The International Arctic Buoy Programme (IABP): A Cornerstone of the Arctic Observing Network
2008-09-01
SEP 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE The International Arctic Buoy Programme ( IABP ): A...Prescribed by ANSI Std Z39-18 The International Arctic Buoy Programme ( IABP ): A Cornerstone of the Arctic Observing Network Ignatius G. Rigor...changes in weather, climate and environment. It should be noted that many of these changes were first observed and studied using data from the IABP (http
NASA Astrophysics Data System (ADS)
Jeffries, M. O.
2017-12-01
This presentation will address the first ever application of the Societal Benefit Areas approach to continuing efforts to develop an integrated pan-Arctic Observing Network. The scientific research community has been calling for an Arctic Observing Network since the early years of this century, at least. There is no question of the importance of research-driven observations at a time when rapid changes occurring throughout the Arctic environmental system are affecting people and communities in the Arctic and in regions far from the Arctic. Observations are need for continued environmental monitoring and change detection; improving understanding of how the system and its components function, and how they are connected to lower latitude regions; advancing numerical modeling capabilities for forecasting and projection; and developing value-added products and services for people and communities, and for decision- and policymaking. Scientific research is, without question, a benefit to society, but the benefits of Earth observations extend beyond scientific research. Societal Benefit Areas (SBAs) were first described by the international Group on Earth Observations (GEO) and have since been used by USGEO as the basis for its National Earth Observation Assessments. The most recent application of SBAs to Earth observing realized a framework of SBAs, SBA Sub-areas, and Key Objectives required for the completion of a full Earth observing assessment for the Arctic. This framework, described in a report released in June 2017, and a brief history of international efforts to develop an integrated pan-Arctic Observing Network, are the subjects of this presentation.
Sustainable Arctic observing network for predicting weather extremes in mid-latitudes
NASA Astrophysics Data System (ADS)
Inoue, J.; Sato, K.; Yamazaki, A.
2016-12-01
Routine atmospheric observations within and over the Arctic Ocean are very expensive and difficult to conduct because of factors such as logistics and the harsh environment. Nevertheless, the great benefit of such observations is their contribution to an improvement of skills of weather predictions over the Arctic and mid-latitudes. The Year of Polar Prediction (YOPP) from mid-2017 to mid-2019 proposed by the World Weather Research Programme - Polar Prediction Project (WWRP-PPP) would be the best opportunity to address the issues. The combination of observations and data assimilation is an effective way to understand the predictability of weather extremes in mid-latitudes. This talk presents the current activities related to PPP based on international special radiosonde observing network in the Arctic, and challenges toward YOPP. Comparing with summer and winter cases, the additional observations over the Arctic during winter were more effective for improving the predicting skills of weather extremes because the impact of the observations would be carried toward the mid-latitudes by the stronger jet stream and its frequent meanderings. During summer, on the other hand, the impact of extra observations was localized over the Arctic region but still important for precise weather forecasts over the Arctic Ocean, contributing to safe navigation along the Northern Sea Route. To consolidate the sustainable Arctic radiosonde observing network, increasing the frequency of observations at Arctic coastal stations, instead of commissioning special observations from ships and ice camps, would be a feasible way. In fact, several existing stations facing the Arctic Ocean have already increased the frequency of observations during winter and/or summer.
Building AN International Polar Data Coordination Network
NASA Astrophysics Data System (ADS)
Pulsifer, P. L.; Yarmey, L.; Manley, W. F.; Gaylord, A. G.; Tweedie, C. E.
2013-12-01
In the spirit of the World Data Center system developed to manage data resulting from the International Geophysical Year of 1957-58, the International Polar Year 2007-2009 (IPY) resulted in significant progress towards establishing an international polar data management network. However, a sustained international network is still evolving. In this paper we argue that the fundamental building blocks for such a network exist and that the time is right to move forward. We focus on the Arctic component of such a network with linkages to Antarctic network building activities. A review of an important set of Network building blocks is presented: i) the legacy of the IPY data and information service; ii) global data management services with a polar component (e.g. World Data System); iii) regional systems (e.g. Arctic Observing Viewer; iv) nationally focused programs (e.g. Arctic Observing Viewer, Advanced Cooperative Arctic Data and Information Service, Polar Data Catalogue, Inuit Knowledge Centre); v) programs focused on the local (e.g. Exchange for Local Observations and Knowledge of the Arctic, Geomatics and Cartographic Research Centre). We discuss current activities and results with respect to three priority areas needed to establish a strong and effective Network. First, a summary of network building activities reports on a series of productive meetings, including the Arctic Observing Summit and the Polar Data Forum, that have resulted in a core set of Network nodes and participants and a refined vision for the Network. Second, we recognize that interoperability for information sharing fundamentally relies on the creation and adoption of community-based data description standards and data delivery mechanisms. There is a broad range of interoperability frameworks and specifications available; however, these need to be adapted for polar community needs. Progress towards Network interoperability is reviewed, and a prototype distributed data systems is demonstrated. We discuss remaining challenges. Lastly, to establish a sustainable Arctic Data Coordination Network (ADCN) as part of a broader polar Network will require adequate continued resources. We conclude by outlining proposed business models for the emerging Arctic Data Coordination Network and a broader polar Network.
AMBON - the Arctic Marine Biodiversity Observing Network
NASA Astrophysics Data System (ADS)
Iken, K.; Danielson, S. L.; Grebmeier, J. M.; Cooper, L. W.; Hopcroft, R. R.; Kuletz, K.; Stafford, K.; Mueter, F. J.; Collins, E.; Bluhm, B.; Moore, S. E.; Bochenek, R. J.
2016-02-01
The goal of the Arctic Marine Biodiversity Observing Network (AMBON) is to build an operational and sustainable marine biodiversity observing network for the US Arctic Chukchi Sea continental shelf. The AMBON has four main goals: 1. To close current gaps in taxonomic biodiversity observations from microbes to whales, 2. To integrate results of past and ongoing research programs on the US Arctic shelf into a biodiversity observation network, 3. To demonstrate at a regional level how an observing network could be developed, and 4. To link with programs on the pan-Arctic to global scale. The AMBON fills taxonomic (from microbes to mammals), functional (food web structure), spatial and temporal (continuing time series) gaps, and includes new technologies such as state-of-the-art genomic tools, with biodiversity and environmental observations linked through central data management through the Alaska Ocean Observing System. AMBON is a 5-year partnership between university and federal researchers, funded through the National Ocean Partnership Program (NOPP), with partners in the National Oceanographic and Atmospheric Administration (NOAA), the Bureau of Ocean and Energy Management (BOEM), and Shell industry. AMBON will allow us to better coordinate, sustain, and synthesize biodiversity research efforts, and make data available to a broad audience of users, stakeholders, and resource managers.
NASA Astrophysics Data System (ADS)
Holmen, K. J.; Lønne, O. J.
2016-12-01
The Svalbard Integrated Earth Observing System (SIOS) is a regional response to the Earth System Science (ESS) challenges posed by the Amsterdam Declaration on Global Change. SIOS is intended to develop and implement methods for how observational networks in the Arctic are to be designed in order to address such issues in a regional scale. SIOS builds on the extensive observation capacity and research installations already in place by many international institutions and will provide upgraded and relevant Observing Systems and Research Facilities of world class in and around Svalbard. It is a distributed research infrastructure set up to provide a regional observational system for long term measurements under a joint framework. As one of the large scale research infrastructure initiatives on the ESFRI roadmap (European Strategy Forum on Research Infrastructures), SIOS is now being implemented. The new research infrastructure organization, the SIOS Knowledge Center (SIOS-KC), is instrumental in developing methods and solutions for setting up its regional contribution to a systematically constructed Arctic observational network useful for global change studies. We will discuss cross-disciplinary research experiences some case studies and lessons learned so far. SIOS aims to provide an effective, easily accessible data management system which makes use of existing data handling systems in the thematic fields covered by SIOS. SIOS will, implement a data policy which matches the ambitions that are set for the new European research infrastructures, but at the same time be flexible enough to consider `historical' legacies. Given the substantial international presence in the Svalbard archipelago and the pan-Arctic nature of the issue, there is an opportunity to build SIOS further into a wider regional network and pan-Arctic context, ideally under the umbrella of the Sustaining Arctic Observing Networks (SAON) initiative. It is necessary to anchor SIOS strongly in a European context and connect it to extra-EU initiatives, in order to establish a pan-Arctic perspective. SIOS must develop and secure a robust communication with other bodies carrying out and funding research activities in the Arctic (observational as well as modelling) and actively promote a sustained Arctic observing network.
Arctic Observing Experiment (AOX) Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigor, Ignatius; Johnson, Jim; Motz, Emily
Our ability to understand and predict weather and climate requires an accurate observing network. One of the pillars of this network is the observation of the fundamental meteorological parameters: temperature, air pressure, and wind. We plan to assess our ability to measure these parameters for the polar regions during the Arctic Observing Experiment (AOX, Figure 1) to support the International Arctic Buoy Programme (IABP), Arctic Observing Network (AON), International Program for Antarctic Buoys (IPAB), and Southern Ocean Observing System (SOOS). Accurate temperature measurements are also necessary to validate and improve satellite measurements of surface temperature across the Arctic. Support formore » research associated with the campaign is provided by the National Science Foundation, and by other US agencies contributing to the US Interagency Arctic Buoy Program. In addition to the support provided by the U.S Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s North Slope of Alaska (NSA) site at Barrow and the National Science Foundation (NSF), the U.S. IABP is supported by the U.S. Coast Guard (USCG), the National Aeronautics and Space Administration (NASA), the National Ice Center (NIC), the National Oceanic and Atmospheric Administration (NOAA), and the Office of Naval Research (ONR).« less
2012-09-30
International Arctic Buoy Programme ( IABP ) A US Interagency Arctic Buoy Programme (USIABP) contribution to the IABP Dr. Ignatius G. Rigor Polar...observations of surface meteorology and ice motion. These observations are assimilated into Numerical Weather Prediction (NWP) models that are used to...distribution of sea ice. Over the Arctic Ocean, this fundamental observing network is maintained by the IABP , and is a critical component of the
The US Arctic Observing Network - Mobilizing Interagency Observing Actions in an Era of Rapid Change
NASA Astrophysics Data System (ADS)
Starkweather, S.
2017-12-01
US agencies have long relied upon sustained Arctic observing to achieve their missions, be they in support of long-term monitoring, operationalized forecasts, or long-term process studies. One inventory of Arctic observing activities (arcticobservingviewer.org) suggests that there are more than 10,000 sustained data collection sites that have been supported by US agencies. Yet despite calls from academia (e.g. National Research Council, 2006) and agency leadership (e.g. IARPC, 2007) for more integrated approaches, such coherence - in the form of a US Arctic Observing Network (US AON) - has been slow and ad hoc in emerging. Two approaches have been invoked in systematically creating networks of greater coherence. One involves solving the "backward problem" or drawing existing observations into interoperable, multi-sensor, value-added data products. These approaches have the benefit that they build from existing assets and extend observations over greater time and space scales than individual efforts can approach. They suffer from being high-energy undertakings, often proceeding through voluntary efforts, and are limited by the observational assets already in place. Solving the "forward problem", or designing the network that is "needed" entails its own challenges of aligning multiple agency needs and capabilities into coordinated frameworks, often tied into a societal benefit structure. The solutions to the forward problem are greatly constrained by financial and technical feasibility. The benefit of such approaches is that interoperability and user-needs are baked into the network design, and some critical prioritization has been invoked. In September 2016, NOAA and other US agencies advanced plans to formally establish and fund the coordination of a US AON initiative. This US AON initiative brings new coordination capabilities on-line to support and strengthen US engagement in sustained and coordinated pan-Arctic observing and data sharing systems that serve societal needs. This work describes the capabilities of the new US AON initiative and how those capabilities are being mobilized towards both the "backward" and "forward" problems of Arctic observing.
Unmanned Aerial Systems, Moored Balloons, and the U.S. Department of Energy ARM Facilities in Alaska
NASA Astrophysics Data System (ADS)
Ivey, Mark; Verlinde, Johannes
2014-05-01
The U.S. Department of Energy (DOE), through its scientific user facility, the Atmospheric Radiation Measurement (ARM) Climate Research Facility, provides scientific infrastructure and data to the international Arctic research community via its research sites located on the North Slope of Alaska. Facilities and infrastructure to support operations of unmanned aerial systems for science missions in the Arctic and North Slope of Alaska were established at Oliktok Point Alaska in 2013. Tethered instrumented balloons will be used in the near future to make measurements of clouds in the boundary layer including mixed-phase clouds. The DOE ARM Program has operated an atmospheric measurement facility in Barrow, Alaska, since 1998. Major upgrades to this facility, including scanning radars, were added in 2010. Arctic Observing Networks are essential to meet growing policy, social, commercial, and scientific needs. Calibrated, high-quality arctic geophysical datasets that span ten years or longer are especially important for climate studies, climate model initializations and validations, and for related climate policy activities. For example, atmospheric data and derived atmospheric forcing estimates are critical for sea-ice simulations. International requirements for well-coordinated, long-term, and sustained Arctic Observing Networks and easily-accessible data sets collected by those networks have been recognized by many high-level workshops and reports (Arctic Council Meetings and workshops, National Research Council reports, NSF workshops and others). The recent Sustaining Arctic Observation Network (SAON) initiative sponsored a series of workshops to "develop a set of recommendations on how to achieve long-term Arctic-wide observing activities that provide free, open, and timely access to high-quality data that will realize pan-Arctic and global value-added services and provide societal benefits." This poster will present information on opportunities for members of the arctic research community to make atmospheric measurements using unmanned aerial systems or tethered balloons.
Improved forecasts of winter weather extremes over midlatitudes with extra Arctic observations
NASA Astrophysics Data System (ADS)
Sato, Kazutoshi; Inoue, Jun; Yamazaki, Akira; Kim, Joo-Hong; Maturilli, Marion; Dethloff, Klaus; Hudson, Stephen R.; Granskog, Mats A.
2017-02-01
Recent cold winter extremes over Eurasia and North America have been considered to be a consequence of a warming Arctic. More accurate weather forecasts are required to reduce human and socioeconomic damages associated with severe winters. However, the sparse observing network over the Arctic brings errors in initializing a weather prediction model, which might impact accuracy of prediction results at midlatitudes. Here we show that additional Arctic radiosonde observations from the Norwegian young sea ICE expedition (N-ICE2015) drifting ice camps and existing land stations during winter improved forecast skill and reduced uncertainties of weather extremes at midlatitudes of the Northern Hemisphere. For two winter storms over East Asia and North America in February 2015, ensemble forecast experiments were performed with initial conditions taken from an ensemble atmospheric reanalysis in which the observation data were assimilated. The observations reduced errors in initial conditions in the upper troposphere over the Arctic region, yielding more precise prediction of the locations and strengths of upper troughs and surface synoptic disturbances. Errors and uncertainties of predicted upper troughs at midlatitudes would be brought with upper level high potential vorticity (PV) intruding southward from the observed Arctic region. This is because the PV contained a "signal" of the additional Arctic observations as it moved along an isentropic surface. This suggests that a coordinated sustainable Arctic observing network would be effective not only for regional weather services but also for reducing weather risks in locations distant from the Arctic.
NASA Astrophysics Data System (ADS)
Garland, A.
2015-12-01
The Arctic Risk Management Network (ARMNet) was conceived as a trans-disciplinary hub to encourage and facilitate greater cooperation, communication and exchange among American and Canadian academics and practitioners actively engaged in the research, management and mitigation of risks, emergencies and disasters in the Arctic regions. Its aim is to assist regional decision-makers through the sharing of applied research and best practices and to support greater inter-operability and bilateral collaboration through improved networking, joint exercises, workshops, teleconferences, radio programs, and virtual communications (eg. webinars). Most importantly, ARMNet is a clearinghouse for all information related to the management of the frequent hazards of Arctic climate and geography in North America, including new and emerging challenges arising from climate change, increased maritime polar traffic and expanding economic development in the region. ARMNet is an outcome of the Arctic Observing Network (AON) for Long Term Observations, Governance, and Management Discussions, www.arcus.org/search-program. The AON goals continue with CRIOS (www.ariesnonprofit.com/ARIESprojects.php) and coastal erosion research (www.ariesnonprofit.com/webinarCoastalErosion.php) led by the North Slope Borough Risk Management Office with assistance from ARIES (Applied Research in Environmental Sciences Nonprofit, Inc.). The constituency for ARMNet will include all northern academics and researchers, Arctic-based corporations, First Responders (FRs), Emergency Management Offices (EMOs) and Risk Management Offices (RMOs), military, Coast Guard, northern police forces, Search and Rescue (SAR) associations, boroughs, territories and communities throughout the Arctic. This presentation will be of interest to all those engaged in Arctic affairs, describe the genesis of ARMNet and present the results of stakeholder meetings and webinars designed to guide the next stages of the Project.
NASA Astrophysics Data System (ADS)
Shnoro, R. S.; Eicken, H.; Francis, J. A.; Scambos, T. A.; Schuur, E. A.; Straneo, F.; Wiggins, H. V.
2013-12-01
SEARCH is an interdisciplinary, interagency program that works with academic and government agency scientists and stakeholders to plan, conduct, and synthesize studies of Arctic change. Over the past three years, SEARCH has developed a new vision and mission, a set of prioritized cross-disciplinary 5-year goals, an integrated set of activities, and an organizational structure. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. SEARCH's 5-year science goals include: 1. Improve understanding, advance prediction, and explore consequences of changing Arctic sea ice. 2. Document and understand how degradation of near-surface permafrost will affect Arctic and global systems. 3. Improve predictions of future land-ice loss and impacts on sea level. 4. Analyze societal and policy implications of Arctic environmental change. Action Teams organized around each of the 5-year goals will serve as standing groups responsible for implementing specific goal activities. Members will be drawn from academia, different agencies and stakeholders, with a range of disciplinary backgrounds and perspectives. 'Arctic Futures 2050' scenarios tasks will describe plausible future states of the arctic system based on recent trajectories and projected changes. These scenarios will combine a range of data including climate model output, paleo-data, results from data synthesis and systems modeling, as well as expert scientific and traditional knowledge. Current activities include: - Arctic Observing Network (AON) - coordinating a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. - Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. A newly-launched Sea Ice Prediction Network will create a network of scientists and stakeholders to generate, assess and communicate Arctic seasonal sea ice forecasts. - Collaboration with the Interagency Arctic Research Policy Committee (IARPC) to implement mutual science goals. SEARCH is sponsored by 8 U.S. agencies, including: the National Science Foundation, the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, the Department of Defense, the Department of Energy, the Department of the Interior, the Smithsonian Institution, and the U.S. Department of Agriculture. The U.S. Arctic Research Commission participates as an observer. For more information: http://www.arcus.org/search.
NASA Astrophysics Data System (ADS)
Sweeney, C.; Karion, A.; Bruhwiler, L.; Miller, J. B.; Wofsy, S. C.; Miller, C. E.; Chang, R. Y.; Dlugokencky, E. J.; Daube, B.; Pittman, J. V.; Dinardo, S. J.
2012-12-01
The large seasonal change in the atmospheric column for CH4 in the Arctic is driven by two dominant processes: transport of CH4 from low latitudes and surface emissions throughout the Arctic region. The NOAA ESRL Carbon Cycle Group Aircraft Program along with the NASA funded Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) have initiated an effort to better understand the factors controlling the seasonal changes in the mole fraction of CH4 in the Arctic with a multi-scale aircraft observing network in Alaska. The backbone of this network is multi-species flask sampling from 500 to 8000 masl that has been conducted every two weeks for the last 10 years over Poker Flat, AK. In addition regular profiles at the interior Alaska site at Poker Flat, NOAA has teamed up with the United States Coast Guard to make profiling flights with continuous observations of CO2, CO, CH4 and Ozone between Kodiak and Barrow every 2 weeks. More recently, CARVE has significantly added to this observational network with targeted flights focused on exploring the variability of CO2, CH4 and CO in the boundary layer both in the interior and the North Slope regions of Alaska. Taken together with the profiling of HIAPER Pole-to-Pole Observations (HIPPO), ground sites at Barrow and a new CARVE interior Alaska surface site just north of Fairbanks, AK, we now have the ability to investigate the full evolution of the seasonal cycle in the Arctic using both the multi-scale sampling offered by the different aircraft platforms as well as the multi-species sampling offered by in-situ and flask sampling. The flasks also provide a valuable tie-point between different platforms so that spatial and temporal gradients can be properly interpreted. In the context of the seasonal cycle observed by the aircraft platforms we will look at long term ground observations over the last 20 years to assess changes in Arctic CH4 emissions which have occurred as a result of 0.6C/decade changes in mean surface temperatures.
Arctic landscapes in transition: responses to thawing permafrost
J.C. Rowland; C.E. Jones; G. Altmann; R. Bryan; B.T. Crosby; G.L. Geernaert; L.D. Hinzman; D.L. Kane; D.M. Lawrence; A. Mancino; P. Marsh; J.P. McNamara; V.E. Romanovsky; H. Toniolo; B.J. Travis; E. Trochim; C.J. Wilson
2010-01-01
Observations indicate that over the past several decades, geomorphic processes in the Arctic have been changing or intensifying. Coastal erosion, which currently supplies most of the sediment and carbon to the Arctic Ocean, may have doubled since 1955. Further inland, expansion of channel networks and increased river bank erosion has been attributed to warming. Lakes,...
Enhancing a Socio-technical Data Ecosystem for Societally Relevant, Sustained Arctic Observing
NASA Astrophysics Data System (ADS)
Pulsifer, P. L.
2017-12-01
In recent years, much has been learned about the state of data and related systems for the Arctic region, however work remains to be done to achieve an envisioned integrated and well-defined pan-Arctic observing and data network. The envisioned comprehensive network will enables access to high quality data, expertise and information in support of scientific understanding, stakeholder needs, and agency operations. In this paper we argue that priorities for establishing such a network are in the areas of better understanding the current system, machine-enhanced data discovery and mediation, and the human aspects of community building. The author has engaged extensively in international, Canadian and U.S.-based data coordination and system design efforts. This includes a series of meetings, workshops, systems design activities, and publications. The results of these efforts have been analyzed and a synthesis of these analyses are presented here. Analysis reveals that there are a large number of polar data resources interacting in a complex network that functions as a data ecosystem. Understanding this ecosystem is critical and required to guide design. Given the size and complexity of the network, achieving broad data discovery and access and meaningful data integration will require advanced techniques including machine learning, semantic mediation, and the use of highly connected virtual research environments. To achieve the aforementioned goal will require a community of engaged researchers, technologists, and stakeholders to establish requirements and the social and organizational context needed for effective approaches. The results imply that: i) an effective governance mechanism must be established that includes "bottom up" and "top down" control; ii) the established governance mechanism must include effective networking of actors in the system; iii) funders must adopt a long-term, sustainable infrastructure approach to systems development; iv) best practices will include service and application "chaining" to provide solutions for the diverse Arctic community. Establishing cyberinfrastructure for a sustained Arctic observing network that benefits society will require an innovative combination of emerging technologies and community-building across stakeholders.
NASA Astrophysics Data System (ADS)
Lev, S. M.; Gallo, J.
2017-12-01
The international Arctic scientific community has identified the need for a sustained and integrated portfolio of pan-Arctic Earth-observing systems. In 2017, an international effort was undertaken to develop the first ever Value Tree framework for identifying common research and operational objectives that rely on Earth observation data derived from Earth-observing systems, sensors, surveys, networks, models, and databases to deliver societal benefits in the Arctic. A Value Tree Analysis is a common tool used to support decision making processes and is useful for defining concepts, identifying objectives, and creating a hierarchical framework of objectives. A multi-level societal benefit area value tree establishes the connection from societal benefits to the set of observation inputs that contribute to delivering those benefits. A Value Tree that relies on expert domain knowledge from Arctic and non-Arctic nations, international researchers, Indigenous knowledge holders, and other experts to develop a framework to serve as a logical and interdependent decision support tool will be presented. Value tree examples that map the contribution of Earth observations in the Arctic to achieving societal benefits will be presented in the context of the 2017 International Arctic Observations Assessment Framework. These case studies will highlight specific observing products and capability groups where investment is needed to contribute to the development of a sustained portfolio of Arctic observing systems.
NASA Astrophysics Data System (ADS)
Kassin, A.; Cody, R. P.; Barba, M.; Escarzaga, S. M.; Villarreal, S.; Manley, W. F.; Gaylord, A. G.; Habermann, T.; Kozimor, J.; Score, R.; Tweedie, C. E.
2017-12-01
To better assess progress in Arctic Observing made by U.S. SEARCH, NSF AON, SAON, and related initiatives, an updated version of the Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org) has been released. This web mapping application and information system conveys the who, what, where, and when of "data collection sites" - the precise locations of monitoring assets, observing platforms, and wherever repeat marine or terrestrial measurements have been taken. Over 13,000 sites across the circumarctic are documented including a range of boreholes, ship tracks, buoys, towers, sampling stations, sensor networks, vegetation plots, stream gauges, ice cores, observatories, and more. Contributing partners are the U.S. NSF, NOAA, the NSF Arctic Data Center, ADIwg, AOOS, a2dc, CAFF, GINA, IASOA, INTERACT, NASA ABoVE, and USGS, among others. Users can visualize, navigate, select, search, draw, print, view details, and follow links to obtain a comprehensive perspective of environmental monitoring efforts. We continue to develop, populate, and enhance AOV. Recent updates include: a vastly improved Search tool with free text queries, autocomplete, and filters; faster performance; a new clustering visualization; heat maps to highlight concentrated research; and 3-D represented data to more easily identify trends. AOV is founded on principles of interoperability, such that agencies and organizations can use the AOV Viewer and web services for their own purposes. In this way, AOV complements other distributed yet interoperable cyber resources and helps science planners, funding agencies, investigators, data specialists, and others to: assess status, identify overlap, fill gaps, optimize sampling design, refine network performance, clarify directions, access data, coordinate logistics, and collaborate to meet Arctic Observing goals. AOV is a companion application to the Arctic Research Mapping Application (armap.org), which is focused on general project information at a coarser level of granularity.
NASA Astrophysics Data System (ADS)
Matrai, P.
2016-02-01
Autonomous, sea ice-tethered O-Buoys have been deployed (2009-2016) across the Arctic sea ice for long-term atmospheric measurements (http://www.o-buoy.org). O-Buoys (15) provide in-situ concentrations of three sentinel atmospheric chemicals, ozone, CO2 and BrO, as well as meteorological parameters and imagery, over the frozen ocean. O-Buoys were designed to transmit daily data over a period of 2 years while deployed in sea ice, as part of automated ice-drifting stations that include snow/ice measurement systems (e.g. Ice Mass Balance buoys) and oceanographic measurements (e.g. Ice Tethered Profilers). Seasonal changes in Arctic atmospheric chemistry are influenced by changes in the characteristics and presence of the sea ice vs. open water as well as air mass trajectories, especially during the winter-spring and summer-fall transitions when sea ice is melting and freezing, respectively. The O-Buoy Chemical Network provides the unique opportunity to observe these transition periods in real-time with high temporal resolution, and to compare them with those collected on land-based monitoring stations located. Due to the logistical challenges of measurements over the Arctic Ocean region, most long term, in-situ observations of atmospheric chemistry have been made at coastal or island sites around the periphery of the Arctic Ocean, leaving large spatial and temporal gaps that O-Buoys overcome. Advances in floatation, communications, power management, and sensor hardware have been made to overcome the challenges of diminished Arctic sea ice. O-Buoy data provide insights into enhanced seasonal, interannual and spatial variability in atmospheric composition, atmospheric boundary layer control on the amount of halogen activation, enhancement of the atmospheric CO2 signal over the more variable and porous pack ice, and to develop an integrated picture of the coupled ocean/ice/atmosphere system. As part of the Arctic Observing Network, we provide data to the community (www.aoncadis.org).
Pan-Arctic observations in GRENE Arctic Climate Change Research Project and its successor
NASA Astrophysics Data System (ADS)
Yamanouchi, Takashi
2016-04-01
We started a Japanese initiative - "Arctic Climate Change Research Project" - within the framework of the Green Network of Excellence (GRENE) Program, funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), in 2011. This Project targeted understanding and forecasting "Rapid Change of the Arctic Climate System and its Global Influences." Four strategic research targets are set by the Ministry: 1. Understanding the mechanism of warming amplification in the Arctic; 2. Understanding the Arctic climate system for global climate and future change; 3. Evaluation of the impacts of Arctic change on the weather and climate in Japan, marine ecosystems and fisheries; 4. Projection of sea ice distribution and Arctic sea routes. Through a network of universities and institutions in Japan, this 5-year Project involves more than 300 scientists from 39 institutions and universities. The National Institute of Polar Research (NIPR) works as the core institute and The Japan Agency for Marine- Earth Science and Technology (JAMSTEC) joins as the supporting institute. There are 7 bottom up research themes approved: the atmosphere, terrestrial ecosystems, cryosphere, greenhouse gases, marine ecology and fisheries, sea ice and Arctic sea routes and climate modeling, among 22 applications. The Project will realize multi-disciplinal study of the Arctic region and connect to the projection of future Arctic and global climatic change by modeling. The project has been running since the beginning of 2011 and in those 5 years pan-Arctic observations have been carried out in many locations, such as Svalbard, Russian Siberia, Alaska, Canada, Greenland and the Arctic Ocean. In particular, 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard, and intensive atmospheric observations were carried out in 2014 and 2015. In addition, the Arctic Ocean cruises by R/V "Mirai" (belonging to JAMSTEC) and other icebreakers belonging to other countries were conducted and mooring buoy observations were also carried out. The data retrieved during these observations was accumulated in the "Arctic Data archive System (ADS)" (https://ads.nipr.ac.jp/) and served with interfaces for analysis. In addition, modeling studies have been promoted from fundamental process model to general circulation model. The successor of the project, ArCS (Arctic Challenge for Sustainability), which lays delivering emphasis on robust scientific information to stakeholders for decision making and solving problems, was started in FY2015. Within this project, a cooperative observation of black carbon are planned to be started at Cape Baranova Station (AARI, Rusia), Severnaya Zemlya, and new activities including emphasizing aerological observations are also planned to be started for contributing to "Year of Polar Prediction (YOPP)" of Polar Prediction Project (PPP/ WMO). It will be desirable to have a future collaboration with IASOA.
Impacts and societal benefits of research activities at Summit Station, Greenland
NASA Astrophysics Data System (ADS)
Hawley, R. L.; Burkhart, J. F.; Courville, Z.; Dibb, J. E.; Koenig, L.; Vaughn, B. H.
2017-12-01
Summit Station began as the site for the Greenland Ice Sheet Project 2 ice core in 1989. Since then, it has hosted both summer campaign science, and since 1997, year-round observations of atmospheric and cryospheric processes. The station has been continuously occupied since 2003. While most of the science activities at the station are supported by the US NSF Office of Polar Programs, the station also hosts many interagency and international investigations in physical glaciology, atmospheric chemistry, satellite validation, astrophysics and other disciplines. Summit is the only high elevation observatory north of the Arctic circle that can provide clean air or snow sites. The station is part of the INTER-ACT consortium of Arctic research stations with the main objective to identify, understand, predict and respond to diverse environmental changes, and part of the International Arctic Systems for Observing the Atmosphere (IASOA) that coordinates Arctic research activities and provides a networked, observations-based view of the Arctic. The Summit Station Science Summit, sponsored by NSF, assembled a multidisciplinary group of scientists to review Summit Station science, define the leading research questions for Summit, and make community-based recommendations for future science goals and governance for Summit. The impact of several on-going observation records was summarized in the report "Sustaining the Science Impact of Summit Station, Greenland," including the use of station data in weather forecasts and climate models. Observations made at the station as part of long-term, year-round research or during shorter summer-only campaign seasons contribute to several of the identified Social Benefit Areas (SBAs) outlined in the International Arctic Observations Assessment Framework published by the IDA Science and Technology Policy Institute and Sustaining Arctic Observing Networks as an outcome of the 2016 Arctic Science Ministerial. The SBAs supported by research conducted at Summit include Fundamental Understanding of Arctic Systems, Infrastructure and Operations, Terrestrial and Freshwater Ecosystems and Processes and Weather and Climate. Future efforts at maintaining the station's long-term climate record will focus on these areas, as identified in the Summit Station Science Summit report.
Observing Arctic Ecology using Networked Infomechanical Systems
NASA Astrophysics Data System (ADS)
Healey, N. C.; Oberbauer, S. F.; Hollister, R. D.; Tweedie, C. E.; Welker, J. M.; Gould, W. A.
2012-12-01
Understanding ecological dynamics is important for investigation into the potential impacts of climate change in the Arctic. Established in the early 1990's, the International Tundra Experiment (ITEX) began observational inquiry of plant phenology, plant growth, community composition, and ecosystem properties as part of a greater effort to study changes across the Arctic. Unfortunately, these observations are labor intensive and time consuming, greatly limiting their frequency and spatial coverage. We have expanded the capability of ITEX to analyze ecological phenomenon with improved spatial and temporal resolution through the use of Networked Infomechanical Systems (NIMS) as part of the Arctic Observing Network (AON) program. The systems exhibit customizable infrastructure that supports a high level of versatility in sensor arrays in combination with information technology that allows for adaptable configurations to numerous environmental observation applications. We observe stereo and static time-lapse photography, air and surface temperature, incoming and outgoing long and short wave radiation, net radiation, and hyperspectral reflectance that provides critical information to understanding how vegetation in the Arctic is responding to ambient climate conditions. These measurements are conducted concurrent with ongoing manual measurements using ITEX protocols. Our NIMS travels at a rate of three centimeters per second while suspended on steel cables that are ~1 m from the surface spanning transects ~50 m in length. The transects are located to span soil moisture gradients across a variety of land cover types including dry heath, moist acidic tussock tundra, shrub tundra, wet meadows, dry meadows, and water tracks. We have deployed NIMS at four locations on the North Slope of Alaska, USA associated with 1 km2 ARCSS vegetation study grids including Barrow, Atqasuk, Toolik Lake, and Imnavait Creek. A fifth system has been deployed in Thule, Greenland beginning in 2012. Once compiled and quality controlled, all of our data are freely available online via the Arctic Observing Network's Advanced Cooperative Arctic Data and Information Service (ACADIS). Here we present some of our findings to show how our results can be advantageous to various disciplines including plant ecology, hydrology, geology, atmospheric sciences, and remote sensing. For instance, we found that albedo decreases with increasing NDVI after initial green-up and loss of dead standing litter (DOY 174-184), displaying an r2 of 0.90 in 2012 at Toolik Lake. This relationship is vital for determining phonological events via remote sensing and understanding the surface energy balance that impacts atmospheric processes, weather and climate, the hydrologic cycle, and ecophysiological progression throughout the short arctic growing season. Scaling these data to larger scales, which is critical to future monitoring of the potential impacts of climate change on arctic vegetation, is facilitated by linkage of measurements along the NIMS transects and manual vegetation measurements in the 1 km2 sample grids with frequent low-altitude aerial photography.
Development of pan-Arctic database for river chemistry
McClelland, J.W.; Holmes, R.M.; Peterson, B.J.; Amon, R.; Brabets, T.; Cooper, L.; Gibson, J.; Gordeev, V.V.; Guay, C.; Milburn, D.; Staples, R.; Raymond, P.A.; Shiklomanov, I.; Striegl, Robert G.; Zhulidov, A.; Gurtovaya, T.; Zimov, S.
2008-01-01
More than 10% of all continental runoff flows into the Arctic Ocean. This runoff is a dominant feature of the Arctic Ocean with respect to water column structure and circulation. Yet understanding of the chemical characteristics of runoff from the pan-Arctic watershed is surprisingly limited. The Pan- Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments ( PARTNERS) project was initiated in 2002 to help remedy this deficit, and an extraordinary data set has emerged over the past few years as a result of the effort. This data set is publicly available through the Cooperative Arctic Data and Information Service (CADIS) of the Arctic Observing Network (AON). Details about data access are provided below.
Collaborations for Arctic Sea Ice Information and Tools
NASA Astrophysics Data System (ADS)
Sheffield Guy, L.; Wiggins, H. V.; Turner-Bogren, E. J.; Rich, R. H.
2017-12-01
The dramatic and rapid changes in Arctic sea ice require collaboration across boundaries, including between disciplines, sectors, institutions, and between scientists and decision-makers. This poster will highlight several projects that provide knowledge to advance the development and use of sea ice knowledge. Sea Ice for Walrus Outlook (SIWO: https://www.arcus.org/search-program/siwo) - SIWO is a resource for Alaskan Native subsistence hunters and other interested stakeholders. SIWO provides weekly reports, during April-June, of sea ice conditions relevant to walrus in the northern Bering and southern Chukchi seas. Collaboration among scientists, Alaskan Native sea-ice experts, and the Eskimo Walrus Commission is fundamental to this project's success. Sea Ice Prediction Network (SIPN: https://www.arcus.org/sipn) - A collaborative, multi-agency-funded project focused on seasonal Arctic sea ice predictions. The goals of SIPN include: coordinate and evaluate Arctic sea ice predictions; integrate, assess, and guide observations; synthesize predictions and observations; and disseminate predictions and engage key stakeholders. The Sea Ice Outlook—a key activity of SIPN—is an open process to share and synthesize predictions of the September minimum Arctic sea ice extent and other variables. Other SIPN activities include workshops, webinars, and communications across the network. Directory of Sea Ice Experts (https://www.arcus.org/researchers) - ARCUS has undertaken a pilot project to develop a web-based directory of sea ice experts across institutions, countries, and sectors. The goal of the project is to catalyze networking between individual investigators, institutions, funding agencies, and other stakeholders interested in Arctic sea ice. Study of Environmental Arctic Change (SEARCH: https://www.arcus.org/search-program) - SEARCH is a collaborative program that advances research, synthesizes research findings, and broadly communicates the results to support informed decision-making. One of SEARCH's primary science topics is focused on Arctic sea ice; the SEARCH Sea Ice Action Team is leading efforts to advance understanding and awareness of the impacts of Arctic sea-ice loss.
NASA Astrophysics Data System (ADS)
Cody, R. P.; Manley, W. F.; Gaylord, A. G.; Kassin, A.; Villarreal, S.; Barba, M.; Dover, M.; Escarzaga, S. M.; Habermann, T.; Kozimor, J.; Score, R.; Tweedie, C. E.
2016-12-01
To better assess progress in Arctic Observing made by U.S. SEARCH, NSF AON, SAON, and related initiatives, an updated version of the Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org) has been released. This web mapping application and information system conveys the who, what, where, and when of "data collection sites" - the precise locations of monitoring assets, observing platforms, and wherever repeat marine or terrestrial measurements have been taken. Over 8000 sites across the circum-arctic are documented including a range of boreholes, ship tracks, buoys, towers, sampling stations, sensor networks, vegetation plots, stream gauges, ice cores, observatories, and more. Contributing partners are the U.S. NSF, ACADIS, ADIwg, AOOS, a2dc, AON, CAFF, GINA, IASOA, INTERACT, NASA ABoVE, and USGS, among others. Users can visualize, navigate, select, search, draw, print, view details, and follow links to obtain a comprehensive perspective of environmental monitoring efforts. We continue to develop, populate, and enhance AOV. Recent improvements include: a more intuitive and functional search tool, a modern cross-platform interface using javascript and HTML5, and hierarchical ISO metadata coupled with RESTful web services & metadata XLinks to span the data life cycle (from project planning to establishment of data collection sites to release of scientific datasets). Additionally, through collaborations with the Barrow Area Information Database (BAID, www.barrowmapped.org) we are exploring linkages with datacenters and have developed a prototype dashboard application that allows users to explore data services in the AOV application. AOV is founded on principles of interoperability, such that agencies and organizations can use the AOV Viewer and web services for their own purposes. In this way, AOV complements other distributed yet interoperable cyber resources and helps science planners, funding agencies, investigators, data specialists, and others to: assess status, identify overlap, fill gaps, optimize sampling design, refine network performance, clarify directions, access data, coordinate logistics, and collaborate to meet Arctic Observing goals.
Strategic Assessment for Arctic Observing, and the New Arctic Observing Viewer
NASA Astrophysics Data System (ADS)
Kassin, A.; Cody, R. P.; Manley, W. F.; Gaylord, A. G.; Dover, M.; Score, R.; Lin, D. H.; Villarreal, S.; Quezada, A.; Tweedie, C. E.
2013-12-01
Although a great deal of progress has been made with various Arctic Observing efforts, it can be difficult to assess that progress. What data collection efforts are established or under way? Where? By whom? To help meet the strategic needs of SEARCH-AON, SAON, and related initiatives, a new resource has been released: the Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org). This web mapping application covers the 'who', 'what', 'where', and 'when' of data collection sites - wherever marine or terrestrial data are collected. Hundreds of sites are displayed, providing an overview as well as details. Users can visualize, navigate, select, search, draw, print, and more. This application currently showcases a subset of observational activities and will become more comprehensive with time. The AOV is founded on principles of interoperability, with an emerging metadata standard and compatible web service formats, such that participating agencies and organizations can use the AOV tools and services for their own purposes. In this way, the AOV will complement other cyber-resources, and will help science planners, funding agencies, PI's, and others to: assess status, identify overlap, fill gaps, assure sampling design, refine network performance, clarify directions, access data, coordinate logistics, collaborate, and more to meet Arctic Observing goals.
Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route
Inoue, Jun; Yamazaki, Akira; Ono, Jun; Dethloff, Klaus; Maturilli, Marion; Neuber, Roland; Edwards, Patti; Yamaguchi, Hajime
2015-01-01
During ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean. Here, we show that the incorporation of additional Arctic observations improves the initial analysis and enhances the skill of weather and sea-ice forecasts, the application of which has socioeconomic benefits. Comparison of 63-member ensemble atmospheric forecasts, using different initial data sets, revealed that additional Arctic radiosonde observations were useful for predicting a persistent strong wind event. The sea-ice forecast, initialised by the wind fields that included the effects of the observations, skilfully predicted rapid wind-driven sea-ice advection along the NSR. PMID:26585690
Pan-Arctic river discharge: Prioritizing monitoring of future climate change hot spots
NASA Astrophysics Data System (ADS)
Bring, Arvid; Shiklomanov, Alexander; Lammers, Richard B.
2017-01-01
The Arctic freshwater cycle is changing rapidly, which will require adequate monitoring of river flows to detect, observe, and understand changes and provide adaptation information. There has, however, been little detail about where the greatest flow changes are projected, and where monitoring therefore may need to be strengthened. In this study, we used a set of recent climate model runs and an advanced macro-scale hydrological model to analyze how flows across the continental pan-Arctic are projected to change and where the climate models agree on significant changes. We also developed a method to identify where monitoring stations should be placed to observe these significant changes, and compared this set of suggested locations with the existing network of monitoring stations. Overall, our results reinforce earlier indications of large increases in flow over much of the Arctic, but we also identify some areas where projections agree on significant changes but disagree on the sign of change. For monitoring, central and eastern Siberia, Alaska, and central Canada are hot spots for the highest changes. To take advantage of existing networks, a number of stations across central Canada and western and central Siberia could form a prioritized set. Further development of model representation of high-latitude hydrology would improve confidence in the areas we identify here. Nevertheless, ongoing observation programs may consider these suggested locations in efforts to improve monitoring of the rapidly changing Arctic freshwater cycle.
Pan-Arctic River Discharge: Where Can We Improve Monitoring of Future Change?
NASA Astrophysics Data System (ADS)
Bring, A.; Shiklomanov, A. I.; Lammers, R. B.
2016-12-01
The Arctic freshwater cycle is changing rapidly, which will require adequate monitoring of river flow to detect, observe and understand changes and provide adaptation information. There has however been little detail about where the greatest flow changes are projected, and where monitoring therefore may need to be strengthened. In this study, we used a set of recent climate model runs and an advanced macro-scale hydrological model to analyze how flows across the continental pan-Arctic are projected to change, and where the climate models agree on significant changes. We also developed a method to identify where monitoring stations should be placed to observe these significant changes, and compared this set of suggested locations with the existing network of monitoring stations. Overall, our results reinforce earlier indications of large increases in flow over much of the Arctic, but we also identify some areas where projections agree on significant changes but disagree on the sign of change. For monitoring, central and eastern Siberia, Alaska and central Canada are hot spots for the highest changes. To take advantage of existing networks, a number of stations across central Canada and western and central Siberia could form a prioritized set. Further development of model representation of high-latitude hydrology would improve confidence in the areas we identify here. Nevertheless, ongoing observation programs may consider these suggested locations in efforts to improve monitoring of the rapidly changing Arctic freshwater cycle.
