caused by Arctic sea ice loss?

    NASA Astrophysics Data System (ADS)

    Kim, Hye-Jin; Son, Seok-Woo; Kim, Kwang-Yul; Kug, Jong-Seong; Kim, Baek-Min; Jeong, Jee-Hoon

    2016-04-01

    The observed surface air temperature in the northern mid-latitudes shows a significant cooling trend in recent winters despite greenhouse gas concentrations continuing to rise. Such an unexpected cooling trend since late 1990's is especially strong over the Eurasia. Here, by performing statistical analyses and climate model experiment, we show that the recent Eurasian cooling trend is at least in part caused by Arctic sea ice loss over the Barents and Kara (BK) seas. A significant time-lagged co-variability is observed between autumn sea ice concentrations over BK seas and winter surface air temperature over the Eurasia. More importantly, the timing of a rapid sea ice loss is consistent with the timing of Eurasian cooling. These results indicate that both interannual variability and long-term trend of Eurasian winter surface air temperature are likely influenced by regional sea ice changes over BK seas. This conjecture is confirmed by climate model experiment. A coupled model, GFDL CM2.1, is integrated with a pre-industrial condition except for the Arctic regions where observed sea surface temperature is relaxed. Ensemble simulations successfully reproduce the recent cooling trend over the Eurasia although the timing is bit delayed (i.e., early 2000's instead of late 1990's). However, it is found that this cooling trend is unlikely explained by linear dynamics, and is not associated with changes in atmospheric blocks.

  18. Relationship between early autumn Arctic sea ice and East Asian wintertime transient eddy activity

    NASA Astrophysics Data System (ADS)

    Gu, Sen; Zhang, Yang; Wu, Qigang

    2015-04-01

    The Arctic sea ice is suggested with wide impacts on the winter climate over East Asia. In this study, the relationship between the early autumn Arctic sea ice and the wintertime transient eddy activity over East Asia is investigated. Our singular value decomposition (SVD) analysis between the Arctic sea ice concentration (SIC) and transient eddy kinetic energy (EKE) shows that with the decrease in SIC over the Siberia coast, Kara sea and Barents sea, the EKE around the Tibetan Plateau and the downstream regions increase significantly. This leading mode indicates that more than 60% variance of the wintertime East Asian transient eddy activity can be predicted from the SIC three month earlier. Possible dynamical processes responsible for the linkage between SIC and EKE are investigated. In the upstream of Tibetan Plateau, a branch of anomalous wave train is detected propagating southward from Ural Mountains to the North China and Tibet. In the downstream region of Tibetan Plateau, with the decrease in SIC, anomalous increase in synoptic eddy generation is found with the enhanced baroclinicity over the north slope of the Tibetan Plateau, which can result in the increase in EKE as well. Those two dynamical processes both act to enhance the transient eddy activity over East Asia.

  19. Weakening of the stratospheric polar vortex by Arctic sea-ice loss.

    PubMed

    Kim, Baek-Min; Son, Seok-Woo; Min, Seung-Ki; Jeong, Jee-Hoon; Kim, Seong-Joong; Zhang, Xiangdong; Shim, Taehyoun; Yoon, Jin-Ho

    2014-09-02

    Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea-ice, the mechanism that links sea-ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea-ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea-ice cover during early winter months (November-December), especially over the Barents-Kara seas, enhances the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January-February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.

  20. Weakening of the stratospheric polar vortex by Arctic sea-ice loss.

    PubMed

    Kim, Baek-Min; Son, Seok-Woo; Min, Seung-Ki; Jeong, Jee-Hoon; Kim, Seong-Joong; Zhang, Xiangdong; Shim, Taehyoun; Yoon, Jin-Ho

    2014-01-01

    Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea-ice, the mechanism that links sea-ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea-ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea-ice cover during early winter months (November-December), especially over the Barents-Kara seas, enhances the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January-February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes. PMID:25181390

  1. Box model of radionuclide dispersion and radiation risk estimation for population in case of radioactivity release from nuclear submarine {number_sign}601 dumped in the Kara Sea

    SciTech Connect

    Yefimov, E.I.; Pankratov, D.V.; Ignatiev, S.V.

    1997-12-31

    When ships with nuclear reactors or nuclear materials aboard suffer shipwreck or in the case of burial or dumping of radioactive wastes, atmospheric fallout, etc., radionuclides may be released and spread in the sea, contaminating the sea water and the sea bottom. When a nuclear submarine (NS) is dumped this spread of activity may occur due to gradual core destruction by corrosion over many years. The objective of this paper is to develop a mathematical model of radionuclide dispersion and to assess the population dose and radiation risk for radionuclide release from the NS No. 601, with Pb-Bi coolant that was dumped in the Kara Sea.

  2. A 21-Year Record of Arctic Sea Ice Extents and Their Regional, Seasonal, and Monthly Variability and Trends

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Satellite passive-microwave data have been used to calculate sea ice extents over the period 1979-1999 for the north polar sea ice cover as a whole and for each of nine regions. Over this 21-year time period, the trend in yearly average ice extents for the ice cover as a whole is -32,900 +/- 6,100 sq km/yr (-2.7 +/- 0.5 %/decade), indicating a reduction in sea ice coverage that has decelerated from the earlier reported value of -34,000 +/- 8,300 sq km/yr (-2.8 +/- 0.7 %/decade) for the period 1979-1996. Regionally, the reductions are greatest in the Arctic Ocean, the Kara and Barents Seas, and the Seas of Okhotsk and Japan, whereas seasonally, the reductions are greatest in summer, for which season the 1979-1999 trend in ice extents is -41,600 +/- 12,900 sq km/ yr (-4.9 +/- 1.5 %/decade). On a monthly basis, the reductions are greatest in July and September for the north polar ice cover as a whole, in September for the Arctic Ocean, in June and July for the Kara and Barents Seas, and in April for the Seas of Okhotsk and Japan. Only two of the nine regions show overall ice extent increases, those being the Bering Sea and the Gulf of St. Lawrence.For neither of these two regions is the increase statistically significant, whereas the 1079 - 1999 ice extent decreases are statistically significant at the 99% confidence level for the north polar region as a whole, the Arctic Ocean, the Seas of Okhotsk and Japan, and Hudson Bay.

  3. Changes in the Areal Extent of Arctic Sea Ice: Observations from Satellites

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2000-01-01

    Wintertime sea ice covers 15 million square kilometers of the north polar region, an area exceeding one and a half times the area of the U. S. Even at the end of the summer melt season, sea ice still covers 7 million square kilometers. This vast ice cover is an integral component of the climate system, being moved around by winds and waves, restricting heat and other exchanges between the ocean and atmosphere, reflecting most of the solar radiation incident on it, transporting cold, relatively fresh water equatorward, and affecting the overturning of ocean waters underneath, with impacts that can be felt worldwide. Sea ice also is a major factor in the Arctic ecosystem, affecting life forms ranging from minute organisms living within the ice, sometimes to the tune of millions in a single ice floe, to large marine mammals like walruses that rely on sea ice as a platform for resting, foraging, social interaction, and breeding. Since 1978, satellite technology has allowed the monitoring of the vast Arctic sea ice cover on a routine basis. The satellite observations reveal that, overall, the areal extent of Arctic sea ice has been decreasing since 1978, at an average rate of 2.7% per decade through the end of 1998. Through 1998, the greatest rates of decrease occurred in the Seas of Okhotsk and Japan and the Kara and Barents Seas, with most other regions of the Arctic also experiencing ice extent decreases. The two regions experiencing ice extent increases over this time period were the Bering Sea and the Gulf of St. Lawrence. Furthermore, the satellite data reveal that the sea ice season shortened by over 25 days per decade in the central Sea of Okhotsk and the eastern Barents Sea, and by lesser amounts throughout much of the rest of the Arctic seasonal sea ice region, although not in the Bering Sea or the Gulf of St. Lawrence. Concern has been raised that if the trends toward shortened sea ice seasons and lesser sea ice coverage continue, this could entail major

  4. Contrasting Arctic and Antarctic sea ice temperatures

    NASA Astrophysics Data System (ADS)

    Vancoppenolle, Martin; Raphael, Marilyn; Rousset, Clément; Vivier, Frédéric; Moreau, Sébastien; Delille, Bruno; Tison, Jean-Louis

    2016-04-01

    Sea ice temperature affects the sea ice growth rate, heat content, permeability and habitability for ice algae. Large-scale simulations with NEMO-LIM suggest large ice temperature contrasts between the Arctic and the Antarctic sea ice. First, Antarctic sea ice proves generally warmer than in the Arctic, in particular during winter, where differences reach up to ~10°C. Second, the seasonality of temperature is different among the two hemispheres: Antarctic ice temperatures are 2-3°C higher in spring than they are in fall, whereas the opposite is true in the Arctic. These two key differences are supported by the available ice core and mass balance buoys temperature observations, and can be attributed to differences in air temperature and snow depth. As a result, the ice is found to be habitable and permeable over much larger areas and much earlier in late spring in the Antarctic as compared with the Arctic, which consequences on biogeochemical exchanges in the sea ice zone remain to be evaluated.

  5. Arctic geodynamics: Arctic science and ERS-1 satellite altimetry

    NASA Technical Reports Server (NTRS)

    Anderson, Allen Joel; Sandwell, David T.

    1994-01-01

    A detailed gravity field map of the mid Arctic Ocean, spreading ridge system was produced on the basis of ERS-1 satellite altimetry data. Areas of special concern, the Barents and Kara Seas, and areas surrounding the islands of Svalbard, Frans Josef Land and Novoya Zemlya are reviewed. ERS-1 altimetry covers unique Arctic and Antarctic latitudes above 72 degrees. Before ERS-1 it was not possible to study these areas with satellite altimetry. Gravity field solutions for the Barents Sea, portions of the Arctic Ocean and the Norwegian sea are shown. The largest gravity anomalies occur along the Greenland fracture zone as well as along transform faults near Svalbard.

  6. Estimated inventory of radionuclides in Former Soviet Union Naval Reactors dumped in the Kara Sea and their associated health risk

    SciTech Connect

    Mount, M.E.; Layton, D.W.; Schwertz, N.L.; Anspaugh, L.R.; Robison, W.L.

    1993-05-01

    Radionuclide inventories have bin estimated for the reactor cores, reactor components, and primary system corrosion products in the former Soviet Union naval reactors dumped at the Abrosimov Inlet, Tsivolka Inlet, Stepovoy Inlet, Techeniye Inlet, and Novaya Zemlya Depression sites in the Kara Sea between 1965 and 1988. For the time of disposal, the inventories are estimated at 17 to 66 kCi of actinides plus daughters and 1695 to 4782 kCi of fission products in the reactor cores, 917 to 1127 kCi of activation products in the reactor components, and 1.4 to 1.6 kCi of activation products in the primary system corrosion products. At the present time, the inventories are estimated to have decreased to 6 to 24 kCi of actinides plus daughters and 492 to 540 kCi of fission products in the reactor cores, 124 to 126 kCi of activation products in the reactor components, and 0.16 to 0.17 kCi of activation products in the primary system corrosion products. All actinide activities are estimated to be within a factor of two.

  7. Future Arctic sea ice extent: less in summer but more in winter

    NASA Astrophysics Data System (ADS)

    Riemann-Campe, Kathrin; Gerdes, Rüdiger

    2013-04-01

    Arctic sea ice property distributions and their variability are of great interest to various groups. For example the Barents and Kara Sea and the area off the western coast of Greenland are deemed to be especially important for oil and gas extraction over the next few decades. We analyse the development of arctic sea ice with the focus on these regions within the ACCESS (Arctic Climate Change, Economics and Society) project. They are mostly covered by relatively thin single-year ice in winter and few or none ice in summer due to melting and sea ice transport. The change of these properties under the influence of increasing green house gases until 2040 is part of our analysis. Within the Coupled Model Intercomparison Project phase 5 (CMIP5) more than 30 global climate GCMs (general circulation models) provide sea ice parameters for historical simulations and possible future warming scenarios. A comparison of the historical simulations with satellite-derived sea ice fields is used to identify the range of GCM sea ice distribution and variability. The winter sea ice edge was situated in the southern Barents Sea during 1979-2005. For this time period, several CMIP5 models overestimate the ice coverage in the Barents Sea and thus overestimate the seasonal variability. We use a cost function approach to filter out the six best-performing GCMs in terms of sea ice concentration in the selected regions. The variability between the so filtered GCMs is still large: (i) The model variability is shown by the fact that all six models agree on decreasing mean sea ice thickness until 2040. However, they do not agree on the strength of the decrease. (ii) The strength of the natural variability varies with the models. (iii) There is no clear distinction between the two future scenarios RCP 4.5 and RCP 8.5, which differ in the amount of green house gas emissions. The mean sea ice thickness seems to develop independently of this strength in the scenarios. However strong the

  8. Duration of the Arctic sea ice melt season: Regional and interannual variability, 1979-2001

    USGS Publications Warehouse

    Belchansky, G.I.; Douglas, D.C.; Platonov, N.G.

    2004-01-01

    Melt onset dates, freeze onset dates, and melt season duration were estimated over Arctic sea ice, 1979-2001, using passive microwave satellite imagery and surface air temperature data. Sea ice melt duration for the entire Northern Hemisphere varied from a 104-day minimum in 1983 and 1996, to a 124-day maximum in 1989. Ranges in melt duration were highest in peripheral seas, numbering 32, 42, 44, and 51 days in the Laptev, Barents-Kara, East Siberian and Chukchi Seas, respectively. In the Arctic Ocean, average melt duration varied from a 75-day minimum in 1987 to a 103-day maximum in 1989. On average, melt onset in annual ice began 10.6 days earlier than perennial ice, and freeze onset in perennial ice commenced 18.4 days earlier than annual ice. Average annual melt dates, freeze dates, and melt durations in annual ice were significantly correlated with seasonal strength of the Arctic Oscillation (AO). Following high-index AO winters (January-March), spring melt tended to be earlier and autumn freeze later, leading to longer melt season durations. The largest increases in melt duration were observed in the eastern Siberian Arctic, coincident with cyclonic low pressure and ice motion anomalies associated with high-index AO phases. Following a positive AO shift in 1989, mean annual melt duration increased 2-3 weeks in the northern East Siberian and Chukchi Seas. Decreasing correlations between consecutive-year maps of melt onset in annual ice during 1979-2001 indicated increasing spatial variability and unpredictability in melt distributions from one year to the next. Despite recent declines in the winter AO index, recent melt distributions did not show evidence of reestablishing spatial patterns similar to those observed during the 1979-88 low-index AO period. Recent freeze distributions have become increasingly similar to those observed during 1979-88, suggesting a recurrent spatial pattern of freeze chronology under low-index AO conditions.

  9. Radionuclides in the Arctic seas from the former Soviet Union: Potential health and ecological risks

    SciTech Connect

    Layton, D W; Edson, R; Varela, M; Napier, B

    1999-11-15

    The primary goal of the assessment reported here is to evaluate the health and environmental threat to coastal Alaska posed by radioactive-waste dumping in the Arctic and Northwest Pacific Oceans by the FSU. In particular, the FSU discarded 16 nuclear reactors from submarines and an icebreaker in the Kara Sea near the island of Novaya Zemlya, of which 6 contained spent nuclear fuel (SNF); disposed of liquid and solid wastes in the Sea of Japan; lost a {sup 90}Sr-powered radioisotope thermoelectric generator at sea in the Sea of Okhotsk; and disposed of liquid wastes at several sites in the Pacific Ocean, east of the Kamchatka Peninsula. In addition to these known sources in the oceans, the RAIG evaluated FSU waste-disposal practices at inland weapons-development sites that have contaminated major rivers flowing into the Arctic Ocean. The RAIG evaluated these sources for the potential for release to the environment, transport, and impact to Alaskan ecosystems and peoples through a variety of scenarios, including a worst-case total instantaneous and simultaneous release of the sources under investigation. The risk-assessment process described in this report is applicable to and can be used by other circumpolar countries, with the addition of information about specific ecosystems and human life-styles. They can use the ANWAP risk-assessment framework and approach used by ONR to establish potential doses for Alaska, but add their own specific data sets about human and ecological factors. The ANWAP risk assessment addresses the following Russian wastes, media, and receptors: dumped nuclear submarines and icebreaker in Kara Sea--marine pathways; solid reactor parts in Sea of Japan and Pacific Ocean--marine pathways; thermoelectric generator in Sea of Okhotsk--marine pathways; current known aqueous wastes in Mayak reservoirs and Asanov Marshes--riverine to marine pathways; and Alaska as receptor. For these waste and source terms addressed, other pathways, such as

  10. Sea Ice, Hydrocarbon Extraction, Rain-on-Snow and Tundra Reindeer Nomadism in Arctic Russia

    NASA Astrophysics Data System (ADS)

    Forbes, B. C.; Kumpula, T.; Meschtyb, N.; Laptander, R.; Macias-Fauria, M.; Zetterberg, P.; Verdonen, M.

    2015-12-01

    It is assumed that retreating sea ice in the Eurasian Arctic will accelerate hydrocarbon development and associated tanker traffic along Russia's Northern Sea Route. However, oil and gas extraction along the Kara and Barents Sea coasts will likely keep developing rapidly regardless of whether the Northwest Eurasian climate continues to warm. Less certain are the real and potential linkages to regional biota and social-ecological systems. Reindeer nomadism continues to be a vitally important livelihood for indigenous tundra Nenets and their large herds of semi-domestic reindeer. Warming summer air temperatures over the NW Russian Arctic have been linked to increases in tundra productivity, longer growing seasons, and accelerated growth of tall deciduous shrubs. These temperature increases have, in turn, been linked to more frequent and sustained summer high-pressure systems over West Siberia, but not to sea ice retreat. At the same time, winters have been warming and rain-on-snow (ROS) events have become more frequent and intense, leading to record-breaking winter and spring mortality of reindeer. What is driving this increase in ROS frequency and intensity is not clear. Recent modelling and simulation have found statistically significant near-surface atmospheric warming and precipitation increases during autumn and winter over Arctic coastal lands in proximity to regions of sea-ice loss. During the winter of 2013-14 an extensive and lasting ROS event led to the starvation of 61,000 reindeer out of a population of ca. 300,000 animals on Yamal Peninsula, West Siberia. Historically, this is the region's largest recorded mortality episode. More than a year later, participatory fieldwork with nomadic herders during spring-summer 2015 revealed that the ecological and socio-economic impacts from this extreme event will unfold for years to come. There is an urgent need to understand whether and how ongoing Barents and Kara Sea ice retreat may affect the region's ancient

  11. Changes in Arctic Melt Season and Implications for Sea Ice Loss

    NASA Technical Reports Server (NTRS)

    Stroeve, J. C.; Markus, T.; Boisvert, L.; Miller, J.; Barrett, A.

    2014-01-01

    The Arctic-wide melt season has lengthened at a rate of 5 days dec-1 from 1979 to 2013, dominated by later autumn freeze-up within the Kara, Laptev, East Siberian, Chukchi and Beaufort seas between 6 and 11 days dec(exp -1). While melt onset trends are generally smaller, the timing of melt onset has a large influence on the total amount of solar energy absorbed during summer. The additional heat stored in the upper ocean of approximately 752MJ m(exp -2) during the last decade, increases sea surface temperatures by 0.5 to 1.5 C and largely explains the observed delays in autumn freeze-up within the Arctic Ocean's adjacent seas. Cumulative anomalies in total absorbed solar radiation from May through September for the most recent pentad locally exceed 300-400 MJ m(exp -2) in the Beaufort, Chukchi and East Siberian seas. This extra solar energy is equivalent to melting 0.97 to 1.3 m of ice during the summer.

  12. Record Arctic Sea Ice Loss in 2007

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This image of the Arctic was produced from sea ice observations collected by the Advanced Microwave Scanning Radiometer (AMSR-E) Instrument on NASA's Aqua satellite on September 16, overlaid on the NASA Blue Marble. The image captures ice conditions at the end of the melt season. Sea ice (white, image center) stretches across the Arctic Ocean from Greenland to Russia, but large areas of open water were apparent as well. In addition to record melt, the summer of 2007 brought an ice-free opening though the Northwest Passage that lasted several weeks. The Northeast Passage did not open during the summer of 2007, however, as a substantial tongue of ice remained in place north of the Russian coast. According to the National Snow and Ice Data Center (NSIDC), on September 16, 2007, sea ice extent dropped to 4.13 million square kilometers (1.59 million square miles)--38 percent below average and 24 percent below the 2005 record.

  13. Spatial wave field characteristics in Arctic seas

    NASA Astrophysics Data System (ADS)

    Gemmrich, Johannes; Rogers, Erick; Lehner, Susanne; Pleskachevsky, Andrey; Thomson, Jim

    2015-04-01

    The reduction of the sea ice coverage during the boreal summer will lead to an increased importance of wind waves for the dynamic processes of the Arctic Seas. Larger ice free areas lead to longer fetch and thus longer and higher sea state. Wind waves will enhance upper-ocean mixing, may affect the breakup of ice sheets, and will likely lead to increased coastal erosion. Our long-term goal is a better understanding of the two-way interaction of waves and sea-ice, in order to improve wave models as well as ice models applicable to a changing Arctic wave- and ice climate. Wind, wave and ice information has been retrieved from space-borne SAR imagery (TerraSAR-X), collected during the period August-September 2014 in the Beaufort Sea. The SAR data were co-located with drifting wave-buoys and wave gliders. This information complements and validates model data (Wavewatch III) for the spatial and temporal evolution of sea state in the Arctic. We will present examples of wind and wave fields under different wind forcing and ice conditions, and discuss the advantages of each of the three observational/modelling approaches. These examples highlight the strong spatial heterogeneity of the wave field in arctic regions, and the need for high resolution spatial wave observations. Satellite-based wave field observations can bridge the gap between the single point buoy observation that provide high resolution time series of wave parameters, and the output of wave models which are of relatively coarse resolution and are inherently limited by the quality of the wind and ice input fields, but are unlimited in their spatial and temporal extent.

  14. Summer Arctic Sea Ice Retreat: May - August 2013

    NASA Video Gallery

    The melting of sea ice in the Arctic is well on its way toward its annual "minimum," that time when the floating ice cap covers less of the Arctic Ocean than at any other period during the year. 20...

  15. Improvement in Simulation of Eurasian Winter Climate Variability with a Realistic Arctic Sea Ice Condition in an Atmospheric GCM

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988-2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to approx. 0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated.

  16. The role of declining Arctic sea ice in recent decreasing terrestrial Arctic snow depths

    NASA Astrophysics Data System (ADS)

    Park, Hotaek; Walsh, John E.; Kim, Yongwon; Nakai, Taro; Ohata, Tetsuo

    2013-06-01

    The dramatic decline in Arctic sea ice cover is anticipated to influence atmospheric temperatures and circulation patterns. These changes will affect the terrestrial climate beyond the boundary of the Arctic, consequently modulating terrestrial snow cover. Therefore, an improved understanding of the relationship between Arctic sea ice and snow depth over the terrestrial Arctic is warranted. We examined responses of snow depth to the declining Arctic sea ice extent in September, during the period of 1979-2006. The major reason for a focus on snow depth, rather than snow cover, is because its variability has a climatic memory that impacts hydrothermal processes during the following summer season. Analyses of combined data sets of satellite measurements of sea ice extent and snow depth, simulated by a land surface model (CHANGE), suggested that an anomalously larger snow depth over northeastern Siberia during autumn and winter was significantly correlated to the declining September Arctic sea ice extent, which has resulted in cooling temperatures, along with an increase in precipitation. Meanwhile, the reduction of Arctic sea ice has amplified warming temperatures in North America, which has readily offset the input of precipitation to snow cover, consequently further decreasing snow depth. However, a part of the Canadian Arctic recorded an increase in snow depth driven locally by the diminishing September Arctic sea ice extent. Decreasing snow depth at the hemispheric scale, outside the northernmost regions (i.e., northeastern Siberia and Canadian Arctic), indicated that Arctic amplification related to the diminishing Arctic sea ice has already impacted the terrestrial Arctic snow depth. The strong reduction in Arctic sea ice anticipated in the future also suggests a potential long-range impact on Arctic snow cover. Moreover, the snow depth during the early snow season tends to contribute to the warming of soil temperatures in the following summer, at least in the

  17. Impact of declining Arctic sea ice on recent decreasing terrestrial Arctic snow depths

    NASA Astrophysics Data System (ADS)

    PARK, H.; Walsh, J. E.; Kim, Y.; Nakai, T.; Ohata, T.

    2012-12-01

    The dramatic decline in Arctic sea ice cover is anticipated to influence atmospheric temperatures and circulation patterns. These changes will affect the terrestrial climate beyond the boundary of the Arctic, consequently modulating terrestrial snow cover. Therefore, an improved understanding of the relationship between Arctic sea ice and snow depth over the terrestrial Arctic is warranted. We examined responses of snow depth to the declining Arctic sea ice extent in September, during the period of 1979-2006. The major reason for a focus on snow depth, rather than snow cover, is because its variability has a climatic memory that impacts hydrothermal processes during the following summer season. Analyses of combined data sets of satellite measurements of sea ice extent and snow depth, simulated by a land surface model (CHANGE), suggested that an anomalously larger snow depth over northeastern Siberia during autumn and winter was significantly correlated to the declining September Arctic sea ice extent, which has resulted in cooling temperatures, along with an increase in precipitation. Meanwhile, the reduction of Arctic sea ice has amplified warming temperatures in North America, which has readily offset the input of precipitation to snow cover, consequently further decreasing snow depth. However, a part of the Canadian Arctic recorded an increase in snow depth driven locally by the diminishing September Arctic sea ice extent. Decreasing snow depth at the hemispheric scale, outside the northernmost regions (i.e., northeastern Siberia and Canadian Arctic), indicated that Arctic amplification related to the diminishing Arctic sea ice has already impacted the terrestrial Arctic snow depth. The strong reduction in Arctic sea ice anticipated in the future also suggests a potential long-range impact on Arctic snow cover. Moreover, the snow depth during the early snow season tends to contribute to the warming of soil temperatures in the following summer, at least in the

  18. The Last Arctic Sea Ice Refuge

    NASA Astrophysics Data System (ADS)

    Pfirman, S. L.; Tremblay, B.; Newton, R.; Fowler, C.

    2010-12-01

    Summer sea ice may persist along the northern flank of Canada and Greenland for decades longer than the rest of the Arctic, raising the possibility of a naturally formed refugium for ice-associated species. Observations and models indicate that some ice in this region forms locally, while some is transported to the area by winds and ocean currents. Depending on future changes in melt patterns and sea ice transport rates, both the central Arctic and Siberian shelf seas may be sources of ice to the region. An international system of monitoring and management of the sea ice refuge, along with the ice source regions, has the potential to maintain viable habitat for ice-associated species, including polar bears, for decades into the future. Issues to consider in developing a strategy include: + the likely duration and extent of summer sea ice in this region based on observations, models and paleoenvironmental information + the extent and characteristics of the “ice shed” contributing sea ice to the refuge, including its dynamics, physical and biological characteristics as well as potential for contamination from local or long-range sources + likely assemblages of ice-associated species and their habitats + potential stressors such as transportation, tourism, resource extraction, contamination + policy, governance, and development issues including management strategies that could maintain the viability of the refuge.

  19. Stratospheric Impacts on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Reichler, Thomas

    2016-04-01

    Long-term circulation change in the stratosphere can have substantial effects on the oceans and their circulation. In this study we investigate whether and how sea ice at the ocean surface responds to intraseasonal stratospheric variability. Our main question is whether the surface impact of stratospheric sudden warmings (SSWs) is strong and long enough to affect sea ice. A related question is whether the increased frequency of SSWs during the 2000s contributed to the rapid decrease in Arctic sea ice during this time. To this end we analyze observations of sea ice, NCEP/NCAR reanalysis, and a long control integration with a stratospherically-enhanced version of the GFDL CM2.1 climate model. From both observations and the model we find that stratospheric extreme events have a demonstrable impact on the distribution of Arctic sea ice. The areas most affected are near the edge of the climatological ice line over the North Atlantic, North Pacific, and the Arctic Ocean. The absolute changes in sea ice coverage amount to +/-10 %. Areas and magnitudes of increase and decrease are about the same. It is thus unlikely that the increased SSW frequency during the 2000s contributed to the decline of sea ice during that period. The sea ice changes are consistent with the impacts of a negative NAO at the surface and can be understood in terms of (1) dynamical change due to altered surface wind stress and (2) thermodynamical change due to altered temperature advection. Both dynamical and thermodynamical change positively reinforce each other in producing sea change. A simple advection model is used to demonstrate that most of the sea ice change can be explained from the sea ice drift due to the anomalous surface wind stress. Changes in the production or melt of sea ice by thermodynamical effects are less important. Overall, this study adds to an increasing body of evidence that the stratosphere not only impacts weather and climate of the atmosphere but also the surface and

  20. Sea ice occurrence predicts genetic isolation in the Arctic fox.

    PubMed

    Geffen, Eli; Waidyaratne, Sitara; Dalén, Love; Angerbjörn, Anders; Vila, Carles; Hersteinsson, Pall; Fuglei, Eva; White, Paula A; Goltsman, Michael; Kapel, Christian M O; Wayne, Robert K

    2007-10-01

    Unlike Oceanic islands, the islands of the Arctic Sea are not completely isolated from migration by terrestrial vertebrates. The pack ice connects many Arctic Sea islands to the mainland during winter months. The Arctic fox (Alopex lagopus), which has a circumpolar distribution, populates numerous islands in the Arctic Sea. In this study, we used genetic data from 20 different populations, spanning the entire distribution of the Arctic fox, to identify barriers to dispersal. Specifically, we considered geographical distance, occurrence of sea ice, winter temperature, ecotype, and the presence of red fox and polar bear as nonexclusive factors that influence the dispersal behaviour of individuals. Using distance-based redundancy analysis and the BIOENV procedure, we showed that occurrence of sea ice is the key predictor and explained 40-60% of the genetic distance among populations. In addition, our analysis identified the Commander and Pribilof Islands Arctic populations as genetically unique suggesting they deserve special attention from a conservation perspective.

  1. Sea ice occurrence predicts genetic isolation in the Arctic fox.

    PubMed

    Geffen, Eli; Waidyaratne, Sitara; Dalén, Love; Angerbjörn, Anders; Vila, Carles; Hersteinsson, Pall; Fuglei, Eva; White, Paula A; Goltsman, Michael; Kapel, Christian M O; Wayne, Robert K

    2007-10-01

    Unlike Oceanic islands, the islands of the Arctic Sea are not completely isolated from migration by terrestrial vertebrates. The pack ice connects many Arctic Sea islands to the mainland during winter months. The Arctic fox (Alopex lagopus), which has a circumpolar distribution, populates numerous islands in the Arctic Sea. In this study, we used genetic data from 20 different populations, spanning the entire distribution of the Arctic fox, to identify barriers to dispersal. Specifically, we considered geographical distance, occurrence of sea ice, winter temperature, ecotype, and the presence of red fox and polar bear as nonexclusive factors that influence the dispersal behaviour of individuals. Using distance-based redundancy analysis and the BIOENV procedure, we showed that occurrence of sea ice is the key predictor and explained 40-60% of the genetic distance among populations. In addition, our analysis identified the Commander and Pribilof Islands Arctic populations as genetically unique suggesting they deserve special attention from a conservation perspective. PMID:17868292

  2. Can regional climate engineering save the summer Arctic sea ice?

    NASA Astrophysics Data System (ADS)

    Tilmes, S.; Jahn, Alexandra; Kay, Jennifer E.; Holland, Marika; Lamarque, Jean-Francois

    2014-02-01

    Rapid declines in summer Arctic sea ice extent are projected under high-forcing future climate scenarios. Regional Arctic climate engineering has been suggested as an emergency strategy to save the sea ice. Model simulations of idealized regional dimming experiments compared to a business-as-usual greenhouse gas emission simulation demonstrate the importance of both local and remote feedback mechanisms to the surface energy budget in high latitudes. With increasing artificial reduction in incoming shortwave radiation, the positive surface albedo feedback from Arctic sea ice loss is reduced. However, changes in Arctic clouds and the strongly increasing northward heat transport both counteract the direct dimming effects. A 4 times stronger local reduction in solar radiation compared to a global experiment is required to preserve summer Arctic sea ice area. Even with regional Arctic dimming, a reduction in the strength of the oceanic meridional overturning circulation and a shut down of Labrador Sea deep convection are possible.

  3. Arctic Sea Ice : Trends, Stability and Variability

    NASA Astrophysics Data System (ADS)

    Moon, W.; Wettlaufer, J. S.

    2014-12-01

    A stochastic Arctic sea-ice model is derived and analysed in detail to interpret the recent decay and associated variability of Arctic sea-ice under changes in radiative forcing. The approach begins from a deterministic model of the heat flux balance through the air/sea/ice system, which uses observed monthly-averaged heat fluxesto drive a time evolution of sea-ice thickness. This model reproduces the observed seasonal cycle of the ice cover and it is to this that stochastic noise--representing high frequency variability--is introduced.The model takes the form of a single periodic non-autonomous stochastic ordinary differential equation. The value of such a model is that it provides a relatively simple framework to examine the role of noise in the basic nonlinear interactions at play as transitions in the state of the ice cover (e.g., from perennial to seasonal) are approached. Moreover, the stability and the noise conspire to underlie the inter annual variability and how that variability changes as one approaches the deterministic bifurcations in the system.

  4. Comparative Views of Arctic Sea Ice Growth

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA researchers have new insights into the mysteries of Arctic sea ice, thanks to the unique abilities of Canada's Radarsat satellite. The Arctic is the smallest of the world's four oceans, but it may play a large role in helping scientists monitor Earth's climate shifts.

    Using Radarsat's special sensors to take images at night and to peer through clouds, NASA researchers can now see the complete ice cover of the Arctic. This allows tracking of any shifts and changes, in unprecedented detail, over the course of an entire winter. The radar-generated, high-resolution images are up to 100 times better than those taken by previous satellites.

    The two images above are separated by nine days (earlier image on the left). Both images represent an area (approximately 96 by 128 kilometers; 60 by 80 miles)located in the Baufort Sea, north of the Alaskan coast. The brighter features are older thicker ice and the darker areas show young, recently formed ice. Within the nine-day span, large and extensive cracks in the ice cover have formed due to ice movement. These cracks expose the open ocean to the cold, frigid atmosphere where sea ice grows rapidly and thickens.

    Using this new information, scientists at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif., can generate comprehensive maps of Arctic sea ice thickness for the first time. 'Before we knew only the extent of the ice cover,' said Dr. Ronald Kwok, JPL principal investigator of a project called Sea Ice Thickness Derived From High Resolution Radar Imagery. 'We also knew that the sea ice extent had decreased over the last 20 years, but we knew very little about ice thickness.'

    'Since sea ice is very thin, about 3 meters (10 feet) or less,'Kwok explained, 'it is very sensitive to climate change.'

    Until now, observations of polar sea ice thickness have been available for specific areas, but not for the entire polar region.

    The new radar mapping technique has also given scientists a close look at

  5. Comparative Views of Arctic Sea Ice Growth

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA researchers have new insights into the mysteries of Arctic sea ice, thanks to the unique abilities of Canada's Radarsat satellite. The Arctic is the smallest of the world's four oceans, but it may play a large role in helping scientists monitor Earth's climate shifts.

    Using Radarsat's special sensors to take images at night and to peer through clouds, NASA researchers can now see the complete ice cover of the Arctic. This allows tracking of any shifts and changes, in unprecedented detail, over the course of an entire winter. The radar-generated, high-resolution images are up to 100 times better than those taken by previous satellites.

    The two images above are separated by nine days (earlier image on the left). Both images represent an area (approximately 96 by 128 kilometers; 60 by 80 miles)located in the Baufort Sea, north of the Alaskan coast. The brighter features are older thicker ice and the darker areas show young, recently formed ice. Within the nine-day span, large and extensive cracks in the ice cover have formed due to ice movement. These cracks expose the open ocean to the cold, frigid atmosphere where sea ice grows rapidly and thickens.

    Using this new information, scientists at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif., can generate comprehensive maps of Arctic sea ice thickness for the first time. 'Before we knew only the extent of the ice cover,' said Dr. Ronald Kwok, JPL principal investigator of a project called Sea Ice Thickness Derived From High Resolution Radar Imagery. 'We also knew that the sea ice extent had decreased over the last 20 years, but we knew very little about ice thickness.'

    'Since sea ice is very thin, about 3 meters (10 feet) or less,'Kwok explained, 'it is very sensitive to climate change.'

    Until now, observations of polar sea ice thickness have been available for specific areas, but not for the entire polar region.

    The new radar mapping technique has also given scientists a close look at

  6. New data about seismicity and crustal velocity structure of the "continent-ocean" transition zone of the Barents-Kara region in the Arctic

    NASA Astrophysics Data System (ADS)

    Morozov, Alexey N.; Vaganova, Natalya V.; Konechnaya, Yana V.; Asming, Vladimir E.

    2015-01-01

    The recent (2011) installation of seismic station Zemlya Franca-Iocifa (ZFI) on Alexander Island in the Franz Josef Land Archipelago allows new seismic monitoring of the "continent-ocean" transition zone of the Barents-Kara Sea region. The region is seismically active, and we hypothesize that the prevailing geodynamic factor responsible for the occurrence of weak earthquakes is isostatic compensation of avalanche sedimentation in the "continent-ocean" transition zone. The crustal velocity structure beneath ZFI was determined using receiver functions. Crustal thickness is 30 km, based on an observed Moho discontinuity with underlying mantle velocities being Vp = 8.15 km/s and Vs = 4.5 km/s The model indicates a mid-crustal boundary at a depth of about 17 km with a velocity contrast between the upper ( Vp = 6.1 km/s, Vs = 3.6 km/s) and lower ( Vp = 6.8 km/s, Vs = 3.9 km/s) layers. In addition, the upper crustal sedimentary layer is about 4 km thick with Vp = 4.3 km/s and Vs = 2.36 km/s.

  7. The Timing of Arctic Sea Ice Advance and Retreat as an Indicator of Ice-Dependent Marine Mammal Habitat

    NASA Astrophysics Data System (ADS)

    Stern, H. L.; Laidre, K. L.

    2013-12-01

    The Arctic is widely recognized as the front line of climate change. Arctic air temperature is rising at twice the global average rate, and the sea-ice cover is shrinking and thinning, with total disappearance of summer sea ice projected to occur in a matter of decades. Arctic marine mammals such as polar bears, seals, walruses, belugas, narwhals, and bowhead whales depend on the sea-ice cover as an integral part of their existence. While the downward trend in sea-ice extent in a given month is an often-used metric for quantifying physical changes in the ice cover, it is not the most relevant measure for characterizing changes in the sea-ice habitat of marine mammals. Species that depend on sea ice are behaviorally tied to the annual retreat of sea ice in the spring and advance in the fall. Changes in the timing of the spring retreat and the fall advance are more relevant to Arctic marine species than changes in the areal sea-ice coverage in a particular month of the year. Many ecologically important regions of the Arctic are essentially ice-covered in winter and ice-free in summer, and will probably remain so for a long time into the future. But the dates of sea-ice retreat in spring and advance in fall are key indicators of climate change for ice-dependent marine mammals. We use daily sea-ice concentration data derived from satellite passive microwave sensors to calculate the dates of sea-ice retreat in spring and advance in fall in 12 regions of the Arctic for each year from 1979 through 2013. The regions include the peripheral seas around the Arctic Ocean (Beaufort, Chukchi, East Siberian, Laptev, Kara, Barents), the Canadian Arctic Archipelago, and the marginal seas (Okhotsk, Bering, East Greenland, Baffin Bay, Hudson Bay). We find that in 11 of the 12 regions (all except the Bering Sea), sea ice is retreating earlier in spring and advancing later in fall. Rates of spring retreat range from -5 to -8 days/decade, and rates of fall advance range from +5 to +9

  8. Arctic Sea Ice Predictability and the Sea Ice Prediction Network

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Stroeve, J. C.

    2014-12-01

    Drastic reductions in Arctic sea ice cover have increased the demand for Arctic sea ice predictions by a range of stakeholders, including local communities, resource managers, industry and the public. The science of sea-ice prediction has been challenged to keep up with these developments. Efforts such as the SEARCH Sea Ice Outlook (SIO; http://www.arcus.org/sipn/sea-ice-outlook) and the Sea Ice for Walrus Outlook have provided a forum for the international sea-ice prediction and observing community to explore and compare different approaches. The SIO, originally organized by the Study of Environmental Change (SEARCH), is now managed by the new Sea Ice Prediction Network (SIPN), which is building a collaborative network of scientists and stakeholders to improve arctic sea ice prediction. The SIO synthesizes predictions from a variety of methods, including heuristic and from a statistical and/or dynamical model. In a recent study, SIO data from 2008 to 2013 were analyzed. The analysis revealed that in some years the predictions were very successful, in other years they were not. Years that were anomalous compared to the long-term trend have proven more difficult to predict, regardless of which method was employed. This year, in response to feedback from users and contributors to the SIO, several enhancements have been made to the SIO reports. One is to encourage contributors to provide spatial probability maps of sea ice cover in September and the first day each location becomes ice-free; these are an example of subseasonal to seasonal, local-scale predictions. Another enhancement is a separate analysis of the modeling contributions. In the June 2014 SIO report, 10 of 28 outlooks were produced from models that explicitly simulate sea ice from dynamic-thermodynamic sea ice models. Half of the models included fully-coupled (atmosphere, ice, and ocean) models that additionally employ data assimilation. Both of these subsets (models and coupled models with data

  9. A conceptual model of an Arctic sea

    NASA Astrophysics Data System (ADS)

    St-Laurent, P.; Straneo, F.; Barber, D. G.

    2012-06-01

    We propose a conceptual model for an Arctic sea that is driven by river runoff, atmospheric fluxes, sea ice melt/growth, and winds. The model domain is divided into two areas, the interior and boundary regions, that are coupled through Ekman and eddy fluxes of buoyancy. The model is applied to Hudson and James Bays (HJB, a large inland basin in northeastern Canada) for the period 1979-2007. Several yearlong records from instruments moored within HJB show that the model results are consistent with the real system. The model notably reproduces the seasonal migration of the halocline, the baroclinic boundary current, spatial variability of freshwater content, and the fall maximum in freshwater export. The simulations clarify the important differences in the freshwater balance of the western and eastern sides of HJB. The significant role played by the boundary current in the freshwater budget of the system, and its sensitivity to the wind-forcing, are also highlighted by the simulations and new data analyses. We conclude that the model proposed is useful for the interpretation of observed data from Arctic seas and model outputs from more complex coupled/climate models.

  10. Annual cycles of multiyear sea ice coverage of the Arctic Ocean: 1999-2003

    NASA Astrophysics Data System (ADS)

    Kwok, R.

    2004-11-01

    For the years 1999-2003, we estimate the time-varying perennial ice zone (PIZ) coverage and construct the annual cycles of multiyear (MY, including second year) ice coverage of the Arctic Ocean using QuikSCAT backscatter, MY fractions from RADARSAT, and the record of ice export from satellite passive microwave observations. An area balance approach extends the winter MY coverage from QuikSCAT to the remainder of the year. From these estimates, the coverage of MY ice at the beginning of each year is 3774 × 103 km2 (2000), 3896 × 103 km2 (2001), 4475 × 103 km2 (2002), and 4122 × 103 km2 (2003). Uncertainties in coverage are ˜150 × 103 km2. In the mean, on 1 January, MY ice covers ˜60% of the Arctic Ocean. Ice export reduces this coverage to ˜55% by 1 May. From the multiple annual cycles, the area of first-year (FY) ice that survives the intervening summers are 1192 × 103 km2 (2000), 1509 × 103 km2 (2001), and 582 × 103 km2 (2002). In order for the MY coverage to remain constant from year to year, these replenishment areas must balance the overall area export and melt during the summer. The effect of the record minimum in Arctic sea ice area during the summer of 2002 is seen in the lowest area of surviving FY ice of the three summers. In addition to the spatial coverage, the location of the PIZ is important. One consequence of the unusual location of the PIZ at the end of the summer of 2002 is the preconditioning for enhanced export of MY ice into the Barents and Kara seas. Differences between the minimums in summer sea ice coverage from our estimates and passive microwave observations are discussed.

  11. Annual Cycles of Multiyear Sea Ice Coverage of the Arctic Ocean: 1999-2003

    NASA Technical Reports Server (NTRS)

    Kwok, R.

    2004-01-01

    For the years 1999-2003, we estimate the time-varying perennial ice zone (PIZ) coverage and construct the annual cycles of multiyear (MY, including second year) ice coverage of the Arctic Ocean using QuikSCAT backscatter, MY fractions from RADARSAT, and the record of ice export from satellite passive microwave observations. An area balance approach extends the winter MY coverage from QuikSCAT to the remainder of the year. From these estimates, the coverage of MY ice at the beginning of each year is 3774 x 10(exp 3) sq km (2000), 3896 x 10(exp 3) sq km (2001), 4475 x 10(exp 3) sq km (2002), and 4122 x 10(exp 3) sq km (2003). Uncertainties in coverage are approx.150 x 10(exp 3) sq km. In the mean, on 1 January, MY ice covers approx.60% of the Arctic Ocean. Ice export reduces this coverage to approx.55% by 1 May. From the multiple annual cycles, the area of first-year (FY) ice that survives the intervening summers are 1192 x 10(exp 3) sq km (2000), 1509 x 10(exp 3) sq km (2001), and 582 x 10(exp 3) sq km (2002). In order for the MY coverage to remain constant from year to year, these replenishment areas must balance the overall area export and melt during the summer. The effect of the record minimum in Arctic sea ice area during the summer of 2002 is seen in the lowest area of surviving FY ice of the three summers. In addition to the spatial coverage, the location of the PIZ is important. One consequence of the unusual location of the PIZ at the end of the summer of 2002 is the preconditioning for enhanced export of MY ice into the Barents and Kara seas. Differences between the minimums in summer sea ice coverage from our estimates and passive microwave observations are discussed.

  12. Collective doses to man from dumping of radioactive waste in the Arctic Seas.

    PubMed

    Nielsen, S P; Iosjpe, M; Strand, P

    1997-08-25

    A box model for the dispersion of radionuclides in the marine environment covering the Arctic Ocean and the North Atlantic Ocean has been constructed. Collective doses from ingestion pathways have been calculated from unit releases of the radionuclides 3H, 60Co, 63Ni, 90Sr, 129I, 137Cs, 239Pu and 241Am into a fjord on the east coast of NovayaZemlya. The results show that doses for the shorter-lived radionuclides (e.g. 137Cs) are derived mainly from seafood production in the Barents Sea. Doses from the longer-lived radionuclides (e.g. 239Pu) are delivered through marine produce further away from the Arctic Ocean. Collective doses were calculated for two release scenarios, both of which are based on information of the dumping of radioactive waste in the Barents and Kara Seas by the former Soviet Union and on preliminary information from the International Arctic Sea Assessment Programme. A worst-case scenario was assumed according to which all radionuclides in liquid and solid radioactive waste were available for dispersion in the marine environment at the time of dumping. Release of radionuclides from spent nuclear fuel was assumed to take place by direct corrosion of the fuel ignoring the barriers that prevent direct contact between the fuel and the seawater. The second scenario selected assumed that releases of radionuclides from spent nuclear fuel do not occur until after failure of the protective barriers. All other liquid and solid radioactive waste was assumed to be available for dispersion at the time of discharge in both scenarios. The estimated collective dose for the worst-case scenario was about 9 manSv and that for the second scenario was about 3 manSv. In both cases, 137Cs is the radionuclide predicted to dominate the collective doses as well as the peak collective dose rates.

  13. Arctic sea ice albedo from AVHRR

    SciTech Connect

    Lindsay, R.W.; Rothrock, D.A.

    1994-11-01

    The seasonal cycle of surface albedo of sea ice in the Arctic is estimated from measurements made with the Advanced Very High Resolution Radiometer (AVHRR) on the polar-orbiting satellites NOAA-10 and NOAA-11. The albedos of 145 200-km-square cells are analyzed. The cells are from March through September 1989 and include only those for which the sun is more than 10 deg above the horizon. Cloud masking is performed manually. Corrections are applied for instrument calibration, nonisotropic reflection, atmospheric interference, narrowband to broadband conversion, and normalization to a common solar zenith angle. The estimated albedos are relative, with the instrument gain set to give an albedo of 0.80 for ice floes in March and April. The mean values for the cloud-free portions of individual cells range from 0.18 to 0.91. Monthly averages of cells in the central Arctic range from 0.76 in April to 0.47 in August. The monthly averages of the within-cell standard deviations in the central Arctic are 0.04 in April and 0.06 in September. The surface albedo and surface temperature are correlated most strongly in March (R = -0.77) with little correlation in the summer. The monthly average lead fraction is determined from the mean potential open water, a scaled representation of the temperature or albedo between 0.0 (for ice) and 1.0 (for water); in the central Arctic it rises from an average 0.025 in the spring to 0.06 in September. Sparse data on aerosols, ozone, and water vapor in the atmospheric column contribute uncertainties to instantaneous, area-average albedos of 0.13, 0.04, and 0.08. Uncertainties in monthly average albedos are not this large. Contemporaneous estimation of these variables could reduce the uncertainty in the estimated albedo considerably.

  14. Observing Arctic Sea Ice from Bow to Screen: Introducing Ice Watch, the Data Network of Near Real-Time and Historic Observations from the Arctic Shipborne Sea Ice Standardization Tool (ASSIST)

    NASA Astrophysics Data System (ADS)

    Orlich, A.; Hutchings, J. K.; Green, T. M.

    2013-12-01

    The Ice Watch Program is an open source forum to access in situ Arctic sea ice conditions. It provides the research community and additional stakeholders a convenient resource to monitor sea ice and its role in understanding the Arctic as a system by implementing a standardized observation protocol and hosting a multi-service data portal. International vessels use the Arctic Shipborne Sea Ice Standardization Tool (ASSIST) software to report near-real time sea ice conditions while underway. Essential observations of total ice concentration, distribution of multi-year ice and other ice types, as well as their respective stage of melt are reported. These current and historic sea ice conditions are visualized on interactive maps and in a variety of statistical analyses, and with all data sets available to download for further investigation. The summer of 2012 was the debut of the ASSIST software and the Ice Watch campaign, with research vessels from six nations reporting from a wide spatio-temporal scale spanning from the Beaufort Sea, across the North Pole and Arctic Basin, the coast of Greenland and into the Kara and Barents Seas during mid-season melt and into the first stages of freeze-up. The 2013 summer field season sustained the observation and data archiving record, with participation from some of the same cruises as well as other geographic and seasonal realms covered by new users. These results are presented to illustrate the evolution of the program, increased participation and critical statistics of ice regime change and record of melt and freeze processes revealed by the data. As an ongoing effort, Ice Watch/ASSIST aims to standardize observations of Arctic-specific sea ice features and conditions while utilizing nomenclature and coding based on the World Meteorological Organization (WMO) standards and the Antarctic Sea Ice and Processes & Climate (ASPeCt) protocol. Instigated by members of the CliC Sea Ice Working Group, the program has evolved with

  15. Source identification of the Arctic sea ice proxy IP25.

    PubMed

    Brown, T A; Belt, S T; Tatarek, A; Mundy, C J

    2014-06-18

    Analysis of the organic geochemical biomarker IP25 in marine sediments is an established method for carrying out palaeo sea ice reconstructions for the Arctic. Such reconstructions cover timescales from decades back to the early Pleistocene, and are critical for understanding past climate conditions on Earth and for informing climate prediction models. Key attributes of IP25 include its strict association with Arctic sea ice together with its ubiquity and stability in underlying marine sediments; however, the sources of IP25 have remained undetermined. Here we report the identification of IP25 in three (or four) relatively minor (<5%) sea ice diatoms isolated from mixed assemblages collected from the Canadian Arctic. In contrast, IP25 was absent in the dominant taxa. Chemical and taxonomical investigations suggest that the IP25-containing taxa represent the majority of producers and are distributed pan-Arctic, thus establishing the widespread applicability of the IP25 proxy for palaeo Arctic sea ice reconstruction.

  16. Use of ERTS data for mapping Arctic sea ice

    NASA Technical Reports Server (NTRS)

    Barnes, J. C.; Bowley, C. J.

    1973-01-01

    This investigation is to evaluate the application of ERTS data for detecting and mapping Arctic sea ice. The specific objectives are to determine the spectral bands most suitable for detecting ice, to measure the scale and types of ice features that can be detected, and to develop interpretive techniques for differentiating ice from clouds and for mapping ice concentrations. The ERTS data are being analyzed primarily for three Arctic areas, the eastern Beaufort Sea, Baffin Bay, and the Greenland Sea.