Integrated Arctic Observation System Development Under Horizon 2020
NASA Astrophysics Data System (ADS)
Sandven, S.
2016-12-01
The overall objective of INTAROS is to develop an integrated Arctic Observation System (iAOS) by extending, improving and unifying existing systems in the different regions of the Arctic. INTAROS will have a strong multidisciplinary focus, with tools for integration of data from atmosphere, ocean, cryosphere and terrestrial sciences, provided by institutions in Europe, North America and Asia. Satellite earth observation data plays an increasingly important role in such observing systems, because the amount of EO data for observing the global climate and environment grows year by year. In situ observing systems are much more limited due to logistical constraints and cost limitations. The sparseness of in situ data is therefore the largest gap in the overall observing system. INTAROS will assess strengths and weaknesses of existing observing systems and contribute with innovative solutions to fill some of the critical gaps in the in situ observing network. INTAROS will develop a platform, iAOS, to search for and access data from distributed databases. The evolution into a sustainable Arctic observing system requires coordination, mobilization and cooperation between the existing European and international infrastructures (in-situ and remote including space-based), the modeling communities and relevant stakeholder groups. INTAROS will include development of community-based observing systems, where local knowledge is merged with scientific data. An integrated Arctic Observation System will enable better-informed decisions and better-documented processes within key sectors (e.g. local communities, shipping, tourism, fishing), in order to strengthen the societal and economic role of the Arctic region and support the EU strategy for the Arctic and related maritime and environmental policies.
Shear-wave splitting observations of mantle anisotropy beneath Alaska
NASA Astrophysics Data System (ADS)
Bellesiles, A. K.; Christensen, D. H.; Entwistle, E.; Litherland, M.; Abers, G. A.; Song, X.
2009-12-01
Observations of seismic anisotropy were obtained from three different PASSCAL broadband experiments throughout Alaska, using shear-wave splitting from teleseismic SKS phases. The MOOS (Multidisciplinary Observations Of Subduction), BEAAR (Broadband Experiment Across the Alaska Range), and ARCTIC (Alaska Receiving Cross-Transects for the Inner Core) networks were used along with selected permanent broadband stations operated by AEIC (Alaska Earthquake Information Center) to produce seismic anisotropy results for the state of Alaska along a north south transect from the active subduction zone in the south, through continental Alaska, to the passive margin in the north. The BEAAR network is in-between the ARCTIC and MOOS networks above the subducting Pacific Plate and mantle wedge and shows a tight ~90 degree rotation of anisotropy above the 70km contour of the subducting plate. The southern stations in BEAAR yield anisotropy results that are subparallel to the Pacific Plate motion as it subducts under North America. These stations have an average fast direction of -45 degrees and 1.03 seconds of delay on average. The MOOS network in south central Alaska yielded similar results with an average fast direction of -30 degrees and delay times of .9 seconds. In the north portion of the BEAAR network the anisotropy is along strike of the subduction zone and has an average fast direction of 27 degrees with an average delay time of 1.4 seconds, although the delay times above the mantle wedge range from 1 to 2.5 seconds and are directly correlated to the length of ray path in the mantle wedge. This general trend NE/SW is seen in the ARCTIC stations to the north although the furthest north stations are oriented more NNE compared to those in BEAAR. The average fast direction for the ARCTIC network is 40 degrees with an average delay time of 1.05 seconds. These results show two distinct orientations of anisotropy in Alaska separated by the subducting Pacific Plate.
NASA Astrophysics Data System (ADS)
Davoodi, F.; Shahabi, C.; Burdick, J.; Rais-Zadeh, M.; Menemenlis, D.
2014-12-01
The work had been funded by NASA HQ's office of Cryospheric Sciences Program. Recent observations of the Arctic have shown that sea ice has diminished drastically, consequently impacting the environment in the Arctic and beyond. Certain factors such as atmospheric anomalies, wind forces, temperature increase, and change in the distribution of cold and warm waters contribute to the sea ice reduction. However current measurement capabilities lack the accuracy, temporal sampling, and spatial coverage required to effectively quantify each contributing factor and to identify other missing factors. Addressing the need for new measurement capabilities for the new Arctic regime, we propose a game-changing in-situ Arctic-wide Distributed Mobile Monitoring system called Moball-buoy Network. Moball-buoy Network consists of a number of wind-propelled self-powered inflatable spheres referred to as Moball-buoys. The Moball-buoys are self-powered. They use their novel mechanical control and energy harvesting system to use the abundance of wind in the Arctic for their controlled mobility and energy harvesting. They are equipped with an array of low-power low-mass sensors and micro devices able to measure a wide range of environmental factors such as the ice conditions, chemical species wind vector patterns, cloud coverage, air temperature and pressure, electromagnetic fields, surface and subsurface water conditions, short- and long-wave radiations, bathymetry, and anthropogenic factors such as pollutions. The stop-and-go motion capability, using their novel mechanics, and the heads up cooperation control strategy at the core of the proposed distributed system enable the sensor network to be reconfigured dynamically according to the priority of the parameters to be monitored. The large number of Moball-buoys with their ground-based, sea-based, satellite and peer-to-peer communication capabilities would constitute a wireless mesh network that provides an interface for a global control system. This control system will ensure arctic-wide coverage, will optimize Moball-buoys monitoring efforts according to their available resources and the priority of local areas of high scientific value within the Arctic region. Moball-buoy Network is expected to be the first robust and persistent Arctic-wide environment monitoring system capable of providing reliable readings in near real time
Belchansky, G.I.; Douglas, David C.; Eremeev, V.A.; Platonov, Nikita G.
2005-01-01
A 26-year (1979-2004) observational record of January multiyear sea ice distributions, derived from neural network analysis of SMMR-SSM/I passive microwave satellite data, reveals dense and persistent cover in the central Arctic basin surrounded by expansive regions of highly fluctuating interannual cover. Following a decade of quasi equilibrium, precipitous declines in multiyear ice area commenced in 1989 when the Arctic Oscillation shifted to a pronounced positive phase. Although extensive survival of first-year ice during autumn 1996 fully replenished the area of multiyear ice, a subsequent and accelerated decline returned the depletion to record lows. The most dramatic multiyear sea ice declines occurred in the East Siberian, Chukchi, and Beaufort Seas.
Norwegian Ocean Observatory Network (NOON)
NASA Astrophysics Data System (ADS)
Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon
2010-05-01
The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle. More information about NOON is available at NOON's web site www.oceanobservatory.com. PIC
The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)
NASA Astrophysics Data System (ADS)
Rex, M.; Shupe, M.; Dethloff, K.
2017-12-01
MOSAiC is an international initiative under the umbrella of the International Arctic Science Committee (IASC) designed by an international consortium of leading polar research institutes. Rapid changes in the Arctic lead to an urgent need for reliable information about the state and evolution of the Arctic climate system. This requires more observations and improved modelling over various spatial and temporal scales, and across a wide variety of disciplines. Observations of many critical parameters were never made in the central Arctic for a full annual cycle. MOSAiC will be the first year-around expedition into the central Arctic exploring the coupled climate system. The research vessel Polarstern will drift with the sea ice across the central Arctic during the years 2019 to 2020. The drift starts in the Siberian sector of the Arctic in late summer. A distributed regional network of observational sites will be established on the sea ice in an area of up to 50 km distance from Polarstern, representing a grid cell of climate models. The ship and the surrounding network will drift with the natural sea ice drift across the polar cap towards the Atlantic. The focus of MOSAiC lies on in-situ observations of the climate processes that couple atmosphere, ocean, sea ice, biogeochemistry and ecosystem. These measurements will be supported by weather and sea ice predictions and remote sensing operations to make the expedition successful. The expedition includes aircraft operations and cruises by icebreakers from MOSAiC partners. All these observations will be used for the main scientific goals of MOSAiC, enhancing the understanding of the regional and global consequences of Arctic climate change and sea ice loss and improve weather and climate prediction. More precisely, the results are needed to advance the data assimilation for numerical weather prediction models, sea ice forecasts and climate models and ground truth for satellite remote sensing. Additionally, the understanding of energy budget and fluxes through interfaces, sources, sinks and cycles of chemical species, boundary layer processes, and primary productivity will be investigated during the expedition. MOSAiC will support safer maritime and offshore operations, contribute to an improved scientific future fishery and traffic along the northern sea routes.
INTAROS: Development of an integrated Arctic observation system under Horizon 2020
NASA Astrophysics Data System (ADS)
Beszczynska-Möller, Agnieszka; Sandven, Stein; Sagen, Hanne
2017-04-01
INTAROS is a research and innovation action funded under the H2020-BG-09 call for the five-year period 2016-2021. INTAROS will develop an integrated Arctic Observation System (iAOS) by extending, improving and unifying existing systems in the different regions of the Arctic. INTAROS will have a strong multidisciplinary focus, with tools for integration of data from atmosphere, ocean, cryosphere and terrestrial sciences, provided by institutions in Europe, North America and Asia. Satellite earth observation (EO) data plays an increasingly important role in such observing systems, because the amount of EO data for observing the global climate and environment grows year by year. EO data will therefore be integrated into iAOS based on existing products and databases. In situ observing systems are much more limited due to logistical constraints and cost limitations. The sparseness of in situ data is therefore the largest gap in the overall observing system. INTAROS will assess strengths and weaknesses of existing Arctic observing systems and contribute with innovative solutions to fill some of the critical gaps in the selected networks. INTAROS will develop a platform, iAOS, to search for and access data from distributed databases. The evolution into a sustainable Arctic observing system requires coordination, mobilization and cooperation between the existing European and international infrastructures (in-situ and remote, including space-based), the modeling communities and relevant stakeholder groups. INTAROS will include development of community-based observing systems, where local knowledge is merged with scientific data. Multidisciplinary data integrated under INTAROS will contribute to better understanding of interactions and coupling in the complex Arctic ice-ocean-land-atmosphere system. An integrated Arctic Observation System will enable better-informed decisions and better-documented processes within key sectors (e.g. local communities, shipping, tourism, fishing), in order to strengthen the societal and economic role of the Arctic region and support the EU strategy for the Arctic and related maritime and environmental policies. Following the SAON goal, INTAROS will support and strengthen the EU engagement in developing the sustained and coordinated pan-Arctic observing and data sharing systems.
NASA Astrophysics Data System (ADS)
Orlich, A.; Hutchings, J. K.; Green, T. M.
2013-12-01
The Ice Watch Program is an open source forum to access in situ Arctic sea ice conditions. It provides the research community and additional stakeholders a convenient resource to monitor sea ice and its role in understanding the Arctic as a system by implementing a standardized observation protocol and hosting a multi-service data portal. International vessels use the Arctic Shipborne Sea Ice Standardization Tool (ASSIST) software to report near-real time sea ice conditions while underway. Essential observations of total ice concentration, distribution of multi-year ice and other ice types, as well as their respective stage of melt are reported. These current and historic sea ice conditions are visualized on interactive maps and in a variety of statistical analyses, and with all data sets available to download for further investigation. The summer of 2012 was the debut of the ASSIST software and the Ice Watch campaign, with research vessels from six nations reporting from a wide spatio-temporal scale spanning from the Beaufort Sea, across the North Pole and Arctic Basin, the coast of Greenland and into the Kara and Barents Seas during mid-season melt and into the first stages of freeze-up. The 2013 summer field season sustained the observation and data archiving record, with participation from some of the same cruises as well as other geographic and seasonal realms covered by new users. These results are presented to illustrate the evolution of the program, increased participation and critical statistics of ice regime change and record of melt and freeze processes revealed by the data. As an ongoing effort, Ice Watch/ASSIST aims to standardize observations of Arctic-specific sea ice features and conditions while utilizing nomenclature and coding based on the World Meteorological Organization (WMO) standards and the Antarctic Sea Ice and Processes & Climate (ASPeCt) protocol. Instigated by members of the CliC Sea Ice Working Group, the program has evolved with coordination from the International Arctic Research Center, software development by the Geographic Information Network of Alaska, and funding support from the Japanese Aerospace Exploration Agency (JAXA), the Japan Agency for Marine-Earth Science & Technology (JAMSTEC), and the National Science Foundation (NSF).
NASA Astrophysics Data System (ADS)
Wiggins, H. V.; Schlosser, P.; Loring, A. J.; Warnick, W. K.; Committee, S. S.
2008-12-01
The Study of Environmental Arctic Change (SEARCH) is a multi-agency effort to observe, understand, and guide responses to changes in the arctic system. Interrelated environmental changes in the Arctic are affecting ecosystems and living resources and are impacting local and global communities and economic activities. Under the SEARCH program, guided by the Science Steering Committee (SSC), the Interagency Program Management Committee (IPMC), and the Observing, Understanding, and Responding to Change panels, scientists with a variety of expertise--atmosphere, ocean and sea ice, hydrology and cryosphere, terrestrial ecosystems, human dimensions, and paleoclimatology--work together to achieve goals of the program. Over 150 projects and activities contribute to SEARCH implementation. The Observing Change component is underway through National Science Foundation's (NSF) Arctic Observing Network (AON), NOAA-sponsored atmospheric and sea ice observations, and other relevant national and international efforts, including the EU- sponsored Developing Arctic Modelling and Observing Capabilities for Long-term Environmental Studies (DAMOCLES) Program. The Understanding Change component of SEARCH consists of modeling and analysis efforts, with strong linkages to relevant programs such as NSF's Arctic System Synthesis (ARCSS) Program. The Responding to Change element is driven by stakeholder research and applications addressing social and economic concerns. As a national program under the International Study of Arctic Change (ISAC), SEARCH is also working to expand international connections in an effort to better understand the global arctic system. SEARCH is sponsored by eight (8) U.S. agencies, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the Department of Energy (DOE), the Department of the Interior (DOI), the Smithsonian Institution, and the U.S. Department of Agriculture (USDA). The U.S. Arctic Research Commission participates as an IPMC observer. For further information, please visit the website: http://www.arcus.org/search or contact: Helen V. Wiggins: helen@arcus.org, SEARCH Project Office, Arctic Research Consortium of the U.S. (ARCUS); or Peter Schlosser, schlosser@ldeo.columbia.edu, SEARCH SSC Chair.
NASA Astrophysics Data System (ADS)
Nguyen, A. T.; Heimbach, P.; Garg, V.; Ocana, V.
2016-12-01
Over the last few decades, various agencies have invested heavily in the development and deployment of Arctic ocean and sea ice observing platforms, especially moorings, profilers, gliders, and satellite-based instruments. These observational assets are heterogeneous in terms of variables sampled and spatio-temporal coverage, which calls for a dynamical synthesis framework of the diverse data streams. Here we introduce an adjoint-based Arctic Subpolar gyre sTate estimate (ASTE), a medium resolution model-data synthesis that leverages all the possible observational assets. Through an established formal state and parameter estimation framework, the ASTE framework produces a 2002-present ocean-sea ice state that can be used to address Arctic System science questions. It is dynamically and kinematically consistent with known equations of motion and consistent with observations. Four key aspects of ASTE will be discussed: (1) How well is ASTE constrained by the existing observations; (2) which data most effectively constrain the system, and what impact on the solution does spatial and temporal coverage have; (3) how much information does one set of observation (e.g. Fram Strait heat transport) carry about a remote, but dynamically linked component (e.g. heat content in the Beaufort Gyre); and (4) how can the framework be used to assess the value of hypothetical observations in constraining poorly observed parts of the Arctic Ocean and the implied mechanisms responsible for the changes occurring in the Arctic. We will discuss the suggested geographic distribution of new observations to maximize the impact on improving our understanding of the general circulation, water mass distribution and hydrographic changes in the Arctic.
Recently amplified arctic warming has contributed to a continual global warming trend
NASA Astrophysics Data System (ADS)
Huang, Jianbin; Zhang, Xiangdong; Zhang, Qiyi; Lin, Yanluan; Hao, Mingju; Luo, Yong; Zhao, Zongci; Yao, Yao; Chen, Xin; Wang, Lei; Nie, Suping; Yin, Yizhou; Xu, Ying; Zhang, Jiansong
2017-12-01
The existence and magnitude of the recently suggested global warming hiatus, or slowdown, have been strongly debated1-3. Although various physical processes4-8 have been examined to elucidate this phenomenon, the accuracy and completeness of observational data that comprise global average surface air temperature (SAT) datasets is a concern9,10. In particular, these datasets lack either complete geographic coverage or in situ observations over the Arctic, owing to the sparse observational network in this area9. As a consequence, the contribution of Arctic warming to global SAT changes may have been underestimated, leading to an uncertainty in the hiatus debate. Here, we constructed a new Arctic SAT dataset using the most recently updated global SATs2 and a drifting buoys based Arctic SAT dataset11 through employing the `data interpolating empirical orthogonal functions' method12. Our estimate of global SAT rate of increase is around 0.112 °C per decade, instead of 0.05 °C per decade from IPCC AR51, for 1998-2012. Analysis of this dataset shows that the amplified Arctic warming over the past decade has significantly contributed to a continual global warming trend, rather than a hiatus or slowdown.
NASA Astrophysics Data System (ADS)
Kontar, Y. Y.
2017-12-01
The Arctic Council is an intergovernmental forum promoting cooperation, coordination and interaction among the Arctic States and indigenous communities on issues of sustainable development and environmental protection in the North. The work of the Council is primarily carried out by six Working Groups: Arctic Contaminants Action Program, Arctic Monitoring and Assessment Programme, Conservation of Arctic Flora and Fauna, Emergency Prevention, Preparedness and Response, Protection of the Arctic Marine Environment, and Sustainable Development Working Group. The Working Groups are composed of researchers and representatives from government agencies. Each Working Group issues numerous scientific assessments and reports on a broad field of subjects, from climate change to emergency response in the Arctic. A key goal of these publications is to contribute to policy-making in the Arctic. Complex networks of information systems and the connections between the diverse elements within the systems have been identified via network analysis. This allowed to distinguish data sources that were used in the composition of the primary publications of the Working Groups. Next step is to implement network analysis to identify and map the relationships between the Working Groups and policy makers in the Arctic.
Increasing frequency and duration of Arctic winter warming events
NASA Astrophysics Data System (ADS)
Graham, R. M.; Cohen, L.; Petty, A.; Boisvert, L.; Rinke, A.; Hudson, S. R.; Nicolaus, M.; Granskog, M. A.
2017-12-01
Record low Arctic sea ice extents were observed during the last three winter seasons (March). During each of these winters, near-surface air temperatures close to 0°C were observed, in situ, over sea ice in the central Arctic. Recent media reports and scientific studies suggest that such winter warming events were unprecedented for the Arctic. Here we use in situ winter (December-March) temperature observations, such as those from Soviet North Pole drifting stations and ocean buoys, to determine how common Arctic winter warming events are. The earliest record we find of a winter warming event was in March 1896, where a temperature of -3.7˚C was observed at 84˚N during the Fram expedition. Observations of winter warming events exist over most of the Arctic Basin. Despite a limited observational network, temperatures exceeding -5°C were measured in situ during more than 30% of winters from 1954 to 2010, by either North Pole drifting stations or ocean buoys. Correlation coefficients between the atmospheric reanalysis, ERA-Interim, and these in-situ temperature records are shown to be on the order of 0.90. This suggests that ERA-Interim is a suitable tool for studying Arctic winter warming events. Using the ERA-Interim record (1979-2016), we show that the North Pole (NP) region typically experiences 10 warming events (T2m > -10°C) per winter, compared with only five in the Pacific Central Arctic (PCA). We find a positive trend in the overall duration of winter warming events for both the NP region (4.25 days/decade) and PCA (1.16 days/decade), due to an increased number of events of longer duration.
NASA Astrophysics Data System (ADS)
Abbatt, J.
2015-12-01
The Canadian Network on Aerosols and Climate: Addressing Key Uncertainties in Remote Canadian Regions (or NETCARE) was established in 2013 to study the interactions between aerosols, chemistry, clouds and climate. The network brings together Canadian academic and government researchers, along with key international collaborators. Attention is being given to observations and modeling of Arctic aerosol, with the goal to understand underlying processes and so improve predictions of aerosol climate forcing. Motivation to understand the summer Arctic atmosphere comes from the retreat of summer sea ice and associated increase in marine influence. To address these goals, a suite of measurements was conducted from two platforms in summer 2014 in the Canadian Arctic, i.e. an aircraft-based campaign on the Alfred Wegener Institute POLAR 6 and an ocean-based campaign from the CGCS Amundsen icebreaker. NETCARE-POLAR was based out of Resolute Bay, Nunavut during an initial period of little transport and cloud-free conditions and a later period characterized by more transport with potentially biomass burning influence. Measurements included particle and cloud droplet numbers and size distributions, aerosol composition, cloud nuclei, and levels of gaseous tracers. Ultrafine particle events were more frequently observed in the marine boundary layer than above, with particle growth observed in some cases to cloud condensation nucleus sizes. The influence of biological processes on atmospheric constituents was also assessed from the ship during NETCARE-AMUNDSEN, as indicated by high measured levels of gaseous ammonia, DMS and oxygenated VOCs, as well as isolated particle formation and growth episodes. The cruise took place in Baffin Bay and through the Canadian archipelago. Interpretation of the observations from both campaigns is enhanced through the use of chemical transport and particle dispersion models. This talk will provide an overview of NETCARE Arctic observational and related modeling activities, focusing on 2014 Arctic activities and highlighting upcoming presentations within the session and the work of individual research teams. An attempt will be made to synthesize the observations and model results, drawing connections of aerosol sources through to cloud formation and deposition processes.
NASA Astrophysics Data System (ADS)
Eicken, H.; Bitz, C. M.; Gascard, J.; Kaminski, T.; Karcher, M. J.; Kauker, F.; Overland, J. E.; Stroeve, J. C.; Wiggins, H. V.
2013-12-01
Rapid Arctic environmental and socio-economic change presents major challenges and opportunities to Arctic residents, government agencies and the private sector. The Arctic Ocean and its ice cover, in particular, are in the midst of transformative change, ranging from declines in sea-ice thickness and summer ice extent to threats to coastal communities and increases in maritime traffic and offshore resource development. The US interagency Study of Environmental Arctic Change (SEARCH) and the European Arctic Climate Change, Economy and Society (ACCESS) project are addressing both scientific research needs and stakeholder information priorities to improve understanding and responses to Arctic change. Capacity building, coordination and integration of activities at the international level and across sectors and stakeholder groups are major challenges that have to be met. ACCESS and SEARCH build on long-standing collaborations with a focus on environmental change in the Arctic ocean-ice-atmosphere system and the most pressing research needs to inform marine policy, resource management and threats to Arctic coastal communities. To illustrate the approach, key results and major conclusions from this international coordination and collaboration effort, we focus on a nascent sea-ice prediction research network. This activity builds on the Arctic Sea Ice Outlook that was initiated by SEARCH and the European DAMOCLES project (a precursor to ACCESS) and has now grown into an international community of practice that synthesizes, evaluates and discusses sea-ice predictions on seasonal to interannual scales. Key goals of the effort which is now entering into a new phase include the comparative evaluation of different prediction approaches, including the combination of different techniques, the compilation of reference datasets and model output, guidance on the design and implementation of observing system efforts to improve predictions and information transfer into private industry and the broader public. The latter relies on informal focus groups convened by ACCESS that help identify stakeholder priorities and provide feedback on science and policy documents resulting from this work. Most important, the research network effort explores the nature and ramifications of sea ice in an ice-diminished Arctic.
U.S. National / Naval Ice Center (NIC) Support to Naval and Maritime Operations
2011-06-20
States and Canadian governments. • International Arctic Buoy Programme ( IABP ) Global participants working together to maintain a network of... Modeling Surface Observations Satellite Air Recon Data Fusion Derived Data Automation Direct Data Dissemination TODAY’S CHALLENGES...and AUVs • Improve modeling and forecasting capabilities (OTSR/WEAX) • More trained ice analysts, ice pilots, and Arctic marine weather forecasters
Greenland Ice Sheet Monitoring Network (GLISN): Contributions to Science and Society
NASA Astrophysics Data System (ADS)
Anderson, K. R.; Bonaime, S.; Clinton, J. F.; Dahl-Jensen, T.; Debski, W. M.; Giardini, D.; Govoni, A.; Kanao, M.; Larsen, T. B.; Lasocki, S.; Lee, W. S.; McCormack, D. A.; Mykkeltveit, S.; Nettles, M.; Stutzmann, E.; Strollo, A.; Sweet, J. R.; Tsuboi, S.; Vallee, M.
2017-12-01
The Greenland Ice Sheet Monitoring Network (GLISN) is a broadband, multi-use seismological network, enhanced by selected geodetic observations, designed with the capability to allow researchers to understand the changes currently occurring in the Arctic, and with the operational characteristics necessary to enable response to those changes as understanding improves. GLISN was established through an international collaboration, with 10 nations coordinating their efforts to develop the current 34-station observing network during the last eight years. All of the data collected are freely and openly available in near-real time. The network was designed to transform the community capability for recording, analysis, and interpretation of seismic signals generated by discrete events in Greenland and the Arctic, as well as those traversing the region. Data from the network support a wide range of uses, including estimation of the properties of the solid Earth that control isostatic adjustment rates and set key boundary conditions for ice-sheet evolution; analysis of tectonic earthquakes throughout Greenland and the Arctic; study of the seismic signals associated with large calving events and changing glacier dynamics; and variations in ice and snow properties within the Greenland Ice Sheet. Recordings from the network have also provided invaluable data for rapid evaluation and understanding of the devastating landslide and tsunami that occurred near Nuugaatsiaq, Greenland, in June, 2017. The GLISN strategy of maximizing data quality from a network of approximately evenly distributed stations, delivering data in near-real time, and archiving a continuous data stream easily accessible to researchers, allows continuous discovery of new uses while also facilitating the generation of data products, such as catalogs of tectonic and glacial earthquakes and GPS-based estimates of snow height, that allow for assessment of change over time.
Improving Arctic Sea Ice Observations and Data Access to Support Advances in Sea Ice Forecasting
NASA Astrophysics Data System (ADS)
Farrell, S. L.
2017-12-01
The economic and strategic importance of the Arctic region is becoming apparent. One of the most striking and widely publicized changes underway is the declining sea ice cover. Since sea ice is a key component of the climate system, its ongoing loss has serious, and wide-ranging, socio-economic implications. Increasing year-to-year variability in the geographic location, concentration, and thickness of the Arctic ice cover will pose both challenges and opportunities. The sea ice research community must be engaged in sustained Arctic Observing Network (AON) initiatives so as to deliver fit-for-purpose remote sensing data products to a variety of stakeholders including Arctic communities, the weather forecasting and climate modeling communities, industry, local, regional and national governments, and policy makers. An example of engagement is the work currently underway to improve research collaborations between scientists engaged in obtaining and assessing sea ice observational data and those conducting numerical modeling studies and forecasting ice conditions. As part of the US AON, in collaboration with the Interagency Arctic Research Policy Committee (IARPC), we are developing a strategic framework within which observers and modelers can work towards the common goal of improved sea ice forecasting. Here, we focus on sea ice thickness, a key varaible of the Arctic ice cover. We describe multi-sensor, and blended, sea ice thickness data products under development that can be leveraged to improve model initialization and validation, as well as support data assimilation exercises. We will also present the new PolarWatch initiative (polarwatch.noaa.gov) and discuss efforts to advance access to remote sensing satellite observations and improve communication with Arctic stakeholders, so as to deliver data products that best address societal needs.
The International Arctic Buoy Programme (IABP) - An International Polar Year Every Year
NASA Astrophysics Data System (ADS)
Hanna, M.; Rigor, I.; Ortmeyer, M.; Haas, C.
2004-12-01
A network of automatic data buoys to monitor synoptic-scale fields of sea level pressure (SLP), surface air temperature (SAT), and ice motion throughout the Arctic Ocean was recommended by the U.S. National Academy of Sciences in 1974. Based on the Academy's recommendation, the Arctic Ocean Buoy Program was established by the Polar Science Center, Applied Physics Laboratory (APL), University of Washington, in 1978 to support the Global Weather Experiment. Operations began in early 1979, and the program continued through 1990 under funding from various agencies. In 1991, the International Arctic Buoy Programme (IABP) succeeded the Arctic Ocean Buoy Program, but the basic objective remains - to maintain a network of drifting buoys on the Arctic Ocean to provide meteorological and oceanographic data for real-time operational requirements and research purposes including support to the World Climate Research Programme and the World Weather Watch Programme. The IABP currently has 37 buoys deployed on the Arctic Ocean. Most of the buoys measure SLP and SAT, but many buoys are enhanced to measure other geophysical variables such as sea ice thickness, ocean temperature and salinity. This observational array is maintained by the 20 Participants from 10 different countries, who support the program through contributions of buoys, deployment logistics, and other services. The observations from the IABP are posted on the Global Telecommunications System for operational use, are archived at the World Data Center for Glaciology at the National Snow and Ice Data Center (http://nsidc.org), and can also be obtained from the IABP web server for research (http://iabp.apl.washington.edu). The observations from the IABP have been essential for: 1.) Monitoring Arctic and global climate change; 2.) Forecasting weather and sea ice conditions; 3.) Forcing, assimilation and validation of global weather and climate models; 4.) Validation of satellite data; etc. As of 2003, over 450 papers have been written using the observations collected by the IABP. The observations from IABP have been one of the cornerstones for environmental forecasting and studies of climate and climate change, i.e. many of the changes in Arctic climate were first observed or explained using data from the IABP. The IABP is also evolving to better support the operational and research requirements of the community. For example, some of the Participants of the IABP have been deploying buoys which not only measure SLP and SAT, but also ocean currents, temperatures and salinity. Other buoys have been enhanced to measure the ice mass balance (IMB) using thermistor strings and pingers aimed at the top and bottom of the sea ice. Some of these ocean and IMB buoys are deployed in close proximity to each other in order to provide a myriad of concurrent observations at a few points across the Arctic Ocean. From these data we can also estimate time variations in other geophysical variables such as oceanic heat storage and heat flux. These stations provide critical atmospheric, ice, and upper ocean hydrographic measurements that cannot be obtained by other means. The Arctic and global climate system is changing. These changes threaten our native cultures and ecosystems, but may also provide economic and social opportunities. In order to understand and respond to these changes, we need to sustain our current observational systems, and for the Arctic, the IABP provides the longest continuing record of observations.
Detecting and Understanding Changing Arctic Carbon Emissions
NASA Astrophysics Data System (ADS)
Bruhwiler, L.
2017-12-01
Warming in the Arctic has proceeded faster than anyplace on Earth. Our current understanding of biogeochemistry suggests that we can expect feedbacks between climate and carbon in the Arctic. Changes in terrestrial fluxes of carbon can be expected as the Arctic warms, and the vast stores of organic carbon frozen in Arctic soils could be mobilized to the atmosphere, with possible significant impacts on global climate. Quantifying trends in Arctic carbon exchanges is important for policymaking because greater reductions in anthropogenic emissions may be required to meet climate goals. Observations of greenhouse gases in the Arctic and globally have been collected for several decades. Analysis of this data does not currently support significantly changed Arctic emissions of CH4, however it is difficult to detect changes in Arctic emissions because of transport from lower latitudes and large inter-annual variability. Unfortunately, current space-based remote sensing systems have limitations at Arctic latitudes. Modeling systems can help untangle the Arctic budget of greenhouse gases, but they are dependent on underlying prior fluxes, wetland distributions and global anthropogenic emissions. Also, atmospheric transport models may have significant biases and errors. For example, unrealistic near-surface stability can lead to underestimation of emissions in atmospheric inversions. We discuss our current understanding of the Arctic carbon budget from both top-down and bottom-up approaches. We show that current atmospheric inversions agree well on the CH4 budget. On the other hand, bottom-up models vary widely in their predictions of natural emissions, with some models predicting emissions too large to be accommodated by the budget implied by global observations. Large emissions from the shallow Arctic ocean are also inconsistent with atmospheric observations. We also discuss the sensitivity of the current atmospheric network to what is likely small, gradual increases in emissions over time by examining modeled and observed spatial and seasonal variability. An issue we will consider is whether well-mixed background atmospheric records are more likely to detect changing Arctic emissions compared to stronger, but more variable signal from local sources.
NASA Astrophysics Data System (ADS)
Wiggins, H. V.; Eicken, H.; Fox, S. E.; Search Science Steering Committee
2010-12-01
The Study of Environmental Arctic Change (SEARCH) is a multi-agency effort to understand system-scale arctic change. Interrelated environmental changes in the Arctic are affecting ecosystems and living resources and are impacting local and global communities. The SEARCH program is guided by the Science Steering Committee (SSC), the Interagency Program Management Committee (IPMC), and focused panels. Over 150 projects and activities contribute to SEARCH implementation. The Observing Change component is underway through the National Science Foundation’s (NSF) Arctic Observing Network (AON), NOAA-sponsored atmospheric and sea ice observations, and other relevant national and international efforts. The Understanding Change component of SEARCH consists of modeling and analysis efforts, with strong linkages to relevant programs such as NSF’s Arctic System Science (ARCSS) Program. The SEARCH Sea Ice Outlook (http://www.arcus.org/search/seaiceoutlook/index.php) is an "Understanding Change" synthesis effort that aims to advance our understanding of the arctic sea ice system. The Responding to Change element currently includes initial planning efforts by the International Study of Arctic Change (ISAC) program as well as a newly-launched "Sea Ice for Walrus Outlook," which is a weekly report of sea ice conditions geared to Alaska Native walrus subsistence hunters, coastal communities, and others interested in sea ice and walrus (http://www.arcus.org/search/siwo). SEARCH is sponsored by eight U.S. agencies, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the Department of Energy (DOE), the Department of the Interior (DOI), the Smithsonian Institution, and the U.S. Department of Agriculture (USDA). The U.S. Arctic Research Commission participates as an IPMC observer. For further information, please visit the website: http://www.arcus.org/search or contact: Helen V. Wiggins: helen@arcus.org, SEARCH Project Office, Arctic Research Consortium of the U.S. (ARCUS); or Hajo Eicken, hajo.eicken@gi.alaska.edu, SEARCH SSC Chair.
NASA Astrophysics Data System (ADS)
Wiggins, H. V.; Schlosser, P.; Fox, S. E.
2009-12-01
The Study of Environmental Arctic Change (SEARCH) is a multi-agency effort to observe, understand, and guide responses to changes in the changing arctic system. Under the SEARCH program, guided by the Science Steering Committee (SSC), the Observing, Understanding, and Responding to Change panels, and the Interagency Program Management Committee (IPMC), scientists with a variety of expertise work together to achieve goals of the program. Over 150 projects and activities contribute to SEARCH implementation. The Observing Change component is underway through the NSF’s Arctic Observing Network (AON), NOAA-sponsored atmospheric and sea ice observations, and other relevant national and international efforts, including the EU-sponsored Developing Arctic Modeling and Observing Capabilities for Long-term Environmental Studies (DAMOCLES) Program. The Understanding Change component of SEARCH consists of modeling and analysis efforts, including the Sea Ice Outlook project, an international effort to provide a community-wide summary of the expected September arctic sea ice minimum. The Understanding Change component also has strong linkages to programs such as the NSF Arctic System Science (ARCSS) Program. The Responding to Change element will be launched through stakeholder-focused research and applications addressing social and economic concerns. As a national program under the International Study of Arctic Change (ISAC), SEARCH is working to expand international connections. The State of the Arctic Conference (soa.arcus.org), to be held 16-19 March 2010 in Miami, will be a milestone activity of SEARCH and will provide an international forum for discussion of future research directions aimed toward a better understanding of the arctic system and its trajectory. SEARCH is sponsored by eight U.S. agencies that comprise the IPMC, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the Department of Energy (DOE), the Department of the Interior (DOI), the Smithsonian Institution, and the U.S. Department of Agriculture (USDA). The U.S. Arctic Research Commission (USARC) participates as an IPMC observer. For more information, visit the website at: http://www.arcus.org/search or contact: Helen V. Wiggins: helen@arcus.org, SEARCH Project Office, ARCUS; or Peter Schlosser, schlosser@ldeo.columbia.edu, SEARCH SSC Chair.
McGuire, A.D.; Christensen, T.R.; Hayes, D.; Heroult, A.; Euskirchen, E.; Yi, Y.; Kimball, J.S.; Koven, C.; Lafleur, P.; Miller, P.A.; Oechel, W.; Peylin, P.; Williams, M.
2012-01-01
Although arctic tundra has been estimated to cover only 8% of the global land surface, the large and potentially labile carbon pools currently stored in tundra soils have the potential for large emissions of carbon (C) under a warming climate. These emissions as radiatively active greenhouse gases in the form of both CO2 and CH4 could amplify global warming. Given the potential sensitivity of these ecosystems to climate change and the expectation that the Arctic will experience appreciable warming over the next century, it is important to assess whether responses of C exchange in tundra regions are likely to enhance or mitigate warming. In this study we compared analyses of C exchange of Arctic tundra between 1990–1999 and 2000–2006 among observations, regional and global applications of process-based terrestrial biosphere models, and atmospheric inversion models. Syntheses of the compilation of flux observations and of inversion model results indicate that the annual exchange of CO2 between arctic tundra and the atmosphere has large uncertainties that cannot be distinguished from neutral balance. The mean estimate from an ensemble of process-based model simulations suggests that arctic tundra acted as a sink for atmospheric CO2 in recent decades, but based on the uncertainty estimates it cannot be determined with confidence whether these ecosystems represent a weak or a strong sink. Tundra was 0.6 °C warmer in the 2000s compared to the 1990s. The central estimates of the observations, process-based models, and inversion models each identify stronger sinks in the 2000s compared with the 1990s. Similarly, the observations and the applications of regional process-based models suggest that CH4 emissions from arctic tundra have increased from the 1990s to 2000s. Based on our analyses of the estimates from observations, process-based models, and inversion models, we estimate that arctic tundra was a sink for atmospheric CO2 of 110 Tg C yr-1 (uncertainty between a sink of 291 Tg C yr-1 and a source of 80 Tg C yr-1) and a source of CH4 to the atmosphere of 19 Tg C yr-1 (uncertainty between sources of 8 and 29 Tg C yr-1). The suite of analyses conducted in this study indicate that it is clearly important to reduce uncertainties in the observations, process-based models, and inversions in order to better understand the degree to which Arctic tundra is influencing atmospheric CO2 and CH4 concentrations. The reduction of uncertainties can be accomplished through (1) the strategic placement of more CO2 and CH4 monitoring stations to reduce uncertainties in inversions, (2) improved observation networks of ground-based measurements of CO2 and CH4 exchange to understand exchange in response to disturbance and across gradients of hydrological variability, and (3) the effective transfer of information from enhanced observation networks into process-based models to improve the simulation of CO2 and CH4 exchange from arctic tundra to the atmosphere.
NASA Astrophysics Data System (ADS)
Kikuchi, Takashi; Itoh, Motoyo; Nishino, Shigeto; Watanabe, Eiji
2015-04-01
Changes of the Arctic Ocean environment are well known as one of the most remarkable evidences of global warming, attracting social and public attentions as well as scientists'. However, to illustrate on-going changes and predict future condition of the Arctic marine environment, we still do not have enough knowledge of Arctic sea ice and marine environment. In particular, lack of observation data in winter, e.g., under sea ice, still remains a key issue for precise understanding of seasonal cycle on oceanographic condition in the Arctic Ocean. Mooring-based observation is one of the most useful methods to collect year-long data in the Arctic Ocean. We have been conducting long-term monitoring using mooring system in the Pacific sector of the Arctic Ocean. Volume, heat, and freshwater fluxes through Barrow Canyon where is a major conduit of Pacific-origin water-masses into the Canada Basin have been observed since 2000. We show from an analysis of the mooring results that volume flux through Barrow Canyon was about 60 % of Bering Strait volume flux. Averaged heat flux ranges from 0.9 to 3.07 TW, which could melt 88,000 to 300,000 km2 of 1m thick ice in the Canada Basin, which likely contributed to sea ice retreat in the Pacific sector of the Arctic Ocean. In winter, we found inter-annual variability in salinity related to coastal polynya activity in the Chukchi Sea. In collaboration with Distributed Biological Observatory (DBO) project, which is one of the tasks of Sustaining Arctic Observing Network (SAON), we also initiated year-long mooring observation in the Hope Valley of the southern Chukchi Sea since 2012. Interestingly, winter oceanographic conditions in the Hope Valley are greatly different between in 2012-2013 and in 2013-2014. We speculate that differences of sea ice freeze-up and coastal polynya activity in the southern Chukchi Sea cause significant difference of winter oceanographic condition. It suggests that recent sea ice reduction in the Pacific sector of the Arctic Ocean presumably influences marine environment not only in summer but also in winter.
NASA Astrophysics Data System (ADS)
Ahrends, H. E.; Oberbauer, S. F.; Tweedie, C.; Hollister, R. D.
2010-12-01
Knowledge of changing tundra vegetation and its response to climate variability is critical for understanding the land-atmosphere-interactions for the Arctic and the global system. However, vegetation characteristics, such as phenology, structure and species composition, are characterized by an extreme heterogeneity at a small scale. Manual observations of these variables are highly time-consuming, labor intensive, subjective, and disturbing to the vegetation. In contrast, recently developed robotic systems (networked infomechanical systems, NIMS) allow for performing non-intrusive spatially integrated measurements of vegetation communities. Within the ITEX (International Tundra Experiment) AON (Arctic Observation Network) project we installed a cable-based sensor system, running over a transect of approximately 50 m length and 2 m width, at two long-term arctic research sites in Alaska. The trolley was initially equipped with instruments recording the distance to vegetation canopy, up- and downwelling short- and longwave radiation, air and surface temperature and spectral reflection. We aim to study the thermal and spectral response of the vegetation communities over a wide range of ecosystem types. We expect that automated observations, covering the spatial heterogeneity of vegetation and surface characteristics, can give a deeper insight in ecosystem functioning and vegetation response to climate. The data can be used for scaling up vegetation characteristics derived from manual measurements and for linking them to aircraft and satellite data and to carbon, water and surface energy budgets measured at the ecosystem scale. Sampling errors due to cable sag are correctable and effects of wind-driven movements can be offset by repeat measurements. First hand-pulled test measurements during summer 2010 show strong heterogeneity of the observation parameters and a variable spectral and thermal response of the plants within the transects. Differences support the importance of our approach for upscaling purposes and for a comprehensive understanding of the arctic biome.
Prioritizing Arctic Observations with Limited Resources
NASA Astrophysics Data System (ADS)
Kelly, B.; Starkweather, S.
2012-12-01
U.S. Federal agencies recently completed a five-year research plan for the Arctic including plans to enhance efforts toward an Arctic Observing Network (AON). Following on numerous national and international planning efforts, the five-year plan identifies nine priority areas including enhancing observing system design, assessing priorities of local residents, and improving data access. AON progress to date has been realized through bottom-up funding decisions and some top-down design optimization approaches, which have resulted in valuable yet ad hoc progress towards Arctic research imperatives. We suggest that advancing AON beyond theoretical design and ad hoc efforts with the engagement of multiple U.S. Federal agencies will require a structured, input-based planning approach to prioritization that recognizes budget realities. Completing a long list of worthy observing efforts appears to be unsustainable and inadequate in responding to the rapid changes taking place in the Arctic. Society would be better served by more rapid implementation of sustained, long-term observations focused on those climate feedbacks with the greatest potential negative impacts. Several emerging theoretical frameworks have pointed to the need to enhance iterative, capacity-building dialog between observationalists, modelers, and stakeholders as a way to identify these broadest potential benefits. We concur and suggest that those dialogs need to be facilitated and sustained over long periods. Efforts to isolate observational programs from process research are, we believe, impeding progress. At the same time, we note that bottom-up funding decisions, while useful for prioritizing process research, are less appropriate to building observing systems.
The IAOOS arctic network project, status and prospect
NASA Astrophysics Data System (ADS)
Pelon, J.; Provost, C.; Sennechael, N.; Calzas, M.; Blouzon, F.; Gascard, J. C.
2015-12-01
It is quite clear that for studying Arctic climate changes, and better understand interacting processes it is essential to follow an integrated approach for observing and modeling the whole Arctic system encompassing the atmosphere, the ocean and sea-ice at once. Due to the difficulties in retrieving key parameters, satellite observations alone are not the right answer. The project we are developing, is an attempt to tackle this challenge by providing and maintaining a new integrated observing network of instrumented buoys over the Arctic Ocean in order to collect simultaneously and in real time information related to the state of the upper Ocean, the lower Atmosphere and the Arctic sea-ice/snow. It is planned to operate several autonomous platforms in a network in the Arctic Ocean for a period of at least 5 years. Each platform is equipped to vertically sense and profile key variables in the ocean, sea-ice and atmosphere using - CTD (conductivity, temperature, depth) vertical profilers sensors collecting ocean temperature and salinity down to 800m depth, - Temperature and heat conductivity in snow and ice from ice-mass-balance systems - Cloud and aerosol lidar profiling of the lower atmosphere - Diffuse and direct solar flux using wide angle radiometer - Meteorological standard parameters at the surface Platforms allow measurements to be transmitted in near real time via Iridium satellites. As they will be drifting, it is planned to replace part of them every year. Major tests were performed deploying progressively fully equipped IAOOS platform at the North Pole in April 2012, 2013 and 2014. These platforms drifted from the North Pole in April to Fram Strait (September, October) providing spring summer and fall field data. Important fieldwork for IAOOS was also taking place within the Norwegian ice camp on board R/V Lance organized by the Norsk Polar Institute from January to June 2015, as part of the Norwegian young ICE (N-ICE 2015) cruise project. These intensive tests were very timely. The first IAOOS array deployment will start in August 2015 from R/V Araon during the Korean cruise organized by the KOPRI in the Canadian Basin and from R/V Polarstern during the German cruise TRANSARC II organized by the Alfred Wegener Institute in the Eurasian Basin. First results obtained in the frame of IAOOS will be presented and discussed.
NASA Astrophysics Data System (ADS)
Wiggins, H. V.; Eicken, H.; Fox, S. E.; Search Science Steering Committee
2011-12-01
SEARCH is an interdisciplinary and interagency program that works with academic and government agency scientists to plan, conduct, and synthesize studies of arctic change. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. Towards this end, SEARCH: (1) Generates and synthesizes research findings and promotes arctic science and scientific discovery across disciplines and among agencies. (2) Identifies emerging issues in arctic environmental change. (3) Provides information resources to arctic stakeholders, policy-makers, and the public to help them respond to arctic environmental change. (4) Coordinates with national arctic science programs integral to SEARCH goals. (5) Facilitates research activities across local-to-global scales with stakeholder concerns incorporated from the start of the planning process. (6) Represents the U.S. arctic environmental change science community in international and global change research initiatives. Examples of specific SEARCH activities include: (1) Arctic Observing Network (AON) - a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. (2) Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. (3) Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. (4) Developing recommendations for an interagency "Understanding Arctic Change" program. In addition to the above activities, SEARCH is also currently undertaking a strategic planning process to define priority goals and objectives for the next 3-5 years. SEARCH is guided by a Science Steering Committee and several panels and working groups, with broad representation of the research community. SEARCH is sponsored by eight U.S. agencies, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the Department of Energy (DOE), the Department of the Interior (DOI), the Smithsonian Institution, and the U.S. Department of Agriculture (USDA). The U.S. Arctic Research Commission participates as an agency observer. For further information, please visit the website: http://www.arcus.org/search or contact: Helen V. Wiggins: helen@arcus.org, SEARCH Project Office, Arctic Research Consortium of the U.S. (ARCUS).
NASA Astrophysics Data System (ADS)
Hardesty, J. O.; Ivey, M.; Helsel, F.; Dexheimer, D.; Lucero, D. A.; Cahill, C. F.; Roesler, E. L.
2017-12-01
This presentation will make the case for development of a permanent integrated High Arctic research and testing center at Oliktok Point, Alaska; taking advantage of existing assets and infrastructure, controlled airspace, an active UAS program and local partnerships. Arctic research stations provide critical monitoring and research on climate change for conditions and trends in the Arctic. The US Chair of the Arctic Council increased awareness of gaps in our understanding of Artic systems, scarce monitoring, lack of infrastructure and readiness for emergency response. Less sea ice brings competition for commercial shipping and resource extraction. Search and rescue, pollution mitigation and safe navigation need real-time, wide-area monitoring to respond to events. Multi-national responses for international traffic will drive a greater security presence to protect citizens and sovereign interests. To address research and technology gaps, there is a national need for a US High Arctic Center (USHARC) with an approach to partner stakeholders from science, safety and security to develop comprehensive solutions. The Station should offer year-round use, logistic support and access to varied ecological settings; phased adaptation to changing needs; and support testing of technologies such as multiple autonomous platforms, renewable energies and microgrids, and sensors in Arctic settings. We propose an Arctic Center at Oliktok Point, Alaska. Combined with the Toolik Field Station and Barrow Environmental Observatory, they form a US network of Arctic Stations. An Oliktok Point Station can provide complementary and unique assets that include: access via land, sea and air; coastal and terrestrial ecologies; controlled airspaces across land and ocean; medical and logistic support; atmospheric observations from an adjacent ARM facility; connections to Barrow and Toolik; fiber-optic communications; University of Alaska Fairbanks UAS Test Facility partnership; and an airstrip and hangar for UAS. World-class Arctic research requires year-round access and facilities. The US currently conducts most Arctic research at stations outside the US. A US High Arctic Station network enables monitoring that is specific to the US Arctic, to predict and understand impacts that affect people, communities and the planet.
NASA Astrophysics Data System (ADS)
Hardesty, J. O.; Ivey, M.; Helsel, F.; Dexheimer, D.; Cahill, C. F.; Bendure, A.; Lucero, D. A.; Roesler, E. L.
2016-12-01
This presentation will make the case for development of a permanent integrated research and testing station at Oliktok Point, Alaska; taking advantage of existing assets and infrastructure, controlled airspace, an active UAS program and local partnerships. Arctic research stations provide critical monitoring and research on climate change for conditions and trends in the Arctic. The US Chair of the Arctic Council has increased awareness of gaps in our understanding of Artic systems, scarce monitoring, lack of infrastructure and readiness for emergency response. Less sea ice brings competition for commercial shipping and resource extraction. Search and rescue, pollution mitigation and safe navigation need real-time, wide-area monitoring to respond to events. Multi-national responses for international traffic will drive a greater security presence to protect citizens and sovereign interests. To address research and technology gaps, there is a national need for a High Arctic Station with an approach that partners stakeholders from science, safety and security to develop comprehensive solutions. The Station should offer year-round use, logistic support and access to varied ecological settings; phased adaptation to changing needs; and support testing of technologies such as multiple autonomous platforms, renewable energies and microgrids, and sensors in Arctic settings. We propose an Arctic Station at Oliktok Point, Alaska. Combined with the Toolik Field Station and Barrow Environmental Observatory, they form a US network of Arctic Stations. An Oliktok Point Station can provide complementary and unique assets that include: ocean access, and coastal and terrestrial systems; road access; controlled airspaces on land and ocean; nearby air facilities, medical and logistic support; atmospheric observations from an adjacent ARM facility; connections to Barrow and Toolik; fiber-optic communications; University of Alaska Fairbanks UAS Test Facility partnership; and an airstrip and hangar for UAS. World-class Arctic research requires year-round access and facilities. The US currently conducts most Arctic research at stations outside the US. A US Arctic Station network enables monitoring that is specific to the US Arctic, to predict and understand impacts that affect people, communities and the planet.
NASA Astrophysics Data System (ADS)
Langford, Z. L.; Kumar, J.; Hoffman, F. M.
2015-12-01
Observations indicate that over the past several decades, landscape processes in the Arctic have been changing or intensifying. A dynamic Arctic landscape has the potential to alter ecosystems across a broad range of scales. Accurate characterization is useful to understand the properties and organization of the landscape, optimal sampling network design, measurement and process upscaling and to establish a landscape-based framework for multi-scale modeling of ecosystem processes. This study seeks to delineate the landscape at Seward Peninsula of Alaska into ecoregions using large volumes (terabytes) of high spatial resolution satellite remote-sensing data. Defining high-resolution ecoregion boundaries is difficult because many ecosystem processes in Arctic ecosystems occur at small local to regional scales, which are often resolved in by coarse resolution satellites (e.g., MODIS). We seek to use data-fusion techniques and data analytics algorithms applied to Phased Array type L-band Synthetic Aperture Radar (PALSAR), Interferometric Synthetic Aperture Radar (IFSAR), Satellite for Observation of Earth (SPOT), WorldView-2, WorldView-3, and QuickBird-2 to develop high-resolution (˜5m) ecoregion maps for multiple time periods. Traditional analysis methods and algorithms are insufficient for analyzing and synthesizing such large geospatial data sets, and those algorithms rarely scale out onto large distributed- memory parallel computer systems. We seek to develop computationally efficient algorithms and techniques using high-performance computing for characterization of Arctic landscapes. We will apply a variety of data analytics algorithms, such as cluster analysis, complex object-based image analysis (COBIA), and neural networks. We also propose to use representativeness analysis within the Seward Peninsula domain to determine optimal sampling locations for fine-scale measurements. This methodology should provide an initial framework for analyzing dynamic landscape trends in Arctic ecosystems, such as shrubification and disturbances, and integration of ecoregions into multi-scale models.
NASA Astrophysics Data System (ADS)
Wiggins, H. V.; Eicken, H.; Fox, S. E.
2012-12-01
SEARCH is an interdisciplinary and interagency program that works with academic and government agency scientists to plan, conduct, and synthesize studies of arctic change. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. Towards this end, SEARCH: 1. Generates and synthesizes research findings and promotes arctic science and scientific discovery across disciplines and among agencies. 2. Identifies emerging issues in arctic environmental change. 3. Provides information resources to arctic stakeholders, policy-makers, and the public to help them respond to arctic environmental change. 4. Coordinates with national arctic science programs integral to SEARCH goals. 5. Facilitates research activities across local-to-global scales with stakeholder concerns incorporated from the start of the planning process. 6. Represents the U.S. arctic environmental change science community in international and global change research initiatives. Specific current activities include: Arctic Observing Network (AON) - coordinating a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. Arctic Sea Ice Outlook ¬- an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. In April, the SEARCH Science Steering Committee (SSC) released a set of draft 5-year goals and objectives for review by the broader arctic science community. The goals and objectives will direct the SEARCH program in the next five years. The draft SEARCH goals focus on four areas: ice-diminished Arctic Ocean, warming permafrost, land ice and sea level, and societal and policy implications. Together, the goals will provide significant insight into arctic system change as a whole. The SEARCH SSC will release the goals in their revised form and then work closely with agency representatives to implement the goals through research opportunities and community activities. SEARCH is guided by a Science Steering Committee and several panels and working groups, with broad representation of the research community. SEARCH is sponsored by eight U.S. agencies, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the Department of Energy (DOE), the Department of the Interior (DOI), the Smithsonian Institution, and the U.S. Department of Agriculture (USDA). The U.S. Arctic Research Commission participates as an agency observer. For further information, please visit the website: http://www.arcus.org/search or contact: Helen V. Wiggins: helen@arcus.org, SEARCH Project Office, Arctic Research Consortium of the U.S. (ARCUS).
Ahi, Ehsan Pashay; Kapralova, Kalina Hristova; Pálsson, Arnar; Maier, Valerie Helene; Gudbrandsson, Jóhannes; Snorrason, Sigurdur S; Jónsson, Zophonías O; Franzdóttir, Sigrídur Rut
2014-01-01
Understanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial structures. We conducted a gene expression study on candidates from a conserved gene coexpression network, focusing on the development of craniofacial elements in embryos of two contrasting Arctic charr morphotypes (benthic and limnetic). Four Arctic charr morphs were studied: one limnetic and two benthic morphs from Lake Thingvallavatn and a limnetic reference aquaculture morph. The presence of morphological differences at developmental stages before the onset of feeding was verified by morphometric analysis. Following up on our previous findings that Mmp2 and Sparc were differentially expressed between morphotypes, we identified a network of genes with conserved coexpression across diverse vertebrate species. A comparative expression study of candidates from this network in developing heads of the four Arctic charr morphs verified the coexpression relationship of these genes and revealed distinct transcriptional dynamics strongly correlated with contrasting craniofacial morphologies (benthic versus limnetic). A literature review and Gene Ontology analysis indicated that a significant proportion of the network genes play a role in extracellular matrix organization and skeletogenesis, and motif enrichment analysis of conserved noncoding regions of network candidates predicted a handful of transcription factors, including Ap1 and Ets2, as potential regulators of the gene network. The expression of Ets2 itself was also found to associate with network gene expression. Genes linked to glucocorticoid signalling were also studied, as both Mmp2 and Sparc are responsive to this pathway. Among those, several transcriptional targets and upstream regulators showed differential expression between the contrasting morphotypes. Interestingly, although selected network genes showed overlapping expression patterns in situ and no morph differences, Timp2 expression patterns differed between morphs. Our comparative study of transcriptional dynamics in divergent craniofacial morphologies of Arctic charr revealed a conserved network of coexpressed genes sharing functional roles in structural morphogenesis. We also implicate transcriptional regulators of the network as targets for future functional studies.
Bruce G. Marcot; M. Torre Jorgenson; Anthony R. DeGange
2014-01-01
During July 16â18, 2013, low-level photography flights were conducted (with a Cessna 185 with floats and a Cessna 206 with tundra tires) over the five administrative units of the National Park Service Arctic Network (Bering Land Bridge National Preserve, Cape Krusenstern National Monument, Gates of the Arctic National Park and Preserve, Kobuk Valley National Park, and...
Applying Agile Methods to the Development of a Community-Based Sea Ice Observations Database
NASA Astrophysics Data System (ADS)
Pulsifer, P. L.; Collins, J. A.; Kaufman, M.; Eicken, H.; Parsons, M. A.; Gearheard, S.
2011-12-01
Local and traditional knowledge and community-based monitoring programs are increasingly being recognized as an important part of establishing an Arctic observing network, and understanding Arctic environmental change. The Seasonal Ice Zone Observing Network (SIZONet, http://www.sizonet.org) project has implemented an integrated program for observing seasonal ice in Alaska. Observation and analysis by local sea ice experts helps track seasonal and inter-annual variability of the ice cover and its use by coastal communities. The ELOKA project (http://eloka-arctic.org) is collaborating with SIZONet on the development of a community accessible, Web-based application for collecting and distributing local observations. The SIZONet project is dealing with complicated qualitative and quantitative data collected from a growing number of observers in different communities while concurrently working to design a system that will serve a wide range of different end users including Arctic residents, scientists, educators, and other stakeholders with a need for sea ice information. The benefits of linking and integrating knowledge from communities and university-based researchers are clear, however, development of an information system in this multidisciplinary, multi-participant context is challenging. Participants are geographically distributed, have different levels of technical expertise, and have varying goals for how the system will be used. As previously reported (Pulsifer et al. 2010), new technologies have been used to deal with some of the challenges presented in this complex development context. In this paper, we report on the challenges and innovations related to working as a multi-disciplinary software development team. Specifically, we discuss how Agile software development methods have been used in defining and refining user needs, developing prototypes, and releasing a production level application. We provide an overview of the production application that includes discussion of a hybrid architecture that combines a traditional relational database, schema-less database, advanced free text search, and the preliminary framework for Semantic Web support. The current version of the SIZONet web application is discussed in relation to the high-value features defined as part of the Agile approach. Preliminary feedback indicates a system that meets the needs of multiple user groups.
Representativeness-based sampling network design for the State of Alaska
Forrest M. Hoffman; Jitendra Kumar; Richard T. Mills; William W. Hargrove
2013-01-01
Resource and logistical constraints limit the frequency and extent of environmental observations, particularly in the Arctic, necessitating the development of a systematic sampling strategy to maximize coverage and objectively represent environmental variability at desired scales. A quantitative methodology for stratifying sampling domains, informing site selection,...
NASA Astrophysics Data System (ADS)
Wright, N.; Polashenski, C. M.; Deeb, E. J.; Morriss, B. F.; Song, A.; Chen, J.
2015-12-01
One of the key processes controlling sea ice mass balance in the Arctic is the partitioning of solar energy between reflection back to the atmosphere and absorption into the ice and upper ocean. We investigate the solar energy balance in the ice-ocean system using in-situ data collected from Arctic Observing Network (AON) sea ice sites and imagery from high resolution optical satellites. AON assets, including ice mass balance buoys and ice tethered profilers, monitor the storage and fluxes of heat in the ice-ocean system. High resolution satellite imagery, processed using object-based image classification techniques, allows us to quantify the evolution of surrounding ice conditions, including melt pond coverage and floe size distribution, at aggregate scale. We present results from regionally representative sites that constrain the partitioning of absorbed solar energy between ice melt and ocean storage, and quantify the strength of the ice-albedo feedback. We further demonstrate how the results can be used to validate model representations of the physical processes controlling ice-albedo feedbacks. The techniques can be extended to understand solar partitioning across the Arctic basin using additional sites and model based data integration.
NASA Astrophysics Data System (ADS)
Hoppmann, Mario; Nicolaus, Marcel; Rabe, Benjamin; Wenzhöfer, Frank; Katlein, Christian; Scholz, Daniel; Valcic, Lovro
2017-04-01
To understand the current evolution of the Arctic Ocean towards a less extensive, thinner and younger sea ice cover is one of the biggest challenges in climate research. Especially the lack of simultaneous in-situ observations of sea ice, ocean and atmospheric properties leads to significant knowledge gaps in their complex interactions, and how the associated processes impact the polar marine ecosystem. Here we present a concept for the implementation of a long-term strategy to monitor the most essential climate- and ecosystem parameters in the central Arctic Ocean, year round and synchronously. The basis of this strategy is the development and enhancement of a number of innovative autonomous observational platforms, such as rugged weather stations, ice mass balance buoys, ice-tethered bio-optical buoys and upper ocean profilers. The deployment of those complementing platforms in a distributed network enables the simultaneous collection of physical and biogeochemical in-situ data on basin scales and year round, including the largely undersampled winter periods. A key advantage over other observatory systems is that the data is sent via satellite in near-real time, contributing to numerical weather predictions through the Global Telecommunication System (GTS) and to the International Arctic Buoy Programme (IABP). The first instruments were installed on ice floes in the Eurasian Basin in spring 2015 and 2016, yielding exceptional records of essential climate- and ecosystem-relevant parameters in one of the most inaccessible regions of this planet. Over the next 4 years, and including the observational periods of the Year of Polar Prediction (YOPP, 2017-2019) and the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC, 2020), the distributed observatory will be maintained by deployment of additional instruments in the central Arctic each year, benefitting from international logistical efforts.
NASA Astrophysics Data System (ADS)
Urban, F. E.; Clow, G. D.; Meares, D. C.
2004-12-01
Observations of long-term climate and surficial geological processes are sparse in most of the Arctic, despite the fact that this region is highly sensitive to climate change. Instrumental networks that monitor the interplay of climatic variability and geological/cryospheric processes are a necessity for documenting and understanding climate change. Improvements to the spatial coverage and temporal scale of Arctic climate data are in progress. The USGS, in collaboration with The Bureau of Land Management (BLM) and The Fish and Wildlife Service (FWS) currently maintains two types of monitoring networks in northern Alaska: (1) A 15 site network of continuously operating active-layer and climate monitoring stations, and (2) a 21 element array of deep bore-holes in which the thermal state of deep permafrost is monitored. Here, we focus on the USGS Alaska Active Layer and Climate Monitoring Network (AK-CLIM). These 15 stations are deployed in longitudinal transects that span Alaska north of the Brooks Range, (11 in The National Petroleum Reserve Alaska, (NPRA), and 4 in The Arctic National Wildlife Refuge (ANWR)). An informative overview and update of the USGS AK-CLIM network is presented, including insight to current data, processing and analysis software, and plans for data telemetry. Data collection began in 1998 and parameters currently measured include air temperature, soil temperatures (5-120 cm), snow depth, incoming and reflected short-wave radiation, soil moisture (15 cm), wind speed and direction. Custom processing and analysis software has been written that calculates additional parameters such as active layer thaw depth, thawing-degree-days, albedo, cloudiness, and duration of seasonal snow cover. Data from selected AK-CLIM stations are now temporally sufficient to begin identifying trends, anomalies, and inter-annual variability in the climate of northern Alaska.
NASA Astrophysics Data System (ADS)
Jung, C. H.; Yoon, Y. J.; Ahn, S. H.; Kang, H. J.; Gim, Y. T.; Lee, B. Y.
2017-12-01
Information of the spatial and temporal variations of cloud condensation nuclei (CCN) concentrations is important in estimating aerosol indirect effects. Generally, CCN aerosol is difficult to estimate using remote sensing methods. Although there are many CCN measurements data, extensive measurements of CCN are not feasible because of the complex nature of the operation and high cost, especially in the Arctic region. Thus, there have been many attempts to estimate CCN concentrations from more easily obtainable parameters such as aerosol optical depth (AOD) because AOD has the advantage of being readily observed by remote sensing from space by several sensors. For example, some form of correlation was derived between AOD and the number concentration of cloud condensation nuclei (CCN) through the comparison results from AERONET network and CCN measurements (Andreae 2009). In this study, a parameterization of CCN concentration as a function of AOD at 500 nm is given in the Arctic region. CCN data was collected during the period 2007-2013 at the Zeppelin observatory (78.91° N, 11.89° E, 474 masl). The AERONET network and MODIS AOD data are compared with ground measured CCN measurement and the relations between AOD and CCN are parameterized. The seasonal characteristics as well as long term trends are also considered. Through the measurement, CCN concentration remains high during spring because of aerosol transportation from the mid-latitudes, known as Arctic Haze. Lowest CCN number densities were observed during Arctic autumn and early winter when aerosol long-range transport into the Arctic is not effective and new particle formation ceases. The results show that the relation between AOD and CCN shows a different parameter depending on the seasonal aerosol and CCN characteristics. This seasonal different CCN-AOD relation can be interpreted as many physico-chemical aerosol properties including aerosol size distribution, composition. ReferenceAndreae, M. O. (2009) Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions,2009, Atmos. Chem. Phys., 9, 543-556.
NASA Astrophysics Data System (ADS)
Brady, M.
2017-12-01
This study engaged local community stakeholders in Alaska's Arctic Slope Region to develop a web-based shoreline change risk geographic information system (WebGIS) in collaboration with the North Slope Borough and its residents. The value of the effort includes rich spatial documentation of local risks across the vast, remote, and rapidly changing shoreline, and identification of local manager information needs to direct WebGIS development. The study advances our understanding of shoreline change problems from the perspective of local Arctic communities beyond municipal impacts while building decision support. Over fifty local residents in three communities with collective coastal knowledge that extends across the National Petroleum Reserve - Alaska and Arctic National Wildlife Refuge shared their perspectives on hard copy maps. Sixteen managers provided usability perceptions of a beta WebGIS with shoreline change susceptibility information summarized at relevant asset locations such as subsistence camps. The hard copy maps with 300 "problem places" were digitized for analysis, which revealed problems across the coastline, especially challenges to boating for subsistence hunting such as shoaling cutting off access and creating hazards. The usability workshop revealed specific information needs including the need to monitor impacts at decommissioned national defense radar sites repurposed by locals to centralize oil and gas activity. These results were analyzed using an Instructional Systems Design (ISD) framework consisting of front-end and formative WebGIS evaluation phases. The front-end evaluation is the local input on hard copy maps, which provided local verification of coastal risks. The formative evaluation is the usability workshop with managers, which informed WebGIS development while promoting user buy-in. In terms of product and process, the local knowledge and information needs collected are significant because they establish local engagement with the WebGIS. The engagement is significant because the WebGIS can link local communities with Arctic Observing Networks (AON) that monitor the environmental factors used in the system. This engagement is important for advancing the dual role of AONs for providing both environmental understanding and stakeholder decision support.
Sea Ice Outlook for September 2015 June Report - NASA Global Modeling and Assimilation Office
NASA Technical Reports Server (NTRS)
Cullather, Richard I.; Keppenne, Christian L.; Marshak, Jelena; Pawson, Steven; Schubert, Siegfried D.; Suarez, Max J.; Vernieres, Guillaume; Zhao, Bin
2015-01-01
The recent decline in perennial sea ice cover in Arctic Ocean is a topic of enormous scientific interest and has relevance to a broad variety of scientific disciplines and human endeavors including biological and physical oceanography, atmospheric circulation, high latitude ecology, the sustainability of indigenous communities, commerce, and resource exploration. A credible seasonal prediction of sea ice extent would be of substantial use to many of the stakeholders in these fields and may also reveal details on the physical processes that result in the current trends in the ice cover. Forecasts are challenging due in part to limitations in the polar observing network, the large variability in the climate system, and an incomplete knowledge of the significant processes. Nevertheless it is a useful to understand the current capabilities of high latitude seasonal forecasting and identify areas where such forecasts may be improved. Since 2008 the Arctic Research Consortium of the United States (ARCUS) has conducted a seasonal forecasting contest in which the average Arctic sea ice extent for the month of September (the month of the annual extent minimum) is predicted from available forecasts in early June, July, and August. The competition is known as the Sea Ice Outlook (SIO) but recently came under the auspices of the Sea Ice Prediction Network (SIPN), and multi-agency funded project to evaluate the SIO. The forecasts are submitted based on modeling, statistical, and heuristic methods. Forecasts of Arctic sea ice extent from the GMAO are derived from seasonal prediction system of the NASA Goddard Earth Observing System model, version 5 (GEOS 5) coupled atmosphere and ocean general circulation model (AOGCM). The projections are made in order to understand the relative skill of the forecasting system and to determine the effects of future improvements to the system. This years prediction is for a September average Arctic ice extent of 5.030.41 million km2.
The U.S. EPA Sustainable and Healthy Communities Seminar Series presents the Tribal Science Webinar Series that will look to develop a forum for discussion of the complex environmental issues facing many tribal and indigenous communities.
NASA Astrophysics Data System (ADS)
Maslowski, W.
2017-12-01
The Regional Arctic System Model (RASM) has been developed to better understand the operation of Arctic System at process scale and to improve prediction of its change at a spectrum of time scales. RASM is a pan-Arctic, fully coupled ice-ocean-atmosphere-land model with marine biogeochemistry extension to the ocean and sea ice models. The main goal of our research is to advance a system-level understanding of critical processes and feedbacks in the Arctic and their links with the Earth System. The secondary, an equally important objective, is to identify model needs for new or additional observations to better understand such processes and to help constrain models. Finally, RASM has been used to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook of the Sea Ice Prediction Network. Future RASM forecasts, are likely to include increased resolution for model components and ecosystem predictions. Such research is in direct support of the US environmental assessment and prediction needs, including those of the U.S. Navy, Department of Defense, and the recent IARPC Arctic Research Plan 2017-2021. In addition to an overview of RASM technical details, selected model results are presented from a hierarchy of climate models together with available observations in the region to better understand potential oceanic contributions to polar amplification. RASM simulations are analyzed to evaluate model skill in representing seasonal climatology as well as interannual and multi-decadal climate variability and predictions. Selected physical processes and resulting feedbacks are discussed to emphasize the need for fully coupled climate model simulations, high model resolution and sensitivity of simulated sea ice states to scale dependent model parameterizations controlling ice dynamics, thermodynamics and coupling with the atmosphere and ocean.
NASA Astrophysics Data System (ADS)
Richter-Menge, J.; Stott, G.; Harriman, C.; Perovich, D. K.; Elder, B. C.; Polashenski, C.
2013-12-01
Over the past 4 school years, our team of Arctic sea ice researchers and middle school teachers has collaborated in an educational outreach activity to develop a series of earth science classes aimed at 8th grade science students. Central to the effort is an environmental observation site installed at the school, designed to closely mimic sea ice mass balance buoys deployed as part of an NSF-sponsored Arctic Observing Network (AON) project. The site located at the school collects data on air temperature, barometric pressure, snow depth, and snow and ground temperatures. Working directly with the research team over the course of the school year, students learn to collect, process, and analyze the local environmental data. Key to the experience is the students' opportunity to pose and address open-ended questions about a set of scientific data that is inherently familiar to them, since it reflects the seasonal conditions they are witnessing (e.g. the 2011-12 New England winter with no snow). During the series of classes, students are also exposed to the similar set of environmental data collected in the Arctic, via a sea ice mass balance buoy they ';adopt.' The arctic data set opens the door to discussions about climate change and its particularly dramatic affect on the arctic environment. Efforts are underway to transform this outreach project into an expanded earth science classroom module for use at other schools. Portability will require an approach that makes connections to the Arctic without a reliance on the multiple visits to the classroom by the research team (e.g. forming and facilitating partnerships with Arctic schools and field researchers via the internet). We are also evaluating the possibility of constructing low cost, portable weather stations to be used with the module.
NASA Astrophysics Data System (ADS)
Bye, B. L.; Godøy, Ø.
2014-12-01
Environmental and climate changes are important elements of our global challenges. They are observed at a global scale and in particular in the Arctic. In order to give better estimates of the future changes, the Arctic has to be monitored and analyzed by a multi-disciplinary observation system that will improve Earth System Models. The best chance to achieve significant results within a relatively short time frame is found in regions with a large natural climate gradient, and where processes sensitive to the expected changes are particularly important. Svalbard and the surrounding ocean areas fulfil all these criteria. The vision for SIOS is to be a regional observational system for long term acquisition and proliferation of fundamental knowledge on global environmental change within an Earth System Science perspective in and around Svalbard. SIOS will systematically develop and implement methods for how observational networks are to be construed. The distributed SIOS data management system (SDMS) will be implemented through a combination of technologies tailored to the multi-disciplinary nature of the Arctic data. One of these technologies is The Brokering approach or "Framework". The Brokering approach provides a series of services such as discovery, access, transformation and semantics support to enable translation from one discipline/culture to another. This is exactly the challenges the SDMS will have to handle and thus the Brokering approach is integrated in the design of the system. A description of the design strategy for the SDMS that includes The Brokering approach will be presented. The design and implementation plans for the SDMS are based on research done in the EU funded ESFRI project SIOS and examples of solutions for interoperable systems producing Arctic datasets and products coordinated through SIOS will be showcased. The reported experience from SIOS brokering approach will feed into the process of developing a sustainable brokering governance in the framework of Research Data Alliance. It will also support the Global Earth Observation System of Systems (GEOSS). This is a contribution to increase our global capacity to create interoperable systems that provide multi-disciplinary dataset and products.
NASA Astrophysics Data System (ADS)
Schulz, H.; Zanatta, M.; Stefanie, W.; Herber, A. B.
2016-12-01
Black carbon (BC) is an important contributor to climate change in the Arctic region. Due to its light absorption behavior, BC leads to a direct warming of the corresponding aerosol layer. Nevertheless, the net Arctic warming induced by BC strongly depends on its vertical distribution. At present, the low level of knowledge in BC vertical variability in the Arctic region may introduce a strong source of uncertainty in radiative forcing estimations. Vertical distribution of refractory black carbon (rBC) was investigated in spring 2015 during an aircraft campaign, as part of the NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) project. A single particle soot photometer was deployed on the research aircraft POLAR-6 during nine flights over the European and Canadian high Arctic. In the European Arctic, a decreasing vertical trend of rBC mass concentration was observed, with an average of 40 ng m-3 below 1000 m asl, and less than 10 ng m-3 above 3000 m asl. Combining potential temperature trends and number fraction of rBC particles, plume events were isolated from background conditions. At the Canadian site of Alert, low and high altitude background conditions were characterized by an average rBC number fraction below 10%, while higher values (17%) were observed during plume events. rBC mass concentration was found to decrease by a factor of five from low altitude background (27 ng m-3) to high altitude background (5.4 ng m-3). The plume event, located between 2500 and 3000 m asl, represented a discontinuity point in the decreasing vertical trend showing a rBC concentration of 25 ng m-3. Moreover, background conditions were characterized by a rBC mass mean diameter of 230 nm, while during plume events the observed mean size distribution was peaking at 180 nm only. Our work provides new insights on vertical variability of rBC properties and plume outbreaks in the high Arctic. This information is of actual interest for decreasing the high uncertainty of radiative forcing and atmospheric warming estimations in the Arctic region.
NASA Astrophysics Data System (ADS)
Warnick, W. K.; Wiggins, H. V.; Hinzman, L.; Holland, M.; Murray, M. S.; Vörösmarty, C.; Loring, A. J.
2008-12-01
About the Arctic Synthesis Collaboratory The Arctic Synthesis Collaboratory concept, developed through a series of NSF-funded workshops and town hall meetings, is envisioned as a cyber-enabled, technical, organizational, and social-synthesis framework to foster: • Interactions among interdisciplinary experts and stakeholders • Integrated data analysis and modeling activities • Training and development of the arctic science community • Delivery of outreach, education, and policy-relevant resources Scientific Rationale The rapid rate of arctic change and our incomplete understanding of the arctic system present the arctic community with a grand scientific challenge and three related issues. First, a wealth of observations now exists as disconnected data holdings, which must be coordinated and synthesized to fully detect and assess arctic change. Second, despite great strides in the development of arctic system simulations, we still have incomplete capabilities for modeling and predicting the behavior of the system as a whole. Third, policy-makers, stakeholders, and the public are increasingly making demands of the science community for forecasts and guidance in mitigation and adaptation strategies. Collaboratory Components The Arctic Synthesis Collaboratory is organized around four integrated functions that will be established virtually as a distributed set of activities, but also with the advantage of existing facilities that could sponsor some of the identified activities. Community Network "Meeting Grounds:" The Collaboratory will link distributed individuals, organizations, and activities to enable collaboration and foster new research initiatives. Specific activities could include: an expert directory, social networking services, and virtual and face-to-face meetings. Data Integration, Synthesis, and Modeling Activities: The Collaboratory will utilize appropriate tools to enable the combination of data and models. Specific activities could include: a web-enabled model library, user forums, a data search and discovery system, and an online library. Support Scientist Professional Development: Experts at all career levels must keep pace with the newest developments in data integration and modeling, interdisciplinary science, and cyber-enabled collaboration. Specific project activities could include: web seminars, short courses, and a mentor program. Education, Outreach, and Policy Resources: An Arctic Virtual Outreach Center (AVOC) will provide critical education, outreach, and policy elements of the Collaboratory. Specific activities could include: public eSeminars, a virtual pressroom, K-12 classroom resources, and an eNewsletter. A Collaboratory Implementation Workshop is being planned for winter 2009; further details will be available soon. For more information, contact Helen V. Wiggins, Arctic Research Consortium of the U.S. (ARCUS) at: helen@arcus.org, or go to the website of the community workshop, "New Perspectives through Data Discovery and Modeling," at: http://www.arcus.org/ARCSS/2007_data/index.html.
NASA Astrophysics Data System (ADS)
Hoppmann, Mario; Nicolaus, Marcel; Rabe, Benjamin; Wenzhöfer, Frank; Katlein, Christian; Scholz, Daniel
2016-04-01
The Arctic Ocean has been in the focus of many studies during recent years, investigating the state, the causes and the implications of the observed rapid transition towards a thinner and younger sea-ice cover. However, consistent observational datasets of sea ice, ocean and atmosphere are still sparse due to the limited accessibility and harsh environmental conditions. One important tool to fill this gap has become more and more feasible during recent years: autonomous, ice-tethered measurement platforms (buoys). These drifting instruments independently transmit their data via satellites, and enable observations over larger areas and over longer time periods than manned expeditions, even throughout the winter. One aim of the newly established FRAM (FRontiers in Arctic marine Monitoring) infrastructure program at the Alfred-Wegener-Institute is to realize and maintain an interdisciplinary network of buoys in the Arctic Ocean, contributing to an integrated, Arctic-wide observatory. The additional buoy infrastructure, ship-time, and developments provided by FRAM are critical elements in the ongoing international effort to fill the large data gaps in a rapidly changing Arctic Ocean. Our focus is the particularly underrepresented Eurasian Basin. Types of instruments range from snow depth beacons and ice mass balance buoys for monitoring ice growth and snow accumulation, over radiation and weather stations for energy budget estimates, to ice-tethered profiling systems for upper ocean monitoring. Further, development of new bio-optical and biogeochemical buoys is expected to enhance our understanding of bio-physical processes associated with Arctic sea ice. The first set of FRAM buoys was deployed in September 2015 from RV Polarstern. All datasets are publicly available on dedicated web portals. Near real time data are reported into international initiatives, such as the Global Telecommunication System (GTS) and the International Arctic Buoy Programme (IABP). The additional data acquired by FRAM buoys facilitate the validation of model results and remote sensing products, play an important role in understanding the linkages between the atmosphere, sea ice and upper ocean, and help assess the physical, biological and biogeochemical states of the future Arctic Ocean. Here we present our recent work and future plans, but are also aiming for additional collaborations, especially on technical developments, scientific questions and deployment logistics.
NASA Astrophysics Data System (ADS)
Saint-Béat, Blanche; Maps, Frédéric; Babin, Marcel
2018-01-01
The extreme and variable environment shapes the functioning of Arctic ecosystems and the life cycles of its species. This delicate balance is now threatened by the unprecedented pace and magnitude of global climate change and anthropogenic pressure. Understanding the long-term consequences of these changes remains an elusive, yet pressing, goal. Our work was specifically aimed at identifying which biological processes impact Arctic planktonic ecosystem functioning, and how. Ecological Network Analysis (ENA) indices reveal emergent ecosystem properties that are not accessible through simple in situ observation. These indices are based on the architecture of carbon flows within food webs. But, despite the recent increase in in situ measurements from Arctic seas, many flow values remain unknown. Linear inverse modeling (LIM) allows missing flow values to be estimated from existing flow observations and, subsequent reconstruction of ecosystem food webs. Through a sensitivity analysis on a LIM model of the Amundsen Gulf in the Canadian Arctic, we were able to determine which processes affected the emergent properties of the planktonic ecosystem. The analysis highlighted the importance of an accurate knowledge of the various processes controlling bacterial production (e.g. bacterial growth efficiency and viral lysis). More importantly, a change in the fate of the microzooplankton within the food web can be monitored through the trophic level of mesozooplankton. It can be used as a "canary in the coal mine" signal, a forewarner of larger ecosystem change.
NASA Astrophysics Data System (ADS)
Calder, J.; Overland, J.; Uttal, T.; Richter-Menge, J.; Rigor, I.; Crane, K.
2004-12-01
NOAA has initiated four activities that respond to the Arctic Climate Impact Assessment(ACIA) recommendations and represent contributions toward the IPY: 1) Arctic cloud, radiation and aerosol observatories, 2) documentation and attribution of changes in sea-ice thickness through direct measurement and modeling, 3) deriving added value from existing multivariate and historical data, and 4) following physical and biological changes in the northern Bering and Chukchi Seas. Northeast Canada, the central Arctic coast of Russia and the continuing site at Barrow have been chosen as desirable radiation/cloud locations as they exhibit different responses to Arctic Oscillation variability. NOAA is closely collaborating with Canadian groups to establish an observatory at Eureka. NOAA has begun deployment of a network of ice-tethered ice mass balance buoys complemented by several ice profiling sonars. In combination with other sea ice investigators, the Arctic buoy program, and satellites, changes can be monitored more effectively in sea ice throughout the Arctic. Retrospective data analyses includes analysis of Arctic clouds and radiation from surface and satellite measurements, correction of systematic errors in TOVS radiance data sets for the Arctic which began in 1979, addressing the feasibility of an Arctic System Reanalysis, and an Arctic Change Detection project that incorporates historical and recent physical and biological observations and news items at a website, www.arctic.noaa.gov. NOAA has begun a long-term effort to detect change in ecosystem indicators in the northern Bering and Chukchi Seas that could provide a model for other northern marine ecosystems. The first efforts were undertaken in summer 2004 during a joint Russian-US cruise that mapped the regions physical, chemical and biological parameters to set the stage for future operations over the longer term. A line of biophysical moorings provide detection of the expected warming of this area. A retrospective analysis is also underway. NOAA is open to partnerships as the IPY develops.
Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks.
Mann, Paul J; Eglinton, Timothy I; McIntyre, Cameron P; Zimov, Nikita; Davydova, Anna; Vonk, Jorien E; Holmes, Robert M; Spencer, Robert G M
2015-07-24
Northern high-latitude rivers are major conduits of carbon from land to coastal seas and the Arctic Ocean. Arctic warming is promoting terrestrial permafrost thaw and shifting hydrologic flowpaths, leading to fluvial mobilization of ancient carbon stores. Here we describe (14)C and (13)C characteristics of dissolved organic carbon from fluvial networks across the Kolyma River Basin (Siberia), and isotopic changes during bioincubation experiments. Microbial communities utilized ancient carbon (11,300 to >50,000 (14)C years) in permafrost thaw waters and millennial-aged carbon (up to 10,000 (14)C years) across headwater streams. Microbial demand was supported by progressively younger ((14)C-enriched) carbon downstream through the network, with predominantly modern carbon pools subsidizing microorganisms in large rivers and main-stem waters. Permafrost acts as a significant and preferentially degradable source of bioavailable carbon in Arctic freshwaters, which is likely to increase as permafrost thaw intensifies causing positive climate feedbacks in response to on-going climate change.
Arctic Observing Network Data Management: Current Capabilities and Their Promise for the Future
NASA Astrophysics Data System (ADS)
Collins, J.; Fetterer, F.; Moore, J. A.
2008-12-01
CADIS (the Cooperative Arctic Data and Information Service) serves as the data management, discovery and delivery component of the Arctic Observing Network (AON). As an International Polar Year (IPY) initiative, AON comprises 34 land, atmosphere and ocean observation sites, and will acquire much of the data coming from the interagency Study of Environmental Arctic Change (SEARCH). CADIS is tasked with ensuring that these observational data are managed for long term use by members of the entire Earth System Science community. Portions of CADIS are either in use by the community or available for testing. We now have an opportunity to evaluate the feedback received from our users, to identify any design shortcomings, and to identify those elements which serve their purpose well and will support future development. This presentation will focus on the nuts-and-bolts of the CADIS development to date, with an eye towards presenting lessons learned and best practices based on our experiences so far. The topics include: - How did we assess our users' needs, and how are those contributions reflected in the end product and its capabilities? - Why did we develop a CADIS metadata profile, and how does it allow CADIS to support preservation and scientific interoperability? - How can we shield the user from metadata complexities (especially those associated with various standards) while still obtaining the metadata needed to support an effective data management system? - How can we bridge the gap between the data storage formats considered convenient by researchers in the field, and those which are necessary to provide data interoperability? - What challenges have been encountered in our efforts to provide access to federated data (data stored outside of the CADIS system)? - What are the data browsing and visualization needs of the AON community, and which tools and technologies are most promising in terms of supporting those needs? A live demonstration of the current capabilities of the CADIS system will be included as time and logistics allow. CADIS is a joint effort of the University Corporation for Atmospheric Research (UCAR), the National Snow and Ice Data Center (NSIDC), and the National Center for Atmospheric Research (NCAR).
Synthesis of User Needs for Arctic Sea Ice Predictions
NASA Astrophysics Data System (ADS)
Wiggins, H. V.; Turner-Bogren, E. J.; Sheffield Guy, L.
2017-12-01
Forecasting Arctic sea ice on sub-seasonal to seasonal scales in a changing Arctic is of interest to a diverse range of stakeholders. However, sea ice forecasting is still challenging due to high variability in weather and ocean conditions and limits to prediction capabilities; the science needs for observations and modeling are extensive. At a time of challenged science funding, one way to prioritize sea ice prediction efforts is to examine the information needs of various stakeholder groups. This poster will present a summary and synthesis of existing surveys, reports, and other literature that examines user needs for sea ice predictions. The synthesis will include lessons learned from the Sea Ice Prediction Network (a collaborative, multi-agency-funded project focused on seasonal Arctic sea ice predictions), the Sea Ice for Walrus Outlook (a resource for Alaska Native subsistence hunters and coastal communities, that provides reports on weather and sea ice conditions), and other efforts. The poster will specifically compare the scales and variables of sea ice forecasts currently available, as compared to what information is requested by various user groups.
NASA Astrophysics Data System (ADS)
Vargas, S. A., Jr.; Andresen, C. G.; May, J. L.; Oberbauer, S. F.; Hollister, R. D.; Tweedie, C. E.