  17. Arctic moisture source for Eurasian snow cover variations in autumn

    NASA Astrophysics Data System (ADS)

    Wegmann, Martin; Orsolini, Yvan; Vázquez Dominguez, Marta; Gimeno Presa, Luis; Nieto, Raquel; Buligyna, Olga; Jaiser, Ralf; Handorf, Dörthe; Rinke, Anette; Dethloff, Klaus; Sterin, Alexander; Brönnimann, Stefan

    2015-04-01

    Global warming is enhanced at high northern latitudes where the Arctic surface air temperature has risen at twice the rate of the global average in recent decades - a feature called Arctic amplification. This recent Arctic warming signal likely results from several factors such as the albedo feedback due to a diminishing cryosphere, enhanced poleward atmospheric and oceanic transport, and change in humidity. The reduction in Arctic sea ice is without doubt substantial and a key factor. Arctic summer sea-ice extent has declined by more than 10% per decade since the start of the satellite era (e.g. Stroeve et al., 2012), culminating in a new record low in September 2012, with the long-term trend largely attributed to anthropogenic global warming. Eurasian snow cover changes have been suggested as a driver for changes in the Arctic Oscillation and might provide a link between sea ice decline in the Arctic during summer and atmospheric circulation in the following winter. However, the mechanism connecting snow cover in Eurasia to sea ice decline in autumn is still under debate. Our analysis focuses at sea ice decline in the Barents-Kara Sea region, which allows us to specify regions of interest for FLEXPART forward and backwards moisture trajectories. Based on Eularian and Lagrangian diagnostics from ERA-INTERIM, we can address the origin and cause of late autumn snow depth variations in a dense (snow observations from 820 land stations), unutilized observational datasets over the Commonwealth of Independent States. Open waters in the Barents and Kara Sea have been shown to increase the diabatic heating of the atmosphere, which amplifies baroclinic cyclones and might induce a remote atmospheric response by triggering stationary Rossby waves (Honda et al. 2009). In agreement with these studies, our results show enhanced storm activity originating at the Barents and Kara with disturbances entering the continent through a small sector from the Barents and Kara Seas

  18. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications

    NASA Astrophysics Data System (ADS)

    DeWeaver, Eric T.; Bitz, Cecilia M.; Tremblay, L.-Bruno

    This volume addresses the rapid decline of Arctic sea ice, placing recent sea ice decline in the context of past observations, climate model simulations and projections, and simple models of the climate sensitivity of sea ice. Highlights of the work presented here include • An appraisal of the role played by wind forcing in driving the decline; • A reconstruction of Arctic sea ice conditions prior to human observations, based on proxy data from sediments; • A modeling approach for assessing the impact of sea ice decline on polar bears, used as input to the U.S. Fish and Wildlife Service's decision to list the polar bear as a threatened species under the Endangered Species Act; • Contrasting studies on the existence of a "tipping point," beyond which Arctic sea ice decline will become (or has already become) irreversible, including an examination of the role of the small ice cap instability in global warming simulations; • A significant summertime atmospheric response to sea ice reduction in an atmospheric general circulation model, suggesting a positive feedback and the potential for short-term climate prediction. The book will be of interest to researchers attempting to understand the recent behavior of Arctic sea ice, model projections of future sea ice loss, and the consequences of sea ice loss for the natural and human systems of the Arctic.

  19. Arctic sea ice albedo from AVHRR

    NASA Technical Reports Server (NTRS)

    Lindsay, R. W.; Rothrock, D. A.

    1994-01-01

    The seasonal cycle of surface albedo of sea ice in the Arctic is estimated from measurements made with the Advanced Very High Resolution Radiometer (AVHRR) on the polar-orbiting satellites NOAA-10 and NOAA-11. The albedos of 145 200-km-square cells are analyzed. The cells are from March through September 1989 and include only those for which the sun is more than 10 deg above the horizon. Cloud masking is performed manually. Corrections are applied for instrument calibration, nonisotropic reflection, atmospheric interference, narrowband to broadband conversion, and normalization to a common solar zenith angle. The estimated albedos are relative, with the instrument gain set to give an albedo of 0.80 for ice floes in March and April. The mean values for the cloud-free portions of individual cells range from 0.18 to 0.91. Monthly averages of cells in the central Arctic range from 0.76 in April to 0.47 in August. The monthly averages of the within-cell standard deviations in the central Arctic are 0.04 in April and 0.06 in September. The surface albedo and surface temperature are correlated most strongly in March (R = -0.77) with little correlation in the summer. The monthly average lead fraction is determined from the mean potential open water, a scaled representation of the temperature or albedo between 0.0 (for ice) and 1.0 (for water); in the central Arctic it rises from an average 0.025 in the spring to 0.06 in September. Sparse data on aerosols, ozone, and water vapor in the atmospheric column contribute uncertainties to instantaneous, area-average albedos of 0.13, 0.04, and 0.08. Uncertainties in monthly average albedos are not this large. Contemporaneous estimation of these variables could reduce the uncertainty in the estimated albedo considerably. The poor calibration of AVHRR channels 1 and 2 is another large impediment to making accurate albedo estimates.

  20. Arctic Daily Sea Ice, March 2012 to Feb. 2013

    NASA Video Gallery

    This animation shows the seasonal change in the extent of the Arctic sea ice between March 1, 2012 and February 28, 2013. The annual cycle starts with the maximum extent reached on March 15, 2012. ...

  1. The influence of regional Arctic sea-ice decline on stratospheric and tropospheric circulation

    NASA Astrophysics Data System (ADS)

    McKenna, Christine; Bracegirdle, Thomas; Shuckburgh, Emily; Haynes, Peter

    2016-04-01

    region (one perturbation experiment combines all regions). These regions correspond to sea-ice loss hotspots such as the Barents-Kara Seas and the Bering Sea. The differences between the control and perturbation runs yields the effects of the imposed sea-ice loss on the polar vortex. To detect and count SSWs for each run, we use the World Meteorological Organisation's definition of an SSW (a reversal in zonal mean zonal wind at 10 hPa and 60° N, and a reversal in zonal mean meridional temperature gradient at 10 hPa between 60° N and 90° N). The poster will present and discuss the initial results of this study. Implications of the results for future change in the lower latitude mid-troposphere will be discussed. References Sun, L., C. Deser, and R. A. Tomas, 2015: Mechanisms of Stratospheric and Tropospheric Circulation Response to Projected Arctic Sea Ice Loss. J. Climate, 28, 7824-7845, doi: http://dx.doi.org/10.1175/JCLI-D-15-0169.1.

  2. Natural Variability of Arctic Sea Ice Over the Holocene

    NASA Astrophysics Data System (ADS)

    Fisher, David; Dyke, Art; Koerner, Roy; Bourgeois, Jocelyne; Kinnard, Christophe; Zdanowicz, Christian; de Vernal, Anne; Hillaire-Marcel, Claude; Savelle, James; Rochon, André

    2006-07-01

    The area and volume of sea ice in the ArcticOcean is decreasing, with some predictingice-free summers by 2100 A.D. Johannessenet al., 2004. The implications ofthese trends for transportation and ecosystemsare profound; for example, summershipping through the Northwest Passagecould be possible, while loss of sea icecould cause stress for polar bears. Moreover,global climate may be affected throughalbedo feedbacks and increased sea ice productionand export. With more open water,more new sea ice forms in winter, whichmelts and/or gets exported out of the Arctic.

  3. The impact of the Arctic Sea Ice retreat on extratropical cyclones and anticyclones over Northern Eurasia: atmospheric model simulations

    NASA Astrophysics Data System (ADS)

    Akperov, Mirseid; Semenov, Vladimir; Mokhov, Igor; Lupo, Antony

    2015-04-01

    The Arctic region has been warming more than twice as fast as the other parts of the world during the last few decades. The rapid Arctic warming is accompanied with the dramatic change of Arctic sea ice cover. Recently, it has been suggested that such climatic changes might have led to the increase of anomalous weather events in winter over Northern Eurasia. One example is anomalous cold winters over Northern Eurasia associated with atmospheric blocking events. However, a large uncertainty remains concerning robustness of the observed relationship and associated mechanisms of impact. The main goal of this research is to explore the connection between the declining Arctic sea ice (most strongly expressed in the Barents-Kara Seas region) in the cold season and the change of cyclonic and anti-cyclonic activity over Northern Eurasia using simulations with atmospheric general circulation model (AGCM). The simulations were performed with the ECHAM5 AGCM using identical sea surface temperature climatology but different sea ice concentrations (SIC) for the periods corresponding to the high (1966-1969), low (1990-1995) and very low (2005-2012) SIC regimes in the Arctic as well as for the mean climatological SIC for 1971-2000. The duration of each simulation was 50 years. For the regimes with high and very low SIC, a statistically significant increase in the number of long-living anticyclones (with lifetime of more than 5 days) over Northern Eurasia was found. Long-living cyclones exhibited different changes in their number depending on their intensity. The analysis of the spatial patterns of cyclonic and anti-cyclonic activity over Eurasia was performed. We found an increase of the frequency of cyclones over the central region of the European part of Russia (EPR) and anticyclones over the northern region of the EPR for the regimes with a high sea ice concentration in the Arctic. For the regime with very low SIC the shift of the frequency of cyclones and anticyclones towards

  4. Examining Differences in Arctic and Antarctic Sea Ice Change

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Rigor, I. G.; Clemente-Colon, P.; Neumann, G.; Li, P.

    2015-12-01

    The paradox of the rapid reduction of Arctic sea ice versus the stability (or slight increase) of Antarctic sea ice remains a challenge in the cryospheric science research community. Here we start by reviewing a number of explanations that have been suggested by different researchers and authors. One suggestion is that stratospheric ozone depletion may affect atmospheric circulation and wind patterns such as the Southern Annular Mode, and thereby sustaining the Antarctic sea ice cover. The reduction of salinity and density in the near-surface layer may weaken the convective mixing of cold and warmer waters, and thus maintaining regions of no warming around the Antarctic. A decrease in sea ice growth may reduce salt rejection and upper-ocean density to enhance thermohalocline stratification, and thus supporting Antarctic sea ice production. Melt water from Antarctic ice shelves collects in a cool and fresh surface layer to shield the surface ocean from the warmer deeper waters, and thus leading to an expansion of Antarctic sea ice. Also, wind effects may positively contribute to Antarctic sea ice growth. Moreover, Antarctica lacks of additional heat sources such as warm river discharge to melt sea ice as opposed to the case in the Arctic. Despite of these suggested explanations, factors that can consistently and persistently maintains the stability of sea ice still need to be identified for the Antarctic, which are opposed to factors that help accelerate sea ice loss in the Arctic. In this respect, using decadal observations from multiple satellite datasets, we examine differences in sea ice properties and distributions, together with dynamic and thermodynamic processes and interactions with land, ocean, and atmosphere, causing differences in Arctic and Antarctic sea ice change to contribute to resolving the Arctic-Antarctic sea ice paradox.

  5. Attribution of the Recent Winter Arctic warming and Sea-Ice Decline with Observation-based Data and Coupled Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Lee, S.; Park, D. S. R.; Feldstein, S. B.; Franzke, C. L. E.

    2015-12-01

    Wintertime Arctic sea ice extent has been declining since the late 20th century, particularly over the Atlantic sector that encompasses the Barents-Kara Seas and Baffin Bay. This sea-ice decline is attributable to various Arctic environmental changes, such as enhanced downward infrared radiation (IR), preseason sea-ice reduction, enhanced inflow of warm Atlantic water into the Arctic Ocean, and sea-ice export. However, their relative contributions are uncertain. Utilizing ERA-Interim reanalysis and satellite-based data, it is shown here that a positive trend of downward IR accounts for nearly half of the sea-ice concentration (SIC) decline during the 1979-2011 winter over the Atlantic sector. Furthermore, we find that the Arctic downward IR increase is driven by horizontal atmospheric water flux and warm air advection into the Arctic, and not by evaporation and surface heat flux from the Arctic Ocean. These horizontal heat fluxes are linked to La-Nina-like tropical convection. In all CMIP5 climate models that are analyzed here, high pattern correlations are found between the surface air temperature trend and downward IR trend. However, there are two groups of CMIP5 models: one with small correlations between the Arctic surface air temperature trend and the surface heat flux trend (Group 1), and the other with large correlations (Group 2) between the same two variables. There is evidence that the Group 1 models are consistent with the aforementioned observation-based finding that the Arctic warming is closely related to large-scale circulation changes. In contrast, the Group 2 models are at odds with this observation in that their Arctic warming is more closely tied to surface heat fluxes than with the large-scale circulation change. Interestingly, while Group 1 models have a warm or weak bias, Group 2 models have large cold biases in the Arctic. This difference suggests that deficiencies that cause the cold bias of the mean state may contribute to the surface heat

  6. Arctic Sea Ice and Its Changes during the Satellite Period

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, Y.; Key, J. R.

    2009-12-01

    Sea ice is a very important indicator and an effective modulator of regional and global climate change. Changes in sea ice will significantly affect the complex exchanges of momentum, heat, and mass between sea and the atmosphere, along with profound socio-economic influences due to its role in transportation, fisheries, hunting, polar animal habitat. Over the last two decades of the 20th century, the Arctic underwent significant changes in sea ice as part of the accelerated global warming of that period. More accurate, consistent, and detailed ice thickness, extent, and volume data are critical for a wide range of applications including climate change detection, climate modeling, and operational applications such as shipping and hazard mitigation. Satellite data provide an unprecedented opportunity to estimate and monitor Arctic sea ice routinely with relatively high spatial and temporal resolutions. In this study, a One-dimensional Thermodynamic Ice Model (OTIM) has been developed to estimate sea ice thickness based on the surface energy balance at a thermo-equilibrium state, containing all components of the surface energy balance. The OTIM has been extensively validated against submarine Upward-Looking Sonar (ULS) measurements, meteorological station measurements, and comprehensive numerical model simulations. Overall, OTIM-estimated sea ice thickness is accurate to within about 20% error when compared to submarine ULS ice thickness measurements and Canadian meteorological station measurements for ice less than 3 m. Along with sea ice extent information from the SSM/I, the Arctic sea ice volume can be estimated for the satellite period from 1984 to 2004. The OTIM has been used with satellite data from the extended Advanced Very High Resolution Radiometer (AVHRR) Polar Pathfinder (APP-x) products for the Arctic sea ice thickness, and sequentially sea ice volume estimations, and following statistical analysis of spatial and temporal distribution and trends in sea

  7. EOS Aqua AMSR-E Arctic Sea Ice Validation Program: Arctic2003 Aircraft Campaign Flight Report

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Markus,T.

    2003-01-01

    In March 2003 a coordinated Arctic sea ice validation field campaign using the NASA Wallops P-3B aircraft was successfully completed. This campaign was part of the program for validating the Earth Observing System (EOS) Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea ice products. The AMSR-E, designed and built by the Japanese National Space Development Agency for NASA, was launched May 4, 2002 on the EOS Aqua spacecraft. The AMSR-E sea ice products to be validated include sea ice concentration, sea ice temperature, and snow depth on sea ice. This flight report describes the suite of instruments flown on the P-3, the objectives of each of the seven flights, the Arctic regions overflown, and the coordination among satellite, aircraft, and surface-based measurements. Two of the seven aircraft flights were coordinated with scientists making surface measurements of snow and ice properties including sea ice temperature and snow depth on sea ice at a study area near Barrow, AK and at a Navy ice camp located in the Beaufort Sea. Two additional flights were dedicated to making heat and moisture flux measurements over the St. Lawrence Island polynya to support ongoing air-sea-ice processes studies of Arctic coastal polynyas. The remaining flights covered portions of the Bering Sea ice edge, the Chukchi Sea, and Norton Sound.

  8. Arctic and Antarctic Sea Ice Changes and Impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.

    2013-12-01

    The extent of springtime Arctic perennial sea ice, important to preconditioning summer melt and to polar sunrise photochemistry, continues its precipitous reduction in the last decade marked by a record low in 2012, as the Bromine, Ozone, and Mercury Experiment (BROMEX) was conducted around Barrow, Alaska, to investigate impacts of sea ice reduction on photochemical processes, transport, and distribution in the polar environment. In spring 2013, there was further loss of perennial sea ice, as it was not observed in the ocean region adjacent to the Alaskan north coast, where there was a stretch of perennial sea ice in 2012 in the Beaufort Sea and Chukchi Sea. In contrast to the rapid and extensive loss of sea ice in the Arctic, Antarctic sea ice has a trend of a slight increase in the past three decades. Given the significant variability in time and in space together with uncertainties in satellite observations, the increasing trend of Antarctic sea ice may arguably be considered as having a low confidence level; however, there was no overall reduction of Antarctic sea ice extent anywhere close to the decreasing rate of Arctic sea ice. There exist publications presenting various factors driving changes in Arctic and Antarctic sea ice. After a short review of these published factors, new observations and atmospheric, oceanic, hydrological, and geological mechanisms contributed to different behaviors of sea ice changes in the Arctic and Antarctic are presented. The contribution from of hydrologic factors may provide a linkage to and enhance thermal impacts from lower latitudes. While geological factors may affect the sensitivity of sea ice response to climate change, these factors can serve as the long-term memory in the system that should be exploited to improve future projections or predictions of sea ice changes. Furthermore, similarities and differences in chemical impacts of Arctic and Antarctic sea ice changes are discussed. Understanding sea ice changes and

  9. Impact of declining Arctic sea ice on winter snowfall.

    PubMed

    Liu, Jiping; Curry, Judith A; Wang, Huijun; Song, Mirong; Horton, Radley M

    2012-03-13

    While the Arctic region has been warming strongly in recent decades, anomalously large snowfall in recent winters has affected large parts of North America, Europe, and east Asia. Here we demonstrate that the decrease in autumn Arctic sea ice area is linked to changes in the winter Northern Hemisphere atmospheric circulation that have some resemblance to the negative phase of the winter Arctic oscillation. However, the atmospheric circulation change linked to the reduction of sea ice shows much broader meridional meanders in midlatitudes and clearly different interannual variability than the classical Arctic oscillation. This circulation change results in more frequent episodes of blocking patterns that lead to increased cold surges over large parts of northern continents. Moreover, the increase in atmospheric water vapor content in the Arctic region during late autumn and winter driven locally by the reduction of sea ice provides enhanced moisture sources, supporting increased heavy snowfall in Europe during early winter and the northeastern and midwestern United States during winter. We conclude that the recent decline of Arctic sea ice has played a critical role in recent cold and snowy winters.

  10. Bayesian classification of the ice cover of the Arctic seas

    NASA Astrophysics Data System (ADS)

    Zakhvatkina, N. Yu.; Bychkova, I. A.

    2015-12-01

    A classification of sea ice in the Arctic by age (multiyear; first-year; and first-year deformed ice, nilas, etc.) is developed based on the Bayesian approach using satellite radar data and taking into account regional peculiarities of these types of ice for different sectors of the Arctic. Estimations of a priori probabilities for each ice type, which are required for the use of the Bayesian classification, are obtained by the analysis of ice charts in the Arctic seas developed at the AARI in 2008-2013 using satellite data. A posterior probabilities are estimated visually by an expert. Types of sea ice distinguished by the expert on satellite images make it possible to create sample values of the radar-scattering cross section (RSCS). Examples of the proposed Bayesian classification of ice in the Laptev Sea according to Envisat satellite data are given.

  11. Sea ice data for all: NSIDC's Arctic Sea Ice News & Analysis

    NASA Astrophysics Data System (ADS)

    Vizcarra, N.; Stroeve, J. C.; Serreze, M. C.; Scambos, T. A.; Meier, W.

    2014-12-01

    Arctic sea ice has long been recognized as a sensitive climate indicator and has undergone a dramatic decline over the past thirty years. The National Snow and Ice Data Center's Arctic Sea Ice News & Analysis blog continues to offer the public a transparent view of sea ice data and analysis. We have expanded our interactive sea ice graph to include Antarctic sea ice in response to increased attention from the public as a result of unexpected behavior of sea ice in the south. This poster explores the blog's new features and how other researchers, the media, and the public are currently using them.

  12. Interdecadal changes in snow depth on Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Webster, Melinda A.; Rigor, Ignatius G.; Nghiem, Son V.; Kurtz, Nathan T.; Farrell, Sinead L.; Perovich, Donald K.; Sturm, Matthew

    2014-08-01

    Snow plays a key role in the growth and decay of Arctic sea ice. In winter, it insulates sea ice from cold air temperatures, slowing sea ice growth. From spring to summer, the albedo of snow determines how much insolation is absorbed by the sea ice and underlying ocean, impacting ice melt processes. Knowledge of the contemporary snow depth distribution is essential for estimating sea ice thickness and volume, and for understanding and modeling sea ice thermodynamics in the changing Arctic. This study assesses spring snow depth distribution on Arctic sea ice using airborne radar observations from Operation IceBridge for 2009-2013. Data were validated using coordinated in situ measurements taken in March 2012 during the Bromine, Ozone, and Mercury Experiment (BROMEX) field campaign. We find a correlation of 0.59 and root-mean-square error of 5.8 cm between the airborne and in situ data. Using this relationship and IceBridge snow thickness products, we compared the recent results with data from the 1937, 1954-1991 Soviet drifting ice stations. The comparison shows thinning of the snowpack, from 35.1 ± 9.4 to 22.2 ± 1.9 cm in the western Arctic, and from 32.8 ± 9.4 to 14.5 ± 1.9 cm in the Beaufort and Chukchi seas. These changes suggest a snow depth decline of 37 ± 29% in the western Arctic and 56 ± 33% in the Beaufort and Chukchi seas. Thinning is negatively correlated with the delayed onset of sea ice freezeup during autumn.

  13. [Spectral features analysis of sea ice in the Arctic Ocean].

    PubMed

    Ke, Chang-qing; Xie, Hong-jie; Lei, Rui-bo; Li, Qun; Sun, Bo

    2012-04-01

    Sea ice in the Arctic Ocean plays an important role in the global climate change, and its quick change and impact are the scientists' focus all over the world. The spectra of different kinds of sea ice were measured with portable ASD FieldSpec 3 spectrometer during the long-term ice station of the 4th Chinese national Arctic Expedition in 2010, and the spectral features were analyzed systematically. The results indicated that the reflectance of sea ice covered by snow is the highest one, naked sea ice the second, and melted sea ice the lowest. Peak and valley characteristics of spectrum curves of sea ice covered by thick snow, thin snow, wet snow and snow crystal are very significant, and the reflectance basically decreases with the wavelength increasing. The rules of reflectance change with wavelength of natural sea ice, white ice and blue ice are basically same, the reflectance of them is medium, and that of grey ice is far lower than natural sea ice, white ice and blue ice. It is very significant for scientific research to analyze the spectral features of sea ice in the Arctic Ocean and to implement the quantitative remote sensing of sea ice, and to further analyze its response to the global warming.

  14. A Lagrangian analysis of sea ice dynamics in the Arctic

    NASA Astrophysics Data System (ADS)

    Szanyi, S.; Lukovich, J. V.; Haller, G.; Barber, D. G.

    2014-12-01

    Recent studies have highlighted acceleration in sea ice drift and deformation in the Arctic over the last several decades, underlining the need for improved understanding of sea ice dynamics and dispersion. In this study we present Lagrangian diagnostics to quantify changes in the dynamical characteristics of the Arctic sea ice cover from 1979 to 2012 during the transition from a predominantly multi-year to a first-year ice regime. Examined in particular is the evolution in finite-time Lyapunov exponents (FTLEs), which monitor the rate at which neighboring particle trajectories diverge, and stretching rates throughout the Arctic. In this analysis we compute FTLEs for the Arctic ice drift field using National Snow and Ice Data Centre (NSIDC) Polar Pathfinder Daily 25 km EASE-Grid weekly sea ice motion vectors for the annual cycle beginning both from the sea ice minimum in September, and maximum in March. Sensitivity analyses show that maximal FTLEs, or ridges, are robust even with the introduction of significant noise. Probability density functions and mean values of FTLEs show a trend towards higher FTLE values characteristic of increased mixing in the Arctic in the last decade, in keeping with a transition to a weaker, thinner ice cover.

  15. Export of algal biomass from the melting Arctic sea ice.

    PubMed

    Boetius, Antje; Albrecht, Sebastian; Bakker, Karel; Bienhold, Christina; Felden, Janine; Fernández-Méndez, Mar; Hendricks, Stefan; Katlein, Christian; Lalande, Catherine; Krumpen, Thomas; Nicolaus, Marcel; Peeken, Ilka; Rabe, Benjamin; Rogacheva, Antonina; Rybakova, Elena; Somavilla, Raquel; Wenzhöfer, Frank

    2013-03-22

    In the Arctic, under-ice primary production is limited to summer months and is restricted not only by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. Research Vessel Polarstern visited the ice-covered eastern-central basins between 82° to 89°N and 30° to 130°E in summer 2012, when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 grams of carbon per square meter to the deep-sea floor of the central Arctic basins. Data from this cruise will contribute to assessing the effect of current climate change on Arctic productivity, biodiversity, and ecological function.

  16. Consequences of Future Increased Arctic Runoff on Arctic Ocean Stratification, Circulation, and Sea Ice Cover

    NASA Astrophysics Data System (ADS)

    Li, C.; Nummelin, A.; Ilicak, M.; Smedsrud, L. H.

    2015-12-01

    The Arctic sea ice cover depends strongly on the stratification of the underlying ocean, which itself depends on processes over a range of spatial scales, from circulation to shelf processes and vertical mixing. Also important for the stratification are the freshwater sources to the Arctic Ocean, including river runoff, low evaporation, and exchange with the Pacific Ocean. In the future, we expect even larger freshwater input as the global hydrological cycle accelerates, increasing high latitude precipitation and river runoff. Previous modelling studies show some robust responses to high latitude freshwater perturbations, including a strengthening of Arctic stratification and a weakening of the large-scale ocean circulation; some idealized modelling studies also document a stronger cyclonic circulation within the Arctic Ocean itself. Here, we adopt a more comprehensive modelling approach to better understand both the local processes and the broader linkages between the Arctic and surrounding oceans. We increase river runoff to the Arctic Ocean in a coupled ice--ocean general circulation model, and show contrasting responses in the polar and subpolar regions. Within the Arctic, the stratification strengthens, the halocline and Atlantic Water layer warm, and the cyclonic circulation spins up, in agreement with previous work. In the subpolar gyre region of the North Atlantic, the model simulates a colder and fresher water column with weaker barotropic circulation. In contrast to the estuarine circulation theory, the volume exchange between the Arctic Ocean and the surrounding oceans does not increase with increasing runoff. Changes in atmosphere-ocean heat exchange outside the sea ice-covered regions of the Arctic can influence the ocean-ice heat exchange within the Arctic. While these results are robust in our model, we require experiments with other model systems and more complete observational syntheses to better constrain the sensitivity of the climate system to

  17. Total and methylated mercury in Arctic multiyear sea ice.

    PubMed

    Beattie, Sarah A; Armstrong, Debbie; Chaulk, Amanda; Comte, Jérôme; Gosselin, Michel; Wang, Feiyue

    2014-05-20

    Mercury is one of the primary contaminants of concern in the Arctic marine ecosystem. While considerable efforts have been directed toward understanding mercury cycling in the Arctic, little is known about mercury dynamics within Arctic multiyear sea ice, which is being rapidly replaced with first-year ice. Here we report the first study on the distribution and potential methylation of mercury in Arctic multiyear sea ice. Based on three multiyear ice cores taken from the eastern Beaufort Sea and McClure Strait, total mercury concentrations ranged from 0.65 to 60.8 pM in bulk ice, with the highest values occurring in the topmost layer (∼40 cm) which is attributed to the dynamics of particulate matter. Methylated mercury concentrations ranged from below the method detection limit (<0.1 pM) to as high as 2.64 pM. The ratio of methylated to total mercury peaked, up to ∼40%, in the mid to bottom sections of the ice, suggesting the potential occurrence of in situ mercury methylation. The annual fluxes of total and methylated mercury into the Arctic Ocean via melt of multiyear ice are estimated to be 420 and 42 kg yr(-1), respectively, representing an important and changing source of mercury and methylmercury into the Arctic Ocean marine ecosystem.

  18. Arctic Sea ice studies with passive microwave satellite observations

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.

    1988-01-01

    The objectives of this research are: (1) to improve sea ice concentration determinations from passive microwave space observations; (2) to study the role of Arctic polynyas in the production of sea ice and the associated salinization of Arctic shelf water; and (3) to study large scale sea ice variability in the polar oceans. The strategy is to analyze existing data sets and data acquired from both the DMSP SSM/I and recently completed aircraft underflights. Special attention will be given the high resolution 85.5 GHz SSM/I channels for application to thin ice algorithms and processes studies. Analysis of aircraft and satellite data sets is expected to provide a basis for determining the potential of the SSM/I high frequency channels for improving sea ice algorithms and for investigating oceanic processes. Improved sea ice algorithms will aid the study of Arctic coastal polynyas which in turn will provide a better understanding of the role of these polynyas in maintaining the Arctic watermass structure. Analysis of satellite and archived meteorological data sets will provide improved estimates of annual, seasonal and shorter-term sea ice variability.

  19. Evaluation of Arctic Sea Ice Thickness Simulated by Arctic Ocean Model Intercomparison Project Models

    NASA Technical Reports Server (NTRS)

    Johnson, Mark; Proshuntinsky, Andrew; Aksenov, Yevgeny; Nguyen, An T.; Lindsay, Ron; Haas, Christian; Zhang, Jinlun; Diansky, Nikolay; Kwok, Ron; Maslowski, Wieslaw; Hakkinen, Sirpa; Ashik, Igor; De Cuevas, Beverly

    2012-01-01

    Six Arctic Ocean Model Intercomparison Project model simulations are compared with estimates of sea ice thickness derived from pan-Arctic satellite freeboard measurements (2004-2008); airborne electromagnetic measurements (2001-2009); ice draft data from moored instruments in Fram Strait, the Greenland Sea, and the Beaufort Sea (1992-2008) and from submarines (1975-2000); and drill hole data from the Arctic basin, Laptev, and East Siberian marginal seas (1982-1986) and coastal stations (1998-2009). Despite an assessment of six models that differ in numerical methods, resolution, domain, forcing, and boundary conditions, the models generally overestimate the thickness of measured ice thinner than approximately 2 mand underestimate the thickness of ice measured thicker than about approximately 2m. In the regions of flat immobile landfast ice (shallow Siberian Seas with depths less than 25-30 m), the models generally overestimate both the total observed sea ice thickness and rates of September and October ice growth from observations by more than 4 times and more than one standard deviation, respectively. The models do not reproduce conditions of fast ice formation and growth. Instead, the modeled fast ice is replaced with pack ice which drifts, generating ridges of increasing ice thickness, in addition to thermodynamic ice growth. Considering all observational data sets, the better correlations and smaller differences from observations are from the Estimating the Circulation and Climate of the Ocean, Phase II and Pan-Arctic Ice Ocean Modeling and Assimilation System models.

  20. Shifting patterns of life in the Pacific Arctic and sub-Arctic seas.

    PubMed

    Grebmeier, Jacqueline M

    2012-01-01

    Recent changes in the timing of sea ice formation and retreat, along with increasing seawater temperatures, are driving shifts in marine species composition that may signal marine ecosystem reorganization in the Pacific Arctic sector. Interannual variability in seasonal sea ice retreat in the northern Bering Sea has been observed over the past decade; north of the Bering Strait, the Chukchi Sea ecosystem has had consistent earlier spring sea ice retreat and later fall sea ice formation. The latitudinal gradient in sea ice persistence, water column chlorophyll, and carbon export to the sediments has a direct impact on ecosystem structure in this Arctic/sub-Arctic complex. Large-scale decadal patterns in the benthic biological system are driven by sea ice extent, hydrographic forcing, and export production that influences benthic processes. Shifts in species composition and northward faunal range expansions indicate a changing system. The shifting patterns of life and change in key biological processes have the potential for a system-wide reorganization of the marine ecosystem. PMID:22457969

  1. EOS Aqua AMSR-E Arctic Sea Ice Validation Program

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Markus, T.; Gasiewski, A.; Klein, M.; Maslanik, J.; Sturm, M.; Stroeve, J.; Heinrichs, J.

    2004-01-01

    A coordinated Arctic sea ice validation field campaign using the NASA Wallops P-3B aircraft was successfully completed in March 2003. This campaign was part of the program for validating the Earth Observing System (EOS) Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea ice products. The AMSR-E, designed and built by the Japanese National Space Development Agency for NASA, was launched May 4,2002 on the EOS Aqua spacecraft. The AMSR-E sea ice products include sea ice concentration, sea ice temperature, and snow depth on sea ice. The primary instrument on the P-3B aircraft was the NOAA ETL Polarimetric Scanning Radiometer (PSR) covering the same frequencies and polarizations as the AMSR-E. This paper describes the objectives of each of the seven flights, the Arctic regions overflown, and the coordination among satellite, aircraft, and surface-based measurements. Two of the seven aircraft flights were coordinated with scientists making surface measurements of snow and ice properties including sea ice temperature and snow depth on sea ice at a study area near Barrow, AK and at a Navy ice camp located in the Beaufort Sea. The remaining flights covered portions of the Bering Sea ice edge, the Chukchi Sea, and Norton Sound. Comparisons among the satellite and aircraft PSR data sets are presented.

  2. Factors affecting dynamical seasonal prediction of the Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Wang, W.; Chen, M.; Kumar, A.; Hung, M.

    2013-12-01

    Arctic sea ice variability has received increasing attention during the last decade. Seasonal prediction of the Arctic sea ice has been primarily produced with statistical methods during the past years. A few operational centers have recently implemented dynamical sea ice component in the coupled atmosphere-ocean forecast systems for seasonal climate prediction. Yet various issues remain to be resolved for an improved prediction of seasonal sea ice variations. In this study, we analyze the forecast of sea ice extent in the NCEP Climate Forecast System version 2 (CFSv2) and address factors that affect the representation of the observed sea ice variability in the forecast model. The analysis will be based on retrospective and real-time 9-month forecasts from the CFSv2 for 1982-2012. We will first assess the overall performance of the CFSv2 in capturing the observed sea ice extent climatology, long-term trend, and interannual anomalies. We will then discuss factors that affect the sea ice prediction, including: (1) consistency of the initialization of the observed sea ice concentration, (2) impacts of surface heat fluxes related to atmospheric model physics, (3) bias in sea surface temperatures, and (4) impacts of initial sea ice thickness.

  3. Classification methods for monitoring Arctic sea ice using OKEAN passive/active two-channel microwave data

    USGS Publications Warehouse

    Belchansky, Gennady I.; Douglas, David C.

    2000-01-01

    This paper presents methods for classifying Arctic sea ice using both passive and active (2-channel) microwave imagery acquired by the Russian OKEAN 01 polar-orbiting satellite series. Methods and results are compared to sea ice classifications derived from nearly coincident Special Sensor Microwave Imager (SSM/I) and Advanced Very High Resolution Radiometer (AVHRR) image data of the Barents, Kara, and Laptev Seas. The Russian OKEAN 01 satellite data were collected over weekly intervals during October 1995 through December 1997. Methods are presented for calibrating, georeferencing and classifying the raw active radar and passive microwave OKEAN 01 data, and for correcting the OKEAN 01 microwave radiometer calibration wedge based on concurrent 37 GHz horizontal polarization SSM/I brightness temperature data. Sea ice type and ice concentration algorithms utilized OKEAN's two-channel radar and passive microwave data in a linear mixture model based on the measured values of brightness temperature and radar backscatter, together with a priori knowledge about the scattering parameters and natural emissivities of basic sea ice types. OKEAN 01 data and algorithms tended to classify lower concentrations of young or first-year sea ice when concentrations were less than 60%, and to produce higher concentrations of multi-year sea ice when concentrations were greater than 40%, when compared to estimates produced from SSM/I data. Overall, total sea ice concentration maps derived independently from OKEAN 01, SSM/I, and AVHRR satellite imagery were all highly correlated, with uniform biases, and mean differences in total ice concentration of less than four percent (sd<15%).

  4. Light Absorption in Arctic Sea Ice - Black Carbon vs Chlorophyll

    NASA Astrophysics Data System (ADS)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Hunke, E. C.; Flanner, M.; Wang, H.; Dubey, M. K.; Jeffery, N.

    2015-12-01

    The fingerprint of climate change is more obvious in the Arctic than any other place on Earth. This is not only because the surface temperature there has increased at twice the rate of global mean temperature but also because Arctic sea ice extent has reached a record low of 49% reduction relative to the 1979-2000 climatology. Radiation absorption through black carbon (BC) deposited on Arctic snow and sea ice surface is one of the major hypothesized contributors to the decline. However, we note that chlorophyll-a absorption owing to increasing biology activity in this region could be a major competitor during boreal spring. Modeling of sea-ice physical and biological processes together with experiments and field observations promise rapid progress in the quality of Arctic ice predictions. Here we develop a dynamic ice system module to investigate discrete absorption of both BC and chlorophyll in the Arctic, using BC deposition fields from version 5 of Community Atmosphere Model (CAM5) and vertically distributed layers of chlorophyll concentrations from Sea Ice Model (CICE). To this point, our black carbon mixing ratios compare well with available in situ data. Both results are in the same order of magnitude. Estimates from our calculations show that sea ice and snow around the Canadian Arctic Archipelago and Baffin Bay has the least black carbon absorption while values at the ice-ocean perimeter in the region of the Barents Sea peak significantly. With regard to pigment concentrations, high amounts of chlorophyll are produced in Arctic sea ice by the bottom microbial community, and also within the columnar pack wherever substantial biological activity takes place in the presence of moderate light. We show that the percentage of photons absorbed by chlorophyll in the spring is comparable to the amount attributed to BC, especially in areas where the total deposition rates are decreasing with time on interannual timescale. We expect a continuous increase in

  5. Empirical linkages between Arctic sea ice extents and northern hemisphere, mid-latitude column ozone levels

    SciTech Connect

    Marko, J.R.; Fissel, D.B.

    1993-01-08

    Statistically significant correlations are demonstrated between annual mean column ozone data collected at mid-latitude sites and mean annual and winter sea ice extents east of Greenland and in the Barents and Kara Seas. These results are discussed with reference to the locations of the correlated parameters relative to the Basic Pattern of stratosphere-solar flux correlations. Possibilities for underlying linkage mechanisms are considered and related to recent decreasing hemispheric ozone level trends. 19 refs., 2 figs., 2 tabs.

  6. Iodocarbons and Bromocarbons Associated with Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Roscoe, H. K.; Obbard, R. W.; Atkinson, H. M.; Hughes, C.; Liss, P. S.

    2015-12-01

    Short-lived halocarbons were measured in Arctic sea-ice brine, seawater and air above the Greenland and Norwegian seas at about 81°N in mid-summer, from a melting ice floe at the edge of the ice pack. In the ice floe, concentrations of C2H5I, 2-C3H7I and CH2Br2 showed significant enhancement in the sea ice brine, of average factors of 1.7, 1.4 and 2.5 times respectively, compared to the water underneath and after normalising to brine volume. Concentrations of mono-iodocarbons in air are the highest ever reported, and our calculations suggest increased fluxes of halocarbons to the atmosphere may result from their sea-ice enhancement. Laboratory measurements suggest that sea-ice diatoms produce iodocarbons in response to salinity stress. Concentrations of halocarbons in the Arctic ice were similar to those in earlier work in Antarctic sea ice that was similarly warm and porous. As climate warms and Arctic sea ice becomes more like that of the Antarctic, our results lead us to expect the production of iodocarbons and so of reactive iodine gases to increase.

  7. Pliocene palaeoceanography of the Arctic Ocean and subarctic seas.

    PubMed

    Matthiessen, Jens; Knies, Jochen; Vogt, Christoph; Stein, Ruediger

    2009-01-13

    The Pliocene is important in the geological evolution of the high northern latitudes. It marks the transition from restricted local- to extensive regional-scale glaciations on the circum-Arctic continents between 3.6 and 2.4Ma. Since the Arctic Ocean is an almost land-locked basin, tectonic activity and sea-level fluctuations controlled the geometry of ocean gateways and continental drainage systems, and exerted a major influence on the formation of continental ice sheets, the distribution of river run-off, and the circulation and water mass characteristics in the Arctic Ocean. The effect of a water mass exchange restricted to the Bering and Fram Straits on the oceanography is unknown, but modelling experiments suggest that this must have influenced the Atlantic meridional overturning circulation. Cold conditions associated with perennial sea-ice cover might have prevailed in the central Arctic Ocean throughout the Pliocene, whereas colder periods alternated with warmer seasonally ice-free periods in the marginal areas. The most pronounced oceanographic change occurred in the Mid-Pliocene when the circulation through the Bering Strait reversed and low-salinity waters increasingly flowed from the North Pacific into the Arctic Ocean. The excess freshwater supply might have facilitated sea-ice formation and contributed to a decrease in the Atlantic overturning circulation. PMID:18926969

  8. Perspectives on the Arctic's shrinking sea-ice cover.

    PubMed

    Serreze, Mark C; Holland, Marika M; Stroeve, Julienne

    2007-03-16

    Linear trends in arctic sea-ice extent over the period 1979 to 2006 are negative in every month. This ice loss is best viewed as a combination of strong natural variability in the coupled ice-ocean-atmosphere system and a growing radiative forcing associated with rising concentrations of atmospheric greenhouse gases, the latter supported by evidence of qualitative consistency between observed trends and those simulated by climate models over the same period. Although the large scatter between individual model simulations leads to much uncertainty as to when a seasonally ice-free Arctic Ocean might be realized, this transition to a new arctic state may be rapid once the ice thins to a more vulnerable state. Loss of the ice cover is expected to affect the Arctic's freshwater system and surface energy budget and could be manifested in middle latitudes as altered patterns of atmospheric circulation and precipitation. PMID:17363664

  9. Perspectives on the Arctic's shrinking sea-ice cover.

    PubMed

    Serreze, Mark C; Holland, Marika M; Stroeve, Julienne

    2007-03-16

    Linear trends in arctic sea-ice extent over the period 1979 to 2006 are negative in every month. This ice loss is best viewed as a combination of strong natural variability in the coupled ice-ocean-atmosphere system and a growing radiative forcing associated with rising concentrations of atmospheric greenhouse gases, the latter supported by evidence of qualitative consistency between observed trends and those simulated by climate models over the same period. Although the large scatter between individual model simulations leads to much uncertainty as to when a seasonally ice-free Arctic Ocean might be realized, this transition to a new arctic state may be rapid once the ice thins to a more vulnerable state. Loss of the ice cover is expected to affect the Arctic's freshwater system and surface energy budget and could be manifested in middle latitudes as altered patterns of atmospheric circulation and precipitation.

  10. Late Cenozoic Arctic Ocean sea ice and terrestrial paleoclimate.

    USGS Publications Warehouse

    Carter, L.D.; Brigham-Grette, J.; Marincovich, L., Jr.; Pease, V.L.; Hillhouse, J.W.

    1986-01-01

    Sea otter remains found in deposits of two marine transgressions (Bigbendian and Fishcreekian) of the Alaskan Arctic Coastal Plain which occurred between 2.4 and 3 Ma suggest that during these two events the southern limit of seasonal sea ice was at least 1600 km farther north than at present in Alaskan waters. Perennial sea ice must have been severely restricted or absent, and winters were warmer than at present during these two sea-level highstands. Paleomagnetic, faunal, and palynological data indicate that the later transgression (Fishcreekian) occurred during the early part of the Matuyama Reversed-Polarity Chron. -from Authors

  11. Interannual variability of summer sea ice thickness in the Siberian and central Arctic under different atmospheric circulation regimes

    NASA Astrophysics Data System (ADS)

    Haas, Christian; Eicken, Hajo

    2001-03-01

    Extensive drill hole and electromagnetic induction measurements of sea ice thickness in the Siberian and central Arctic Seas in the summers of 1993, 1995, and 1996 reveal significant interannual variability. In the Laptev Sea, minimum and maximum modal first-year ice thicknesses amounted to 1.25 and 1.85 m in 1995 and 1996, respectively. Ice thickness correlates with ice extent, which reached a record minimum in August 1995 and was well above average in 1996. These differences are explained by the strength and location of a summer cyclonic atmospheric circulation pattern affecting both ice advection and surface melt. From drifting buoys deployed in 1995 and satellite radar backscatter data, first- and second-year ice regimes are delineated. Differences in first-year ice backscatter coefficients between 1993, 1995, and 1996 are explained by differences in level ice surface roughness. The Lagrangian evolution of ice thickness between 1995 and 1996 is studied. While the shape of the thickness distribution does not change significantly, the mean (modal) ice thickness of the ice field increases from 1.80 m (1.25 m) in 1995 to 2.86 m (2.25 m) in 1996. The thickness distribution of second-year ice in 1996 closely agrees with that of level multiyear ice downstream in the Transpolar Drift obtained in 1991. In 1996, mean level ice thickness increases at 0.23 and 0.16 m deg-1 with latitude in the Kara and Laptev Sea sectors of the Arctic Ocean, respectively.

  12. Contrasts in Arctic shelf sea-ice regimes and some implications: Beaufort Sea versus Laptev Sea

    USGS Publications Warehouse

    Reimnitz, E.; Dethleff, D.; Nurnberg, D.

    1994-01-01

    The winter ice-regime of the 500 km) from the mainland than in the Beaufort Sea. As a result, the annual freeze-up does not incorporate old, deep-draft ice, and with a lack of compression, such deep-draft ice is not generated in situ, as on the Beaufort Sea shelf. The Laptev Sea has as much as 1000 km of fetch at the end of summer, when freezing storms move in and large (6 m) waves can form. Also, for the first three winter months, the polynya lies inshore at a water depth of only 10 m. Turbulence and freezing are excellent conditions for sediment entrainment by frazil and anchor ice, when compared to conditions in the short-fetched Beaufort Sea. We expect entrainment to occur yearly. Different from the intensely ice-gouged Beaufort Sea shelf, hydraulic bedforms probably dominate in the Laptev Sea. Corresponding with the large volume of ice produced, more dense water is generated in the Laptev Sea, possibly accompanied by downslope sediment transport. Thermohaline convection at the midshelf polynya, together with the reduced rate of bottom disruption by ice keels, may enhance benthic productivity and permit establishment of open-shelf benthic communities which in the Beaufort Sea can thrive only in the protection of barrier islands. Indirect evidence for high benthic productivity is found in the presence of walrus, who also require year-round open water. By contrast, lack of a suitable environment restricts walrus from the Beaufort Sea, although over 700 km farther to the south. We could speculate on other consequences of the different ice regimes in the Beaufort and Laptev Seas, but these few examples serve to point out the dangers of exptrapolating from knowledge gained in the North American Arctic to other shallow Arctic shelf settings. ?? 1994.

  13. The Northern Bering Sea: An Arctic Ecosystem in Change

    NASA Astrophysics Data System (ADS)

    Grebmeier, J. M.; Cooper, L. W.

    2004-12-01

    Arctic systems can be rich and diverse habitats for marine life in spite of the extreme cold environment. Benthic faunal populations and associated biogeochemical cycling processes are influenced by sea-ice extent, seawater hydrography (nutrients, salinity, temperature, currents), and water column production. Benthic organisms on the Arctic shelves and margins are long-term integrators of overlying water column processes. Because these organisms have adapted to living at cold extremes, it is reasonable to expect that these communities will be among the most susceptible to climate warming. Recent observations show that Arctic sea ice in the North American Arctic is melting and retreating northward earlier in the season and the timing of these events can have dramatic impacts on the biological system. Changes in overlying primary production, pelagic-benthic coupling, and benthic production and community structure can have cascading effects to higher trophic levels, particularly benthic feeders such as walruses, gray whales, and diving seaducks. Recent indicators of contemporary Arctic change in the northern Bering Sea include seawater warming and reduction in ice extent that coincide with our time-series studies of benthic clam population declines in the shallow northern Bering shelf in the 1990's. In addition, declines in benthic amphipod populations have also likely influenced the movement of feeding gray whales to areas north of Bering Strait during this same time period. Finally a potential consequence of seawater warming and reduced ice extent in the northern Bering Sea could be the northward movement of bottom feeding fish currently in the southern Bering Sea that prey on benthic fauna. This would increase the feeding pressure on the benthic prey base and enhance competition for this food source for benthic-feeding marine mammals and seabirds. This presentation will outline recent biological changes observed in the northern Bering Sea ecosystem as documented in

  14. Lidar detection of leads in Arctic sea ice

    NASA Technical Reports Server (NTRS)

    Schnell, R. C.; Barry, R. G.; Miles, M. W.; Andreas, E. L.; Radke, L. F.; Brock, C. A.; Mccormick, M. P.

    1989-01-01

    REMOTE sensing using an airborne infrared lidar has shown an unexpected capability to detect open leads in Arctic sea ice and their associated meteorology in winter. It is shown here that vertical profiles of backscattered radiation demonstrate strong returns from hydrometeor plumes originating from leads having a surface water temperature near -1.8 C. Recently refrozen leads are also distinguishable by the lidar backscatter from adjacent thicker, older sea ice. Wide leads release enough energy to create buoyant plumes which penetrate the Arctic boundary layer inversion, transporting heat and moisture into the troposphere. These results show that the role of the Arctic as a global heat sink may need to be reevaluated, and that lead plumes have a significant effect on the radiation budget.

  15. Data-driven Analysis and Prediction of Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Kondrashov, D. A.; Chekroun, M.; Ghil, M.; Yuan, X.; Ting, M.

    2015-12-01

    We present results of data-driven predictive analyses of sea ice over the main Arctic regions. Our approach relies on the Multilayer Stochastic Modeling (MSM) framework of Kondrashov, Chekroun and Ghil [Physica D, 2015] and it leads to prognostic models of sea ice concentration (SIC) anomalies on seasonal time scales.This approach is applied to monthly time series of leading principal components from the multivariate Empirical Orthogonal Function decomposition of SIC and selected climate variables over the Arctic. We evaluate the predictive skill of MSM models by performing retrospective forecasts with "no-look ahead" forup to 6-months ahead. It will be shown in particular that the memory effects included in our non-Markovian linear MSM models improve predictions of large-amplitude SIC anomalies in certain Arctic regions. Furtherimprovements allowed by the MSM framework will adopt a nonlinear formulation, as well as alternative data-adaptive decompositions.

  16. Arctic Sea Ice Changes, Interactions, and Feedbacks on the Arctic Climate during the Satellite Era

    NASA Astrophysics Data System (ADS)

    Wang, X.; Key, J. R.; Liu, Y.

    2011-12-01

    Of all the components of the Earth climate system, the cryosphere is arguably the least understood even though it is a very important indicator and an effective modulator of regional and global climate change. Changes in sea ice will significantly affect exchanges of momentum, heat, and mass between the ocean and the atmosphere, and have profound socio-economic impacts on transportation, fisheries, hunting, polar animal habitat and more. In the last three decades, the Arctic underwent significant changes in sea ice as part of the accelerated global climate change. With the recently developed One-dimensional Thermodynamic Ice Model (OTIM), sea and lake ice thickness and trends can be reasonably estimated. The OTIM has been extensively validated against submarine and moored upward-looking sonar measurements, meteorological station measurements, and comprehensive numerical model simulations. The Extended AVHRR Polar Pathfinder (APP-x) dataset has 25 climate parameters covering surface, cloud, and sea ice properties as well as surface and top-of-atmosphere radiative fluxes for the period 1982 - 2004 over the Arctic and Antarctic at 25 km resolution. The OTIM has been used with APP-x dataset for Arctic sea ice thickness and volume estimation. Statistical analysis of spatial and temporal distributions and trends in sea ice extent, thickness, and volume over the satellite period has been performed, along with the temporal analysis of first year and multiple year sea ice extent changes. Preliminary results show clear evidence that Arctic sea ice has been experiencing significant changes over the last two decades of the 20th century. The Arctic sea ice has been shrinking unexpectedly fast with the declines in sea ice extent, thickness, and volume, most apparent in the fall season. Moreover, satellites provide an unprecedented opportunity to observe Arctic sea ice and its changes with high spatial and temporal coverage that is making it an ideal data source for mitigating

  17. Correlated declines in Pacific arctic snow and sea ice cover

    USGS Publications Warehouse

    Stone, Robert P.; Douglas, David C.; Belchansky, Gennady I.; Drobot, Sheldon

    2005-01-01

    Simulations of future climate suggest that global warming will reduce Arctic snow and ice cover, resulting in decreased surface albedo (reflectivity). Lowering of the surface albedo leads to further warming by increasing solar absorption at the surface. This phenomenon is referred to as “temperature–albedo feedback.” Anticipation of such a feedback is one reason why scientists look to the Arctic for early indications of global warming. Much of the Arctic has warmed significantly. Northern Hemisphere snow cover has decreased, and sea ice has diminished in area and thickness. As reported in the Arctic Climate Impact Assessment in 2004, the trends are considered to be outside the range of natural variability, implicating global warming as an underlying cause. Changing climatic conditions in the high northern latitudes have influenced biogeochemical cycles on a broad scale. Warming has already affected the sea ice, the tundra, the plants, the animals, and the indigenous populations that depend on them. Changing annual cycles of snow and sea ice also affect sources and sinks of important greenhouse gases (such as carbon dioxide and methane), further complicating feedbacks involving the global budgets of these important constituents. For instance, thawing permafrost increases the extent of tundra wetlands and lakes, releasing greater amounts of methane into the atmosphere. Variable sea ice cover may affect the hemispheric carbon budget by altering the ocean–atmosphere exchange of carbon dioxide. There is growing concern that amplification of global warming in the Arctic will have far-reaching effects on lower latitude climate through these feedback mechanisms. Despite the diverse and convincing observational evidence that the Arctic environment is changing, it remains unclear whether these changes are anthropogenically forced or result from natural variations of the climate system. A better understanding of what controls the seasonal distributions of snow and ice

  18. Analysis of WindSat Data over Arctic Sea Ice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The radiation of the 3rd and 4th Stokes components emitted by Arctic sea ice and observed by the spaceborne fully polarimetric radiometer WindSat is investigated. Two types of analysis are carried out, spatial (maps of different quadrants of azimuth look angles) and temporal (time series of daily av...

  19. Global warming releases microplastic legacy frozen in Arctic Sea ice

    NASA Astrophysics Data System (ADS)

    Obbard, Rachel W.; Sadri, Saeed; Wong, Ying Qi; Khitun, Alexandra A.; Baker, Ian; Thompson, Richard C.

    2014-06-01

    When sea ice forms it scavenges and concentrates particulates from the water column, which then become trapped until the ice melts. In recent years, melting has led to record lows in Arctic Sea ice extent, the most recent in September 2012. Global climate models, such as that of Gregory et al. (2002), suggest that the decline in Arctic Sea ice volume (3.4% per decade) will actually exceed the decline in sea ice extent, something that Laxon et al. (2013) have shown supported by satellite data. The extent to which melting ice could release anthropogenic particulates back to the open ocean has not yet been examined. Here we show that Arctic Sea ice from remote locations contains concentrations of microplastics at least two orders of magnitude greater than those that have been previously reported in highly contaminated surface waters, such as those of the Pacific Gyre. Our findings indicate that microplastics have accumulated far from population centers and that polar sea ice represents a major historic global sink of man-made particulates. The potential for substantial quantities of legacy microplastic contamination to be released to the ocean as the ice melts therefore needs to be evaluated, as do the physical and toxicological effects of plastics on marine life.

  20. Arctic Moisture Source for Eurasian Snow Cover Variations in Autumn

    NASA Astrophysics Data System (ADS)

    Wegmann, M.