2017-12-01
The Arctic is experiencing among the most dramatic impacts from climate variability on the planet. Arctic plant phenology has been identified as an ideal indicator of climate change impacts and provides great insight into seasonal and inter-annual vegetative trends and their responses to such changes. Traditionally, phenology has been quantified using satellite-based systems and plot-level observations but each approach presents limitations especially in high latitude regions. Mid-scale systems (e.g. automated sensor platforms and trams) have shown to provide alternative, and in most cases, cheaper solutions with comparable results to those acquired traditionally. This study contributes to the US Arctic Observing Network (AON) and assesses the effectiveness of using digital images acquired from pheno-cams, a kite aerial photography (KAP) system, and plot-level images (PLI) in their capacity to assess phenological variability (e.g. snow melt, greening and end-of-season) for dominant vegetation communities present at two sites in both Utqiagvik and Atqasuk, Alaska, namely the Mobile Instrumented Sensor Platform (MISP) and the Circum-arctic Active Layer Monitoring (CALM) grids. RGB indices (e.g. GEI and %G) acquired from these methods were compared to the normalized difference vegetation index (NDVI) calculated from multispectral ground-based reflectance measurements, which has been identified and used as a proxy of primary productivity across multiple ecosystems including the Arctic. The 5 years of growing season data collected generally resulted with stronger Pearson's correlations between indices located in plots containing higher soil moisture versus those that were drier. Future studies will extend platform inter-comparison to the satellite level by scaling trends to MODIS land surface products. Trends documented thus far, however, suggest that the long-term changes in satellite NDVI for these study areas, could be a direct response from wet tundra landscapes.
Interact - Access to the Arctic
NASA Astrophysics Data System (ADS)
Johansson, M.; Callaghan, T. V.
2013-12-01
INTERACT is currently a network of 50 terrestrial research stations from all Arctic countries, but is still growing. The network was inaugurated in January 2011 when it received an EU 7th Framework award. INTERACT's main objective is to build capacity for identifying, understanding, predicting and responding to diverse environmental changes throughout the wide environmental and land-use envelopes of the Arctic. Implicit in this objective is the task to build capacity for monitoring, research, education and outreach. INTERACT is increasing access to the Arctic: 20 INTERACT research stations in Europe and Russia are offering Transnational Access and so far, 5600 person-days of access have been granted from the total of 10,000 offered. An INTERACT Station Managers' Forum facilitates a dialogue among station managers on subjects such as best practice in station management and standardised monitoring. The Station Managers' Forum has produced a unique 'one-stop-shop' for information from 45 research stations in an informative and attractive Station Catalogue that is available in hard copy and on the INTERACT web site (www.eu-interact.org). INTERACT also includes three joint research activities that are improving monitoring in remote, harsh environments and are making data capture and dissemination more efficient. Already, new equipment for measuring feedbacks from the land surface to the climate system has been installed at several locations, while best practices for sensor networking have been established. INTERACT networks with most of the high-level Arctic organisations: it includes AMAP and WWF as partners, is endorsed by IASC and CBMP, has signed MoUs with ISAC and the University of the Arctic, is a task within SAON, and contributes to the Cold Region community within GEO/GEOSS. INTERACT welcomes other interactions.
NASA Astrophysics Data System (ADS)
Williams, S. F.; Moore, J. A.
2014-12-01
One of the major challenges facing science in general is how foster trust and cooperation between nations that then allows the free and open exchange of data. The rich data coming from many nations conducting Arctic research must be allowed to be brought together to understand and assess the huge changes now underway in the Arctic regions. The NCAR Earth Observing Laboratory has been supporting a variety of international field process studies and WCRP sponsored international projects that require international data collection and exchange in order to be successful. Some of the programs include the Surface Heat Budget of the Arctic (SHEBA) International Tundra Experiment (ITEX), the Arctic Climate Systems Study (ACSYS), the Distributed Biological Observatory (DBO), and the Coordinated Energy and water-cycle Observations Project (CEOP) to name a few. EOL played a major role in the data management of these projects, but the CEOP effort in particular involved coordinating common site documentation and data formatting across a global network (28 sites). All these unique projects occurred over 25 years but had similar challenges in the international collection, archival, and access to the rich datasets that are their legacy. The Belmont Forum offers as its main challenge to deliver knowledge needed for action to avoid or adapt to environmental change. One of their major themes is related to the study of these changes in the Arctic. The development of capable e-infrastructure (technologies and groups supporting international collaborative environments networks and data centers) to allow access to large diverse data collections is key to meeting this challenge. The reality of meeting this challenge, however, is something much more difficult. The authors will provide several specific examples of successes and failures when trying to meet the needs of an international community of researchers specifically related to Belmont Forum Work Package Themes regarding standards of data sharing and open data. This will be done through the framework of the projects noted above in an environment of proprietary data claims, multiple formats and data collection procedures, stockpiling of data, international data restrictions and mistrust of other scientists.
NASA Astrophysics Data System (ADS)
Pietroniro, Al; Korhonen, Johanna; Looser, Ulrich; Hardardóttir, Jórunn; Johnsrud, Morten; Vuglinsky, Valery; Gustafsson, David; Lins, Harry F.; Conaway, Jeffrey S.; Lammers, Richard; Stewart, Bruce; Abrate, Tommaso; Pilon, Paul; Sighomnou, Daniel; Arheimer, Berit
2015-04-01
The Arctic region is an important regulating component of the global climate system, and is also experiencing a considerable change during recent decades. More than 10% of world's river-runoff flows to the Arctic Ocean and there is evidence of changes in its fresh-water balance. However, about 30% of the Arctic basin is still ungauged, with differing monitoring practices and data availability from the countries in the region. A consistent system for monitoring and sharing of hydrological information throughout the Arctic region is thus of highest interest for further studies and monitoring of the freshwater flux to the Arctic Ocean. The purpose of the Arctic-HYCOS project is to allow for collection and sharing of hydrological data. Preliminary 616 stations were identified with long-term daily discharge data available, and around 250 of these already provide online available data in near real time. This large sample will be used in the following scientific analysis: 1) to evaluate freshwater flux to the Arctic Ocean and Seas, 2) to monitor changes and enhance understanding of the hydrological regime and 3) to estimate flows in ungauged regions and develop models for enhanced hydrological prediction in the Arctic region. The project is intended as a component of the WMO (World Meteorological Organization) WHYCOS (World Hydrological Cycle Observing System) initiative, covering the area of the expansive transnational Arctic basin with participation from Canada, Denmark, Finland, Iceland, Norway, Russian Federation, Sweden and United States of America. The overall objective is to regularly collect, manage and share high quality data from a defined basic network of hydrological stations in the Arctic basin. The project focus on collecting data on discharge and possibly sediment transport and temperature. Data should be provisional in near-real time if available, whereas time-series of historical data should be provided once quality assurance has been completed. The initial stages of the project will focus on collecting data on discharge and revise station selection criteria. For monitoring freshwater flow to oceans, stations close to the mouths of rivers and immediately inland for back-up purposes will be preferred. For studies of change emphasis is placed on hydrological regime stations located in headwaters small sub-catchments, including pristine basins. Stations outside the Arctic Ocean basin, such as at the mouth of the Yukon River, Baltic Sea and Hudson Bay, can also be considered to allow a better understanding of hydrological processes occurring in the general region. Countries shall facilitate, to the extent possible, access to their data currently published online, and also access to those not yet regularly published on the web. At a later stage data exchange standards such as WaterML2.0 will be implemented. The project will also perform pan-Arctic hydrological modelling (geo-statistical, deterministic and probabilistic methods) for the assessment and integration of observational and modelled data to improve estimates of ungauged discharge and the overall estimates of freshwater flux to the Arctic Ocean, as well as understanding of hydrological processes.
The Canadian High Arctic Ionospheric Network (CHAIN)
NASA Astrophysics Data System (ADS)
Jayachandran, P. T.; Langley, R. B.; MacDougall, J. W.; Mushini, S. C.; Pokhotelov, D.; Chadwick, R.; Kelly, T.
2009-05-01
Polar cap ionospheric measurements are important for the complete understanding of the various processes in the solar wind - magnetosphere - ionosphere (SW-M-I) system as well as for space weather applications. Currently the polar cap region is lacking high temporal and spatial resolution ionospheric measurements because of the orbit limitations of space-based measurements and the sparse network providing ground- based measurements. Canada has a unique advantage in remedying this shortcoming because it has the most accessible landmass in the high Arctic regions and the Canadian High Arctic Ionospheric Network (CHAIN) is designed to take advantage of Canadian geographic vantage points for a better understanding of the Sun-Earth system. CHAIN is a distributed array of ground-based radio instruments in the Canadian high Arctic. The instruments components of CHAIN are ten high data-rate Global Positioning System ionospheric scintillation and total electron content monitors and six Canadian Advanced Digital Ionosondes. Most of these instruments have been sited within the polar cap region except for two GPS reference stations at lower latitudes. This paper briefly overviews the scientific capabilities, instrument components, and deployment status of CHAIN.
PAST Gateways (Palaeo-Arctic Spatial and Temporal Gateways): Introduction and overview
NASA Astrophysics Data System (ADS)
Ó Cofaigh, Colm; Briner, Jason P.; Kirchner, Nina; Lucchi, Renata G.; Meyer, Hanno; Kaufman, Darrell S.
2016-09-01
This special issue relates to the Second International Conference of the PAST Gateways (Palaeo-Arctic Spatial and Temporal Gateways) network which was held in Trieste, Italy in 2014. Twenty five papers are included and they address topics under four main themes: (1) The growth and decay of Arctic ice sheets; (2) Arctic sea ice and palaeoceanography; (3) Terrestrial Arctic environments and permafrost change; and (4) Holocene Arctic environmental change. Geographically the focus is circum-Arctic; the special issue includes detailed regional studies from Greenland, Scandinavia, Russia, and Arctic North America and the adjoining seas, as well as a series of synthesis-type, review papers on Fennoscandian Ice Sheet deglaciation and Holocene Arctic palaeo-climate change. The methodologies employed are diverse and include marine sediment core and geophysical investigations, terrestrial glacial geology and geomorphology, isotopic analysis of ground ice, palaeo-ecological analysis of lacustrine and terrestrial sedimentary archives, geochronology and numerical ice sheet modeling.
Hung, Hayley; Katsoyiannis, Athanasios A; Brorström-Lundén, Eva; Olafsdottir, Kristin; Aas, Wenche; Breivik, Knut; Bohlin-Nizzetto, Pernilla; Sigurdsson, Arni; Hakola, Hannele; Bossi, Rossana; Skov, Henrik; Sverko, Ed; Barresi, Enzo; Fellin, Phil; Wilson, Simon
2016-10-01
Temporal trends of Persistent Organic Pollutants (POPs) measured in Arctic air are essential in understanding long-range transport to remote regions and to evaluate the effectiveness of national and international chemical control initiatives, such as the Stockholm Convention (SC) on POPs. Long-term air monitoring of POPs is conducted under the Arctic Monitoring and Assessment Programme (AMAP) at four Arctic stations: Alert, Canada; Stórhöfði, Iceland; Zeppelin, Svalbard; and Pallas, Finland, since the 1990s using high volume air samplers. Temporal trends observed for POPs in Arctic air are summarized in this study. Most POPs listed for control under the SC, e.g. polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs) and chlordanes, are declining slowly in Arctic air, reflecting the reduction of primary emissions during the last two decades and increasing importance of secondary emissions. Slow declining trends also signifies their persistence and slow degradation under the Arctic environment, such that they are still detectable after being banned for decades in many countries. Some POPs, e.g. hexachlorobenzene (HCB) and lighter PCBs, showed increasing trends at specific locations, which may be attributable to warming in the region and continued primary emissions at source. Polybrominated diphenyl ethers (PBDEs) do not decline in air at Canada's Alert station but are declining in European Arctic air, which may be due to influence of local sources at Alert and the much higher historical usage of PBDEs in North America. Arctic air samples are screened for chemicals of emerging concern to provide information regarding their environmental persistence (P) and long-range transport potential (LRTP), which are important criteria for classification as a POP under SC. The AMAP network provides consistent and comparable air monitoring data of POPs for trend development and acts as a bridge between national monitoring programs and SC's Global Monitoring Plan (GMP). Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Regular network model for the sea ice-albedo feedback in the Arctic.
Müller-Stoffels, Marc; Wackerbauer, Renate
2011-03-01
The Arctic Ocean and sea ice form a feedback system that plays an important role in the global climate. The complexity of highly parameterized global circulation (climate) models makes it very difficult to assess feedback processes in climate without the concurrent use of simple models where the physics is understood. We introduce a two-dimensional energy-based regular network model to investigate feedback processes in an Arctic ice-ocean layer. The model includes the nonlinear aspect of the ice-water phase transition, a nonlinear diffusive energy transport within a heterogeneous ice-ocean lattice, and spatiotemporal atmospheric and oceanic forcing at the surfaces. First results for a horizontally homogeneous ice-ocean layer show bistability and related hysteresis between perennial ice and perennial open water for varying atmospheric heat influx. Seasonal ice cover exists as a transient phenomenon. We also find that ocean heat fluxes are more efficient than atmospheric heat fluxes to melt Arctic sea ice.
NASA Astrophysics Data System (ADS)
Levchenko, N. G.; Glushkov, S. V.; Sobolevskaya, E. Yu; Orlov, A. P.
2018-05-01
The method of modeling the transport and logistics process using fuzzy neural network technologies has been considered. The analysis of the implemented fuzzy neural network model of the information management system of transnational multimodal transportation of the process showed the expediency of applying this method to the management of transport and logistics processes in the Arctic and Subarctic conditions. The modular architecture of this model can be expanded by incorporating additional modules, since the working conditions in the Arctic and the subarctic themselves will present more and more realistic tasks. The architecture allows increasing the information management system, without affecting the system or the method itself. The model has a wide range of application possibilities, including: analysis of the situation and behavior of interacting elements; dynamic monitoring and diagnostics of management processes; simulation of real events and processes; prediction and prevention of critical situations.
NASA Astrophysics Data System (ADS)
Darby, L. S.; Uttal, T.; Burkhart, J.; Drummond, J.
2007-12-01
International Arctic Systems for Observing the Atmosphere (IASOA) is a dynamic organization developed to enhance Arctic atmospheric research by fostering collaborations among researchers during the International Polar Year (IPY) and beyond. The member stations are Abisko, Sweden; Alert and Eureka, Canada; Barrow, USA; Cherskii and Tiksi Russia; Ny-Ålesund, Norway; Pallas and Sodankylä, Finland; and Summit, Greenland. All of these observatories operate year-round, with at least minimal staffing in the winter months, are intensive and permanent. Presently, measurement and building upgrades are occurring at the Tiksi, Eureka, Summit and Barrow observatories. A new weather station building has been completed in Tiksi and is currently available for installation of instruments. A second Clean Air Facility (CAF) that will be suitable for aerosol, chemistry, pollutant, greenhouse gases, fluxes and radiation measurements is expected to be completed in the spring of 2008. Real- time continuous measurement instruments for the measurement of ozone and black carbon, and flasks for carbon cycle gas measurements for the new Tiksi station are awaiting shipping from Boulder, CO. At the Eureka site many instruments including a flux tower, several CIMELs for the Aeronet Network, and a Baseline Surface Radiation Network (BSRN) station were installed in the summer of 2007. With IPY funding the level of technical support at the site has been increased to provide more reliable data collection and transmission. The Summit, Greenland observatory has recently released a strategic plan highlighting climate sensitive year- round observations, innovative research platforms and operational plans to increase renewable energy to maintain the pristine platform. Summit also has a new multi-channel GC/MS for continuous measurement of trace halocarbon and CFC gas concentrations. All NOAA instruments have been moved from the Science trench to a new atmospheric watch observatory building. NOAA is now manning the site for the 9-month winter season of the year. The Barrow observatory has two new systems for aerosol size and chemistry composition, as well as new POPs measurements. The meteorology measurement and data system has been completely upgraded. Current IASOA activities include the development of a web site (www.iasoa.org) that will serve as the "go-to" site for atmospheric Arctic researchers to obtain information about the member observatories. Information posted for each station includes a general overview of the observatory, a listing of available measurements and principle investigators, links to data bases, and station contacts. These pages will help Arctic researchers find the data they need to complete their research. The development of these observatory web pages, plus an "observatories- at-a-glance" page, has allowed us to identify gaps in atmospheric measurements in the Arctic.
The Arctic Observing Network (AON)Cooperative Arctic Data and Information Service (CADIS)
NASA Astrophysics Data System (ADS)
Moore, J.; Fetterer, F.; Middleton, D.; Ramamurthy, M.; Barry, R.
2007-12-01
The Arctic Observing Network (AON) is intended to be a federation of 34 land, atmosphere and ocean observation sites, some already operating and some newly funded by the U.S. National Science Foundation. This International Polar Year (IPY) initiative will acquire a major portion of the data coming from the interagency Study of Environmental Arctic Change (SEARCH). AON will succeed in supporting the science envisioned by its planners only if it functions as a system and not as a collection of independent observation programs. Development and implementation of a comprehensive data management strategy will key a key to the success of this effort. AON planners envision an ideal data management system that includes a portal through which scientists can submit metadata and datasets at a single location; search the complete archive and find all data relevant to a location or process; all data have browse imagery and complete documentation; time series or fields can be plotted on line, and all data are in a relational database so that multiple data sets and sources can be queried and retrieved. The Cooperative Arctic Data and Information Service (CADIS) will provide near-real-time data delivery, a long-term repository for data, a portal for data discovery, and tools to manipulate data by building on existing tools like the Unidata Integrated Data Viewer (IDV). Our approach to the data integration challenge is to start by asking investigators to provide metadata via a general purpose user interface. An entry tool assists PIs in writing metadata and submitting data. Data can be submitted to the archive in NetCDF with Climate and Forecast conventions or in one of several other standard formats where possible. CADIS is a joint effort of the University Corporation for Atmospheric Research (UCAR), the National Snow and Ice Data Center (NSIDC), and the National Center for Atmospheric Research (NCAR). In the first year, we are concentrating on establishing metadata protocols that are compatible with international standards, and on demonstrating data submission, search and visualization tools with a subset of AON data. These capabilities will be expanded in years 2 and 3. By working with AON investigators and by using evolving conventions for in situ data formats as they mature, we hope to bring CADIS to the full level of data integration imagined by AON planners. The CADIS development will be described in terms of challenges, implementation strategies and progress to date. The developers are making a conscious effort to integrate this system and its data holdings with the complementary efforts in the SEARCH and IPY programs. The interdisciplinary content of the data, the variations in format and documentation, as well as its geographic coverage across the Arctic Basin all impact the form and effectiveness of the CADIS system architecture. The clever solutions to the complexity of implementing a comprehensive data management strategy implied in this diversity will be a focus of the presentation.
NASA Astrophysics Data System (ADS)
Ekwurzel, B.; Yona, L.; Natali, S.; Holmes, R. M.; Schuur, E.
2015-12-01
Permafrost regions store almost twice the carbon in the atmosphere (Tarnocai et al 2009). As climate warms a proportion of this carbon will be released as carbon dioxide and methane. The Arctic Council may be best suited to harness international scientific collaboration for policy relevant knowledge about the global impacts of permafrost thaw. Scientists in Arctic Council and observer states have historically collaborated on permafrost research (e.g. Permafrost Carbon Network, part of Study of Environmental Arctic Change (SEARCH) project). This work increased knowledge of permafrost carbon pool size and vulnerability. However, data gaps persist across the Arctic. Despite gaps, numerous studies directly inform international policy negotiations aiming to stay below 2° C. Some suggest "permafrost carbon feedback" may comprise 3 to 11% of total allowed emissions through 2100 under a RCP4.5 (Schaefer et al2014). Understanding and accounting for future permafrost atmospheric carbon release requires science and policy coordination that the Arctic Council could incentivize. For example, Council nations could convene scientists and stakeholders to develop a Permafrost-Climate Indicator providing more direct decision support than current permafrost indicators, and identify research needed for a periodic estimate of Arctic permafrost CO2 and CH4 emissions. This presentation covers current challenges scientists and policymakers may face to develop a practical and robust Permafrost Climate Indicator. For example, which timescales are most appropriate for international emissions commitments? Do policy-relevant timescales align with current scientific knowledge? What are the uncertainties and how can they be decreased? We present likely strengths and challenges of a Permafrost Climate Indicator co-developed by scientists and stakeholders. Potential greenhouse gas atmospheric flux from Arctic permafrost carbon may be greater than some nations' United Nations emissions reductions commitments. Investing in better understanding greenhouse gas emissions from thawing permafrost is relevant for all nations and essential to setting global emission targets.
NASA Astrophysics Data System (ADS)
Sobolevskaya, E. Yu; Glushkov, S. V.; Levchenko, N. G.; Orlov, A. P.
2018-05-01
The analysis of software intended for organizing and managing the processes of sea cargo transportation has been carried out. The shortcomings of information resources are presented, for the organization of work in the Arctic and Subarctic regions of the Far East: the lack of decision support systems, the lack of factor analysis to calculate the time and cost of delivery. The architecture of the module for calculating the effectiveness of the organization of sea cargo transportation has been developed. The simulation process has been considered, which is based on the neural network. The main classification factors with their weighting coefficients have been identified. The architecture of the neural network has been developed to calculate the efficiency of the organization of sea cargo transportation in Arctic conditions. The architecture of the intellectual system of organization of sea cargo transportation has been developed, taking into account the difficult navigation conditions in the Arctic. Its implementation will allow one to provide the management of the shipping company with predictive analytics; to support decision-making; to calculate the most efficient delivery route; to provide on demand online transportation forecast, to minimize the shipping cost, delays in transit, and risks to cargo safety.
NASA Technical Reports Server (NTRS)
Casas, Joseph
2017-01-01
Within the IARPC Collaboration Team activities of 2016, Arctic in-situ and remote earth observations advanced topics such as :1) exploring the role for new and innovative autonomous observing technologies in the Arctic; 2) advancing catalytic national and international community based observing efforts in support of the National Strategy for the Arctic Region; and 3) enhancing the use of discovery tools for observing system collaboration such as the U.S. National Oceanic and Atmospheric Administration (NOAA) Arctic Environmental Response Management Application (ERMA) and the U.S. National Aeronautics and Space Administration (NASA) Arctic Collaborative Environment (ACE) project geo reference visualization decision support and exploitation internet based tools. Critical to the success of these earth observations for both in-situ and remote systems is the emerging of new and innovative data collection technologies and comprehensive modeling as well as enhanced communications and cyber infrastructure capabilities which effectively assimilate and dissemination many environmental intelligence products in a timely manner. The Arctic Collaborative Environment (ACE) project is well positioned to greatly enhance user capabilities for accessing, organizing, visualizing, sharing and producing collaborative knowledge for the Arctic.
Sources and Fluxes of Atmospheric Methane from Lakes in the Alaskan Arctic
NASA Astrophysics Data System (ADS)
Townsend-Small, A.; Akerstrom, F.; Hinkel, K. M.; Arp, C. D.; Beck, R. A.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Eisner, W. R.
2014-12-01
Climate warming in the Arctic may result in release of carbon dioxide and/or methane from thawing permafrost soils, resulting in a positive feedback to warming. Permafrost thaw may also result in release of methane from previously trapped natural gas. The Arctic landscape is approximately 50% covered by shallow permafrost lakes, and these environments may serve as bellwethers for climate change - carbon cycle feedbacks, since permafrost thaw is generally deeper under lakes than tundra soils. Since 2011, the Circum-Arctic Lakes Observation Network (CALON) project has documented landscape-scale variability in physical and biogeochemical processes of Arctic lakes in permafrost terrain, including carbon cycle feedbacks to climate warming. Here we present a dataset of concentrations, isotope ratios (13C and 2H), and atmospheric fluxes of methane from lakes in Arctic Alaska. Concentrations of methane in lake water ranged from 0.3 to 43 micrograms per liter, or between 6 and 750 times supersaturated with respect to air. Isotopic measurements of dissolved methane indicated that most of the lakes had methane derived from anaerobic organic matter decomposition, but that some lakes may have a small source of methane from fossil fuel sources such as natural gas or coal beds. Concurrent measurements of methane fluxes and dissolved methane concentrations in summer of 2014 will aid in translating routine dissolved measurements into fluxes, and will also elucidate the relative importance of diffusive versus ebulliative fluxes. It is essential that measurements of methane emissions from Arctic lakes be continued long-term to determine whether methane emissions are on the rise, and whether warming of the lakes leads to increased venting of fossil fuel methane from enhanced thaw of permafrost beneath the lakes.
NASA Astrophysics Data System (ADS)
Gergel, D. R.; Hamman, J.; Nijssen, B.
2017-12-01
Permafrost and seasonally frozen soils are a key characteristic of the terrestrial Arctic, and the fate of near-surface permafrost as a result of climate change is projected to have strong impacts on terrestrial biogeochemistry. The active layer thickness (ALT) is the layer of soil that freezes and thaws annually, and shifts in the depth of the ALT are projected to occur over large areas of the Arctic that are characterized by discontinuous permafrost. Faithful representation of permafrost in land models in climate models is a product of both soil dynamics and the coupling of air and soil temperatures. A common problem is a large bias in simulated ALT due to a model depth that is too shallow. Similarly, soil temperatures often show systematic biases, which lead to biases in air temperature due to poorly modeled air-soil temperature feedbacks in a coupled environment. In this study, we use the Regional Arctic System Model (RASM), a fully-coupled regional earth system model that is run at a 50-km land/atmosphere resolution over a pan-Arctic domain and uses the Variable Infiltration Capacity (VIC) model as its land model. To understand what modeling decisions are necessary to accurately represent near-surface permafrost and soil temperature profiles, we perform a large number of RASM simulations with prescribed atmospheric forcings (e.g. VIC in standalone mode in RASM) while varying the model soil depth, thickness of soil moisture layers, number of soil layers and the distribution of soil nodes. We compare modeled soil temperatures and ALT to observations from the Circumpolar Active Layer Monitoring (CALM) network. CALM observations include annual ALT observations as well as daily soil temperature measurements at three soil depths for three sites in Alaska. In the future, we will use our results to inform our modeling of permafrost dynamics in fully-coupled RASM simulations.
AROME-Arctic: New operational NWP model for the Arctic region
NASA Astrophysics Data System (ADS)
Süld, Jakob; Dale, Knut S.; Myrland, Espen; Batrak, Yurii; Homleid, Mariken; Valkonen, Teresa; Seierstad, Ivar A.; Randriamampianina, Roger
2016-04-01
In the frame of the EU-funded project ACCESS (Arctic Climate Change, Economy and Society), MET Norway aimed 1) to describe the present monitoring and forecasting capabilities in the Arctic; and 2) to identify the key factors limiting the forecasting capabilities and to give recommendations on key areas to improve the forecasting capabilities in the Arctic. We have observed that the NWP forecast quality is lower in the Arctic than in the regions further south. Earlier research indicated that one of the factors behind this is the composition of the observing system in the Arctic, in particular the scarceness of conventional observations. To further assess possible strategies for alleviating the situation and propose scenarios for a future Arctic observing system, we have performed a set of experiments to gain a more detailed insight in the contribution of the components of the present observing system in a regional state-of-the-art non-hydrostatic NWP model using the AROME physics (Seity et al, 2011) at 2.5 km horizontal resolution - AROME-Arctic. Our observing system experiment studies showed that conventional observations (Synop, Buoys) can play an important role in correcting the surface state of the model, but prove that the present upper-air conventional (Radiosondes, Aircraft) observations in the area are too scarce to have a significant effect on forecasts. We demonstrate that satellite sounding data play an important role in improving forecast quality. This is the case with satellite temperature sounding data (AMSU-A, IASI), as well as with the satellite moisture sounding data (AMSU-B/MHS, IASI). With these sets of observations, the AROME-Arctic clearly performs better in forecasting extreme events, like for example polar lows. For more details see presentation by Randriamampianina et al. in this session. The encouraging performance of AROME-Arctic lead us to implement it with more observations and improved settings into daily runs with the objective to substitute our actual operational Arctic mesoscale HIRLAM (High Resolution Limited Area Model) NWP model. This presentation will discuss in detail the operational implementation of the AROME-Arctic model together with post-processing methods. Aimed services in the Arctic region covered by the model, such as online weather forecasting (yr.no) and tracking of polar lows (barentswatch.no), is also included.
Insights and issues with simulating terrestrial DOC loading of Arctic river networks
Kicklighter, David W.; Hayes, Daniel J.; McClelland, James W.; Peterson, Bruce J.; McGuire, A. David; Melillo, Jerry M.
2013-01-01
Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to hydrology. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that, over the 20th century, the pan-Arctic watershed has contributed, on average, 32 Tg C/yr of DOC to river networks emptying into the Arctic Ocean with most of the DOC coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of climate-induced increases in water yield. These increases have been offset by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to Arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both offset and enhanced concurrent effects on hydrology to influence terrestrial DOC loading and may be changing the relative importance of terrestrial carbon dynamics on this carbon flux. Improvements in simulating terrestrial DOC loading to pan-Arctic rivers in the future will require better information on the production and consumption of DOC within the soil profile, the transfer of DOC from land to headwater streams, the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.
Inter-annual Variability in Tundra Phenology Captured with Digital Photography
NASA Astrophysics Data System (ADS)
Melendez, M.; Vargas, S. A.; Tweedie, C. E.
2012-12-01
The need to improve multi-scale phenological monitoring of arctic terrestrial ecosystems has been a persistent research challenge. Although there has been a range of advances in remote sensing capacities over the past decade, these present costly, and sometimes logistically challenging and technically demanding solutions for arctic terrestrial ecosystems. In this poster and undergraduate research project, we demonstrate how seasonal and inter-annual variability in landscape phenology can be derived for multiple tundra ecosystems using a low-cost and low-tech kite aerial photography (KAP) system that has been developed as a contribution to the US Arctic Observing Network. Seasonal landscape phenology was observed over the Networked Info-Mechanical Systems (NIMS) grids (2 x 50 meters) located in Barrow and Atqasuk, Alaska using imagery acquired with KAP and analyzed for a range of greenness indices. Preliminary results showed that the 2G-RB greenness index correlated the best with NDVI values calculated from ground based hyperspectral reflectance measurements. 2012 had the highest 2G-RB greenness index values for both Barrow and Atqasuk sites, which correlated well with NDVI values acquired from ground-based hyperspectral reflectance measurements. Wet vegetation types showed the most interannual variability at the Atqasuk site based on the 2G-RB greenness index while in Barrow the moist vegetation types showed the most interannual variability. These results show that vegetation indices similar to those acquired from hyperspectral remote sensing platforms can be derived using low-cost and low-tech techniques. Further analysis using these same techniques is required in order to link relatively small scale vegetation dynamics measured with KAP with those documented at large scales using satellite imagery.
NASA Astrophysics Data System (ADS)
Hill, V. J.; Steele, M.; Light, B.
2016-02-01
As part of the Arctic Observing Network, a new ice-tethered buoy has been developed for monitoring the role of sunlight in regulating ocean temperature, phytoplankton growth, and carbon cycling. A 20 or 50 m string (depending on local bathymetry) supports sensors both within and below the ice for the hourly measurement of downwelling irradiance, temperature, Chlorophyll a, light backscattering, and dissolved organic material (DOM). Two buoys were deployed in March 2014 and two in March 2015. Because the buoys are engineered to survive melting out of first year ice, they have successfully provided complete seasonal records of water column warming, phytoplankton abundance and photo-oxidation patterns in the Pacific Arctic Region. The data collected will be used to determine whether reduced ice extent and thinner ice are driving increases in under ice warming, accelerating bottom ice ablation, increasing available photosynthetic radiation to support large under ice blooms, and to quantify photo-oxidation of the DOM pool. Observations so far have revealed strong under ice daily warming as high as ±0.5 °C driven by local solar radiation. Water column absorption was dominated by colored dissolved organic material which served to trap solar radiation in the upper water column. Chlorophyll concentrations observed in June and July indicated high phytoplankton abundance beneath the ice. Light intensity at this time was not sufficient to support growth rates high enough to produce the 8 to 10 mg m-3 of chlorophyll observed. We hypothesize that phytoplankton were advected under the ice from the ice edge. However, once there phytoplankton were able to sustain low growth rates leading to nutrient limitation before open water status was reached. Strong daily cycles of photo-oxidation have also been observed in the late summer that indicate the fast cycling of highly labile DOM in the open waters of the Pacific Arctic Region.
Stratospheric column NO2 anomalies over Russia related to the 2011 Arctic ozone hole
NASA Astrophysics Data System (ADS)
Aheyeva, Viktoryia; Gruzdev, Aleksandr; Elokhov, Aleksandr; Grishaev, Mikhail; Salnikova, Natalia
2013-04-01
We analyze data of spectrometric measurements of stratospheric column NO2 contents at mid- and high-latitude stations of Zvenigorod (55.7°N, Moscow region), Tomsk (56.5°N, West Siberia), and Zhigansk (66.8°N, East Siberia). Measurements are done in visual spectral range with zenith-viewing spectrometers during morning and evening twilights. Alongside column NO2 contents, vertical profiles of NO2 are retrieved at the Zvenigorod station. Zvenigorod and Zhigansk are the measurement stations within the Network for the Detection of Atmospheric Composition Change (NDACC). For interpretation of results of analysis of NO2 data, data of Ozone Monitoring Instrument measurements of total column ozone and rawinsonde data are also analyzed and back trajectories calculated with the help of HYSPLIT trajectory model are used. Significant negative anomalies in stratospheric NO2 columns accompanied by episodes of significant cooling of the stratosphere and decrease in total ozone were observed at the three stations in the winter-spring period of 2011. Trajectory analysis shows that the anomalies were caused by the transport of stratospheric air from the region of the ozone hole observed that season in the Arctic. Although negative NO2 anomalies due to the transport from the Arctic were also observed in some other years, the anomalies in 2011 have had record magnitudes. Analysis of NO2 vertical profiles at Zvenigorod shows that the NO2 anomaly in 2011 compared to other years anomalies was additionally contributed by the denitrification of the Arctic lower stratosphere. NO2 profiles show that a certain degree of the denitrification probably survived even after the ozone hole.
NASA Astrophysics Data System (ADS)
Vargas Zesati, Sergio A.
The Arctic is being impacted by climate change more than any other region on Earth. Impacts to terrestrial ecosystems have the potential to manifest through feedbacks with other components of the Earth System. Of particular concern is the potential for the massive store of soil organic carbon to be released from arctic permafrost to the atmosphere where it could exacerbate greenhouse warming and impact global climate and biogeochemical cycles. Even though substantial gains to our understanding of the changing Arctic have been made, especially over the past decade, linking research results from plot to regional scales remains a challenge due to the lack of adequate low/mid-altitude sampling platforms, logistic constraints, and the lack of cross-scale validation of research methodologies. The prime motivation of this study is to advance observational capacities suitable for documenting multi-scale environmental change in arctic terrestrial landscapes through the development and testing of novel ground-based and low altitude remote sensing methods. Specifically this study addressed the following questions: • How well can low-cost kite aerial photography and advanced computer vision techniques model the microtopographic heterogeneity of changing tundra surfaces? • How does imagery from kite aerial photography and fixed time-lapse digital cameras (pheno-cams) compare in their capacity to monitor plot-level phenological dynamics of arctic vegetation communities? • Can the use of multi-scale digital imaging systems be scaled to improve measurements of ecosystem properties and processes at the landscape level? • How do results from ground-based and low altitude digital remote sensing of the spatiotemporal variability in ecosystem processes compare with those from satellite remote sensing platforms? Key findings from this study suggest that cost-effective alternative digital imaging and remote sensing methods are suitable for monitoring and quantifying plot to landscape level ecosystem structure and phenological dynamics at multiple temporal scales. Overall, this study has furthered our knowledge of how tundra ecosystems in the Arctic change seasonally and how such change could impact remote sensing studies conducted from multiple platforms and across multiple spatial scales. Additionally, this study also highlights the urgent need for research into the validation of satellite products in order to better understand the causes and consequences of the changing Arctic and its potential effects on global processes. This study focused on sites located in northern Alaska and was formed in collaboration with Florida International University (FIU) and Grand Valley State University (GVSU) as a contribution to the US Arctic Observing Network (AON). All efforts were supported through the National Science Foundation (NSF), the Cyber-ShARE Center of Excellence, and the International Tundra Experiment (ITEX).
Wave Processes in Arctic Seas, Observed from TerraSAR-X
2015-09-30
in order to improve wave models as well as ice models applicable to a changing Arctic wave/ and ice climate . This includes observation and...fields retrieved from the TS-X image swaths. 4. “Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling”, by...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. “Wave Processes in Arctic Seas, Observed from TerraSAR-X
Weaving Arctic Networks of Support and Engaged Accountability
NASA Astrophysics Data System (ADS)
Warnick, W. K.
2003-12-01
This presentation will provide a preview of a new project which explores the potential of applying emerging educational research in conjunction with the latest polar research through a multifaceted approach designed to weave networks of support and engaged accountability between Arctic researchers, teachers, and learners. This presentation will outline how Sunwood's (2002) WoSEA educational model might be utilized to facilitate and study methods of engaging and supporting teachers and scientists in collaborative Arctic research and pedagogy. The model we are proposing employs action research methodology to provide educators and scientists the opportunity to engage in reflection on their own practice, and enhancement of their own practice through extensive connection and collaboration between education and scientific professionals, thus contributing to the cumulative development of a lifelong learning continuum. Our Weaving the Arctic project will amplify and enhance the voice, knowledge and expertise of Arctic researchers and teachers as each participant explores, shares, and showcases their experience, knowledge, and the products of their practice. Weaving thus holds great promise for addressing science education needs, particularly the critical needs surrounding enhancement and retention of STEM teachers in K-12 (especially rural) schools. This presentation will share the promise of our Weaving model.
NASA Astrophysics Data System (ADS)
Voytek, E.; Rushlow, C. R.; Godsey, S.; Singha, K.
2015-12-01
Shallow subsurface flow is a dominant process controlling hillslope runoff generation, soil development, and solute reaction and transport. Despite their importance, the location and geometry of flowpaths are difficult to determine. In arctic environments, shallow subsurface flowpaths are limited to a thin zone of seasonal thaw above continuous permafrost, which is traditionally assumed to mimic to surface topography. Here we use a combined approach of electrical resistivity imaging (ERI) and self-potential measurements (SP) to map shallow subsurface flowpaths in and around water tracks, drainage features common to arctic hillslopes. ERI measurements delineate thawed zones in the subsurface that control flowpaths, while SP is sensitive to groundwater flow. We find that areas of low electrical resistivity in the water tracks are deeper than manual thaw depth estimates and variations from surface topography. This finding suggests that traditional techniques significantly underestimate active layer thaw and the extent of the flowpath network on arctic hillslopes. SP measurements identify complex 3-D flowpaths in the thawed zone. Our results lay the groundwork for investigations into the seasonal dynamics, hydrologic connectivity, and climate sensitivity of spatially distributed flowpath networks on arctic hillslopes.
Improving coordination and integration of observations of Arctic change
NASA Astrophysics Data System (ADS)
Perovich, Donald; Payne, John; Eicken, Hajo
2012-10-01
U.S. Arctic Observing Coordination Workshop;Anchorage, Alaska, 20-22 March 2012 The Arctic is undergoing tremendous changes. Permafrost is thawing, ice sheets are melting, and sea ice is thinning and retreating. These changes are impacting ecosystems and human activities. Observing, understanding, and responding to these changes are the central themes of the U.S. Interagency Study of Environmental Arctic Change (SEARCH, http://www.arcus.org/search/index.php). SEARCH brings together academic and government agency scientists and stakeholders to prioritize, plan, conduct, and synthesize research focused on Arctic environmental change. The U.S. Arctic Observing Coordination Workshop (http://www.arcus.org/search/meetings/2012/coordination-workshop/) focused on two key themes for cross-disciplinary and cross-agency collaboration: (1) understanding and predicting sea ice changes and their consequences for ecosystems, human activities, and climate and (2) determining consequences of loss and warming of shallow permafrost on Arctic and global systems.
Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong; ...
2017-09-13
Historically, in-situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of Surface Air Temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19 °C in this region, or at a rate of 0.23 °C/decade during 1921-2015. Mean- while, we found that the SAT warmed at 0.71 °C/decade over 1998-2015, which is two to three times faster than the rate established from the gridded datasets. Focusing onmore » the "hiatus" period 1998-2012 as identied by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45 °C/decade, which captures more than 90% of the regional trend for 1951- 2012. We suggest that sparse in-situ measurements are responsible for underestimation of the SAT change in the gridded datasets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong
Historically, in-situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of Surface Air Temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19 °C in this region, or at a rate of 0.23 °C/decade during 1921-2015. Mean- while, we found that the SAT warmed at 0.71 °C/decade over 1998-2015, which is two to three times faster than the rate established from the gridded datasets. Focusing onmore » the "hiatus" period 1998-2012 as identied by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45 °C/decade, which captures more than 90% of the regional trend for 1951- 2012. We suggest that sparse in-situ measurements are responsible for underestimation of the SAT change in the gridded datasets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.« less
Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong; Clow, Gary D.; Jafarov, Elchin E.; Overeem, Irina; Romanovsky, Vladimir; Peng, Xiaoqing; Cao, Bin
2017-01-01
Historically, in situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of surface air temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19°C in this region, or at a rate of 0.23°C/decade during 1921–2015. Meanwhile, we found that the SAT warmed at 0.71°C/decade over 1998–2015, which is 2 to 3 times faster than the rate established from the gridded data sets. Focusing on the “hiatus” period 1998–2012 as identified by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45°C/decade, which captures more than 90% of the regional trend for 1951–2012. We suggest that sparse in situ measurements are responsible for underestimation of the SAT change in the gridded data sets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.
Canadian High Arctic Ionospheric Network (CHAIN)
NASA Astrophysics Data System (ADS)
Jayachandran, P. T.; Langley, R. B.; MacDougall, J. W.; Mushini, S. C.; Pokhotelov, D.; Hamza, A. M.; Mann, I. R.; Milling, D. K.; Kale, Z. C.; Chadwick, R.; Kelly, T.; Danskin, D. W.; Carrano, C. S.
2009-02-01
Polar cap ionospheric measurements are important for the complete understanding of the various processes in the solar wind-magnetosphere-ionosphere system as well as for space weather applications. Currently, the polar cap region is lacking high temporal and spatial resolution ionospheric measurements because of the orbit limitations of space-based measurements and the sparse network providing ground-based measurements. Canada has a unique advantage in remedying this shortcoming because it has the most accessible landmass in the high Arctic regions, and the Canadian High Arctic Ionospheric Network (CHAIN) is designed to take advantage of Canadian geographic vantage points for a better understanding of the Sun-Earth system. CHAIN is a distributed array of ground-based radio instruments in the Canadian high Arctic. The instrument components of CHAIN are 10 high data rate Global Positioning System ionospheric scintillation and total electron content monitors and six Canadian Advanced Digital Ionosondes. Most of these instruments have been sited within the polar cap region except for two GPS reference stations at lower latitudes. This paper briefly overviews the scientific capabilities, instrument components, and deployment status of CHAIN. This paper also reports a GPS signal scintillation episode associated with a magnetospheric impulse event. More details of the CHAIN project and data can be found at http://chain.physics.unb.ca/chain.
Arctic Glass: Innovative Consumer Technology in Support of Arctic Research
NASA Astrophysics Data System (ADS)
Ruthkoski, T.
2015-12-01
The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.
NASA Astrophysics Data System (ADS)
Schrod, Jann; Weber, Daniel; Thomson, Erik S.; Pöhlker, Christopher; Saturno, Jorge; Artaxo, Paulo; Curtius, Joachim; Bingemer, Heinz
2017-04-01
The number concentration of ice nucleating particles (INP) is an important, yet under quantified atmospheric parameter. The temporal and geographic extent of observations worldwide remains relatively small, with many regions of the world (even whole continents and oceans), almost completely unrepresented by observational data. Measurements at pristine sites are particularly rare, but all the more valuable because such observations are necessary to estimate the pre-industrial baseline of aerosol and cloud related parameters that are needed to better understand the climate system and forecast future scenarios. As a partner of BACCHUS we began in September 2014 to operate an INP measurement network of four sampling stations, with a global geographic distribution. The stations are located at unique sites reaching from the Arctic to the equator: the Amazonian Tall Tower Observatory ATTO in Brazil, the Observatoire Volcanologique et Sismologique on the island of Martinique in the Caribbean Sea, the Zeppelin Observatory at Svalbard in the Norwegian Arctic and the Taunus Observatory near Frankfurt, Germany. Since 2014 samples were collected regularly by electrostatic precipitation of aerosol particles onto silicon substrates. The INP on the substrate are activated and analyzed in the isothermal static diffusion chamber FRIDGE at temperatures between -20°C and -30°C and relative humidity with respect to ice from 115 to 135%. Here we present data from the years 2015 and 2016 from this novel INP network and from selected campaign-based measurements from remote sites, including the Mt. Kenya GAW station. Acknowledgements The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) project BACCHUS under grant agreement No 603445 and the Deutsche Forschungsgemeinschaft (DFG) under the Research Unit FOR 1525 (INUIT).