    2015-12-01

    Global warming is enhanced at high northern latitudes where the Arctic surface airtemperature has risen at twice the rate of the global average in recent decades - afeature called Arctic amplification. This recent Arctic warming signal likely resultsfrom several factors such as the albedo feedback due to a diminishing cryosphere,enhanced poleward atmospheric and oceanic transport, and change in humidity. Moreover, Arcticsummer sea-ice extent has declined by more than 10% per decade since the start ofthe satellite era (e.g. Stroeve et al., 2012), culminating in a new record low inSeptember 2012.Eurasian snow cover changes have been suggested as a driver for changes in theArctic Oscillation and might provide a link between sea ice decline in the Arcticduring summer and atmospheric circulation in the following winter. However, themechanism connecting snow cover in Eurasia to sea ice decline in autumn is stillunder debate. Our analysis focuses on sea ice decline in the Barents-Kara Sea region, which allowsus to specify regions of interest for FLEXPART forward and backwards moisturetrajectories. Based on Eularian and Lagrangian diagnostics from ERA-INTERIM, wecan address the origin and cause of late autumn snow depth variations in a dense(snow observations from 820 land stations), unutilized observational datasets over theCommonwealth of Independent States.Open waters in the Barents and Kara Sea have been shown to increase the diabaticheating of the atmosphere, which amplifies baroclinic cyclones and might induce aremote atmospheric response by triggering stationary Rossby waves (Honda et al.2009).In agreement with these studies, our results show enhanced storm activity originatingat the Barents and Kara with disturbances entering the continent through a smallsector from the Barents and Kara Seas. Maxima in storm activity trigger increasing uplift, oftenaccompanied by positive snowfall and snow depth anomalies.We show that declining sea ice in the Barents and Kara Seas

  1. Variability of Arctic Sea Ice as Determined from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1999-01-01

    The compiled, quality-controlled satellite multichannel passive-microwave record of polar sea ice now spans over 18 years, from November 1978 through December 1996, and is revealing considerable information about the Arctic sea ice cover and its variability. The information includes data on ice concentrations (percent areal coverages of ice), ice extents, ice melt, ice velocities, the seasonal cycle of the ice, the interannual variability of the ice, the frequency of ice coverage, and the length of the sea ice season. The data reveal marked regional and interannual variabilities, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 sq km, while individual regions experienced much greater percent variations, for instance, with the Greenland Sea having a range of 740,000 - 1,110,000 sq km in its yearly maximum ice coverage. In spite of the large variations from year to year and region to region, overall the Arctic ice extents showed a statistically significant, 2.80% / decade negative trend over the 18.2-year period. Ice season lengths, which vary from only a few weeks near the ice margins to the full year in the large region of perennial ice coverage, also experienced interannual variability, along with spatially coherent overall trends. Linear least squares trends show the sea ice season to have lengthened in much of the Bering Sea, Baffin Bay, the Davis Strait, and the Labrador Sea, but to have shortened over a much larger area, including the Sea of Okhotsk, the Greenland Sea, the Barents Sea, and the southeastern Arctic.

  2. Improving sea level record in arctic using ENVISAT altimeter measurements

    NASA Astrophysics Data System (ADS)

    Thibaut, Pierre; Poisson, Jean-Christophe; Hoang, Duc; Quartly, Graham; Kurekin, Andrey

    2015-04-01

    The Arctic is an important component of the climate system whose exact influence on ocean circulation is still poorly understood today. This region is also very sensitive to global warming and some direct consequences like melting ice are particularly visible. In this context, extending the knowledge of the sea level variability as far as possible in the Arctic Ocean is a valuable contribution to the understanding of rapid changes occurring in this region. Due to a particularly complex and unstable environment, ocean observation is challenging considering that sea level measurements can be widely corrupted by the presence of sea ice in the altimeter footprint. In the framework of the ESA Sea Level Climate Change Initiative project, new algorithms have been developed and implemented to process 10 years of ENVISAT altimeter data over the Arctic Ocean and to improve the sea level measurement in this region. The new processing chain contains three main steps. The first task consists in identifying altimetric returns for which a standard proven estimation processing may be used, and in flagging those requiring more sophisticated processing. This will include introducing a novel approach that uses the relationship with neighbouring waveforms to aid in the identification of key reflecting surfaces. The second task consists in applying estimators that performs better in situations where sea-ice covers partially or totally the observed surface. The last task consists in investigating the transition zones to make sure that no artificial discontinuities are introduced by the different processing and to reduce these discontinuities. We propose in this talk, to explain and illustrate the different steps of this study and to show important figures of improvement regarding the estimation of sea level variability in the Arctic Ocean.

  3. Simulating Arctic clouds during Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE)

    NASA Astrophysics Data System (ADS)

    Bromwich, D. H.; Hines, K. M.; Wang, S. H.

    2015-12-01

    The representation within global and regional models of the extensive low-level cloud cover over polar oceans remains a critical challenge for quantitative studies and forecasts of polar climate. In response, the polar-optimized version of the Weather Research and Forecasting model (Polar WRF) is used to simulate the meteorology, boundary layer, and Arctic clouds during the September-October 2014 Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE) project. Polar WRF was developed with several adjustments to the sea ice thermodynamics in WRF. ARISE was based out of Eielson Air Force Base near Fairbanks, Alaska and included multiple instrumented C-130 aircraft flights over open water and sea ice of the Beaufort Sea. Arctic boundary layer clouds were frequently observed within cold northeasterly flow over the open ocean and ice. Preliminary results indicate these clouds were primarily liquid water, with characteristics differing between open water and sea ice surfaces. Simulated clouds are compared to ARISE observations. Furthermore, Polar WRF simulations are run for the August-September 2008 Arctic Summer Cloud Ocean Study (ASCOS) for comparison to the ARISE. Preliminary analysis shows that simulated low-level water clouds over the sea ice are too extensive during the the second half of the ASCOS field program. Alternatives and improvements to the Polar WRF cloud schemes are considered. The goal is to use the ARISE and ASCOS observations to achieve an improved polar supplement to the WRF code for open water and sea ice that can be provided to the Polar WRF community.

  4. Does Arctic sea ice reduction foster shelf-basin exchange?

    PubMed

    Ivanov, Vladimir; Watanabe, Eiji

    2013-12-01

    The recent shift in Arctic ice conditions from prevailing multi-year ice to first-year ice will presumably intensify fall-winter sea ice freezing and the associated salt flux to the underlying water column. Here, we conduct a dual modeling study whose results suggest that the predicted catastrophic consequences for the global thermohaline circulation (THC), as a result of the disappearance of Arctic sea ice, may not necessarily occur. In a warmer climate, the substantial fraction of dense water feeding the Greenland-Scotland overflow may form on Arctic shelves and cascade to the deep basin, thus replenishing dense water, which currently forms through open ocean convection in the sub-Arctic seas. We have used a simplified model for estimating how increased ice production influences shelf-basin exchange associated with dense water cascading. We have carried out case studies in two regions of the Arctic Ocean where cascading was observed in the past. The baseline range of buoyancy-forcing derived from the columnar ice formation was calculated as part of a 30-year experiment of the pan-Arctic coupled ice-ocean general circulation model (GCM). The GCM results indicate that mechanical sea ice divergence associated with lateral advection accounts for a significant part of the interannual variations in sea ice thermal production in the coastal polynya regions. This forcing was then rectified by taking into account sub-grid processes and used in a regional model with analytically prescribed bottom topography and vertical stratification in order to examine specific cascading conditions in the Pacific and Atlantic sectors of the Arctic Ocean. Our results demonstrate that the consequences of enhanced ice formation depend on geographical location and shelf-basin bathymetry. In the Pacific sector, strong density stratification in slope waters impedes noticeable deepening of shelf-origin water, even for the strongest forcing applied. In the Atlantic sector, a 1.5x increase of

  5. Does Arctic sea ice reduction foster shelf-basin exchange?

    PubMed

    Ivanov, Vladimir; Watanabe, Eiji

    2013-12-01

    The recent shift in Arctic ice conditions from prevailing multi-year ice to first-year ice will presumably intensify fall-winter sea ice freezing and the associated salt flux to the underlying water column. Here, we conduct a dual modeling study whose results suggest that the predicted catastrophic consequences for the global thermohaline circulation (THC), as a result of the disappearance of Arctic sea ice, may not necessarily occur. In a warmer climate, the substantial fraction of dense water feeding the Greenland-Scotland overflow may form on Arctic shelves and cascade to the deep basin, thus replenishing dense water, which currently forms through open ocean convection in the sub-Arctic seas. We have used a simplified model for estimating how increased ice production influences shelf-basin exchange associated with dense water cascading. We have carried out case studies in two regions of the Arctic Ocean where cascading was observed in the past. The baseline range of buoyancy-forcing derived from the columnar ice formation was calculated as part of a 30-year experiment of the pan-Arctic coupled ice-ocean general circulation model (GCM). The GCM results indicate that mechanical sea ice divergence associated with lateral advection accounts for a significant part of the interannual variations in sea ice thermal production in the coastal polynya regions. This forcing was then rectified by taking into account sub-grid processes and used in a regional model with analytically prescribed bottom topography and vertical stratification in order to examine specific cascading conditions in the Pacific and Atlantic sectors of the Arctic Ocean. Our results demonstrate that the consequences of enhanced ice formation depend on geographical location and shelf-basin bathymetry. In the Pacific sector, strong density stratification in slope waters impedes noticeable deepening of shelf-origin water, even for the strongest forcing applied. In the Atlantic sector, a 1.5x increase of

  6. Ocean farfield response to projected Arctic sea ice loss.

    NASA Astrophysics Data System (ADS)

    Jochum, Markus; Deser, Clara; Tomas, Robert

    2016-04-01

    An ensemble of 20 fully coupled CESM simulations is used to elucidate the ocean's role in shaping the global climate response to projected Arctic sea ice loss. The ensemble allows us to separate unambiguously between internal variability and forced changes. Thus, it is possible to identify the oceanic processes by which sea ice induced changes in Arctic and North Pacific sea level pressure are transmitted across the world ocean. Of particular interest is the Kelvin wave train that connects the North Atlantic with the equatorial Pacific. Within 10 years after the loss of sea ice the oceanic signal arrives in the Pacific and leads to a slow and steady deepening of the equatorial thermocline and, after another 5 decades, the subtropical thermocline. This suggests that the current Arctic sea ice loss already set into motion changes in tropical Pacific climate that will be felt several decades from now. We will dicuss these ocean induced changes in the mean climate as well as ENSO and explore possibilities of observational verification.

  7. Regional variability in sea ice melt in a changing Arctic.

    PubMed

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2015-07-13

    In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover.

  8. Regional variability in sea ice melt in a changing Arctic

    PubMed Central

    Perovich, Donald K.; Richter-Menge, Jacqueline A.

    2015-01-01

    In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover. PMID:26032323

  9. Sea-ice distribution in the modern Arctic Ocean: Biomarker records from trans-Arctic Ocean surface sediments

    NASA Astrophysics Data System (ADS)

    Xiao, Xiaotong; Fahl, Kirsten; Müller, Juliane; Stein, Ruediger

    2015-04-01

    Records of the spatial and temporal variability of Arctic Ocean sea ice are of significance for understanding the causes of the dramatic decrease in Arctic sea-ice cover of recent years. In this context, the newly developed sea-ice proxy IP25, a mono-unsaturated highly branched isoprenoid alkene with 25 carbon atoms biosynthesized specifically by sea-ice associated diatoms and only found in Arctic and sub-Arctic marine sediments, has been used to reconstruct the recent spatial sea-ice distribution. The phytoplankton biomarkers 24S-brassicasterol and dinosterol were determined alongside IP25 to distinguish ice-free or permanent ice conditions, and to estimate the sea-ice conditions semi-quantitatively by means of the phytoplankton-IP25 index (PIP25). Within our study, for the first time a comprehensive data set of these biomarkers was produced using fresh and deep-frozen surface sediment samples from the Central Arctic Ocean proper (>80°N latitude) characterised by a permanent ice cover today and recently obtained surface sediment samples from the Chukchi Plateau/Basin partly covered by perennial sea ice. In addition, published and new data from other Arctic and sub-Arctic regions were added to generate overview distribution maps of IP25 and phytoplankton biomarkers across major parts of the modern Arctic Ocean. These comprehensive biomarker data indicate perennial sea-ice cover in the Central Arctic, ice-free conditions in the Barents Sea and variable sea-ice situations in other marginal seas. The low but more than zero values of biomarkers in the Central Arctic supported the low in-situ productivity there. The PIP25 index values reflect modern sea-ice conditions better than IP25 alone and show a positive correlation with spring/summer sea ice. When calculating and interpreting PIP25 index as a (semi-quantitative) proxy for reconstructions of present and past Arctic sea-ice conditions from different Arctic/sub-Arctic areas, information of the source of

  10. Arctic sea ice modeling with the material-point method.

    SciTech Connect

    Peterson, Kara J.; Bochev, Pavel Blagoveston

    2010-04-01

    Arctic sea ice plays an important role in global climate by reflecting solar radiation and insulating the ocean from the atmosphere. Due to feedback effects, the Arctic sea ice cover is changing rapidly. To accurately model this change, high-resolution calculations must incorporate: (1) annual cycle of growth and melt due to radiative forcing; (2) mechanical deformation due to surface winds, ocean currents and Coriolis forces; and (3) localized effects of leads and ridges. We have demonstrated a new mathematical algorithm for solving the sea ice governing equations using the material-point method with an elastic-decohesive constitutive model. An initial comparison with the LANL CICE code indicates that the ice edge is sharper using Materials-Point Method (MPM), but that many of the overall features are similar.

  11. The Kara and Ust-Kara impact structures (USSR) and their relevance to the K/T boundary event

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Nazarov, M. A.; Harrison, T. M.; Sharpton, V. L.; Murali, A. V.; Burke, K.

    1988-01-01

    The Kara and Ust-Kara craters are twin impact structures situated at about 69 deg 10 min N; 65 deg 00 min E at the Kara Sea. For Kara a diameter of about 55 km would be a very conservative estimate, and field observations indicate a maximum current diameter of about 60 km. The diameter of Ust-Kara has to be larger than 16 km. A better estimate might be 25 km but in all likelihood it is even larger. Suevites and impactites from the Kara area have been known since the beginning of the century, but had been misidentified as glacial deposits. Only about 15 years ago the impact origin of the two structures was demonstrated, following the recognition of shock metamorphism in the area. The composition of the target rocks is mirrored by the composition of the clasts within the suevites. In the southern part of Kara, Permian shales and limestones are sometimes accompanied by diabasic dykes, similar to in the central uplift. Due to the high degree of shock metamorphism the shocked magmatic rocks are not easily identified, although most of them seem to be of diabasic or dioritic composition. The impact melts (tagamites) are grey to dark grey fine grained crystallized rocks showing very fine mineral components and are the product of shock-melting with later recrystallization. The impact glasses show a layered structure, inclusions, and vesicles, and have colors ranging from translucent white over brown and grey to black. A complete geochemical characterization of the Kara and Ust-Kara impact craters was attempted by analyzing more than 40 samples of target rocks, shocked rocks, suevites, impact melts, and impact glasses for major and trace elements.

  12. High Arctic sea ice conditions influence marine birds wintering in Low Arctic regions

    NASA Astrophysics Data System (ADS)

    McFarlane Tranquilla, Laura; Hedd, April; Burke, Chantelle; Montevecchi, William A.; Regular, Paul M.; Robertson, Gregory J.; Stapleton, Leslie Ann; Wilhelm, Sabina I.; Fifield, David A.; Buren, Alejandro D.

    2010-09-01

    Ocean climate change is having profound biological effects in polar regions. Such change can also have far-reaching downstream effects in sub-polar regions. This study documents an environmental relationship between High Arctic sea ice changes and mortality events of marine birds in Low Arctic coastal regions. During April 2007 and March 2009, hundreds of beached seabird carcasses and moribund seabirds were found along the east and northeast coasts of Newfoundland, Canada. These seabird "wrecks" (i.e. dead birds on beaches) coincided with a period of strong, persistent onshore winds and heavily-accumulated sea ice that blocked bays and trapped seabirds near beaches. Ninety-two percent of wreck seabirds were Thick-billed Murres ( Uria lomvia). Body condition and demographic patterns of wreck murres were compared to Thick-billed Murres shot in the Newfoundland murre hunt. Average body and pectoral masses of wreck carcasses were 34% and 40% lighter (respectively) than shot murres, indicating that wreck birds had starved. The acute nature of each wreck suggested that starvation and associated hypothermia occurred within 2-3 days. In 2007, first-winter murres (77%) dominated the wreck. In 2009, there were more adults (78%), mostly females (66%). These results suggest that spatial and temporal segregation in ages and sexes can play a role in differential survival when stochastic weather conditions affect discrete areas where these groups aggregate. In wreck years, southward movement of Arctic sea ice to Low Arctic latitudes was later and blocked bays longer than in most other years. These inshore conditions corresponded with recent climate-driven changes in High Arctic ice break-up and ice extent; coupled with local weather conditions, these ice conditions appeared to be the key environmental features that precipitated the ice-associated seabird wrecks in the Low Arctic region.

  13. Arctic sea ice surface ponds due to saltwater impurities

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-03-01

    During the summer melt season the white surface of Arctic sea ice turns to a mixture of grays and blues as meltwater ponds come to dot the landscape. Rising temperatures in late spring melt ice and snow, and the meltwater pools in depressions left by drifting snow. In just a week, these meltwater ponds can come to dominate the ice surface, increasing their areal extent by up to 35% per day. But just as quickly as they appear, the pools can recede, the water flowing into the ocean. Surface ponds drastically reduce the ice's albedo, increasing the amount of light available for Arctic ecosystems and accelerating ice melt.

  14. Sea ice, erosion, and vulnerability of Arctic coasts

    NASA Astrophysics Data System (ADS)

    Barnhart, Katherine; Overeem, Irina; Kay, Jennifer; Anderson, Robert

    2015-04-01

    Coasts form the dynamic interface between the terrestrial and oceanic systems. In the Arctic, and in much of the world, the coast is a zone of relatively high population, infrastructure, biodiversity, and ecosystem services. A significant difference between Arctic and temperate coasts is the presence of sea ice. Sea ice influences Arctic coasts in two main ways: (1) the length of the sea ice-free season controls the length of time over which nearshore water can interact with the land, and (2) the location of the sea ice edge controls the fetch over which storm winds can blow over open water, resulting in changes in nearshore water level and wave field. The resulting nearshore hydrodynamic environment impacts all aspects of the coastal system. We first combine satellite records of sea ice with a simple model for wind-driven storm surge and waves to estimate how changes in the length and character of the sea ice-free season have impacted the nearshore hydrodynamic environment along Alaska's Beaufort Sea Coast for the period 1979-2012. This region has experienced some of the greatest changes in both sea ice cover and coastal erosion rates in the Arctic and is anticipated to experience significant change in the future. The median length of the 2012 open-water season along this stretch of coast, in comparison to 1979, expanded by 1.9 x. At the same time, coastal erosion rates increased from 8.7 m yr-1 to 19 m yr-1. At Drew Point, winds from the northwest result in increased water levels at the coast and control the process of submarine notch incision, the rate-limiting step of coastal retreat. When open-water conditions exist, the distance to the sea ice edge exerts control on the water level and wave field through its control on fetch. We find that the extreme values of water-level setup at Drew Point have increased consistently with increasing fetch. We then extend our analysis of the length of the open water season to the entire Arctic using both satellite

  15. Arctic Sea Ice Reemergence Mechanisms in a Model Hierarchy

    NASA Astrophysics Data System (ADS)

    Bushuk, M.; Giannakis, D.

    2015-12-01

    Lagged correlation analysis of Arctic sea ice area anomalies reveals that melt season sea ice anomalies tend to recur the following growth season, and growth season anomalies tend to recur the following melt season. In this work, the regional and temporal characteristics of this phenomenon, termed sea-ice reemergence, are investigated in a hierarchy of climate models. Coupled nonlinear Laplacian spectral analysis (NLSA), a multivariate data analysis technique, is used to study the covariability of Arctic sea-ice concentration (SIC), sea-surface temperature (SST), sea-level pressure (SLP), and sea-ice thickness (SIT). Two mechanisms related to melt season to growth season reemergence are identified: (1) An SST-SIC mechanism, related to local imprinting and persistence of SST anomalies in the seasonal ice zones, and (2) an SLP-SIC mechanism, related to winter-to-winter regime persistence of large-scale SLP teleconnection patterns. An SIT-SIC growth season to melt season reemergence mechanism is also identified, related to winter persistence of SIT anomalies in the central Arctic. The representation of these mechanisms is investigated using the model hierarchy to determine the relative roles of the ocean, atmosphere, and sea ice itself in producing reemergence. It is found that the SST-based and SIT-based mechanisms can exist as stand-alone processes, whereas the SLP mechanism cannot. Dynamical feedback from the ocean to the atmosphere is found to be essential in creating large-scale organized patterns of SIC-SLP covariability. A set of reemergence metrics is introduced, by which one can judge the amplitude and phase of reemergence events and associated mechanisms.

  16. Arctic Summer Sea-Ice Extent: How Free is Free?

    NASA Astrophysics Data System (ADS)

    Tremblay, B.; Cullather, R. I.; DeRepentigny, P.; Pfirman, S. L.; Newton, R.

    2015-12-01

    As Northern Hemisphere perennial sea ice cover continues a long-term downward trend, attention has begun to focus on the implications of the changing conditions. A summertime ice-free Arctic Ocean is frequently indicated as a signature milestone for these changes, however "ice-free" has a substantially different meaning among scientists and interested stakeholders. To climate scientists it may mean when there is so little sea ice that it plays a minimal role in the climate system. To those interested in development, it may mean a threshold where icebreaker support is not required. To coastal communities it may mean so little ice that hunting is not possible. To species dependent on sea ice, it may mean the point where they cannot find sufficient habitat to survive from spring until fall. In this contribution we document the projected seasonality of the sea ice retreat and address the following questions. For how long will the Arctic Ocean be ice free on average each year? What is the impact of such changes in the seasonality of the sea ice cover on species that are dependent on sea ice? To this end, we analyze the seasonal cycle in the sea-ice extent simulated by the Community Earth System Model 1 - Large Ensemble (CESM1-LE) output for the 21st century. CESM1-LE simulates a realistic late 20th, early 21st century Arctic climate with a seasonal cycle in sea ice extent and rate of decline in good agreement with observations. Results from this model show that even by the end of the 21st century, the length of the ice-free season is relatively short, with ice-free conditions mainly present for 2-3 months between August and October. The result is a much larger amplitude seasonal cycle when compared with the late 20th century climate.

  17. Nonlinear threshold behavior during the loss of Arctic sea ice.

    PubMed

    Eisenman, I; Wettlaufer, J S

    2009-01-01

    In light of the rapid recent retreat of Arctic sea ice, a number of studies have discussed the possibility of a critical threshold (or "tipping point") beyond which the ice-albedo feedback causes the ice cover to melt away in an irreversible process. The focus has typically been centered on the annual minimum (September) ice cover, which is often seen as particularly susceptible to destabilization by the ice-albedo feedback. Here, we examine the central physical processes associated with the transition from ice-covered to ice-free Arctic Ocean conditions. We show that although the ice-albedo feedback promotes the existence of multiple ice-cover states, the stabilizing thermodynamic effects of sea ice mitigate this when the Arctic Ocean is ice covered during a sufficiently large fraction of the year. These results suggest that critical threshold behavior is unlikely during the approach from current perennial sea-ice conditions to seasonally ice-free conditions. In a further warmed climate, however, we find that a critical threshold associated with the sudden loss of the remaining wintertime-only sea ice cover may be likely.

  18. Sea ice loss enhances wave action at the Arctic coast

    USGS Publications Warehouse

    Overeem, I.; Anderson, R. Scott; Wobus, C.W.; Clow, G.D.; Urban, F.E.; Matell, N.

    2011-01-01

    Erosion rates of permafrost coasts along the Beaufort Sea accelerated over the past 50 years synchronously with Arctic-wide declines in sea ice extent, suggesting a causal relationship between the two. A fetch-limited wave model driven by sea ice position and local wind data from northern Alaska indicates that the exposure of permafrost bluffs to seawater increased by a factor of 2.5 during 1979-2009. The duration of the open water season expanded from ???45 days to ???95 days. Open water expanded more rapidly toward the fall (???0.92 day yr-1), when sea surface temperatures are cooler, than into the mid-summer (???0.71 days yr-1).Time-lapse imagery demonstrates the relatively efficient erosive action of a single storm in August. Sea surface temperatures have already decreased significantly by fall, reducing the potential impact of thermal erosion due to fall season storm waves. Copyright 2011 by the American Geophysical Union.

  19. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts.

    PubMed

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-07-20

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

  20. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    NASA Astrophysics Data System (ADS)

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-07-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

  1. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route

    NASA Astrophysics Data System (ADS)

    Inoue, Jun; Yamazaki, Akira; Ono, Jun; Dethloff, Klaus; Maturilli, Marion; Neuber, Roland; Edwards, Patti; Yamaguchi, Hajime

    2015-11-01

    During ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean. Here, we show that the incorporation of additional Arctic observations improves the initial analysis and enhances the skill of weather and sea-ice forecasts, the application of which has socioeconomic benefits. Comparison of 63-member ensemble atmospheric forecasts, using different initial data sets, revealed that additional Arctic radiosonde observations were useful for predicting a persistent strong wind event. The sea-ice forecast, initialised by the wind fields that included the effects of the observations, skilfully predicted rapid wind-driven sea-ice advection along the NSR.

  2. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route.

    PubMed

    Inoue, Jun; Yamazaki, Akira; Ono, Jun; Dethloff, Klaus; Maturilli, Marion; Neuber, Roland; Edwards, Patti; Yamaguchi, Hajime

    2015-01-01

    During ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean. Here, we show that the incorporation of additional Arctic observations improves the initial analysis and enhances the skill of weather and sea-ice forecasts, the application of which has socioeconomic benefits. Comparison of 63-member ensemble atmospheric forecasts, using different initial data sets, revealed that additional Arctic radiosonde observations were useful for predicting a persistent strong wind event. The sea-ice forecast, initialised by the wind fields that included the effects of the observations, skilfully predicted rapid wind-driven sea-ice advection along the NSR. PMID:26585690

  3. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route

    PubMed Central

    Inoue, Jun; Yamazaki, Akira; Ono, Jun; Dethloff, Klaus; Maturilli, Marion; Neuber, Roland; Edwards, Patti; Yamaguchi, Hajime

    2015-01-01

    During ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean. Here, we show that the incorporation of additional Arctic observations improves the initial analysis and enhances the skill of weather and sea-ice forecasts, the application of which has socioeconomic benefits. Comparison of 63-member ensemble atmospheric forecasts, using different initial data sets, revealed that additional Arctic radiosonde observations were useful for predicting a persistent strong wind event. The sea-ice forecast, initialised by the wind fields that included the effects of the observations, skilfully predicted rapid wind-driven sea-ice advection along the NSR. PMID:26585690

  4. On large outflows of Arctic sea ice into the Barents Sea

    NASA Technical Reports Server (NTRS)

    Kwok, Ron; Maslowski, Wieslaw; Laxon, Seymour W.

    2005-01-01

    Winter outflows of Arctic sea ice into the Barents Sea are estimated using a 10-year record of satellite ice motion and thickness. The mean winter volume export through the Svalbard/Franz Josef Land passage is 40 km3, and ranges from -280 km3 to 340 km3. A large outflow in 2003 is preconditioned by an unusually high concentration of thick perennial ice over the Nansen Basin at the end of the 2002 summer. With a deep atmospheric low situated over the eastern Barents Sea in winter, the result is an increased export of Arctic ice. The Oct-Mar ice area flux, at 110 x 10 to the third power km3, is not only unusual in magnitude but also remarkable in that >70% of the area is multiyear ice; the ice volume flux at340 km3 is almost one-fifth of the ice flux through the Fram Strait. Another large outflow of Arctic sea ice through this passage, comparable to that in 2003, is found in 1996. This southward flux of sea ice represents one of two major sources of freshwater in the Barents Sea; the other is the eastward flux of water via the Norwegian Coastal Current. The possible consequences of variable freshwater input on the Barents Sea hydrography and its impact on transformation of Atlantic Water en route to the Arctic Ocean are examined with a 25-year coupled ice-ocean model.

  5. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route.

    PubMed

    Inoue, Jun; Yamazaki, Akira; Ono, Jun; Dethloff, Klaus; Maturilli, Marion; Neuber, Roland; Edwards, Patti; Yamaguchi, Hajime

    2015-01-01

    During ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean. Here, we show that the incorporation of additional Arctic observations improves the initial analysis and enhances the skill of weather and sea-ice forecasts, the application of which has socioeconomic benefits. Comparison of 63-member ensemble atmospheric forecasts, using different initial data sets, revealed that additional Arctic radiosonde observations were useful for predicting a persistent strong wind event. The sea-ice forecast, initialised by the wind fields that included the effects of the observations, skilfully predicted rapid wind-driven sea-ice advection along the NSR.

  6. Arctic spring ozone reduction associated with projected sea ice loss

    NASA Astrophysics Data System (ADS)

    Deser, C.; Sun, L.; Tomas, R. A.; Polvani, L. M.

    2013-12-01

    The impact of Arctic sea ice loss on the stratosphere is investigated using the Whole-Atmosphere Community Climate Model (WACCM), by prescribing the sea ice in the late 20th century and late 21st century, respectively. The localized Sea Surface Temperature (SST) change associated with sea ice melt is also included in the future run. Overall, the model simulates a negative annular-mode response in the winter and spring. In the stratosphere, polar vortex strengthens from February to April, peaking in March. Consistent with it, there is an anomalous cooling in the high-latitude stratosphere, and polar cap ozone reduction is up to 20 DU. Since the difference between these two runs lies only in the sea ice and localized SST in the Arctic, the stratospheric circulation and ozone changes can be attributed to the surface forcing. Eliassen-Palm analysis reveals that the upward propagation of planetary waves is suppressed in the spring as a consequence of sea ice loss. The reduction in propagation causes less wave dissipation and thus less zonal wind deceleration in the extratropical stratosphere.

  7. Features of seismicity of the Euro-Arctic region

    NASA Astrophysics Data System (ADS)

    Rogozhin, E. A.; Antonovskaya, G. N.; Kapustian, N. K.; Fedorenko, I. V.

    2016-04-01

    New results from seismic monitoring in the Euro-Arctic region, including the seismicity of Gakkel Ridge and the Barents-Kara Sea shelf, are presented. The data used were obtained from the Arkhan-gelsk seismic network. The role of island-based seismic stations, in particular, those in Franz Josef Land, in the monitoring network is discussed. The possibility of specifying the nature of seismicity by waveform spectral-temporal analysis, even in the case of a single station, is considered.

  8. Persistent organic pollutants in ringed seals from the Russian Arctic.

    PubMed

    Savinov, Vladimir; Muir, Derek C G; Svetochev, Vladislav; Svetocheva, Olga; Belikov, Stanislav; Boltunov, Andrey; Alekseeva, Ludmila; Reiersen, Lars-Otto; Savinova, Tatiana

    2011-06-15

    Organochlorine compounds total DDT (ΣDDT), total HCH isomers (ΣHCH), toxaphenes (sum of Parlar 26, 50, 62), mirex, endrin, methoxychlor, total chlorinated benzenes (ΣCBz), total chlordane compounds (ΣCHL), polychlorinated biphenyls (total of 56 congeners; ΣPCBs), polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), and polybrominated diphenyl ethers (sum of 7 tri- to hepta congeners; ΣPBDEs) were analysed in the blubber of adult ringed seals from the four areas of the Russian Arctic (White Sea, Barents Sea, Kara Sea and Chukchi Sea) collected in 2001-2005. Ringed seals from the south-western part of the Kara Sea (Dikson Island - Yenisei estuary) were the most contaminated with ΣDDTs, ΣPCBs, ΣCHL, and mirex as compared with those found in the other three areas of Russian Arctic, while the highest mean concentrations of ΣHCHs and PCDD/Fs were found in the blubber of ringed seals from the Chukchi Sea and the White Sea, respectively. Among all organochlorine compounds measured in ringed seals from the European part of the Russian Arctic, concentrations of ΣDDT and ΣPCBs only were higher as compared with the other Arctic regions. Levels of all other organochlorine compounds were similar or lower than in seals from Svalbard, Alaska, the Canadian Arctic and Greenland. ΣPBDEs were found in all ringed seal samples analysed. There were no significant differences between ΣPBDE concentrations found in the blubber of ringed seals from the three studied areas of the European part of the Russian Arctic, while PBDE contamination level in ringed seals from the Chukchi Sea was 30-50 times lower. ΣPBDE levels in the blubber of seals from the European part of the Russian Arctic are slightly higher than in ringed seals from the Canadian Arctic, Alaska, and western Greenland but lower compared to ringed seals from Svalbard and eastern Greenland.

  9. Deglacial-Holocene short-term variability in sea-ice distribution on the Eurasian shelf (Arctic Ocean) - An IP25 biomarker reconstruction.

    NASA Astrophysics Data System (ADS)

    Hörner, Tanja; Stein, Ruediger; Fahl, Kirsten

    2016-04-01

    Four well-dated sediment cores from the Eurasian continental shelf, i.e., the Kara Sea (Cores BP99/07 and BP00/07) and Laptev Sea (Cores PS51/154 and PS51/159), were selected for high-resolution reconstruction of past Arctic environmental conditions during the deglacial-Holocene time interval. These marginal seas are strongly affected by the post-glacial sea-level rise of about 120m. The major focus of our study was the reconstruction of the paleo-sea-ice distribution as sea-ice plays a key role within the modern and past climate system. For reconstruction of paleo-sea ice, the sea-ice proxy IP25 in combination with open-water phytoplankton biomarkers was used (for approach see Belt et al., 2007; Müller et al., 2009, 2011). In addition, specific sterols were determined to reconstruct changes in river run-off and biological production. The post-glacial sea-level rise is especially reflected in prominent decrease in terrigenous biomarkers. Deglacial variations in sea-ice cover sustained for thousand of years, mostly following climatic changes like the Bølling/Allerød (14.7-12.9 ka), Younger Dryas (12.9-11.6 ka) and Holocene warm phase (10-8 ka). Superimposed on a (Late) Holocene cooling trend, short-term fluctuations in sea-ice cover (on centennial scale) are distinctly documented in the distal/off-shore Core BP00/07 from the Kara Sea, less pronounced in the proximal/near-shore Core PS99/07 and in the Laptev Sea cores. Interestingly, this short-term variability in sea-ice cover correlates quite well to changes in Siberian river run-off (e.g., Stein et al. 2004), pointing to a direct linkage between precipitation (atmospheric circulation) and sea-ice formation. References Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea ice: IP25. Organic Geochemistry 38, 16-27. Müller, J., Masse, G., Stein, R., Belt, S.T., 2009. Variability of sea-ice conditions in the Fram Strait over the past 30,000 years

  10. Geographical distribution of organochlorine pesticides (OCPs) in polar bears (Ursus maritimus) in the Norwegian and Russian Arctic

    USGS Publications Warehouse

    Lie, E.; Bernhoft, A.; Riget, F.; Belikov, Stanislav; Boltunov, Andrei N.; Derocher, A.E.; Garner, G.W.; Wiig, O.; Skaare, J.U.

    2003-01-01

    Geographical variation of organochlorine pesticides (OCPs) was studied in blood samples from 90 adult female polar bear (Ursus maritimus) from Svalbard, Franz Josef Land, Kara Sea, East-Siberian Sea and Chukchi Sea. In all regions, oxychlordane was the dominant OCP. Regional differences in mean levels of HCB, oxychlordane, trans-nonachlor, ??-HCH, ??-HCH and p,p???-DDE were found. The highest levels of oxychlordane, trans-nonachlor and DDE were found in polar bears from Franz Josef Land and Kara Sea. HCB level was lowest in polar bears from Svalbard. Polar bears from Chukchi Sea had the highest level of ??- and ??-HCH. The lowest ??-HCH concentration was found in bears from Kara Sea. In all the bears, ???HCHs was dominated by ??-HCH. The geographical variation in OCP levels and pattern may suggest regional differences in pollution sources and different feeding habits in the different regions. Polar bears from the Western Russian Arctic were exposed to higher levels of chlordanes and p,p???-DDE than polar bears from locations westwards and eastwards from this region. This may imply the presence of a significant pollution source in the Russian Arctic area. The study suggests that the western Russian Arctic is the most contaminated region of the Arctic and warrants further research. ?? 2002 Elsevier Science B.V. All rights reserved.

  11. Sea ice properties and processes in a warming Arctic

    NASA Astrophysics Data System (ADS)

    Maykut, G. A.

    2004-12-01

    The Arctic sea ice cover is changing. Over the past few decades there has been a marked decrease in the areal extent and thickness of multiyear ice. Open water fraction in summer has been increasing, with corresponding increases in first-year ice fraction during the remainder of the year. Such changes have a profound impact on air-sea-ice interactions in the Arctic. For example, there is increased input of solar heat to the ocean that is producing a positive feedback on ice formation and decay, as well as affecting biological activity in the ice and ocean. Recent observations in the Chukchi and Beaufort Seas help to illustrate the magnitude of the environmental changes. Work during the SHEBA Program has shown substantial thinning of second-year and multiyear ice in this region, with almost half of the total summer melt occurring at the base of the ice due to heat transfer from the ocean. Surface hydrography and tracer studies indicate that solar heating of the mixed layer, enhanced by a more mobile ice cover with larger fractions of leads and open water, plays the major role in ocean-ice heat transfer. Future sea ice research in the Arctic needs to focus strongly on the consequences of these and other ongoing changes. To do so will require interdisciplinary studies that combine field observations and large-scale modeling efforts. Such studies and a more fundamental understanding of the underlying processes are needed to assess potential changes in western Arctic shelf ecosystems and the related impacts on coastal communities.

  12. Intermittency of principal stress directions within Arctic sea ice.

    PubMed

    Weiss, Jérôme

    2008-05-01

    The brittle deformation of Arctic sea ice is not only characterized by strong spatial heterogeneity as well as intermittency of stress and strain-rate amplitudes, but also by an intermittency of principal stress directions, with power law statistics of angular fluctuations, long-range correlations in time, and multifractal scaling. This intermittency is much more pronounced than that of wind directions, i.e., is not a direct inheritance of the turbulent forcing.

  13. Intermittency of principal stress directions within Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Weiss, Jérôme

    2008-05-01

    The brittle deformation of Arctic sea ice is not only characterized by strong spatial heterogeneity as well as intermittency of stress and strain-rate amplitudes, but also by an intermittency of principal stress directions, with power law statistics of angular fluctuations, long-range correlations in time, and multifractal scaling. This intermittency is much more pronounced than that of wind directions, i.e., is not a direct inheritance of the turbulent forcing.

  14. Arctic Sea Ice Motion from Wavelet Analysis of Satellite Data

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Zhao, Yunhe

    1998-01-01

    Wavelet analysis of DMSP SSM/I (Special Sensor Microwave/Imager) 85 GHz and 37 GHz radiance data, SMMR (Scanning Multichannel Microwave Radiometer) 37 GHz, and NSCAT (NASA Scatterometer) 13.9 GHZ data can be used to obtain daily sea ice drift information for both the northern and southern polar regions. The derived maps of sea ice drift provide both improved spatial coverage over the existing array of Arctic Ocean buoys and better temporal resolution over techniques utilizing data from satellite synthetic aperture radars (SAR). Examples of derived ice-drift maps in the Arctic illustrate large-scale circulation reversals within a period of a couple weeks. Comparisons with ice displacements derived from buoys show good quantitative agreement. NASA Scatterometer (NSCAT) 13.9 GHZ data have been also used for wavelet analysis to derive sea-ice drift. First, the 40' incidence-angle, sigma-zero (surface roughness) daily map of whole Arctic region with 25 km of pixel size from satellite's 600 km swath has been constructed. Then, the similar wavelet transform procedure to SSM/I data can be applied. Various scales of wavelet transform and threshold have been tested. By overlaying , neighbor filtering, and block-averaging the results of multiscale wavelet transforms, the final sea ice drift vectors are much smooth and representative to the sea ice motion. This wavelet analysis procedure is robust and can make a major contribution to the understanding of ice motion over large areas at relatively high temporal resolutions. The results of wavelet analysis of SSM/I and NSCAT images and buoy data can be merged by some data fusion techniques and will help to improve our current knowledge of sea ice drift and related processes through the data assimilation of ocean-ice numerical model.

  15. Data-Driven Modeling and Prediction of Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Kondrashov, Dmitri; Chekroun, Mickael; Ghil, Michael

    2016-04-01

    We present results of data-driven predictive analyses of sea ice over the main Arctic regions. Our approach relies on the Multilayer Stochastic Modeling (MSM) framework of Kondrashov, Chekroun and Ghil [Physica D, 2015] and it leads to probabilistic prognostic models of sea ice concentration (SIC) anomalies on seasonal time scales. This approach is applied to monthly time series of state-of-the-art data-adaptive decompositions of SIC and selected climate variables over the Arctic. We evaluate the predictive skill of MSM models by performing retrospective forecasts with "no-look ahead" for up to 6-months ahead. It will be shown in particular that the memory effects included intrinsically in the formulation of our non-Markovian MSM models allow for improvements of the prediction skill of large-amplitude SIC anomalies in certain Arctic regions on the one hand, and of September Sea Ice Extent, on the other. Further improvements allowed by the MSM framework will adopt a nonlinear formulation and explore next-generation data-adaptive decompositions, namely modification of Principal Oscillation Patterns (POPs) and rotated Multichannel Singular Spectrum Analysis (M-SSA).

  16. Controls on Arctic sea ice from first-year and multi-year survival rates

    SciTech Connect

    Hunke, Jes

    2009-01-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi year ice. The transition to an Arctic that is populated by thinner first year sea ice has important implications for future trends in area and volume. Here we develop a reduced model for Arctic sea ice with which we investigate how the survivability of first year and multi year ice control the mean state, variability, and trends in ice area and volume.

  17. Arctic Sea Ice Simulation in the PlioMIP Ensemble

    NASA Technical Reports Server (NTRS)

    Howell, Fergus W.; Haywood, Alan M.; Otto-Bliesner, Bette L.; Bragg, Fran; Chan, Wing-Le; Chandler, Mark A.; Contoux, Camille; Kamae, Youichi; Abe-Ouchi, Ayako; Rosenbloom, Nan A.; Stepanek, Christian; Zhang, Zhongshi

    2016-01-01

    Eight general circulation models have simulated the mid-Pliocene warm period (mid-Pliocene, 3.264 to 3.025 Ma) as part of the Pliocene Modelling Intercomparison Project (PlioMIP). Here, we analyse and compare their simulation of Arctic sea ice for both the pre-industrial period and the mid-Pliocene. Mid-Pliocene sea ice thickness and extent is reduced, and the model spread of extent is more than twice the pre-industrial spread in some summer months. Half of the PlioMIP models simulate ice-free conditions in the mid-Pliocene. This spread amongst the ensemble is in line with the uncertainties amongst proxy reconstructions for mid-Pliocene sea ice extent. Correlations between mid-Pliocene Arctic temperatures and sea ice extents are almost twice as strong as the equivalent correlations for the pre-industrial simulations. The need for more comprehensive sea ice proxy data is highlighted, in order to better compare model performances.

  18. High resolution modelling of the decreasing Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Madsen, K. S.; Rasmussen, T. A. S.; Blüthgen, J.; Ribergaard, M. H.

    2012-04-01

    The Arctic sea ice cover has been rapidly decreasing and thinning over the last decade, with minimum ice extent in 2007 and almost as low extent in 2011. This study investigates two aspects of the decreasing ice cover; first the large scale thinning and changing dynamics of the polar sea ice, and secondly oceanic oil drift in ice affected conditions. Both investigations are made with the coupled ocean - sea ice model HYCOM-CICE at 10 km resolution, which is also used operationally at DMI and allows detailed studies of sea ice build-up, drift and melt. To investigate the sea ice decrease of the last decade, we have performed a reanalysis simulation of the years 1990-2011, forced with ERA Interim atmospheric data. Thus, the simulation includes both the period before the recent sea ice decrease and the full period of decrease up till today. We will present our model results of the thinning and changing dynamics and discuss how they relate to satellite observations. The relation to the upper ocean heat content is also investigated. The decreasing sea ice has opened up for increased ship traffic and oil exploration in the polar oceans. To avoid damage on the pristine Arctic ecosystem, this requires careful environmental assessments. Here, one important tool is to investigate how a possible oil spill will drift and disperse. Through an ensemble of simulations, we will demonstrate the drift of imaginary spills off the Greenlandic coast for both a release at the surface and the in the deep ocean, and it will be discussed how sea ice affects the drift.

  19. Physical Characteristics and Geobiology of 'Rotten' Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Frantz, C. M.; Light, B.; Orellana, M. V.; Carpenter, S.; Junge, K.

    2015-12-01

    Arctic sea ice in its final stage of demise, "rotten ice", is characterized by seriously compromised structural integrity, making it difficult to collect and study. Consequently, little is known about the physical, chemical and biological properties of this ice type. Yet, as the Arctic melt season lengthens, this ice type will likely appear sooner and become more prevalent in the Arctic Ocean and its occurrence may be more common than satellite mapping and ice charts suggest (e.g., Barber et al., 2009). Here we present physical, chemical, biological, and optical measurements of first-year ice near Barrow, Alaska during the spring and summer of 2015. Samples represent a progression from solid, "springtime" shorefast ice (May); through melting, heavily melt-ponded, "summertime" shorefast ice (June); to the final stage of barely-intact, "rotten" ice collected from small floes Beaufort Sea (July). Results indicate that rotten ice exhibits low salinity, is well drained and has a lower density than its springtime counterpart. X-ray tomography of dimethyl phthalate-casted sea ice samples indicates differences in porosity and relative permeability in rotten ice vs. spring- and summertime ice. We also present a preliminary characterization of rotten sea ice as a microbial habitat using preliminary results of chemical measurements (nutrients, dissolved organic and inorganic carbon), and microbiological characterizations (concentrations and16S/18S rDNA-based identifications) from seawater vs. sea ice vs. sea ice brines. Optical measurements show that while decreased ice thickness and increased melt pond coverage cause an overall increase in solar radiation to the ocean as sea ice warms, rotten ice is actually less transparent to solar radiation than its spring- and summertime counterparts. These factors determine solar heating in the ocean and, ultimately, the potential for accelerated ice melting (e.g., Light et al., 2008). This work provides a foundation for understanding

  20. Quantifying Uncertainties in the Seasonal Cycle of Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.; Covey, C. C.; Klein, R.; Tannahill, J.; Ivanova, D. P.

    2013-12-01

    Many climate models project that the Arctic Ocean will be free of summertime sea ice within a century when forced with representative future greenhouse gas emission scenarios. To determine whether uncertainties in sea ice physics can also lead to an ice-free Arctic, we ran present-day ensemble simulations with the Community Climate System Model (CCSM4) that varied 7 parameters in the Community Ice Code (CICE4) over expert-provided ranges. The September minimum in sea ice extent computed by the ensemble ranges from 0.5 to 7.7 million km2, the lower end of which is significantly less than current observed values and lower than the models in the Coupled Model Intercomparison Project Phase 5 (CMIP5). CCSM4 can therefore simulate a summertime Arctic that is effectively free of sea ice either by increasing greenhouse gas forcing or by keeping the forcing constant and varying CICE4 parameters within recommended ranges. We identified three key CICE4 parameters related to radiative and thermal properties of snow that drive this extreme ensemble variability. Given observational data, machine learning algorithms were also used to quantify and constrain probability distribution functions for these parameters, which can be sampled to provide probabilistic assessments of sea ice characteristics simulated by CICE4. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was funded by the Uncertainty Quantification Strategic Initiative Laboratory Directed Research and Development Project at LLNL under project tracking code 10-SI-013 (UCRL LLNL-ABS-641752).

  1. Variability of Arctic Sea Ice as Viewed from Space

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1998-01-01

    Over the past 20 years, satellite passive-microwave radiometry has provided a marvelous means for obtaining information about the variability of the Arctic sea ice cover and particularly about sea ice concentrations (% areal coverages) and from them ice extents and the lengths of the sea ice season. This ability derives from the sharp contrast between the microwave emissions of sea ice versus liquid water and allows routine monitoring of the vast Arctic sea ice cover, which typically varies in extent from a minimum of about 8,000,000 sq km in September to a maximum of about 15,000,000 sq km in March, the latter value being over 1.5 times the area of either the United States or Canada. The vast Arctic ice cover has many impacts, including hindering heat, mass, and y momentum exchanges between the oceans and the atmosphere, reducing the amount of solar radiation absorbed at the Earth's surface, affecting freshwater transports and ocean circulation, and serving as a vital surface for many species of polar animals. These direct impacts also lead to indirect impacts, including effects on local and perhaps global atmospheric temperatures, effects that are being examined in general circulation modeling studies, where preliminary results indicate that changes on the order of a few percent sea ice concentration can lead to temperature changes of 1 K or greater even in local areas outside of the sea ice region. Satellite passive-microwave data for November 1978 through December 1996 reveal marked regional and interannual variabilities in both the ice extents and the lengths of the sea ice season, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 km(2), while individual regions showed much greater percentage variations, e.g., with the Greenland Sea experiencing a range of 740,000 - 1,1110,000 km(2) in its yearly maximum ice coverage. Although variations from year to

  2. Contaminants in arctic snow collected over northwest Alaskan sea ice

    USGS Publications Warehouse

    Garbarino, J.R.; Snyder-Conn, E.; Leiker, T.J.; Hoffman, G.L.

    2002-01-01

    Snow cores were collected over sea ice from four northwest Alaskan Arctic estuaries that represented the annual snowfall from the 1995-1996 season. Dissolved trace metals, major cations and anions, total mercury, and organochlorine compounds were determined and compared to concentrations in previous arctic studies. Traces (<4 nanograms per liter, ng L-1) of cis- and trans-chlordane, dimethyl 2,3,5,6-tetrachloroterephthalate, dieldrin, endosulfan II, and PCBs were detected in some samples, with endosulfan I consistently present. High chlorpyrifos concentrations (70-80 ng L-1) also were estimated at three sites. The snow was highly enriched in sulfates (69- 394 mg L-1), with high proportions of nonsea salt sulfates at three of five sites (9 of 15 samples), thus indicating possible contamination through long-distance transport and deposition of sulfate-rich atmospheric aerosols. Mercury, cadmium, chromium, molybdenum, and uranium were typically higher in the marine snow (n = 15) in relation to snow from arctic terrestrial studies, whereas cations associated with terrigenous sources, such as aluminum, frequently were lower over the sea ice. One Kasegaluk Lagoon site (Chukchi Sea) had especially high concentrations of total mercury (mean = 214 ng L-1, standard deviation = 5 ng L-1), but no methyl mercury was detected above the method detection limit (0.036 ng L-1) at any of the sites. Elevated concentrations of sulfate, mercury, and certain heavy metals might indicate mechanisms of contaminant loss from the arctic atmosphere over marine water not previously reported over land areas. Scavenging by snow, fog, or riming processes and the high content of deposited halides might facilitate the loss of such contaminants from the atmosphere. Both the mercury and chlorpyrifos concentrations merit further investigation in view of their toxicity to aquatic organisms at low concentrations.

  3. The distribution of atmospheric black carbon in the marine boundary layer over the North Atlantic and the Russian Arctic Seas in July - October 2015

    NASA Astrophysics Data System (ADS)

    Shevchenko, Vladimir P.; Kopeikin, Vladimir M.; Evangeliou, Nikolaos; Novigatsky, Alexander N.; Pankratova, Natalia V.; Starodymova, Dina P.; Stohl, Andreas; Thompson, Rona

    2016-04-01

    Black carbon (BC) particles are highly efficient at absorbing visible light, which has a large potential impact on Arctic climate. However, measurement data on the distribution of BC in the atmosphere over the North Atlantic and the Russian Arctic Seas are scarce. We present measurement data on the distribution of atmospheric BC in the marine boundary layer of the North Atlantic and Baltic, North, Norwegian, Barents, White, Kara and Laptev Seas from research cruises during July 23 to October 6, 2015. During the 62nd and 63rd cruises of the RV "Akademik Mstislav Keldysh" air was filtered through Hahnemuhle fineart quarz-microfibre filters. The mass of BC on the filter was determined by measurement of the attenuation of a beam of light transmitted through the filter. Source areas were estimated by backwards trajectories of air masses calculated using NOAA's HYSPLIT model (http://www.arl.noaa.gov/ready.html) and FLEXPART model (http://www.flexpart.eu). During some parts of the cruises, air masses arrived from background areas of high latitudes, and the measured BC concentrations were low. During other parts of the cruise, air masses arrived from industrially developed areas with strong BC sources, and this led to substantially enhanced measured BC concentrations. Model-supported analyses are currently performed to use the measurement data for constraining the emission strength in these areas.

  4. Physical characteristics of summer sea ice across the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Tucker, W. B.; Gow, A. J.; Meese, D. A.; Bosworth, H. W.; Reimnitz, E.

    1999-01-01

    Sea ice characteristics were investigated during July and August on the 1994 transect across the Arctic Ocean. Properties examined from ice cores included salinity, temperature, and ice structure. Salinities measured near zero at the surface, increasing to 3-4‰ at the ice-water interface. Ice crystal texture was dominated by columnar ice, comprising 90% of the ice sampled. Surface albedos of various ice types, measured with radiometers, showed integrated shortwave albedos of 0.1 to 0.3 for melt ponds, 0.5 for bare, discolored ice, and 0.6 to 0.8 for a deteriorated surface or snow-covered ice. Aerial photography was utilized to document the distribution of open melt ponds, which decreased from 12% coverage of the ice surface in late July at 76°N to almost none in mid-August at 88°N. Most melt ponds were shallow, and depth bore no relationship to size. Sediment was pervasive from the southern Chukchi Sea to the north pole, occurring in bands or patches. It was absent in the Eurasian Arctic, where it had been observed on earlier expeditions. Calculations of reverse trajectories of the sediment-bearing floes suggest that the southernmost sediment was entrained during ice formation in the Beaufort Sea while more northerly samples probably originated in the East Siberian Sea, some as far west as the New Siberian Islands.