Role of Greenland meltwater in the changing Arctic
NASA Astrophysics Data System (ADS)
Dukhovskoy, Dmitry; Proshutinsky, Andrey; Timmermans, Mary-Louise; Myers, Paul; Platov, Gennady; Bamber, Jonathan; Curry, Beth; Somavilla, Raquel
2016-04-01
Observational data show that the Arctic ocean-ice-atmosphere system has been changing over the last two decades. Arctic change is manifest in the atypical behavior of the climate indices in the 21st century. Before the 2000s, these indices characterized the quasi-decadal variability of the Arctic climate related to different circulation regimes. Between 1948 and 1996, the Arctic atmospheric circulation alternated between anticyclonic circulation regimes and cyclonic circulation regimes with a period of 10-15 years. Since 1997, however, the Arctic has been dominated by an anticyclonic regime. Previous studies indicate that in the 20th century, freshwater and heat exchange between the Arctic Ocean and the sub-Arctic seas were self-regulated and their interactions were realized via quasi-decadal climate oscillations. What physical processes in the Arctic Ocean - sub-Arctic ocean-ice-atmosphere system are responsible for the observed changes in Arctic climate variability? The presented work is motivated by our hypothesis that in the 21st century, these quasi-decadal oscillations have been interrupted as a result of an additional freshwater source associated with Greenland Ice Sheet melt. Accelerating since the early 1990s, the Greenland Ice Sheet mass loss exerts a significant impact on thermohaline processes in the sub-Arctic seas. Surplus Greenland freshwater, the amount of which is about a third of the freshwater volume fluxed into the region during the 1970s Great Salinity Anomaly event, can spread and accumulate in the sub-Arctic seas influencing convective processes there. It is not clear, however, whether Greenland freshwater can propagate into the interior convective regions in the Labrador Sea and the Nordic Seas. In order to investigate the fate and pathways of Greenland freshwater in the sub-Arctic seas and to determine how and at what rate Greenland freshwater propagates into the convective regions, several numerical experiments using a passive tracer to track propagation of Greenland freshwater have been conducted as a part of the Forum for Arctic Ocean Modeling and Observational Synthesis effort. The presentation discusses the role of Greenland meltwater in the Arctic environment and how this can explain observed cessation of the quasi-decadal Arctic variability. The rate and pathways of Greenland meltwater in the sub-Arctic seas derived from the coordinated model experiments are analyzed. The presented study discusses a possible scenario of the Arctic in the future. It is argued that Greenland meltwater being accumulated in the sub-Arctic seas since the 1990s can trigger a negative feedback mechanism that may impede or even reverse processes of Arctic warming observed in the 21st century.
Data-adaptive Harmonic Decomposition and Real-time Prediction of Arctic Sea Ice Extent
NASA Astrophysics Data System (ADS)
Kondrashov, Dmitri; Chekroun, Mickael; Ghil, Michael
2017-04-01
Decline in the Arctic sea ice extent (SIE) has profound socio-economic implications and is a focus of active scientific research. Of particular interest is prediction of SIE on subseasonal time scales, i.e. from early summer into fall, when sea ice coverage in Arctic reaches its minimum. However, subseasonal forecasting of SIE is very challenging due to the high variability of ocean and atmosphere over Arctic in summer, as well as shortness of observational data and inadequacies of the physics-based models to simulate sea-ice dynamics. The Sea Ice Outlook (SIO) by Sea Ice Prediction Network (SIPN, http://www.arcus.org/sipn) is a collaborative effort to facilitate and improve subseasonal prediction of September SIE by physics-based and data-driven statistical models. Data-adaptive Harmonic Decomposition (DAH) and Multilayer Stuart-Landau Models (MSLM) techniques [Chekroun and Kondrashov, 2017], have been successfully applied to the nonlinear stochastic modeling, as well as retrospective and real-time forecasting of Multisensor Analyzed Sea Ice Extent (MASIE) dataset in key four Arctic regions. In particular, DAH-MSLM predictions outperformed most statistical models and physics-based models in real-time 2016 SIO submissions. The key success factors are associated with DAH ability to disentangle complex regional dynamics of MASIE by data-adaptive harmonic spatio-temporal patterns that reduce the data-driven modeling effort to elemental MSLMs stacked per frequency with fixed and small number of model coefficients to estimate.
NASA Astrophysics Data System (ADS)
Brigham, L. W.; Nelson, F. E.
2003-12-01
During 2002 the U.S. Arctic Research Commission chartered a task force on climate change, permafrost and infrastructure impacts. The task force was asked to identify key issues and research needs to foster a greater understanding of global change impacts on permafrost in the Arctic and their importance to natural and human systems. Permafrost was found to play three key roles in the context of climatic change: as a record keeper by functioning as a temperature archive; as a translator of climate change through subsidence and related impacts; and, as a facilitator of further change through its impacts on the global carbon cycle. Evidence of widespread warming of permafrost and observations of thawing have serious implications for Alaska's transportation network, for the trans-Alaska pipeline, and for nearly 100,000 Alaskans living in areas of permafrost. These impacts resulting from changing permafrost must be met by a timely, well-informed, and coordinated response by a host of federal and state organizations. Key task force findings include: requirements for a dedicated U.S. federal permafrost research program; data management needs; baseline permafrost mapping in Alaska; basic permafrost research focusing on process studies and modeling; and, applied permafrost research on design criteria and contaminants in permafrost environments. This report to the Commissioners makes specific recommendations to seven federal agencies, the State of Alaska, and the National Research Council. These recommendations will be incorporated in future Arctic research planning documents of the U.S. Arctic Research Commission.
Observational determination of albedo decrease caused by vanishing Arctic sea ice.
Pistone, Kristina; Eisenman, Ian; Ramanathan, V
2014-03-04
The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 ± 0.9 W/m(2) of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming.
Belchansky, G.I.; Douglas, David C.; Alpatsky, I.V.; Platonov, Nikita G.
2004-01-01
Arctic multiyear sea ice concentration maps for January 1988-2001 were generated from SSM/I brightness temperatures (19H, 19V, and 37V) using modified multiple layer perceptron neural networks. Learning data for the neural networks were extracted from ice maps derived from Okean and ERS satellite imagery to capitalize on the stability of active radar multiyear ice signatures. Evaluations of three learning algorithms and several topologies indicated that networks constructed with error back propagation learning and 3-20-1 topology produced the most consistent and physically plausible results. Operational neural networks were developed specifically with January learning data, and then used to estimate daily multiyear ice concentrations from daily-averaged SSM/I brightness temperatures during January. Monthly mean maps were produced for analysis by averaging the respective daily estimates. The 14-year series of January multiyear ice distributions revealed dense and persistent cover in the central Arctic surrounded by expansive regions of highly fluctuating interannual cover. Estimates of total multiyear ice area by the neural network were intermediate to those of other passive microwave algorithms, but annual fluctuations and trends were similar among all algorithms. When compared to Radarsat estimates of multiyear ice concentration in the Beaufort and Chukchi Seas (1997-1999), average discrepancies were small (0.9-2.5%) and spatial coherency was reasonable, indicating the neural network's Okean and ERS learning data facilitated passive microwave inversion that emulated backscatter signatures. During 1988-2001, total January multiyear ice area declined at a significant linear rate of -54.3 x 103 km2/yr-1 (-1.4%/yr-1). The most persistent and extensive decline in multiyear ice concentration (-3.3%/yr-1) occurred in the southern Beaufort and Chukchi Seas. In autumn 1996, a large multiyear ice recruitment of over 106 km2 (mostly in the Siberian Arctic) fully replenished the previous 8-year decline in total area, but it was followed by an accelerated and compensatory decline during the subsequent 4 years. Seventy-five percent of the interannual variation in January multiyear sea ice area was explained by linear regression on two atmospheric parameters: the previous inter's (JFM) Arctic Oscillation index as a proxy to melt duration and the previous year's average sea level pressure gradient across the Fram Strait as a proxy to annual ice export. Consecutive year changes (1994-2001) in January multiyear ice volume were significantly correlated with duration of the intervening melt season (R2 = 0.73, -80.0 km3/d-1), emphasizing a large thermodynamic influence on the Arctic's mass sea ice balance during summers with anomalous melt durations.
NASA Astrophysics Data System (ADS)
Cohen, Judah
2016-05-01
The tropics, in general, and El Niño/Southern Oscillation (ENSO) in particular are almost exclusively relied upon for seasonal forecasting. Much less considered and certainly more controversial is the idea that Arctic variability is influencing midlatitude weather. However, since the late 1980s and early 1990s, the Arctic has undergone the most rapid warming observed globally, referred to as Arctic amplification (AA), which has coincided with an observed increase in extreme weather. Analysis of observed trends in hemispheric circulation over the period of AA more closely resembles variability associated with Arctic boundary forcings than with tropical forcing. Furthermore, analysis of intraseasonal temperature variability shows that the cooling in midlatitude winter temperatures has been accompanied by an increase in temperature variability and not a decrease, popularly referred to as "weather whiplash."
Siberian Arctic black carbon sources constrained by model and observation
Andersson, August; Eckhardt, Sabine; Stohl, Andreas; Semiletov, Igor P.; Dudarev, Oleg V.; Charkin, Alexander; Shakhova, Natalia; Klimont, Zbigniew; Heyes, Chris; Gustafsson, Örjan
2017-01-01
Black carbon (BC) in haze and deposited on snow and ice can have strong effects on the radiative balance of the Arctic. There is a geographic bias in Arctic BC studies toward the Atlantic sector, with lack of observational constraints for the extensive Russian Siberian Arctic, spanning nearly half of the circum-Arctic. Here, 2 y of observations at Tiksi (East Siberian Arctic) establish a strong seasonality in both BC concentrations (8 ng⋅m−3 to 302 ng⋅m−3) and dual-isotope–constrained sources (19 to 73% contribution from biomass burning). Comparisons between observations and a dispersion model, coupled to an anthropogenic emissions inventory and a fire emissions inventory, give mixed results. In the European Arctic, this model has proven to simulate BC concentrations and source contributions well. However, the model is less successful in reproducing BC concentrations and sources for the Russian Arctic. Using a Bayesian approach, we show that, in contrast to earlier studies, contributions from gas flaring (6%), power plants (9%), and open fires (12%) are relatively small, with the major sources instead being domestic (35%) and transport (38%). The observation-based evaluation of reported emissions identifies errors in spatial allocation of BC sources in the inventory and highlights the importance of improving emission distribution and source attribution, to develop reliable mitigation strategies for efficient reduction of BC impact on the Russian Arctic, one of the fastest-warming regions on Earth. PMID:28137854
Impacts of Organic Macromolecules, Chlorophyll and Soot on Arctic Sea Ice
NASA Astrophysics Data System (ADS)
Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Flanner, M.; Dubey, M. K.
2014-12-01
Recent intensification of Arctic amplification can be strongly connected to positive feedback relating black carbon deposition to sea ice surface albedo. In addition to soot deposition on the ice and snow pack, ice algal chlorophyll is likely to compete as an absorber and redistributor of energy. Hence, solar radiation absorption by chlorophyll and some components of organic macromolecules in/under the ice column is currently being examined to determine the level of influence on predicted rate of ice loss. High amounts of organic macromolecules and chlorophyll are produced in global sea ice by the bottom microbial community and also in vertically distributed layers where substantial biological activities take place. Brine channeling in columnar ice can allow for upward flow of nutrients which leads to greater primary production in the presence of moderate light. Modeling of the sea-ice processes in tandem with experiments and field observations promises rapid progress in enhancing Arctic ice predictions. We are designing and conducting global climate model experiments to determine the impact of organic macromolecules and chlorophyll on Arctic sea ice. Influences on brine network permeability and radiation/albedo will be considered in this exercise. Absorption by anthropogenic materials such as soot and black carbon will be compared with that of natural pigments. We will indicate areas of soot and biological absorption dominance in the sense of single scattering, then couple into a full radiation transfer scheme to attribute the various contributions to polar climate change amplification. The work prepares us to study more traditional issues such as chlorophyll warming of the pack periphery and chemical effects of the flow of organics from ice internal communities. The experiments started in the Arctic will broaden to include Antarctic sea ice and shelves. Results from the Arctic simulations will be presented.
NASA Astrophysics Data System (ADS)
Breider, Thomas J.; Mickley, Loretta J.; Jacob, Daniel J.; Ge, Cui; Wang, Jun; Payer Sulprizio, Melissa; Croft, Betty; Ridley, David A.; McConnell, Joseph R.; Sharma, Sangeeta; Husain, Liaquat; Dutkiewicz, Vincent A.; Eleftheriadis, Konstantinos; Skov, Henrik; Hopke, Phillip K.
2017-03-01
Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near-term climate-forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS-Chem global chemical transport model to construct a 3-D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2-3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005-2010 Arctic shortwave radiative forcing (RF) of -0.19 ± 0.05 W m-2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (-1.17 ± 0.10 W m-2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from -0.67 ± 0.06 W m-2 to -0.19 ± 0.05 W m-2, yielding a net TOA RF of +0.48 ± 0.06 W m-2. The net positive RF is due almost entirely to decreases in anthropogenic sulfate loading over the Arctic. We estimate that 1980-2010 trends in aerosol-radiation interactions over the Arctic and Northern Hemisphere midlatitudes have contributed a net warming at the Arctic surface of +0.27 ± 0.04 K, roughly one quarter of the observed warming. Our study does not consider BC emissions from gas flaring nor the regional climate response to aerosol-cloud interactions or BC deposition on snow.
SEARCH Workshop on Large-Scale Atmosphere/Cryosphere Observations
NASA Technical Reports Server (NTRS)
2002-01-01
The purpose of the workshop held in Seattle during 27-29 November 2001 was to review existing land, sea ice, and atmospheric observations and the prospect for an Arctic System Reanalysis, through white papers, invited speakers, and panels. A major task for SEARCH was to determine how existing observation systems can be best used and enhanced to understand and anticipate the course of the ongoing changes in the Arctic. The primary workshop conclusion is that there is no cohesion among various Arctic disciplines and data types to form a complete observation set of Arctic change; a second workshop conclusion is that present data sets are vastly underutilized in understanding Arctic change; a third conclusion is that a distributed observing system must accommodate a wide range of spatial patterns of variability.
Observational determination of albedo decrease caused by vanishing Arctic sea ice
Pistone, Kristina; Eisenman, Ian; Ramanathan, V.
2014-01-01
The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 ± 0.9 W/m2 of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming. PMID:24550469
Arctic Black Carbon Initiative: Reducing Emissions of Black Carbon from Power & Industry in Russia
NASA Astrophysics Data System (ADS)
Cresko, J.; Hodson, E. L.; Cheng, M.; Fu, J. S.; Huang, K.; Storey, J.
2012-12-01
Deposition of black carbon (BC) on snow and ice is widely considered to have a climate warming effect by reducing the surface albedo and promoting snowmelt. Such positive climate feedbacks in the Arctic are especially problematic because rising surface temperatures may trigger the release of large Arctic stores of terrestrial carbon, further amplifying current warming trends. Recognizing the Arctic as a vulnerable region, the U.S. government committed funds in Copenhagen in 2009 for international cooperation targeting Arctic BC emissions reductions. As a result, the U.S. Department of State has funded three research and demonstration projects with the goal to better understand and mitigate BC deposition in the Russian Arctic from a range of sources. The U.S. Department of Energy's (DOE) Arctic BC initiative presented here is focused on mitigating BC emissions resulting from heat and power generation as well as industrial applications. A detailed understanding of BC sources and its transport and fate is required to prioritize efforts to reduce BC emissions from sources that deposit in the Russian Arctic. Sources of BC include the combustion of fossil fuels (e.g. coal, fuel oil, diesel) and the combustion of biomass (e.g. wildfires, agricultural burning, residential heating and cooking). Information on fuel use and associated emissions from the industrial and heat & power sectors in Russia is scarce and difficult to obtain from the open literature. Hence, our project includes a research component designed to locate Arctic BC emissions sources in Russia and determine associated BC transport patterns. We use results from the research phase to inform a subsequent assessment/demonstration phase. We use a back-trajectory modeling method (potential source contribution function - PSCF), which combines multi-year, high-frequency measurements with knowledge about atmospheric transport patterns. The PSCF modeling allows us to map the probability (by season and year) at course resolution (2.5° x 2.5° spatial resolution) that a particular region emits BC which deposits in the Russian Arctic. We utilize data from three Arctic measurement stations during the most recent decade: Alert, Northwest Territories, Canada; Barrow, Alaska; and Tiksi Bay, Russia. To understand more about individual Arctic BC sources, we conduct further research to improve inventory estimates of Russian industrial and energy sector BC emissions. By comparing inventory data on power plant locations and emissions from two publically-available databases (EDGAR-HTAP and CARMA databases) to each other and to additional observations from satellites and the AERONET observation network in Russia, we assess the accuracy of the Russian BC emission inventory in EDGAR-HTAP, a commonly used database for atmospheric transport modeling. We then use a global (GEOS-CHEM) atmospheric transport model to quantify the finer spatial distribution of BC within the Arctic. Lastly, we use data on Russian fuel use combined with published emissions factors to build a national-scale model of energy use and associated emissions from critical industrial and heat & power sources of BC. We use this model to estimate the technical potential of reducing BC emissions through proven mitigation efforts such as improvements in energy efficiency and in emission control technologies.
Scaling Laws in Arctic Permafrost River Basins: Statistical Signature in Transition
NASA Astrophysics Data System (ADS)
Rowland, J. C.; Gangodagamage, C.; Wilson, C. J.; Prancevic, J. P.; Brumby, S. P.; Marsh, P.; Crosby, B. T.
2011-12-01
The Arctic landscape has been shown to be fundamentally different from the temperate landscape in many ways. Long winters and cold temperatures have led to the development of permafrost, perennially frozen ground, that controls geomorphic processes and the structure of the Arctic landscape. Climate warming is causing changes in permafrost and the active layer (the seasonally thawed surface layer) that is driving an increase in thermal erosion including thermokarst (collapsed soil), retrogressive thaw slumps, and gullies. These geomorphic anomalies in the arctic landscapes have not been well quantified, even though some of the landscape geomorphic and hydrologic characteristics and changes are detectable by our existing sensor networks. We currently lack understanding of the fundamental fluvio-thermal-erosional processes that underpin Arctic landscape structure and form, which limits our ability to develop models to predict the landscape response to current and future climate change. In this work, we seek a unified framework that can explain why permafrost landscapes are different from temperate landscapes. We use high resolution LIDAR data to analyze arctic geomorphic processes at a scale of less than a 1 m and demonstrate our ability to quantify the fundamental difference in the arctic landscape. We first simulate the arctic hillslopes from a stochastic space-filling network and demonstrate that the flow-path convergent properties of arctic landscape can be effectively captured from this simple model, where the simple model represents a landscape flowpath arrangement on a relatively impervious frozen soil layer. Further, we use a novel data processing algorithm to analyze landscape attributes such as slope, curvature, flow-accumulation, elevation-drops and other geomorphic properties, and show that the pattern of diffusion and advection dominated soil transport processes (diffusion/advection regime transition) in the arctic landscape is substantially different from the pattern in temperate landscapes. Our results suggest that Arctic landscapes are characterized by relatively undissected, long planar hillslopes, which convey sediment to quasi-fluvial valleys through long (~ 1 km) flow-paths. Further, we also document that broad planar hillslopes abruptly converge, forcing rapid subsurface flow accumulation at channel heads. This topographic characteristic can successfully be used to explain the position of erosion features. Finally we estimate the landscape model parameters for the arctic landscape that can be successfully used to model development and validation purposes.
NASA Astrophysics Data System (ADS)
Dukhovskoy, D. S.; Chassignet, E. P.; Hogan, P. J.; Metzger, E. J.; Posey, P.; Smedstad, O. M.; Stefanova, L. B.; Wallcraft, A. J.
2016-12-01
The great potential of numerical models to provide a high-resolution continuous picture of the environmental characteristics of the Arctic system is related to the problem of reliability and accuracy of the simulations. Recent Arctic Ocean model intercomparison projects have identified substantial disagreements in water mass distribution and circulation among the models over the last two decades. In situ and satellite observations cannot yield enough continuous in time and space information to interpret the observed changes in the Arctic system. Observations combined with Arctic Ocean models via data assimilation provide perhaps the most complete knowledge about the state of the Arctic system. We use outputs from the US Navy Global Ocean Forecast System (20-year reanalysis + analysis) to investigate several hypotheses that have been put forward regarding the current state and recent changes in the Arctic Ocean. The system is based on the 0.08-degree HYbrid Coordinate Ocean Model (HYCOM) and can be run with two-way coupling to the Los Alamos Community Ice CodE (CICE) or with an energy-loan ice model. Observations are assimilated by the Navy Coupled Ocean Data Assimilation (NCODA) algorithm. HYCOM temperature and salinity fields are shown to be in good agreement with observational data in the Arctic and North Atlantic. The model reproduces changes in the freshwater budget in the Arctic as reported in other studies. The modeled freshwater fluxes between the Arctic Ocean and the North Atlantic are analyzed to document and discuss the interaction between the two regions over the last two decades.
OCoc- from Ocean Colour to Organic Carbon
NASA Astrophysics Data System (ADS)
Heim, B.; Overduin, P. P.; Schirrmeister, L.; Doerffer, R.
2009-04-01
Enhanced permafrost warming and increased arctic river discharges have heightened concern about the input of terrigenous matter into Arctic coastal waters. Especially, large parts of the Central and Eastern Siberian coastline are characterized by highly erosive sedimentary ice-rich material. The ‘OCoc-from Ocean Colour to Organic Carbon' project (IPY-project 1176), funded by the German Research Foundation (DFG), is an Ocean Colour study joined with the Arctic Circum-polar Coastal Observatory Network Acco-Net (ACCO-Net: IPY-project 90) originating from the Arctic Coastal Dynamics ACD project . OCoc uses Ocean Colour satellite data for synoptic monitoring of the input of organic matter - from both fluvial and coastal sources - into the Arctic coastal waters. Initial results from the German-Russian Expedition Lena08 along the southeastern Laptev Sea Coast (Arctic Siberia, Russia) in August 2008 are presented. Ocean Colour MERIS Reduced Resolution (RR)-LIB data of the Laptev Sea Coast from August 2008 have been processed towards L2 parameters using Beam-Visat4.2© and the MERIS case2 regional processor for coastal application (C2R). C2R uses neural network procedures for the retrieval of water leaving reflectances and neural network procedures to derive the inherent optical properties (IOPs) from the water leaving reflectances. C2R output parameters are IOPs (absorption and backscattering coefficients), apparent optical properties (AOPs) (water leaving radiance reflectance, attenuation coefficient ‘k'), optical parameters such as the first attenuation depth (‘Z90') and calculated concentrations of chlorophyll, total suspended matter, and yellow substance absorption. Initial comparisons with Lena08-Expedition data (Secchi depths, cDOM) and water transparency data from former arctic cruises show that the MERIS-C2R optical parameters 'total absorption' and the first attenuation depth, 'Z90', seem adequately to represent true conditions. High attenuation values are the tracers for the organic-rich terrigenous input. The synoptic information of MERIS Ocean Colour products will provide valuable spatial and dynamical information on the Organic Carbon and sediment fluxes from the Siberian permafrost coast.
Summer 2007 and 2008 Arctic Sea Ice Loss in Context: OUTLOOK 2008
NASA Astrophysics Data System (ADS)
Overland, J. E.; Eicken, H.; Wiggins, H. V.
2008-12-01
The Arctic is changing faster than the publication cycle for new information. In response, the SEARCH and DAMOCLES Programs initiated an OUTLOOK 2008 to provide broad-based communication and assessment within the arctic science community on the causes of rapid summer sea ice loss, synthesizing information from Arctic observing networks and model simulations. The question for summer 2008 was whether the previous loss of multi-year sea ice and delay in sea ice formation in autumn 2007 would still allow sufficient winter growth of sea ice thickness to last through the summer 2008, potentially allowing for recovery from the 2007 minimum. The answer is no; summer 2008 was a second sequential year of extremely low minimum sea ice extent. To organize OUTLOOK 2008, respondents were asked in May, June and July to provide a rationale and semi-quantitative assessment of arctic sea ice extent anticipated for September 2008. OUTLOOK 2008 supplemented information maintained by ice centers, universities and other data providers. Using a range of methods, all of the approximately 20 groups responded that summer sea ice would not return to climatological mean conditions, with a median response near the 2007 extent. The range of responses depended on the relative weight given to "initial conditions," e.g., age and thickness of sea ice at the end of spring, versus whether summer winds in 2008 would be as supportive for ice loss as in 2007. Initial conditions turned out to be a primary factor for summer 2008, with implications for continued sea ice loss in future years. OUTLOOK 2008 highlighted aspects of the observation and modeling efforts that require further attention such as interpretation of summer microwave signatures, in situ buoy measurements, and data assimilation in models. We appreciate the contributions from respondents and reviewers who made OUTLOOK 2008 a success.
NASA Astrophysics Data System (ADS)
McLennan, D.; Kehler, D.
2016-12-01
The Canadian High Arctic Research Station (CHARS) is scheduled for completion in July 2017 and is the northern science component of Polar Knowledge Canada (POLAR). A mandated goal for POLAR is to establish the adjacent Experimental and Reference Area (ERA) as an Arctic Flagship monitoring site that will track change in Arctic terrestrial, freshwater and marine ecosystems. Situated in the community of Cambridge Bay, CHARS provides the opportunity to draw on the Indigenous Knowledge of local residents to help design and conduct the monitoring, and to operate 12 months a year. Monitoring at CHARS will be linked to networks nationally and internationally, and is being designed so that change in key indicators can be understood in terms of drivers and processes, modeled and scaled up regionally, and used to predict important changes in critical indicators. As a partner in the Circumpolar Biodiversity Monitoring Program (CBMP), the monitoring design for terrestrial ecosystems follows approaches outlined by the CBMP Terrestrial Expert Monitoring Group, who have listed key monitoring questions and identified a list of important Focal Ecosystem Components (FECs). To link drivers to FECs we are proposing a multi-scaled approach: 1) an Intensive Monitoring Area to establish replicated monitoring plots that track change in snow depth and condition, active layer depth, soil temperature, soil moisture, and soil solution chemistry that are spatially and temporally linked to changes in microbiological activity, CO2/CH4 net ecosystem flux, vegetation relative frequency, species composition, growth and foliar nutrient concentration, arthropod abundance, lemming abundance and health, and shorebird/songbird abundance and productivity. 2) These intensive observations are supported by watershed scale measures that will monitor, during the growing season, lemming winter nest abundance, songbird, shorebird and waterfowl staging and nesting, and other observations; in the winter we will monitor muskoxen, caribou, Arctic hare, wolf and Arctic fox using tracks and DNA analysis of fresh scat. 3) Ground measures will be supported by aerial flights and satellite remote sensing approaches to reach out with regional calibration-validation. Feedback is being sought at this time on project design, implementation and scope.
An Array of Ice-Based Observatories for Arctic Studies
NASA Astrophysics Data System (ADS)
Plueddemann, A.; Proshutinsky, A.; Toole, J.; Ashjian, C.; Krishfield, R.; Carmack, E.; Dethloff, K.; Fahrbach, E.; Gascard, J.; Perovich, D.; Pryamikov, S.
2004-12-01
The Arctic Ocean's role in global climate - while now widely appreciated - remains poorly understood. Lack of information about key processes within the oceanic, cryospheric, biologic, atmospheric and geologic disciplines will continue to impede physical understanding, model validation, and climate prediction until a practical observing system is designed and implemented. Requirements, challenges and recommendations for Ice-Based Observatories (IBO?s) for the Arctic Ocean were formulated by workshop participants of an international workshop entitled "Arctic Observing Based on Ice-Tethered Platforms" held at the Woods Hole Oceanographic Institution in Woods Hole, Massachusetts, USA, June 28-30, 2004. The principal conclusion from the workshop was that practical, cost-effective and proven IBO designs presently exist, can be readily extended to provide interdisciplinary observations, and should be implemented expeditiously as part of a coordinated Arctic observing system. Ice-based instrument systems are a proven means of acquiring unattended high quality air, ice, and ocean data from the central Arctic during all seasons. Arctic Change is ongoing and measurements need to begin now. An array of approximately 25-30 IBO units maintained throughout the Arctic Ocean is envisioned to observe the annual and interannual variations of the polar atmosphere-ice-ocean environment. An international body will be required to coordinate the various national programs (eliminate overlap, insure no data holes) and insure compatibility of data and their widespread distribution. A long-term, internationally coordinated logistics plan should be implemented as an essential complement to scientific and technical plans for an IBO array. The 25 years of IABP drift trajectories, existing data climatologies and available numerical simulations should be exploited to derive insight to optimal array design, deployment strategies, sampling intervals, and expected performance of an IBO array. IBO designs should provide accommodation for novel sensors, tomographic receivers, and communication and navigation capabilities for free vehicles. Emerging technologies for Arctic observation should be developed within the framework of an integrated Arctic observing system.
NASA Astrophysics Data System (ADS)
Lee, Seongsuk; Yi, Yu
2016-12-01
The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/ or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).
Inventory of montane-nesting birds in the Arctic Network of National Parks, Alaska
Tibbitts, T.L.; Ruthrauff, D.R.; Gill, Robert E.; Handel, Colleen M.
2006-01-01
The Alaska Science Center of the U.S. Geological Survey conducted an inventory of birds in montane areas of the four northern parks in the Arctic Network of National Parks, Alaska. This effort represents the first comprehensive assessment of breeding range and habitat associations for the majority of avian species in the Arctic Network. Ultimately, these data provide a framework upon which to design future monitoring programs.A stratified random sampling design was used to select sample plots (n = 73 plots) that were allocated in proportion to the availability of ecological subsections. Point counts (n = 1,652) were conducted to quantify abundance, distribution, and habitat associations of birds. Field work occurred over three years (2001 to 2003) during two-week-long sessions in late May through early June that coincided with peak courtship activity of breeding birds.Totals of 53 species were recorded in Cape Krusenstern National Monument, 91 in Noatak National Preserve, 57 in Kobuk Valley National Park, and 96 in Gates of the Arctic National Park and Preserve. Substantial proportions of species in individual parks are considered species of conservation concern (18 to 26%) or species of stewardship responsibility of the land managers in the region (8 to 18%). The most commonly detected passerines on point counts included Redpoll spp. (Carduelis flammea and C. hornemanni), Savannah Sparrow (Passerculus sandwichensis), and American Tree Sparrow (Spizella arborea). The most numerous shorebirds were American Golden-Plover (Pluvialis dominica), Wilson’s Snipe (Gallinago delicata), and Whimbrel (Numenius phaeopus). Most species were detected at low rates, reflecting the low breeding densities (and/or low detectabilities) of birds in the montane Arctic. Suites of species were associated with particular ranges of elevation and showed strong associations with particular habitat types.
Arctic: A Friend Acting Strangely
frequent. Explore the Arctic's changing climate. Discover what these changes mean for the Arctic, its warming in the Arctic by exploring how changes have been observed and documented by scientists and polar
Observed Changes at the Surface of the Arctic Ocean
NASA Astrophysics Data System (ADS)
Ortmeyer, M.; Rigor, I.
2004-12-01
The Arctic has long been considered a harbinger of global climate change since simulations with global climate models predict that if the concentration of CO2 in the atmosphere doubles, the Arctic would warm by more than 5°C, compared to a warming of 2°C for subpolar regions (Manabe et al., 1991). And indeed, studies of the observational records show polar amplification of the warming trends (e.g. Serreze and Francis, 2004). These temperature trends are accompanied by myriad concurrent changes in Arctic climate. One of the first indicators of Arctic climate change was found by Walsh et al. (1996) using sea level pressure (SLP) data from the International Arctic Buoy Programme (IABP, http://iabp.apl.washington.edu). In this study, they showed that SLP over the Arctic Ocean decreased by over 4 hPa from 1979 - 1994. The decreases in SLP (winds) over the Arctic Ocean, forced changes in the circulation of sea ice and the surface ocean currents such that the Beaufort Gyre is reduced in size and speed (e.g. Rigor et al., 2002). Data from the IABP has also been assimilated into the global surface air temperature (SAT) climatologies (e.g. Jones et al. 1999), and the IABP SAT analysis shows that the temperature trends noted over land extend out over the Arctic Ocean. Specifically, Rigor et al. (2000) found warming trends in SAT over the Arctic Ocean during win¬ter and spring, with values as high as 2°C/decade in the eastern Arctic during spring. It should be noted that many of the changes in Arctic climate were first observed or explained using data from the IABP. The observations from IABP have been one of the cornerstones for environmental forecasting and studies of climate and climate change. These changes have a profound impact on wildlife and people. Many species and cultures depend on the sea ice for habitat and subsistence. Thus, monitoring the Arctic Ocean is crucial not only for our ability to detect climate change, but also to improve our understanding of the Arctic and global climate system, and for forecasting weather and sea ice conditions. The IABP provides the longest continuing record of observations for the Arctic Ocean.
Gschwind, Tilo; Lafourcade, Carlos; Gfeller, Tim; Zaichuk, Mariana; Rambousek, Lukas; Knuesel, Irene; Fritschy, Jean-Marc
2018-06-04
Aberrant epileptic activity is detectable at early disease stages in Alzheimer's disease (AD) patients and in AD mouse models. Here, we investigated in young ArcticAβ mice whether AD-like pathology renders neuronal networks more susceptible to development of acquired epilepsy induced by unilateral intrahippocampal injection of kainic acid (IHK). In this temporal lobe epilepsy model, IHK induces a status epilepticus followed after two weeks by spontaneous recurrent seizures (SRS). ArcticAβ mice exhibited more severe status epilepticus and early onset of SRS. This hyperexcitable phenotype was characterized in CA1 neurons by decreased synaptic strength, increased kainic acid-induced LTP, and reduced frequency of spontaneous inhibitory currents. However, no difference in neurodegeneration, neuroinflammation, axonal reorganization or adult neurogenesis was observed in ArcticAβ mice compared to wildtype littermates following IHK-induced epileptogenesis. Neuropeptide Y (NPY) expression was reduced at baseline and its IHK-induced elevation in mossy fibers and granule cells was attenuated. However, although this alteration might underlie premature seizure onset, neutralization of soluble Aβ species by intracerebroventricular Aβ-specific antibody application mitigated the hyperexcitable phenotype of ArcticAβ mice and prevented early SRS onset. Therefore, development of seizures at early stages of AD is mediated primarily by Aβ species causing widespread changes in synaptic function. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Projected status of the Pacific walrus (Odobenus rosmarus divergens) in the twenty-first century
Chadwick V. Jay; Bruce G. Marcot; David C. Douglas
2011-01-01
Extensive and rapid losses of sea ice in the Arctic have raised conservation concerns for the Pacific walrus (Odobenus rosmarus divergens), a large pinniped inhabiting arctic and subarctic continental shelf waters of the Chukchi and Bering seas. We developed a Bayesian network model to integrate potential effects of changing environmental...
Distribution of Aerosols in the Arctic as Observed by CALIOP
NASA Astrophysics Data System (ADS)
Winker, D.; Kittaka, C.
2007-12-01
The Arctic climate is now recognized to be uniquely sensitive to atmospheric perturbations. Pollution aerosols and smoke from boreal fires have potentially important impacts on Arctic climate but there are many uncertainties. Aerosol in the Arctic, generally referred to as "Arctic haze", has been studied with great interest for over thirty years. Much has been learned about the composition and sources of the haze yet our knowledge is largely based on long term measurements at a very few widely dispersed sites, augmented by modeling activities and occasional field campaigns. Transport pathways from source regions into the Arctic are not well understood. Emission patterns have changed over the last several decades, but the impact of this on concentrations and distribution of Arctic haze are understood only in the crudest sense. Due to poor lighting conditions, extended periods of darkness, and surfaces covered by snow and ice, satellite sensors have been unable to provide much information on Arctic haze to date. The CALIPSO satellite carries CALIOP, a two-wavelength polarization lidar, optimized for profiling clouds and aerosols. CALIOP has been acquiring global observations since June 2006 and provides our first opportunity to observe the distribution and seasonal variation of aerosol in the Arctic. The Arctic is characterized by the prevalence of optically thin ice clouds and clouds composed of supercooled water, often occurring in the same atmospheric column along with aerosol. CALIOP depolarization signals are used to discriminate Arctic haze from optically thin cirrus and diamond dust. Two-wavelength returns aid in the discrimination of aerosol and optically thin water cloud. Results of initial analyses of CALIOP aerosol observations in the Arctic will be presented. This work is a preliminary analysis in support of the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign planned for April 2008.
NASA Astrophysics Data System (ADS)
Huang, Y.; Dong, X.; Xi, B.; Dolinar, E. K.; Stanfield, R.
2015-12-01
Cloud and radiation processes are very important issues in Arctic climate system. Reanalyses have proved to be the essential tools to study extreme weather and climate events, especially in data-sparse region like the Arctic. Before using reanalyses products, their strengths and uncertainties should be identified. In this study, five recent reanalyses (JRA55, 20CR V2c, CFSR, ERA-Interim and MERRA) are compared with NASA CERES satellite observations with respect of cloud fraction (CF), top-of-atmosphere (TOA) and surface longwave (LW)/shortwave (SW) radiation fluxes during the period of 03/2000-02/2012 over the Arctic (70-90°N). 20CR V2c, CFSR, ERA-Interim and MERRA overestimate CFs, particularly during the cold season, with the positive biases of annual means from +9.6% (MERRA) to +22.9% (20CR V2c). Only JRA55 can represent its overall seasonal variation and spatial distribution but with large negative biases (nearly -15%). All reanalyses can well capture the seasonal trend of TOA SW/LW upwelling fluxes. However, in all-sky condition, all of them show positive biases of TOA SW upwelling flux along northern and eastern coasts in Greenland during the warm season (JJA). There is a good agreement between reanalyses and observation in seasonal cycle of net TOA cloud radiative effects (CRE), which are calculated by TOA SW/LW fluxes. The spatial distributions of net TOA CRE in warm season show that only JRA55 and ERA-Interim are relatively consistent with their reanalyzed CFs. As for the surface radiation, the satellite-derived results were firstly validated by Baseline Surface Radiation Network (BSRN) ground-based observations. It illustrates that average biases of satellite retrievals are +9.85 W/m2 for surface downward SW flux and +0.39 W/m2 for downward LW flux in warm season within the Arctic. The seasonal variation of SW/LW fluxes can be well represented by four of five reanalyses except MERRA. Reanalyzed surface downward SW flux in JRA55, CFSR and ERA-Interim are relatively consistent with their CF results among these reanalyses. However, the biases in TOA and surface radiation fluxes cannot only explained by biased CFs in some of reanalyses.
NASA Astrophysics Data System (ADS)
Stroeve, J. C.
2014-12-01
The last four decades have seen a remarkable decline in the spatial extent of the Arctic sea ice cover, presenting both challenges and opportunities to Arctic residents, government agencies and industry. After the record low extent in September 2007 effort has increased to improve seasonal, decadal-scale and longer-term predictions of the sea ice cover. Coupled global climate models (GCMs) consistently project that if greenhouse gas concentrations continue to rise, the eventual outcome will be a complete loss of the multiyear ice cover. However, confidence in these projections depends o HoHoweon the models ability to reproduce features of the present-day climate. Comparison between models participating in the World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5) and observations of sea ice extent and thickness show that (1) historical trends from 85% of the model ensemble members remain smaller than observed, and (2) spatial patterns of sea ice thickness are poorly represented in most models. Part of the explanation lies with a failure of models to represent details of the mean atmospheric circulation pattern that governs the transport and spatial distribution of sea ice. These results raise concerns regarding the ability of CMIP5 models to realistically represent the processes driving the decline of Arctic sea ice and to project the timing of when a seasonally ice-free Arctic may be realized. On shorter time-scales, seasonal sea ice prediction has been challenged to predict the sea ice extent from Arctic conditions a few months to a year in advance. Efforts such as the Sea Ice Outlook (SIO) project, originally organized through the Study of Environmental Change (SEARCH) and now managed by the Sea Ice Prediction Network project (SIPN) synthesize predictions of the September sea ice extent based on a variety of approaches, including heuristic, statistical and dynamical modeling. Analysis of SIO contributions reveals that when the September sea ice extent is near the long-term trend, contributions tend to be accurate. Years when the observed extent departs from the trend have proven harder to predict. Predictability skill does not appear to be more accurate for dynamical models over statistical ones, nor is there a measurable improvement in skill as the summer progresses.
Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations
Rawlins, M.A.; Steele, M.; Holland, M.M.; Adam, J.C.; Cherry, J.E.; Francis, J.A.; Groisman, P.Y.; Hinzman, L.D.; Huntington, T.G.; Kane, D.L.; Kimball, J.S.; Kwok, R.; Lammers, R.B.; Lee, C.M.; Lettenmaier, D.P.; McDonald, K.C.; Podest, E.; Pundsack, J.W.; Rudels, B.; Serreze, Mark C.; Shiklomanov, A.; Skagseth, O.; Troy, T.J.; Vorosmarty, C.J.; Wensnahan, M.; Wood, E.F.; Woodgate, R.; Yang, D.; Zhang, K.; Zhang, T.
2010-01-01
Hydrologic cycle intensification is an expected manifestation of a warming climate. Although positive trends in several global average quantities have been reported, no previous studies have documented broad intensification across elements of the Arctic freshwater cycle (FWC). In this study, the authors examine the character and quantitative significance of changes in annual precipitation, evapotranspiration, and river discharge across the terrestrial pan-Arctic over the past several decades from observations and a suite of coupled general circulation models (GCMs). Trends in freshwater flux and storage derived from observations across the Arctic Ocean and surrounding seas are also described. With few exceptions, precipitation, evapotranspiration, and river discharge fluxes from observations and the GCMs exhibit positive trends. Significant positive trends above the 90% confidence level, however, are not present for all of the observations. Greater confidence in the GCM trends arises through lower interannual variability relative to trend magnitude. Put another way, intrinsic variability in the observations tends to limit confidence in trend robustness. Ocean fluxes are less certain, primarily because of the lack of long-term observations. Where available, salinity and volume flux data suggest some decrease in saltwater inflow to the Barents Sea (i.e., a decrease in freshwater outflow) in recent decades. A decline in freshwater storage across the central Arctic Ocean and suggestions that large-scale circulation plays a dominant role in freshwater trends raise questions as to whether Arctic Ocean freshwater flows are intensifying. Although oceanic fluxes of freshwater are highly variable and consistent trends are difficult to verify, the other components of the Arctic FWC do show consistent positive trends over recent decades. The broad-scale increases provide evidence that the Arctic FWC is experiencing intensification. Efforts that aim to develop an adequate observation system are needed to reduce uncertainties and to detect and document ongoing changes in all system components for further evidence of Arctic FWC intensification.
Pan-Arctic TV Series on Inuit wellness: a northern model of communication for social change?
Johnson, Rhonda; Morales, Robin; Leavitt, Doreen; Carry, Catherine; Kinnon, Dianne; Rideout, Denise; Clarida, Kath
2011-06-01
This paper provides highlights of a utilization-focused evaluation of a collaborative Pan-Arctic Inuit Wellness TV Series that was broadcast live in Alaska and Canada in May 2009. This International Polar Year (IPY) communication and outreach project intended to (1) share information on International Polar Year research progress, disseminate findings and explore questions with Inuit in Alaska, Canada and Greenland; (2) provide a forum for Inuit in Alaska, Canada and Greenland to showcase innovative health and wellness projects; (3) ensure Inuit youth and adult engagement throughout; and (4) document and reflect on the overall experience for the purposes of developing and "testing" a participatory communication model. Utilization-focused formative evaluation of the project, with a focus on overall objectives, key messages and lessons learned to facilitate program improvement. Participant observation, surveys, key informant interviews, document review and website tracking. Promising community programs related to 3 themes - men's wellness, maternity care and youth resilience - in diverse circumpolar regions were highlighted, as were current and stillevolving findings from ongoing Arctic research. Multiple media methods were used to effectively deliver and receive key messages determined by both community and academic experts. Local capacity and new regional networks were strengthened. Evidence-based resources for health education and community action were archived in digital formats (websites and DVDs), increasing accessibility to otherwise isolated individuals and remote communities. The Pan-Arctic Inuit Wellness TV Series was an innovative, multi-dimensional communication project that raised both interest and awareness about complex health conditions in the North and stimulated community dialogue and potential for increased collaborative action. Consistent with a communication for social change approach, the project created new networks, increased motivation to act and provided new tools to do so, and increased local community involvement and "voice" in the discussion and dissemination of successful strategies to promote Inuit wellness.