  5. Physical characteristics of summer sea ice across the Arctic Ocean

    USGS Publications Warehouse

    Tucker, W. B.; Gow, A.J.; Meese, D.A.; Bosworth, H.W.; Reimnitz, E.

    1999-01-01

    Sea ice characteristics were investigated during July and August on the 1994 transect across the Arctic Ocean. Properties examined from ice cores included salinity, temperature, and ice structure. Salinities measured near zero at the surface, increasing to 3-4??? at the ice-water interface. Ice crystal texture was dominated by columnar ice, comprising 90% of the ice sampled. Surface albedos of various ice types, measured with radiometers, showed integrated shortwave albedos of 0.1 to 0.3 for melt ponds, 0.5 for bare, discolored ice, and 0.6 to 0.8 for a deteriorated surface or snow-covered ice. Aerial photography was utilized to document the distribution of open melt ponds, which decreased from 12% coverage of the ice surface in late July at 76??N to almost none in mid-August at 88??N. Most melt ponds were shallow, and depth bore no relationship to size. Sediment was pervasive from the southern Chukchi Sea to the north pole, occurring in bands or patches. It was absent in the Eurasian Arctic, where it had been observed on earlier expeditions. Calculations of reverse trajectories of the sediment-bearing floes suggest that the southernmost sediment was entrained during ice formation in the Beaufort Sea while more northerly samples probably originated in the East Siberian Sea, some as far west as the New Siberian Islands.

  6. Satellite Evidence for an Arctic Sea Ice Cover in Transformation.

    PubMed

    Johannessen; Shalina; Miles

    1999-12-01

    Recent research using microwave satellite remote sensing data has established that there has been a reduction of about 3 percent per decade in the areal extent of the Arctic sea ice cover since 1978, although it is unknown whether the nature of the perennial ice pack has changed. These data were used to quantify changes in the ice cover's composition, revealing a substantial reduction of about 14 percent in the area of multiyear ice in winter during the period from 1978 to 1998. There also appears to be a strong correlation between the area of multiyear ice and the spatially averaged thickness of the perennial ice pack, which suggests that the satellite-derived areal decreases represent substantial rather than only peripheral changes. If this apparent transformation continues, it may lead to a markedly different ice regime in the Arctic, altering heat and mass exchanges as well as ocean stratification. PMID:10583953

  7. A rapidly declining perennial sea ice cover in the Arctic

    NASA Astrophysics Data System (ADS)

    Comiso, Josefino C.

    2002-10-01

    The perennial sea ice cover in the Arctic is shown to be declining at -9% per decade using satellite data from 1978 to 2000. A sustained decline at this rate would mean the disappearance of the multiyear ice cover during this century and drastic changes in the Arctic climate system. An apparent increase in the fraction of second year ice in the 1990s is also inferred suggesting an overall thinning of the ice cover. Surface ice temperatures derived from satellite data are negatively correlated with perennial ice area and are shown to be increasing at the rate of 1.2 K per decade. The latter implies longer melt periods and therefore decreasing ice volume in the more recent years.

  8. A Rapidly Declining Arctic Perennial Sea Ice Cover

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    The perennial sea ice cover in the Arctic is shown to be declining at -8.9 plus or minus 2.0% per decade, using 22 years of satellite data. A sustained decline at this rate would mean the disappearance of the multiyear ice cover during this century and drastic changes in the seasonal characteristics of the Arctic ice cover. An apparent increase in the fraction of second year ice in the 1990s is also inferred suggesting an overall thinning of the ice cover while co-registered satellite surface temperatures show a warming trend of 0.8 plus or minus 0.6 K per decade in summer and a good correlation with the perennial ice data.

  9. Comparison of radar backscatter from Antarctic and Arctic sea ice

    NASA Technical Reports Server (NTRS)

    Hosseinmostafa, R.; Lytle, V.

    1992-01-01

    Two ship-based step-frequency radars, one at C-band (5.3 GHz) and one at Ku-band (13.9 GHz), measured backscatter from ice in the Weddell Sea. Most of the backscatter data were from first-year (FY) and second-year (SY) ice at the ice stations where the ship was stationary and detailed snow and ice characterizations were performed. The presence of a slush layer at the snow-ice interface masks the distinction between FY and SY ice in the Weddell Sea, whereas in the Arctic the separation is quite distinct. The effect of snow-covered ice on backscattering coefficients (sigma0) from the Weddell Sea region indicates that surface scattering is the dominant factor. Measured sigma0 values were compared with Kirchhoff and regression-analysis models. The Weibull power-density function was used to fit the measured backscattering coefficients at 45 deg.

  10. Regional dependence in the rapid loss of Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Close, Sally; Houssais, Marie-Noëlle; Herbaut, Christophe

    2016-04-01

    The accelerating rate of sea ice decline in the Arctic, particularly in the summer months, has been well documented by previous studies. However, the methods of analysis used to date have tended to employ pre-defined regions over which to determine sea ice loss, potentially masking regional variability within these regions. Similarly, evidence of acceleration has frequently been based on decade-to-decade comparisons that do not precisely quantify the timing of the increase in rate of decline. In this study, we address this issue by quantifying the onset time of rapid loss in sea ice concentration on a point-by-point basis, using an objective method applied to satellite passive microwave data. Seasonal maps of onset time are produced, and reveal strong regional dependency, with differences of up to 20 years in onset time between the various subregions of the Arctic. In certain cases, such as the Laptev Sea, strong spatial variability is found even at the regional scale, suggesting that caution should be employed in the use of geographically-based region definitions that may be misaligned with the physical response. The earliest onset times are found in the Pacific sector, where certain areas undergo a transition ca. 1992. In contrast, onset times in the Atlantic sector are much more recent. Rates of decline prior to and following the onset of rapid decline are calculated, and suggest that the post-onset rate of loss is weakest in the Pacific sector and greatest in the Barents Sea region. Coherency is noted in the season-to-season response, both at interannual and longer time scales. Our results describe a series of spatially self-consistent regional responses, and may be useful in understanding the primary drivers of recent sea ice loss.

  11. Fram Strait Spring Ice Export and September Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Smedsrud, Lars H.; Halvorsen, Mari H.; Stroeve, Julienne; Zhang, Rong; Kloster, Kjell

    2016-04-01

    The Arctic Basin exports between 600 000 - 1 million km² of it's sea ice cover southwards through Fram Strait each year, comparing to about 10% of the ice covered area inside the basin. During winter ice export results in growth of new and relatively thin ice inside the basin, while during summer or spring export contributes directly to open water further north. A new updated time series from 1935 to 2014 of Fram Strait sea ice area export shows that the long-term annual mean export is about 880,000 km², with large annual and decadal variability and no long-term trend over the past 80 years. Nevertheless, the last decade has witnessed increased annual ice export, with several years having annual ice export exceed 1 million km². Evaluating the trend onwards from 1979, when satellite based sea ice coverage became more readily available, reveals an increase in annual export of about +6% per decade. This increase is caused by higher southward ice drift speeds due to stronger southward geostrophic winds, largely explained by increasing surface pressure over Greenland. Spring and summer area export increased more (+11% per decade) than in autumn and winter. Contrary to the last decade the 1950 - 1970 period had low export during spring and summer, and mid-September sea ice extent was consistently higher than both before and after these decades. We thus find that export anomalies during spring have a clear influence on the following September sea ice extent in general, and that for the recent decade the export may be partially responsible for the accelerating decline in Arctic sea ice extent.

  12. The emergence of modern sea ice cover in the Arctic Ocean.

    PubMed

    Knies, Jochen; Cabedo-Sanz, Patricia; Belt, Simon T; Baranwal, Soma; Fietz, Susanne; Rosell-Melé, Antoni

    2014-11-28

    Arctic sea ice coverage is shrinking in response to global climate change and summer ice-free conditions in the Arctic Ocean are predicted by the end of the century. The validity of this prediction could potentially be tested through the reconstruction of the climate of the Pliocene epoch (5.33-2.58 million years ago), an analogue of a future warmer Earth. Here we show that, in the Eurasian sector of the Arctic Ocean, ice-free conditions prevailed in the early Pliocene until sea ice expanded from the central Arctic Ocean for the first time ca. 4 million years ago. Amplified by a rise in topography in several regions of the Arctic and enhanced freshening of the Arctic Ocean, sea ice expanded progressively in response to positive ice-albedo feedback mechanisms. Sea ice reached its modern winter maximum extension for the first time during the culmination of the Northern Hemisphere glaciation, ca. 2.6 million years ago.

  13. Mechanisms for low-frequency variability of summer Arctic sea ice extent

    PubMed Central

    Zhang, Rong

    2015-01-01

    Satellite observations reveal a substantial decline in September Arctic sea ice extent since 1979, which has played a leading role in the observed recent Arctic surface warming and has often been attributed, in large part, to the increase in greenhouse gases. However, the most rapid decline occurred during the recent global warming hiatus period. Previous studies are often focused on a single mechanism for changes and variations of summer Arctic sea ice extent, and many are based on short observational records. The key players for summer Arctic sea ice extent variability at multidecadal/centennial time scales and their contributions to the observed summer Arctic sea ice decline are not well understood. Here a multiple regression model is developed for the first time, to the author’s knowledge, to provide a framework to quantify the contributions of three key predictors (Atlantic/Pacific heat transport into the Arctic, and Arctic Dipole) to the internal low-frequency variability of Summer Arctic sea ice extent, using a 3,600-y-long control climate model simulation. The results suggest that changes in these key predictors could have contributed substantially to the observed summer Arctic sea ice decline. If the ocean heat transport into the Arctic were to weaken in the near future due to internal variability, there might be a hiatus in the decline of September Arctic sea ice. The modeling results also suggest that at multidecadal/centennial time scales, variations in the atmosphere heat transport across the Arctic Circle are forced by anticorrelated variations in the Atlantic heat transport into the Arctic. PMID:25825758

  14. Arctic sea ice cover in connection with climate change

    NASA Astrophysics Data System (ADS)

    Alekseev, G. V.; Aleksandrov, E. I.; Glok, N. I.; Ivanov, N. E.; Smolyanitsky, V. M.; Kharlanenkova, N. E.; Yulin, A. V.

    2015-12-01

    Recently published studies on key issues in the evolution of Arctic sea ice cover are reviewed and attempts to answer disputable questions are made in the research part of the work. It is shown that climate warming, manifested in an increase in the surface air temperature, and reduction in the ice cover develop with a high degree of agreement in summer. Based on this fact, anomalies of the September ice-cover area have been retrieved from 1900. They show a significant decrease in the 1930-1940s, which is almost twice as low as in 2007-2012. The influence of fluctuations in the flow of warm and salty Atlantic water is noted in variations in the winter maximum of the ice-cover area in the Barents Sea. An accelerated positive trend has been ascertained for the air temperature in late autumn-early winter in 1993-2012 due to an increase in the open water area in late summer. Inherent regularities of the ice-cover-area variability made it possible to develop a prediction of the monthly values of sea-ice extent with a head time from 6 months to 2 years. Their strong correlation with summer air temperature is used to estimate the onset of summer ice clearance in the Arctic.

  15. New High-Resolution Images of Summer Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Kwok, Ronald; Untersteiner, Norbert

    2011-02-01

    In 1995 a group of government and academic scientists were appointed by the vice president of the United States to review and advise on acquisitions of imagery obtained by classified intelligence satellites (National Technical Means) and to recommend the declassification of certain data sets for the benefit of science. The group is called MEDEA and was first described by Richelson [1998]. MEDEA disbanded in 2000 but reassembled in 2008. On 15 June 2009, under the auspices of MEDEA, the U.S. Geological Survey (USGS) released to the public as Literal Image Derived Products (LIDPs) numerous images with 1-meter resolution acquired since 1999 at six locations in the Arctic Basin (Beaufort Sea, Canadian Arctic, Fram Strait, East Siberian Sea, Chukchi Sea, and Point Barrow). These locations are named “fiducial sites” to suggest that the collected imagery establishes a baseline data set for understanding recent and future changes. Data in the Global Fiducials Library (GFL) can be accessed via http://gfl.usgs.gov/. This data repository is updated by USGS as additional data become available.

  16. Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability

    NASA Astrophysics Data System (ADS)

    Screen, James A.; Francis, Jennifer A.

    2016-09-01

    The pace of Arctic warming is about double that at lower latitudes--a robust phenomenon known as Arctic amplification. Many diverse climate processes and feedbacks cause Arctic amplification, including positive feedbacks associated with diminished sea ice. However, the precise contribution of sea-ice loss to Arctic amplification remains uncertain. Through analyses of both observations and model simulations, we show that the contribution of sea-ice loss to wintertime Arctic amplification seems to be dependent on the phase of the Pacific Decadal Oscillation (PDO). Our results suggest that, for the same pattern and amount of sea-ice loss, consequent Arctic warming is larger during the negative PDO phase relative to the positive phase, leading to larger reductions in the poleward gradient of tropospheric thickness and to more pronounced reductions in the upper-level westerlies. Given the oscillatory nature of the PDO, this relationship has the potential to increase skill in decadal-scale predictability of the Arctic and sub-Arctic climate. Our results indicate that Arctic warming in response to the ongoing long-term sea-ice decline is greater (reduced) during periods of the negative (positive) PDO phase. We speculate that the observed recent shift to the positive PDO phase, if maintained and all other factors being equal, could act to temporarily reduce the pace of wintertime Arctic warming in the near future.

  17. The central role of diminishing sea ice in recent Arctic temperature amplification.

    PubMed

    Screen, James A; Simmonds, Ian

    2010-04-29

    The rise in Arctic near-surface air temperatures has been almost twice as large as the global average in recent decades-a feature known as 'Arctic amplification'. Increased concentrations of atmospheric greenhouse gases have driven Arctic and global average warming; however, the underlying causes of Arctic amplification remain uncertain. The roles of reductions in snow and sea ice cover and changes in atmospheric and oceanic circulation, cloud cover and water vapour are still matters of debate. A better understanding of the processes responsible for the recent amplified warming is essential for assessing the likelihood, and impacts, of future rapid Arctic warming and sea ice loss. Here we show that the Arctic warming is strongest at the surface during most of the year and is primarily consistent with reductions in sea ice cover. Changes in cloud cover, in contrast, have not contributed strongly to recent warming. Increases in atmospheric water vapour content, partly in response to reduced sea ice cover, may have enhanced warming in the lower part of the atmosphere during summer and early autumn. We conclude that diminishing sea ice has had a leading role in recent Arctic temperature amplification. The findings reinforce suggestions that strong positive ice-temperature feedbacks have emerged in the Arctic, increasing the chances of further rapid warming and sea ice loss, and will probably affect polar ecosystems, ice-sheet mass balance and human activities in the Arctic.

  18. 30-Year Satellite Record Reveals Accelerated Arctic Sea Ice Loss, Antarctic Sea Ice Trend Reversal

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Parkinson, C. L.; Vinnikov, K. Y.

    2003-01-01

    Arctic sea ice extent decreased by 0.30 plus or minus 0.03 x 10(exp 6) square kilometers per decade from 1972 through 2002, but decreased by 0.36 plus or minus 0.05 x 10(exp 6) square kilometers per decade from 1979 through 2002, indicating an acceleration of 20% in the rate of decrease. In contrast to the Arctic, the Antarctic sea ice extent decreased dramatically over the period 1973-1977, then gradually increased, with an overall 30-year trend of -0.15 plus or minus 0.08 x 10(exp 6) square kilometers per 10yr. The trend reversal is attributed to a large positive anomaly in Antarctic sea ice extent observed in the early 1970's.

  19. Arctic sea ice 1973-1987 - Seasonal, regional, and interannual variability

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.

    1989-01-01

    The seasonal, regional, and interannual variations in the Northern-Hemisphere sea-ice cover were investigated for the time period 1973-1987, using data derived from the Nimbus-5 ESMR and the Nimbus-7 SMMR. The records show an average seasonal cycle of sea-ice cover, ranging from a summer minimum of 8.5 x 10 to the 6th sq km in September to a winter maximum of 15 x 10 to the 6th sq km in March, with considerable interannual variability found both regionally and hemispherically. Some regions (e.g., the Baffin Bay/Davis Strait, were found to exhibit upward trends in sea-ice extents, while other regions (e.g., the Kara Sea and the Barents Sea) exhibited downward trend. However, the record for the Northern Hemisphere overall showed no significant trend over the 1973-1987 period, giving no evidence of consistent warming or cooling of the north polar region.

  20. Abrupt Decline in the Arctic Winter Sea Ice Cover

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2007-01-01

    Maximum ice extents in the Arctic in 2005 and 2006 have been observed to be significantly lower (by about 6%) than the average of those of previous years starting in 1979. Since the winter maxima had been relatively stable with the trend being only about -1.5% per decade (compared to about -10% per decade for the perennial ice area), this is a significant development since signals from greenhouse warming are expected to be most prominent in winter. Negative ice anomalies are shown to be dominant in 2005 and 2006 especially in the Arctic basin and correlated with winds and surface temperature anomalies during the same period. Progressively increasing winter temperatures in the central Arctic starting in 1997 is observed with significantly higher rates of increase in 2005 and 2006. The Atlantic Oscillation (AO) indices correlate weakly with the sea ice and surface temperature anomaly data but may explain the recent shift in the perennial ice cover towards the western region. Results suggest that the trend in winter ice is finally in the process of catching up with that of the summer ice cover.

  1. Arctic Sea Ice Thickness Distribution as an Indicator of Arctic Climate Change - Synthesis of Model Results and Observations

    NASA Astrophysics Data System (ADS)

    Maslowski, Wieslaw; Clement Kinney, Jaclyn; Jakacki, Jaromir; Osinski, Robert; Zwally, Jay

    2010-05-01

    The Arctic region is an integral part of the Earth's climate system through its influence on global surface energy and moisture fluxes and on atmospheric and oceanic circulation. Within the Arctic, its sea ice cover is possibly the most sensitive indicator of the polar amplified global warming and of the state of Arctic climate system as a whole. Hence changes in Arctic climate and the decline of multi-year sea ice cover have significant ramifications to the entire pan-Arctic region and beyond. Having the recorded average global surface temperature about 0.54°C (0.96°F) above the 20th Century average the decade of 2000-2009 has been the warmest of the 130-year record, with the maximum positive temperatures anomalies in the northern high latitude regions. Satellite records of the Arctic sea ice show a decreasing and accelerating trend in ice extent and concentration since the late 1979, as a result of the global warming. More importantly there is growing evidence that the Arctic sea ice thickness and volume have been decreasing at even faster rate. This means that our knowledge of the Arctic sea ice melt might be significantly biased due to the interpretation of 2-dimensional sea ice extent / concentration records only instead of ice thickness and volume. The rates of recent ice thickness and volume melt derived from our pan-Arctic coupled ice-ocean model results combined with recent remotely sensed data suggest an accelerating negative trend. This trend is robust and lends credence to the postulation that the Arctic not only might but it is likely to be ice-free during the summer in the near future. However, global climate models vary widely in their predictions of warming and the rate of Arctic ice melt, suggesting it may take anywhere from a couple of decades to more than a century to melt most of the summer sea ice cover. Also many regional models are limited in their representation of the rapid Arctic sea ice thinning and volume loss. The inability of models

  2. Use of {sup 59}Ni, {sup 99}Tc, and {sup 236}U to monitor the release of radionuclides from objects containing spent nuclear fuel dumped in the Kara Sea

    SciTech Connect

    Mount, M.E.; Layton, D.W.; Lynn, N.M.; Hamilton, T.F.

    1998-04-01

    Between 1965 and 1981, five objects - six naval reactor pressure vessels (RPVs) from four former Soviet Union submarines and a special containers from the icebreaker Lenin, each of which contained damaged spent nuclear fuel (SNF) - were dumped in a variety of containments, using a number of sealing methods, at four sites in the Kara Sea. All objects were dumped at sites that varied in depth from 12 to 300 m. This paper examines the use of the long-lived radionuclides {sup 59}Ni, {sup 99}Tc, and {sup 236}U encased within these objects to monitor the breakdown of the containments due to corrosion. Included are discussions of the radionuclide inventory and their release rate model, the estimated radionuclide mass in a typical seawater sample, and the potential for radionuclide measurement via Accelerator Mass Spectrometry (AMS).

  3. ICESat Observations of Arctic Sea Ice: A First Look

    NASA Technical Reports Server (NTRS)

    Kwok, Ron; Zwally, H. Jay; Yi, Dong-Hui

    2004-01-01

    Analysis of near-coincident ICESat and RADARSAT imagery shows that the retrieved elevations from the laser altimeter are sensitive to new openings (containing thin ice or open water) in the sea ice cover as well as to surface relief of old and first-year ice. The precision of the elevation estimates, measured over relatively flat sea ice, is approx. 2 cm Using the thickness of thin-ice in recent openings to estimate sea level references, we obtain the sea-ice free-board along the altimeter tracks. This step is necessitated by the large uncertainties in the time-varying sea surface topography compared to that required for accurate determination of free-board. Unknown snow depth introduces the largest uncertainty in the conversion of free-board to ice thickness. Surface roughness is also derived, for the first time, from the variability of successive elevation estimates along the altimeter track Overall, these ICESat measurements provide an unprecedented view of the Arctic Ocean ice cover at length scales at and above the spatial dimension of the altimeter footprint.

  4. ICESat Observations of Arctic Sea Ice: A First Look

    NASA Technical Reports Server (NTRS)

    Kwok, Ron; Zwally, H. Jay; Yi, Donghui

    2004-01-01

    Analysis of near-coincident ICESat and RADARSAT imagery shows that the retrieved elevations from the laser altimeter are sensitive to new openings (containing thin ice or open water) in the sea ice cover as well as to surface relief of old and first-year ice. The precision of the elevation estimates, measured over relatively flat sea ice, is approx. 2 cm. Using the thickness of thin-ice in recent openings to estimate sea level references, we obtain the sea-ice freeboard along the altimeter tracks. This step is necessitated by the large uncertainties in the sea surface topography compared to that required for accurate determination of freeboard. Unknown snow depth introduces the largest uncertainty in the conversion of freeboard to ice thickness. Surface roughness is also derived, for the first time, from the variability of successive elevation estimates along the altimeter track. Overall, these ICESat measurements provide an unprecedented view of the Arctic Ocean ice cover at length scales at and above the spatial dimension of the altimeter footprint of approx. 70 m.

  5. Evaluation of Arctic Sea Ice Thickness Simulated by AOMIP Models

    NASA Technical Reports Server (NTRS)

    Johnson, Mark; Proshutinsky, Andrey; Aksenov, Yevgeny; Nguyen, An T.; Lindsay, Ron; Haas, Christian; Zhang, Jinlun; Diansky, Nimolay; Kwok, Ron; Maslowski, Wieslaw; Hakkinen, Sirpa; Ashik, Igor; de Cuevas, Beverly

    2011-01-01

    We compare results from six AOMIP model simulations with estimates of sea ice thickness obtained from ICESat, moored and submarine-based upward looking sensors, airborne electromagnetic measurements and drill holes. Our goal is to find patterns of model performance to guide model improvement. The satellite data is pan-arctic from 2004-2008, ice-draft data is from moored instruments in Fram Strait, the Greenland Sea and the Beaufort Sea from 1992-2008 and from submarines from 1975-2000. The drill hole data are from the Laptev and East Siberian marginal seas from 1982-1986 and from coastal stations from 1998-2009. While there are important caveats when comparing modeled results with measurements from different platforms and time periods such as these, the models agree well with moored ULS data. In general, the AOMIP models underestimate the thickness of measured ice thicker than about 2 m and overestimate thickness of ice thinner than 2 m. The simulated results are poor over the fast ice and marginal seas of the Siberian shelves. Averaging over all observational data sets, the better correlations and smaller differences from observed thickness are from the ECCO2 and UW models.

  6. Aircraft measurements of microwave emission from Arctic Sea ice

    USGS Publications Warehouse

    Wilheit, T.; Nordberg, W.; Blinn, J.; Campbell, W.; Edgerton, A.

    1971-01-01

    Measurements of the microwave emission from Arctic Sea ice were made with aircraft at 8 wavelengths ranging from 0.510 to 2.81 cm. The expected contrast in emissivities between ice and water was observed at all wavelengths. Distributions of sea ice and open water were mapped from altitudes up to 11 km in the presence of dense cloud cover. Different forms of ice also exhibited strong contrasts in emissivity. Emissivity differences of up to 0.2 were observed between two types of ice at the 0.811-cm wavelength. The higher emissivity ice type is tentatively identified as having been formed more recently than the lower emissivity ice. ?? 1971.

  7. Top/bottom multisensor remote sensing of Arctic sea ice

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.; Wadhams, P.; Krabill, W. B.; Swift, R. N.; Crawford, J. P.

    1991-01-01

    Results are presented on the Aircraft/Submarine Sea Ice Project experiment carried out in May 1987 to investigate concurrently the top and the bottom features of the Arctic sea-ice cover. Data were collected nearly simultaneously by instruments aboard two aircraft and a submarine, which included passive and active (SAR) microwave sensors, upward looking and sidescan sonars, a lidar profilometer, and an IR sensor. The results described fall into two classes of correlations: (1) quantitative correlations between profiles, such as ice draft (sonar), ice elevation (laser), SAR backscatter along the track line, and passive microwave brightness temperatures; and (2) qualitative and semiquantitative correlations between corresponding areas of imagery (i.e., passive microwave, AR, and sidescan sonar).

  8. Age characteristics in a multidecadal Arctic sea ice simulation

    SciTech Connect

    Hunke, Elizabeth C; Bitz, Cecllia M

    2008-01-01

    Results from adding a tracer for age of sea ice to a sophisticated sea ice model that is widely used for climate studies are presented. The consistent simulation of ice age, dynamics, and thermodynamics in the model shows explicitly that the loss of Arctic perennial ice has accelerated in the past three decades, as has been seen in satellite-derived observations. Our model shows that the September ice age average across the Northern Hemisphere varies from about 5 to 8 years, and the ice is much younger (about 2--3 years) in late winter because of the expansion of first-year ice. We find seasonal ice on average comprises about 5% of the total ice area in September, but as much as 1.34 x 10{sup 6} km{sup 2} survives in some years. Our simulated ice age in the late 1980s and early 1990s declined markedly in agreement with other studies. After this period of decline, the ice age began to recover, but in the final years of the simulation very little young ice remains after the melt season, a strong indication that the age of the pack will again decline in the future as older ice classes fail to be replenished. The Arctic ice pack has fluctuated between older and younger ice types over the past 30 years, while ice area, thickness, and volume all declined over the same period, with an apparent acceleration in the last decade.

  9. Floating Ice-Algal Aggregates below Melting Arctic Sea Ice

    PubMed Central

    Assmy, Philipp; Ehn, Jens K.; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A.; Hudson, Stephen R.; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H. H.; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year. PMID:24204642

  10. Floating ice-algal aggregates below melting arctic sea ice.

    PubMed

    Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year.

  11. Propaganda, News, or Education: Reporting Changing Arctic Sea Ice Conditions

    NASA Astrophysics Data System (ADS)

    Leitzell, K.; Meier, W.

    2010-12-01

    The National Snow and Ice Data Center provides information on Arctic sea ice conditions via the Arctic Sea Ice News & Analysis (ASINA) website. As a result of this effort to explain climatic data to the general public, we have attracted a huge amount of attention from our readers. Sometimes, people write to thank us for the information and the explanation. But people also write to accuse us of bias, slant, or outright lies in our posts. The topic of climate change is a minefield full of political animosity, and even the most carefully written verbiage can appear incomplete or biased to some audiences. Our strategy has been to report the data and stick to the areas in which our scientists are experts. The ASINA team carefully edits our posts to make sure that all statements are based on the science and not on opinion. Often this means using some technical language that may be difficult for a layperson to understand. However, we provide concise definitions for technical terms where appropriate. The hope is that by communicating the data clearly, without an agenda, we can let the science speak for itself. Is this an effective strategy to communicate clearly about the changing climate? Or does it downplay the seriousness of climate change? By writing at a more advanced level and avoiding oversimplification, we require our readers to work harder. But we may also maintain the attention of skeptics, convincing them to read further and become more knowledgeable about the topic.

  12. Air-sea exchange fluxes of synthetic polycyclic musks in the North Sea and the Arctic.

    PubMed

    Xie, Zhiyong; Ebinghaus, Ralf; Temme, Christian; Heemken, Olaf; Ruck, Wolfgang

    2007-08-15

    Synthetic polycyclic musk fragrances Galaxolide (HHCB) and Tonalide (AHTN) were measured simultaneously in air and seawater in the Arctic and the North Sea and in the rural air of northern Germany. Median concentrations of gas-phase HHCB and AHTN were 4 and 18 pg m(-3) in the Arctic, 28 and 18 pg m(-3) in the North Sea, and 71 and 21 pg m(-3) in northern Germany, respectively. Various ratios of HHCB/AHTN implied that HHCB is quickly removed by atmospheric degradation, while AHTN is relatively persistent in the atmosphere. Dissolved concentrations ranged from 12 to 2030 pg L(-1) for HHCB and from below the method detection limit (3 pg L(-1)) to 965 pg L(-1) for AHTN with median values of 59 and 23 pg L(-1), respectively. The medians of volatilization fluxes for HHCB and AHTN were 27.2 and 14.2 ng m(-2) day(-1) and the depositional fluxes were 5.9 and 3.3 ng m(-2) day(-1), respectively, indicating water-to-air volatilization is a significant process to eliminate HHCB and AHTN from the North Sea. In the Arctic, deposition fluxes dominated the air-sea gas exchange of HHCB and AHTN, suggesting atmospheric input controls the levels of HHCB and AHTN in the polar region.

  13. Regional variability of a projected sea ice-free Arctic during the summer months

    NASA Astrophysics Data System (ADS)

    Laliberté, F.; Howell, S. E. L.; Kushner, P. J.

    2016-01-01

    Climate projections of sea ice retreat under anthropogenic climate change at the regional scale and in summer months other than September have largely not been evaluated. Information at this level of detail is vital for future planning of safe Arctic marine activities. Here the timing of when Arctic waters will be reliably ice free across Arctic regions from June to October is presented. It is shown that during this century regions along the Northern Sea Route and Arctic Bridge will be more reliably ice free than regions along the Northwest Passage and the Transpolar Sea Route, which will retain substantial sea ice cover past midcentury. Moreover, ice-free conditions in the Arctic will likely be confined to September for several decades to come in many regions. Projections using a selection of models that accounts for agreement of models in each region and calendar month with observations yield similar conclusions.

  14. Arctic sea ice volume and thickness: trends and observations

    NASA Astrophysics Data System (ADS)

    Kwok, Ronald

    The sea ice extent of the Northern Hemisphere has been declining at an average rate of ˜3% per decade over the satellite record (1978-present) and the summer decline seems to be accelerating (Comiso et al., 2008). In September 2007, the summer ice extent reached a record minimum of 4.2×106 km2, which was 1.6×106 km2 or 23% less than the previous record set in September 2005. The loss of old ice is occurring at an even higher rate of ˜10% per decade. In addition to these remarkable trends in summer ice coverage, combined submarine and satellite records show a parallel thinning of the central Arctic ice cover from a winter thickness of 3.64 m in 1980 to only 1.89 m by 2008, a net decrease of 1.75 m or 48% in thickness (Kwok and Rothrock, 2009). More than two-thirds of the Arctic is now covered by thinner seasonal ice. If current rates persist, both trajectories point to the potential of ice-free summers in the not too distant future. Recent thickness observations from ICESat-1 have also provided a short record of the total sea ice volume of the Arctic Ocean -an important indicator of the state of the sea ice system. However, sustaining a capability to construct a long-term climate record of thickness and volume is a challenge. At this writing, ICESat-1 is near the end of its mission life and CryoSat-2 is about to be launched. CryoSat-2 is designed to have a mission life of 3 years that would likely end prior to launch of ICESat-II in ˜2015. Cross-calibration of the ICESat and CryoSat-2 (and eventually ICESat-II) ice thickness estimates is needed for linking the two data sets to extend the record of the seasonal, interannual, and decadal trends in thickness and volume. This is crucial for understanding the trends, process studies, as well as for improvement of long-term climate projections. Through this decade, there will be gaps in observations that need to be bridged with airborne assets augmented perhaps other new approaches to measure sea ice thickness. In

  15. Multiyear study of the dependence of sea salt aerosol on wind speed and sea ice conditions in the coastal Arctic

    NASA Astrophysics Data System (ADS)

    May, N. W.; Quinn, P. K.; McNamara, S. M.; Pratt, K. A.

    2016-08-01

    Thinning of Arctic sea ice gives rise to ice fracturing and leads (areas of open water surrounded by sea ice) that are a potential source of sea salt aerosol. Atmospheric particle inorganic ion concentrations, local sea ice conditions, and meteorology at Barrow, AK, from 2006 to 2009, were combined to investigate the dependence of submicron (aerodynamic diameter < 1 µm) and supermicron (aerodynamic diameter 1-10 µm) sea salt mass concentrations on sea ice coverage and wind speed. Consistent with a wind-dependent source, supermicron sea salt mass concentrations increased in the presence of nearby leads and wind speeds greater than 4 m s-1. Increased supermicron and submicron sea salt chloride depletion was observed for periods of low winds or a lack of nearby open water, consistent with transported sea salt influence. Sea salt aerosol produced from leads has the potential to alter cloud formation, as well as the chemical composition of the Arctic atmosphere and snowpack.

  16. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts.

    PubMed

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-01-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change. PMID:27435531

  17. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    PubMed Central

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-01-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change. PMID:27435531

  18. Sea Ice Drift in the Arctic Ocean. Seasonal Variability and Long-Term Changes

    NASA Astrophysics Data System (ADS)

    Pavlov, V.; Pavlova, O.

    2010-12-01

    Variability in the drift of sea ice in the Arctic Ocean is an important parameter that can be used to characterise the thermodynamic processes in the Arctic. Knowledge of the features of sea ice drift in the Arctic Ocean is necessary for climate research, for an improved understanding of polar ecology and as an aid to human activity in the Arctic Ocean. Monthly mean sea ice drift velocities, computed from Advanced Very High Resolution Radiometer (AVHRR), Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave/Imager (SSM/I), and International Arctic Buoy Programme (IABP) buoy data, are used to investigate the spatial and temporal variability of ice motion in the Arctic Ocean and Nordic Seas from 1979. Sea ice drift in the Arctic Ocean is characterized by strong seasonal and inter-annual variability. The results of combined statistical analysis of sea ice velocities and wind fields over the Arctic Ocean suggest that the seasonal changes of local wind are a predominant factor in the formation of the sea ice velocities annual cycle. Sea ice drift velocities mirror seasonal changes of the wind in the Arctic, reaching a maximum in December, with a minimum in June. In the central part of the Arctic Ocean and in the area near the Canadian shore the amplitude of this variation is not more than 2 cm/ sec. The maximum amplitudes are found in the Fram Strait (9-10 cm/sec), Beaufort Gyre (6-7 cm/sec) and the northern part of Barents Sea (5-6 cm/sec). Low frequency variations of sea ice drift velocities, with periods of 2.0-2.5 yrs and 5.0-6.0 yrs, are related to reorganization of the atmospheric circulation over the Arctic. There is evidence that the average sea ice velocity for the whole of the Arctic Ocean is increasing, with a positive trend for the period of last three decades. Trends of the monthly mean ice drift velocities are positive almost everywhere in the Arctic Ocean. In the Baffin Bay, Fram Strait and Barents Sea regions, sea ice velocities

  19. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin.

    PubMed

    Hu, Chundi; Yang, Song; Wu, Qigang; Li, Zhenning; Chen, Junwen; Deng, Kaiqiang; Zhang, Tuantuan; Zhang, Chengyang

    2016-06-02

    Arctic climate changes include not only changes in trends and mean states but also strong interannual variations in various fields. Although it is known that tropical-extratropical teleconnection is sensitive to changes in flavours of El Niño, whether Arctic climate variability is linked to El Niño, in particular on interannual timescale, remains unclear. Here we demonstrate for the first time a long-range linkage between central Pacific (CP) El Niño and summer Arctic climate. Observations show that the CP warming related to CP El Niño events deepens the tropospheric Arctic polar vortex and strengthens the circumpolar westerly wind, thereby contributing to inhibiting summer Arctic warming and sea-ice melting. Atmospheric model experiments can generally capture the observed responses of Arctic circulation and robust surface cooling to CP El Niño forcing. We suggest that identification of the equator-Arctic teleconnection, via the 'atmospheric bridge', can potentially contribute to improving the skill of predicting Arctic climate.

  20. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin

    PubMed Central

    Hu, Chundi; Yang, Song; Wu, Qigang; Li, Zhenning; Chen, Junwen; Deng, Kaiqiang; Zhang, Tuantuan; Zhang, Chengyang

    2016-01-01

    Arctic climate changes include not only changes in trends and mean states but also strong interannual variations in various fields. Although it is known that tropical-extratropical teleconnection is sensitive to changes in flavours of El Niño, whether Arctic climate variability is linked to El Niño, in particular on interannual timescale, remains unclear. Here we demonstrate for the first time a long-range linkage between central Pacific (CP) El Niño and summer Arctic climate. Observations show that the CP warming related to CP El Niño events deepens the tropospheric Arctic polar vortex and strengthens the circumpolar westerly wind, thereby contributing to inhibiting summer Arctic warming and sea-ice melting. Atmospheric model experiments can generally capture the observed responses of Arctic circulation and robust surface cooling to CP El Niño forcing. We suggest that identification of the equator-Arctic teleconnection, via the ‘atmospheric bridge', can potentially contribute to improving the skill of predicting Arctic climate. PMID:27251873

  1. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin.

    PubMed

    Hu, Chundi; Yang, Song; Wu, Qigang; Li, Zhenning; Chen, Junwen; Deng, Kaiqiang; Zhang, Tuantuan; Zhang, Chengyang

    2016-01-01

    Arctic climate changes include not only changes in trends and mean states but also strong interannual variations in various fields. Although it is known that tropical-extratropical teleconnection is sensitive to changes in flavours of El Niño, whether Arctic climate variability is linked to El Niño, in particular on interannual timescale, remains unclear. Here we demonstrate for the first time a long-range linkage between central Pacific (CP) El Niño and summer Arctic climate. Observations show that the CP warming related to CP El Niño events deepens the tropospheric Arctic polar vortex and strengthens the circumpolar westerly wind, thereby contributing to inhibiting summer Arctic warming and sea-ice melting. Atmospheric model experiments can generally capture the observed responses of Arctic circulation and robust surface cooling to CP El Niño forcing. We suggest that identification of the equator-Arctic teleconnection, via the 'atmospheric bridge', can potentially contribute to improving the skill of predicting Arctic climate. PMID:27251873

  2. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin

    NASA Astrophysics Data System (ADS)

    Hu, Chundi; Yang, Song; Wu, Qigang; Li, Zhenning; Chen, Junwen; Deng, Kaiqiang; Zhang, Tuantuan; Zhang, Chengyang

    2016-06-01

    Arctic climate changes include not only changes in trends and mean states but also strong interannual variations in various fields. Although it is known that tropical-extratropical teleconnection is sensitive to changes in flavours of El Niño, whether Arctic climate variability is linked to El Niño, in particular on interannual timescale, remains unclear. Here we demonstrate for the first time a long-range linkage between central Pacific (CP) El Niño and summer Arctic climate. Observations show that the CP warming related to CP El Niño events deepens the tropospheric Arctic polar vortex and strengthens the circumpolar westerly wind, thereby contributing to inhibiting summer Arctic warming and sea-ice melting. Atmospheric model experiments can generally capture the observed responses of Arctic circulation and robust surface cooling to CP El Niño forcing. We suggest that identification of the equator-Arctic teleconnection, via the `atmospheric bridge', can potentially contribute to improving the skill of predicting Arctic climate.

  3. Peopling of the high Arctic - induced by sea ice?

    NASA Astrophysics Data System (ADS)

    Funder, Svend

    2010-05-01

    'We travelled in the winter after the return of daylight and did not go into fixed camp until spring, when the ice broke up. There was good hunting on the way, seals, beluga, walrus, bear.' (From Old Merkrusârk's account of his childhood's trek from Baffin Island to Northwest Greenland, told to Knud Rasmussen on Saunders Island in 1904) Five thousand years ago people moving eastwards from Beringia spread over the barrens of the Canadian high Arctic. This was the first of three waves of prehistoric Arctic 'cultures', which eventually reached Greenland. The passage into Greenland has to go through the northernmost and most hostile part of the country with a 5 month Polar night, and to understand this extraordinary example of human behaviour and endurance, it has been customary to invoke a more favourable (warmer) climate. This presentation suggests that land-fast sea ice, i.e. stationary sea ice anchored to the coast, is among the most important environmental factors behind the spread of prehistoric polar cultures. The ice provides the road for travelling and social communion - and access to the most important source of food, the ocean. In the LongTerm Project (2006 and 2007) we attempted to establish a Holocene record for sea ice variations along oceanic coasts in northernmost Greenland. Presently the coasts north of 80° N are beleaguered by year-round sea ice - for ten months this is land-fast ice, and only for a period in the stormy autumn months are the coasts exposed to pack-ice. This presentation Land-fast ice - as opposed to pack-ice - is a product of local temperatures, but its duration over the year, and especially into the daylight season, is also conditioned by other factors, notably wind strength. In the geological record we recognize long lasting land-fast ice by two absences: absence of traces of wave action (no beach formation), which, however, can also be a result of pack-ice along the coast; - and absence of driftwood on the shore (land-fast ice

  4. Methane excess in Arctic surface water- triggered by sea ice formation and melting

    NASA Astrophysics Data System (ADS)

    Damm, E.; Rudels, B.; Schauer, U.; Mau, S.; Dieckmann, G.

    2015-11-01

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  5. Methane excess in Arctic surface water-triggered by sea ice formation and melting.

    PubMed

    Damm, E; Rudels, B; Schauer, U; Mau, S; Dieckmann, G

    2015-01-01

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas. PMID:26553610

  6. Methane excess in Arctic surface water-triggered by sea ice formation and melting.

    PubMed

    Damm, E; Rudels, B; Schauer, U; Mau, S; Dieckmann, G

    2015-11-10

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  7. Methane excess in Arctic surface water- triggered by sea ice formation and melting

    PubMed Central

    Damm, E.; Rudels, B.; Schauer, U.; Mau, S.; Dieckmann, G.

    2015-01-01

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas. PMID:26553610

  8. EOS Aqua AMSR-E Arctic Sea-Ice Validation Program: Arctic2006 Aircraft Campaign Flight Report

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Markus, T.

    2006-01-01

    In March 2006, a coordinated Arctic sea-ice validation field campaign using the NASA Wallops P-3B aircraft was successfully completed. This campaign was the second Alaskan Arctic field campaign for validating the Earth Observing System (EOS) Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea-ice products. The first campaign was completed in March 2003. The AMSR-E, designed and built by the Japanese Space Agency for NASA, was launched May 4, 2002 on the EOS Aqua spacecraft. The AMSR-E sea-ice products to be validated include sea-ice concentration, sea-ice temperature, and snow depth on sea ice. The focus of this campaign was on the validation of snow depth on sea ice and sea-ice temperature. This flight report describes the suite of instruments flown on the P-3, the objectives of each of the six flights, the Arctic regions overflown, and the coordination among satellite, aircraft, and surface-based measurements.

  9. Development, sensitivity analysis, and uncertainty quantification of high-fidelity arctic sea ice models.

    SciTech Connect

    Peterson, Kara J.; Bochev, Pavel Blagoveston; Paskaleva, Biliana S.

    2010-09-01

    Arctic sea ice is an important component of the global climate system and due to feedback effects the Arctic ice cover is changing rapidly. Predictive mathematical models are of paramount importance for accurate estimates of the future ice trajectory. However, the sea ice components of Global Climate Models (GCMs) vary significantly in their prediction of the future state of Arctic sea ice and have generally underestimated the rate of decline in minimum sea ice extent seen over the past thirty years. One of the contributing factors to this variability is the sensitivity of the sea ice to model physical parameters. A new sea ice model that has the potential to improve sea ice predictions incorporates an anisotropic elastic-decohesive rheology and dynamics solved using the material-point method (MPM), which combines Lagrangian particles for advection with a background grid for gradient computations. We evaluate the variability of the Los Alamos National Laboratory CICE code and the MPM sea ice code for a single year simulation of the Arctic basin using consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent, root mean square (RMS) ice speed, central Arctic ice thickness, and central Arctic ice speed with respect to ten different dynamic and thermodynamic parameters are evaluated both individually and in combination using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). We find similar responses for the two codes and some interesting seasonal variability in the strength of the parameters on the solution.

  10. Reconstructed changes in Arctic sea ice over the past 1,450 years.

    PubMed

    Kinnard, Christophe; Zdanowicz, Christian M; Fisher, David A; Isaksson, Elisabeth; de Vernal, Anne; Thompson, Lonnie G

    2011-11-23

    Arctic sea ice extent is now more than two million square kilometres less than it was in the late twentieth century, with important consequences for the climate, the ocean and traditional lifestyles in the Arctic. Although observations show a more or less continuous decline for the past four or five decades, there are few long-term records with which to assess natural sea ice variability. Until now, the question of whether or not current trends are potentially anomalous has therefore remained unanswerable. Here we use a network of high-resolution terrestrial proxies from the circum-Arctic region to reconstruct past extents of summer sea ice, and show that-although extensive uncertainties remain, especially before the sixteenth century-both the duration and magnitude of the current decline in sea ice seem to be unprecedented for the past 1,450 years. Enhanced advection of warm Atlantic water to the Arctic seems to be the main factor driving the decline of sea ice extent on multidecadal timescales, and may result from nonlinear feedbacks between sea ice and the Atlantic meridional overturning circulation. These results reinforce the assertion that sea ice is an active component of Arctic climate variability and that the recent decrease in summer Arctic sea ice is consistent with anthropogenically forced warming.

  11. SMOS sea surface salinity maps of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Gabarro, Carolina; Olmedo, Estrella; Turiel, Antonio; Ballabrera-Poy, Joaquim; Martinez, Justino; Portabella, Marcos

    2016-04-01

    years of SMOS data acquisitions. The second is the modification of the filtering criterion to account for the statistical distributions of SSS at each ocean grid point. This allows retrieving a value of SSS which is less affected by outliers originated from RFI and other effects. We will provide an assessment of the quality of these new SSS products in the Arctic, as well as illustrate the potential of these maps to monitor the main river discharges to the Arctic Ocean. [1] Font, J.; Camps, A.; Borges, A.; Martín-Neira, M.; Boutin, J.; Reul, N.; Kerr, Y.; Hahne, A. & Mecklenburg, S. SMOS: The Challenging Sea Surface Salinity Measurement From Space Proceedings of the IEEE, 2010, 98, 649 -665

  12. Polar bear and walrus response to the rapid decline in Arctic sea ice

    USGS Publications Warehouse

    Oakley, K.; Whalen, M.; Douglas, D.; Udevitz, M.; Atwood, T.; Jay, C.

    2012-01-01

    The Arctic is warming faster than other regions of the world due to positive climate feedbacks associated with loss of snow and ice. One highly visible consequence has been a rapid decline in Arctic sea ice over the past 3 decades - a decline projected to continue and result in ice-free summers likely as soon as 2030. The polar bear (Ursus maritimus) and the Pacific walrus (Odobenus rosmarus divergens) are dependent on sea ice over the continental shelves of the Arctic Ocean's marginal seas. The continental shelves are shallow regions with high biological productivity, supporting abundant marine life within the water column and on the sea floor. Polar bears use sea ice as a platform for hunting ice seals; walruses use sea ice as a resting platform between dives to forage for clams and other bottom-dwelling invertebrates. How have sea ice changes affected polar bears and walruses? How will anticipated changes affect them in the future?

  13. The application of ERTS imagery to monitoring Arctic sea ice. [mapping ice in Bering Sea, Beaufort Sea, Canadian Archipelago, and Greenland Sea

    NASA Technical Reports Server (NTRS)

    Barnes, J. C. (Principal Investigator); Bowley, C. J.

    1974-01-01

    The author has identified the following significant results. Because of the effect of sea ice on the heat balance of the Arctic and because of the expanding economic interest in arctic oil and minerals, extensive monitoring and further study of sea ice is required. The application of ERTS data for mapping ice is evaluated for several arctic areas, including the Bering Sea, the eastern Beaufort Sea, parts of the Canadian Archipelago, and the Greenland Sea. Interpretive techniques are discussed, and the scales and types of ice features that can be detected are described. For the Bering Sea, a sample of ERTS-1 imagery is compared with visual ice reports and aerial photography from the NASA CV-990 aircraft. The results of the investigation demonstrate that ERTS-1 imagery has substantial practical application for monitoring arctic sea ice. Ice features as small as 80-100 m in width can be detected, and the combined use of the visible and near-IR imagery is a powerful tool for identifying ice types. Sequential ERTS-1 observations at high latitudes enable ice deformations and movements to be mapped. Ice conditions in the Bering Sea during early March depicted in ERTS-1 images are in close agreement with aerial ice observations and photographs.

  14. The impact of lower sea-ice extent on Arctic greenhouse-gas exchange

    USGS Publications Warehouse

    Parmentier, Frans-Jan W.; Christensen, Torben R.; Sørensen, Lise Lotte; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.

    2013-01-01

    In September 2012, Arctic sea-ice extent plummeted to a new record low: two times lower than the 1979–2000 average. Often, record lows in sea-ice cover are hailed as an example of climate change impacts in the Arctic. Less apparent, however, are the implications of reduced sea-ice cover in the Arctic Ocean for marine–atmosphere CO2 exchange. Sea-ice decline has been connected to increasing air temperatures at high latitudes. Temperature is a key controlling factor in the terrestrial exchange of CO2 and methane, and therefore the greenhouse-gas balance of the Arctic. Despite the large potential for feedbacks, many studies do not connect the diminishing sea-ice extent with changes in the interaction of the marine and terrestrial Arctic with the atmosphere. In this Review, we assess how current understanding of the Arctic Ocean and high-latitude ecosystems can be used to predict the impact of a lower sea-ice cover on Arctic greenhouse-gas exchange.

  15. Response of Arctic sea level and hydrography to hydrological regime change over boreal catchments

    NASA Astrophysics Data System (ADS)

    Tourian, Mohammad J.; Sneeuw, Nico; Losch, Martin; Rabe, Benjamin

    2016-04-01

    Changes in freshwater influx into the Arctic Ocean are a key driver of regional dynamics and sea level change in the Arctic waters. Low-salinity surface waters maintain a strong stratification in the Arctic. This halocline largely shields the cool polar surface water and sea ice from the warmer waters of Atlantic origin below and, hence, inhibits vertical heat fluxes of heat, salt and nutrients. Recently observed changes in the freshwater content of the upper Arctic Ocean raise the question of the effect of these changes on the region. Changes in the freshwater budget affect regional steric sea level, but also the modified ocean dynamics may change sea level through mass transports within the Arctic. One component of the freshwater budget is continental runoff. The hydrological regime of river runoff appears to be non-stationary. There is both interannual variability and a significantly positive trend since the 1970s. The decreasing Arctic sea-ice cover may be a possible reason for the non-stationary behavior of runoff, especially in coastal and marginal seas. The decrease of sea ice due to global warming would lead to cloud formation and, indeed, increased precipitation. During the warmer season, increased precipitation would lead to more discharge of freshwater to the Arctic shelves and basins. The observational record of discharge into the Arctic Ocean, however, is still too sparse to address important science questions about the long-term behavior and development of Arctic sea level and climate. Given the insufficient monitoring from in situ gauge networks, and without any outlook of improvement, spaceborne approaches are currently being investigated. In this contribution we assess the long-term behavior of monthly runoff time series obtained from hydro-geodetic approaches and explore the effects of interannual runoff variability and long term trends on ocean model simulations.

  16. Adaptive strategies and life history characteristics in a warming climate: salmon in the Arctic?

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Ruggerone, Gregory T.; Zimmerman, Christian E.

    2013-01-01

    In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.

  17. Filamentous phages prevalent in Pseudoalteromonas spp. confer properties advantageous to host survival in Arctic sea ice.

    PubMed

    Yu, Zi-Chao; Chen, Xiu-Lan; Shen, Qing-Tao; Zhao, Dian-Li; Tang, Bai-Lu; Su, Hai-Nan; Wu, Zhao-Yu; Qin, Qi-Long; Xie, Bin-Bin; Zhang, Xi-Ying; Yu, Yong; Zhou, Bai-Cheng; Chen, Bo; Zhang, Yu-Zhong

    2015-03-17

    Sea ice is one of the most frigid environments for marine microbes. In contrast to other ocean ecosystems, microbes in permanent sea ice are space confined and subject to many extreme conditions, which change on a seasonal basis. How these microbial communities are regulated to survive the extreme sea ice environment is largely unknown. Here, we show that filamentous phages regulate the host bacterial community to improve survival of the host in permanent Arctic sea ice. We isolated a filamentous phage, f327, from an Arctic sea ice Pseudoalteromonas strain, and we demonstrated that this type of phage is widely distributed in Arctic sea ice. Growth experiments and transcriptome analysis indicated that this phage decreases the host growth rate, cell density and tolerance to NaCl and H2O2, but enhances its motility and chemotaxis. Our results suggest that the presence of the filamentous phage may be beneficial for survival of the host community in sea ice in winter, which is characterized by polar night, nutrient deficiency and high salinity, and that the filamentous phage may help avoid over blooming of the host in sea ice in summer, which is characterized by polar day, rich nutrient availability, intense radiation and high concentration of H2O2. Thus, while they cannot kill the host cells by lysing them, filamentous phages confer properties advantageous to host survival in the Arctic sea ice environment. Our study provides a foremost insight into the ecological role of filamentous phages in the Arctic sea ice ecosystem.

  18. Filamentous phages prevalent in Pseudoalteromonas spp. confer properties advantageous to host survival in Arctic sea ice

    PubMed Central

    Yu, Zi-Chao; Chen, Xiu-Lan; Shen, Qing-Tao; Zhao, Dian-Li; Tang, Bai-Lu; Su, Hai-Nan; Wu, Zhao-Yu; Qin, Qi-Long; Xie, Bin-Bin; Zhang, Xi-Ying; Yu, Yong; Zhou, Bai-Cheng; Chen, Bo; Zhang, Yu-Zhong

    2015-01-01

    Sea ice is one of the most frigid environments for marine microbes. In contrast to other ocean ecosystems, microbes in permanent sea ice are space confined and subject to many extreme conditions, which change on a seasonal basis. How these microbial communities are regulated to survive the extreme sea ice environment is largely unknown. Here, we show that filamentous phages regulate the host bacterial community to improve survival of the host in permanent Arctic sea ice. We isolated a filamentous phage, f327, from an Arctic sea ice Pseudoalteromonas strain, and we demonstrated that this type of phage is widely distributed in Arctic sea ice. Growth experiments and transcriptome analysis indicated that this phage decreases the host growth rate, cell density and tolerance to NaCl and H2O2, but enhances its motility and chemotaxis. Our results suggest that the presence of the filamentous phage may be beneficial for survival of the host community in sea ice in winter, which is characterized by polar night, nutrient deficiency and high salinity, and that the filamentous phage may help avoid over blooming of the host in sea ice in summer, which is characterized by polar day, rich nutrient availability, intense radiation and high concentration of H2O2. Thus, while they cannot kill the host cells by lysing them, filamentous phages confer properties advantageous to host survival in the Arctic sea ice environment. Our study provides a foremost insight into the ecological role of filamentous phages in the Arctic sea ice ecosystem. PMID:25303713

  19. Sensitivity of Arctic warming to sea ice concentration

    NASA Astrophysics Data System (ADS)

    Yim, Bo Young; Min, Hong Sik; Kim, Baek-Min; Jeong, Jee-Hoon; Kug, Jong-Seong

    2016-06-01

    We examine the sensitivity of Arctic amplification (AA) to background sea ice concentration (SIC) under greenhouse warming by analyzing the data sets of the historical and Representative Concentration Pathway 8.5 runs of the Coupled Model Intercomparison Project Phase 5. To determine whether the sensitivity of AA for a given radiative forcing depends on background SIC state, we examine the relationship between the AA trend and mean SIC on moving 30 year windows from 1960 to 2100. It is found that the annual mean AA trend varies depending on the mean SIC condition. In particular, some models show a highly variable AA trend in relation to the mean SIC clearly. In these models, the AA trend tends to increase until the mean SIC reaches a critical level (i.e., 20-30%), and the maximum AA trend is almost 3 to 5 times larger than the trend in the early stage of global warming (i.e., 50-60%, 60-70%). However, the AA trend tends to decrease after that. Further analysis shows that the sensitivity of AA trend to mean SIC condition is closely related to the feedback processes associated with summer surface albedo and winter turbulent heat flux in the Arctic Ocean.

  20. Sediments in Arctic sea ice: Implications for entrainment, transport and release

    USGS Publications Warehouse

    Nurnberg, D.; Wollenburg, I.; Dethleff, D.; Eicken, H.; Kassens, H.; Letzig, T.; Reimnitz, E.; Thiede, Jorn

    1994-01-01

    Despite the Arctic sea ice cover's recognized sensitivity to environmental change, the role of sediment inclusions in lowering ice albedo and affecting ice ablation is poorly understood. Sea ice sediment inclusions were studied in the central Arctic Ocean during the Arctic 91 expedition and in the Laptev Sea (East Siberian Arctic Region Expedition 1992). Results from these investigations are here combined with previous studies performed in major areas of ice ablation and the southern central Arctic Ocean. This study documents the regional distribution and composition of particle-laden ice, investigates and evaluates processes by which sediment is incorporated into the ice cover, and identifies transport paths and probable depositional centers for the released sediment. In April 1992, sea ice in the Laptev Sea was relatively clean. The sediment occasionally observed was distributed diffusely over the entire ice column, forming turbid ice. Observations indicate that frazil and anchor ice formation occurring in a large coastal polynya provide a main mechanism for sediment entrainment. In the central Arctic Ocean sediments are concentrated in layers within or at the surface of ice floes due to melting and refreezing processes. The surface sediment accumulation in central Arctic multi-year sea ice exceeds by far the amounts observed in first-year ice from the Laptev Sea in April 1992. Sea ice sediments are generally fine grained, although coarse sediments and stones up to 5 cm in diameter are observed. Component analysis indicates that quartz and clay minerals are the main terrigenous sediment particles. The biogenous components, namely shells of pelecypods and benthic foraminiferal tests, point to a shallow, benthic, marine source area. Apparently, sediment inclusions were resuspended from shelf areas before and incorporated into the sea ice by suspension freezing. Clay mineralogy of ice-rafted sediments provides information on potential source areas. A smectite

  1. Eastern-western Arctic sea ice analysis, 1993

    SciTech Connect

    1993-12-31

    This publication is the 20th edition of the annual Arctic sea-ice atlases prepared by the JIC. The atlas contains weekly charts depicting Northern Hemisphere ice conditions and extent. The significant use of high resolution satellite imagery, combined with valuable ice reconnaissance data from various sources, has greatly improved the accuracy of these analyses. The purpose of this atlas is to provide the user with reliable weekly hemispheric ice analyses. These charts are prepared by experienced Navy and NOAA ice analysts who plot and evaluate numerous data sources: (a) Conventional shore station, ship, and aerial reconnaissance observations; and (b) Satellite data from various sensors. Table I, located on the inside back cover, lists these sensors and their availability. A final product is synthesized from the inputs described above. When insufficient data is available, estimated boundaries are plotted, using meteorological data and computer generated ice drift vectors to determine estimated ice position.

  2. SEA-ICE INFLUENCE ON ARCTIC COASTAL RETREAT.

    USGS Publications Warehouse

    Reimnitz, Erk; Barnes, P.W.

    1987-01-01

    Recent studies document the effectiveness of sea ice in reshaping the seafloor of the inner shelf into sharp-relief features, including ice gouges with jagged flanking ridges, ice-wallow relief, and 2- to 6-m-deep strudel-scour craters. These ice-related relief forms are in disequilibrium with classic open-water hydraulic processes and thus are smoothed over by waves and currents in one to two years. Such alternate reworking of the shelf by ice and currents - two diverse types of processes, which in the case of ice wallow act in unison-contributes to sediment mobility and, thus, to sediment loss from the coast and inner shelf. The bulldozing action by ice results in coast-parallel sediment displacement. Additionally, suspension of sediment by frazil and anchor ice, followed by ice rafting, can move large amounts of bottom-derived materials. Our understanding of all these processes is insufficient to model Arctic coastal processes.

  3. Influence of Sea Ice on Arctic Marine Sulfur Biogeochemistry in the Community Climate System Model

    SciTech Connect

    Deal, Clara; Jin, Meibing

    2013-06-30

    Global climate models (GCMs) have not effectively considered how responses of arctic marine ecosystems to a warming climate will influence the global climate system. A key response of arctic marine ecosystems that may substantially influence energy exchange in the Arctic is a change in dimethylsulfide (DMS) emissions, because DMS emissions influence cloud albedo. This response is closely tied to sea ice through its impacts on marine ecosystem carbon and sulfur cycling, and the ice-albedo feedback implicated in accelerated arctic warming. To reduce the uncertainty in predictions from coupled climate simulations, important model components of the climate system, such as feedbacks between arctic marine biogeochemistry and climate, need to be reasonably and realistically modeled. This research first involved model development to improve the representation of marine sulfur biogeochemistry simulations to understand/diagnose the control of sea-ice-related processes on the variability of DMS dynamics. This study will help build GCM predictions that quantify the relative current and possible future influences of arctic marine ecosystems on the global climate system. Our overall research objective was to improve arctic marine biogeochemistry in the Community Climate System Model (CCSM, now CESM). Working closely with the Climate Ocean Sea Ice Model (COSIM) team at Los Alamos National Laboratory (LANL), we added 1 sea-ice algae and arctic DMS production and related biogeochemistry to the global Parallel Ocean Program model (POP) coupled to the LANL sea ice model (CICE). Both CICE and POP are core components of CESM. Our specific research objectives were: 1) Develop a state-of-the-art ice-ocean DMS model for application in climate models, using observations to constrain the most crucial parameters; 2) Improve the global marine sulfur model used in CESM by including DMS biogeochemistry in the Arctic; and 3) Assess how sea ice influences DMS dynamics in the arctic marine

  4. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean

    PubMed Central

    Heimbürger, Lars-Eric; Sonke, Jeroen E.; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T.; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers

    2015-01-01

    Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79°N). Here we present the first central Arctic Ocean (79–90°N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81–85°N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150–200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production. PMID:25993348

  5. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Heimbürger, Lars-Eric; Sonke, Jeroen E.; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T.; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers

    2015-05-01

    Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79°N). Here we present the first central Arctic Ocean (79-90°N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81-85°N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150-200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production.

  6. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean.

    PubMed

    Heimbürger, Lars-Eric; Sonke, Jeroen E; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers

    2015-05-20

    Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79 °N). Here we present the first central Arctic Ocean (79-90 °N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81-85 °N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150-200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production.

  7. Arctic low cloud response to variations in sea ice concentration: response or no response?

    NASA Astrophysics Data System (ADS)

    Taylor, P. C.

    2015-12-01

    How do clouds and their effect on the surface radiation budget respond to variations in sea ice? The answer to this question depends significantly on the characteristics of the Arctic circulation. Sea ice-cloud interactions are important for modeling the Arctic climate. Specifically, understanding the cloud response to sea ice change is necessary for understanding the Arctic surface radiation budget, interannual variability in sea ice, and future changes in sea ice. Previous work has primarily addressed this problem from the interannual variability perspective. A novel perspective of sea ice-cloud interactions in the Arctic is provided here through a satellite footprint-level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A-Train active remote sensing satellite data. The influence of atmospheric state on the cloud field must be considered. The covariance between Arctic low cloud properties and sea ice concentration is quantified by first partitioning each footprint into one of four atmospheric regimes defined by thresholds of lower tropospheric stability and mid-tropospheric vertical velocity. Regional variability is found in the cloud properties within each of these atmosphere state regimes indicating that the atmospheric state regimes do not account for the total influence of meteorological conditions on Arctic clouds. After removing the regional variability, a statistically significant covariance between cloud fraction and cloud total water is found within several atmospheric regimes. The covariance between clouds and sea ice is strongest in autumn and not statistically significant in winter and summer. The results indicate, however, that magnitude of any cloud response to changes in sea ice concentration is at least an order of magnitude smaller than the response of clouds to a change in the atmospheric dynamic and thermodynamic state. The atmospheric dynamic and thermodynamic environment is the most important factor

  8. Recent Trends in the Arctic Navigable Ice Season and Links to Atmospheric Circulation

    NASA Astrophysics Data System (ADS)

    Maslanik, J.; Drobot, S.

    2002-12-01

    One of the potential effects of Arctic climate warming is an increase in the navigable ice season, perhaps resulting in development of the Arctic as a major shipping route. The distance from western North American ports to Europe through the Northwest Passage (NWP) or the Northern Sea Route (NSR) is typically 20 to 60 percent shorter than travel through the Panama Canal, while travel between Europe and the Far East may be reduced by as much as three weeks compared to transport through the Suez Canal. An increase in the navigable ice season would also improve commercial opportunities within the Arctic region, such as mineral and oil exploration and tourism, which could potentially expand the economic base of Arctic residents and companies, but which would also have negative environmental impacts. Utilizing daily passive-microwave derived sea ice concentrations, trends and variability in the Arctic navigable ice season are examined from 1979 through 2001. Trend analyses suggest large increases in the length of the navigable ice season in the Kara and Barents seas, the Sea of Okhotsk, and the Beaufort Sea, with decreases in the length of the navigable ice season in the Bering Sea. Interannual variations in the navigable ice season largely are governed by fluctuations in low-frequency atmospheric circulation, although the specific annular modes affecting the length of the navigable ice season vary by region. In the Beaufort and East Siberian seas, variations in the North Atlantic Oscillation/Arctic Oscillation control the navigable ice season, while variations in the East Pacific anomaly play an important role in controlling the navigable ice season in the Kara and Barents seas. In Hudson Bay, the Canadian Arctic Archipelago, and Baffin Bay, interannual variations in the navigable ice season are strongly related to the Pacific Decadal Oscillation.

  9. Investigating the Sensitivity of Arctic Sea Ice to Variability in Early Summer Cloud Radiative Effect

    NASA Astrophysics Data System (ADS)

    King, M. D.

    2015-12-01

    Arctic sea ice is a highly sensitive and integral component of the climate system. The observed decline of sea ice in recent decades has affected Arctic ecosystems, transportation, and atmospheric processes. For these reasons, the development of skillful seasonal model predictions is essential, particularly for the early autumn when Arctic ice retreats to its minimum extent. However, a high degree of temporal and spatial variability has made sea ice predictions challenging. Arctic clouds become a large source of this variability by altering the amount of insolation and longwave radiation that is received at the surface. The goal of this research is to identify the predictive value of early summer cloud radiative effect (CRE) on autumnal sea ice extent. Absorbed solar radiation at the surface is most sensitive to cloud cover and composition during months of peak solar insolation, and may precondition the melting momentum of the sea ice in the subsequent months. Satellite data products, such as CERES, are used to investigate trends in cloud cover and radiative properties over the entire Arctic, as well as in several specific Arctic regions. This data, along with satellite sea ice concentration products, will be used to investigate the sensitivity of autumnal sea ice extent to changes in CRE throughout the melt season. The influence of relevant, larger-scale climate oscillations on atmospheric regimes and resulting cloud distribution will also be given consideration.

  10. Quaternary Sea-ice history in the Arctic Ocean based on a new Ostracode sea-ice proxy

    USGS Publications Warehouse

    Cronin, T. M.; Gemery, L.; Briggs, W.M.; Jakobsson, M.; Polyak, L.; Brouwers, E.M.

    2010-01-01

    Paleo-sea-ice history in the Arctic Ocean was reconstructed using the sea-ice dwelling ostracode Acetabulastoma arcticum from late Quaternary sediments from the Mendeleyev, Lomonosov, and Gakkel Ridges, the Morris Jesup Rise and the Yermak Plateau. Results suggest intermittently high levels of perennial sea ice in the central Arctic Ocean during Marine Isotope Stage (MIS) 3 (25-45 ka), minimal sea ice during the last deglacial (16-11 ka) and early Holocene thermal maximum (11-5 ka) and increasing sea ice during the mid-to-late Holocene (5-0 ka). Sediment core records from the Iceland and Rockall Plateaus show that perennial sea ice existed in these regions only during glacial intervals MIS 2, 4, and 6. These results show that sea ice exhibits complex temporal and spatial variability during different climatic regimes and that the development of modern perennial sea ice may be a relatively recent phenomenon. ?? 2010.

  11. Increased Arctic sea ice volume after anomalously low melting in 2013

    NASA Astrophysics Data System (ADS)

    Tilling, Rachel L.; Ridout, Andy; Shepherd, Andrew; Wingham, Duncan J.

    2015-08-01

    Changes in Arctic sea ice volume affect regional heat and freshwater budgets and patterns of atmospheric circulation at lower latitudes. Despite a well-documented decline in summer Arctic sea ice extent by about 40% since the late 1970s, it has been difficult to quantify trends in sea ice volume because detailed thickness observations have been lacking. Here we present an assessment of the changes in Northern Hemisphere sea ice thickness and volume using five years of CryoSat-2 measurements. Between autumn 2010 and 2012, there was a 14% reduction in Arctic sea ice volume, in keeping with the long-term decline in extent. However, we observe 33% and 25% more ice in autumn 2013 and 2014, respectively, relative to the 2010-2012 seasonal mean, which offset earlier losses. This increase was caused by the retention of thick sea ice northwest of Greenland during 2013 which, in turn, was associated with a 5% drop in the number of days on which melting occurred--conditions more typical of the late 1990s. In contrast, springtime Arctic sea ice volume has remained stable. The sharp increase in sea ice volume after just one cool summer suggests that Arctic sea ice may be more resilient than has been previously considered.

  12. Arctic Sea Level Change over the altimetry era and reconstructed over 50 years.

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Cheng, Y.; Knudsen, P.; Svendsen, P. L.

    2015-12-01

    The Arctic Ocean process severe limitations on the use of altimetry and tide gauge data for sea level studies and prediction due to the presence of seasonal or permanent sea ice. In order to overcome this issue we reprocessed all altimetry data with editing tailored to Arctic conditions, hereby more than doubling the amount of altimetry in the Arctic Ocean with up to 10 times the amount of data in regions like the Beaufort Gyre region compared with AVISO and RADS datasets. With recent data from the Cryosat-2 SAR altimetry the time-series now runs from 1991-2015 a total of nearly 25 years. Good altimetric data is seen to crucial for sea level studies and profoundly for sea level reconstruction where we present a 60 years sea level reconstruction based on this new data set. We here present a new multi-decade altimetric dataset and a 60 year reconstruction of sea level based on this together with tide gauge information. The reprocessed dataset exhibit a mean sea level trend of 2.1±1.3 mm/year (without Glacial Isostatic Adjustment correction) covering the Arctic Ocean between 66°N and 82°N with significant higher trend in the Beaufort Gyre region showing an increase in sea level up to 2011. Using GRACE gravimetry to study ocean mass variations we can nearly close the regional sea level budget over the last 10 years in the Arctic.

  13. Arctic Sea Level Change over the altimetry era and reconstructed over the last 60 years.

    NASA Astrophysics Data System (ADS)

    Baltazar Andersen, Ole; Svendsen, Peter L.; Knudsen, Per; Nielsen, Allan A.

    2016-04-01

    The Arctic Ocean process severe limitations on the use of altimetry and tide gauge data for sea level studies and prediction due to the presence of seasonal or permanent sea ice. In order to overcome this issue we reprocessed all altimetry data with editing tailored to Arctic conditions, hereby more than doubling the amount of altimetry in the Arctic Ocean with up to 10 times the amount of data in regions like the Beaufort Gyre region compared with AVISO and RADS datasets. With recent data from the Cryosat-2 SAR altimetry the time-series now runs from 1991-2015 a total of nearly 25 years. Good altimetric data is seen to crucial for sea level studies and profoundly for sea level reconstruction where we present a 60 years sea level reconstruction based on this new data set. We here present a new multi-decade altimetric dataset and a 60 year reconstruction of sea level based on this together with tide gauge information. The reprocessed dataset exhibit a mean sea level trend of 2.1±1.3 mm/year (without Glacial Isostatic Adjustment correction) covering the Arctic Ocean between 66°N and 82°N with significant higher trend in the Beaufort Gyre region showing an increase in sea level up to 2011. Using GRACE gravimetry to study ocean mass variations we can nearly close the regional sea level budget over the last 10 years in the Arctic.

  14. Moderate-resolution sea surface temperature data for the Arctic Ocean Ecoregions

    EPA Science Inventory

    Sea surface temperature (SST) is an important environmental characteristic in determining the suitability and sustainability of habitats for marine organisms. Of particular interest is the fate of the Arctic Ocean, which provides critical habitat to commercially important fish (M...

  15. The Role of Sea Ice for Vascular Plant Dispersal in the Arctic

    NASA Astrophysics Data System (ADS)

    Geirsdottir, A.; Alsos, I. G.; Seidenkrantz, M. S.; Bennike, O.; Kirchhefer, A.; Ehrich, D.

    2015-12-01

    Plant species adapted to arctic environments are expected to go extinct at their southern margins due to climate warming whereas they may find suitable habitats on arctic islands if they are able to disperse there. Analyses of species distribution and phylogenetic data indicate both that the frequency of dispersal events is higher in the arctic than in other regions, and that the dispersal routes often follow the routes of sea surface currents. Thus, it has been hypothesised that sea ice has played a central role in Holocene colonisation of arctic islands. Here we compile data on the first Holocene occurrence of species in East Greenland, Iceland, the Faroe Islands, and Svalbard. We then combine these records with interpretations of dispersal routes inferred from genetic data and data on geographical distributions, reconstructions of Holocene sea ice extent, and records of driftwood to evaluate the potential role sea ice has played in past colonisation events.

  16. Arctic Sea Ice Max is 5th-Lowest on Record

    NASA Video Gallery

    This animation shows the seasonal change in the extent of the Arctic sea ice between March 1, 2012 and February 28, 2013. The annual cycle starts with the maximum extent reached on March 15, 2012. ...

  17. Impacts of projected sea ice changes on trans-Arctic navigation

    NASA Astrophysics Data System (ADS)

    Stephenson, S. R.; Smith, L. C.

    2012-12-01

    Reduced Arctic sea ice continues to be a palpable signal of global change. Record lows in September sea ice extent from 2007 - 2011 have fueled speculation that trans-Arctic navigation routes may become physically viable in the 21st century. General Circulation Models project a nearly ice-free Arctic Ocean in summer by mid-century; however, how reduced sea ice will realistically impact navigation is not well understood. Using the ATAM (Arctic Transportation Accessibility Model) we present simulations of 21st-century trans-Arctic voyages as a function of climatic (ice) conditions and vessel class. Simulations are based on sea ice projections for three climatic forcing scenarios (RCP 4.5, 6.0, and 8.5 W/m^2) representing present-day and mid-century conditions, assuming Polar Class 6 (PC6) and open-water vessels (OW) with medium and no ice-breaking capability, respectively. Optimal least-cost routes (minimizing travel time while avoiding ice impassible to a given vessel class) between the North Atlantic and the Bering Strait were calculated for summer months of each time window. While Arctic navigation depends on other factors besides sea ice including economics, infrastructure, bathymetry, current, and weather, these projections should be useful for strategic planning by governments, regulatory and environmental agencies, and the global maritime industry to assess potential changes in the spatial and temporal ranges of Arctic marine operations.

  18. Influence of Sea Ice on the Thermohaline Circulation in the Arctic-North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Mauritzen, Cecilie; Haekkinen, Sirpa

    1997-01-01

    A fully prognostic coupled ocean-ice model is used to study the sensitivity of the overturning cell of the Arctic-North-Atlantic system to sea ice forcing. The strength of the thermohaline cell will be shown to depend on the amount of sea ice transported from the Arctic to the Greenland Sea and further to the subpolar gyre. The model produces a 2-3 Sv increase of the meridional circulation cell at 25N (at the simulation year 15) corresponding to a decrease of 800 cu km in the sea ice export from the Arctic. Previous modeling studies suggest that interannual and decadal variability in sea ice export of this magnitude is realistic, implying that sea ice induced variability in the overturning cell can reach 5-6 Sv from peak to peak.

  19. Chapter 1: An overview of the petroleum geology of the Arctic

    USGS Publications Warehouse

    Spencer, A.M.; Embry, A.F.; Gautier, D.L.; Stoupakova, A.V.; Sorensen, K.

    2011-01-01

    Nine main petroleum provinces containing recoverable resources totalling 61 Bbbl liquids + 269 Bbbloe of gas are known in the Arctic. The three best known major provinces are: West Siberia-South Kara, Arctic Alaska and Timan-Pechora. They have been sourced principally from, respectively, Upper Jurassic, Triassic and Devonian marine source rocks and their hydrocarbons are reservoired principally in Cretaceous sandstones, Triassic sandstones and Palaeozoic carbonates. The remaining six provinces except for the Upper Cretaceous-Palaeogene petroleum system in the Mackenzie Delta have predominantly Mesozoic sources and Jurassic reservoirs. There are discoveries in 15% of the total area of sedimentary basins (c. 8 ?? 106 km2), dry wells in 10% of the area, seismic but no wells in 50% and no seismic in 25%. The United States Geological Survey estimate yet-to-find resources to total 90 Bbbl liquids + 279 Bbbloe gas, with four regions - South Kara Sea, Alaska, East Barents Sea, East Greenland - dominating. Russian estimates of South Kara Sea and East Barents Sea are equally positive. The large potential reflects primarily the large undrilled areas, thick basins and widespread source rocks. ?? 2011 The Geological Society of London.

  20. Influence of Arctic sea-ice and greenhouse gas concentration change on the West African Monsoon.

    NASA Astrophysics Data System (ADS)

    Monerie, Paul-Arthur; Oudar, Thomas; Sanchez-Gomez, Emilia; Terray, Laurent

    2016-04-01

    The Sahelian precipitation are projected to increase in the CNRM-CM5 coupled climate model due to a strengthening of the land-Sea temperature gradient, the increase in the North Atlantic temperature and the deepening of the Heat Low. Arctic Sea-Ice loss impacts the low-level atmospheric circulation through a decrease in the northward heat transport. Some authors have linked the sea-ice loss to a poleward shift of the InterTropical Convergence Zone. Within the CMIP5 models the effect of these mechanisms are not distinguishable and it is difficult to understand the effect of the Arctic sea-ice loss on the West African Monsoon so far. We performed several sensitivity experiments with the CNRM-CM5 coupled climate models by modifying the arctic sea-ice extent and/or the greenhouse gas concentration. We then investigated separately the impact of Arctic sea-ice loss and greenhouse gas concentration increases on the West African Monsoon. The increase in greenhouse gas explains the northward shift and the strengthening of the monsoon. Its effect is stronger with a sea-ice free Arctic that leads to an increase in North Atlantic temperature and in Sahelian precipitation at the end of the rainy season (September-October). We argue that the decrease in sea-ice extent, in the context of the global warming, may moistens the Sahel during the rainy season by changing the pressure, winds and moisture fluxes at low-level.

  1. The impact of varying atmospheric forcing on the thickness of arctic multi-year sea ice

    NASA Astrophysics Data System (ADS)

    Dumas, J. A.; Flato, G. M.; Weaver, A. J.

    2003-09-01

    A 1-D thermodynamic sea ice model, forced with North Pole Drift Station observations from 1954-91, is used to study the effect of changing atmospheric forcing on multi-year Arctic sea ice. From 1954-70, most seasons show positive trends in calculated sea ice thickness over much of the Arctic. A dip in calculated ice thickness takes place between 1971-77 over most of the Arctic. Following the North Pacific regime shift in 1976-1977, the period 1978-91 reveals large negative trends in calculated sea ice thickness in all seasons. The results indicate that an important part of the variability and trends in Arctic sea ice thickness is thermodynamically-driven. Of the total variance in multi-year sea ice thickness, 10 to 20% is explained by variations in the Arctic Oscillation and Pacific North American patterns. The multi-year ice thickness response to a positive wintertime Arctic Oscillation anomaly occurs the following summer and persists for more than a year.

  2. Observations of atmospheric methane and its stable isotope ratio (δ13C) over the Arctic seas from ship cruises in the summer and autumn of 2015

    NASA Astrophysics Data System (ADS)

    Skorokhod, Andrey; Belikov, Igor; Pankratova, Natalia; Novigatsky, Alexander; Thompson, Rona

    2016-04-01

    Atmospheric methane (CH4) is the second most important long-lived greenhouse gas. The Arctic has significant sources of CH4, such as from wetlands and possibly also from methane hydrates, which may act as a positive feedback on the climate system. Despite significant efforts in establishing a network of ground-based CH4 observations in the Arctic zone, there is still a lack of measurements over the Arctic Ocean and sub-polar seas. From 21 July to 9 October 2015, concentrations of CH4 and CO2, as well as of the 13C:12C isotopic ratio in CH4, i.e., δ13C, were measured in the marine boundary layer from aboard the Research Vessel "Akademik Mstislav Keldysh" by the Shirshov Institute of Oceanology. Measurements were made using a Cavity Ring Down Spectroscopy instrument from Picarro™ (model G2132-i). The cruises covered a vast area including the North Atlantic up to 70°N, the Baltic, North, Norwegian, Greenland, Barents, White, Kara and Laptev Seas. To the best of our knowledge, these are the first measurements of their type made in these regions. Concentrations of CH4 typically had low variations (in the range of a few ppb) in the open sea but relatively large variations (of the order of 100 ppb) were recorded near and during stops in ports. High variability of atmospheric CH4 was also registered near the delta of the Lena River in the Laptev Sea, which has been suggested to be a large CH4 reservoir and where bubbles rising through the water column have been observed. The obtained set of δ13CCH4 is characterized by significant range of the measured values varying from open Atlantic to polluted regions near large sea ports. The Keeling plot analyses were implemented to study possible CH4 sources according to its isotopic signature. Footprint analyses are presented for the shipboard observations, as well as comparisons to simulated CH4 concentrations and δ13C using the Lagrangian transport model, FLEXPART. This work has been carried-out with the financial support of

  3. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat.

    PubMed

    Bintanja, R; Selten, F M

    2014-05-22

    Precipitation changes projected for the end of the twenty-first century show an increase of more than 50 per cent in the Arctic regions. This marked increase, which is among the highest globally, has previously been attributed primarily to enhanced poleward moisture transport from lower latitudes. Here we use state-of-the-art global climate models to show that the projected increases in Arctic precipitation over the twenty-first century, which peak in late autumn and winter, are instead due mainly to strongly intensified local surface evaporation (maximum in winter), and only to a lesser degree due to enhanced moisture inflow from lower latitudes (maximum in late summer and autumn). Moreover, we show that the enhanced surface evaporation results mainly from retreating winter sea ice, signalling an amplified Arctic hydrological cycle. This demonstrates that increases in Arctic precipitation are firmly linked to Arctic warming and sea-ice decline. As a result, the Arctic mean precipitation sensitivity (4.5 per cent increase per degree of temperature warming) is much larger than the global value (1.6 to 1.9 per cent per kelvin). The associated seasonally varying increase in Arctic precipitation is likely to increase river discharge and snowfall over ice sheets (thereby affecting global sea level), and could even affect global climate through freshening of the Arctic Ocean and subsequent modulations of the Atlantic meridional overturning circulation. PMID:24805239

  4. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat.

    PubMed

    Bintanja, R; Selten, F M

    2014-05-22

    Precipitation changes projected for the end of the twenty-first century show an increase of more than 50 per cent in the Arctic regions. This marked increase, which is among the highest globally, has previously been attributed primarily to enhanced poleward moisture transport from lower latitudes. Here we use state-of-the-art global climate models to show that the projected increases in Arctic precipitation over the twenty-first century, which peak in late autumn and winter, are instead due mainly to strongly intensified local surface evaporation (maximum in winter), and only to a lesser degree due to enhanced moisture inflow from lower latitudes (maximum in late summer and autumn). Moreover, we show that the enhanced surface evaporation results mainly from retreating winter sea ice, signalling an amplified Arctic hydrological cycle. This demonstrates that increases in Arctic precipitation are firmly linked to Arctic warming and sea-ice decline. As a result, the Arctic mean precipitation sensitivity (4.5 per cent increase per degree of temperature warming) is much larger than the global value (1.6 to 1.9 per cent per kelvin). The associated seasonally varying increase in Arctic precipitation is likely to increase river discharge and snowfall over ice sheets (thereby affecting global sea level), and could even affect global climate through freshening of the Arctic Ocean and subsequent modulations of the Atlantic meridional overturning circulation.

  5. Observational determination of albedo decrease caused by vanishing Arctic sea ice.

    PubMed

    Pistone, Kristina; Eisenman, Ian; Ramanathan, V

    2014-03-01

    The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 ± 0.9 W/m(2) of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming.

  6. Arctic cyclone water vapor isotopes support past sea ice retreat recorded in Greenland ice

    PubMed Central

    Klein, Eric S.; Cherry, J. E.; Young, J.; Noone, D.; Leffler, A. J.; Welker, J. M.

    2015-01-01

    Rapid Arctic warming is associated with important water cycle changes: sea ice loss, increasing atmospheric humidity, permafrost thaw, and water-induced ecosystem changes. Understanding these complex modern processes is critical to interpreting past hydrologic changes preserved in paleoclimate records and predicting future Arctic changes. Cyclones are a prevalent Arctic feature and water vapor isotope ratios during these events provide insights into modern hydrologic processes that help explain past changes to the Arctic water cycle. Here we present continuous measurements of water vapor isotope ratios (δ18O, δ2H, d-excess) in Arctic Alaska from a 2013 cyclone. This cyclone resulted in a sharp d-excess decrease and disproportional δ18O enrichment, indicative of a higher humidity open Arctic Ocean water vapor source. Past transitions to warmer climates inferred from Greenland ice core records also reveal sharp decreases in d-excess, hypothesized to represent reduced sea ice extent and an increase in oceanic moisture source to Greenland Ice Sheet precipitation. Thus, measurements of water vapor isotope ratios during an Arctic cyclone provide a critical processed-based explanation, and the first direct confirmation, of relationships previously assumed to govern water isotope ratios during sea ice retreat and increased input of northern ocean moisture into the Arctic water cycle. PMID:26023728

  7. Arctic moisture source for Eurasian snow cover variations in autumn

    NASA Astrophysics Data System (ADS)

    Wegmann, Martin; Orsolini, Yvan; Vázquez, Marta; Gimeno, Luis; Nieto, Raquel; Bulygina, Olga; Jaiser, Ralf; Handorf, Dörthe; Rinke, Annette; Dethloff, Klaus; Sterin, Alexander; Brönnimann, Stefan

    2015-05-01

    Eurasian fall snow cover changes have been suggested as a driver for changes in the Arctic Oscillation and might provide a link between sea-ice decline in the Arctic during summer and atmospheric circulation in the following winter. However, the mechanism connecting snow cover in Eurasia to sea-ice decline in autumn is still under debate. Our analysis is based on snow observations from 820 Russian land stations, moisture transport using a Lagrangian approach derived from meteorological re-analyses. We show that declining sea-ice in the Barents and Kara Seas (BKS) acts as moisture source for the enhanced Western Siberian snow depth as a result of changed tropospheric moisture transport. Transient disturbances enter the continent from the BKS region related to anomalies in the planetary wave pattern and move southward along the Ural mountains where they merge into the extension of the Mediterranean storm track.

  8. The effect of changing sea ice on the physical vulnerability of Arctic coasts

    NASA Astrophysics Data System (ADS)

    Barnhart, K. R.; Overeem, I.; Anderson, R. S.

    2014-09-01

    Sea ice limits the interaction of the land and ocean water in the Arctic winter and influences this interaction in the summer by governing the fetch. In many parts of the Arctic, the open-water season is increasing in duration and summertime sea-ice extents are decreasing. Sea ice provides a first-order control on the physical vulnerability of Arctic coasts to erosion, inundation, and damage to settlements and infrastructures by ocean water. We ask how the changing sea-ice cover has influenced coastal erosion over the satellite record. First, we present a pan-Arctic analysis of satellite-based sea-ice concentration specifically along the Arctic coasts. The median length of the 2012 open-water season, in comparison to 1979, expanded by between 1.5 and 3-fold by Arctic Sea sector, which allows for open water during the stormy Arctic fall. Second, we present a case study of Drew Point, Alaska, a site on the Beaufort Sea, characterized by ice-rich permafrost and rapid coastal-erosion rates, where both the duration of the open-water season and distance to the sea-ice edge, particularly towards the northwest, have increased. At Drew Point, winds from the northwest result in increased water levels at the coast and control the process of submarine notch incision, the rate-limiting step of coastal retreat. When open-water conditions exist, the distance to the sea ice edge exerts control on the water level and wave field through its control on fetch. We find that the extreme values of water-level setup have increased consistently with increasing fetch.

  9. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core.

    PubMed

    Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Dahl-Jensen, Dorthe

    2016-09-21

    Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called "bromine explosions" and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement.

  10. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core

    PubMed Central

    Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A.; Dahl-Jensen, Dorthe

    2016-01-01

    Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called “bromine explosions” and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement. PMID:27650478

  11. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core

    NASA Astrophysics Data System (ADS)

    Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A.; Dahl-Jensen, Dorthe

    2016-09-01

    Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called “bromine explosions” and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement.

  12. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core.

    PubMed

    Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Dahl-Jensen, Dorthe

    2016-01-01

    Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called "bromine explosions" and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement. PMID:27650478

  13. Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate

    DOE PAGES

    Cvijanovic, Ivana; Caldeira, Ken; MacMartin, Douglas G.

    2015-04-01

    The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO₂ climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modestmore » reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO₂ induced global warming.« less

  14. Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate

    SciTech Connect

    Cvijanovic, Ivana; Caldeira, Ken; MacMartin, Douglas G.

    2015-04-01

    The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO₂ climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modest reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO₂ induced global warming.

  15. Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003-2014

    NASA Astrophysics Data System (ADS)

    Armitage, T.; Bacon, S.; Ridout, A.; Thomas, S. F.; Aksenov, Y.; Wingham, D.

    2015-12-01

    Sea surface height (SSH) is poorly observed in the Arctic due to limitations of conventional observation techniques. We present the first basin-wide, monthly estimates of Arctic Ocean SSH from satellite radar altimetry and combine this with GRACE ocean mass to estimate steric height. The large seasonal cycle of Arctic SSH (amplitude ~4cm) is dominated by seasonal freshwater fluxes and peaks in October-November. Overall, the annual mean steric height increases by 2.3±1.1cm between 2003-2012 before falling to ca. 2003 levels between 2012-2014. The total secular change in SSH between 2003-2014 is then dominated by a 1.8±0.6cm net increase in ocean mass. The well-documented doming of SSH in the Beaufort Sea is revealed by Empirical Orthogonal Function analysis to be concurrent with SSH reductions in the Siberian Arctic. Ocean storage flux estimates from altimetry agree well with high-resolution modelled results, demonstrating the potential for altimetry to elucidate the Arctic hydrological cycle. We also examine changes in Arctic Ocean geostrophic circulation and compare this with sea ice drift and atmospheric circulation. There is an increase in ocean geostrophic circulation around the Beaufort Gyre in late 2007, a year that saw large reductions in multiyear sea ice coverage in the Canadian Arctic as well as strong wintertime atmopheric forcing.

  16. Airborne Surveys of Snow Depth over Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Kwok, R.; Panzer, B.; Leuschen, C.; Pang, S.; Markus, T.; Holt, B.; Gogineni, S.

    2011-01-01

    During the spring of 2009, an ultrawideband microwave radar was deployed as part of Operation IceBridge to provide the first cross-basin surveys of snow thickness over Arctic sea ice. In this paper, we analyze data from three approx 2000 km transects to examine detection issues, the limitations of the current instrument, and the regional variability of the retrieved snow depth. Snow depth is the vertical distance between the air \\snow and snow-ice interfaces detected in the radar echograms. Under ideal conditions, the per echogram uncertainty in snow depth retrieval is approx 4 - 5 cm. The finite range resolution of the radar (approx 5 cm) and the relative amplitude of backscatter from the two interfaces limit the direct retrieval of snow depths much below approx 8 cm. Well-defined interfaces are observed over only relatively smooth surfaces within the radar footprint of approx 6.5 m. Sampling is thus restricted to undeformed, level ice. In early April, mean snow depths are 28.5 +/- 16.6 cm and 41.0 +/- 22.2 cm over first-year and multiyear sea ice (MYI), respectively. Regionally, snow thickness is thinner and quite uniform over the large expanse of seasonal ice in the Beaufort Sea, and gets progressively thicker toward the MYI cover north of Ellesmere Island, Greenland, and the Fram Strait. Snow depth over MYI is comparable to that reported in the climatology by Warren et al. Ongoing improvements to the radar system and the utility of these snow depth measurements are discussed.

  17. On the Role of Arctic Sea Ice Deformations: An Evaluation of the Regional Arctic System Model Results with Observations.

    NASA Astrophysics Data System (ADS)

    Osinski, Robert; Maslowski, Wieslaw; Roberts, Andrew

    2016-04-01

    The atmosphere - sea ice - ocean fluxes and their contribution to rapid changes in the Arctic system are not well understood and generally are not resolved by global climate models (GCMs). While many significant model refinements have been made in the recent past, including the representation of sea ice rheology, surface albedo and ice-albedo feedback, other processes such as sea ice deformations, still require further studies and model advancements. Of particular potential interest here are linear kinematic features (LKFs), which control winter air-sea heat exchange and affect buoyancy forces in the ocean. Their importance in Arctic climate change, especially under an increasing first-year ice cover, is yet to be determined and their simulation requires representation of processes currently at sub-grid scale of most GCMs. To address some of the GCM limitations and to better understand the role of LKFs in air-sea exchange we use the Regional Arctic System Model (RASM), which allows high spatio-temporal resolution and regional focus on the Arctic. RASM is a fully coupled regional climate model, developed to study dynamic and thermodynamic processes and their coupling across the atmosphere-sea ice-ocean interface. It consists of the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP), the Community Ice Model (CICE) and the Variable Infiltration Capacity (VIC) land hydrology model. The sea ice component has been upgraded to the Los Alamos Community Ice Model version 5.1 (CICE5.1), which allows either Elastic-Viscous-Plastic (EVP) or a new anisotropic (EPA) rheology. RASM's domain is pan-Arctic, with the ocean and sea ice components configured at an eddy-permitting horizontal resolution of 1/12-degree as well as 1/48-degree, for limited simulations. The atmosphere and land model components are configured at 50-km grids. All the components are coupled at a 20-minute time step. Results from multiple RASM simulations are analyzed and

  18. Loitering of the retreating sea ice edge in the Arctic Seas

    PubMed Central

    Ermold, Wendy

    2015-01-01

    Abstract Each year, the arctic sea ice edge retreats from its winter maximum extent through the Seasonal Ice Zone (SIZ) to its summer minimum extent. On some days, this retreat happens at a rapid pace, while on other days, parts of the pan‐arctic ice edge hardly move for periods of days up to 1.5 weeks. We term this stationary behavior “ice edge loitering,” and identify areas that are more prone to loitering than others. Generally, about 20–25% of the SIZ area experiences loitering, most often only one time at any one location during the retreat season, but sometimes two or more times. The main mechanism controlling loitering is an interaction between surface winds and warm sea surface temperatures in areas from which the ice has already retreated. When retreat happens early enough to allow atmospheric warming of this open water, winds that force ice floes into this water cause melting. Thus, while individual ice floes are moving, the ice edge as a whole appears to loiter. The time scale of loitering is then naturally tied to the synoptic time scale of wind forcing. Perhaps surprisingly, the area of loitering in the arctic seas has not changed over the past 25 years, even as the SIZ area has grown. This is because rapid ice retreat happens most commonly late in the summer, when atmospheric warming of open water is weak. We speculate that loitering may have profound effects on both physical and biological conditions at the ice edge during the retreat season. PMID:27812435

  19. Sea ice leads in the Arctic Ocean: Model assessment, interannual variability and trends

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Danilov, S.; Jung, T.; Kaleschke, L.; Wernecke, A.

    2016-07-01

    Sea ice leads in the Arctic are important features that give rise to strong localized atmospheric heating; they provide the opportunity for vigorous biological primary production, and predicting leads may be of relevance for Arctic shipping. It is commonly believed that traditional sea ice models that employ elastic-viscous-plastic (EVP) rheologies are not capable of properly simulating sea ice deformation, including lead formation, and thus, new formulations for sea ice rheologies have been suggested. Here we show that classical sea ice models have skill in simulating the spatial and temporal variation of lead area fraction in the Arctic when horizontal resolution is increased (here 4.5 km in the Arctic) and when numerical convergence in sea ice solvers is considered, which is frequently neglected. The model results are consistent with satellite remote sensing data and discussed in terms of variability and trends of Arctic sea ice leads. It is found, for example, that wintertime lead area fraction during the last three decades has not undergone significant trends.

  20. Changing Arctic ecosystems: sea ice decline, permafrost thaw, and benefits for geese

    USGS Publications Warehouse

    Flint, Paul; Whalen, Mary; Pearce, John M.

    2014-01-01

    Through the Changing Arctic Ecosystems (CAE) initiative, the U.S. Geological Survey (USGS) strives to inform resource management decisions for Arctic Alaska by providing scientific information on current and future ecosystem response to a warming climate. A key area for the USGS CAE initiative has been the Arctic Coastal Plain of northern Alaska. This region has experienced a warming trend over the past 30 years, leading to reductions in sea ice and thawing of permafrost. Loss of sea ice has increased ocean wave action, leading to erosion and salt water inundation of coastal habitats. Saltwater tolerant plants are now thriving in these areas and this appears to be a positive outcome for geese in the Arctic. This finding is contrary to the deleterious effects that declining sea ice is having on habitats of ice-dependent animals, such as polar bear and walrus.

  1. Predictability of winter temperature in China from previous autumn Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Zuo, Jinqing; Ren, Hong-Li; Wu, Bingyi; Li, Weijing

    2016-10-01

    The potential predictability of winter temperature in China from autumn Arctic sea ice anomalies is studied by examining and statistically modeling the large-scale interannual covariability between them on the basis of singular value decomposition analysis. It is demonstrated that an intimate relationship exists between September and October sea ice anomalies in the Eurasian Arctic and following winter temperature anomalies in China, except in the Tibetan Plateau. When the autumn sea ice anomalies decline in the Eurasian Arctic, above-normal pressure anomalies appear to prevail over the region from the Eurasian Arctic to Eastern Europe and Mongolia, and below-normal anomalies prevail over the mid-latitudes of Asia and Northwestern Pacific in the following winter. Consequently, the winter Siberian High and East Asian trough are both strengthened, favoring the southward invasion of high-latitude cold air masses and thus cold temperature anomalies in China. It is found that the Siberian High plays a crucial role in delivering effects of the autumn Arctic sea ice anomalies on winter temperature variability in China. Based on this evidence, a statistical model is established to examine the potential predictability of winter temperature anomalies in China by taking the autumn Arctic sea ice signals as a predictor. Validation shows considerable skill in predicting winter temperature anomalies over a large part of China, indicating a significant potential for improving winter climate prediction in China.

  2. Atmospheric response to Arctic sea ice loss moderated by (multi-) decadal ocean variability

    NASA Astrophysics Data System (ADS)

    Screen, J.; Francis, J. A.; Osborne, J. M.; Collins, M.

    2015-12-01

    Increasing evidence suggests that ongoing reductions of Arctic sea ice may affect various aspects of Northern Hemisphere weather and climate. Many of these linkages have been hypothesized based on statistical associations found in observations; however, it is difficult to unambiguously assign causality and to separate the influences of multiple interconnected processes in the climate system using observations alone. Modeling studies offer a way forward for understanding and isolating the physical processes underlying observed relationships. The atmospheric response to Arctic sea ice loss is often estimated through atmospheric general circulation model (AGCM) simulations with prescribed sea ice and sea surface temperature (SST) conditions. Typically, global SSTs are held to climatological-mean values. It is well known however, that (multi-) decadal ocean variability has a strong influence on the mean atmospheric state and thus, the atmospheric response to sea ice loss may be sensitive to the phase of (multi-) decadal ocean variability (i.e., be state dependent). Here we explore the atmospheric response to Arctic sea ice loss under different phases of the Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO), using 8 ensembles of AGCM simulations; with extensive and reduced Arctic sea ice applied alongside PDO-, PDO+, AMO- and AMO+ SST anomalies. Preliminary analyses suggest, amongst other things: 1) an enhanced Arctic winter warming response during PDO- compared to PDO+; and 2) during AMO- sea ice loss forces a wintertime ridge-trough pattern over North America, with warmer conditions over the west and colder conditions over the east, compared to the response to identical sea ice loss during AMO+. The largest observed losses of Arctic sea ice have occurred since ~2000 during predominantly PDO- and AMO+. The possible implications of the recent switch to PDO+ in 2014, and an eventual return to AMO+ in coming decades, will be discussed.

  3. Observed anomalous atmospheric patterns in summers of unusual Arctic sea ice melt

    NASA Astrophysics Data System (ADS)

    Knudsen, Erlend M.; Orsolini, Yvan J.; Furevik, Tore; Hodges, Kevin I.

    2015-04-01

    The Arctic sea ice retreat has accelerated over the last decade. The negative trend is largest in summer, but substantial interannual variability still remains. Here we explore observed atmospheric conditions and feedback mechanisms during summer months of anomalous sea ice melt in the Arctic. Compositing months of anomalous low and high sea ice melt over 1979-2013, we find distinct patterns in atmospheric circulation, precipitation, radiation, and temperature. Compared to summer months of anomalous low sea ice melt, high melt months are characterized by anomalous high sea level pressure in the Arctic (up to 7 hPa), with a corresponding tendency of storms to track on a more zonal path. As a result, the Arctic receives less precipitation overall and 39% less snowfall. This lowers the albedo of the region and reduces the negative feedback the snowfall provides for the sea ice. With an anticyclonic tendency, 12 W/m2 more incoming shortwave radiation reaches the surface in the start of the season. The melting sea ice in turn promotes cloud development in the marginal ice zones and enhances downwelling longwave radiation at the surface toward the end of the season. A positive cloud feedback emerges. In midlatitudes, the more zonally tracking cyclones give stormier, cloudier, wetter, and cooler summers in most of northern Europe and around the Sea of Okhotsk. Farther south, the region from the Mediterranean Sea to East Asia experiences significant surface warming (up to 2.4°C), possibly linked to changes in the jet stream.

  4. An Evaluation of the Seasonal Arctic Sea Ice Predictions from CFSv2

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Wang, M.; Overland, J. E.

    2015-12-01

    The rapid reductions in Arctic sea ice have been observed in the past several decades, especially at the end of the summer melt season in September. It is necessary to have a reliable seasonal forecast of Arctic sea ice. In this study, we examined the Arctic sea ice predictions produced by NCEP Climate Forecast System version 2 (CFSv2) in the real- time operational mode. Forecasts were initialized monthly for two-year period (March 2014 to September 2015). Forecasts of sea ice extent (SIE) and concentration (SIC) were evaluated against the sea ice analysis (HadISST_ice) from the Hadley Center. We found that the Arctic September SIE forecasts from CFS were overestimated with the biases in SIC mainly originated from the Beaufort Sea, Laptev Sea and Fram Strait. For 2014, we found that the forecast initialized from March with the lead-time of 6 months gave the best September SIE forecast while the forecast initialized from July with the lead-time of 2 months had the worst September SIE forecast. In order to understand the forecast biases in September sea ice, the atmospheric forecasted forcings including incoming solar/Infrared radiation, upward solar/infrared radiation from surface, latent and sensible heat flux, 2-meter air temperature, cloud fraction, sea level pressure and 10-meter wind from CFSv2 were evaluated using the European Center for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) .

  5. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris.

    PubMed

    Stickley, Catherine E; St John, Kristen; Koç, Nalân; Jordan, Richard W; Passchier, Sandra; Pearce, Richard B; Kearns, Lance E

    2009-07-16

    Oceanic sediments from long cores drilled on the Lomonosov ridge, in the central Arctic, contain ice-rafted debris (IRD) back to the middle Eocene epoch, prompting recent suggestions that ice appeared in the Arctic about 46 million years (Myr) ago. However, because IRD can be transported by icebergs (derived from land-based ice) and also by sea ice, IRD records are restricted to providing a history of general ice-rafting only. It is critical to differentiate sea ice from glacial (land-based) ice as climate feedback mechanisms vary and global impacts differ between these systems: sea ice directly affects ocean-atmosphere exchanges, whereas land-based ice affects sea level and consequently ocean acidity. An earlier report assumed that sea ice was prevalent in the middle Eocene Arctic on the basis of IRD, and although somewhat preliminary supportive evidence exists, these data are neither comprehensive nor quantified. Here we show the presence of middle Eocene Arctic sea ice from an extraordinary abundance of a group of sea-ice-dependent fossil diatoms (Synedropsis spp.). Analysis of quartz grain textural characteristics further supports sea ice as the dominant transporter of IRD at this time. Together with new information on cosmopolitan diatoms and existing IRD records, our data strongly suggest a two-phase establishment of sea ice: initial episodic formation in marginal shelf areas approximately 47.5 Myr ago, followed approximately 0.5 Myr later by the onset of seasonally paced sea-ice formation in offshore areas of the central Arctic. Our data establish a 2-Myr record of sea ice, documenting the transition from a warm, ice-free environment to one dominated by winter sea ice at the start of the middle Eocene climatic cooling phase.

  6. Projected future duration of the sea-ice-free season in the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Wang, Muyin; Overland, James E.

    2015-08-01

    Global warming and continued reduction in sea ice cover will result in longer open water duration in the Arctic, which is important for the shipping industry, marine mammals, and other components of the regional ecosystem. In this study we assess the length of open water duration in the Alaskan Arctic over the next few decades using the set of latest coupled climate models (CMIP5). The Alaskan Arctic, including the Chukchi and the Beaufort Sea, has been a major region of summer sea ice retreat since 2007. Thirty five climate models from CMIP5 are evaluated and twelve are selected for composite projections based on their historical simulation performance. In the regions north of the Bering Strait (north of 70° N), future open-water duration shifts from a current 3-4 months to a projected near 5 months by 2040 based on the mean of the twelve selected climate models. There is considerable north-south gradient in projected durations. Open water duration is about 1 month shorter along the same latitudes in the Beaufort Sea compared with that in the Chukchi Sea. Uncertainty is generally ±1 month estimated from the range of model results. Open-water duration in the Alaskan Arctic expands quickly in these models over the next decades which will impact regional economic access and potentially alter ecosystems. Yet the northern Alaskan Arctic from January through May will remain sea ice covered into the second half of the century due to normal lack of sunlight.

  7. On assessment of the relationship between changes of sea ice extent and climate in the Arctic

    NASA Astrophysics Data System (ADS)

    Alekseev, Genrikh; Glok, Natalia; Smirnov, Alexander

    2016-04-01

    An increase of surface air temperature (SAT) in the marine Arctic (a part of the Arctic covered with sea ice in winter) shows a good relationship with reduction of sea ice extent (SIE) in summer. For instance, a strong correlation (a coefficient equal to -0.93) was found between the summer SAT in the marine Arctic and satellite-derived 1980-2014 September sea ice index (the average of sea ice extent in the Arctic since 1978, in millions of sq. km). Based on this finding anomalies of Arctic September SIE were reconstructed from the beginning of twentieth century using linear regression relationship. This reconstructed SIE shows a substantial decrease in the 1930-40s with a minimum occurring in 1936, which, however, is only a half of the decline in 2012. An impact of the inflow of warm and salty Atlantic water on winter SIE was evaluated as an example for the Barents Sea. This evaluation reveals a coherent spatial pattern of the Atlantic water spreading, presented by surface salinity distribution, and the position of sea-ice edge, and significant correlation between the inflow of the Atlantic water and maximal SIE.