Arctic in Rapid Transition: Priorities for the future of marine and coastal research in the Arctic
NASA Astrophysics Data System (ADS)
Werner, Kirstin; Fritz, Michael; Morata, Nathalie; Keil, Kathrin; Pavlov, Alexey; Peeken, Ilka; Nikolopoulos, Anna; Findlay, Helen S.; Kędra, Monika; Majaneva, Sanna; Renner, Angelika; Hendricks, Stefan; Jacquot, Mathilde; Nicolaus, Marcel; O'Regan, Matt; Sampei, Makoto; Wegner, Carolyn
2016-09-01
Understanding and responding to the rapidly occurring environmental changes in the Arctic over the past few decades require new approaches in science. This includes improved collaborations within the scientific community but also enhanced dialogue between scientists and societal stakeholders, especially with Arctic communities. As a contribution to the Third International Conference on Arctic Research Planning (ICARPIII), the Arctic in Rapid Transition (ART) network held an international workshop in France, in October 2014, in order to discuss high-priority requirements for future Arctic marine and coastal research from an early-career scientists (ECS) perspective. The discussion encompassed a variety of research fields, including topics of oceanographic conditions, sea-ice monitoring, marine biodiversity, land-ocean interactions, and geological reconstructions, as well as law and governance issues. Participants of the workshop strongly agreed on the need to enhance interdisciplinarity in order to collect comprehensive knowledge about the modern and past Arctic Ocean's geo-ecological dynamics. Such knowledge enables improved predictions of Arctic developments and provides the basis for elaborate decision-making on future actions under plausible environmental and climate scenarios in the high northern latitudes. Priority research sheets resulting from the workshop's discussions were distributed during the ICARPIII meetings in April 2015 in Japan, and are publicly available online.
Long-Endurance, Ice-capable Autonomous Seagliders
NASA Astrophysics Data System (ADS)
Lee, C. M.; Gobat, J. I.; Shilling, G.; Curry, B.
2012-12-01
Autonomous Seagliders capable of extended (many months) operation in ice-covered waters have been developed and successfully employed as part of the US Arctic Observing Network. Seagliders operate routinely in lower-latitude oceans for periods of up to 9 months to provide persistent sampling in difficult, remote conditions, including strong boundary currents and harsh wintertime subpolar seas. The Arctic Observing Network calls for sustained occupation of key sections within the Arctic Ocean and across the critical gateways that link the Arctic to lower-latitude oceans, motivating the extension of glider technologies to permit operation in ice-covered waters. When operating in open water, gliders rely on GPS for navigation and Iridium satellite phones for data and command telemetry. Ice cover blocks access to the sea surface and thus prevents gliders from using these critical services. When operating under ice, ice-capable Seagliders instead navigate by trilateration from an array of RAFOS acoustic sound sources and employ advanced autonomy to make mission-critical decisions (previously the realm of the human pilot) and identify and exploit leads in the ice to allow intermittent communication through Iridium. Davis Strait, one of the two primary pathways through which Arctic waters exit into the subpolar North Atlantic, provided a convenient site for development of ice-capable Seagliders at a location where the resulting measurements could greatly augment the existing observing system. Initial testing of 780 Hz RAFOS sources in Davis Strait, substantiated by the performance of the operational array, indicates effective ranges of 100-150 km in ice-covered waters. Surface ducting and reflection off the ice bottom significantly degrade the range from the 500+ km expected in ice-free conditions. Comparisons between GPS and acoustically-derived positions collected during operations in ice-free conditions suggest 1-2 km uncertainty in the acoustically-derived positions. The first successful section across the ice-covered Davis Strait occurred in 2006, while the first full mission took place September - February 2008. Mission duration was 25 weeks, with over 800 km of under-ice transit over 51 days. The glider was able to identify and surface through leads 10 times during under-ice operations. Most recently, a pair of successful missions collected continuous sections across Davis Strait from October 2010 through June 2011, including operations between January and June, when the strait was nearly entirely ice-covered and the glider rarely gained access to the surface. These missions provide the first year-round time series of high-resolution sections across Davis Strait. In the Antarctic, ice-capable Seagliders successfully transited beneath a 40-km ice bridge and self-extracted after being carried beneath the Ross ice shelf during missions conducted without the support of an acoustic navigation array. Ice-capable Seagliders can provide sustainable, continuous occupation of critical sections in ice-covered regions, including the marginal ice zone, with typical horizontal resolution of 3 km and routine sampling of the important, but hazardous, region near the ice-ocean interface. Future directions include development of basin-scale acoustic navigation ('underwater GPS' for the Arctic) and use of existing high-frequency acoustic communications for short-range data transfer.
Long-Endurance, Ice-capable Autonomous Seagliders
NASA Astrophysics Data System (ADS)
Lee, Craig; Gobat, Jason; Shilling, Geoff; Curry, Beth
2013-04-01
Autonomous Seagliders capable of extended (many months) operation in ice-covered waters have been developed and successfully employed as part of the US Arctic Observing Network. Seagliders operate routinely in lower-latitude oceans for periods of up to 9 months to provide persistent sampling in difficult, remote conditions, including strong boundary currents and harsh wintertime subpolar seas. The Arctic Observing Network calls for sustained occupation of key sections within the Arctic Ocean and across the critical gateways that link the Arctic to lower-latitude oceans, motivating the extension of glider technologies to permit operation in ice-covered waters. When operating in open water, gliders rely on GPS for navigation and Iridium satellite phones for data and command telemetry. Ice cover blocks access to the sea surface and thus prevents gliders from using these critical services. When operating under ice, ice-capable Seagliders instead navigate by trilateration from an array of RAFOS acoustic sound sources and employ advanced autonomy to make mission-critical decisions (previously the realm of the human pilot) and identify and exploit leads in the ice to allow intermittent communication through Iridium. Davis Strait, one of the two primary pathways through which Arctic waters exit into the subpolar North Atlantic, provided a convenient site for development of ice-capable Seagliders at a location where the resulting measurements could greatly augment the existing observing system. Initial testing of 780 Hz RAFOS sources in Davis Strait, substantiated by the performance of the operational array, indicates effective ranges of 100-150 km in ice-covered waters. Surface ducting and reflection off the ice bottom significantly degrade the range from the 500+ km expected in ice-free conditions. Comparisons between GPS and acoustically-derived positions collected during operations in ice-free conditions suggest 1-2 km uncertainty in the acoustically-derived positions. The first successful section across the ice-covered Davis Strait occurred in 2006, while the first full mission took place September - February 2008. Mission duration was 25 weeks, with over 800 km of under-ice transit over 51 days. The glider was able to identify and surface through leads 10 times during under-ice operations. Most recently, a pair of successful missions collected continuous sections across Davis Strait from October 2010 through June 2011, including operations between January and June, when the strait was nearly entirely ice-covered and the glider rarely gained access to the surface. These missions provide the first year-round time series of high-resolution sections across Davis Strait. In the Antarctic, ice-capable Seagliders successfully transited beneath a 40-km ice bridge and self-extracted after being carried beneath the Ross ice shelf during missions conducted without the support of an acoustic navigation array. Ice-capable Seagliders can provide sustainable, continuous occupation of critical sections in ice-covered regions, including the marginal ice zone, with typical horizontal resolution of 3 km and routine sampling of the important, but hazardous, region near the ice-ocean interface. Future directions include development of basin-scale acoustic navigation ('underwater GPS' for the Arctic) and use of existing high-frequency acoustic communications for short-range data transfer.
Eavesdropping on the Arctic: Automated bioacoustics reveal dynamics in songbird breeding phenology.
Oliver, Ruth Y; Ellis, Daniel P W; Chmura, Helen E; Krause, Jesse S; Pérez, Jonathan H; Sweet, Shannan K; Gough, Laura; Wingfield, John C; Boelman, Natalie T
2018-06-01
Bioacoustic networks could vastly expand the coverage of wildlife monitoring to complement satellite observations of climate and vegetation. This approach would enable global-scale understanding of how climate change influences phenomena such as migratory timing of avian species. The enormous data sets that autonomous recorders typically generate demand automated analyses that remain largely undeveloped. We devised automated signal processing and machine learning approaches to estimate dates on which songbird communities arrived at arctic breeding grounds. Acoustically estimated dates agreed well with those determined via traditional surveys and were strongly related to the landscape's snow-free dates. We found that environmental conditions heavily influenced daily variation in songbird vocal activity, especially before egg laying. Our novel approaches demonstrate that variation in avian migratory arrival can be detected autonomously. Large-scale deployment of this innovation in wildlife monitoring would enable the coverage necessary to assess and forecast changes in bird migration in the face of climate change.
NASA Astrophysics Data System (ADS)
Zarnetske, J. P.; Abbott, B. W.; Bowden, W. B.; Iannucci, F.; Griffin, N.; Parker, S.; Pinay, G.; Aanderud, Z.
2017-12-01
Dissolved organic carbon (DOC), nutrients, and other solute concentrations are increasing in rivers across the Arctic. Two hypotheses have been proposed to explain these trends: 1. distributed, top-down permafrost degradation, and 2. discrete, point-source delivery of DOC and nutrients from permafrost collapse features (thermokarst). While long-term monitoring at a single station cannot discriminate between these mechanisms, synoptic sampling of multiple points in the stream network could reveal the spatial structure of solute sources. In this context, we sampled carbon and nutrient chemistry three times over two years in 119 subcatchments of three distinct Arctic catchments (North Slope, Alaska). Subcatchments ranged from 0.1 to 80 km2, and included three distinct types of Arctic landscapes - mountainous, tundra, and glacial-lake catchments. We quantified the stability of spatial patterns in synoptic water chemistry and analyzed high-frequency time series from the catchment outlets across the thaw season to identify source areas for DOC, nutrients, and major ions. We found that variance in solute concentrations between subcatchments collapsed at spatial scales between 1 to 20 km2, indicating a continuum of diffuse- and point-source dynamics, depending on solute and catchment characteristics (e.g. reactivity, topography, vegetation, surficial geology). Spatially-distributed mass balance revealed conservative transport of DOC and nitrogen, and indicates there may be strong in-stream retention of phosphorus, providing a network-scale confirmation of previous reach-scale studies in these Arctic catchments. Overall, we present new approaches to analyzing synoptic data for change detection and quantification of ecohydrological mechanisms in ecosystems in the Arctic and beyond.
Mass Balance of Multiyear Sea Ice in the Southern Beaufort Sea
2012-09-30
datasets. Table 1 lists the primary data sources to be used. To determine sources and sinks of MY ice, we use a simple model of MY ice circulation, which is...shown in Figure 1. In this model , we consider the Beaufort Sea to consist of four zones defined by mean drift of sea ice in summer and winter, such...Healy/Louis S. St. Laurant cruises 1 Seasonal Ice Zone Observing Network 2 Polar Airborne Measurements and Arctic Regional Climate Model
NASA Astrophysics Data System (ADS)
Fu, D.; Su, F.; Wang, J.
2017-12-01
More accurate evaluation of the state of Arctic tundra vegetation is important for our understanding of Arctic and global systems. Arctic tundra greening has been reported, increasing vegetation cover and productivity in many regions, but browning has been also reported, based on satellite-observed Normalized Difference Vegetation Index (NDVI) from 2011 until recently. Here we demonstrate a satellite-based method of estimating tundra greenness trend. A more direct indicator of greenness (spatially downscaling solar-induced fluorescence, SIF) was used to analyze the spatial and temporal patterns of Arctic tundra greenness trends based on ordinary least square regression (2007-2013). Meanwhile, two other greenness indices were used for the comparison, which were two NDVI products: GIMMS NDVI3g, and MOD13Q1 Collection 6. Generally, the Arctic tundra was not consistently greening, browning also existed. For the spatial trends, the results showed that most parts of the Arctic tundra below 75ºN was browning (-0.0098 mW/m2/sr/nm/year) using SIF, whereas spatially heterogeneous trends (greening or browning) were obtained based on the two NDVI products. For the temporal trends, the greenness value of Eurasia Arctic tundra is higher than Northern America and the whole Arctic tundra for the three greenness indices. From 2010, the Arctic tundra was greening based on MOD13Q1, whereas is browning using GIMMS NDVI3g. However, the Arctic tundra was obviously browning using SIF data. This study demonstrates a way of investigating the variation of Arctic tundra vegetation via new satellite-observed data.
NASA Astrophysics Data System (ADS)
Matrai, P. A.; Williams, C. R.; Rauschenberg, C. D.
2012-12-01
Autonomous, sea ice-tethered buoys ("O-Buoys") are being deployed across the Arctic sea ice for long-term atmospheric measurements, with several O-Buoys having been deployed within the Hudson Bay, Beaufort Sea, and the North Pole. These buoys provide in-situ measurements of ozone, CO_{2} and BrO, as well as meteorological parameters, over the frozen ocean. O-Buoys were designed to transmit daily data over a period of 2 years while deployed in sea ice, as part of automated ice-drifting stations. Due to the logistical challenges of measurements over the Arctic Ocean region, most long term,in-situ observations of atmospheric chemistry have been made at coastal sites or islands near the coast, leaving large spatial and temporal gaps that O-Buoys can overcome. The significant uncertainty that remains in our understanding of the temporal and spatial variability in these parameters as well as the magnitude and/or frequency of long (CO_{2}) and short (ozone depletion) patterns can be overcome. Advances in floatation, communications, power management, and sensor hardware have been made to the original design to overcome the challenges of diminished Arctic sea ice which have resulted in our longest deployments into the summer so far.
Dhaneesha, M; Benjamin Naman, C; Krishnan, K P; Sinha, Rupesh Kumar; Jayesh, P; Joseph, Valsamma; Bright Singh, I S; Gerwick, William H; Sajeevan, T P
2017-05-01
After screening marine actinomycetes isolated from sediment samples collected from the Arctic fjord Kongsfjorden for potential anticancer activity, an isolate identified as Streptomyces artemisiae MCCB 248 exhibited promising results against the NCI-H460 human lung cancer cell line. H460 cells treated with the ethyl acetate extract of strain MCCB 248 and stained with Hoechst 33342 showed clear signs of apoptosis, including shrinkage of the cell nucleus, DNA fragmentation and chromatin condensation. Further to this treated cells showed indications of early apoptotic cell death, including a significant proportion of Annexin V positive staining and evidence of DNA damage as observed in the TUNEL assay. Amplified PKS 1 and NRPS genes involved in secondary metabolite production showed only 82% similarity to known biosynthetic genes of Streptomyces, indicating the likely production of a novel secondary metabolite in this extract. Additionally, chemical dereplication efforts using LC-MS/MS molecular networking suggested the presence of a series of undescribed tetraene polyols. Taken together, these results revealed that this Arctic S. artemisiae strain MCCB 248 is a promising candidate for natural products drug discovery and genome mining for potential anticancer agents.
NASA Astrophysics Data System (ADS)
Williams, D. D.; Horne, C.
2006-12-01
With proper programming, informal learning environments of children's museums, zoos and aquariums can be fertile frontiers for communicating the excitement, the significance and even the complexity of Polar scientific research to the public, including children under 12 old. These venues can also be effective in enhancing public understanding of the global dimensions of the issues facing the Polar Regions in the coming decades. We base these assertions not just on scholarly research in how children learn in informal environments but also from an experiential program we created in 2003-04 called Go Polar! Cool Science in the Arctic. Funded by the US National Science Foundation in 2003 (ESI-0336928), Go Polar! was a partnership between the EdVenture Children Museum, the largest children's museum in the southeastern US, and the University of South Carolina, the State's largest research university. Go Polar! involved active Arctic researchers, university undergraduate students, the EdVenture museum staff, family education specialists, and educational psychologists to disseminate on-going NSF funded research on the Arctic hydrologic cycle (ODP-0229737). The Go Polar program provided opportunities for South Carolina children and families to meet real scientists engaged in Arctic research with hands-on activities that introduced children and families not only to the scientific process but also to new science concepts and knowledge. The Go Polar! also resulted in the development and testing of new educational materials Arctic Discovery Boxes specially designed hands-on informal education activities on three themes #1 The Arctic and Global Change, #2 Arctic Cultures and #3 Animal Adaptations in the Arctic. In 2005 the Go Polar! partnership expanded the reach of their programming and materials to include the Antarctic. Using the theme "Exploring and Connecting the Opposite Ends of the Earth," the Go Polar! team created a Polar Festival featuring a giant floor puzzle of the Arctic and Antarctic with the ocean basins and surrounding continents connecting the poles (http://schc.sc.edu/gopolar/). Having received endorsement from the IPY Education and Outreach Committee, our plans are to disseminate the Go Polar! programming through a national and even international network of museums, zoos and aquariums.
NASA Astrophysics Data System (ADS)
Shiklomanov, N. I.; Nelson, F. E.; Streletskiy, D. A.; Klene, A. E.; Biskaborn, B. K.
2016-12-01
The uppermost layer of seasonal thawing above permafrost (the active layer) is an important regulator of energy and mass fluxes between the surface and the atmosphere in the polar regions. Active layer monitoring is an important component of efforts to assess the effects of global change in permafrost environments. The Circumpolar Active Layer Monitoring (CALM) program, established in the early 1990s, is designed to observe temporal and spatial variability of the active layer and its response to changes and variations in climatic conditions. The CALM network is an integral part of the Global Terrestrial Network for Permafrost (GTN-P), operating under the auspices of the Global Terrestrial Observing System (GTOS) /Global Climate Observing System (GCOS). Standardized thaw depth observations in the Northern Hemisphere are available for more than 200 GTN-P/CALM sites in the Northern Hemisphere. At each of the sites spatially distributed ALT measurements have been conducted annually by mechanical probing. The locations of sites represent generalized surface and subsurface conditions characteristic of broader regions. The data are assimilated and distributed though the CALM (www.gwu.edu/ calm) and GTN-P (gtnpdatabase.org) online databases. In this presentation we use data from approximately 20 years of continuous observations to examine temporal trends in active-layer thickness for several representative Arctic regions. Results indicate substantial interannual fluctuations in active-layer thickness, primarily in response to variations in air temperature. Decadal trends in ALT vary by region. A progressive increase in ALT has been observed in the Nordic countries, the Russian European North, West Siberia, East Siberia, the Russian Far East, and the Interior of Alaska. North American Arctic sites show no apparent thaw depth trend over 22-years of record. However, combined active layer, ground temperature and heave/subsidence observations conducted in northern Alaska demonstrate a complex, non-linear response of the active-layer/upper permafrost system to changes in climatic conditions.
NASA Technical Reports Server (NTRS)
Curry, J. A.; Hobbs, P. V.; King, M. D.; Randall, D. A.; Minnis, P.; Issac, G. A.; Pinto, J. O.; Uttal, T.; Bucholtz, A.; Cripe, D. G.;
1998-01-01
An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies.
Interfacing with in-Situ Data Networks during the Arctic Boreal Vulnerability Experiment (ABoVE)
NASA Astrophysics Data System (ADS)
McInerney, M.; Griffith, P. C.; Duffy, D.; Hoy, E.; Schnase, J. L.; Sinno, S.; Thompson, J. H.
2014-12-01
The Arctic Boreal Vulnerability Experiment (ABoVE) is designed to improve understanding of the causes and impacts of ecological changes in Arctic/boreal regions, and will integrate field-based studies, modeling, and data from airborne and satellite remote sensing. ABoVE will result in a fuller understanding of ecosystem vulnerability and resilience to environmental change in the Arctic and boreal regions of western North America, and provide scientific information required to develop options for societal responses to the impacts of these changes. The studies sponsored by NASA during ABoVE will be coordinated with research and in-situ monitoring activities being sponsored by a number of national and international partners. The NASA Center for Climate Simulation at the Goddard Space Flight Center has partnered with the NASA Carbon Cycle & Ecosystems Office to create a science cloud designed for this field campaign - the ABoVE Science Cloud (ASC). The ASC combines high performance computing with emerging technologies to create an environment specifically designed for large-scale modeling, analysis of remote sensing data, copious disk storage with integrated data management, and integration of core variables from in-situ networks identified by the ABoVE Science Definition Team. In this talk, we will present the scientific requirements driving the development of the ABoVE Science Cloud, discuss the necessary interfaces, both computational and human, with in-situ monitoring networks, and show examples of how the ASC is being used to meet the needs of the ABoVE campaign.
Hill, Richard; Saetnan, Eli R; Scullion, John; Gwynn-Jones, Dylan; Ostle, Nick; Edwards, Arwyn
2016-06-01
Microbial responses to Arctic climate change could radically alter the stability of major stores of soil carbon. However, the sensitivity of plot-scale experiments simulating climate change effects on Arctic heathland soils to potential confounding effects of spatial and temporal changes in soil microbial communities is unknown. Here, the variation in heathland soil bacterial communities at two survey sites in Sweden between spring and summer 2013 and at scales between 0-1 m and, 1-100 m and between sites (> 100 m) were investigated in parallel using 16S rRNA gene T-RFLP and amplicon sequencing. T-RFLP did not reveal spatial structuring of communities at scales < 100 m in any site or season. However, temporal changes were striking. Amplicon sequencing corroborated shifts from r- to K-selected taxon-dominated communities, influencing in silico predictions of functional potential. Network analyses reveal temporal keystone taxa, with a spring betaproteobacterial sub-network centred upon a Burkholderia operational taxonomic unit (OTU) and a reconfiguration to a summer sub-network centred upon an alphaproteobacterial OTU. Although spatial structuring effects may not confound comparison between plot-scale treatments, temporal change is a significant influence. Moreover, the prominence of two temporally exclusive keystone taxa suggests that the stability of Arctic heathland soil bacterial communities could be disproportionally influenced by seasonal perturbations affecting individual taxa. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Aerosol Size and Chemical Composition in the Canadian High Arctic
NASA Astrophysics Data System (ADS)
Chang, R. Y. W.; Hayes, P. L.; Leaitch, W. R.; Croft, B.; O'Neill, N. T.; Fogal, P.; Drummond, J. R.; Sloan, J. J.
2015-12-01
Arctic aerosol have a strong annual cycle, with winter months dominated by long range transport from lower latitudes resulting in high mass loadings. Conversely, local emissions are more prominent in the summer months because of the decreased influence of transported aerosol, allowing us to regularly observe both transported and local aerosol. This study will present observations of aerosol chemical composition and particle number size distribution collected at the Polar Environment Artic Research Laboratory and the Alert Global Atmospheric Watch Observatory at Eureka (80N, 86W) and Alert (82N, 62W), Nunavut, respectively. Summer time observations of the number size distribution reveal a persistent mode of particles centered between 30-50 nm, with occasional bursts of smaller particles. The non-refractory aerosol chemical composition, measured by the Canadian Network for the Detection of Atmospheric Change quadrupole aerosol mass spectrometer, is primarily organic, with contributions from both aged and fresher organic aerosol. Factor analysis will be conducted to better understand these sources. The site at Eureka is more susceptible to long range transport since it is at the top of a mountain ridge (610 m above sea level) and will be compared to the site at Alert on an elevated plain (200 m above sea level). This will allow us to determine the relative contributions from processes and sources at the sites at different elevations. Comparisons with aerosol optical depth and GEOS-Chem model output will also be presented to put these surface measurements into context with the overlying and regional atmosphere. Results from this study contribute to our knowledge of aerosol in the high Arctic.
NASA Astrophysics Data System (ADS)
Parazoo, N.; Miller, C. E.; Commane, R.; Wofsy, S. C.; Koven, C.; Lawrence, D. M.; Lindaas, J.; Chang, R. Y. W.; Sweeney, C.
2015-12-01
The future trajectory of Arctic ecosystems as a carbon sink or source is of global importance due to vast quantities of carbon in permafrost soils. Over the last few years, a sustained set of airborne (NOAA-PFA, NOAA-ACG, and CARVE) and satellite (OCO-2 and GOSAT) atmospheric CO2 mole fraction measurements have provided unprecedented space and time scale sampling density across Alaska, making it possible to study the Arctic carbon cycle in more detail than ever before. Here, we use a synthesis of airborne and satellite CO2 over the 2009-2013 period with simulated concentrations from CLM4.5 and GEOS-Chem to examine the extent to which regional-scale carbon cycle changes in Alaska can be distinguished from interannual variability and long-range transport. We show that observational strategies focused on sustained profile measurements spanning continental interiors provide key insights into magnitude, duration, and variability of Summer sink activity, but that cold season sources are currently poorly resolved due to lack of sustained spatial sampling. Consequently, although future CO2 budgets dominated by enhanced cold season emission sources under climate warming and permafrost thaw scenarios are likely to produce substantial changes to near-surface CO2 gradients and seasonal cycle amplitude, they are unlikely to be detected by current observational strategies. We conclude that airborne and ground-based networks that provide more spatial coverage in year round profiles will help compensate for systematic sampling gaps in NIR passive satellite systems and provide essential constraints for Arctic carbon cycle changes.
Distributed Observing Networks of the Past: Using Archaeological Sites to Study Global Change
NASA Astrophysics Data System (ADS)
Jensen, A. M.
2015-12-01
The Arctic is changing rapidly, and there is much concern over what the effects of those changes might be. Although changes of considerable magnitude have happened in the past, current understanding of Arctic systems is not yet sufficient to enable useful predictions. Scientific observations span a very limited period in the Arctic, and do not encompass even fairly recent (Little Ice Age, Medieval Climate Anomaly) periods of climate change. One way to address this would be to extend the period of observation, but the situation is urgent. As an alternative, various types of proxy data can serve a similar function. It is suggested that archaeological sites with good organic preservation are not only sources of data on past human behavior and cultural organization, but also valuable resources for paleoenvironmental reconstruction, with potential similar to other paleoenvironmental proxy records. The sites tend to be located at or near places that are still occupied today, thus providing locally relevant data. They also tend to incorporate the same range of species that are important for subsistence and food security today, so that one can examine how changes affected those species in the past in a fairly direct manner. Yet, just as new methods increase our ability to retrieve and study this information, global climate change poses a dire threat, both to the wealth of organic data in such sites, and to many of the sites themselves. Global change-related threats including increased coastal erosion and the warming and thawing of permafrost are major and imminent threats to the archaeological and paleoecological record.
Arctic Boreal Vulnerability Experiment (ABoVE) Science Cloud
NASA Astrophysics Data System (ADS)
Duffy, D.; Schnase, J. L.; McInerney, M.; Webster, W. P.; Sinno, S.; Thompson, J. H.; Griffith, P. C.; Hoy, E.; Carroll, M.
2014-12-01
The effects of climate change are being revealed at alarming rates in the Arctic and Boreal regions of the planet. NASA's Terrestrial Ecology Program has launched a major field campaign to study these effects over the next 5 to 8 years. The Arctic Boreal Vulnerability Experiment (ABoVE) will challenge scientists to take measurements in the field, study remote observations, and even run models to better understand the impacts of a rapidly changing climate for areas of Alaska and western Canada. The NASA Center for Climate Simulation (NCCS) at the Goddard Space Flight Center (GSFC) has partnered with the Terrestrial Ecology Program to create a science cloud designed for this field campaign - the ABoVE Science Cloud. The cloud combines traditional high performance computing with emerging technologies to create an environment specifically designed for large-scale climate analytics. The ABoVE Science Cloud utilizes (1) virtualized high-speed InfiniBand networks, (2) a combination of high-performance file systems and object storage, and (3) virtual system environments tailored for data intensive, science applications. At the center of the architecture is a large object storage environment, much like a traditional high-performance file system, that supports data proximal processing using technologies like MapReduce on a Hadoop Distributed File System (HDFS). Surrounding the storage is a cloud of high performance compute resources with many processing cores and large memory coupled to the storage through an InfiniBand network. Virtual systems can be tailored to a specific scientist and provisioned on the compute resources with extremely high-speed network connectivity to the storage and to other virtual systems. In this talk, we will present the architectural components of the science cloud and examples of how it is being used to meet the needs of the ABoVE campaign. In our experience, the science cloud approach significantly lowers the barriers and risks to organizations that require high performance computing solutions and provides the NCCS with the agility required to meet our customers' rapidly increasing and evolving requirements.
NASA Astrophysics Data System (ADS)
Morrison, A. L.; Kay, J. E.; Chepfer, H.; Guzman, R.; Yettella, V.
2018-01-01
While the radiative influence of clouds on Arctic sea ice is known, the influence of sea ice cover on Arctic clouds is challenging to detect, separate from atmospheric circulation, and attribute to human activities. Providing observational constraints on the two-way relationship between sea ice cover and Arctic clouds is important for predicting the rate of future sea ice loss. Here we use 8 years of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) spaceborne lidar observations from 2008 to 2015 to analyze Arctic cloud profiles over sea ice and over open water. Using a novel surface mask to restrict our analysis to where sea ice concentration varies, we isolate the influence of sea ice cover on Arctic Ocean clouds. The study focuses on clouds containing liquid water because liquid-containing clouds are the most important cloud type for radiative fluxes and therefore for sea ice melt and growth. Summer is the only season with no observed cloud response to sea ice cover variability: liquid cloud profiles are nearly identical over sea ice and over open water. These results suggest that shortwave summer cloud feedbacks do not slow long-term summer sea ice loss. In contrast, more liquid clouds are observed over open water than over sea ice in the winter, spring, and fall in the 8 year mean and in each individual year. Observed fall sea ice loss cannot be explained by natural variability alone, which suggests that observed increases in fall Arctic cloud cover over newly open water are linked to human activities.
A review on existing OSSEs and their implications on European marine observation requirements
NASA Astrophysics Data System (ADS)
She, Jun
2017-04-01
Marine observations are essential for understanding marine processes and improving the forecast quality, they are also expensive. It has always been an important issue to optimize sampling schemes of marine observational networks so that the value of marine observations can be maximized and the cost can be lowered. Ocean System Simulation Experiment (OSSE) is an efficient tool in assessing impacts of proposed future sampling schemes on reconstructing and forecasting the ocean and ecosystem conditions. In this study existing OSSE research results from EU projects (such as JERICO, OPEC, SANGOMA, E-AIMS and AtlantOS), institutional studies and review papers are collected and analyzed, according to regions (Arctic, Baltic, N. Atlantic, Mediterranean Sea and Black Sea) and instruments/variables. The preliminary results show that significant gaps for OSSEs in regions and instruments. Among the existing OSSEs, Argo (Bio-Argo and Deep See Argo), gliders and ferrybox are the most often investigated instruments. Although many of the OSSEs are dedicated for very specific monitoring strategies and not sufficiently comprehensive for making solid recommendations for optimizing the existing networks, the detailed findings for future marine observation requirements from the OSSEs will be summarized in the presentation. Recommendations for systematic OSSEs for optimizing European marine observation networks are also given.
NASA Astrophysics Data System (ADS)
Rawlins, M. A.; Adam, J. C.; Vorosmarty, C. J.; Serreze, M. C.; Hinzman, L. D.; Holland, M.; Shiklomanov, A.
2007-12-01
It is expected that a warming climate will be attended by an intensification of the global hydrological cycle. While there are signs of positive trends in several hydrological quantities emerging at the global scale, the scope, character, and quantitative significance of these changes are not well established. In particular, long-term increases in river discharge across Arctic Eurasia are assumed to represent such an intensification and have received considerable attention. Yet, no change in long-term annual precipitation across the region can be related with the discharge trend. Given linkages and feedbacks between the arctic and global climate systems, a more complete understanding of observed changes across northern high latitudes is needed. We present a working definition of an accelerated or intensified hydrological cycle and a synthesis of long-term (nominally 50 years) trends in observed freshwater stocks and fluxes across the arctic land-atmosphere-ocean system. Trend and significance measures from observed data are described alongside expectations of intensification based on GCM simulations of contemporary and future climate. Our domain of interest includes the terrestrial arctic drainage (including all of Alaska and drainage to Hudson Bay), the Arctic Ocean, and the atmosphere over the land and ocean domains. For the terrestrial Arctic, time series of spatial averages which are derived from station data and atmospheric reanalysis are available. Reconstructed data sets are used for quantities such as Arctic Ocean ice and liquid freshwater transports. Study goals include a comprehensive survey of past changes in freshwater across the pan-arctic and a set of benchmarks for expected changes based on an ensemble of GCM simulations, and identification of potential mechanistic linkages which may be examined with contemporary remote sensing data sets.
Arctic Sea Ice Predictability and the Sea Ice Prediction Network
NASA Astrophysics Data System (ADS)
Wiggins, H. V.; Stroeve, J. C.
2014-12-01
Drastic reductions in Arctic sea ice cover have increased the demand for Arctic sea ice predictions by a range of stakeholders, including local communities, resource managers, industry and the public. The science of sea-ice prediction has been challenged to keep up with these developments. Efforts such as the SEARCH Sea Ice Outlook (SIO; http://www.arcus.org/sipn/sea-ice-outlook) and the Sea Ice for Walrus Outlook have provided a forum for the international sea-ice prediction and observing community to explore and compare different approaches. The SIO, originally organized by the Study of Environmental Change (SEARCH), is now managed by the new Sea Ice Prediction Network (SIPN), which is building a collaborative network of scientists and stakeholders to improve arctic sea ice prediction. The SIO synthesizes predictions from a variety of methods, including heuristic and from a statistical and/or dynamical model. In a recent study, SIO data from 2008 to 2013 were analyzed. The analysis revealed that in some years the predictions were very successful, in other years they were not. Years that were anomalous compared to the long-term trend have proven more difficult to predict, regardless of which method was employed. This year, in response to feedback from users and contributors to the SIO, several enhancements have been made to the SIO reports. One is to encourage contributors to provide spatial probability maps of sea ice cover in September and the first day each location becomes ice-free; these are an example of subseasonal to seasonal, local-scale predictions. Another enhancement is a separate analysis of the modeling contributions. In the June 2014 SIO report, 10 of 28 outlooks were produced from models that explicitly simulate sea ice from dynamic-thermodynamic sea ice models. Half of the models included fully-coupled (atmosphere, ice, and ocean) models that additionally employ data assimilation. Both of these subsets (models and coupled models with data assimilation) have a far narrower spread in their prediction, indicating that the results of these more sophisticated methods are converging. Here we summarize and synthesize the 2014 contributions to the SIO, highlight the important questions and challenges that remain to be addressed, and present data on stakeholder uses of the SIO and related SIPN products.
Sharing-based social capital associated with harvest production and wealth in the Canadian Arctic
2018-01-01
Social institutions that facilitate sharing and redistribution may help mitigate the impact of resource shocks. In the North American Arctic, traditional food sharing may direct food to those who need it and provide a form of natural insurance against temporal variability in hunting returns within households. Here, network properties that facilitate resource flow (network size, quality, and density) are examined in a country food sharing network comprising 109 Inuit households from a village in Nunavik (Canada), using regressions to investigate the relationships between these network measures and household socioeconomic attributes. The results show that although single women and elders have larger networks, the sharing network is not structured to prioritize sharing towards households with low food availability. Rather, much food sharing appears to be driven by reciprocity between high-harvest households, meaning that poor, low-harvest households tend to have less sharing-based social capital than more affluent, high-harvest households. This suggests that poor, low-harvest households may be more vulnerable to disruptions in the availability of country food. PMID:29529040
Kortsch, Susanne; Primicerio, Raul; Fossheim, Maria; Dolgov, Andrey V; Aschan, Michaela
2015-09-07
Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning. © 2015 The Authors.
Kortsch, Susanne; Primicerio, Raul; Fossheim, Maria; Dolgov, Andrey V.; Aschan, Michaela
2015-01-01
Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning. PMID:26336179
Maritime Geo-Fence Letter Report
2016-07-01
Identification System ( AIS ). For the Arctic Technology Evaluation 2015 (ATE-15), the RDC utilized the CG Cutter HEALY (polar ice breaker) to...conduct testing of various AIS Transmit features to determine their utility for improving CG marine safety and security capabilities in the Arctic. During...ATE-15 three different operations were tested using AIS Technology. 1) Shore-to-Ship. The MXAK network of shore transmitters (three of which covered
2007-09-01
ARCTIC SEA ICE RESEARCH The effects of global warming on the Arctic Ocean finally gained the American public’s full attention in early 2007 with the...Arctic (Brass, 2002). The observed global warming trend is most pronounced in the higher latitudes due to an effect known as the snow/ice-albedo...due to increased melting thus exposing greater areas of lower albedo land and open water areas. The effect of global warming will result in a
2010-12-01
Arctic has been observed in the northern Canadian Arctic Archipelago ( Bourke and McLaren 1992). There, thick multiyear ice of Arctic origin encounters...Affairs, 87(2), 63-77. 172 Bourke , R. H., and A. S. McLaren, 1992: Contour mapping of Arctic Basin ice draft and roughness parameters. J. Geophys
NASA Astrophysics Data System (ADS)
Rohde, J. A.; Bowden, S.; Stephenson, S. N.; Starkweather, S.
2015-12-01
The Interagency Arctic Research Policy Committee (IARPC) envisions a prosperous, sustainable, and healthy Arctic understood through innovative and collaborative research coordinated among Federal agencies and domestic and international partners. IARPC's approach is to harnesses the talent of the scientific and stakeholder community through Federally-run but broadly open collaboration teams, and an innovative website that expands the frontiers of collaborative research. The Obama Administration released the five-year Arctic Research Plan: FY2013-2017 in February 2013. The Plan focuses on advancing knowledge and sustainability of the Arctic by improving collaboration in seven priority research areas: sea ice and marine ecosystems, terrestrial ice and ecosystems, atmospheric studies, observing systems, regional climate models, human health studies, and adaptation tools for communities. From these seven research areas, 12 collaboration teams were formed to respond to the 145 milestones laid out in the Plan. The collaboration teams are charged with enhancing inter-institutional and interdisciplinary implementation of scientific research on local, regional, and circumpolar environmental and societal issues in the Arctic. The collaboration teams are co-chaired by Federal program managers, and, in some cases, external partners and are open to research and stakeholder communities. They meet on a regular basis by web- or teleconference to inform one another about ongoing and planned programs and new research results, as well as to inventory existing programs, identify gaps in knowledge and research, and address and implement the Plan's milestones. In-between meetings, team members communicate via our innovative, user-driven, collaboration website. Members share information about their research activities by posting updates, uploading documents, and including events on our calendar, and entering into dialogue about their research activities. Conversations taking place on the website are open to any other member, enabling new talent to enter into conversations and collaborations to form.
NASA Astrophysics Data System (ADS)
Kushner, Paul J.; Mudryk, Lawrence R.; Merryfield, William; Ambadan, Jaison T.; Berg, Aaron; Bichet, Adéline; Brown, Ross; Derksen, Chris; Déry, Stephen J.; Dirkson, Arlan; Flato, Greg; Fletcher, Christopher G.; Fyfe, John C.; Gillett, Nathan; Haas, Christian; Howell, Stephen; Laliberté, Frédéric; McCusker, Kelly; Sigmond, Michael; Sospedra-Alfonso, Reinel; Tandon, Neil F.; Thackeray, Chad; Tremblay, Bruno; Zwiers, Francis W.
2018-04-01
The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state-of-the-art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. This study presents an assessment from the CanSISE Network of the ability of the second-generation Canadian Earth System Model (CanESM2) and the Canadian Seasonal to Interannual Prediction System (CanSIPS) to simulate and predict snow and sea ice from seasonal to multi-decadal timescales, with a focus on the Canadian sector. To account for observational uncertainty, model structural uncertainty, and internal climate variability, the analysis uses multi-source observations, multiple Earth system models (ESMs) in Phase 5 of the Coupled Model Intercomparison Project (CMIP5), and large initial-condition ensembles of CanESM2 and other models. It is found that the ability of the CanESM2 simulation to capture snow-related climate parameters, such as cold-region surface temperature and precipitation, lies within the range of currently available international models. Accounting for the considerable disagreement among satellite-era observational datasets on the distribution of snow water equivalent, CanESM2 has too much springtime snow mass over Canada, reflecting a broader northern hemispheric positive bias. Biases in seasonal snow cover extent are generally less pronounced. CanESM2 also exhibits retreat of springtime snow generally greater than observational estimates, after accounting for observational uncertainty and internal variability. Sea ice is biased low in the Canadian Arctic, which makes it difficult to assess the realism of long-term sea ice trends there. The strengths and weaknesses of the modelling system need to be understood as a practical tradeoff: the Canadian models are relatively inexpensive computationally because of their moderate resolution, thus enabling their use in operational seasonal prediction and for generating large ensembles of multidecadal simulations. Improvements in climate-prediction systems like CanSIPS rely not just on simulation quality but also on using novel observational constraints and the ready transfer of research to an operational setting. Improvements in seasonal forecasting practice arising from recent research include accurate initialization of snow and frozen soil, accounting for observational uncertainty in forecast verification, and sea ice thickness initialization using statistical predictors available in real time.
Surveillance of infectious diseases in the Arctic.
Bruce, M; Zulz, T; Koch, A
2016-08-01
This study reviews how social and environmental issues affect health in Arctic populations and describes infectious disease surveillance in Arctic Nations with a special focus on the activities of the International Circumpolar Surveillance (ICS) project. We reviewed the literature over the past 2 decades looking at Arctic living conditions and their effects on health and Arctic surveillance for infectious diseases. In regards to other regions worldwide, the Arctic climate and environment are extreme. Arctic and sub-Arctic populations live in markedly different social and physical environments compared to those of their more southern dwelling counterparts. A cold northern climate means people spending more time indoors, amplifying the effects of household crowding, smoking and inadequate ventilation on the person-to-person spread of infectious diseases. The spread of zoonotic infections north as the climate warms, emergence of antibiotic resistance among bacterial pathogens, the re-emergence of tuberculosis, the entrance of HIV into Arctic communities, the specter of pandemic influenza or the sudden emergence and introduction of new viral pathogens pose new challenges to residents, governments and public health authorities of all Arctic countries. ICS is a network of hospitals, public health agencies, and reference laboratories throughout the Arctic working together for the purposes of collecting, comparing and sharing of uniform laboratory and epidemiological data on infectious diseases of concern and assisting in the formulation of prevention and control strategies (Fig. 1). In addition, circumpolar infectious disease research workgroups and sentinel surveillance systems for bacterial and viral pathogens exist. The ICS system is a successful example of collaborative surveillance and research in an extreme environment. Published by Elsevier Ltd.
Arctic Sea Ice in a 1.5°C Warmer World
NASA Astrophysics Data System (ADS)
Niederdrenk, Anne Laura; Notz, Dirk
2018-02-01
We examine the seasonal cycle of Arctic sea ice in scenarios with limited future global warming. To do so, we analyze two sets of observational records that cover the observational uncertainty of Arctic sea ice loss per degree of global warming. The observations are combined with 100 simulations of historical and future climate evolution from the Max Planck Institute Earth System Model Grand Ensemble. Based on the high-sensitivity observations, we find that Arctic September sea ice is lost with low probability (P≈ 10%) for global warming of +1.5°C above preindustrial levels and with very high probability (P> 99%) for global warming of +2°C above preindustrial levels. For the low-sensitivity observations, September sea ice is extremely unlikely to disappear for +1.5°C warming (P≪ 1%) and has low likelihood (P≈ 10%) to disappear even for +2°C global warming. For March, both observational records suggest a loss of 15% to 20% of Arctic sea ice area for 1.5°C to 2°C global warming.
Belchansky, G.I.; Douglas, David C.; Platonov, Nikita G.