  8. Formation of an aggregate scale in Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Hopkins, Mark A.; Frankenstein, Susan; Thorndike, Alan S.

    2004-01-01

    The ice pack covering northern seas is a mixture of thick ridged and rafted ice, undeformed ice, and open water. Conventional Eulerian Arctic sea ice models use a plastic yield surface to characterize the constitutive behavior of the pack. An alternative is to adopt a discontinuous Lagrangian approach and explicitly model the formation of leads and pressure ridges. We use a Lagrangian ice model that consists of thousands of discrete polygonal floes 1-4 km in width. At the beginning of a simulation the ice floes are frozen together in a square domain. We apply a linearly varying wind stress that deforms the pack by stretching the viscous-elastic joints between adjacent floes. Fractures propagate along joints forming a crack pattern in the model ice pack. The crack pattern defines a system of large plates 10-100 km in width that are aggregates of many individual floes. The average size of the plates is determined by a competition between the rate of crack creation and the speed of the relaxation wave that travels outward from a newly broken joint and reduces stresses in the surrounding pack. Simulation results are used to characterize the formation of the aggregate structure and to determine how the rate of crack creation and the average area of the aggregate plates depends on tensile strength, the wind stress gradient, and the size of the individual floes. After the formation of the aggregate-scale plate structure, subsequent deformation occurs at the plate boundaries. Since the usual state of the ice pack is a state of failure, an interesting situation is created in which the initial wind-driven deformation creates the material conditions or aggregate structure under which subsequent deformation occurs.

  9. Seasonal evolution of the albedo of multiyear Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.; Grenfell, T. C.; Light, B.; Hobbs, P. V.

    2002-10-01

    As part of ice albedo feedback studies during the Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment, we measured spectral and wavelength-integrated albedo on multiyear sea ice. Measurements were made every 2.5 m along a 200-m survey line from April through October. Initially, this line was completely snow covered, but as the melt season progressed, it became a mixture of bare ice and melt ponds. Observed changes in albedo were a combination of a gradual evolution due to seasonal transitions and abrupt shifts resulting from synoptic weather events. There were five distinct phases in the evolution of albedo: dry snow, melting snow, pond formation, pond evolution, and fall freeze-up. In April the surface albedo was high (0.8-0.9) and spatially uniform. By the end of July the average albedo along the line was 0.4, and there was significant spatial variability, with values ranging from 0.1 for deep, dark ponds to 0.65 for bare, white ice. There was good agreement between surface-based albedos and measurements made from the University of Washington's Convair-580 research aircraft. A comparison between net solar irradiance computed using observed albedos and a simplified model of seasonal evolution shows good agreement as long as the timing of the transitions is accurately determined.

  10. Snow depth on Arctic and Antarctic sea ice derived from autonomous (Snow Buoy) measurements

    NASA Astrophysics Data System (ADS)

    Nicolaus, Marcel; Arndt, Stefanie; Hendricks, Stefan; Heygster, Georg; Huntemann, Marcus; Katlein, Christian; Langevin, Danielle; Rossmann, Leonard; Schwegmann, Sandra

    2016-04-01

    The snow cover on sea ice received more and more attention in recent sea ice studies and model simulations, because its physical properties dominate many sea ice and upper ocean processes. In particular; the temporal and spatial distribution of snow depth is of crucial importance for the energy and mass budgets of sea ice, as well as for the interaction with the atmosphere and the oceanic freshwater budget. Snow depth is also a crucial parameter for sea ice thickness retrieval algorithms from satellite altimetry data. Recent time series of Arctic sea ice volume only use monthly snow depth climatology, which cannot take into account annual changes of the snow depth and its properties. For Antarctic sea ice, no such climatology is available. With a few exceptions, snow depth on sea ice is determined from manual in-situ measurements with very limited coverage of space and time. Hence the need for more consistent observational data sets of snow depth on sea ice is frequently highlighted. Here, we present time series measurements of snow depths on Antarctic and Arctic sea ice, recorded by an innovative and affordable platform. This Snow Buoy is optimized to autonomously monitor the evolution of snow depth on sea ice and will allow new insights into its seasonality. In addition, the instruments report air temperature and atmospheric pressure directly into different international networks, e.g. the Global Telecommunication System (GTS) and the International Arctic Buoy Programme (IABP). We introduce the Snow Buoy concept together with technical specifications and results on data quality, reliability, and performance of the units. We highlight the findings from four buoys, which simultaneously drifted through the Weddell Sea for more than 1.5 years, revealing unique information on characteristic regional and seasonal differences. Finally, results from seven snow buoys co-deployed on Arctic sea ice throughout the winter season 2015/16 suggest the great importance of local

  11. Sea level budget in the Arctic during the satellite altimetry era

    NASA Astrophysics Data System (ADS)

    Carret, Alice; Cazenave, Anny; Meyssignac, Benoît; Prandi, Pierre; Ablain, Michael; Andersen, Ole; Blazquez, Alejandro

    2016-04-01

    Studying sea level variations in the Arctic region is challenging because of data scarcity. Here we present results of the sea level budget in the Arctic (up to 82°N) during the altimetry era. We first investigate closure of the sea level budget since 2002 using altimetry data from Envisat and Cryosat for estimating sea level, temperature and salinity data from the ORAP5 reanalysis and GRACE space gravimetry to estimate the steric and mass components. Two altimetry sea level data sets are considered (from DTU and CLS), based on Envisat waveforms retracking. Regional sea level trends seen in the altimetric map, in particular over the Beaufort Gyre and along the eastern coast of Greenland are of steric origin. However, in terms of regional average, the steric component contributes very little to the observed sea level trend, suggesting a dominant mass contribution in the Arctic region. This is confirmed by GRACE-based ocean mass time series that agree very well with the altimetry-based sea level time series. Direct estimate of the mass component is not possible prior to GRACE. Thus we estimated the mass contribution over the whole altimetry era from the difference between altimetry-based sea level and the ORAP5 steric component. Finally we compared altimetry-based coastal sea level with tide gauge records available along Norwegian, Greenland and Siberian coastlines and investigated whether the Arctic Oscillation that was the main driver of coastal sea level in the Arctic during the past decades still plays a dominant role or if other factors (e.g., of anthropogenic origin) become detectable.

  12. ARCTIC SEA ICE EXTENT AND DRIFT, MODELED AS A VISCOUS FLUID.

    USGS Publications Warehouse

    Ling, Chi-Hai; Parkinson, Claire L.

    1986-01-01

    A dynamic/thermodynamic numerical model of sea ice has been used to calculate the yearly cycle of sea ice thicknesses, concentrations, and velocities in the Arctic Ocean and surrounding seas. The model combines the formulations of two previous models, taking the thermodynamics and momentum equations from the model of Parkinson and Washington and adding the constitutive equation and equation of state from the model of Ling, Rasmussen, and Campbell. Simulated annually averaged ice drift vectors compare well with observed ice drift from the Arctic Ocean Buoy Program.

  13. Comparison of modelled and observed sea ice fluxes in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Huard, D. B.; Tremblay, B.; Lemieux, J.

    2009-12-01

    With the foreseeable increase in the strategic and economic importance of the Canadian Arctic Archipelago (CAA), a comprehensive picture of sea ice conditions at present and in the future is needed. However, due to the complex topography of the Canadian Arctic Archipelago (CAA), modelling sea ice fluxes in this area requires considerable spatial resolution. Our group has developed a stand-alone sea ice model based on the viscous-plastic rheology. The model includes both the Arctic Ocean and the CAA at a resolution of 10km, sufficient to resolve most of the channels and straits of the CAA. This study compares simulated fluxes across CAA channels and straits with satellite observations in order to identify potential improvements to the model and forcing fields. In particular, simulations were run with 32km resolution NARR surface winds instead of NCEP geostrophic winds in an attempt to capture wind channeling effects seen in the Eastern Arctic. Results show that fluxes are well simulated in the Western Arctic. In the Queen Elizabeth Islands region however, sea ice moves too freely compared with observations. The biggest challenge seems to be the Eastern Arctic, where the winter outflow of ice from Lancaster Sound towards Baffin Bay is not captured by the model. Potential explanations for the discrepancies are presented.

  14. Near-real-time Arctic sea ice thickness and volume from CryoSat-2

    NASA Astrophysics Data System (ADS)

    Tilling, Rachel L.; Ridout, Andy; Shepherd, Andrew

    2016-09-01

    Timely observations of sea ice thickness help us to understand the Arctic climate, and have the potential to support seasonal forecasts and operational activities in the polar regions. Although it is possible to calculate Arctic sea ice thickness using measurements acquired by CryoSat-2, the latency of the final release data set is typically 1 month due to the time required to determine precise satellite orbits. We use a new fast-delivery CryoSat-2 data set based on preliminary orbits to compute Arctic sea ice thickness in near real time (NRT), and analyse this data for one sea ice growth season from October 2014 to April 2015. We show that this NRT sea-ice-thickness product is of comparable accuracy to that produced using the final release CryoSat-2 data, with a mean thickness difference of 0.9 cm, demonstrating that the satellite orbit is not a critical factor in determining sea ice freeboard. In addition, the CryoSat-2 fast-delivery product also provides measurements of Arctic sea ice thickness within 3 days of acquisition by the satellite, and a measurement is delivered, on average, within 14, 7 and 6 km of each location in the Arctic every 2, 14 and 28 days respectively. The CryoSat-2 NRT sea-ice-thickness data set provides an additional constraint for short-term and seasonal predictions of changes in the Arctic ice cover and could support industries such as tourism and transport through assimilation in operational models.

  15. Projected Duration of the Sea-Ice-Free Season in the Future Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Wang, M.; Overland, J. E.

    2014-12-01

    The change in the Arctic climate is fast and broad. Among many changes that have been observed, the reduction of sea ice coverage has been one of the most significant factors. Continued reduction in sea ice cover will probably result in longer open water duration, which is important for the shipping industry, marine mammals as well as other component of the local ecosystem. In this study we are to assess future sea ice conditions, particularly the length of open water duration in the Alaskan Arctic over the next few decades using the latest coupled climate models (CMIP5). The Alaskan Arctic, including the Chukchi and the Beaufort Sea, has been a major region of summer sea ice retreat since 2007. Based on the mean of 12 climate models, for the region north of the Bering Strait (70° N), future open-water duration may extend from a current 3-4 months to around five months by 2050. It is about one month shorter along the same latitude over the Beaufort Sea. The difference in the length of ice-free season between the north and the south will remain, but will be smaller in the 21st century compared with current condition. Open-water duration in the Alaskan Arctic expands quickly in these models over the next decades, in contrast to model under-predictions of sea ice loss for the summer minimum over the Arctic wide domain. Uncertainty is generally ±one month estimated from the range of model results. Continued increases in open-water duration over the next two decades will impact regional economic access and potentially alter ecosystems, yet we need to keep in mind that from December through May most of the northern Alaskan Arctic will remain sea ice covered into the second half of the century.

  16. Arctic sea ice decline: Projected changes in timing and extent of sea ice in the Bering and Chukchi Seas

    USGS Publications Warehouse

    Douglas, D.C.

    2010-01-01

    The Arctic region is warming faster than most regions of the world due in part to increasing greenhouse gases and positive feedbacks associated with the loss of snow and ice cover. One consequence has been a rapid decline in Arctic sea ice over the past 3 decades?a decline that is projected to continue by state-of-the-art models. Many stakeholders are therefore interested in how global warming may change the timing and extent of sea ice Arctic-wide, and for specific regions. To inform the public and decision makers of anticipated environmental changes, scientists are striving to better understand how sea ice influences ecosystem structure, local weather, and global climate. Here, projected changes in the Bering and Chukchi Seas are examined because sea ice influences the presence of, or accessibility to, a variety of local resources of commercial and cultural value. In this study, 21st century sea ice conditions in the Bering and Chukchi Seas are based on projections by 18 general circulation models (GCMs) prepared for the fourth reporting period by the Intergovernmental Panel on Climate Change (IPCC) in 2007. Sea ice projections are analyzed for each of two IPCC greenhouse gas forcing scenarios: the A1B `business as usual? scenario and the A2 scenario that is somewhat more aggressive in its CO2 emissions during the second half of the century. A large spread of uncertainty among projections by all 18 models was constrained by creating model subsets that excluded GCMs that poorly simulated the 1979-2008 satellite record of ice extent and seasonality. At the end of the 21st century (2090-2099), median sea ice projections among all combinations of model ensemble and forcing scenario were qualitatively similar. June is projected to experience the least amount of sea ice loss among all months. For the Chukchi Sea, projections show extensive ice melt during July and ice-free conditions during August, September, and October by the end of the century, with high agreement

  17. Effects of recent decreases in arctic sea ice on an ice-associated marine bird

    NASA Astrophysics Data System (ADS)

    Divoky, George J.; Lukacs, Paul M.; Druckenmiller, Matthew L.

    2015-08-01

    Recent major reductions in summer arctic sea ice extent could be expected to be affecting the distributions and life histories of arctic marine biota adapted to living adjacent to sea ice. Of major concern are the effects of ice reductions, and associated increasing SST, on the most abundant forage fish in the Arctic, Arctic cod (Boreogadus saida), the primary prey for the region's upper trophic level marine predators. The black guillemot (Cepphus grylle mandtii) is an ice-obligate diving seabird specializing in feeding on Arctic cod and has been studied annually since 1975 at a breeding colony in the western Beaufort Sea. The data set is one of the few allowing assessment of the response of an upper trophic marine predator to recent decadal changes in the region's cryosphere. Analysis of oceanographic conditions north of the colony from 1975 to 2012 for the annual period when parents provision young (mid-July to early September), found no major regime shifts in ice extent or SST until the late 1990s with major decreases in ice and increases in SST in the first decade of the 21st Century. We examined decadal variation in late summer oceanographic conditions, nestling diet and success, and overwinter adult survival, comparing a historical period (1975-1984) with a recent (2003-2012) one. In the historical period sea ice retreated an average of 1.8 km per day from 15 July to 1 September to an average distance of 95.8 km from the colony, while in the recent period ice retreat averaged 9.8 km per day to an average distance of 506.9 km for the same time period. SST adjacent to the island increased an average of 2.9 °C between the two periods. While Arctic cod comprised over 95% of the prey provided to nestlings in the historical period, in the recent period 80% of the years had seasonal decreases, with Arctic cod decreasing to <5% of the nestling diet, and nearshore demersals, primarily sculpin (Cottidae), comprising the majority of the diet. A five-fold increase in

  18. Chemical composition of sediments from White Sea, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Gamza, Olga; Shevchenko, Vladimir; Novigatsky, Aleksandr

    2010-05-01

    The White Sea, the only Russian inland sea, is located on the north of outlying districts of the European part of Russia, belongs to Arctic Ocean. Area of water of sea occupies about 90 tousend square kilometers. The sea can be divided into some general parts: neck, funnel, basin and 4 Bays: Dvina Bay, Kandalaksha Bay, Mezen Bay and Onega Bay. The purpose of this work was geochemical mapping of the surface sediments of this area. The main tasks were: compilation data base of element composition of the surface sediments, geochemical mapping of each element, research of the anormal concentration of elements on the surface. To detect the content of chemical elements several methods were used: atomic absorption spectrometry (P.P. Shirshov Institute of Oceanology); neutron activation analysis (Vernadsky Institute of Geochemistry and Analytical Chemistry), total and organic carbon analysis, photometric method to detection Si, Al, P (P.P. Shirshov Institute of Oceanology). Bulk composition is one of the fundamental characteristics of sediments and bottom deposites of modern basins. Coarse-grained sediments with portion of pelitic component <50% is spread on the shallow area (Kandalaksha Bay), in areas with high hydrodynamic activity of near-bottom water. Under the conditions of their low activity, fine-grained facies are common(>80%). Character of elements distribution correlates with facial distribution of sediments from White Sea. According to litologic description, bottom surface of Dvina Bay is practically everywhere covered by layer of fine-grained sand. In the border area between Dvina Bay and White Sea basin on terraced subwater slope aleurite politic silts are abundant. They tend to exhange down the slope to clay silts. In Onega Bay fractions of non-deposition are observed. They are characterized by wide spread of thin blanket poorgraded sediments, which are likely to be relic. Relief of Kandalakscha Bay bottom is presented as alternation of abyssal fosses (near

  19. The Relationship Between Arctic Sea Ice Albedo and the Geophysical Parameters of the Ice Cover

    NASA Astrophysics Data System (ADS)

    Riihelä, A.

    2015-12-01

    The Arctic sea ice cover is thinning and retreating. Remote sensing observations have also shown that the mean albedo of the remaining ice cover is decreasing on decadal time scales, albeit with significant annual variability (Riihelä et al., 2013, Pistone et al., 2014). Attribution of the albedo decrease between its different drivers, such as decreasing ice concentration and enhanced surface melt of the ice, remains an important research question for the forecasting of future conditions of the ice cover. A necessary step towards this goal is understanding the relationships between Arctic sea ice albedo and the geophysical parameters of the ice cover. Particularly the question of the relationship between sea ice albedo and ice age is both interesting and not widely studied. The recent changes in the Arctic sea ice zone have led to a substantial decrease of its multi-year sea ice, as old ice melts and is replaced by first-year ice during the next freezing season. It is generally known that younger sea ice tends to have a lower albedo than older ice because of several reasons, such as wetter snow cover and enhanced melt ponding. However, the quantitative correlation between sea ice age and sea ice albedo has not been extensively studied to date, excepting in-situ measurement based studies which are, by necessity, focused on a limited area of the Arctic Ocean (Perovich and Polashenski, 2012).In this study, I analyze the dependencies of Arctic sea ice albedo relative to the geophysical parameters of the ice field. I use remote sensing datasets such as the CM SAF CLARA-A1 (Karlsson et al., 2013) and the NASA MeaSUREs (Anderson et al., 2014) as data sources for the analysis. The studied period is 1982-2009. The datasets are spatiotemporally collocated and analysed. The changes in sea ice albedo as a function of sea ice age are presented for the whole Arctic Ocean and for potentially interesting marginal sea cases. This allows us to see if the the albedo of the older sea

  20. Arctic geodynamics: Continental shelf and deep ocean geophysics. ERS-1 satellite altimetry: A first look

    NASA Technical Reports Server (NTRS)

    Anderson, Allen Joel; Sandwell, David T.; Marquart, Gabriele; Scherneck, Hans-Georg

    1993-01-01

    An overall review of the Arctic Geodynamics project is presented. A composite gravity field model of the region based upon altimetry data from ERS-1, Geosat, and Seasat is made. ERS-1 altimetry covers unique Arctic and Antarctic latitudes above 72 deg. Both areas contain large continental shelf areas, passive margins, as well as recently formed deep ocean areas. Until ERS-1 it was not possible to study these areas with satellite altimetry. Gravity field solutions for the Barents sea, portions of the Arctic ocean, and the Norwegian sea north of Iceland are shown. The gravity anomalies around Svalbard (Spitsbergen) and Bear island are particularly large, indicating large isostatic anomalies which remain from the recent breakup of Greenland from Scandinavian. Recently released gravity data from the Armed Forces Topographic Service of Russia cover a portion of the Barents and Kara seas. A comparison of this data with the ERS-1 produced gravity field is shown.

  1. Political risks of hydrocarbon deposit development in the Arctic seas of the Russian Federation

    NASA Astrophysics Data System (ADS)

    Bolsunovskaya, Y. A.; Boyarko, G. Yu; Bolsunovskaya, L. M.

    2014-08-01

    Nowadays the process of Arctic development has a long-term international cooperation character. Economic and geopolitical interests of both arctic and non-arctic countries meet in the region. Apart from resource development issues, there are problems concerning security, sustainable development and some others issues conditioned by climate and geographical characteristics of the region. Strategic analysis of political risks for the Russian Federation is carried out. The analysis reveals that political risks of hydrocarbon deposits development in the RF arctic seas appear as lack of coordination with arctic countries in solving key regional problems, failure to follow international agreements. Such inconsistency may lead to political risks, which results in strained situation in the region.

  2. Occurrence and air-sea exchange of phthalates in the Arctic.

    PubMed

    Xie, Zhiyong; Ebinghaus, Ralf; Temme, Christian; Lohmann, Rainer; Caba, Armando; Ruck, Wolfgang

    2007-07-01

    Air and seawater samples were taken simultaneously to investigate the distribution and air-sea gas exchange of phthalates in the Arctic onboard the German Research Ship FS Polarstern. Samples were collected on expeditions ARK XX1&2 from the North Sea to the high Arctic (60 degrees N-85 degrees N) in the summer of 2004. The concentration of sigma6 phthalates (dimethyl phthalate (DMP), diethyl phthalate (DEP), di-i-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), butylbenzyl phthalate (BBP), and diethylhexyl phthalate (DEHP)) ranged from 30 to 5030 pg L(-1) in the aqueous dissolved phase and from 1110 to 3090 pg m(-3) in the atmospheric gas phase. A decreasing latitudinal trend was present in the seawater and to a lesser degree in the atmosphere from the Norwegian coast to the high Arctic. Overall, deposition dominated the air-sea gas exchange for DEHP, while volatilization from seawater took place in the near-coast environment. The estimated net gas deposition of DEHP was 5, 30, and 190 t year(-1) for the Norwegian Sea, the Greenland Sea, and the Arctic, respectively. This suggests that atmospheric transport and deposition of phthalates is a significant process for their occurrence in the remote Atlantic and Arctic Ocean.

  3. Shrinking sea ice, increasing snowfall and thinning lake ice: a complex Arctic linkage explained

    NASA Astrophysics Data System (ADS)

    Brock, Ben W.

    2016-09-01

    The dramatic shrinkage of Arctic sea ice is one of the starkest symptoms of global warming, with potentially severe and far-reaching impacts on arctic marine and terrestrial ecology (Post et al 2013 Science 341 519-24) and northern hemisphere climate (Screen et al 2015 Environ. Res. Lett. 10 084006). In their recent article, Alexeev et al (2016 Environ. Res. Lett. 11 074022) highlight another, and unexpected, consequence of Arctic sea ice retreat: the thinning of lake ice in northern Alaska. This is attributed to early winter ‘ocean effect’ snowfall which insulates lake surfaces and inhibits the formation of deep lake ice. Lake ice thinning has important consequences for Arctic lake hydrology, biology and permafrost degradation.

  4. Time-dependence of sea-ice concentration and multiyear ice fraction in the Arctic Basin

    USGS Publications Warehouse

    Gloersen, P.; Zwally, H.J.; Chang, A.T.C.; Hall, D.K.; Campbell, W.J.; Ramseier, R.O.

    1978-01-01

    The time variation of the sea-ice concentration and multiyear ice fraction within the pack ice in the Arctic Basin is examined, using microwave images of sea ice recently acquired by the Nimbus-5 spacecraft and the NASA CV-990 airborne laboratory. The images used for these studies were constructed from data acquired from the Electrically Scanned Microwave Radiometer (ESMR) which records radiation from earth and its atmosphere at a wavelength of 1.55 cm. Data are analyzed for four seasons during 1973-1975 to illustrate some basic differences in the properties of the sea ice during those times. Spacecraft data are compared with corresponding NASA CV-990 airborne laboratory data obtained over wide areas in the Arctic Basin during the Main Arctic Ice Dynamics Joint Experiment (1975) to illustrate the applicability of passive-microwave remote sensing for monitoring the time dependence of sea-ice concentration (divergence). These observations indicate significant variations in the sea-ice concentration in the spring, late fall and early winter. In addition, deep in the interior of the Arctic polar sea-ice pack, heretofore unobserved large areas, several hundred kilometers in extent, of sea-ice concentrations as low as 50% are indicated. ?? 1978 D. Reidel Publishing Company.

  5. Estimation of Arctic Sea Ice Freeboard and Thickness Using CryoSat-2

    NASA Astrophysics Data System (ADS)

    Lee, Sanggyun; Im, Jungho; yoon, Hyeonjin; Shin, Minso; Kim, Miae

    2014-05-01

    Arctic sea ice is one of the significant components of the global climate system as it plays a significant role in driving global ocean circulation, provides a continuous insulating layer at air-sea interface, and reflects a large portion of the incoming solar radiation in Polar Regions. Sea ice extent has constantly declined since 1980s. Its area was the lowest ever recorded on 16 September 2012 since the satellite record began in 1979. Arctic sea ice thickness has also been diminishing along with the decreasing sea ice extent. Because extent and thickness, two main characteristics of sea ice, are important indicators of the polar response to on-going climate change, there has been a great effort to quantify them using various approaches. Sea ice thickness has been measured with numerous field techniques such as surface drilling and deploying buoys. These techniques provide sparse and discontinuous data in spatiotemporal domain. Spaceborne radar and laser altimeters can overcome these limitations and have been used to estimate sea ice thickness. Ice Cloud and land Elevation Satellite (ICEsat), a laser altimeter from National Aeronautics and Space Administration (NASA), provided data to detect polar area elevation change between 2003 and 2009. CryoSat-2 launched with Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter (SIRAL) on April 2010 can provide data to estimate time-series of Arctic sea ice thickness. In this study, Arctic sea ice freeboard and thickness in 2012 and 2013 were estimated using CryoSat-2 SAR mode data that has sea ice surface height relative to the reference ellipsoid WGS84. In order to estimate sea ice thickness, freeboard height, elevation difference between the top of sea ice surface and leads should be calculated. CryoSat-2 profiles such as pulse peakiness, backscatter sigma-0, number of echoes, and significant wave height were examined to distinguish leads from sea ice. Several near-real time cloud-free MODIS images as CryoSat-2

  6. Arctic Sea ice, 1973-1976: Satellite passive-microwave observations

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Comiso, Josefino C.; Zwally, H. Jay; Cavalieri, Donald J.; Gloersen, Per; Campbell, William J.

    1987-01-01

    The Arctic region plays a key role in the climate of the earth. The sea ice cover affects the radiative balance of the earth and radically changes the fluxes of heat between the atmosphere and the ocean. The observations of the Arctic made by the Electrically Scanning Microwave Radiometer (ESMR) on board the Nimbus 5 research satellite are summarized for the period 1973 through 1976.

  7. Arctic continental shelf morphology related to sea-ice zonation, Beaufort Sea, Alaska

    USGS Publications Warehouse

    Reimnitz, E.; Toimil, L.; Barnes, P.

    1978-01-01

    Landsat-1 and NOAA satellite imagery for the winter 1972-1973, and a variety of ice and sea-floor data were used to study sea-ice zonation and dynamics and their relation to bottom morphology and geology on the Beaufort Sea continental shelf of arctic Alaska. In early winter the location of the boundary between undeformed fast ice and westward-drifting pack ice of the Pacific Gyre is controlled by major coastal promontories. Pronounced linear pressure- and shear-ridges, as well as hummock fields, form along this boundary and are stabilized by grounding, generally between the 10- and 20-m isobaths. Slippage along this boundary occurs intermittently at or seaward of the grounded ridges, forming new grounded ridges in a widening zone, the stamukhi zone, which by late winter extends out to the 40-m isobath. Between intermittent events along the stamukhi zone, pack-ice drift and slippage is continuous along the shelf edge, at average rates of 3-10 km/day. Whether slippage occurs along the stamukhi zone or along the shelf edge, it is restricted to a zone several hundred meters wide, and ice seaward of the slip face moves at uniform rates without discernible drag effects. A causal relationship is seen between the spatial distribution of major ice-ridge systems and offshore shoals downdrift of major coastal promontories. The shoals appear to have migrated shoreward under the influence of ice up to 400 m in the last 25 years. The sea floor seaward of these shoals within the stamukhi zone shows high ice-gouge density, large incision depths, and a high degree of disruption of internal sedimentary structures. The concentration of large ice ridges and our sea floor data in the stamukhi zone indicate that much of the available marine energy is expended here, while the inner shelf and coast, where the relatively undeformed fast ice grows, are sheltered. There is evidence that anomalies in the overall arctic shelf profile are related to sea-ice zonation, ice dynamics, and bottom

  8. Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979- 2007

    NASA Astrophysics Data System (ADS)

    Weiss, J.; Rampal, P.; Marsan, D.

    2008-12-01

    Using buoy data from the International Arctic Buoy Program, we found that the sea ice mean speed over the Arctic has substantially increased over the last 29 years (+17 per cent per decade for winter; +8.5 per cent for summer). We check that these trends were not affected by temporal or spatial sampling bias. A strong seasonal dependence of the mean speed is also revealed, with a maximum in October and a minimum in April, i.e. out of phase, lagging by 6 months with respect to the sea ice extent seasonal variability. The sea ice mean strain rate, deduced from the dispersion of buoys trajectories, also increased significantly over the period (+51 per cent per decade for winter; +52 per cent for summer). We check that these increases in both sea ice mean speed and deformation rate are unlikely a consequence of a stronger atmospheric forcing, as the mean wind speed over the Arctic did not increase significantly over the period. Instead, they suggest that sea ice kinematics plays a fundamental role in the albedo feedback loop and sea ice decline: increasing deformation means stronger fracturing, hence more lead opening and therefore a decreasing albedo. This accelerates sea ice thinning in summer and delays refreezing in early winter, therefore decreasing the mechanical strength of the cover and allowing even more fracturing and larger drifting speed and deformation, and possibly a faster export of sea ice through the Fram Strait. The September minimum sea ice extent of 2007 might be a good illustration of this interplay between sea ice deformation and sea ice shrinking, as we found that for both winter 2006-2007 and summer 2007, exceptionally large deformation rates affected the Arctic sea ice cover, in agreement with a much faster than expected drift of the polar schooner Tara during its journey along the transpolar current.

  9. Greenland freshwater pathways in the sub-Arctic Seas from model experiments with passive tracers

    NASA Astrophysics Data System (ADS)

    Dukhovskoy, Dmitry S.; Myers, Paul G.; Platov, Gennady; Timmermans, Mary-Louise; Curry, Beth; Proshutinsky, Andrey; Bamber, Jonathan L.; Chassignet, Eric; Hu, Xianmin; Lee, Craig M.; Somavilla, Raquel

    2016-01-01

    Accelerating since the early 1990s, the Greenland Ice Sheet mass loss exerts a significant impact on thermohaline processes in the sub-Arctic seas. Surplus freshwater discharge from Greenland since the 1990s, comparable in volume to the amount of freshwater present during the Great Salinity Anomaly events, could spread and accumulate in the sub-Arctic seas, influencing convective processes there. However, hydrographic observations in the Labrador Sea and the Nordic Seas, where the Greenland freshening signal might be expected to propagate, do not show a persistent freshening in the upper ocean during last two decades. This raises the question of where the surplus Greenland freshwater has propagated. In order to investigate the fate, pathways, and propagation rate of Greenland meltwater in the sub-Arctic seas, several numerical experiments using a passive tracer to track the spreading of Greenland freshwater have been conducted as a part of the Forum for Arctic Ocean Modeling and Observational Synthesis effort. The models show that Greenland freshwater propagates and accumulates in the sub-Arctic seas, although the models disagree on the amount of tracer propagation into the convective regions. Results highlight the differences in simulated physical mechanisms at play in different models and underscore the continued importance of intercomparison studies. It is estimated that surplus Greenland freshwater flux should have caused a salinity decrease by 0.06-0.08 in the sub-Arctic seas in contradiction with the recently observed salinification (by 0.15-0.2) in the region. It is surmised that the increasing salinity of Atlantic Water has obscured the freshening signal.

  10. Large Scale Variability of Phytoplankton Blooms in the Arctic and Peripheral Seas: Relationships with Sea Ice, Temperature, Clouds, and Wind

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Cota, Glenn F.

    2004-01-01

    Spatially detailed satellite data of mean color, sea ice concentration, surface temperature, clouds, and wind have been analyzed to quantify and study the large scale regional and temporal variability of phytoplankton blooms in the Arctic and peripheral seas from 1998 to 2002. In the Arctic basin, phytoplankton chlorophyll displays a large symmetry with the Eastern Arctic having about fivefold higher concentrations than those of the Western Arctic. Large monthly and yearly variability is also observed in the peripheral seas with the largest blooms occurring in the Bering Sea, Sea of Okhotsk, and the Barents Sea during spring. There is large interannual and seasonal variability in biomass with average chlorophyll concentrations in 2002 and 2001 being higher than earlier years in spring and summer. The seasonality in the latitudinal distribution of blooms is also very different such that the North Atlantic is usually most expansive in spring while the North Pacific is more extensive in autumn. Environmental factors that influence phytoplankton growth were examined, and results show relatively high negative correlation with sea ice retreat and strong positive correlation with temperature in early spring. Plankton growth, as indicated by biomass accumulation, in the Arctic and subarctic increases up to a threshold surface temperature of about 276-277 degree K (3-4 degree C) beyond which the concentrations start to decrease suggesting an optimal temperature or nutrient depletion. The correlation with clouds is significant in some areas but negligible in other areas, while the correlations with wind speed and its components are generally weak. The effects of clouds and winds are less predictable with weekly climatologies because of unknown effects of averaging variable and intermittent physical forcing (e.g. over storm event scales with mixing and upwelling of nutrients) and the time scales of acclimation by the phytoplankton.

  11. Spring Snow Depth on Arctic Sea Ice using the IceBridge Snow Depth Product (Invited)

    NASA Astrophysics Data System (ADS)

    Webster, M.; Rigor, I. G.; Nghiem, S. V.; Kurtz, N. T.; Farrell, S. L.

    2013-12-01

    Snow has dual roles in the growth and decay of Arctic sea ice. In winter, it insulates sea ice from colder air temperatures, slowing its growth. From spring into summer, the albedo of snow determines how much insolation is transmitted through the sea ice and into the underlying ocean, ultimately impacting the progression of the summer ice melt. Knowing the snow thickness and distribution are essential for understanding and modeling sea ice thermodynamics and the surface heat budget. Therefore, an accurate assessment of the snow cover is necessary for identifying its impacts in the changing Arctic. This study assesses springtime snow conditions on Arctic sea ice using airborne snow thickness measurements from Operation IceBridge (2009-2012). The 2012 data were validated with coordinated in situ measurements taken in March 2012 during the BRomine, Ozone, and Mercury EXperiment field campaign. We find a statistically significant correlation coefficient of 0.59 and RMS error of 5.8 cm. The comparison between the IceBridge snow thickness product and the 1937, 1954-1991 Soviet drifting ice station data suggests that the snow cover has thinned by 33% in the western Arctic and 44% in the Beaufort and Chukchi Seas. A rudimentary estimation shows that a thinner snow cover in the Beaufort and Chukchi Seas translates to a mid-December surface heat flux as high as 81 W/m2 compared to 32 W/m2. The relationship between the 2009-2012 thinner snow depth distribution and later sea ice freeze-up is statistically significant, with a correlation coefficient of 0.59. These results may help us better understand the surface energy budget in the changing Arctic, and may improve our ability to predict the future state of the sea ice cover.

  12. Sea ice decline and 21st century trans-Arctic shipping routes

    NASA Astrophysics Data System (ADS)

    Melia, N.; Haines, K.; Hawkins, E.

    2016-09-01

    The observed decline in Arctic sea ice is projected to continue, opening shorter trade routes across the Arctic Ocean, with potentially global economic implications. Here we quantify, using Coupled Model Intercomparison Project Phase 5 global climate model simulations calibrated to remove spatial biases, how projected sea ice loss might increase opportunities for Arctic transit shipping. By midcentury for standard open water vessels, the frequency of navigable periods doubles, with routes across the central Arctic becoming available. A sea ice-ship speed relationship is used to show that European routes to Asia typically become 10 days faster via the Arctic than alternatives by midcentury, and 13 days faster by late century, while North American routes become 4 days faster. Future greenhouse gas emissions have a larger impact by late century; the shipping season reaching 4-8 months in Representative Concentration Pathway (RCP)8.5 double that of RCP2.6, both with substantial interannual variability. Moderately, ice-strengthened vessels likely enable Arctic transits for 10-12 months by late century.

  13. Interannual variations of the dominant modes of East Asian winter monsoon and possible links to Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Sun, Chenghu; Yang, Song; Li, Weijing; Zhang, Ruonan; Wu, Renguang

    2016-07-01

    Two dominant modes of the winter temperature over East Asia, a northern mode and a southern mode, and their links with Arctic climate conditions are analyzed. The relationships of the two modes with Arctic sea ice are different. The northern mode is closely linked to variations in sea ice of the Arctic Barents-Laptev Sea in previous autumn and most of the Arctic in concurrent winter. The southern mode seems independent from the Arctic sea ice variations, but is associated with sea surface temperature (SST) anomalies in the equatorial central-eastern Pacific. Results suggest an effect of Arctic sea ice variation on the northern mode and an influence of tropical SST anomalies on the southern mode. Reduced sea ice over the Arctic increases 1000-500-hPa thickness over the high-latitudes of Eurasian continent, which reduces the meridional thickness gradient between the middle and high latitudes and thus weakens the extratropical upper-level zonal wind. The weakened zonal wind provides a favorable dynamic condition for the development of a high-latitude ridge around the Ural Mountain. Reduced Arctic sea ice also tends to enhance the Siberian high through both thermodynamic and dynamic processes. The above atmospheric circulation patterns provide a favorable condition for the intrusion of cold air to northern East Asia.

  14. Insights on Arctic Sea Ice Processes from New Seafloor and Coastline Mapping

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Hall, D. K.; Rigor, I. G.; Clemente-Colon, P.; Li, P.; Neumann, G.

    2014-12-01

    The seafloor can exert a significant control on Arctic sea ice patterns by guiding the distribution of ocean water masses and river discharge in the Arctic Ocean. Satellite observations of sea ice and surface temperature are used together with bathymetry data to understand dynamic and thermodynamic processes of sea ice. In particular, data from satellite radars, including scatterometer and synthetic aperture radar (SAR) instruments, are used to identify and map sea ice with different spatial and temporal resolutions across the Arctic. Data from a satellite spectroradiometer, such as MODIS, are used to accurately measure surface temperature under clear sky conditions. For seafloor measurements, advances have been made with new observations surveyed to modern standards in different regions of the Arctic, enabling the production of an improved bathymetry dataset, such as the International Bathymetric Chart of the Arctic Ocean Version 3.0 (IBCAO 3.0) released in 2012. The joint analyses of these datasets reveal that the seafloor can govern warm- and cold-water distribution and thereby dictate sea ice patterns on the sea surface from small local scales to a large regional scale extending over thousands of km. Satellite results show that warm river waters can intrude into the Arctic Ocean and affect sea ice melt hundreds of km away from the river mouths. The Arctic rivers bring significant heat as their waters come from sources across vast watersheds influenced by warm continental climate effects in summertime. In the case of the Mackenzie River, results from the analysis with the new IBCAO 3.0 indicated that the formation and break-up of landfast sea ice is related to the depth and not the slope of the seafloor. In turn, such ice processes can impact the discharge and distribution of warm river waters and influence the melting of sea ice. Animations of satellite observations of sea ice overlaid on both the old and new versions of IBCAO will be presented to illustrate

  15. Mercury distribution and transport across the ocean-sea-ice-atmosphere interface in the Arctic Ocean.

    PubMed

    Chaulk, Amanda; Stern, Gary A; Armstrong, Debbie; Barber, David G; Wang, Feiyue

    2011-03-01

    The Arctic sea-ice environment has been undergoing dramatic changes in the past decades; to which extent this will affect the deposition, fate, and effects of chemical contaminants remains virtually unknown. Here, we report the first study on the distribution and transport of mercury (Hg) across the ocean-sea-ice-atmosphere interface in the Southern Beaufort Sea of the Arctic Ocean. Despite being sampled at different sites under various atmospheric and snow cover conditions, Hg concentrations in first-year ice cores were generally low and varied within a remarkably narrow range (0.5-4 ng L(-1)), with the highest concentration always in the surface granular ice layer which is characterized by enriched particle and brine pocket concentration. Atmospheric Hg depletion events appeared not to be an important factor in determining Hg concentrations in sea ice except for frost flowers and in the melt season when snowpack Hg leaches into the sea ice. The multiyear ice core showed a unique cyclic feature in the Hg profile with multiple peaks potentially corresponding to each ice growing/melting season. The highest Hg concentrations (up to 70 ng L(-1)) were found in sea-ice brine and decrease as the melt season progresses. As brine is the primary habitat for microbial communities responsible for sustaining the food web in the Arctic Ocean, the high and seasonally changing Hg concentrations in brine and its potential transformation may have a major impact on Hg uptake in Arctic marine ecosystems under a changing climate.

  16. The Rapid Arctic Warming in Recent Decade and Its Impact on Eurasia Winter Weather

    NASA Astrophysics Data System (ADS)

    Kim, Seong-Joong; Kim, Baek-Min; Kim, Joo-Hong; Jun, Sang-Yoon

    2016-04-01

    The Arctic is warming much more rapidly than the lower latitudes. In contrast to the rapid Arctic warming, in winters of the recent decade, the cold-air outbreaks over East Asia occur more frequently and stronger than in 1990s. By accompanying the snow over East Asia, the strong cold surges have led to a severe socio-economic impact. Such severe cold surges in recent decade over east Asia is consistent with the more dominant negative phase of the Arctic Oscillation (AO), that may be attributed by the Arctic amplification. In both observation-based reanalysis and numerical model experiments, the Arctic sea ice melting leads to the weakening of the AO polarity by reducing the meridional temperature gradient through a heat flux feedback. The Arctic warming and associated sea ice melting over the Kara-Barents area in late fall and early winter first release a lot of heat to the atmosphere from the ocean by a strong contrast in temperature and moisture and higher height anomaly is developed over the Kara/Barents and the Ural mountains The anomalous anticyclonic anomaly over the Arctic strengthen the Siberian High and at the same time the east Asian trough is developed over the western coast of the North Pacific. Through the passage between the margin of the Siberian High and east Asian tough, an extremely cold air is transported from east Siberia to east Asia for sometimes more than a week. Such a severe sold air brings about the moisture from nearby ocean, largely influencing the daily lives and economy in Eurasia. The recent Arctic and associated sea ice melting is not only contributed to the local climate and weather, but also a severe weather in mid-latitudes through a modulation in polar vortex.

  17. The Rapid Arctic Warming and Its Impact on East Asian Winter Weather in Recent Decade

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Kim, B. M.; Kim, J. H.

    2015-12-01

    The Arctic is warming much more rapidly than the lower latitudes. In contrast to the rapid Arctic warming, in winters of the recent decade, the cold-air outbreaks over East Asia occur more frequently and stronger than in 1990s. By accompanying the snow over East Asia, the strong cold surges have led to a severe socio-economic impact. Such severe cold surges in recent decade over east Asia is consistent with the more dominant negative phase of the Arctic Oscillation (AO), that may be attributed by the Arctic amplification. In both observation-based reanalysis and numerical model experiments, the Arctic sea ice melting leads to the weakening of the AO polarity by reducing the meridional temperature gradient through a heat flux feedback. The Arctic warming and associated sea ice melting over the Kara-Barents area in late fall and early winter first release a lot of heat to the atmosphere from the ocean by a strong contrast in temperature and moisture and higher height anomaly is developed over the Kara/Barents and the Ural mountains The anomalous anticyclonic anomaly over the Arctic strengthen the Siberian High and at the same time the east Asian trough is developed over the western coast of the North Pacific. Through the passage between the margin of the Siberian High and east Asian tough, an extremely cold air is transported from east Siberia to east Asia for sometimes more than a week. Such a severe sold air brings about the moisture from nearby ocean, largely influencing the daily lives and economy in north East China, Korea, and Japan. The recent Arctic and associated sea ice melting is not only contributed to the local climate and weather, but also a severe weather in mid-latitudes through a modulation in polar vortex.

  18. The contribution of Alaskan, Siberian, and Canadian coastal polynas to the cold halocline layer of the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Martin, Seelye

    1994-01-01

    Numerous Arctic Ocean circulation and geochemical studies suggest that ice growth in polynyas over the Alaskan, Siberian, and Canadian continental shelves is a source of cold, saline water which contributes to the maintenance of the Arctic Ocean halocline. The purpose of this study is to estimate for the 1978-1987 winters the contributions of Arctic coastal polynyas to the cold halocline layer of the Arctic Ocean. The study uses a combination of satellite, oceanographic, and weather data to calculate the brine fluxes from the polynyas; then an oceanic box model is used to calculate their contributions to the cold halocline layer of the Arctic Ocean. This study complements and corrects a previous study of dense water production by coastal polynyas in the Barents, Kara, and Laptev Seas.

  19. U.S. Geological Survey circum-arctic resource appraisal

    USGS Publications Warehouse

    Gautier, D.L.

    2011-01-01

    Among the greatest uncertainties in future energy supply is the amount of oil and gas yet to be found in the Arctic. Using a probabilistic geology-based methodology, the U.S. Geological Survey has assessed the area north of the Arctic Circle. The Circum-Arctic Resource Appraisal (CARA) consists of three parts: (1) Mapping the sedimentary sequences of the Arctic (Grantz and others 2009), (2) Geologically based estimation of undiscovered technically recoverable petroleum (Gautier and others 2009, discussed in this presentation) and (3) Economic appraisal of the cost of delivering the undiscovered resources to major markets (also reported at this conference by White and others). We estimate that about 30% of the world's undiscovered gas and about 13% of the world's undiscovered oil may be present in the Arctic, mostly offshore under less than 500m of water. Billion BOE-plus accumulations of gas and oil are predicted at a 50% probability in the Kara Sea, Barents Sea, offshore East and West Greenland, Canada, and Alaska. On a BOE basis, undiscovered natural gas is three times more abundant than oil in the Arctic and is concentrated in Russian territory. Oil resources, while critically important to the interests of Arctic countries, are probably not sufficient to significantly shift the current geographic patterns of world oil production. Copyright 2011, Offshore Technology Conference.

  20. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum.

    PubMed

    Comeau, André M; Li, William K W; Tremblay, Jean-Éric; Carmack, Eddy C; Lovejoy, Connie

    2011-01-01

    Increasing global temperatures are having a profound impact in the Arctic, including the dramatic loss of multiyear sea ice in 2007 that has continued to the present. The majority of life in the Arctic is microbial and the consequences of climate-mediated changes on microbial marine food webs, which are responsible for biogeochemical cycling and support higher trophic levels, are unknown. We examined microbial communities over time by using high-throughput sequencing of microbial DNA collected between 2003 and 2010 from the subsurface chlorophyll maximum (SCM) layer of the Beaufort Sea (Canadian Arctic). We found that overall this layer has freshened and concentrations of nitrate, the limiting nutrient for photosynthetic production in Arctic seas, have decreased. We compared microbial communities from before and after the record September 2007 sea ice minimum and detected significant differences in communities from all three domains of life. In particular, there were significant changes in species composition of Eukarya, with ciliates becoming more common and heterotrophic marine stramenopiles (MASTs) accounting for a smaller proportion of sequences retrieved after 2007. Within the Archaea, Marine Group I Thaumarchaeota, which earlier represented up to 60% of the Archaea sequences in this layer, have declined to <10%. Bacterial communities overall were less diverse after 2007, with a significant decrease of the Bacteroidetes. These significant shifts suggest that the microbial food webs are sensitive to physical oceanographic changes such as those occurring in the Canadian Arctic over the past decade.

  1. Arctic Ocean Microbial Community Structure before and after the 2007 Record Sea Ice Minimum

    PubMed Central

    Comeau, André M.; Li, William K. W.; Tremblay, Jean-Éric; Carmack, Eddy C.; Lovejoy, Connie

    2011-01-01

    Increasing global temperatures are having a profound impact in the Arctic, including the dramatic loss of multiyear sea ice in 2007 that has continued to the present. The majority of life in the Arctic is microbial and the consequences of climate-mediated changes on microbial marine food webs, which are responsible for biogeochemical cycling and support higher trophic levels, are unknown. We examined microbial communities over time by using high-throughput sequencing of microbial DNA collected between 2003 and 2010 from the subsurface chlorophyll maximum (SCM) layer of the Beaufort Sea (Canadian Arctic). We found that overall this layer has freshened and concentrations of nitrate, the limiting nutrient for photosynthetic production in Arctic seas, have decreased. We compared microbial communities from before and after the record September 2007 sea ice minimum and detected significant differences in communities from all three domains of life. In particular, there were significant changes in species composition of Eukarya, with ciliates becoming more common and heterotrophic marine stramenopiles (MASTs) accounting for a smaller proportion of sequences retrieved after 2007. Within the Archaea, Marine Group I Thaumarchaeota, which earlier represented up to 60% of the Archaea sequences in this layer, have declined to <10%. Bacterial communities overall were less diverse after 2007, with a significant decrease of the Bacteroidetes. These significant shifts suggest that the microbial food webs are sensitive to physical oceanographic changes such as those occurring in the Canadian Arctic over the past decade. PMID:22096583

  2. The role of mechanics and kinematics on the Arctic sea ice decline

    NASA Astrophysics Data System (ADS)

    Weiss, J.

    2011-12-01

    IPCC AR4 climate models unforeseen the recent Arctic sea ice decline, either in terms of extent or thinning rate. Owing to the complexity of the Arctic basin as a physical system involving many interacting processes and feedbacks (negative or positive), several tracks are currently followed to try to improve the representation of these processes. Here we focus on the representation of sea ice mechanics and kinematics (drift, deformation). Indeed, the spectacular evolution of the Arctic sea ice cover is not restricted to the shrinking of ice extent or to thinning. Kinematics is affected as well, and its evolution plays a central role in the changes underwent nowadays in the Arctic ocean. As observed from buoy drift data, the sea ice mean speed increased at a rate of 9% per decade from 1979 to 2007, whereas the mean deformation rate increased by more than 50% per decade over the same period. These two aspects of recent sea ice evolution, i.e. strong decline and accelerated kinematics, are likely intimately coupled. Increasing deformation means stronger fracturing, hence more lead opening and a decreasing albedo. As a result, ocean warming, in turn, favors sea ice thinning in summer and delays refreezing in early winter, i.e. strengthens sea ice decline. This thinning decreases the mechanical strength, therefore allowing even more fracturing, hence larger speed and deformation. A consequence is the acceleration of sea ice export through Fram or Nares Strait with a significant impact on sea ice mass balance. The coupling between the ice state (thickness and concentration) and ice velocity is unexpectedly weak in most IPCC AR4 models. In particular, sea ice drifts faster during the months when it is thick and packed than when it is thin, contrary to what is observed; also models with larger long-term thinning trends do not show higher drift acceleration. This weak coupling behavior (i) suggests that the positive feedbacks mentioned above are underestimated, and (ii) can

  3. Recent changes in the dynamic properties of declining Arctic sea ice: A model study

    NASA Astrophysics Data System (ADS)

    Zhang, Jinlun; Lindsay, Ron; Schweiger, Axel; Rigor, Ignatius

    2012-10-01

    Results from a numerical model simulation show significant changes in the dynamic properties of Arctic sea ice during 2007-2011 compared to the 1979-2006 mean. These changes are linked to a 33% reduction in sea ice volume, with decreasing ice concentration, mostly in the marginal seas, and decreasing ice thickness over the entire Arctic, particularly in the western Arctic. The decline in ice volume results in a 37% decrease in ice mechanical strength and 31% in internal ice interaction force, which in turn leads to an increase in ice speed (13%) and deformation rates (17%). The increasing ice speed has the tendency to drive more ice out of the Arctic. However, ice volume export is reduced because the rate of decrease in ice thickness is greater than the rate of increase in ice speed, thus retarding the decline of Arctic sea ice volume. Ice deformation increases the most in fall and least in summer. Thus the effect of changes in ice deformation on the ice cover is likely strong in fall and weak in summer. The increase in ice deformation boosts ridged ice production in parts of the central Arctic near the Canadian Archipelago and Greenland in winter and early spring, but the average ridged ice production is reduced because less ice is available for ridging in most of the marginal seas in fall. The overall decrease in ridged ice production contributes to the demise of thicker, older ice. As the ice cover becomes thinner and weaker, ice motion approaches a state of free drift in summer and beyond and is therefore more susceptible to changes in wind forcing. This is likely to make seasonal or shorter-term forecasts of sea ice edge locations more challenging.

  4. Analysis of Arctic Sea ice coverage in 2012 using multi-source scatterometer data

    NASA Astrophysics Data System (ADS)

    Zhai, M.

    2013-12-01

    Arctic sea ice extent, regarded as an indicator of climate change, has been declining for the past few decades and reached the lowest ice extent in satellite record during the summer of 2012. Scatterometers can be used in sea ice identification, due to its ability to measure the backscatter characteristics of surface coverage. Thus, daily scatterometer data can be used in Arctic sea ice monitoring. In this paper, we compared the similarity and difference of three different scatterometer datasets, including ASCAT(METOP-A/B Advanced scatterometer) data, OSCAT(Oceansat-2 scatterometer)data and China's HY-2 scatterometer data, and then evaluated their performance in Artic sea ice investigation. We also constructed the sea ice coverage time series in 2012 using different scatterometer data and analyzed its temporal and spatial variation. Preliminary Results show that the maximum extent was set on 19 March, 2012. Cracks started to appear in Arctic sea ice coverage near New Siberian Islands on 18,May. Later, melt process accelerates in July and August. The northeast passage is not open until late August. On 18 September, the extent reached the minimum level and the refreezing process began. The duration of melting season is slightly shorter than the average level over the period of 1978 to 2012(ERS-1/2 scattermeter and Quickscat scatterometer data are used as supplementary records). The record low extent is likely resulted from (1)Arctic dipole pressure pattern, bringing in warm southerly winds and enhancing arctic ice discharge in Fram Strait and (2)relatively warm conditions over the Arctic areas.

  5. Distribution of Arctic and Pacific copepods and their habitat in the northern Bering Sea and Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Sasaki, H.; Matsuno, K.; Fujiwara, A.; Onuka, M.; Yamaguchi, A.; Ueno, H.; Watanuki, Y.; Kikuchi, T.