2008-01-01
Sea ice thickness (SIT) is a key parameter of scientific interest because understanding the natural spatiotemporal variability of ice thickness is critical for improving global climate models. In this paper, changes in Arctic SIT during 1982-2003 are examined using a neural network (NN) algorithm trained with in situ submarine ice draft and surface drilling data. For each month of the study period, the NN individually estimated SIT of each ice-covered pixel (25-km resolution) based on seven geophysical parameters (four shortwave and longwave radiative fluxes, surface air temperature, ice drift velocity, and ice divergence/convergence) that were cumulatively summed at each monthly position along the pixel's previous 3-yr drift track (or less if the ice was <3 yr old). Average January SIT increased during 1982-88 in most regions of the Arctic (+7.6 ?? 0.9 cm yr-1), decreased through 1996 Arctic-wide (-6.1 ?? 1.2 cm yr-1), then modestly increased through 2003 mostly in the central Arctic (+2.1 ?? 0.6 cm yr-1). Net ice volume change in the Arctic Ocean from 1982 to 2003 was negligible, indicating that cumulative ice growth had largely replaced the estimated 45 000 km3 of ice lost by cumulative export. Above 65??N, total annual ice volume and interannual volume changes were correlated with the Arctic Oscillation (AO) at decadal and annual time scales, respectively. Late-summer ice thickness and total volume varied proportionally until the mid-1990s, but volume did not increase commensurate with the thickening during 1996-2002. The authors speculate that decoupling of the ice thickness-volume relationship resulted from two opposing mechanisms with different latitudinal expressions: a recent quasi-decadal shift in atmospheric circulation patterns associated with the AO's neutral state facilitated ice thickening at high latitudes while anomalously warm thermal forcing thinned and melted the ice cap at its periphery. ?? 2008 American Meteorological Society.
Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations
NASA Astrophysics Data System (ADS)
Jaiser, Ralf; Nakamura, Tetsu; Handorf, Dörthe; Romanowsky, Erik; Dethloff, Klaus; Ukita, Jinro; Yamazaki, Koji
2017-04-01
In recent years, Arctic regions showcased the most pronounced signals of a changing climate: Sea ice is reduced by more the ten percent per decade. At the same time, global warming trends have their maximum in Arctic latitudes often labled Arctic Amplification. There is strong evidence that amplified Arctic changes feed back into mid-latitudes in winter. We identified mechanisms that link recent Arctic changes through vertically propagating planetary waves to events of a weakened stratospheric polar vortex. Related anomalies propagate downward and lead to negative AO-like situations in the troposphere. European winter climate is sensitive to negative AO situations in terms of cold air outbreaks that are likely to occur more often in that case. These results based on ERA-Interim reanalysis data do not allow to dismiss other potential forcing factors leading to observed mid-latitude climate changes. Nevertheless, properly designed Atmospheric General Circulation Model (AGCM) experiments with AFES and ECHAM6 are able to reproduce observed atmospheric circulation changes if only observed sea ice changes in the Arctic are prescribed. This allows to deduce mechanisms that explain how Arctic Amplification can lead to a negative AO response via a stratospheric pathway. Further investigation of these mechanisms may feed into improved prediction systems.
The Arctic Human Health Initiative: a legacy of the International Polar Year 2007–2009
Parkinson, Alan J.
2013-01-01
Background The International Polar Year (IPY) 2007–2008 represented a unique opportunity to further stimulate cooperation and coordination on Arctic health research and increase the awareness and visibility of Arctic regions. The Arctic Human Health Initiative (AHHI) was a US-led Arctic Council IPY coordinating project that aimed to build and expand on existing International Union for Circumpolar Health (IUCH) and Arctic Council human health interests. The project aimed to link researchers with potential international collaborators and to serve as a focal point for human health research, education, outreach and communication activities during the IPY. The progress of projects conducted as part of this initiative up until the end of the Arctic Council Swedish chairmanship in May 2013 is summarized in this report. Design The overall goals of the AHHI was to increase awareness and visibility of human health concerns of Arctic peoples, foster human health research, and promote health strategies that will improve health and well-being of all Arctic residents. Proposed activities to be recognized through the initiative included: expanding research networks that will enhance surveillance and monitoring of health issues of concern to Arctic peoples, and increase collaboration and coordination of human health research; fostering research that will examine the health impact of anthropogenic pollution, rapid modernization and economic development, climate variability, infectious and chronic diseases, intentional and unintentional injuries, promoting education, outreach and communication that will focus public and political attention on Arctic health issues, using a variety of publications, printed and electronic reports from scientific conferences, symposia and workshops targeting researchers, students, communities and policy makers; promoting the translation of research into health policy and community action including implementation of prevention strategies and health promotion; and promoting synergy and strategic direction of Arctic human health research and health promotion. Results As of 31 March, 2009, the official end of the IPY, AHHI represented a total of 38 proposals, including 21 individual Expressions of Intent (EoI), and 9 full proposals (FP), submitted to the IPY Joint Committee for review and approval from lead investigators from the US, Canada, Greenland, Norway, Finland, Sweden and the Russian Federation. In addition, there were 10 National Initiatives (NI-projects undertaken during IPY beyond the IPY Joint Committee review process). Individual project details can be viewed at www.arctichealth.org. The AHHI currently monitors the progress of 28 individual active human health projects in the following thematic areas: health network expansion (5 projects), infectious disease research (7 projects), environmental health research (7 projects), behavioral and mental health research (4 projects), and outreach education and communication (5 projects). Conclusions While some projects have been completed, others will continue well beyond the IPY. The IPY 2007–2008 represented a unique opportunity to further stimulate cooperation and coordination on Arctic health research and increase the awareness and visibility of Arctic regions. PMID:23971017
The Arctic Human Health Initiative: a legacy of the International Polar Year 2007-2009.
Parkinson, Alan J
2013-01-01
The International Polar Year (IPY) 2007-2008 represented a unique opportunity to further stimulate cooperation and coordination on Arctic health research and increase the awareness and visibility of Arctic regions. The Arctic Human Health Initiative (AHHI) was a US-led Arctic Council IPY coordinating project that aimed to build and expand on existing International Union for Circumpolar Health (IUCH) and Arctic Council human health interests. The project aimed to link researchers with potential international collaborators and to serve as a focal point for human health research, education, outreach and communication activities during the IPY. The progress of projects conducted as part of this initiative up until the end of the Arctic Council Swedish chairmanship in May 2013 is summarized in this report. The overall goals of the AHHI was to increase awareness and visibility of human health concerns of Arctic peoples, foster human health research, and promote health strategies that will improve health and well-being of all Arctic residents. Proposed activities to be recognized through the initiative included: expanding research networks that will enhance surveillance and monitoring of health issues of concern to Arctic peoples, and increase collaboration and coordination of human health research; fostering research that will examine the health impact of anthropogenic pollution, rapid modernization and economic development, climate variability, infectious and chronic diseases, intentional and unintentional injuries, promoting education, outreach and communication that will focus public and political attention on Arctic health issues, using a variety of publications, printed and electronic reports from scientific conferences, symposia and workshops targeting researchers, students, communities and policy makers; promoting the translation of research into health policy and community action including implementation of prevention strategies and health promotion; and promoting synergy and strategic direction of Arctic human health research and health promotion. As of 31 March, 2009, the official end of the IPY, AHHI represented a total of 38 proposals, including 21 individual Expressions of Intent (EoI), and 9 full proposals (FP), submitted to the IPY Joint Committee for review and approval from lead investigators from the US, Canada, Greenland, Norway, Finland, Sweden and the Russian Federation. In addition, there were 10 National Initiatives (NI-projects undertaken during IPY beyond the IPY Joint Committee review process). Individual project details can be viewed at www.arctichealth.org. The AHHI currently monitors the progress of 28 individual active human health projects in the following thematic areas: health network expansion (5 projects), infectious disease research (7 projects), environmental health research (7 projects), behavioral and mental health research (4 projects), and outreach education and communication (5 projects). While some projects have been completed, others will continue well beyond the IPY. The IPY 2007-2008 represented a unique opportunity to further stimulate cooperation and coordination on Arctic health research and increase the awareness and visibility of Arctic regions.
NASA Astrophysics Data System (ADS)
Köllner, Franziska; Schneider, Johannes; Bozem, Heiko; Hoor, Peter; Willis, Megan; Burkart, Julia; Leaitch, Richard; Abbatt, Jon; Herber, Andreas; Borrmann, Stephan
2015-04-01
The clean and sensitive Arctic atmosphere is influenced by transport of air masses from lower latitudes that bring pollution in the form of aerosol particles and trace gases into the Arctic regions. However, the transport processes causing such pollution events are yet not sufficiently well understood. Here we report on results from the aircraft campaign NETCARE 2014 that took place in July 2014 in Resolute Bay, Nunavut (Canada) as part of the "Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environment" (NETCARE). These airborne measurements add to only a very few of such measurements conducted in the Arctic during the summertime. The instrumentation on board the research aircraft Polar 6 (operated by the Alfred Wegener Institute for Polar and Marine Research) included a large set of physico-chemical aerosol analysis instruments, several trace gas measurements and basic meteorological parameters. Here we focus on observed pollution events that caused elevated trace gas and aerosol concentrations in the summertime Canadian High Arctic between 50 and 3500 m. In order to better understand the chemical composition and the origin of those polluted air masses, we use single particle aerosol composition obtained using the Aircraft-based Laser Ablation Aerosol Mass Spectrometer (ALABAMA), combined with aerosol size distributions and number concentrations from an Optical Particle Counter as well as trace gas measurements of CO and CO2. CO and CO2 are important tracers to study pollution events, which are connected to anthropogenic and non-anthropogenic combustion processes, respectively biomass burning and fossil fuel combustion. The ALABAMA provides a detailed single particle aerosol composition analysis from which we identify different particle types like soot-, biomass burning-, organics-, diesel exhaust- and metallic particles. The measurements were compared to Lagrangian models like FLEXPART and LAGRANTO to find the pollution sources and transport pathways of the respective plumes into the Arctic. First results indicate a strong influence of biomass burning originating in the Northwest Territories several days before the measurements above Resolute Bay. This long range transport was associated with cyclonic activities of a prevailing low pressure system. Trace gas measurements as well as particle concentrations and sizes show an enhancement in the plume region around 2 km. The particles in this pollution plume were composed of soot, nitrate, cyanide and levoglucosan, confirming biomass burning as particle source.
A Combined Surface Temperature Dataset for the Arctic from MODIS and AVHRR
NASA Astrophysics Data System (ADS)
Dodd, E.; Veal, K. L.; Ghent, D.; Corlett, G. K.; Remedios, J. J.
2017-12-01
Surface Temperature (ST) changes in the Polar Regions are predicted to be more rapid than either global averages or responses in lower latitudes. Observations of STs and other changes associated with climate change increasingly confirm these predictions in the Arctic. Furthermore, recent high profile events of anomalously warm temperatures have increased interest in Arctic surface temperatures. It is, therefore, particularly important to monitor Arctic climate change. Satellites are particularly relevant to observations of Polar Regions as they are well-served by low-Earth orbiting satellites. Whilst clouds often cause problems for satellite observations of the surface, in situ observations of STs are much sparser. Previous work at the University of Leicester has produced a combined land, ocean and ice ST dataset for the Arctic using ATSR data (AAST) which covers the period 1995 to 2012. In order to facilitate investigation of more recent changes in the Arctic (2010 to 2016) we have produced another combined surface temperature dataset using MODIS and AVHRR; the Metop-A AVHRR and MODIS Arctic Surface Temperature dataset (AMAST). The method of cloud-clearing, use of auxiliary data for ice classification and the ST retrievals used for each surface-type in AMAST will be described. AAST and AMAST were compared in the time period common to both datasets. We will provide results from this intercomparison, as well as an assessment of the impact of utilising data from wide and narrow swath sensors. Time series of ST anomalies over the Arctic region produced from AMAST will be presented.
Embracing Statistical Challenges in the Information Technology Age
2006-01-01
computation and feature selection. Moreover, two research projects on network tomography and arctic cloud detection are used throughout the paper to bring...prominent Network Tomography problem, origin- destination (OD) traffic estimation. It demonstrates well how the two modes of data collection interact...software debugging (Biblit et al, 2005 [2]), and network tomography for computer network management. Computer sys- tem problems exist long before the IT
The Distribution of Snow Black Carbon observed in the Arctic and Compared to the GISS-PUCCINI Model
NASA Technical Reports Server (NTRS)
Dou, T.; Xiao, C.; Shindell, D. T.; Liu, J.; Eleftheriadis, K.; Ming, J.; Qin, D.
2012-01-01
In this study, we evaluate the ability of the latest NASA GISS composition-climate model, GISS-E2- PUCCINI, to simulate the spatial distribution of snow BC (sBC) in the Arctic relative to present-day observations. Radiative forcing due to BC deposition onto Arctic snow and sea ice is also estimated. Two sets of model simulations are analyzed, where meteorology is linearly relaxed towards National Centers for Environmental Prediction (NCEP) and towards NASA Modern Era Reanalysis for Research and Applications (MERRA) reanalyses. Results indicate that the modeled concentrations of sBC are comparable with presentday observations in and around the Arctic Ocean, except for apparent underestimation at a few sites in the Russian Arctic. That said, the model has some biases in its simulated spatial distribution of BC deposition to the Arctic. The simulations from the two model runs are roughly equal, indicating that discrepancies between model and observations come from other sources. Underestimation of biomass burning emissions in Northern Eurasia may be the main cause of the low biases in the Russian Arctic. Comparisons of modeled aerosol BC (aBC) with long-term surface observations at Barrow, Alert, Zeppelin and Nord stations show significant underestimation in winter and spring concentrations in the Arctic (most significant in Alaska), although the simulated seasonality of aBC has been greatly improved relative to earlier model versions. This is consistent with simulated biases in vertical profiles of aBC, with underestimation in the lower and middle troposphere but overestimation in the upper troposphere and lower stratosphere, suggesting that the wet removal processes in the current model may be too weak or that vertical transport is too rapid, although the simulated BC lifetime seems reasonable. The combination of observations and modeling provides a comprehensive distribution of sBC over the Arctic. On the basis of this distribution, we estimate the decrease in snow and sea ice albedo and the resulting radiative forcing. We suggest that the albedo reduction due to BC deposition presents significant space-time variations, with highest mean reductions of 1.25% in the Russian Arctic, which are much larger than those in other Arctic regions (0.39% to 0.64 %). The averaged value over the Arctic north of 66degN is 0.4-0.6% during spring, leading to regional surface radiative forcings of 0.7, 1.1 and 1.0Wm(exp-2) in spring 2007, 2008 and 2009, respectively.
NASA Astrophysics Data System (ADS)
Pulsifer, P. L.; Stieglitz, M.
2017-12-01
Much has been written about the state of data and related systems for the polar regions, however work remains to be done to achieve an envisioned integrated and well-defined pan-Arctic observing and data network that enables access to high quality data, expertise and information in support of scientific understanding, stakeholder needs, and agency operations. In this paper we argue that priorities for establishing such a network are in the area of machine-enhanced data mediation and the human aspects of community building. The authors have engaged in a U.S.-based, multi-agency process with the goal of applying modern cyberinfrastructure to improve capabilities for integrating data. A particular case-study focuses on establishing a carbon budget for the Arctic region. This effort contributes to broader global efforts aimed at establishing an international observing and data network. Results are based on a series meetings, workshops, systems design activities, and publications. Analysis reveals that there are a large number of polar data resources interacting in a network that functions as a data ecosystem. Given the size and complexity of the network, achieving broad data discovery and access and meaningful data integration (i.e. developing a carbon budget) will require advanced techniques including machine learning, semantic mediation, and the use of highly connected virtual research environments. To achieve the aforementioned goal will require a community of engaged researchers, technologists, and stakeholders to establish requirements and the social and organizational context needed for effective machine-based approaches. The results imply that: i) the polar research and application community must be more aware of advances in technology; ii) funders must adopt a long-term, sustainable infrastructure approach to systems development; iii) the community must work together to enable interoperability; iv) we must recognize that the challenge is socio-technical and that social and community-building aspects are as important as technology. Establishing cyberinfrastructure for informed, intelligent decision making for the polar regions will require an innovative combination of emerging technologies and community-building across stakeholders.
Sources and Removal of Springtime Arctic Aerosol
NASA Astrophysics Data System (ADS)
Willis, M. D.; Burkart, J.; Bozem, H.; Kunkel, D.; Schulz, H.; Hanna, S.; Aliabadi, A. A.; Bertram, A. K.; Hoor, P. M.; Herber, A. B.; Leaitch, R.; Abbatt, J.
2017-12-01
The sources and removal mechanisms of pollution transported to Arctic regions are key factors in controlling the impact of short-lived climate forcing agents on Arctic climate. We lack a predictive understanding of pollution transport to Arctic regions largely due to poor understanding of removal mechanisms and aerosol chemical and physical processing both within the Arctic and during transport. We present vertically resolved observations of aerosol physical and chemical properties in High Arctic springtime. While much previous work has focused on characterizing episodic events of high pollutant concentrations transported to Arctic regions, here we focus on measurements made under conditions consistent with chronic Arctic Haze, which is more representative of the pollution seasonal maximum observed at long term monitoring stations. On six flights based at Alert and Eureka, Nunavut, Canada, we observe evidence for vertical variations in both aerosol sources and removal mechanisms. With support from model calculations, we show evidence for sources of partially neutralized aerosol with higher organic aerosol (OA) and black carbon content in the middle troposphere, compared to lower tropospheric aerosol with higher amounts of acidic sulfate. Further, we show evidence for aerosol depletion relative to carbon monoxide, both in the mid-to-upper troposphere and within the Arctic Boundary Layer (ABL). Dry deposition, with relatively low removal efficiency, was responsible for aerosol removal in the ABL while ice or liquid-phase scavenging was responsible for aerosol removal at higher altitudes during transport. Overall, we find that vertical variations in both regional and remote aerosol sources, and removal mechanisms, combine with long aerosol residence times to drive the properties of springtime Arctic aerosol.
NASA Astrophysics Data System (ADS)
Andreu-Hayles, Laia; Gaglioti, Benjamin V.; D'Arrigo, Rosanne; Anchukaitis, Kevin J.; Goetz, Scott
2017-04-01
Shrub expansion into Arctic and alpine tundra ecosystems has been documented during the last several decades based on repeat aerial photography, remote sensing, and ground-truthed estimates of vegetation cover. Today, summer temperatures limit the northern limit of Arctic shrubs, and warmer summers have been shown to have higher NDVI in shrub tundra zones. Although global warming has been considered the main driver of shrub expansion, soil types, shrub species and non-linear responses can moderate how sensitive shrub growth is to climate warming. Here, we assess the sensitivity of shrub growth to inter-annual climate variability using a newly generated network of 18 shrub ring-width chronologies in the tundra regions of the North Slope of Alaska. We then test whether the dendroclimatic patterns we observe at individual sites are representative of the broader region using remotely sensed productivity data (NDVI). The common period of both satellite and shrub ring data from all sites was 1982 to 2010. Instrumental daily data from Toolik Lake and interpolated products was compared to detrended growth rates of Salix spp. (willow) and Alnus sp. (alder), located on and to the west of the Dalton Highway ( 68-70°N 148°W). Whereas summer temperatures were found to enhance shrub growth, warm temperatures outside the core of the growing season have the inverse effect in some chronologies. All tundra shrub chronologies shared a common strong positive response to summer temperatures despite growing in heterogeneous site conditions and belonging to different species. In this work we will discuss shrub climate sensitive across Alaska and how NDVI data compared to the shrub ring-width network.
NASA Astrophysics Data System (ADS)
Parsons, M. A.; Gearheard, S.; McNeave, C.
2009-12-01
Local and traditional knowledge (LTK) provides rich information about the Arctic environment at spatial and temporal scales that scientific knowledge often does not have access to (e.g. localized observations of fine-scale ecological change potentially from many different communities, or local sea ice and conditions prior to 1950s ice charts and 1970s satellite records). Community-based observations and monitoring are an opportunity for Arctic residents to provide ‘frontline’ observations and measurements that are an early warning system for Arctic change. The Exchange for Local Observations and Knowledge of the Arctic (ELOKA) was established in response to the growing number of community-based and community-oriented research and observation projects in the Arctic. ELOKA provides data management and user support to facilitate the collection, preservation, exchange, and use of local observations and knowledge. Managing these data presents unique ethical challenges in terms of appropriate use of rare human knowledge and ensuring that knowledge is not lost from the local communities and not exploited in ways antithetical to community culture and desires. Local Arctic residents must be engaged as true collaborative partners while respecting their perspectives, which may vary substantially from a western science perspective. At the same time, we seek to derive scientific meaning from the local knowledge that can be used in conjunction with quantitative science data. This creates new challenges in terms of data presentation, knowledge representations, and basic issues of metadata. This presentation reviews these challenges, some initial approaches to addressing them, and overall lessons learned and future directions.
NASA Astrophysics Data System (ADS)
Vlasova, Tatiana; Volkov, Sergey
2016-09-01
The paper is an attempt to tie together main biogeophysical and social science projects under the auspice of interdisciplinary sustainability science development. Special attention is put to the necessity of the transdisciplinary knowledge co-production based on activities and problem-solutions approaches. It puts attention to the role of monitoring activities in sustainability interdisciplinary science and transdisciplinary knowledge evolution in the Arctic. Socially focused monitoring named Socially-Oriented Observations creating a transdisciplinary space is viewed as one of sources of learning and transformations towards sustainability making possible to shape rapid changes happening in the Arctic based on sustainability knowledge co-production. Continuous Socially-Oriented Observations integrating scientific, education and monitoring methods enables to define adaptation and transformation pathways in the Arctic - the most rapidly changing region of our planet. Socially-Oriented Observations are based on the existing and developing interdisciplinary scientific approaches emerged within natural science and social science projects, sustainable development and resilience concepts putting principle attention to building sustainable and resilient socio-ecological systems. It is argued that the Arctic sustainability science is a valuable component of the whole and broader system of the Arctic Sustainability knowledge co-produced with the help of transdisciplinary approaches integrating science, local/traditional knowledge, entrepreneurship, education, decision-making. Socially-Oriented Observations are designed to be a transdisciplinary interactive continuous participatory process empowering deliberate choices of people that can shape the changes and enable transformation towards sustainability. Approaches of Socially-Oriented Observations and methods of implementation that have been developed since the IPY 2007/2008 and being practiced in different regions of the Arctic are discussed.
Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites
2014-09-30
Constellation of Synthetic Aperture Radar Satellites RSMAS – Department of Ocean Sciences Center for Southeastern Tropical Advanced Remote Sensing...fax: (305) 421-4696 email: pminnett@rsmas.miami.edu Award Number: N00014-12-1-0448 LONG-TERM GOALS Utilize a constellation of satellite...OBJECTIVES a) Provide daily Arctic situational awareness from the CSTARS SAR satellite constellation . b) Develop a Neural Network algorithm for ice-type
NASA Technical Reports Server (NTRS)
Marquardt-Collow, Allison B.; Bosilovich, Michael G.; Cullather, Richard I.
2017-01-01
Reanalyses have become an integral tool for evaluating regional and global climate variations, and an important component of this is modifications to the energy budget. Reductions in Arctic Sea ice extent has induced an albedo feedback, causing the Arctic to warm more rapidly than anywhere else in the world, referred to as "Arctic Amplification." This has been demonstrated by observations and numerous reanalyses, including the Modern Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). However, the Arctic Amplification signal is non-existent in a ten member ensemble of the MERRA-2 Atmospheric Model Intercomparison Project (M2AMIP) simulations, using the same prescribed climate forcing, including Sea Surface Temperature (SST) and ice. An evaluation of the temperature tendency within the lower troposphere due to radiation, moisture, and dynamics as well as the surface energy budget in MERRA-2 and M2AMIP will demonstrate that despite identical prescribed SSTs and sea ice in both versions, enhanced warming in the Arctic in MERRA-2 is in response to the analysis increment tendency due to temperature observations. Furthermore, the role of boundary conditions, model biases and changes in observing systems on the Arctic Amplification signal will be assessed. Literature on the topic of Arctic Amplification demonstrates that the enhanced warming begins in the mid-1990s. Anomalously warm Arctic SST in the early time period of MERRA-2 can mute the trend in Arctic lower troposphere temperature without the constraint of observations in M2AMIP. Additionally, MERRA-2 uses three distinct datasets of SST and sea ice concentration, which also plays a role.
NASA Astrophysics Data System (ADS)
Sledd, A.; L'Ecuyer, T. S.
2017-12-01
With Arctic sea ice declining rapidly and Arctic temperatures rising faster than the rest of the globe, a better understanding of the Arctic climate, and ice cover-radiation feedbacks in particular, is needed. Here we present the Arctic Observation and Reanalysis Integrated System (ArORIS), a dataset of integrated products to facilitate studying the Arctic using satellite, reanalysis, and in-situ datasets. The data include cloud properties, radiative fluxes, aerosols, meteorology, precipitation, and surface properties, to name just a few. Each dataset has uniform grid-spacing, time-averaging and naming conventions for ease of use between products. One intended use of ArORIS is to assess Arctic radiation and moisture budgets. Following that goal, we use observations from ArORIS - CERES-EBAF radiative fluxes and NSIDC sea ice fraction and area to quantify relationships between the Arctic energy balance and surface properties. We find a discernable difference between energy budgets for years with high and low September sea ice areas. Surface fluxes are especially responsive to the September sea ice minimum in months both leading up to September and the months following. In particular, longwave fluxes at the surface show increased sensitivity in the months preceding September. Using a single-layer model of solar radiation we also investigate the individual responses of surface and planetary albedos to changes in sea ice area. By partitioning the planetary albedo into surface and atmospheric contributions, we find that the atmospheric contribution to planetary albedo is less sensitive to changes in sea ice area than the surface contribution. Further comparisons between observations and reanalyses can be made using the available datasets in ArORIS.
D A Walker; F J A Daniels; I Alsos; U S Bhatt; A L Breen; M Buchhorn; H Bultmann; L A Druckenmiller; M E Edwards; D Ehrich; H E Epstein; William Gould; R A Ims; H Meltofte; M K Raynolds; J Sibik; S S Talbot; P J Webber
2016-01-01
Satellite-derived remote-sensing products are providing a modern circumpolar perspective of Arctic vegetation and its changes, but this new view is dependent on a long heritage of ground-based observations in the Arctic. Several products of the Conservation of Arctic Flora and Fauna are key to our current understanding.Wereview aspects of the PanArctic Flora, the...
NASA Astrophysics Data System (ADS)
Myers, B.; Wiggins, H. V.; Turner-Bogren, E. J.; Warburton, J.
2017-12-01
Project Managers at the Arctic Research Consortium of the U.S. (ARCUS) lead initiatives to convene, communicate with, and connect the Arctic research community across challenging disciplinary, geographic, temporal, and cultural boundaries. They regularly serve as the organizing hubs, archivists and memory-keepers for collaborative projects comprised of many loosely affiliated partners. As leading organizers of large open science meetings and other outreach events, they also monitor the interdisciplinary landscape of community needs, concerns, opportunities, and emerging research directions. However, leveraging the ARCUS Project Manager role to strategically build out the intangible infrastructure necessary to advance Arctic research requires a unique set of knowledge, skills, and experience. Drawing on a range of lessons learned from past and ongoing experiences with collaborative science, education and outreach programming, this presentation will highlight a model of ARCUS project management that we believe works best to support and sustain our community in its long-term effort to conquer the complexities of Arctic research.
Inuit Perspectives on Arctic Environmental Change': A Traveling Exhibition
NASA Astrophysics Data System (ADS)
Sheffield, E. M.; Hakala, J. S.; Gearheard, S.
2006-12-01
The Inuit of Nunavut, Canada, have an intimate relationship with their surroundings. As a culture that relies on knowledge of sea ice, snow, and weather conditions for success in hunting, fishing, and healthy wellbeing, Inuit have observed and studied environmental patterns for generations. An ongoing study into their traditional knowledge and their observations of environmental change is being conducted by researcher Dr. Shari Gearheard, who has worked with Inuit communities in Nunavut for over a decade. The results of the research have been published in scientific journals, and to communicate the results to a broader audience, Dr. Gearheard designed an interactive CD-ROM displaying photographs, maps, and interview videos of Inuit Elders' perspectives on the changes they have witnessed. Receiving immediate popularity since its release in 2004, copies of `When the Weather is Uggianaqtuq: Inuit Observations of Environmental Change' have been distributed worldwide, to indigenous peoples, social science and climate change researchers, teachers, students, and the general public. To further disseminate the information contained on the CD-ROM, the National Snow and Ice Data Center and the Museum of Natural History, both of the University of Colorado, are partnering to create an exhibition which will open at the Museum during the International Polar Year in April 2008. The exhibit, tentatively titled `Inuit Perspectives on Arctic Environmental Change,' will feature photographs, graphics, and text in both English and Inuktitut describing environmental change in the North. The goals are to make the information and interpretation contained on the CD-ROM available and more accessible to a broad audience and to raise awareness about Arctic climate change and the important contribution of Inuit knowledge. Following exhibition at the Museum, the exhibit will travel throughout the United States, Alaska, and Nunavut, through a network of museums, schools, libraries, tribal colleges and community centers.
NASA Astrophysics Data System (ADS)
Tang, Guoping; Zheng, Jianqiu; Yang, Ziming; Graham, David; Gu, Baohua; Mayes, Melanie; Painter, Scott; Thornton, Peter
2016-04-01
Among the coupled thermal, hydrological, geochemical, and biological processes, redox processes play major roles in carbon and nutrient cycling and greenhouse gas (GHG) emission. Increasingly, mechanistic representation of redox processes is acknowledged as necessary for accurate prediction of GHG emission in the assessment of land-atmosphere interactions. Simple organic substrates, Fe reduction, microbial reactions, and the Windermere Humic Aqueous Model (WHAM) were added to a reaction network used in the land component of an Earth system model. In conjunction with this amended reaction network, various temperature response functions used in ecosystem models were assessed for their ability to describe experimental observations from incubation tests with arctic soils. Incorporation of Fe reduction reactions improves the prediction of the lag time between CO2 and CH4 accumulation. The inclusion of the WHAM model enables us to approximately simulate the initial pH drop due to organic acid accumulation and then a pH increase due to Fe reduction without parameter adjustment. The CLM4.0, CENTURY, and Ratkowsky temperature response functions better described the observations than the Q10 method, Arrhenius equation, and ROTH-C. As electron acceptors between O2 and CO2 (e.g., Fe(III), SO42-) are often involved, our results support inclusion of these redox reactions for accurate prediction of CH4 production and consumption. Ongoing work includes improving the parameterization of organic matter decomposition to produce simple organic substrates, examining the influence of redox potential on methanogenesis under thermodynamically favorable conditions, and refining temperature response representation near the freezing point by additional model-experiment iterations. We will use the model to describe observed GHG emission at arctic and tropical sites.
The role of declining summer sea ice extent in increasing Arctic winter precipitation
NASA Astrophysics Data System (ADS)
Hamman, J.; Roberts, A.; Cassano, J. J.; Nijssen, B.
2016-12-01
In the past three decades, the Arctic has experienced large declines in summer sea ice cover, permafrost extent, and spring snow cover, and increases in winter precipitation. This study explores the relationship between declining Arctic sea ice extent (IE) and winter precipitation (WP) across the Arctic land masses. The first part of this presentation presents the observed relationship between IE and WP. Using satellite estimates of IE and WP data based on a combination of in-situ observations and global reanalyses, we show that WP is negatively correlated with summer IE and that this relationship is strongest before the year 2000. After 2000, around the time IE minima began to decline most rapidly, the relationship between IE and WP degenerates. This indicates that other processes are driving changes in IE and WP. We hypothesize that positive anomalies in poleward moisture transport have historically driven anomalously low IE and high WP, and that since the significant decline in IE, moisture divergence from the central Arctic has been a larger contributor to WP over land. To better understand the physical mechanisms driving the observed changes in the Arctic climate system and the sensitivity of the Arctic climate system to declining sea ice, we have used the fully-coupled Regional Arctic System Model (RASM) to simulate two distinct sea ice climates. The first climate represents normal IE, while the second includes reduced summer IE. The second portion of this presentation analyzes these two RASM simulations, in conjunction with our observation-based analysis, to understand the coupled relationship between poleward moisture transport, IE, evaporation from the Arctic Ocean, and precipitation. We will present the RASM-simulated Arctic water budget and demonstrate the role of IE in driving WP anomalies. Finally, a spatial correlation analysis identifies characteristic patterns in IE, ocean evaporation, and polar cap convergence that contribute to anomalies in WP.
Isolating the anthropogenic component of Arctic warming
Chylek, Petr; Hengartner, Nicholas; Lesins, Glen; ...
2014-05-28
Structural equation modeling is used in statistical applications as both confirmatory and exploratory modeling to test models and to suggest the most plausible explanation for a relationship between the independent and the dependent variables. Although structural analysis cannot prove causation, it can suggest the most plausible set of factors that influence the observed variable. Here, we apply structural model analysis to the annual mean Arctic surface air temperature from 1900 to 2012 to find the most effective set of predictors and to isolate the anthropogenic component of the recent Arctic warming by subtracting the effects of natural forcing and variabilitymore » from the observed temperature. We also find that anthropogenic greenhouse gases and aerosols radiative forcing and the Atlantic Multidecadal Oscillation internal mode dominate Arctic temperature variability. Finally, our structural model analysis of observational data suggests that about half of the recent Arctic warming of 0.64 K/decade may have anthropogenic causes.« less
Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission.
Notz, Dirk; Stroeve, Julienne
2016-11-11
Arctic sea ice is retreating rapidly, raising prospects of a future ice-free Arctic Ocean during summer. Because climate-model simulations of the sea-ice loss differ substantially, we used a robust linear relationship between monthly-mean September sea-ice area and cumulative carbon dioxide (CO 2 ) emissions to infer the future evolution of Arctic summer sea ice directly from the observational record. The observed linear relationship implies a sustained loss of 3 ± 0.3 square meters of September sea-ice area per metric ton of CO 2 emission. On the basis of this sensitivity, Arctic sea ice will be lost throughout September for an additional 1000 gigatons of CO 2 emissions. Most models show a lower sensitivity, which is possibly linked to an underestimation of the modeled increase in incoming longwave radiation and of the modeled transient climate response. Copyright © 2016, American Association for the Advancement of Science.
The sources of atmospheric black carbon at a European gateway to the Arctic
NASA Astrophysics Data System (ADS)
Winiger, P.; Andersson, A.; Eckhardt, S.; Stohl, A.; Gustafsson, Ö.
2016-09-01
Black carbon (BC) aerosols from incomplete combustion of biomass and fossil fuel contribute to Arctic climate warming. Models--seeking to advise mitigation policy--are challenged in reproducing observations of seasonally varying BC concentrations in the Arctic air. Here we compare year-round observations of BC and its δ13C/Δ14C-diagnosed sources in Arctic Scandinavia, with tailored simulations from an atmospheric transport model. The model predictions for this European gateway to the Arctic are greatly improved when the emission inventory of anthropogenic sources is amended by satellite-derived estimates of BC emissions from fires. Both BC concentrations (R2=0.89, P<0.05) and source contributions (R2=0.77, P<0.05) are accurately mimicked and linked to predominantly European emissions. This improved model skill allows for more accurate assessment of sources and effects of BC in the Arctic, and a more credible scientific underpinning of policy efforts aimed at efficiently reducing BC emissions reaching the European Arctic.
The sources of atmospheric black carbon at a European gateway to the Arctic
Winiger, P; Andersson, A; Eckhardt, S; Stohl, A; Gustafsson, Ö.
2016-01-01
Black carbon (BC) aerosols from incomplete combustion of biomass and fossil fuel contribute to Arctic climate warming. Models—seeking to advise mitigation policy—are challenged in reproducing observations of seasonally varying BC concentrations in the Arctic air. Here we compare year-round observations of BC and its δ13C/Δ14C-diagnosed sources in Arctic Scandinavia, with tailored simulations from an atmospheric transport model. The model predictions for this European gateway to the Arctic are greatly improved when the emission inventory of anthropogenic sources is amended by satellite-derived estimates of BC emissions from fires. Both BC concentrations (R2=0.89, P<0.05) and source contributions (R2=0.77, P<0.05) are accurately mimicked and linked to predominantly European emissions. This improved model skill allows for more accurate assessment of sources and effects of BC in the Arctic, and a more credible scientific underpinning of policy efforts aimed at efficiently reducing BC emissions reaching the European Arctic. PMID:27627859
Observational constraints on Arctic boundary-layer clouds, surface moisture and sensible heat fluxes
NASA Astrophysics Data System (ADS)
Wu, D. L.; Boisvert, L.; Klaus, D.; Dethloff, K.; Ganeshan, M.
2016-12-01
The dry, cold environment and dynamic surface variations make the Arctic a unique but difficult region for observations, especially in the atmospheric boundary layer (ABL). Spaceborne platforms have been the key vantage point to capture basin-scale changes during the recent Arctic warming. Using the AIRS temperature, moisture and surface data, we found that the Arctic surface moisture flux (SMF) had increased by 7% during 2003-2013 (18 W/m2 equivalent in latent heat), mostly in spring and fall near the Arctic coastal seas where large sea ice reduction and sea surface temperature (SST) increase were observed. The increase in Arctic SMF correlated well with the increases in total atmospheric column water vapor and low-level clouds, when compared to CALIPSO cloud observations. It has been challenging for climate models to reliably determine Arctic cloud radiative forcing (CRF). Using the regional climate model HIRHAM5 and assuming a more efficient Bergeron-Findeisen process with generalized subgrid-scale variability for total water content, we were able to produce a cloud distribution that is more consistent with the CloudSat/CALIPSO observations. More importantly, the modified schemes decrease (increase) the cloud water (ice) content in mixed-phase clouds, which help to improve the modeled CRF and energy budget at the surface, because of the dominant role of the liquid water in CRF. Yet, the coupling between Arctic low clouds and the surface is complex and has strong impacts on ABL. Studying GPS/COSMIC radio occultation (RO) refractivity profiles in the Arctic coldest and driest months, we successfully derived ABL inversion height and surface-based inversion (SBI) frequency, and they were anti-correlated over the Arctic Ocean. For the late summer and early fall season, we further analyzed Japanese R/V Mirai ship measurements and found that the open-ocean surface sensible heat flux (SSHF) can explain 10 % of the ABL height variability, whereas mechanisms such as cloud-driven turbulence appear to be dominant. Contrary to previous speculation, the efficiency of turbulent heat exchange is low. The SSHF contribution to ABL mixing is significant during the uplift (low-pressure) followed by the highly stable (stratus cloud) regime.
Mechanistic Representation of Soil C Dynamics: for Arctic Ecosystem
NASA Astrophysics Data System (ADS)
Dwivedi, D.; Riley, W. J.; Bisht, G.
2013-12-01
Arctic and sub-Arctic soils store vast amounts of carbon, approximately 1700 billion metric tones of frozen organic carbon. This carbon is susceptible to release to the atmosphere due to environmental changes (e.g., rapidly evolving landscape, warming); however, the mechanisms responsible for this susceptibility of soil organic matter (SOM) are not well understood, and uncertainties exist in terms of their representation in Earth System models. The representation of SOM dynamics in Earth System Models is critical for future climate prediction. To investigate the impacts of various physical (e.g., multi-phase transport, sorption, desorption, temperature), chemical (e.g., pH), and biological (e.g., microbial activity, enzyme dynamics) factors on SOM stability, we have developed CENTURY-like (describing labile and recalcitrant pools) and complex (describing multiple archetypal polymers and monomers C substrate groups) reaction networks. These reaction networks are integrated in a three-dimensional, multi-phase reactive transport solver (PFLOTRAN) and include representations of bacterial and fungal activity as well as population dynamics, gaseous and aqueous advection, and adsorption and desorption. We test and compare these reaction networks in PFLOTRAN to accurately predict depth-resolved soil organic matter (SOM) in the subsurface. We present results showing impacts of abiotic controls (e.g., surface interactions and temperature) on the long-term stabilization of SOM under permafrost conditions.
Below-ground carbon transfer among Betula nana may increase with warming in Arctic tundra.
Deslippe, Julie R; Simard, Suzanne W
2011-11-01
• Shrubs are expanding in Arctic tundra, but the role of mycorrhizal fungi in this process is unknown. We tested the hypothesis that mycorrhizal networks are involved in interplant carbon (C) transfer within a tundra plant community. • Here, we installed below-ground treatments to control for C transfer pathways and conducted a (13)CO(2)-pulse-chase labelling experiment to examine C transfer among and within plant species. • We showed that mycorrhizal networks exist in tundra, and facilitate below-ground transfer of C among Betula nana individuals, but not between or within the other tundra species examined. Total C transfer among conspecific B. nana pairs was 10.7 ± 2.4% of photosynthesis, with the majority of C transferred through rhizomes or root grafts (5.2 ± 5.3%) and mycorrhizal network pathways (4.1 ± 3.3%) and very little through soil pathways (1.4 ± 0.35%). • Below-ground C transfer was of sufficient magnitude to potentially alter plant interactions in Arctic tundra, increasing the competitive ability and mono-dominance of B. nana. C transfer was significantly positively related to ambient temperatures, suggesting that it may act as a positive feedback to ecosystem change as climate warms. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
An AeroCom Assessment of Black Carbon in Arctic Snow and Sea Ice
NASA Technical Reports Server (NTRS)
Jiao, C.; Flanner, M. G.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Bernsten, T. K.; Bian, H.; Carslaw, K. S.; Chin, M.; DeLuca, N.;
2014-01-01
Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng/g for an earlier phase of AeroCom models (phase I), and +4.1 (-13.0 to +21.4) ng/g for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng/g. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model-measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60-90degN) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates from extra-Arctic emissions, these results suggest that aerosol removal processes are a leading source of variation in model performance. The multi-model mean (full range) of Arctic radiative effect from BC in snow is 0.15 (0.07-0.25) W/sq m and 0.18 (0.06-0.28) W/sq m in phase I and phase II models, respectively. After correcting for model biases relative to observed BC concentrations in different regions of the Arctic, we obtain a multi-model mean Arctic radiative effect of 0.17 W/sq m for the combined AeroCom ensembles. Finally, there is a high correlation between modeled BC concentrations sampled over the observational sites and the Arctic as a whole, indicating that the field campaign provided a reasonable sample of the Arctic.
Observing terrestrial ecosystems and the carbon cycle from space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schimel, David; Pavlick, Ryan; Fisher, Joshua B.
2015-02-06
Modeled terrestrial ecosystem and carbon cycle feedbacks contribute substantial uncertainty to projections of future climate. The limitations of current observing networks contribute to this uncertainty. Here we present a current climatology of global model predictions and observations for photosynthesis, biomass, plant diversity and plant functional diversity. Carbon cycle tipping points occur in terrestrial regions where fluxes or stocks are largest, and where biological variability is highest, the tropics and Arctic/Boreal zones. Global observations are predominately in the mid-latitudes and are sparse in high and low latitude ecosystems. Observing and forecasting ecosystem change requires sustained observations of sufficient density in timemore » and space in critical regions. Using data and theory available now, we can develop a strategy to detect and forecast terrestrial carbon cycle-climate interactions, by combining in situ and remote techniques.« less
10. View south of Arctic Observation Room (typical). Natick ...
10. View south of Arctic Observation Room (typical). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
NASA Astrophysics Data System (ADS)
Rich, R. H.; Myers, B.; Wiggins, H. V.; Zolkos, J.
2017-12-01
The complexities inherent in Arctic research demand a unique focus on making connections across the boundaries of discipline, institution, sector, geography, knowledge system, and culture. Since 1988, ARCUS has been working to bridge these gaps through communication, coordination, and collaboration. Recently, we have worked with partners to create a synthesis of the Arctic system, to explore the connectivity across the Arctic research community and how to strengthen it, to enable the community to have an effective voice in research funding policy, to implement a system for Arctic research community knowledge management, to bridge between global Sea Ice Prediction Network researchers and the science needs of coastal Alaska communities through the Sea Ice for Walrus Outlook, to strengthen ties between Polar researchers and educators, and to provide essential intangible infrastructure that enables cost-effective and productive research across boundaries. Employing expertise in managing for collaboration and interdisciplinarity, ARCUS complements and enables the work of its members, who constitute the Arctic research community and its key stakeholders. As a member-driven organization, everything that ARCUS does is achieved through partnership, with strong volunteer leadership of each activity. Key organizational partners in the United States include the U.S. Arctic Research Commission, Interagency Arctic Research Policy Committee, National Academy of Sciences Polar Research Board, and the North Slope Science Initiative. Internationally, ARCUS maintains strong bilateral connections with similarly focused groups in each Arctic country (and those interested in the Arctic), as well as with multinational organizations including the International Arctic Science Committee, the Association of Polar Early Career Educators, the University of the Arctic, and the Arctic Institute of North America. Currently, ARCUS is applying the best practices of the science of team science, expanding awareness of Arctic research in Washington, DC and in Alaska, and working to expand the base of support for Arctic research during this time of challenged U.S. federal research funding. The presentation will highlight our latest work to promote synthesis and systems thinking and make valuable connections.