    2015-11-01

    The advection of warm Pacific water and the reduction of sea-ice extent in the western Arctic Ocean may influence the abundance and distribution of copepods, i.e., a key component in food webs. To understand the factors affecting abundance of copepods in the northern Bering Sea and Chukchi Sea, we constructed habitat models explaining the spatial patterns of the large and small Arctic copepods and the Pacific copepods, separately, using generalized additive models. Copepods were sampled by NORPAC net. Vertical profiles of density, temperature and salinity in the seawater were measured using CTD, and concentration of chlorophyll a in seawater was measured with a fluorometer. The timing of sea-ice retreat was determined using the satellite image. To quantify the structure of water masses, the magnitude of pycnocline and averaged density, temperature and salinity in upper and bottom layers were scored along three axes using principal component analysis (PCA). The structures of water masses indexed by the scores of PCAs were selected as explanatory variables in the best models. Large Arctic copepods were abundant in the water mass with high salinity water in bottom layer or with cold/low salinity water in upper layer and cold/high salinity water in bottom layer, and small Arctic copepods were abundant in the water mass with warm/saline water in upper layer and cold/high salinity water in bottom layers, while Pacific copepods were abundant in the water mass with warm/saline in upper layer and cold/high salinity water in bottom layer. All copepod groups were abundant in areas with deeper depth. Although chlorophyll a in upper and bottom layers were selected as explanatory variables in the best models, apparent trends were not observed. All copepod groups were abundant where the sea-ice retreated at earlier timing. Our study might indicate potential positive effects of the reduction of sea-ice extent on the distribution of all groups of copepods in the Arctic Ocean.

  6. Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover

    NASA Astrophysics Data System (ADS)

    Nummelin, Aleksi; Ilicak, Mehmet; Li, Camille; Smedsrud, Lars H.

    2016-01-01

    The Arctic Ocean has important freshwater sources including river runoff, low evaporation, and exchange with the Pacific Ocean. In the future, we expect even larger freshwater input as the global hydrological cycle accelerates, increasing high-latitude precipitation, and river runoff. Previous modeling studies show some robust responses to high-latitude freshwater perturbations, including a strengthening of Arctic stratification and a weakening of the large-scale ocean circulation; some idealized modeling studies also document a stronger cyclonic circulation within the Arctic Ocean itself. With the broad range of scales and processes involved, the overall effect of increasing runoff requires an understanding of both the local processes and the broader linkages between the Arctic and surrounding oceans. Here we adopt a more comprehensive modeling approach by increasing river runoff to the Arctic Ocean in a coupled ice-ocean general circulation model, and show contrasting responses in the polar and subpolar regions. Within the Arctic, the stratification strengthens, the halocline and Atlantic Water layer warm, and the cyclonic circulation spins up, in agreement with previous work. In the subpolar North Atlantic, the model simulates a colder and fresher water column with weaker barotropic circulation. In contrast to the estuarine circulation theory, the volume exchange between the Arctic Ocean and the surrounding oceans does not increase with increasing runoff. While these results are robust in our model, we require experiments with other model systems and more complete observational syntheses to better constrain the sensitivity of the climate system to high-latitude freshwater perturbations.

  7. The role of sea ice for vascular plant dispersal in the Arctic.

    PubMed

    Alsos, Inger Greve; Ehrich, Dorothee; Seidenkrantz, Marit-Solveig; Bennike, Ole; Kirchhefer, Andreas Joachim; Geirsdottir, Aslaug

    2016-09-01

    Sea ice has been suggested to be an important factor for dispersal of vascular plants in the Arctic. To assess its role for postglacial colonization in the North Atlantic region, we compiled data on the first Late Glacial to Holocene occurrence of vascular plant species in East Greenland, Iceland, the Faroe Islands and Svalbard. For each record, we reconstructed likely past dispersal events using data on species distributions and genetics. We compared these data to sea-ice reconstructions to evaluate the potential role of sea ice in these past colonization events and finally evaluated these results using a compilation of driftwood records as an independent source of evidence that sea ice can disperse biological material. Our results show that sea ice was, in general, more prevalent along the most likely dispersal routes at times of assumed first colonization than along other possible routes. Also, driftwood is frequently dispersed in regions that have sea ice today. Thus, sea ice may act as an important dispersal agent. Melting sea ice may hamper future dispersal of Arctic plants and thereby cause more genetic differentiation. It may also limit the northwards expansion of competing boreal species, and hence favour the persistence of Arctic species.

  8. The role of sea ice for vascular plant dispersal in the Arctic

    PubMed Central

    Ehrich, Dorothee; Bennike, Ole; Geirsdottir, Aslaug

    2016-01-01

    Sea ice has been suggested to be an important factor for dispersal of vascular plants in the Arctic. To assess its role for postglacial colonization in the North Atlantic region, we compiled data on the first Late Glacial to Holocene occurrence of vascular plant species in East Greenland, Iceland, the Faroe Islands and Svalbard. For each record, we reconstructed likely past dispersal events using data on species distributions and genetics. We compared these data to sea-ice reconstructions to evaluate the potential role of sea ice in these past colonization events and finally evaluated these results using a compilation of driftwood records as an independent source of evidence that sea ice can disperse biological material. Our results show that sea ice was, in general, more prevalent along the most likely dispersal routes at times of assumed first colonization than along other possible routes. Also, driftwood is frequently dispersed in regions that have sea ice today. Thus, sea ice may act as an important dispersal agent. Melting sea ice may hamper future dispersal of Arctic plants and thereby cause more genetic differentiation. It may also limit the northwards expansion of competing boreal species, and hence favour the persistence of Arctic species. PMID:27651529

  9. The role of sea ice for vascular plant dispersal in the Arctic.

    PubMed

    Alsos, Inger Greve; Ehrich, Dorothee; Seidenkrantz, Marit-Solveig; Bennike, Ole; Kirchhefer, Andreas Joachim; Geirsdottir, Aslaug

    2016-09-01

    Sea ice has been suggested to be an important factor for dispersal of vascular plants in the Arctic. To assess its role for postglacial colonization in the North Atlantic region, we compiled data on the first Late Glacial to Holocene occurrence of vascular plant species in East Greenland, Iceland, the Faroe Islands and Svalbard. For each record, we reconstructed likely past dispersal events using data on species distributions and genetics. We compared these data to sea-ice reconstructions to evaluate the potential role of sea ice in these past colonization events and finally evaluated these results using a compilation of driftwood records as an independent source of evidence that sea ice can disperse biological material. Our results show that sea ice was, in general, more prevalent along the most likely dispersal routes at times of assumed first colonization than along other possible routes. Also, driftwood is frequently dispersed in regions that have sea ice today. Thus, sea ice may act as an important dispersal agent. Melting sea ice may hamper future dispersal of Arctic plants and thereby cause more genetic differentiation. It may also limit the northwards expansion of competing boreal species, and hence favour the persistence of Arctic species. PMID:27651529

  10. Complete mitochondrial genome of the Arctic green sea urchin Strongylocentrotus droebachiensis (Strongylocentrotidae, Echinoidea).

    PubMed

    Rhee, Jae-Sung; Ki, Jang-Seu; Hwang, Dae-Sik; Park, Hyun; Ahn, In-Young; Lee, Jae-Seong

    2012-10-01

    The complete mitochondrial genome was obtained from the assembled genome data sequenced by next-generation sequencing technology from the Arctic green sea urchin Strongylocentrotus droebachiensis. The mitochondrial genome sequence was 15,710 bp in size, and the gene order and contents were identical with previously reported sea urchin mitochondrial genomes. Of 13 protein-coding genes (PCGs), 1 gene (Cytb) had an incomplete stop codon. The base composition of the mitogenome of Arctic S. droebachiensis showed high A+T (58.36%) and anti-G bias (14.86%) on the third position of PCGs. PMID:22803709

  11. Bacterial communities from Arctic seasonal sea ice are more compositionally variable than those from multi-year sea ice.

    PubMed

    Hatam, Ido; Lange, Benjamin; Beckers, Justin; Haas, Christian; Lanoil, Brian

    2016-10-01

    Arctic sea ice can be classified into two types: seasonal ice (first-year ice, FYI) and multi-year ice (MYI). Despite striking differences in the physical and chemical characteristics of FYI and MYI, and the key role sea ice bacteria play in biogeochemical cycles of the Arctic Ocean, there are a limited number of studies comparing the bacterial communities from these two ice types. Here, we compare the membership and composition of bacterial communities from FYI and MYI sampled north of Ellesmere Island, Canada. Our results show that communities from both ice types were dominated by similar class-level phylogenetic groups. However, at the operational taxonomic unit (OTU) level, communities from MYI and FYI differed in both membership and composition. Communities from MYI sites had consistent structure, with similar membership (presence/absence) and composition (OTU abundance) independent of location and year of sample. By contrast, communities from FYI were more variable. Although FYI bacterial communities from different locations and different years shared similar membership, they varied significantly in composition. Should these findings apply to sea ice across the Arctic, we predict increased compositional variability in sea ice bacterial communities resulting from the ongoing transition from predominantly MYI to FYI, which may impact nutrient dynamics in the Arctic Ocean. PMID:26882269

  12. Bacterial communities from Arctic seasonal sea ice are more compositionally variable than those from multi-year sea ice.

    PubMed

    Hatam, Ido; Lange, Benjamin; Beckers, Justin; Haas, Christian; Lanoil, Brian

    2016-10-01

    Arctic sea ice can be classified into two types: seasonal ice (first-year ice, FYI) and multi-year ice (MYI). Despite striking differences in the physical and chemical characteristics of FYI and MYI, and the key role sea ice bacteria play in biogeochemical cycles of the Arctic Ocean, there are a limited number of studies comparing the bacterial communities from these two ice types. Here, we compare the membership and composition of bacterial communities from FYI and MYI sampled north of Ellesmere Island, Canada. Our results show that communities from both ice types were dominated by similar class-level phylogenetic groups. However, at the operational taxonomic unit (OTU) level, communities from MYI and FYI differed in both membership and composition. Communities from MYI sites had consistent structure, with similar membership (presence/absence) and composition (OTU abundance) independent of location and year of sample. By contrast, communities from FYI were more variable. Although FYI bacterial communities from different locations and different years shared similar membership, they varied significantly in composition. Should these findings apply to sea ice across the Arctic, we predict increased compositional variability in sea ice bacterial communities resulting from the ongoing transition from predominantly MYI to FYI, which may impact nutrient dynamics in the Arctic Ocean.

  13. Great Arctic Cyclone of August 2012 and associated sea ice anomaly

    NASA Astrophysics Data System (ADS)

    Rudeva, Irina; Simmonds, Ian

    2013-04-01

    On 2 August 2012 a dramatic storm formed over Siberia, moved into the Arctic, and died in the Canadian Arctic Archipelago on 14 August. During its lifetime its central pressure dropped to 966 hPa, leading it to be dubbed 'The Great Arctic Cyclone of August 2012'. The pressure of the storm was the lowest of all Arctic August storms over our record starting in 1979, and the system was also the most extreme when a combination of key cyclone properties was considered. Even though, climatologically, summer is a 'quiet' time in the Arctic, when compared with all Arctic storms across the period it came in as the 13th most extreme storm, warranting the attribution of 'Great'. This cyclone occurred during a period when the sea ice extent was on the way to reaching a new satellite-era low (3.14 million square kilometers). Records show that SIE dropped rapidly between August 4 and August 8, exactly when the Great Cyclone entered the Arctic and was on its way to the Canadian. However, as been pointed out by National Snow and Ice Data Center, 'it is unclear if the storm prompted the rapid ice loss'. Our focus in this presentation is on the direct effect of a specific cyclone on the sea ice. It will be shown how the August storm changed the sea ice distribution. Being armed with a long record of the sea ice data (since 1979) along with extensive atmospheric data, we will compare the August anomaly with similar atmospheric conditions in previous years and their effect on ice.

  14. Robustness of the large-scale modes of variability of winter Arctic sea ice concentration

    NASA Astrophysics Data System (ADS)

    Close, Sally; Houssais, Marie-Noëlle; Herbaut, Christophe

    2016-04-01

    The dominant mode of variability of Arctic winter sea ice concentration has previously been suggested to be represented by a double-dipole structure, with the loading pattern of the first empirical orthogonal mode having phase of one sign in the Sea of Okhotsk and Barents Sea and opposing sign in the Labrador and Bering Seas. In this study, we build on this previous work, examining the robustness of the primary modes of large-scale variability of the winter sea ice concentration in the Arctic based on the satellite data record. We find that the double-dipole structure does not emerge as a robust mode of variability: rather, the primary mode can be considered as a tripole, explaining significant variability only in the Sea of Okhotsk, Barents and Bering Seas. In contrast, the Labrador Sea emerges in isolation in the second empirical orthogonal mode. The relative magnitude of the poles of variability in the empirical orthogonal function loading patterns are sensitive to the detrending of the data; however, the isolation of the variability of the Labrador Sea ice remains a robust feature. We find that there is no significant interannual-scale co-variability amongst the sea ice areas of the four seas comprising the double-dipole after low-frequency variability has been removed.

  15. The ASIBIA sea-ice facility: First results from the Atmosphere-Sea-Ice-Biogeochemistry in the Arctic chamber

    NASA Astrophysics Data System (ADS)

    France, James L.; Thomas, Max

    2016-04-01

    Working in the natural ocean-ice-atmosphere system is very difficult, as conducting fieldwork on sea-ice presents many challenges ice including costs, safety, experimental controls and access. The new ASIBIA (Atmosphere-Sea-Ice-Biogeochemistry in the Arctic) coupled Ocean-Sea-Ice-(Snow)-Atmosphere chamber facility at the University of East Anglia, UK, we are aiming to perform controlled first-year sea-ice investigations in areas such as sea-ice physics, physicochemical and biogeochemical processes in sea-ice and quantification of the bi-directional flux of gases in various states of first-year sea-ice conditions. The facility is a medium sized chamber with programmable temperatures from -55°C to +30°C, allowing a full range of first year sea-ice growing conditions in both the Arctic and Antarctic to be simulated. The water depth can be up to 1 m (including up to 25 cm of sea-ice) and an optional 1 m tall Teflon film atmosphere on top of the sea-ice, thus creating a closed and coupled ocean-sea-ice-atmosphere mesocosm. Ice growth in the tank is well suited for studying first-year sea-ice physical properties, with in-situ ice-profile measurements of temperature, salinity, conductivity, pressure and spectral light transmission. Underwater and above ice cameras are installed to record the physical development of the sea-ice. Here, we present the data from the first suites of experiments in the ASIBIA chamber focussing on sea-ice physics and give a brief description of the capabilities of the facility going forward. The ASIBIA chamber was funded as part of an ERC consolidator grant to the late Prof. Roland von Glasow and we hope this work and further development of the facility will act as a lasting legacy.

  16. The ICESat Arctic-Ocean Mean Sea Surface: Reference Field for Future Satellite and Airborne Altimetry over Sea Ice

    NASA Astrophysics Data System (ADS)

    Farrell, S. L.; McAdoo, D. C.; Zwally, H. J.; Yi, D.

    2010-12-01

    The era of ICESat operations, between 2003 and 2009, encompassed a period of significant change in the sea ice cover of the Arctic Ocean. Geoscience Laser Altimeter System (GLAS) data gathered during this period has been crucial for monitoring a decline in Arctic sea ice freeboard and thickness, particularly over perennial sea ice. An over-all loss of ice pack volume was recorded, including an observed 42 % loss of ice volume during the ICESat Fall (October/November) campaigns. Critical to the derivation of sea ice freeboard, and ice thickness, is precise mapping of the local reference sea level, the sea surface height (SSH). ICESat profiles over sea ice must be carefully assessed to discriminate leads from sea ice floes, so as to generate SSH profiles. Here we discuss methods for combining these local sea level measurements from the entire ICESat mission (using data from 16 ICESat campaigns) while maintaining the high along-track resolution of the GLAS footprints. We construct a high-resolution mean sea surface (MSS) model, which will be useful in itself as a reference field for retrieving sea ice freeboard from measurements gathered by CryoSat-2 and the Operation IceBridge aircraft campaigns. This Arctic MSS topography has additional oceanographic and geodetic applications. The MSS conforms closely to the marine geoid such that differences between these surfaces may be attributed to mean dynamic topography (MDT), from which mean ocean circulation may be derived. However, remaining errors in both the MSS field (e.g. unmodeled tidal effects) and the state-of-the-art geoids (particularly at short wavelengths), restrict the resolution at which MDT may be resolved. By combining this new ICESat MSS with geoids derived from satellite-only gravity data, such as data from the Gravity Recovery And Climate Experiment (GRACE) and the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellites, we show an improved capability for observing Arctic Ocean dynamic

  17. Arctic warming: nonlinear impacts of sea-ice and glacier melt on seabird foraging.

    PubMed

    Grémillet, David; Fort, Jérôme; Amélineau, Françoise; Zakharova, Elena; Le Bot, Tangi; Sala, Enric; Gavrilo, Maria

    2015-03-01

    Arctic climate change has profound impacts on the cryosphere, notably via shrinking sea-ice cover and retreating glaciers, and it is essential to evaluate and forecast the ecological consequences of such changes. We studied zooplankton-feeding little auks (Alle alle), a key sentinel species of the Arctic, at their northernmost breeding site in Franz-Josef Land (80°N), Russian Arctic. We tested the hypothesis that little auks still benefit from pristine arctic environmental conditions in this remote area. To this end, we analysed remote sensing data on sea-ice and coastal glacier dynamics collected in our study area across 1979-2013. Further, we recorded little auk foraging behaviour using miniature electronic tags attached to the birds in the summer of 2013, and compared it with similar data collected at three localities across the Atlantic Arctic. We also compared current and historical data on Franz-Josef Land little auk diet, morphometrics and chick growth curves. Our analyses reveal that summer sea-ice retreated markedly during the last decade, leaving the Franz-Josef Land archipelago virtually sea-ice free each summer since 2005. This had a profound impact on little auk foraging, which lost their sea-ice-associated prey. Concomitantly, large coastal glaciers retreated rapidly, releasing large volumes of melt water. Zooplankton is stunned by cold and osmotic shock at the boundary between glacier melt and coastal waters, creating new foraging hotspots for little auks. Birds therefore switched from foraging at distant ice-edge localities, to highly profitable feeding at glacier melt-water fronts within <5 km of their breeding site. Through this behavioural plasticity, little auks maintained their chick growth rates, but showed a 4% decrease in adult body mass. Our study demonstrates that arctic cryosphere changes may have antagonistic ecological consequences on coastal trophic flow. Such nonlinear responses complicate modelling exercises of current and future

  18. Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003-2014

    NASA Astrophysics Data System (ADS)

    Armitage, Thomas W. K.; Bacon, Sheldon; Ridout, Andy L.; Thomas, Sam F.; Aksenov, Yevgeny; Wingham, Duncan J.

    2016-06-01

    Arctic sea surface height (SSH) is poorly observed by radar altimeters due to the poor coverage of the polar oceans provided by conventional altimeter missions and because large areas are perpetually covered by sea ice, requiring specialized data processing. We utilize SSH estimates from both the ice-covered and ice-free ocean to present monthly estimates of Arctic Dynamic Ocean Topography (DOT) from radar altimetry south of 81.5°N and combine this with GRACE ocean mass to estimate steric height. Our SSH and steric height estimates show good agreement with tide gauge records and geopotential height derived from Ice-Tethered Profilers. The large seasonal cycle of Arctic SSH (amplitude ˜5 cm) is dominated by seasonal steric height variation associated with seasonal freshwater fluxes, and peaks in October-November. Overall, the annual mean steric height increased by 2.2 ± 1.4 cm between 2003 and 2012 before falling to circa 2003 levels between 2012 and 2014 due to large reductions on the Siberian shelf seas. The total secular change in SSH between 2003 and 2014 is then dominated by a 2.1 ± 0.7 cm increase in ocean mass. We estimate that by 2010, the Beaufort Gyre had accumulated 4600 km3 of freshwater relative to the 2003-2006 mean. Doming of Arctic DOT in the Beaufort Sea is revealed by Empirical Orthogonal Function analysis to be concurrent with regional reductions in the Siberian Arctic. We estimate that the Siberian shelf seas lost ˜180 km3 of freshwater between 2003 and 2014, associated with an increase in annual mean salinity of 0.15 psu yr-1. Finally, ocean storage flux estimates from altimetry agree well with high-resolution model results, demonstrating the potential for altimetry to elucidate the Arctic hydrological cycle.

  19. Arctic warming: nonlinear impacts of sea-ice and glacier melt on seabird foraging.

    PubMed

    Grémillet, David; Fort, Jérôme; Amélineau, Françoise; Zakharova, Elena; Le Bot, Tangi; Sala, Enric; Gavrilo, Maria

    2015-03-01

    Arctic climate change has profound impacts on the cryosphere, notably via shrinking sea-ice cover and retreating glaciers, and it is essential to evaluate and forecast the ecological consequences of such changes. We studied zooplankton-feeding little auks (Alle alle), a key sentinel species of the Arctic, at their northernmost breeding site in Franz-Josef Land (80°N), Russian Arctic. We tested the hypothesis that little auks still benefit from pristine arctic environmental conditions in this remote area. To this end, we analysed remote sensing data on sea-ice and coastal glacier dynamics collected in our study area across 1979-2013. Further, we recorded little auk foraging behaviour using miniature electronic tags attached to the birds in the summer of 2013, and compared it with similar data collected at three localities across the Atlantic Arctic. We also compared current and historical data on Franz-Josef Land little auk diet, morphometrics and chick growth curves. Our analyses reveal that summer sea-ice retreated markedly during the last decade, leaving the Franz-Josef Land archipelago virtually sea-ice free each summer since 2005. This had a profound impact on little auk foraging, which lost their sea-ice-associated prey. Concomitantly, large coastal glaciers retreated rapidly, releasing large volumes of melt water. Zooplankton is stunned by cold and osmotic shock at the boundary between glacier melt and coastal waters, creating new foraging hotspots for little auks. Birds therefore switched from foraging at distant ice-edge localities, to highly profitable feeding at glacier melt-water fronts within <5 km of their breeding site. Through this behavioural plasticity, little auks maintained their chick growth rates, but showed a 4% decrease in adult body mass. Our study demonstrates that arctic cryosphere changes may have antagonistic ecological consequences on coastal trophic flow. Such nonlinear responses complicate modelling exercises of current and future

  20. Increasing presence of Arctic Ocean deep waters in the Greenland Sea

    NASA Astrophysics Data System (ADS)

    Somavilla Cabrillo, Raquel; Schauer, Ursula; Budeus, Gedeon

    2013-04-01

    Deep convection has been known to provide the coldest and freshest waters to the deep Greenland Sea, whose properties are balanced with the advection of warmer and saltier waters from the deep Arctic Ocean. However, during the last three decades, deep convection has come to a halt in the Greenland Sea. As previously reported and updated in this work through the analysis of the free available hydrographic data in the central Greenland Sea and in the Arctic Ocean from 1950 to 2010 (Pangaea and ICES data bases), as a consequence of this, two major hydrographic changes are observed: (1) the appearance and deepening of an intermediate temperature maximum and (2) a continuous warming and saltening of the deep Greenland Sea. The origin of both findings is found in the advection of Arctic Ocean deep waters from the Amerasian and Eurasian basins, respectively, into the central Greenland Sea. Associated to the first, a temperature increase of 0.35° C from 1993 to 2009 is observed at 1700 m. Below 2000 m, the temperature and salinity have increased at a mean rate of 0.136° C/decade and 0.01decade-1 in the last three decades. Overall, the stop of deep convection and the advection of Arctic Ocean deep waters result among the highest deep warming and saltening trends of the World Ocean in the Greenland Sea. In addition to the described update of the state of these changes, two new accomplishments are fulfilled in this study. First, in absence of deep convection, the continuous changing of the thermohaline properties of the deep Greenland Sea requires exchanges with adjacent ocean basins. This scenario enables us the estimation of the necessary transports from the deep Arctic to explain the observed changes. A transport of Eurasian Basin Deep Water of 0.31±0.04 Sv is obtained. Secondly, the warming and saltening of the deep Greenland Sea contributes, as any other ocean basin, to the World Ocean heat content and sea level rise. The estimation of these contributions shows larger

  1. Object-based Image Classification of Arctic Sea Ice and Melt Ponds through Aerial Photos

    NASA Astrophysics Data System (ADS)

    Miao, X.; Xie, H.; Li, Z.; Lei, R.

    2013-12-01

    The last six years have marked the lowest Arctic summer sea ice extents in the modern era, with a new record summer minimum (3.4 million km2) set on 13 September 2012. It has been predicted that the Arctic could be free of summer ice within the next 25-30. The loss of Arctic summer ice could have serious consequences, such as higher water temperature due to the positive feedback of albedo, more powerful and frequent storms, rising sea levels, diminished habitats for polar animals, and more pollution due to fossil fuel exploitation and/ or increased traffic through the Northwest/ Northeast Passage. In these processes, melt ponds play an important role in Earth's radiation balance since they strongly absorb solar radiation rather than reflecting it as snow and ice do. Therefore, it is necessary to develop the ability of predicting the sea ice/ melt pond extents and space-time evolution, which is pivotal to prepare for the variation and uncertainty of the future environment, political, economic, and military needs. A lot of efforts have been put into Arctic sea ice modeling to simulate sea ice processes. However, these sea ice models were initiated and developed based on limited field surveys, aircraft or satellite image data. Therefore, it is necessary to collect high resolution sea ice aerial photo in a systematic way to tune up, validate, and improve models. Currently there are many sea ice aerial photos available, such as Chinese Arctic Exploration (CHINARE 2008, 2010, 2012), SHEBA 1998 and HOTRAX 2005. However, manually delineating of sea ice and melt pond from these images is time-consuming and labor-intensive. In this study, we use the object-based remote sensing classification scheme to extract sea ice and melt ponds efficiently from 1,727 aerial photos taken during the CHINARE 2010. The algorithm includes three major steps as follows. (1) Image segmentation groups the neighboring pixels into objects according to the similarity of spectral and texture

  2. Covariance Between Arctic Sea Ice and Clouds Within Atmospheric State Regimes at the Satellite Footprint Level

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.; Kato, Seiji; Xu, Kuan-Man; Cai, Ming

    2015-01-01

    Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice-cloud relationship in the Arctic using a satellite footprint-level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A-Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and mid-tropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest-magnitude cloud-sea ice covariance occurs between 500m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near-surface static stability is found at larger sea ice concentrations.

  3. Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level

    PubMed Central

    Kato, Seiji; Xu, Kuan‐Man; Cai, Ming

    2015-01-01

    Abstract Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice‐cloud relationship in the Arctic using a satellite footprint‐level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A‐Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and midtropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest‐magnitude cloud‐sea ice covariance occurs between 500 m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near‐surface static stability is found at larger sea ice concentrations.

  4. The future of Arctic benthos: Expansion, invasion, and biodiversity

    NASA Astrophysics Data System (ADS)

    Renaud, Paul E.; Sejr, Mikael K.; Bluhm, Bodil A.; Sirenko, Boris; Ellingsen, Ingrid H.

    2015-12-01

    One of the logical predictions for a future Arctic characterized by warmer waters and reduced sea-ice is that new taxa will expand or invade Arctic seafloor habitats. Specific predictions regarding where this will occur and which taxa are most likely to become established or excluded are lacking, however. We synthesize recent studies and conduct new analyses in the context of climate forecasts and a paleontological perspective to make concrete predictions as to relevant mechanisms, regions, and functional traits contributing to future biodiversity changes. Historically, a warmer Arctic is more readily invaded or transited by boreal taxa than it is during cold periods. Oceanography of an ice-free Arctic Ocean, combined with life-history traits of invading taxa and availability of suitable habitat, determine expansion success. It is difficult to generalize as to which taxonomic groups or locations are likely to experience expansion, however, since species-specific, and perhaps population-specific autecologies, will determine success or failure. Several examples of expansion into the Arctic have been noted, and along with the results from the relatively few Arctic biological time-series suggest inflow shelves (Barents and Chukchi Seas), as well as West Greenland and the western Kara Sea, are most likely locations for expansion. Apparent temperature thresholds were identified for characteristic Arctic and boreal benthic fauna suggesting strong potential for range constrictions of Arctic, and expansions of boreal, fauna in the near future. Increasing human activities in the region could speed introductions of boreal fauna and reduce the value of a planktonic dispersal stage. Finally, shelf regions are likely to experience a greater impact, and also one with greater potential consequences, than the deep Arctic basin. Future research strategies should focus on monitoring as well as compiling basic physiological and life-history information of Arctic and boreal taxa, and

  5. Arctic sea ice and climate change--will the ice disappear in this century?

    PubMed

    Johannessen, O M; Miles, M W

    2000-01-01

    A consensus among climate change prediction scenarios using coupled ocean-climate general circulation models (GCMs) is enhanced warming in the Arctic. This suggests that changes in the Arctic sea ice cover may provide early indications of global warming. Observational evidence of substantial changes in the ice cover has been found recently using data from satellites and submarines. Satellite-borne microwave sensor data analyses have established a 3% per decade decrease in the spatial extent of the Arctic ice cover in the past 20 years. Moreover, a 7% per decade decrease in thicker, multi-year (perennial) ice pack has been revealed. This apparent transformation is corroborated by independent data that indicate substantial decreases in the average ice thickness from 3.1 to 1.8 m from the 1950s/1970s to the mid 1990s, averaging about 4 cm per year. It remains uncertain whether these observed changes are manifestations of global warming or are the result of anomalous atmospheric circulation--or both. However, if the recent trends continue, the Arctic sea ice cover could disappear this century, at least in summer, with important consequences for the regional and global ocean-climate system. This article synthesizes recent variability and trends in Arctic sea ice in the perspective of global climate change, and discusses their potential ramifications. PMID:11077477

  6. Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms.

    PubMed

    Polyak, L; Edwards, M H; Coakley, B J; Jakobsson, M

    2001-03-22

    It has been proposed that during Pleistocene glaciations, an ice cap of 1 kilometre or greater thickness covered the Arctic Ocean. This notion contrasts with the prevailing view that the Arctic Ocean was covered only by perennial sea ice with scattered icebergs. Detailed mapping of the ocean floor is the best means to resolve this issue. Although sea-floor imagery has been used to reconstruct the glacial history of the Antarctic shelf, little data have been collected in the Arctic Ocean because of operational constraints. The use of a geophysical mapping system during the submarine SCICEX expedition in 1999 provided the opportunity to perform such an investigation over a large portion of the Arctic Ocean. Here we analyse backscatter images and sub-bottom profiler records obtained during this expedition from depths as great as 1 kilometre. These records show multiple bedforms indicative of glacial scouring and moulding of sea floor, combined with large-scale erosion of submarine ridge crests. These distinct glaciogenic features demonstrate that immense, Antarctic-type ice shelves up to 1 kilometre thick and hundreds of kilometres long existed in the Arctic Ocean during Pleistocene glaciations.

  7. Arctic sea ice and climate change--will the ice disappear in this century?

    PubMed

    Johannessen, O M; Miles, M W

    2000-01-01

    A consensus among climate change prediction scenarios using coupled ocean-climate general circulation models (GCMs) is enhanced warming in the Arctic. This suggests that changes in the Arctic sea ice cover may provide early indications of global warming. Observational evidence of substantial changes in the ice cover has been found recently using data from satellites and submarines. Satellite-borne microwave sensor data analyses have established a 3% per decade decrease in the spatial extent of the Arctic ice cover in the past 20 years. Moreover, a 7% per decade decrease in thicker, multi-year (perennial) ice pack has been revealed. This apparent transformation is corroborated by independent data that indicate substantial decreases in the average ice thickness from 3.1 to 1.8 m from the 1950s/1970s to the mid 1990s, averaging about 4 cm per year. It remains uncertain whether these observed changes are manifestations of global warming or are the result of anomalous atmospheric circulation--or both. However, if the recent trends continue, the Arctic sea ice cover could disappear this century, at least in summer, with important consequences for the regional and global ocean-climate system. This article synthesizes recent variability and trends in Arctic sea ice in the perspective of global climate change, and discusses their potential ramifications.

  8. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms

    NASA Astrophysics Data System (ADS)

    Ardyna, Mathieu; Babin, Marcel; Gosselin, Michel; Devred, Emmanuel; Rainville, Luc; Tremblay, Jean-Éric

    2014-09-01

    Recent receding of the ice pack allows more sunlight to penetrate into the Arctic Ocean, enhancing productivity of a single annual phytoplankton bloom. Increasing river runoff may, however, enhance the yet pronounced upper ocean stratification and prevent any significant wind-driven vertical mixing and upward supply of nutrients, counteracting the additional light available to phytoplankton. Vertical mixing of the upper ocean is the key process that will determine the fate of marine Arctic ecosystems. Here we reveal an unexpected consequence of the Arctic ice loss: regions are now developing a second bloom in the fall, which coincides with delayed freezeup and increased exposure of the sea surface to wind stress. This implies that wind-driven vertical mixing during fall is indeed significant, at least enough to promote further primary production. The Arctic Ocean seems to be experiencing a fundamental shift from a polar to a temperate mode, which is likely to alter the marine ecosystem.

  9. Enhanced sea-ice export from the Arctic during the Younger Dryas.

    PubMed

    Not, Christelle; Hillaire-Marcel, Claude

    2012-01-31

    The Younger Dryas cold spell of the last deglaciation and related slowing of the Atlantic meridional overturning circulation have been linked to a large array of processes, notably an influx of fresh water into the North Atlantic related to partial drainage of glacial Lake Agassiz. Here we observe a major drainage event, in marine sediment cores raised from the Lomonosov Ridge, in the central Arctic Ocean marked by a pulse in detrital dolomitic-limestones. This points to an Arctic-Canadian sediment source area with about fivefold higher Younger Dryas ice-rafting deposition rate, in comparison with the Holocene. Our findings thus support the hypothesis of a glacial drainage event in the Canadian Arctic area, at the onset of the Younger Dryas, enhancing sea-ice production and drifting through the Arctic, then export through Fram Strait, towards Atlantic meridional overturning circulation sites of the northern North Atlantic.

  10. Arctic sea ice area in CMIP3 and CMIP5 climate model ensembles - variability and change

    NASA Astrophysics Data System (ADS)

    Semenov, V. A.; Martin, T.; Behrens, L. K.; Latif, M.

    2015-02-01

    The shrinking Arctic sea ice cover observed during the last decades is probably the clearest manifestation of ongoing climate change. While climate models in general reproduce the sea ice retreat in the Arctic during the 20th century and simulate further sea ice area loss during the 21st century in response to anthropogenic forcing, the models suffer from large biases and the model results exhibit considerable spread. The last generation of climate models from World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5), when compared to the previous CMIP3 model ensemble and considering the whole Arctic, were found to be more consistent with the observed changes in sea ice extent during the recent decades. Some CMIP5 models project strongly accelerated (non-linear) sea ice loss during the first half of the 21st century. Here, complementary to previous studies, we compare results from CMIP3 and CMIP5 with respect to regional Arctic sea ice change. We focus on September and March sea ice. Sea ice area (SIA) variability, sea ice concentration (SIC) variability, and characteristics of the SIA seasonal cycle and interannual variability have been analysed for the whole Arctic, termed Entire Arctic, Central Arctic and Barents Sea. Further, the sensitivity of SIA changes to changes in Northern Hemisphere (NH) averaged temperature is investigated and several important dynamical links between SIA and natural climate variability involving the Atlantic Meridional Overturning Circulation (AMOC), North Atlantic Oscillation (NAO) and sea level pressure gradient (SLPG) in the western Barents Sea opening serving as an index of oceanic inflow to the Barents Sea are studied. The CMIP3 and CMIP5 models not only simulate a coherent decline of the Arctic SIA but also depict consistent changes in the SIA seasonal cycle and in the aforementioned dynamical links. The spatial patterns of SIC variability improve in the CMIP5 ensemble, particularly in summer. Both

  11. Estimation of Arctic Sea Ice Freeboard and Thickness Using CryoSat-2

    NASA Astrophysics Data System (ADS)

    Lee, S.; Im, J.; Kim, J. W.; Kim, M.; Shin, M.

    2014-12-01

    Arctic sea ice is one of the significant components of the global climate system as it plays a significant role in driving global ocean circulation. Sea ice extent has constantly declined since 1980s. Arctic sea ice thickness has also been diminishing along with the decreasing sea ice extent. Because extent and thickness, two main characteristics of sea ice, are important indicators of the polar response to on-going climate change. Sea ice thickness has been measured with numerous field techniques such as surface drilling and deploying buoys. These techniques provide sparse and discontinuous data in spatiotemporal domain. Spaceborne radar and laser altimeters can overcome these limitations and have been used to estimate sea ice thickness. Ice Cloud and land Elevation Satellite (ICEsat), a laser altimeter provided data to detect polar area elevation change between 2003 and 2009. CryoSat-2 launched with Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter (SIRAL) in April 2010 can provide data to estimate time-series of Arctic sea ice thickness. In this study, Arctic sea ice freeboard and thickness between 2011 and 2014 were estimated using CryoSat-2 SAR and SARIn mode data that have sea ice surface height relative to the reference ellipsoid WGS84. In order to estimate sea ice thickness, freeboard, i.e., elevation difference between the top of sea ice surface should be calculated. Freeboard can be estimated through detecting leads. We proposed a novel lead detection approach. CryoSat-2 profiles such as pulse peakiness, backscatter sigma-0, stack standard deviation, skewness and kurtosis were examined to distinguish leads from sea ice. Near-real time cloud-free MODIS images corresponding to CryoSat-2 data measured were used to visually identify leads. Rule-based machine learning approaches such as See5.0 and random forest were used to identify leads. The proposed lead detection approach better distinguished leads from sea ice than the existing approaches

  12. Arctic Low Cloud Changes as Observed by MISR and CALIOP: Implication for the Enhanced Autumnal Warming and Sea Ice Loss

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Lee, Jae N.

    2012-01-01

    Retreat of Arctic sea ice extent has led to more evaporation over open water in summer and subsequent cloud changes in autumn. Studying recent satellite cloud data over the Arctic Ocean, we find that low (0.5-2 km) cloud cover in October has been increasing significantly during 2000-2010 over the Beaufort and East Siberian Sea (BESS). This change is consistent with the expected boundary-layer cloud response to the increasing Arctic evaporation accumulated during summer. Because low clouds have a net warming effect at the surface, October cloud increases may be responsible for the enhanced autumnal warming in surface air temperature, which effectively prolong the melt season and lead to a positive feedback to Arctic sea ice loss. Thus, the new satellite observations provide a critical support for the hypothesized positive feedback involving interactions between boundary-layer cloud, water vapor, temperature and sea ice in the Arctic Ocean.

  13. Recent wind driven high sea ice area export in the Fram Strait contributes to Arctic sea ice decline

    NASA Astrophysics Data System (ADS)

    Smedsrud, L. H.; Sirevaag, A.; Kloster, K.; Sorteberg, A.; Sandven, S.

    2011-10-01

    Arctic sea ice area has been decreasing for the past two decades. Apart from melting, the southward drift through Fram Strait is the main ice loss mechanism. We present high resolution sea ice drift data across 79° N from 2004 to 2010. Ice drift has been derived from radar satellite data and corresponds well with variability in local geostrophic wind. The underlying East Greenland current contributes with a constant southward speed close to 5 cm s-1, and drives around a third of the ice export. We use geostrophic winds derived from reanalysis data to calculate the Fram Strait ice area export back to 1957, finding that the sea ice area export recently is about 25% larger than during the 1960's. The increase in ice export occurred mostly during winter and is directly connected to higher southward ice drift velocities, due to stronger geostrophic winds. The increase in ice drift is large enough to counteract a decrease in ice concentration of the exported sea ice. Using storm tracking we link changes in geostrophic winds to more intense Nordic Sea low pressure systems. Annual sea ice area export likely has a significant influence on the summer sea ice variability and we find low values in the 1960's, the late 1980's and 1990's, and particularly high values during 2005-2008. The study highlights the possible role of variability in ice export as an explanatory factor for understanding the dramatic loss of Arctic sea ice during the last decades.

  14. Moderate-resolution sea surface temperature data and seasonal pattern analysis for the Arctic Ocean ecoregions

    USGS Publications Warehouse

    Payne, Meredith C.; Reusser, Deborah A.; Lee, Henry

    2012-01-01

    Sea surface temperature (SST) is an important environmental characteristic in determining the suitability and sustainability of habitats for marine organisms. In particular, the fate of the Arctic Ocean, which provides critical habitat to commercially important fish, is in question. This poses an intriguing problem for future research of Arctic environments - one that will require examination of long-term SST records. This publication describes and provides access to an easy-to-use Arctic SST dataset for ecologists, biogeographers, oceanographers, and other scientists conducting research on habitats and/or processes in the Arctic Ocean. The data cover the Arctic ecoregions as defined by the "Marine Ecoregions of the World" (MEOW) biogeographic schema developed by The Nature Conservancy as well as the region to the north from approximately 46°N to about 88°N (constrained by the season and data coverage). The data span a 29-year period from September 1981 to December 2009. These SST data were derived from Advanced Very High Resolution Radiometer (AVHRR) instrument measurements that had been compiled into monthly means at 4-kilometer grid cell spatial resolution. The processed data files are available in ArcGIS geospatial datasets (raster and point shapefiles) and also are provided in text (.csv) format. All data except the raster files include attributes identifying latitude/longitude coordinates, and realm, province, and ecoregion as defined by the MEOW classification schema. A seasonal analysis of these Arctic ecoregions reveals a wide range of SSTs experienced throughout the Arctic, both over the course of an annual cycle and within each month of that cycle. Sea ice distribution plays a major role in SST regulation in all Arctic ecoregions.

  15. Regular network model for the sea ice-albedo feedback in the Arctic.

    PubMed

    Müller-Stoffels, Marc; Wackerbauer, Renate

    2011-03-01

    The Arctic Ocean and sea ice form a feedback system that plays an important role in the global climate. The complexity of highly parameterized global circulation (climate) models makes it very difficult to assess feedback processes in climate without the concurrent use of simple models where the physics is understood. We introduce a two-dimensional energy-based regular network model to investigate feedback processes in an Arctic ice-ocean layer. The model includes the nonlinear aspect of the ice-water phase transition, a nonlinear diffusive energy transport within a heterogeneous ice-ocean lattice, and spatiotemporal atmospheric and oceanic forcing at the surfaces. First results for a horizontally homogeneous ice-ocean layer show bistability and related hysteresis between perennial ice and perennial open water for varying atmospheric heat influx. Seasonal ice cover exists as a transient phenomenon. We also find that ocean heat fluxes are more efficient than atmospheric heat fluxes to melt Arctic sea ice.

  16. Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt.

    PubMed

    Yamamoto-Kawai, Michiyo; McLaughlin, Fiona A; Carmack, Eddy C; Nishino, Shigeto; Shimada, Koji

    2009-11-20

    The increase in anthropogenic carbon dioxide emissions and attendant increase in ocean acidification and sea ice melt act together to decrease the saturation state of calcium carbonate in the Canada Basin of the Arctic Ocean. In 2008, surface waters were undersaturated with respect to aragonite, a relatively soluble form of calcium carbonate found in plankton and invertebrates. Undersaturation was found to be a direct consequence of the recent extensive melting of sea ice in the Canada Basin. In addition, the retreat of the ice edge well past the shelf-break has produced conditions favorable to enhanced upwelling of subsurface, aragonite-undersaturated water onto the Arctic continental shelf. Undersaturation will affect both planktonic and benthic calcifying biota and therefore the composition of the Arctic ecosystem.

  17. Large-Scale Surveys of Snow Depth on Arctic Sea Ice from Operation IceBridge

    NASA Technical Reports Server (NTRS)

    Kurtz, Nathan T.; Farrell, Sinead L.

    2011-01-01

    We show the first results of a large ]scale survey of snow depth on Arctic sea ice from NASA fs Operation IceBridge snow radar system for the 2009 season and compare the data to climatological snow depth values established over the 1954.1991 time period. For multiyear ice, the mean radar derived snow depth is 33.1 cm and the corresponding mean climatological snow depth is 33.4 cm. The small mean difference suggests consistency between contemporary estimates of snow depth with the historical climatology for the multiyear ice region of the Arctic. A 16.5 cm mean difference (climatology minus radar) is observed for first year ice areas suggesting that the increasingly seasonal sea ice cover of the Arctic Ocean has led to an overall loss of snow as the region has transitioned away from a dominantly multiyear ice cover.

  18. Regional Arctic sea ice variations as predictor for winter climate conditions

    NASA Astrophysics Data System (ADS)

    Koenigk, Torben; Caian, Mihaela; Nikulin, Grigory; Schimanke, Semjon

    2016-01-01

    Seasonal prediction skill of winter mid and high northern latitudes climate from sea ice variations in eight different Arctic regions is analyzed using detrended ERA-interim data and satellite sea ice data for the period 1980-2013. We find significant correlations between ice areas in both September and November and winter sea level pressure, air temperature and precipitation. The prediction skill is improved when using November sea ice conditions as predictor compared to September. This is particularly true for predicting winter NAO-like patterns and blocking situations in the Euro-Atlantic area. We find that sea ice variations in Barents Sea seem to be most important for the sign of the following winter NAO—negative after low ice—but amplitude and extension of the patterns are modulated by Greenland and Labrador Seas ice areas. November ice variability in the Greenland Sea provides the best prediction skill for central and western European temperature and ice variations in the Laptev/East Siberian Seas have the largest impact on the blocking number in the Euro-Atlantic region. Over North America, prediction skill is largest using September ice areas from the Pacific Arctic sector as predictor. Composite analyses of high and low regional autumn ice conditions reveal that the atmospheric response is not entirely linear suggesting changing predictive skill dependent on sign and amplitude of the anomaly. The results confirm the importance of realistic sea ice initial conditions for seasonal forecasts. However, correlations do seldom exceed 0.6 indicating that Arctic sea ice variations can only explain a part of winter climate variations in northern mid and high latitudes.

  19. Sea level Atlantic-to-Arctic: an examination of the altimeter record

    NASA Astrophysics Data System (ADS)

    Chepurin, G.; Carton, J.

    2012-04-01

    We explore changes in the ocean circulation in the Atlantic, Nordic Seas, and Arctic during the past two decades through examination of the combined historical satellite altimeter sea level record. On seasonal timescales sea level variations have amplitudes of 1-5cm with a phase in shallow seas (e.g. Barents Sea) that lags the seasonal cycle in the open ocean by 2-3 months. The cause of this phase lag is related to the change in phase lag with depth of steric anomalies in this region. The difference in phase lag induces currents along regions of topographic gradient of a few cm/s. On interannual timescales the altimeter record reveals 4.5-5.5 cm anomalies in the sub-Arctic gyre and Norwegian Sea, and smaller 2.5 cm in the Barents and Greenland Seas. As in the case of the seasonal cycle, interannual variations in sea level are shown to be related to steric changes (determined from examination of the historical hydrographic archive), where salinity changes in the Greenland and Norwegian Seas in particular play an important role. In contrast, wind forcing plays an important role in the the northern Barents Sea. Finally we examine the trend over the full 18-year record. Everywhere in the Nordic Seas sea level has increased. The highest rate of rise is about 7 mm/yr which occurs in the Labrador Sea near the south-east coast of Greenland. In the center of Norwegian Sea maximum the rate is ~5 mm/yr, while in the Baltic Sea it changes from ~2.5 mm/yr on south to practically zero on north.

  20. Arctic and Antarctic Sea Ice, 1978-1987: Satellite Passive-Microwave Observations and Analysis

    NASA Technical Reports Server (NTRS)

    Gloersen, Per; Campbell, William J.; Cavalieri, Donald J.; Comiso, Josefino C.; Parkinson, Claire L.; Zwally, H. Jay

    1992-01-01

    This book contains a description and analysis of the spatial and temporal variations in the Arctic and Antarctic sea ice covers from October 26, 1978 through August 20, 1987. It is based on data collected by the Scanning Multichannel Microwave Radiometer (SMMR) onboard the NASA Nimbus 7 satellite. The 8.8-year period, together with the 4 years of the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR) observations presented in two earlier volumes, comprises a sea ice record spanning almost 15 years.

  1. Distribution of Arctic and Pacific copepods and their habitat in the northern Bering and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Sasaki, Hiroko; Matsuno, Kohei; Fujiwara, Amane; Onuka, Misaki; Yamaguchi, Atsushi; Ueno, Hiromichi; Watanuki, Yutaka; Kikuchi, Takashi

    2016-08-01

    The advection of warm Pacific water and the reduction in sea ice in the western Arctic Ocean may influence the abundance and distribution of copepods, a key component of food webs. To quantify the factors affecting the abundance of copepods in the northern Bering and Chukchi seas, we constructed habitat models explaining the spatial patterns of large and small Arctic and Pacific copepods separately. Copepods were sampled using NORPAC (North Pacific Standard) nets. The structures of water masses indexed by principle component analysis scores, satellite-derived timing of sea ice retreat, bottom depth and chlorophyll a concentration were integrated into generalized additive models as explanatory variables. The adequate models for all copepods exhibited clear continuous relationships between the abundance of copepods and the indexed water masses. Large Arctic copepods were abundant at stations where the bottom layer was saline; however they were scarce at stations where warm fresh water formed the upper layer. Small Arctic copepods were abundant at stations where the upper layer was warm and saline and the bottom layer was cold and highly saline. In contrast, Pacific copepods were abundant at stations where the Pacific-origin water mass was predominant (i.e. a warm, saline upper layer and saline and a highly saline bottom layer). All copepod groups showed a positive relationship with early sea ice retreat. Early sea ice retreat has been reported to initiate spring blooms in open water, allowing copepods to utilize more food while maintaining their high activity in warm water without sea ice and cold water. This finding indicates that early sea ice retreat has positive effects on the abundance of all copepod groups in the northern Bering and Chukchi seas, suggesting a change from a pelagic-benthic-type ecosystem to a pelagic-pelagic type.

  2. Dynamics of Arctic sea ice discussed at workshop

    NASA Astrophysics Data System (ADS)

    Overland, James; Ukita, Jinro

    Sea ice is an interesting geophysical material: it behaves as a large-scale hardening plastic. Consider the impact of the sea-ice covers mechanical behavior on the energy and momentum exchange within the complex atmosphere-ice-ocean system. Sea ice acts as an insulator between the relatively warm ocean water and the cold polar atmosphere. Sea ice cover interacts with the atmosphere by regulating air-sea fluxes, changing surface albedo, and influencing the long-wave radiative balance.

  3. Predictions replaced by facts: a keystone species' behavioural responses to declining arctic sea-ice.

    PubMed

    Hamilton, Charmain D; Lydersen, Christian; Ims, Rolf A; Kovacs, Kit M

    2015-11-01

    Since the first documentation of climate-warming induced declines in arctic sea-ice, predictions have been made regarding the expected negative consequences for endemic marine mammals. But, several decades later, little hard evidence exists regarding the responses of these animals to the ongoing environmental changes. Herein, we report the first empirical evidence of a dramatic shift in movement patterns and foraging behaviour of the arctic endemic ringed seal (Pusa hispida), before and after a major collapse in sea-ice in Svalbard, Norway. Among other changes to the ice-regime, this collapse shifted the summer position of the marginal ice zone from over the continental shelf, northward to the deep Arctic Ocean Basin. Following this change, which is thought to be a 'tipping point', subadult ringed seals swam greater distances, showed less area-restricted search behaviour, dived for longer periods, exhibited shorter surface intervals, rested less on sea-ice and did less diving directly beneath the ice during post-moulting foraging excursions. In combination, these behavioural changes suggest increased foraging effort and thus also likely increases in the energetic costs of finding food. Continued declines in sea-ice are likely to result in distributional changes, range reductions and population declines in this keystone arctic species. PMID:26582841

  4. Predictions replaced by facts: a keystone species' behavioural responses to declining arctic sea-ice.

    PubMed

    Hamilton, Charmain D; Lydersen, Christian; Ims, Rolf A; Kovacs, Kit M

    2015-11-01

    Since the first documentation of climate-warming induced declines in arctic sea-ice, predictions have been made regarding the expected negative consequences for endemic marine mammals. But, several decades later, little hard evidence exists regarding the responses of these animals to the ongoing environmental changes. Herein, we report the first empirical evidence of a dramatic shift in movement patterns and foraging behaviour of the arctic endemic ringed seal (Pusa hispida), before and after a major collapse in sea-ice in Svalbard, Norway. Among other changes to the ice-regime, this collapse shifted the summer position of the marginal ice zone from over the continental shelf, northward to the deep Arctic Ocean Basin. Following this change, which is thought to be a 'tipping point', subadult ringed seals swam greater distances, showed less area-restricted search behaviour, dived for longer periods, exhibited shorter surface intervals, rested less on sea-ice and did less diving directly beneath the ice during post-moulting foraging excursions. In combination, these behavioural changes suggest increased foraging effort and thus also likely increases in the energetic costs of finding food. Continued declines in sea-ice are likely to result in distributional changes, range reductions and population declines in this keystone arctic species.

  5. Does Change in the Arctic Sea Ice Indicate Climate Change? A Lesson Using Geospatial Technology

    ERIC Educational Resources Information Center

    Bock, Judith K.

    2011-01-01

    The Arctic sea ice has not since melted to the 2007 extent, but annual summer melt extents do continue to be less than the decadal average. Climate fluctuations are well documented by geologic records. Averages are usually based on a minimum of 10 years of averaged data. It is typical for fluctuations to occur from year to year and season to…

  6. Predictions replaced by facts: a keystone species' behavioural responses to declining arctic sea-ice

    PubMed Central

    Hamilton, Charmain D.; Lydersen, Christian; Ims, Rolf A.; Kovacs, Kit M.

    2015-01-01

    Since the first documentation of climate-warming induced declines in arctic sea-ice, predictions have been made regarding the expected negative consequences for endemic marine mammals. But, several decades later, little hard evidence exists regarding the responses of these animals to the ongoing environmental changes. Herein, we report the first empirical evidence of a dramatic shift in movement patterns and foraging behaviour of the arctic endemic ringed seal (Pusa hispida), before and after a major collapse in sea-ice in Svalbard, Norway. Among other changes to the ice-regime, this collapse shifted the summer position of the marginal ice zone from over the continental shelf, northward to the deep Arctic Ocean Basin. Following this change, which is thought to be a ‘tipping point’, subadult ringed seals swam greater distances, showed less area-restricted search behaviour, dived for longer periods, exhibited shorter surface intervals, rested less on sea-ice and did less diving directly beneath the ice during post-moulting foraging excursions. In combination, these behavioural changes suggest increased foraging effort and thus also likely increases in the energetic costs of finding food. Continued declines in sea-ice are likely to result in distributional changes, range reductions and population declines in this keystone arctic species. PMID:26582841

  7. Sea ice concentration and sea ice drift for the Arctic summer using C- and L-band SAR

    NASA Astrophysics Data System (ADS)

    Johansson, Malin; Berg, Anders; Eriksson, Leif

    2014-05-01

    The decreasing amount of sea ice and changes from multi-year ice to first year ice within the Arctic Ocean opens up for increased maritime activities. These activities include transportation, fishing and tourism. One of the major threats for the shipping is the presence of sea ice. Should an oil spill occur, the search and rescue is heavily dependent on constant updates of sea ice movements, both to enable a safer working environment and to potentially prevent the oil from reaching the sea ice. It is therefore necessary to have accurate and updated sea ice charts for the Arctic Ocean during the entire year. During the melt season that ice is subject to melting conditions making satellite observations of sea ice more difficult. This period coincides with the peak in marine shipping activities and therefore requires highly accurate sea ice concentration estimates. Synthetic Aperture Radar (SAR) are not hindered by clouds and do not require daylight. The continuous record and high temporal resolution makes C-band data preferable as input data for operational sea ice mapping. However, with C-band SAR it is sometimes difficult to distinguish between a wet sea ice surface and surrounding open water. L-band SAR has a larger penetration depth and has been shown to be less sensitive to less sensitive than C-band to the melt season. Inclusion of L-band data into sea chart estimates during the melt season in particular could therefore improve sea ice monitoring. We compare sea ice concentration melt season observations using Advanced Land Observing Satellite (ALOS) L-band images with Envisat ASAR C-band images. We evaluate if L-band images can be used to improve separation of wet surface ice from open water and compare with results for C-band.

  8. Airborne Spectral Measurements of Surface-Atmosphere Anisotropy for Arctic Sea Ice and Tundra

    NASA Technical Reports Server (NTRS)

    Arnold, G. Thomas; Tsay, Si-Chee; King, Michael D.; Li, Jason Y.; Soulen, Peter F.

    1999-01-01

    Angular distributions of spectral reflectance for four common arctic surfaces: snow-covered sea ice, melt-season sea ice, snow-covered tundra, and tundra shortly after snowmelt were measured using an aircraft based, high angular resolution (1-degree) multispectral radiometer. Results indicate bidirectional reflectance is higher for snow-covered sea ice than melt-season sea ice at all wavelengths between 0.47 and 2.3 pm, with the difference increasing with wavelength. Bidirectional reflectance of snow-covered tundra is higher than for snow-free tundra for measurements less than 1.64 pm, with the difference decreasing with wavelength. Bidirectional reflectance patterns of all measured surfaces show maximum reflectance in the forward scattering direction of the principal plane, with identifiable specular reflection for the melt-season sea ice and snow-free tundra cases. The snow-free tundra had the most significant backscatter, and the melt-season sea ice the least. For sea ice, bidirectional reflectance changes due to snowmelt were more significant than differences among the different types of melt-season sea ice. Also the spectral-hemispherical (plane) albedo of each measured arctic surface was computed. Comparing measured nadir reflectance to albedo for sea ice and snow-covered tundra shows albedo underestimated 5-40%, with the largest bias at wavelengths beyond 1 pm. For snow-free tundra, nadir reflectance underestimates plane albedo by about 30-50%.

  9. Controls on Arctic sea ice from first-year and multi-year ice survival rates

    NASA Astrophysics Data System (ADS)

    Armour, K.; Bitz, C. M.; Hunke, E. C.; Thompson, L.

    2009-12-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi-year (MY) ice. The transition to an Arctic that is populated by thinner first-year (FY) sea ice has important implications for future trends in area and volume. We develop a reduced model for Arctic sea ice with which we investigate how the survivability of FY and MY ice control various aspects of the sea-ice system. We demonstrate that Arctic sea-ice area and volume behave approximately as first-order autoregressive processes, which allows for a simple interpretation of September sea-ice in which its mean state, variability, and sensitivity to climate forcing can be described naturally in terms of the average survival rates of FY and MY ice. This model, used in concert with a sea-ice simulation that traces FY and MY ice areas to estimate the survival rates, reveals that small trends in the ice survival rates explain the decline in total Arctic ice area, and the relatively larger loss of MY ice area, over the period 1979-2006. Additionally, our model allows for a calculation of the persistence time scales of September area and volume anomalies. A relatively short memory time scale for ice area (~ 1 year) implies that Arctic ice area is nearly in equilibrium with long-term climate forcing at all times, and therefore observed trends in area are a clear indication of a changing climate. A longer memory time scale for ice volume (~ 5 years) suggests that volume can be out of equilibrium with climate forcing for long periods of time, and therefore trends in ice volume are difficult to distinguish from its natural variability. With our reduced model, we demonstrate the connection between memory time scale and sensitivity to climate forcing, and discuss the implications that a changing memory time scale has on the trajectory of ice area and volume in a warming climate. Our findings indicate that it is unlikely that a “tipping point” in September ice area and volume will be

  10. Atmospheric response to the autumn sea-ice free Arctic and its detectability

    NASA Astrophysics Data System (ADS)

    Suo, Lingling; Gao, Yongqi; Guo, Dong; Liu, Jiping; Wang, Huijun; Johannessen, Ola M.

    2016-04-01

    We have used an Atmospheric General Circulation Model with a large ensemble (300) to explore the atmospheric responses during the autumn-winter (September to February) to the projected sea-ice free Arctic in autumn (September to November). The detectability of the responses against the internal variability has also been studied. Three ensemble experiments have been performed, the control (CONT) forced by the simulated present-day Arctic sea-ice concentration (SIC) and sea surface temperature (SST), the second forced by the projected autumn Arctic SIC free and present-day SSTs (SENSICE) and the third forced by the projected autumn Arctic SIC free and projected SSTs (SENS). The results show that the disappearance of autumn Arctic sea-ice can cause significant synchronous near-surface warming and increased precipitation over the regions where the sea-ice is removed. The changes in autumn surface heat flux (sensible plus latent), surface air temperature (SAT) and precipitation averaged over the sea-ice reduction region between the SENS and the CONT are about 46, 43 and 50 % more respectively than the changes between the SENSICE and the CONT, which is consistent with the prescribed boundary setting: the surface temperature warming averaged over the sea-ice reduction region in the SENS relative to the CONT is 48 % higher than that in the SENSICE relative to the CONT. The response shows a significant negative Arctic Oscillation (AO) in the troposphere during autumn and December. However, the negative AO does not persist into January-February (JF). Instead, 500 hPa geopotential height (GH) response presents a wave train like pattern in JF which is related to the downstream propagation of the planetary wave perturbations during November-December. The SAT increases over northern Eurasia in JF in accordance with the atmosphere circulation changes. The comparison of the atmosphere response with the atmosphere internal variability (AIV) shows that the responses of SAT and

  11. Calibration and application of the IP25 biomarker for Arctic sea ice reconstructions

    NASA Astrophysics Data System (ADS)

    Cabedo Sanz, P.; Navarro Rodriguez, A.; Belt, S. T.; Brown, T. A.; Knies, J.; Husum, K.; Giraudeau, J.; Andrews, J.

    2012-04-01

    The presence of the sea ice diatom biomarker IP25 in Arctic marine sediments has been used in previous studies as a proxy for past spring sea ice occurrence and as an indicator of wider palaeoenvironmental conditions for different regions of the Arctic over various timescales [e.g. 1, 3]. In addition, measurement of IP25 has also been applied as a sea ice origin tracer for studying the transfer of organic carbon through Arctic food-webs [2]. The current study focuses on three main areas: (1) In order to improve on the quantitative analytical aspects of IP25 based research, we present here the results of a large scale extraction, purification and identification procedure for IP25 from marine sediments. This has confirmed the structure of IP25 in sediments and enabled more robust quantitative measurements by gas chromatography - mass spectrometry (GC-MS) to be established. (2) Quantitative measurements of IP25 from a sediment core from Andfjord (continental shelf, Tromsø, Norway) have been determined for the period 6.3 to 14.3 ka BP. The results of this study add significant further information to that reported previously from other biomarker studies for this core (e.g. brassicasterol) [4]. (3) Analytical detection issues (GC-MS) regarding the occurrence of IP25 in other sub-Arctic regions (e.g. East Greenland - North Iceland area) will be presented and discussed with relation to other proxy data (e.g. IRD). Belt, S. T., Vare, L. L., Massé, G., Manners, H. R., Price, J. C., MacLachlan, S. E., Andrews, J. T. & Schmidt, S. (2010) 'Striking similarities in temporal changes to spring sea ice occurrence across the central Canadian Arctic Archipelago over the last 7000 years', Quaternary Science Reviews, 29 (25-26), pp. 3489-3504. Brown, T. A. & Belt, S. T. (2012) 'Identification of the sea ice diatom biomarker IP25 in Arctic benthic macrofauna: direct evidence for a sea ice diatom diet in Arctic heterotrophs', Polar Biology, 35, pp. 131-137. Müller, J., Massé, G

  12. The Impact of a Lower Sea Ice Extent on Arctic Greenhouse Gas Exchange

    NASA Astrophysics Data System (ADS)

    Parmentier, Frans-Jan W.; Christensen, Torben R.; Lotte Sørensen, Lise; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.

    2013-04-01

    Arctic sea ice extent hit a new record low in September 2012, when it fell to a level about two times lower than the 1979-2000 average. Record low sea ice extents such as these are often hailed as an obvious example of the impact of climate change on the Arctic. Less obvious, however, are the further implications of a lower sea ice extent on Arctic greenhouse gas exchange. For example, a reduction in sea ice, in consort with a lower snow cover, has been connected to higher surface temperatures in the terrestrial part of the Arctic (Screen et al., 2012). These higher temperatures and longer growing seasons have the potential to alter the CO2 balance of Arctic tundra through enhanced photosynthesis and respiration, as well as the magnitude of methane emissions. In fact, large changes are already observed in terrestrial ecosystems (Post et al., 2009), and concerns have been raised of large releases of carbon through permafrost thaw (Schuur et al., 2011). While these changes in the greenhouse gas balance of the terrestrial Arctic are described in numerous studies, a connection with a decline in sea ice extent is nonetheless seldom made. In addition to these changes on land, a lower sea ice extent also has a direct effect on the exchange of greenhouse gases between the ocean and the atmosphere. For example, due to sea ice retreat, more ocean surface remains in contact with the atmosphere, and this has been suggested to increase the oceanic uptake of CO2 (Bates et al., 2006). However, the sustainability of this increased uptake is uncertain (Cai et al., 2010), and carbon fluxes related directly to the sea ice itself add much uncertainty to the oceanic uptake of CO2 (Nomura et al., 2006; Rysgaard et al., 2007). Furthermore, significant emissions of methane from the Arctic Ocean have been observed (Kort et al., 2012; Shakhova et al., 2010), but the consequence of a lower sea ice extent thereon is still unclear. Overall, the decline in sea ice that has been seen in recent

  13. Impact of Arctic sea ice loss on large-scale atmospheric circulation based on fully-coupled sensitivity experiments

    NASA Astrophysics Data System (ADS)

    Oudar, Thomas; Sanchez, Emilia; Terray, Laurent; Chauvin, Fabrice

    2016-04-01

    Arctic sea ice decline in the recent decades has been reported in observational studies. Modeling studies have confirmed that this downward trend in Arctic sea ice is mainly caused by increasing Greenhouse Gases (GHGs) concentrations into the atmosphere. The IPCC-AR5 report concluded that Arctic sea ice will continue to decrease and is projected to disappear in the middle of the 21st century, yielding to a ice-free region during boreal summer season. Arctic sea ice loss is expected to strongly impact the climate system. Recently, the climate community has conducted a number of studies to evaluate and understand the Arctic sea ice loss implications on climate. While some studies have shown that Arctic sea ice decline can significantly affect the large-scale atmospheric dynamics at high and mid-latitudes of the Northern Hemisphere, by altering the storm-tracks, the jet stream (position and strength) and the planetary waves, large uncertainties remain due to a low signal-to-noise ratio and experimental protocol differences leading to a large inter-model spread. In this work, we investigate the respective roles of Arctic sea ice loss and GHGs increase on the atmospheric dynamics by means of an idealized experimental set-up that uses the coupled model CNRM-CM5. The experimental set-up, based on a flux correction technique, will allow separating the contributions of Arctic sea ice loss from the GHGs increasing. We will focus mainly on the atmospheric circulation response in the Northern Hemisphere and on the associated synoptic variability, represented by the storm-tracks. We show that Arctic sea ice loss is responsible for an equatorward shift of the northern hemisphere jet, which is opposed to the GHGs effect. Finally we show that these shifts are consistent with the storm-tracks response.

  14. Prospects for improved seasonal Arctic sea ice predictions from multivariate data assimilation

    NASA Astrophysics Data System (ADS)

    Massonnet, François; Fichefet, Thierry; Goosse, Hugues

    2015-04-01

    Predicting the summer Arctic sea ice conditions a few months in advance has become a challenging priority. Seasonal prediction is partly an initial condition problem; therefore, a good knowledge of the initial sea ice state is necessary to hopefully produce reliable forecasts. Most of the intrinsic memory of sea ice lies in its thickness, but consistent and homogeneous observational networks of sea ice thickness are still limited in space and time. To overcome this problem, we constrain the ocean-sea ice model NEMO-LIM3 with gridded sea ice concentration retrievals from satellite observations using the ensemble Kalman filter. No sea ice thickness products are assimilated. However, thanks to the multivariate formalism of the data assimilation method used, sea ice thickness is globally updated in a consistent way whenever observations of concentration are available. We compare in this paper the skill of 27 pairs of initialized and uninitialized seasonal Arctic sea ice hindcasts spanning 1983-2009, driven by the same atmospheric forcing as to isolate the pure role of initial conditions on the prediction skill. The results exhibit the interest of multivariate sea ice initialization for the seasonal predictions of the September ice concentration and are particularly encouraging for hindcasts in the 2000s. In line with previous studies showing the interest of data assimilation for sea ice thickness reconstruction, our results thus show that sea ice data assimilation is also a promising tool for short-term prediction, and that current seasonal sea ice forecast systems could gain predictive skill from a more realistic sea ice initialization.

  15. Circulation in Vilkitsky Canyon in the eastern Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Janout, Markus; Hölemann, Jens

    2016-04-01

    The eastern Arctic Ocean is characterized by steep continental slopes and vast shallow shelf seas that receive a large amount of riverine freshwater from some of the largest rivers on earth. The northwestern Laptev Sea is of particular interest, as it is a freshwater transport pathway for a swift surface-intensified current from the Kara Sea toward the Arctic Basin, as was recently highlighted by high-resolution model studies. The region features complex bathymetry including a narrow strait and a large submarine canyon, strong tides, polynyas and severe sea ice conditions throughout much of the year. A year-long mooring record as well as detailed hydrographic shipboard measurements resulted from summer expeditions to the area in 2013 and 2014, and now provide a detailed picture of the region's water properties and circulation. The hydrography is characterized by riverine Kara Sea freshwater near the surface in the southern part of the canyon, while warmer (~0°C) saline Atlantic-derived waters dominate throughout the canyon at depths >150m. Cold shelf-modified waters near the freezing point are found along the canyon edges. The mean flow at the 300 m-deep mooring location near the southern edge of the canyon is swift (30 cm/s) and oriented eastward near the surface as suggested by numerical models, while the deeper flow follows the canyon topography towards the north-east. Wind-driven deviations from the mean flow coincide with sudden changes in temperature and salinity. This study characterizes the general circulation in Vilkitsky Canyon and investigates its potential as a conduit for upwelling of Atlantic-derived waters from the Arctic Basin to the Laptev Sea shelf.

  16. Recent Changes in Arctic Sea Ice Melt Onset, Freeze-Up, and Melt Season Length

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Stroeve, Julienne C.; Miller, Jeffrey

    2010-01-01

    In order to explore changes and trends in the timing of Arctic sea ice melt onset and freeze-up and therefore melt season length, we developed a method that obtains this information directly from satellite passive microwave data, creating a consistent data set from 1979 through present. We furthermore distinguish between early melt (the first day of the year when melt is detected) and the first day of continuous melt. A similar distinction is made for the freeze-up. Using this method we analyze trends in melt onset and freeze-up for 10 different Arctic regions. In all regions except for the Sea of Okhotsk, which shows a very slight and statistically insignificant positive trend (O.4 days/decade), trends in melt onset are negative, i.e. towards earlier melt. The trends range from -1.0day/decade for the Bering Sea to -7.3 days/decade for the East Greenland Sea. Except for the Sea of Okhotsk all areas also show a trend towards later autumn freeze onset. The Chukchi/Beaufort Seas and Laptev/East Siberian Seas observe the strongest trends with 7 days/decade. For the entire Arctic, the melt season length has increased by about 20 days over the last 30 years. Largest trends of over 1O days/decade are seen for Hudson Bay, the East Greenland Sea the Laptev/East Siberian Seas, and the Chukchi/Beaufort Seas. Those trends are statistically significant a1 the 99% level.

  17. Hotspots in cold seas: The composition, distribution, and abundance of marine birds in the North American Arctic

    NASA Astrophysics Data System (ADS)

    Wong, Sarah N. P.; Gjerdrum, Carina; Morgan, Ken H.; Mallory, Mark L.

    2014-03-01

    The distribution and thickness of sea ice in the Arctic is changing rapidly, resulting in changes to Arctic marine ecosystems. Seabirds are widely regarded as indicators of marine environmental change, and understanding their distribution patterns can serve as a tool to monitor and elucidate biological changes in the Arctic seas. We examined the at-sea distribution of seabirds in the North American Arctic in July and August, 2007-2012, and marine areas of high density were identified based on bird densities for four foraging guilds. Short-tailed shearwaters (Puffinus tenuirostris) were the most abundant species observed. Northern fulmars (Fulmarus glacialis), thick-billed murres (Uria lomvia), and dovekies (Alle alle) were also sighted in large numbers. Few birds were sighted between Dolphin and Union Strait and King William Island. Areas of high density over multiple years were found throughout the entire western portion of the study area (Bering Sea, Bering Strait, and Chukchi Sea), Lancaster Sound, Baffin Bay, Davis Strait, and the low Arctic waters off Newfoundland. These waters are characterized by high primary productivity. This study is the first to document the marine distribution of seabirds across the entire North American Arctic within the same time period, providing a critical baseline for monitoring the distribution and abundance of Arctic seabirds in a changing Arctic seascape.

  18. T, S, and U: Arctic Ocean Change in Response to Sea Ice Loss and Other Forcings

    NASA Astrophysics Data System (ADS)

    Steele, M.

    2015-12-01

    The Arctic Ocean is changing rapidly, partly in response to sea ice loss and partly from other forcings. Here we consider the three main parameters of physical oceanography: temperature, salinity, and momentum. With regard to temperature, the ocean is experiencing enhanced seasonal surface warming each summer as the ice pack retreats and thins. Some of this summer heat can persist through the winter below the surface mixed layer, although enhanced mixing and other processes can act against this survival. Deeper subsurface layers advected into the Arctic from the North Pacific and North Atlantic Oceans are also warming as these areas respond to warming trends and decadal climate variability. Arctic Ocean warming has implications for the mass balance of the sea ice pack, as well as both marine and coastal terrestrial ecosystems. With regard to salinity, the ocean has just begun to show an overall freshening signal, although with high spatial and temporal variance. This freshening is partly a result of sea ice melt, but also a response to global hydrologic and oceanographic changes. Arctic Ocean freshening enhances the surface stratification, which suppresses upward fluxes of heat and nutrients from below. It also reduces the transfer of momentum (i.e., the stress) from winds to the deep ocean. With regard to momentum, sea ice reduction has created a "looser" ice pack that allows more wind energy to enter the ocean. This effect opposes that of enhanced freshening/stratification when one considers mixing in the upper ocean; the sign and amplitude of the net result is a hot topic in the field. It should also be noted that surface stress in the summer season might actually be declining, as the rough ice pack transitions to a generally smoother sparse pack or open water. In summary, the Arctic Ocean is on the cusp of great change, largely (but not exclusively) forced by changes in the sea ice pack.

  19. Characterizing Arctic sea ice topography using high-resolution IceBridge data

    NASA Astrophysics Data System (ADS)

    Petty, Alek A.; Tsamados, Michel C.; Kurtz, Nathan T.; Farrell, Sinead L.; Newman, Thomas; Harbeck, Jeremy P.; Feltham, Daniel L.; Richter-Menge, Jackie A.

    2016-05-01

    We present an analysis of Arctic sea ice topography using high-resolution, three-dimensional surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009 to 2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes. The results demonstrate that Arctic sea ice topography exhibits significant spatial variability, mainly driven by the increased surface feature height and volume (per unit area) of the multi-year ice that dominates the Central Arctic region. The multi-year ice topography exhibits greater interannual variability compared to the first-year ice regimes, which dominates the total ice topography variability across both regions. The ice topography also shows a clear coastal dependency, with the feature height and volume increasing as a function of proximity to the nearest coastline, especially north of Greenland and the Canadian Archipelago. A strong correlation between ice topography and ice thickness (from the IceBridge sea ice product) is found, using a square-root relationship. The results allude to the importance of ice deformation variability in the total sea ice mass balance, and provide crucial information regarding the tail of the ice thickness distribution across the western Arctic. Future research priorities associated with this new data set are presented and discussed, especially in relation to calculations of atmospheric form drag.

  20. Impacts of Organic Macromolecules, Chlorophyll and Soot on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Flanner, M.; Dubey, M. K.

    2014-12-01

    Recent intensification of Arctic amplification can be strongly connected to positive feedback relating black carbon deposition to sea ice surface albedo. In addition to soot deposition on the ice and snow pack, ice algal chlorophyll is likely to compete as an absorber and redistributor of energy. Hence, solar radiation absorption by chlorophyll and some components of organic macromolecules in/under the ice column is currently being examined to determine the level of influence on predicted rate of ice loss. High amounts of organic macromolecules and chlorophyll are produced in global sea ice by the bottom microbial community and also in vertically distributed layers where substantial biological activities take place. Brine channeling in columnar ice can allow for upward flow of nutrients which leads to greater primary production in the presence of moderate light. Modeling of the sea-ice processes in tandem with experiments and field observations promises rapid progress in enhancing Arctic ice predictions. We are designing and conducting global climate model experiments to determine the impact of organic macromolecules and chlorophyll on Arctic sea ice. Influences on brine network permeability and radiation/albedo will be considered in this exercise. Absorption by anthropogenic materials such as soot and black carbon will be compared with that of natural pigments. We will indicate areas of soot and biological absorption dominance in the sense of single scattering, then couple into a full radiation transfer scheme to attribute the various contributions to polar climate change amplification. The work prepares us to study more traditional issues such as chlorophyll warming of the pack periphery and chemical effects of the flow of organics from ice internal communities. The experiments started in the Arctic will broaden to include Antarctic sea ice and shelves. Results from the Arctic simulations will be presented.

  1. Transnational Sea-Ice Transport in a Warmer, More Mobile Arctic

    NASA Astrophysics Data System (ADS)

    Newton, R.; Tremblay, B.; Pfirman, S. L.; DeRepentigny, P.

    2015-12-01

    As the Arctic sea ice thins, summer ice continues to shrink in its area, and multi-year ice becomes rarer, winter ice is not disappearing from the Arctic Basin. Rather, it is ever more dominated by first year ice. And each summer, as the total coverage withdraws, the first year ice is able travel faster and farther, carrying any ice-rafted material with it. Micro-organisms, sediments, pollutants and river runoff all move across the Arctic each summer and are deposited hundreds of kilometers from their origins. Analyzing Arctic sea ice drift patterns in the context of the exclusive economic zones (EEZs) of the Arctic nations raises concerns about the changing fate of "alien" ice which forms within one country's EEZ, then drifts and melts in another country's EEZ. We have developed a new data set from satellite-based ice-drift data that allows us to track groups of ice "pixels" forward from their origin to their destination, or backwards from their melting location to their point of formation. The software has been integrated with model output to extend the tracking of sea ice to include climate projections. Results indicate, for example, that Russian sea ice dominates "imports" to the EEZ of Norway, as expected, but with increasing ice mobility it is also is exported into the EEZs of other countries, including Canada and the United States. Regions of potential conflict are identified, including several national borders with extensive and/or changing transboundary sea ice transport. These data are a starting point for discussion of transborder questions raised by "alien" ice and the material it may import from one nation's EEZ to another's.

  2. Arctic layer salinity controls heat loss from deep Atlantic layer in seasonally ice-covered areas of the Barents Sea

    NASA Astrophysics Data System (ADS)

    Lind, Sigrid; Ingvaldsen, Randi B.; Furevik, Tore

    2016-05-01

    In the seasonally ice-covered northern Barents Sea an intermediate layer of cold and relatively fresh Arctic Water at ~25-110 m depth isolates the sea surface and ice cover from a layer of warm and saline Atlantic Water below, a situation that resembles the cold halocline layer in the Eurasian Basin. The upward heat flux from the Atlantic layer is of major concern. What causes variations in the heat flux and how is the Arctic layer maintained? Using observations, we found that interannual variability in Arctic layer salinity determines the heat flux from the Atlantic layer through its control of stratification and vertical mixing. A relatively fresh Arctic layer effectively suppresses the upward heat flux, while a more saline Arctic layer enhances the heat flux. The corresponding upward salt flux causes a positive feedback. The Arctic layer salinity and the water column structures have been remarkably stable during 1970-2011.

  3. 2008 Arctic Sea Ice from AMSR-E

    NASA Video Gallery

    Sea ice is frozen seawater floating on the surface of the ocean. Some sea ice is semi-permanent, persisting from year to year, and some is seasonal, melting and refreezing from season to season. Th...

  4. Circum-Arctic lithospheric transects from onshore to offshore

    NASA Astrophysics Data System (ADS)

    Pease, V.; Coakley, B.; Faleide, J. I.; Jokat, W.; Miller, E. L.; Stephenson, R.; Meisling, K. E.

    2015-12-01

    Understanding the evolution of the lithosphere over time involves the integration and interpretation of geological and geophysical data, combined with good knowledge of the physical processes at work in the lithosphere giving rise to past and present structures. Tectonic activity related to the rifting process created the present-day structure of today's Arctic basins and bathymetric highs, and in the process modified older structures and architecture of the crust and lithosphere. The correlation of circum-Arctic terranes and orogens help to not only reconstruct paleogeography but to also define the role and determine the nature of the lithospheric processes that were active in the complex tectonic evolution of the Arctic. CALE (Circum Arctic Lithosphere Evolution), an international and multidisciplinary effort involving c. 35 geologists and geophysicists from ten different countries working to link the onshore and offshore regions across the circum-Arctic region, is a scientific network in it's last year of a 5-year program. Sedimentary cover and crust to mantle cross-sections from onshore to offshore have been created integrating the latest scientific knowledge and data sets available for the Arctic. The project's principal Arctic transects include: Ellesmere-Canada Basin, Pacific Ocean-Lomonosov Ridge through the Bering Strait, across the Laptev Sea rift to the DeLong Islands, Barents and Kara regions across Timan-Pechora and Taimyr. These sections, the culmination of the CALE project, and their principle findings will be presented for the first time with discussion of outstanding issues yet to be resolved.

  5. Variability of phytoplankton light absorption in Canadian Arctic seas

    NASA Astrophysics Data System (ADS)

    Brunelle, Corinne B.; Larouche, Pierre; Gosselin, Michel

    Phytoplankton light absorption spectra (aϕ(λ)) were measured in the Canadian Arctic (i.e., the Amundsen Gulf, Canadian Arctic Archipelago, northern Baffin Bay and the Hudson Bay system) to improve algorithms used in remote-sensing models of primary production. The absorption by algae, dominated by picophytoplankton (<5 μm), was not the major light absorption factor in the four provinces; the colored dissolved organic matter (CDOM) contributed up to 70% of total light absorption. During the fall, the low total chlorophyll a-specific aϕ*(443) (aϕ(443)/TChl a) coefficients of the Canadian High Arctic were associated with photoacclimation processes (i.e., the package effect) occurring in light-limited environments. Low light availability and high proportion of CDOM (absorbing strongly the ultraviolet) seem to allow the growth of phytoplankton with accessory pigments absorbing light at longer wavelengths. The ratio of photoprotective and photosynthetic carotenoids (PPC:PSC) was inversely proportional with the salinity and the cell size, and mostly decreases throughout the Canadian High Arctic during fall. In return, the highest TChl a-specific phytoplankton light absorption coefficients at the blue peak (aϕ*(443)) were observed in the Hudson Bay system from September to October (i.e., fall) as well as in the Amundsen Gulf from May to July (i.e., spring/summer). These results will ultimately allow the accurate monitoring of phytoplankton biomass and productivity evolution that is likely to take place as a result of the fast-changing Arctic environment.

  6. Arctic sea ice response to atmospheric forcings with varying levels of anthropogenic warming and climate variability

    NASA Astrophysics Data System (ADS)

    Zhang, Jinlun; Steele, Michael; Schweiger, Axel

    2010-10-01

    Numerical experiments are conducted to project arctic sea ice responses to varying levels of future anthropogenic warming and climate variability over 2010-2050. A summer ice-free Arctic Ocean is likely by the mid-2040s if arctic surface air temperature (SAT) increases 4°C by 2050 and climate variability is similar to the past relatively warm two decades. If such a SAT increase is reduced by one-half or if a future Arctic experiences a range of SAT fluctuation similar to the past five decades, a summer ice-free Arctic Ocean would be unlikely before 2050. If SAT increases 4°C by 2050, summer ice volume decreases to very low levels (10-37% of the 1978-2009 summer mean) as early as 2025 and remains low in the following years, while summer ice extent continues to fluctuate annually. Summer ice volume may be more sensitive to warming while summer ice extent more sensitive to climate variability. The rate of annual mean ice volume decrease relaxes approaching 2050. This is because, while increasing SAT increases summer ice melt, a thinner ice cover increases winter ice growth. A thinner ice cover also results in a reduced ice export, which helps to further slow ice volume loss. Because of enhanced winter ice growth, arctic winter ice extent remains nearly stable and therefore appears to be a less sensitive climate indicator.

  7. Monitoring Arctic sea ice phenology change using hypertemporal remotely sensed data: 1989-2010

    NASA Astrophysics Data System (ADS)

    Tan, Wenxia; LeDrew, Ellsworth

    2016-07-01

    Arctic sea ice has undergone a significant decline in recent years. Previous studies have demonstrated that the annual sea ice cycle has experienced earlier melt and later freeze up, leading to a significant reduction in minimum sea ice extents and the lengthening of the melting season. The Arctic is being transformed into a regime of widespread seasonal ice with a large loss of old and thick multiyear ice in recent years. However, the sea ice change exhibits considerable interannual and regional variability at different spatial and temporal scales. In this study, we present a new method for hypertemporal sea ice data change detection based on the annual sea ice concentration (SIC) profile for the melt months of each year. A decision tree-based classification is adopted to group pixels with similar annual SIC profiles, and a phenology map of each year is generated for visualization. The phenoregion map visualizes the spatial and temporal configurations of ice melt process for a year. The change detection objective is achieved by comparing the phenoregion number of the same pixel in different years. The algorithm further leads to interpretation of anomalies to obtain change maps at the pixel level. Compared to previous sea ice studies that mainly focused on a particular spatial region and commonly use time period averages, the proposed pixel-based approach has the potential to map sea ice data change both temporally and spatially.

  8. Arctic Ocean Sea Ice Thickness, Bathymetry, and Water Properties from Submarine Data

    NASA Astrophysics Data System (ADS)

    Windnagel, A. K.; Fetterer, F. M.

    2014-12-01

    The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration that began in 1993 among the operational Navy, research agencies, and the marine research community to use nuclear-powered submarines for scientific studies of the Arctic Ocean. Unlike surface ships and satellites, submarines have the unique ability to operate and take measurements regardless of sea ice cover, weather conditions, and time of year. This allows for a broad and comprehensive investigation of an entire ocean basin. The goal of the program is to acquire comprehensive data about Arctic sea ice thickness; biological, chemical, and hydrographic water properties; and bathymetry to improve our understanding of the Arctic Ocean basin and its role in the Earth's climate system. Ice draft is measured with upward looking sonars mounted on the submarine's hull. The work of collaborators on the SCICEX project compared recent ice draft from the submarines with draft from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) and with ice thickness estimates from ice age and have shown that SCICEX ice draft are consistent with these models. Bathymetry is measured with a bottom sounder. SCICEX bathymetry data from 1993 to 1999 are included in the International Bathymetric Chart of the Arctic Ocean (IBCAO). Collaborators have compared more recent bathymetry data collected through the SCICEX project with other IBCAO data, and they agree well. Water properties are measured with two different types of conductivity, temperature, and depth (CTD) sensors: one mounted on the submarine's hull and expendable versions that are deployed through the submarines torpedo tubes. Data from the two different CTD sensors validate one another. The breadth of instrumentation available from submarines along with their ability to be unencumbered by sea ice, weather, and season makes the data they have collected extremely valuable. The National Snow and Ice Data Center (NSIDC) manages this data

  9. Arctic sea ice loss and recent extreme cold winter in Eurasia

    NASA Astrophysics Data System (ADS)

    Mori, Masato; Watanabe, Masahiro; Ishii, Masayoshi; Kimoto, Masahide

    2014-05-01

    Extreme cold winter over the Eurasia has occurred more frequently in recent years. Observational evidence in recent studies shows that the wintertime cold anomalies over the Eurasia are associated with decline of Arctic sea ice in preceding autumn to winter season. However, the tropical and/or mid-latitude sea surface temperature (SST) anomalies have great influence on the mid- and high-latitude atmospheric variability, it is difficult to isolate completely the impacts of sea ice change from observational data. In this study, we examine possible linkage between the Arctic sea ice loss and the extreme cold winter over the Eurasia using a state-of-the-art MIROC4 (T106L56) atmospheric general circulation model (AGCM) to assess the pure atmospheric responses to sea ice reduction. We perform two sets of experiments with different realistic sea ice boundary conditions calculated by composite of observed sea ice concentration; one is reduced sea ice extent case (referred to as LICE run) and another is enhanced case (HICE run). In both experiments, the model is integrated 6-month from September to February with 100-member ensemble under the climatological SST boundary condition. The difference in ensemble mean of each experiment (LICE minus HICE) shows cold anomalies over the Eurasia in winter and its spatial pattern is very similar to corresponding observation, though the magnitude is smaller than observation. This result indicates that a part of observed cold anomaly can be attributed to the Arctic sea ice loss. We would like to introduce more important results and mechanisms in detail in my presentation.

  10. Effects of Arctic Sea Ice Decline on Weather and Climate: A Review

    NASA Astrophysics Data System (ADS)

    Vihma, Timo

    2014-09-01

    The areal extent, concentration and thickness of sea ice in the Arctic Ocean and adjacent seas have strongly decreased during the recent decades, but cold, snow-rich winters have been common over mid-latitude land areas since 2005. A review is presented on studies addressing the local and remote effects of the sea ice decline on weather and climate. It is evident that the reduction in sea ice cover has increased the heat flux from the ocean to atmosphere in autumn and early winter. This has locally increased air temperature, moisture, and cloud cover and reduced the static stability in the lower troposphere. Several studies based on observations, atmospheric reanalyses, and model experiments suggest that the sea ice decline, together with increased snow cover in Eurasia, favours circulation patterns resembling the negative phase of the North Atlantic Oscillation and Arctic Oscillation. The suggested large-scale pressure patterns include a high over Eurasia, which favours cold winters in Europe and northeastern Eurasia. A high over the western and a low over the eastern North America have also been suggested, favouring advection of Arctic air masses to North America. Mid-latitude winter weather is, however, affected by several other factors, which generate a large inter-annual variability and often mask the effects of sea ice decline. In addition, the small sample of years with a large sea ice loss makes it difficult to distinguish the effects directly attributable to sea ice conditions. Several studies suggest that, with advancing global warming, cold winters in mid-latitude continents will no longer be common during the second half of the twenty-first century. Recent studies have also suggested causal links between the sea ice decline and summer precipitation in Europe, the Mediterranean, and East Asia.

  11. Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations

    NASA Astrophysics Data System (ADS)

    Jaiser, Ralf; Nakamura, Tetsu; Handorf, Dörthe; Dethloff, Klaus; Ukita, Jinro; Yamazaki, Koji

    2016-07-01

    The changes of atmospheric flow patterns related to Arctic Amplification have impacts well beyond the Arctic regional weather and climate system. Here we examine modulations of vertically propagating planetary waves, a major feature of the climate response to Arctic sea ice reduction by comparing the corresponding results of an atmospheric general circulation model with reanalysis data for periods of high and low sea ice conditions. Under low sea ice condition we find enhanced coupling between troposphere and stratosphere starting in November with preferred polar stratospheric vortex breakdowns in February, which then feeds back to the troposphere. The model experiment and ERA-Interim reanalysis data agree well with respect to temporal and spatial characteristics associated with vertical planetary wave propagation including its precursors. The upward propagating planetary wave anomalies resemble a wave number 1 and 2 pattern depending on region and timing. Since our experimental design only allows influences from sea ice changes and there is a high degree of resemblance between model results and observations, we conclude that sea ice is a main driver of observed winter circulation changes.

  12. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    NASA Astrophysics Data System (ADS)

    Alexeev, Vladimir A.; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-07-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69, p < 0.001) to this lake regime shift. To understand how and to what extent sea ice affects lakes, we conducted model experiments to simulate winters with years of high (1991/92) and low (2007/08) sea ice extent for which we also had field measurements and satellite imagery characterizing lake ice conditions. A lake ice growth model forced with Weather Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter ‘ocean-effect’ snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  13. Uncertainty in climate model projections of Arctic sea ice decline: An evaluation relevant to polar bears

    USGS Publications Warehouse

    DeWeaver, Eric

    2007-01-01

    This report describes uncertainties in climate model simulations of Arctic sea ice decline, and proposes a selection criterion for models to be used in projecting polar bear (Ursus maritimus) habitat loss. Uncertainties in model construction are discussed first, both for climate models in general and for their sea ice component models. A key point in the discussion is that the inherent climate sensitivity of sea ice leads inevitably to uncertainty in simulations of sea ice decline. The ability of climate models to simulate gross properties of Arctic ice cover, including the annual mean, seasonal cycle, and recent trends, is then assessed, followed by a review of model projections of 21st Century decline. The proposed selection criterion selects models with less than 20% error in their simulations of present-day September sea ice extent, where extent is defined as the area of the Arctic with at least 50% ice cover. Of the 10 models satisfying this criterion, all lose at least 30% of their September ice extent, and 4 lose over 80% of their September ice by the middle of the 21st Century (years 2045 to 2055). By the end of the 21st Century (years 2090 to 2099), seven of the models are essentially ice free in September.

  14. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    USGS Publications Warehouse

    Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-01-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p < 0.001) to this lake regime shift. To understand how and to what extent sea ice affects lakes, we conducted model experiments to simulate winters with years of high (1991/92) and low (2007/08) sea ice extent for which we also had field measurements and satellite imagery characterizing lake ice conditions. A lake ice growth model forced with Weather Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  15. Taxonomic revision of deep-sea Ostracoda from the Arctic Ocean

    USGS Publications Warehouse

    Yasuhara, Moriaki; Stepanova, Anna; Okahashi, Hisayo; Cronin, Thomas M.; Brouwers, Elisabeth M.

    2015-01-01

    Taxonomic revision of deep-sea Ostracoda from the Arctic Ocean was conducted to reduce taxonomic uncertainty that will improve our understanding of species ecology, biogeography and relationship to faunas from other deep-sea regions. Fifteen genera and 40 species were examined and (re-)illustrated with high-resolution scanning electron microscopy images, covering most of known deep-sea species in the central Arctic Ocean. Seven new species are described: Bythoceratina lomonosovensis n. sp., Cytheropteron parahamatum n. sp., Cytheropteron lanceae n. sp.,Cytheropteron irizukii n. sp., Pedicythere arctica n. sp., Cluthiawhatleyi n. sp., Krithe hunti n. sp. This study provides a robust taxonomic baseline for application to paleoceanographical reconstruction and biodiversity analyses in this climatically sensitive region.

  16. ASPECTS OF ARCTIC SEA ICE OBSERVABLE BY SEQUENTIAL PASSIVE MICROWAVE OBSERVATIONS FROM THE NIMBUS-5 SATELLITE.

    USGS Publications Warehouse

    Campbell, William J.; Gloersen, Per; Zwally, H. Jay; ,

    1984-01-01

    Observations made from 1972 to 1976 with the Electrically Scanning Microwave Radiometer on board the Nimbus-5 satellite provide sequential synoptic information of the Arctic sea ice cover. This four-year data set was used to construct a fairly continuous series of three-day average 19-GHz passive microwave images which has become a valuable source of polar information, yielding many anticipated and unanticipated discoveries of the sea ice canopy observed in its entirety through the clouds and during the polar night. Short-term, seasonal, and annual variations of key sea ice parameters, such as ice edge position, ice types, mixtures of ice types, ice concentrations, and snow melt on the ice, are presented for various parts of the Arctic.

  17. Spatial and temporal variations in the age structure of Arctic sea ice

    USGS Publications Warehouse

    Belchansky, G.I.; Douglas, D.C.; Platonov, N.G.

    2005-01-01

    Spatial and temporal variations in the age structure of Arctic sea ice are investigated using a new reverse chronology algorithm that tracks ice-covered pixels to their location and date of origin based on ice motion and concentration data. The Beaufort Gyre tends to harbor the oldest (>10 years old) sea ice in the western Arctic while direct ice advection pathways toward the Transpolar Drift Stream maintain relatively young (10 years old (10+ year age class) were observed during 1989-2003. Since the mid-1990s, losses to the 10+ year age class lacked compensation by recruitment due to a prior depletion of all mature (6-10 year) age classes. Survival of the 1994 and 1996-1998 sea ice generations reestablished most mature age classes, and thereby the potential to increase extent of the 10+ year age class during the mid-2000s.

  18. Deep-sea ostracode shell chemistry (Mg:Ca ratios) and late Quaternary Arctic Ocean history

    USGS Publications Warehouse

    Cronin, T. M.; Dwyer, G.S.; Baker, P.A.; Rodriguez-Lazaro, J.; Briggs, W.M., Jr.

    1996-01-01

    The magnesium:calcium (Mg:Ca) and strontium:calcium (Sr:Ca) ratios were investigated in shells of the benthic ostracode genus Krithe obtained from 64 core-tops from water depths of 73 to 4411 m in the Arctic Ocean and Nordic seas to determine the potential of ostracode shell chemistry for paleoceanographic study. Shells from the abyssal plain and ridges of the Nansen, Amundsen and Makarov basins and the Norwegian and Greenland seas had a wide scatter of Mg:Ca ratios ranging from 0.007 to 0.012 that may signify post-mortem chemical alteration of the shells from Arctic deep-sea environments below about 1000 m water depth. There is a positive correlation (r2=0.59) between Mg:Ca ratios and bottom-water temperature in Krithe shells from water depths <900 m.

  19. Improved Arctic Sea Ice Thickness Projections Using Bias Corrected CMIP5 Simulations

    NASA Astrophysics Data System (ADS)

    Melia, N.; Hawkins, E.; Haines, K.

    2015-12-01

    Projections of Arctic sea ice thickness (SIT) have the potential to inform stakeholders about accessibility to the region, but are currently rather uncertain. The latest suite of CMIP5 Global Climate Models (GCMs) produce a wide range of simulated SIT in the historical period (1979-2014) and exhibit various spatial and temporal biases when compared with the Pan-Arctic Ice Ocean Modelling and Assimilation System (PIOMAS) sea ice reanalysis. We present a new method to constrain such GCM simulations of SIT to narrow projection uncertainty via a statistical bias correction technique. The bias correction successfully constrains the spatial SIT distribution and temporal variability in the CMIP5 projections whilst retaining the climatic fluctuations from individual ensemble members. The bias correction acts to reduce the uncertainty in projections of SIT and reveals the significant contributions of sea ice internal variability in the first half of the century and of scenario uncertainty from mid-century onwards. The projected date of ice-free conditions in the Arctic under the RCP8.5 high emission scenario occurs in the 2050s, which is a decade earlier than without the bias correction, with potentially significant implications for stakeholders in the Arctic such as the shipping industry. The bias correction methodology developed could be similarly applied to other variables to narrow uncertainty in climate projections more generally.

  20. A 600-ka Arctic sea-ice record from Mendeleev Ridge based on ostracodes

    NASA Astrophysics Data System (ADS)

    Cronin, T. M.; Polyak, L.; Reed, D.; Kandiano, E. S.; Marzen, R. E.; Council, E. A.

    2013-11-01

    Arctic paleoceanography and sea-ice history were reconstructed from epipelagic and benthic ostracodes from a sediment core (HLY0503-06JPC, 800 m water depth) located on the Mendeleev Ridge, Western Arctic Ocean. The calcareous microfaunal record (ostracodes and foraminifers) covers several glacial/interglacial cycles back to estimated Marine Isotope Stage 13 (MIS 13, ˜500 ka) with an average sedimentation rate of ˜0.5 cm/ka for most of the stratigraphy (MIS 5-13). Results based on ostracode assemblages and an unusual planktic foraminiferal assemblage in MIS 11 dominated by a temperate-water species Turborotalita egelida show that extreme interglacial warmth, high surface ocean productivity, and possibly open ocean convection characterized MIS 11 and MIS 13 (˜400 and 500 ka, respectively). A major shift in western Arctic Ocean environments toward perennial sea ice occurred after MIS 11 based on the distribution of an ice-dwelling ostracode Acetabulastoma arcticum. Spectral analyses of the ostracode assemblages indicate sea ice and mid-depth ocean circulation in western Arctic Ocean varied primarily at precessional (˜22 ka) and obliquity (˜40 ka) frequencies.

  1. A 600-ka Arctic sea-ice record from Mendeleev Ridge based on ostracodes

    USGS Publications Warehouse

    Cronin, Thomas M.; Polyak, L.V.; Reed, D.; Kandiano, E. S.; Marzen, R. E.; Council, E. A.

    2013-01-01

    Arctic paleoceanography and sea-ice history were reconstructed from epipelagic and benthic ostracodes from a sediment core (HLY0503-06JPC, 800 m water depth) located on the Mendeleev Ridge, Western Arctic Ocean. The calcareous microfaunal record (ostracodes and foraminifers) covers several glacial/interglacial cycles back to estimated Marine Isotope Stage 13 (MIS 13, ∼500 ka) with an average sedimentation rate of ∼0.5 cm/ka for most of the stratigraphy (MIS 5–13). Results based on ostracode assemblages and an unusual planktic foraminiferal assemblage in MIS 11 dominated by a temperate-water species Turborotalita egelida show that extreme interglacial warmth, high surface ocean productivity, and possibly open ocean convection characterized MIS 11 and MIS 13 (∼400 and 500 ka, respectively). A major shift in western Arctic Ocean environments toward perennial sea ice occurred after MIS 11 based on the distribution of an ice-dwelling ostracode Acetabulastoma arcticum. Spectral analyses of the ostracode assemblages indicate sea ice and mid-depth ocean circulation in western Arctic Ocean varied primarily at precessional (∼22 ka) and obliquity (∼40 ka) frequencies.

  2. Stable reconstruction of Arctic sea level for the 1950-2010 period

    NASA Astrophysics Data System (ADS)

    Limkilde Svendsen, Peter; Andersen, Ole B.; Aasbjerg Nielsen, Allan

    2016-08-01

    Reconstruction of historical Arctic sea level is generally difficult due to the limited coverage and quality of both tide gauge and altimetry data in the area. Here a strategy to achieve a stable and plausible reconstruction of Arctic sea level from 1950 to today is presented. This work is based on the combination of tide gauge records and a new 20 year reprocessed satellite altimetry-derived sea level pattern. Hence, the study is limited to the area covered by satellite altimetry (68°N and 82°N). It is found that time step cumulative reconstruction as suggested by Church and White (2011) may yield widely variable results and is difficult to stabilize due to the many gaps in both tide gauge and satellite data. A more robust sea level reconstruction approach is to use datum adjustment of the tide gauges in combination with satellite altimetry, as described by Ray and Douglas (2011). In this approach, a datum-fit of each tide gauges is used and the method takes into account the entirety of each tide gauge record. This makes the Arctic sea level reconstruction much less prone to drifting. From our reconstruction, we found that the Arctic mean sea level trend is around 1.5 mm ± 0.3 mm/yr for the period 1950-2010, between 68°N and 82°N. This value is in good agreement with the global mean trend of 1.8 ± 0.3 mm/yr over the same period as found by Church and White (2004).

  3. Differences between the bacterial community structures of first- and multi-year Arctic sea ice in the Lincoln Sea.

    NASA Astrophysics Data System (ADS)

    Hatam, I.; Beckers, J. F.; Haas, C.; Lanoil, B. D.

    2014-12-01

    The Arctic sea ice composition is shifting from predominantly thick perennial ice (multiyear ice -MYI) to thinner, seasonal ice (first year ice -FYI). The effects of the shift on the Arctic ecosystem and macro-organisms of the Arctic Ocean have been the focus of many studies and have also been extensively debated in the public domain. The effect of this shift on the microbial constituents of the Arctic sea ice has been grossly understudied, although it is a vast habitat for a microbial community that plays a key role in the biogeochemical cycles and energy flux of the Arctic Ocean. MYI and FYI differ in many chemical and physical attributes (e.g. bulk salinity, brine volume, thickness and age), therefore comparing and contrasting the structure and composition of microbial communities from both ice types will be crucial to our understanding of the challenges that the Arctic Ocean ecosystem faces as MYI cover continues to decline. Here, we contend that due to the differences in abiotic conditions, differences in bacterial community structure will be greater between samples from different ice types than within samples from the same ice type. We also argue that since FYI is younger, its community structure will be closer to that of the surface sea water (SW). To test this hypotheses, we extracted DNA and used high throughput sequencing to sequence V1-V3 regions of the bacterial 16s rRNA gene from 10 sea ice samples (5 for each ice type) and 4 surface sea water (SW) collected off the shore of Northern Ellesmere Island, NU, CAN, during the month of May from 2010-2012. Our results showed that observed richness was higher in FYI than MYI. FYI and MYI shared 26% and 36% of their observed richness respectively. While FYI shared 23% of its observed richness with SW, MYI only shared 17%. Both ice types showed similar levels of endemism (61% of the observed richness). This high level of endemism results in the grouping of microbial communities from MYI, FYI, and SW to three

  4. Sensitivity of Pliocene Arctic climate to orbital forcing, atmospheric CO2 and sea ice albedo parameterisation

    NASA Astrophysics Data System (ADS)

    Howell, Fergus; Haywood, Alan; Pickering, Steven

    2016-04-01

    General circulation model (GCM) simulations of the mid-Pliocene Warm Period (mPWP, 3.264 to 3.025 Myr ago) do not reproduce the magnitude of Northern Hemisphere high latitude surface air and sea surface temperature (SAT and SST) warming that proxy data indicates. There is also large uncertainty regarding the state of sea ice cover in the mPWP. Evidence for both perennial and seasonal mPWP Arctic sea ice is found in analyses of marine sediments, whilst in a multi-model ensemble of mPWP climate simulations, half of the ensemble simulated ice-free summer Arctic conditions. Given the strong influence that sea ice exerts on high latitude temperatures, a better understanding of the nature of mPWP Arctic sea ice would be highly beneficial in understanding proxy derived estimates of high latitude surface temperature change, and the ability of climate models to reproduce this. In GCM simulations, the mPWP is typically represented with fixed orbital forcing, usually identical to modern, and atmospheric CO2 concentrations of ˜ 400 ppm. However, orbital forcing varied over the ˜ 240,000 years of the mPWP, and it is likely that atmospheric CO2 varied as well. A previous study has suggested that the parameterisation of sea ice albedo in the HadCM3 GCM may not reflect the sea ice albedo for a warmer climate, where seasonal sea ice constitutes a greater proportion of the Arctic sea ice cover. These three factors, in isolation and combined, can greatly influence the simulation of Arctic sea ice cover and the degree of high latitude surface temperature warming. This paper explores the impact of various combinations of potential mPWP orbital forcing, atmospheric CO2 concentrations and minimum sea ice albedo on sea ice extent and high latitude warming. The focus is on the Northern Hemisphere, due to availability of proxy data, and the large data-model discrepancies in this region. Changes in orbital forcings are demonstrated to be sufficient to alter the Arctic sea ice simulated by

  5. Source-specific diatom lipid biomarkers as proxies for Arctic and Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Belt, Simon

    2016-04-01

    Sea ice plays a key role in controlling global climate due its influence over heat and gas exchange between the oceans and the atmosphere. In addition, sea ice exerts a strong influence over the absorption of incoming radiation at the ocean surface as a result of its high reflectivity or albedo. Driven, in part, by the recent dramatic changes to sea ice cover in both the Arctic and the Antarctic, the development of proxies for sea ice has received growing attention over the last 10 years or so. Amongst these, some so-called highly branched isoprenoid (HBI) lipid biomarkers have attracted considerable interest, not least, because they are derived from certain diatoms that reside and bloom within the sea ice matrix itself, thus providing a more direct indication of sea ice presence compared with some other proxies. The signature HBI sea proxies are a mono-unsaturated HBI (IP25) for the Arctic and a di-unsaturated HBI (C25:2) for the Antarctic, with different source organisms for each. Although the variability in sedimentary abundances of IP25 and C25:2 in Arctic and Antarctic sediments generally reflect the corresponding changes in sea ice conditions, a more complete picture of reconstructing sea ice conditions likely requires a multi-proxy approach involving, for example, oth