NASA Astrophysics Data System (ADS)
Wiggins, H. V.; Rich, R. H.
2015-12-01
The rapid physical and social changes currently underway in the Arctic - and changes in the way in which we study and manage the region -- require coordinated research efforts to improve our understanding of the Arctic's physical, biological, and social systems and the implications of change at many scales. At the same time, policy-makers and Arctic communities need decision-support tools and synthesized information to respond and adapt to the "new Arctic". There are enormous challenges, however, in collaboration among the disparate groups of people needed for such efforts. A carefully planned strategic approach is required to bridge the scientific disciplinary and organizational boundaries, foster cooperation between local communities and science programs, and effectively communicate between scientists and policy-makers. Efforts must draw on bodies of knowledge from project management, strategic planning, organizational development, and group dynamics. This poster presentation will discuss best practices of building and sustaining networks of people to catalyze successful cross-disciplinary activities. Specific examples and case studies - both successes and failures -- will be presented that draw on several projects at the Arctic Research Consortium of the U.S. (ARCUS; www.arcus.org), a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic.
NASA Astrophysics Data System (ADS)
Wiggins, H. V.
2014-12-01
The rapid physical and social changes currently underway in the Arctic - and changes in the way in which we study and manage the region - require coordinated research efforts to improve our understanding of the Arctic's physical, biological, and social systems. At the same time, policy-makers and Arctic communities need decision-support tools and synthesized information to respond and adapt to the "new arctic". There are enormous challenges, however, in collaboration among the disparate groups of people needed for such efforts. A carefully planned strategic approach is required to bridge the scientific disciplinary and organizational boundaries, foster cooperation between local communities and science programs, and effectively communicate between scientists and policy-makers. Efforts must draw on bodies of knowledge from project management, strategic planning, organizational development, group dynamics, and other fields. In addition, collaborations between scientific disciplines face challenges unique to scientific culture. This poster presentation will discuss best practices of building and sustaining networks of people to catalyze successful cross-disciplinary activities. Specific examples and case studies - both successes and failures - will be presented that draw on several projects at the Arctic Research Consortium of the U.S. (ARCUS; www.arcus.org), a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic.
Arctic Sea ice, 1973-1976: Satellite passive-microwave observations
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.; Comiso, Josefino C.; Zwally, H. Jay; Cavalieri, Donald J.; Gloersen, Per; Campbell, William J.
1987-01-01
The Arctic region plays a key role in the climate of the earth. The sea ice cover affects the radiative balance of the earth and radically changes the fluxes of heat between the atmosphere and the ocean. The observations of the Arctic made by the Electrically Scanning Microwave Radiometer (ESMR) on board the Nimbus 5 research satellite are summarized for the period 1973 through 1976.
NASA Astrophysics Data System (ADS)
Sushama, Laxmi; Arora, Vivek; de Elia, Ramon; Déry, Stephen; Duguay, Claude; Gachon, Philippe; Gyakum, John; Laprise, René; Marshall, Shawn; Monahan, Adam; Scinocca, John; Thériault, Julie; Verseghy, Diana; Zwiers, Francis
2017-04-01
The Canadian Network for Regional Climate and Weather Processes (CNRCWP) provides significant advances and innovative research towards the ultimate goal of reducing uncertainty in numerical weather prediction and climate projections for Canada's Northern and Arctic regions. This talk will provide an overview of the Network and selected results related to the assessment of the added value of high-resolution modelling that has helped fill critical knowledge gaps in understanding the dynamics of extreme temperature and precipitation events and the complex land-atmosphere interactions and feedbacks in Canada's northern and Arctic regions. In addition, targeted developments in the Canadian regional climate model, that facilitate direct application of model outputs in impact and adaptation studies, particularly those related to the water, energy and infrastructure sectors will also be discussed. The close collaboration between the Network and its partners and end users contributed significantly to this effort.
The Immediacy of Arctic Change: New 2016-17 Extremes
NASA Astrophysics Data System (ADS)
Overland, J. E.; Kattsov, V.; Olsen, M. S.; Walsh, J. E.
2017-12-01
Additional recent observations add increased certainty to cryospheric Arctic changes, and trends are very likely to continue past mid-century. Observed and projected Arctic changes are large compared with those at mid-latitude, driven by greenhouse gas (GHG) increase and Arctic feedbacks. Sea ice has undergone a regime shift from mostly multi-year to first-year sea ice, and summer sea ice is likely to be esentially gone within the next few decades. Spring snow cover is decreasing, and Arctic greening is increasing, although somewhat variable. There are potential emerging impacts of Arctic change on mid-latitude weather and sea level rise. Model assessments under different future GHG concentration scenarios show that stabilizing global temperatures near 2° C compliant with Paris agreement could slow, but not halt further major changes in the Arctic before mid- 21st century; foreseeable Arctic temperature changes are 4-5° C for fall/winter by 2040-2050. Substantial and immediate mitigation reductions in GHG emissions (at least at the level of the RCP 4.5 emission scenario) should reduce the risk of further change for most cryospheric components after mid-century, and reduce the likelyhood of potential runaway loss of ice sheets and glaciers and their impact on sea level rise. Extreme winter 2016 Arctic temperatures and a large winter 2017 sea ice deficit demonstrate contemporary climate states outside the envelope of previous experience. While there is confidence in the sign of Arctic changes, recent observations increase uncertainty in projecting the rate for future real world scenarios. Do events return to mean conditions, represent irreversible changes, or contribute to accelerating trends beyond those provided by climate models? Such questions highlight the need for improved quantitative prediction of the cryosphere and its global impacts, crucial for adaptation actions and risk management at local to global scales.
The Arctic Observing Viewer: A Web-mapping Application for U.S. Arctic Observing Activities
NASA Astrophysics Data System (ADS)
Cody, R. P.; Manley, W. F.; Gaylord, A. G.; Kassin, A.; Villarreal, S.; Barba, M.; Dover, M.; Escarzaga, S. M.; Habermann, T.; Kozimor, J.; Score, R.; Tweedie, C. E.
2015-12-01
Although a great deal of progress has been made with various arctic observing efforts, it can be difficult to assess such progress when so many agencies, organizations, research groups and others are making such rapid progress over such a large expanse of the Arctic. To help meet the strategic needs of the U.S. SEARCH-AON program and facilitate the development of SAON and other related initiatives, the Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org) has been developed. This web mapping application compiles detailed information pertaining to U.S. Arctic Observing efforts. Contributing partners include the U.S. NSF, USGS, ACADIS, ADIwg, AOOS, a2dc, AON, ARMAP, BAID, IASOA, INTERACT, and others. Over 7700 observation sites are currently in the AOV database and the application allows users to visualize, navigate, select, advance search, draw, print, and more. During 2015, the web mapping application has been enhanced by the addition of a query builder that allows users to create rich and complex queries. AOV is founded on principles of software and data interoperability and includes an emerging "Project" metadata standard, which uses ISO 19115-1 and compatible web services. Substantial efforts have focused on maintaining and centralizing all database information. In order to keep up with emerging technologies, the AOV data set has been structured and centralized within a relational database and the application front-end has been ported to HTML5 to enable mobile access. Other application enhancements include an embedded Apache Solr search platform which provides users with the capability to perform advance searches and an administration web based data management system that allows administrators to add, update, and delete information in real time. We encourage all collaborators to use AOV tools and services for their own purposes and to help us extend the impact of our efforts and ensure AOV complements other cyber-resources. Reinforcing dispersed but interoperable resources in this way will help to ensure improved capacities for conducting activities such as assessing the status of arctic observing efforts, optimizing logistic operations, and for quickly accessing external and project-focused web resources for more detailed information and access to scientific data and derived products.
Enhanced role of eddies in the Arctic marine biological pump
Watanabe, Eiji; Onodera, Jonaotaro; Harada, Naomi; Honda, Makio C.; Kimoto, Katsunori; Kikuchi, Takashi; Nishino, Shigeto; Matsuno, Kohei; Yamaguchi, Atsushi; Ishida, Akio; Kishi, Michio J.
2014-01-01
The future conditions of Arctic sea ice and marine ecosystems are of interest not only to climate scientists, but also to economic and governmental bodies. However, the lack of widespread, year-long biogeochemical observations remains an obstacle to understanding the complicated variability of the Arctic marine biological pump. Here we show an early winter maximum of sinking biogenic flux in the western Arctic Ocean and illustrate the importance of shelf-break eddies to biological pumping from wide shelves to adjacent deep basins using a combination of year-long mooring observations and three-dimensional numerical modelling. The sinking flux trapped in the present study included considerable fresh organic material with soft tissues and was an order of magnitude larger than previous estimates. We predict that further reductions in sea ice will promote the entry of Pacific-origin biological species into the Arctic basin and accelerate biogeochemical cycles connecting the Arctic and subarctic oceans. PMID:24862402
The Impact of a Lower Sea Ice Extent on Arctic Greenhouse Gas Exchange
NASA Astrophysics Data System (ADS)
Parmentier, Frans-Jan W.; Christensen, Torben R.; Lotte Sørensen, Lise; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.
2013-04-01
Arctic sea ice extent hit a new record low in September 2012, when it fell to a level about two times lower than the 1979-2000 average. Record low sea ice extents such as these are often hailed as an obvious example of the impact of climate change on the Arctic. Less obvious, however, are the further implications of a lower sea ice extent on Arctic greenhouse gas exchange. For example, a reduction in sea ice, in consort with a lower snow cover, has been connected to higher surface temperatures in the terrestrial part of the Arctic (Screen et al., 2012). These higher temperatures and longer growing seasons have the potential to alter the CO2 balance of Arctic tundra through enhanced photosynthesis and respiration, as well as the magnitude of methane emissions. In fact, large changes are already observed in terrestrial ecosystems (Post et al., 2009), and concerns have been raised of large releases of carbon through permafrost thaw (Schuur et al., 2011). While these changes in the greenhouse gas balance of the terrestrial Arctic are described in numerous studies, a connection with a decline in sea ice extent is nonetheless seldom made. In addition to these changes on land, a lower sea ice extent also has a direct effect on the exchange of greenhouse gases between the ocean and the atmosphere. For example, due to sea ice retreat, more ocean surface remains in contact with the atmosphere, and this has been suggested to increase the oceanic uptake of CO2 (Bates et al., 2006). However, the sustainability of this increased uptake is uncertain (Cai et al., 2010), and carbon fluxes related directly to the sea ice itself add much uncertainty to the oceanic uptake of CO2 (Nomura et al., 2006; Rysgaard et al., 2007). Furthermore, significant emissions of methane from the Arctic Ocean have been observed (Kort et al., 2012; Shakhova et al., 2010), but the consequence of a lower sea ice extent thereon is still unclear. Overall, the decline in sea ice that has been seen in recent years has the potential to influence greenhouse gas exchange across terrestrial ecosystems and the Arctic Ocean, but the overall impact remains unclear. In this study, we therefore try to reduce this uncertainty by addressing the influence of the decline in sea ice extent on all affected greenhouse gas fluxes in the high latitudes. Also, we will address the need for more research, on the ocean and on the land, to understand the impact of a lower sea ice extent on Arctic greenhouse gas exchange. References: Bates, N. R., Moran, S. B., Hansell, D. A. and Mathis, J. T.: An increasing CO2 sink in the Arctic Ocean due to sea-ice loss, Geophys. Res. Lett., 33, L23609, doi:10.1029/2006GL027028, 2006. Cai, W.-J., Chen, L., Chen, B., Gao, Z., Lee, S. H., Chen, J., Pierrot, D., Sullivan, K., Wang, Y., Hu, X., Huang, W.-J., et al.: Decrease in the CO2 Uptake Capacity in an Ice-Free Arctic Ocean Basin, Science, 329(5991), 556-559, doi:10.1126/science.1189338, 2010. Kort, E. A., Wofsy, S. C., Daube, B. C., Diao, M., Elkins, J. W., Gao, R. S., Hintsa, E. J., Hurst, D. F., Jimenez, R., Moore, F. L., Spackman, J. R., et al.: Atmospheric observations of Arctic Ocean methane emissions up to 82 degrees north, Nature Geosci., 5(5), 318-321, doi:10.1038/NGEO1452, 2012. Nomura, D., Yoshikawa-Inoue, H. and Toyota, T.: The effect of sea-ice growth on air-sea CO2 flux in a tank experiment, vol. 58, pp. 418-426. 2006. Post, E., Forchhammer, M. C., Bret-Harte, M. S., Callaghan, T. V., Christensen, T. R., Elberling, B., Fox, A. D., Gilg, O., Hik, D. S., Høye, T. T., Ims, R. A., et al.: Ecological Dynamics Across the Arctic Associated with Recent Climate Change, Science, 325(5946), 1355-1358, doi:10.1126/science.1173113, 2009. Rysgaard, S., Glud, R. N., Sejr, M. K., Bendtsen, J. and Christensen, P. B.: Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas, J. Geophys. Res., 112, C03016, doi:10.1029/2006JC003572, 2007. Schuur, E. A. G., Abbott, B. and Network, P. C.: High risk of permafrost thaw, Nature, 480(7375), 32-33, 2011. Screen, J. A., Deser, C. and Simmonds, I.: Local and remote controls on observed Arctic warming, Geophys. Res. Lett., 39, L10709, doi:10.1029/2012GL051598, 2012. Shakhova, N., Semiletov, I., Salyuk, A., Yusupov, V., Kosmach, D. and Gustafsson, O.: Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf, Science, 327(5970), 1246-1250, doi:10.1126/science.1182221, 2010.
NASA Astrophysics Data System (ADS)
Hansen, Georg H.; Refsnes, Karin
2010-05-01
The Norwegian initiative "Svalbard Integrated Arctic Earth Observing System (SIOS) was included in the Revised Roadmap of the European Strategy Forum on Research Infrastructures (ESFRI) in 2009; an application to perform a preparatory phase project is currently under evaluation. The main aim of the SIOS initiative is to establish an Earth System observation platform in the European Arctic that is capable to match the whole scope of Earth System Models (ESM) on the observational side, ranging from solar/space-terrestrial interaction via atmosphere-ocean land-cryosphere coupling at the ground to geosphere-biosphere coupling. To this end, it is planned to integrate and upgrade all Arctic research stations on- and offshore in the Svalbard region which are currently operated by 15 nations, both European and worldwide. The initiative will also include the comprehensive marine and airborne monitoring and research activities and utilize the easy access to remote sensing data emerging from the satellite receiving activities at Longyearbyen. The already very comprehensive activity - though with limited international coordination - on Svalbard preconditions, as a first step, a thorough gap analysis of existing infrastructure in light of the needs of the modeling community and a careful design of the future overarching infrastructure. The interdisciplinary scientific character of SIOS makes the initiative well-suited to serve as a catalyser and integrator of the environmental ESFRI initiatives in the Arctic, while the truly global composition of the consortium may serve as a model for the envisaged pan-Arctic observing system SAON.
Eavesdropping on the Arctic: Automated bioacoustics reveal dynamics in songbird breeding phenology
Ellis, Daniel P. W.; Pérez, Jonathan H.; Wingfield, John C.; Boelman, Natalie T.
2018-01-01
Bioacoustic networks could vastly expand the coverage of wildlife monitoring to complement satellite observations of climate and vegetation. This approach would enable global-scale understanding of how climate change influences phenomena such as migratory timing of avian species. The enormous data sets that autonomous recorders typically generate demand automated analyses that remain largely undeveloped. We devised automated signal processing and machine learning approaches to estimate dates on which songbird communities arrived at arctic breeding grounds. Acoustically estimated dates agreed well with those determined via traditional surveys and were strongly related to the landscape’s snow-free dates. We found that environmental conditions heavily influenced daily variation in songbird vocal activity, especially before egg laying. Our novel approaches demonstrate that variation in avian migratory arrival can be detected autonomously. Large-scale deployment of this innovation in wildlife monitoring would enable the coverage necessary to assess and forecast changes in bird migration in the face of climate change. PMID:29938220
Water quality of arctic rivers in Finnish Lapland.
Niemi, Jorma
2010-02-01
The water quality monitoring data of eight rivers situated in the Finnish Lapland above the Arctic Circle were investigated. These rivers are icebound annually for about 200 days. They belong to the International River Basin District founded according to the European Union Water Framework Directive and shared with Norway. They are part of the European river monitoring network that includes some 3,400 river sites. The water quality monitoring datasets available varied between the rivers, the longest comprising the period 1975-2003 and the shortest 1989-2003. For each river, annual medians of eight water quality variables were calculated. In addition, medians and fifth and 95th percentiles were calculated for the whole observation periods. The medians indicated good river water quality in comparison to other national or foreign rivers. However, the river water quality oscillated widely. Some rivers were in practice in pristine state, whereas some showed slight human impacts, e.g., occasional high values of hygienic indicator bacteria.
Arctic Security Considerations and the U.S. Navy’s Roadmap for the Arctic
2010-01-01
observed in the sea, in the air, and on land. Indigenous Arctic people are facing relocation and loss of communities as sea-ice melt causes increased...sea-ice melting associated with global climate change has caused leadersfrom the United States and the international community to reconsider the...of the Navy as a valued partner by the joint, interagency, and international communities . THE CHANGING ARCTIC ENVIRONMENT The Arctic has long been a
NASA Astrophysics Data System (ADS)
Majaneva, Sanna; Hamon, Gwénaëlle; Fugmann, Gerlis; Lisowska, Maja; Baeseman, Jenny
2016-09-01
Supporting and training the next generation of researchers is crucial to continuous knowledge and leadership in Arctic research. An increasing number of Arctic organizations have developed initiatives to provide travel support for Early Career Researchers (ECRs) to participate in workshops, conferences and meetings and to network with internationally renowned scientific leaders. However, there has been little evaluation of the effectiveness of these initiatives. As a contribution to the 3rd International Conference on Arctic Research Planning, a study was conducted to analyze the career paths of ECRs who received travel funding from the International Arctic Science Committee between the start of the International Polar Year (2007-2008) and 2013. Two surveys were used: one sent to ECRs who received IASC travel support and one as a specific event study to those unsuccessfully applied for IASC travel support to the IPY 2010 Conference. The results of the surveys indicate that travel support was beneficial to both the research and careers of the respondents, especially if the ECR was engaged with a task or responsibility at the event. Survey responses also included suggestions on how funds could be better used to support the next generation of Arctic researchers.
Properties of arctic haze aerosol from lidar observations during iarea 2015 campaign on spitsbergen
NASA Astrophysics Data System (ADS)
Stachlewska, Iwona S.; Ritter, Christoph; Böckmann, Christine; Engelmann, Ronny
2018-04-01
Arctic Haze event was observed on 5-8 April 2015 using simultaneously Near-range Aerosol Raman Lidar of IGFUW and Koldewey Aerosol Raman Lidar of AWI, both based at AWIPEV German-French station in Ny-Ålesund, Spitsbergen. The alterations in particle abundance and altitude of the aerosol load observed on following days of the event is analyzed. The daytime profiles of particle optical properties were obtained for both lidars, and then served as input for microphysical parameters inversion. The results indicate aerosol composition typical for the Arctic Haze. However, in some layers, a likely abundance of aqueous aerosol or black carbon originating in biomass burning over Siberia, changes measurably the Arctic Haze properties.
Arctic summer school onboard an icebreaker
NASA Astrophysics Data System (ADS)
Alexeev, Vladimir A.; Repina, Irina A.
2014-05-01
The International Arctic Research Center (IARC) of the University of Alaska Fairbanks conducted a summer school for PhD students, post-docs and early career scientists in August-September 2013, jointly with an arctic expedition as a part of NABOS project (Nansen and Amundsen Basin Observational System) onboard the Russian research vessel "Akademik Fedorov". Both the summer school and NABOS expedition were funded by the National Science Foundation. The one-month long summer school brought together graduate students and young scientists with specialists in arctic oceanography and climate to convey to a new generation of scientists the opportunities and challenges of arctic climate observations and modeling. Young scientists gained hands-on experience during the field campaign and learned about key issues in arctic climate from observational, diagnostic, and modeling perspectives. The summer school consisted of background lectures, participation in fieldwork and mini-projects. The mini-projects were performed in collaboration with summer school instructors and members of the expedition. Key topics covered in the lectures included: - arctic climate: key characteristics and processes; - physical processes in the Arctic Ocean; - sea ice and the Arctic Ocean; - trace gases, aerosols, and chemistry: importance for climate changes; - feedbacks in the arctic system (e.g., surface albedo, clouds, water vapor, circulation); - arctic climate variations: past, ongoing, and projected; - global climate models: an overview. An outreach specialist from the Miami Science Museum was writing a blog from the icebreaker with some very impressive statistics (results as of January 1, 2014): Total number of blog posts: 176 Blog posts written/contributed by scientists: 42 Blog views: 22,684 Comments: 1,215 Number of countries who viewed the blog: 89 (on 6 continents) The 33-day long NABOS expedition started on August 22, 2013 from Kirkenes, Norway. The vessel ("Akademik Fedorov") returned to Kirkenes on September 23, 2013. In our presentation we will try to convey the spirit of learning and excitement of the students during the expedition and the summer school.
MOSAiC - Multidisciplinary drifting Observatory for the Study of Arctic Climate
NASA Astrophysics Data System (ADS)
Shupe, M.; Persson, O. P.; Tjernstrom, M. K.; Dethloff, K.
2012-12-01
The climate in the Arctic is changing faster than in other regions of the Earth, with near surface temperatures rising more than twice as fast as the global average and the perennial sea-ice cover shrinking fast, especially in summer. The Arctic is transitioning towards a new climate regime dominated by first year sea-ice. At the same time, the scientific understanding of processes and feedbacks causing this rapid change is poor and climate modeling in the Arctic remains problematic. Furthermore, the key physical processes and process-interactions in this new emerging Arctic system are likely different from those in the old system that was dominated by multi-year ice. Our understanding of this complex climate system, and ability to improve climate and weather models, is limited by the lack of observations in the extreme and remote central Arctic. Multi-year, detailed and comprehensive measurements, extending from the atmosphere through the sea-ice and into the ocean in the central Arctic Basin are needed to provide process-level understanding of the central Arctic climate system. To address this need, a manned, international drifting station will be installed in the young sea-ice of the western Arctic and follow the evolution of the ice pack as it proceeds through the transpolar drift towards the Fram Strait over the course of 1-2 years. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC), proposed to start in autumn 2017, will be guided by the broad theme: What are the causes and consequences of diminished Arctic sea-ice coverage? To address this theme requires a number of interdisciplinary investigations that target more specific science questions. *How do ongoing changes in the Arctic ice-ocean-atmosphere system drive heat and mass transfers of importance to climate and ecosystems? *What are the processes and feedbacks affecting sea ice cover, atmosphere-ocean stratification and energy budget in the Arctic? *Will an ice reduced Arctic become more biologically productive and what are the consequences of this to other components of the system? *How do the different scales of heterogeneity within the atmosphere ice and ocean interact to impact the linkages or feedbacks within the system? *How do interfacial exchange rates, biology and chemistry couple to regulate the major elemental cycles? MOSAiC will address these multi-disciplinary questions using intensive observations and modeling of processes that transfer energy, mass, and momentum through the atmosphere-ice-ocean system. The centerpiece of the observatory will be an icebreaker-based station to serve as a hub for intensive and comprehensive observations of climatically-significant physical, chemical, and biological processes through the vertical column. To provide important spatial context and horizontal variability, this facility will be the focal point for a constellation of coordinated observations made by drifting buoys, unmanned aerial and underwater vehicles, aircraft, ships, and satellites. These MOSAiC observational activities will serve as a testbed for evaluation and development of models at scales ranging from high-resolution, process models to regional and global climate models. MOSAiC observational and modeling activities will be linked at the outset, such that model needs will be integral in observational design, implementation, and analysis.
Recent trends in energy flows through the Arctic climate system
NASA Astrophysics Data System (ADS)
Mayer, Michael; Haimberger, Leo
2016-04-01
While Arctic climate change can be diagnosed in many parameters, a comprehensive assessment of long-term changes and low frequency variability in the coupled Arctic energy budget still remains challenging due to the complex physical processes involved and the lack of observations. Here we draw on strongly improved observational capabilities of the past 15 years and employ observed radiative fluxes from CERES along with state-of-the-art atmospheric as well as coupled ocean-ice reanalyses to explore recent changes in energy flows through the Arctic climate system. Various estimates of ice volume and ocean heat content trends imply that the energy imbalance of the Arctic climate system was >1 Wm-2 during the 2000-2015 period, where most of the extra heat warmed the ocean and a comparatively small fraction was used to melt sea ice. The energy imbalance was partly fed by enhanced oceanic heat transports into the Arctic, especially in the mid 2000s. Seasonal trends of net radiation show a very clear signal of the ice-albedo feedback. Stronger radiative energy input during summer means increased seasonal oceanic heat uptake and accelerated sea ice melt. In return, lower minimum sea ice extent and higher SSTs lead to enhanced heat release from the ocean during fall season. These results are consistent with modeling studies finding an enhancement of the annual cycle of surface energy exchanges in a warming Arctic. Moreover, stronger heat fluxes from the ocean to the atmosphere in fall tend to warm the arctic boundary layer and reduce meridional temperature gradients, thereby reducing atmospheric energy transports into the polar cap. Although the observed results are a robust finding, extended high-quality datasets are needed to reliably separate trends from low frequency variability.
JAMSTEC Compact Arctic Drifter (J-CAD): A new Generation drifting buoy to observe the Arctic Ocean
NASA Astrophysics Data System (ADS)
Hatakeyama, Kiyoshi; Hosono, Masuo; Shimada, Koji; Kikuchi, Takashi; Nishino, Shigeto
The Arctic Ocean is one of the most sensitive regions to the earth environment changes. Japan Marine Science and Technology Center developed a new drift buoy to observe the Arctic Ocean. The name of the buoy is J-CAD (JAMSTEC Compact Arctic Drifter). From 1991 to 1993, JAMSTEC developed Ice-Ocean Environmental Buoy (IOEB) as a buoy to observe the Arctic Ocean in cooperation with Woods Hole Oceanographic Institution. The J-CAD is the buoy, which adopted the latest technology based on the knowledge and experience of IOEB development. The J-CAD was designed and developed by JAMSTEC and made by a Canadian Company MetOcean. JAMSTEC did design and development, and a Canadian company Met-Ocean made the J-CAD. It acquires meteorological and oceanographic data of the Arctic Ocean, and transmits the data that it measured via satellite. It dose also store the data inside its memory. An Inductive Modem system, which was developed by Sea-Bird Electronics, Inc. in the United States, was adopted in the underwater transmission system that data on each ocean sensor were collected. An ORBCOMM communication system was adopted for the satellite data transmission. J-CAD-1 was installed at 89°41'N 130°20'W on April 24, 2000, and the observation was started. August 1st was the day when 100 days have passed since the J-CAD-1 was installed on the North Pole. And now, the distance J-CAD-1 has covered exceeds 400 km, and it has transmitted data more than 500 k byte. A part of the data is introduced to the public in the homepage (http://w3.jamstec.go.jp: 8338) of the Arctic research group of JAMSTEC.
Building on Sub-Arctic Soil: Geopolymerization of Muskeg to a Densified Load-Bearing Composite.
Waetzig, Gregory R; Cho, Junsang; Lacroix, Max; Banerjee, Sarbajit
2017-11-07
The marshy water-saturated soil typical of the sub-Arctic represents a considerable impediment to the construction of roads, thereby greatly hindering human habitation and geological excavation. Muskeg, the native water-laden topsoil characteristic of the North American sub-Arctic, represents a particularly vexing challenge for road construction. Muskeg must either be entirely excavated, or for direct construction on muskeg, a mix of partial excavation and gradual compaction with the strategic placement of filling materials must be performed. Here, we demonstrate a novel and entirely reversible geopolymerization method for reinforcing muskeg with wood fibers derived from native vegetation with the addition of inorganic silicate precursors and without the addition of extraneous metal precursors. A continuous siloxane network is formed that links together the muskeg, wood fibers, and added silicates yielding a load-bearing and low-subsidence composite. The geopolymerization approach developed here, based on catalyzed formation of a siloxane network with further incorporation of cellulose, allows for an increase of density as well as compressive strength while reducing the compressibility of the composite.
NASA Astrophysics Data System (ADS)
Barrio, I. C.; Hik, D. S.; Jónsdóttir, I. S.; Bueno, C. G.; Mörsdorf, M. A.; Ravolainen, V. T.
2016-09-01
Plant-herbivore interactions are central to the functioning of tundra ecosystems, but their outcomes vary over space and time. Accurate forecasting of ecosystem responses to ongoing environmental changes requires a better understanding of the processes responsible for this heterogeneity. To effectively address this complexity at a global scale, coordinated research efforts, including multi-site comparisons within and across disciplines, are needed. The Herbivory Network was established as a forum for researchers from Arctic and alpine regions to collaboratively investigate the multifunctional role of herbivores in these changing ecosystems. One of the priorities is to integrate sites, methodologies, and metrics used in previous work, to develop a set of common protocols and design long-term geographically-balanced, coordinated experiments. The implementation of these collaborative research efforts will also improve our understanding of traditional human-managed systems that encompass significant portions of the sub-Arctic and alpine areas worldwide. A deeper understanding of the role of herbivory in these systems under ongoing environmental changes will guide appropriate adaptive strategies to preserve their natural values and related ecosystem services.
Geiselman, Joy; DeGange, Anthony R.; Oakley, Karen; Derksen, Dirk; Whalen, Mary
2012-01-01
Ecosystems and their wildlife communities are not static; they change and evolve over time due to numerous intrinsic and extrinsic factors. A period of rapid change is occurring in the Arctic for which our current understanding of potential ecosystem and wildlife responses is limited. Changes to the physical environment include warming temperatures, diminishing sea ice, increasing coastal erosion, deteriorating permafrost, and changing water regimes. These changes influence biological communities and the ways in which human communities interact with them. Through the new initiative Changing Arctic Ecosystems (CAE) the U.S. Geological Survey (USGS) strives to (1) understand the potential suite of wildlife population responses to these physical changes to inform key resource management decisions such as those related to the Endangered Species Act, and (2) provide unique insights into how Arctic ecosystems are responding under new stressors. Our studies examine how and why changes in the ice-dominated ecosystems of the Arctic are affecting wildlife and will provide a better foundation for understanding the degree and manner in which wildlife species respond and adapt to rapid environmental change. Changes to Arctic ecosystems will be felt broadly because the Arctic is a production zone for hundreds of species that migrate south for the winter. The CAE initiative includes three major research themes that span Arctic ice-dominated ecosystems and that are structured to identify and understand the linkages between physical processes, ecosystems, and wildlife populations. The USGS is applying knowledge-based modeling structures such as Bayesian Networks to integrate the work.
NASA Astrophysics Data System (ADS)
Budden, A. E.; Arzayus, K. M.; Baker-Yeboah, S.; Casey, K. S.; Dozier, J.; Jones, C. S.; Jones, M. B.; Schildhauer, M.; Walker, L.
2016-12-01
The newly established NSF Arctic Data Center plays a critical support role in archiving and curating the data and software generated by Arctic researchers from diverse disciplines. The Arctic community, comprising Earth science, archaeology, geography, anthropology, and other social science researchers, are supported through data curation services and domain agnostic tools and infrastructure, ensuring data are accessible in the most transparent and usable way possible. This interoperability across diverse disciplines within the Arctic community facilitates collaborative research and is mirrored by interoperability between the Arctic Data Center infrastructure and other large scale cyberinfrastructure initiatives. The Arctic Data Center leverages the DataONE federation to standardize access to and replication of data and metadata to other repositories, specifically the NOAA's National Centers for Environmental Information (NCEI). This approach promotes long-term preservation of the data and metadata, as well as opening the door for other data repositories to leverage this replication infrastructure with NCEI and other DataONE member repositories. The Arctic Data Center uses rich, detailed metadata following widely recognized standards. Particularly, measurement-level and provenance metadata provide scientists the details necessary to integrate datasets across studies and across repositories while enabling a full understanding of the provenance of data used in the system. The Arctic Data Center gains this deep metadata and provenance support by simply adopting DataONE services, which results in significant efficiency gains by eliminating the need to develop systems de novo. Similarly, the advanced search tool developed by the Knowledge Network for Biocomplexity and extended for data submission by the Arctic Data Center, can be used by other DataONE-compliant repositories without further development. By standardizing interfaces and leveraging the DataONE federation, the Arctic Data Center has advanced rapidly and can itself contribute to raising the capabilities of all members of the federation.
NASA Technical Reports Server (NTRS)
Liang, Q.; Rodriquez, J. M.; Douglass, A. R.; Crawford, J. H.; Apel, E.; Bian, H.; Blake, D. R.; Brune, W.; Chin, M.; Colarco, P. R.;
2011-01-01
We analyze the aircraft observations obtained during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellite (ARCTAS) mission together with the GEOS-5 CO simulation to examine O3 and NOy in the Arctic and sub-Arctic region and their source attribution. Using a number of marker tracers and their probability density distributions, we distinguish various air masses from the background troposphere and examine their contribution to NOx, O3, and O3 production in the Arctic troposphere. The background Arctic troposphere has mean O3 of approximately 60 ppbv and NOx of approximately 25 pptv throughout spring and summer with CO decreases from approximately 145 ppbv in spring to approximately 100 ppbv in summer. These observed CO, NOx and O3 mixing ratios are not notably different from the values measured during the 1988 ABLE-3A and the 2002 TOPSE field campaigns despite the significant changes in the past two decades in processes that could have changed the Arctic tropospheric composition. Air masses associated with stratosphere-troposphere exchange are present throughout the mid and upper troposphere during spring and summer. These air masses with mean O3 concentration of 140-160 ppbv are the most important direct sources of O3 in the Arctic troposphere. In addition, air of stratospheric origin is the only notable driver of net O3 formation in the Arctic due to its sustainable high NOx (75 pptv in spring and 110 pptv in summer) and NOy (approximately 800 pptv in spring and approximately 1100 pptv in summer) levels. The ARCTAS measurements present observational evidence suggesting significant conversion of nitrogen from HNO3 to NOx and then to PAN (a net formation of approximately 120 pptv PAN) in summer when air of stratospheric origin is mixed with tropospheric background during stratosphere-to-troposphere transport. These findings imply that an adequate representation of stratospheric O3 and NOy input are essential in accurately simulating O3 and NOx photochemistry as well as the atmospheric budget of PAN in tropospheric chemistry transport models of the Arctic. Anthropogenic and biomass burning pollution plumes observed during ARCTAS show highly elevated hydrocarbons and NOy (mostly in the form of NOx and PAN), but do not contribute significantly to O3 in the Arctic troposphere except in some of the aged biomass burning plumes sampled during spring. Convection and/or lightning influences are negligible sources of O3 in the Arctic troposphere but can have significant impacts in the upper troposphere in the continental sub-Arctic during summer.
An AeroCom assessment of black carbon in Arctic snow and sea ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, C.; Flanner, M. G.; Balkanski, Y.
2014-01-01
Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. In this paper, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during whichmore » an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng g -1 for an earlier phase of AeroCom models (phase I), and +4.1 (-13.0 to +21.4) ng g -1 for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng g -1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60–90° N) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates from extra-Arctic emissions, these results suggest that aerosol removal processes are a leading source of variation in model performance. The multi-model mean (full range) of Arctic radiative effect from BC in snow is 0.15 (0.07–0.25) W m -2 and 0.18 (0.06–0.28) W m -2 in phase I and phase II models, respectively. After correcting for model biases relative to observed BC concentrations in different regions of the Arctic, we obtain a multi-model mean Arctic radiative effect of 0.17 W m -2 for the combined AeroCom ensembles. Finally, there is a high correlation between modeled BC concentrations sampled over the observational sites and the Arctic as a whole, indicating that the field campaign provided a reasonable sample of the Arctic.« less
Seismic and Geophysical Characterization of Northern Asia
2010-09-01
seismic networks in Russia and Japan. The geographic scope of this project covers Russia from the Urals to the Bering Strait and from the Arctic Ocean to...Russia and Japan. The geographic scope of this project covers Russia from the Urals to the Bering Strait and from the Arctic Ocean to the North Korean...between these somewhat correspond to the boundaries of the microplates , it is our intention to use significantly more data from the region to define
Observations reveal external driver for Arctic sea-ice retreat
NASA Astrophysics Data System (ADS)
Notz, Dirk; Marotzke, Jochem
2012-04-01
The very low summer extent of Arctic sea ice that has been observed in recent years is often casually interpreted as an early-warning sign of anthropogenic global warming. For examining the validity of this claim, previously IPCC model simulations have been used. Here, we focus on the available observational record to examine if this record allows us to identify either internal variability, self-acceleration, or a specific external forcing as the main driver for the observed sea-ice retreat. We find that the available observations are sufficient to virtually exclude internal variability and self-acceleration as an explanation for the observed long-term trend, clustering, and magnitude of recent sea-ice minima. Instead, the recent retreat is well described by the superposition of an externally forced linear trend and internal variability. For the externally forced trend, we find a physically plausible strong correlation only with increasing atmospheric CO2 concentration. Our results hence show that the observed evolution of Arctic sea-ice extent is consistent with the claim that virtually certainly the impact of an anthropogenic climate change is observable in Arctic sea ice already today.
Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm
Kim, Baek-Min; Hong, Ja-Young; Jun, Sang-Yoon; Zhang, Xiangdong; Kwon, Hataek; Kim, Seong-Joong; Kim, Joo-Hong; Kim, Sang-Woo; Kim, Hyun-Kyung
2017-01-01
In January 2016, the Arctic experienced an extremely anomalous warming event after an extraordinary increase in air temperature at the end of 2015. During this event, a strong intrusion of warm and moist air and an increase in downward longwave radiation, as well as a loss of sea ice in the Barents and Kara seas, were observed. Observational analyses revealed that the abrupt warming was triggered by the entry of a strong Atlantic windstorm into the Arctic in late December 2015, which brought enormous moist and warm air masses to the Arctic. Although the storm terminated at the eastern coast of Greenland in late December, it was followed by a prolonged blocking period in early 2016 that sustained the extreme Arctic warming. Numerical experiments indicate that the warming effect of sea ice loss and associated upward turbulent heat fluxes are relatively minor in this event. This result suggests the importance of the synoptically driven warm and moist air intrusion into the Arctic as a primary contributing factor of this extreme Arctic warming event. PMID:28051170
Dynamical mechanisms of Arctic amplification.
Dethloff, Klaus; Handorf, Dörthe; Jaiser, Ralf; Rinke, Annette; Klinghammer, Pia
2018-05-12
The Arctic has become a hot spot of climate change, but the nonlinear interactions between regional and global scales in the coupled climate system responsible for Arctic amplification are not well understood and insufficiently described in climate models. Here, we compare reanalysis data with model simulations for low and high Arctic sea ice conditions to identify model biases with respect to atmospheric Arctic-mid-latitude linkages. We show that an appropriate description of Arctic sea ice forcing is able to reproduce the observed winter cooling in mid-latitudes as result of improved tropospheric-stratospheric planetary wave propagation triggering a negative phase of the Arctic Oscillation/North Atlantic Oscillation in late winter. © 2018 New York Academy of Sciences.
NASA Astrophysics Data System (ADS)
Peralta Ferriz, C.; Morison, J.
2014-12-01
Since 2003, the Gravity Recovery and Climate Experiment (GRACE) satellite system has provided the means of investigating month-to-month to inter-annual variability of, among many other things, Arctic Ocean circulation over the entire Arctic Basin. Such a comprehensive picture could not have been achieved with the limited in situ pressure observations available. Results from the first 10 years of ocean bottom pressure measurements from GRACE in the Arctic Ocean reveal distinct patterns of ocean variability that are strongly associated with changes in large-scale atmospheric circulation (Peralta-Ferriz et al., 2014): the leading mode of variability being a wintertime basin-coherent mass change driven by winds in the Nordic Seas; the second mode of variability corresponding to a mass signal coherent along the Siberian shelves, and driven by the Arctic Oscillation; and the third mode being a see-saw between western and eastern Arctic shelves, also driven by the large-scale wind patterns. In order to understand Arctic Ocean changes, it is fundamental to continue to track ocean bottom pressure. Our concern is what to do if the present GRACE system, which is already well beyond its design lifetime, should fail before its follow-on is launched, currently estimated to be in 2017. In this work, we regress time series of pressure from the existing and potential Arctic Ocean bottom pressure recorder locations against the fundamental modes of bottom pressure variation. Our aim is to determine the optimum combination of in situ measurements to represent the broader scale variability now observed by GRACE. With this understanding, we can be better prepared to use in situ observations to at least partially cover a possible gap in GRACE coverage. Reference:Peralta-Ferriz, Cecilia, James H. Morison, John M. Wallace, Jennifer A. Bonin, Jinlun Zhang, 2014: Arctic Ocean Circulation Patterns Revealed by GRACE. J. Climate, 27, 1445-1468. doi: http://dx.doi.org/10.1175/JCLI-D-13-00013.1
NASA Astrophysics Data System (ADS)
Halfacre, John W.
The photochemically-induced destruction of ground-level Arctic ozone in the Arctic occurs at the onset of spring, in concert with polar sunrise. Solar radiation is believed to stimulate a series of reactions that cause the production and release of molecular halogens from frozen, salty surfaces, though this mechanism is not yet well understood. The subsequent photolysis of molecular halogens produces reactive halogen atoms that remove ozone from the atmosphere in these so-called "Ozone Depletion Events" (ODEs). Given that much of the Arctic region is sunlit, meteorologically stable, and covered by saline ice and snow, it is expected that ODEs could be a phenomenon that occurs across the entire Arctic region. Indeed, an ever-growing body of evidence from coastal sites indicates that Arctic air masses devoid of O3 most often pass over sea ice-covered regions before arriving at an observation site, suggesting ODE chemistry occurs upwind over the frozen Arctic Ocean. However, outside of coastal observations, there exist very few long-term observations from the Arctic Ocean from which quantitative assessments of basic ODE characteristics can be made. This work presents the interpretation of ODEs through unique chemical and meteorological observations from several ice-tethered buoys deployed around the Arctic Ocean. These observations include detection of ozone, bromine monoxide, and measurements of temperature, relative humidity, atmospheric pressure, wind speed, and wind direction. To assess whether the O-Buoys were observing locally based depletion chemistry or the transport of ozone-poor air masses, periods of ozone decay were interpreted based on current understanding of ozone depletion kinetics, which are believed to follow a pseudo-first order rate law. In addition, the spatial extents of ODEs were estimated using air mass trajectory modeling to assess whether they are a localized or synoptic phenomenon. Results indicate that current understanding of the responsible chemical mechanisms are lacking, ODEs are observed primarily due to air mass transport (even in the Arctic Ocean), or some combination of both. Air mass trajectory modeling was also used in tandem with remote sensing observations of sea ice to determine the types of surfaces air masses were exposed to before arriving at O-Buoys. The impact of surface exposure was subsequently compared with local meteorology to assess which variables had the most effect on O 3 variability. For two observation sites, the impact of local meteorology was significantly stronger than air mass history, while a third was inconclusive. Finally, this work tests the viability of the hypothesis that initial production of molecular halogens from frozen saline surfaces results from photolytic production of the hydroxyl radical, and could be enhanced in the presence of O3. This investigation was enabled by a custom frozen-walled flow reactor coupled with chemical ionization spectrometry. It was found that hydroxyl radical could indeed promote the production and release of iodine, bromine, and chlorine, and that this production could be enhanced in the presence of ozone.
Canadian snow and sea ice: historical trends and projections
NASA Astrophysics Data System (ADS)
Mudryk, Lawrence R.; Derksen, Chris; Howell, Stephen; Laliberté, Fred; Thackeray, Chad; Sospedra-Alfonso, Reinel; Vionnet, Vincent; Kushner, Paul J.; Brown, Ross
2018-04-01
The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state of the art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. Here, we present an assessment from the CanSISE Network on trends in the historical record of snow cover (fraction, water equivalent) and sea ice (area, concentration, type, and thickness) across Canada. We also assess projected changes in snow cover and sea ice likely to occur by mid-century, as simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) suite of Earth system models. The historical datasets show that the fraction of Canadian land and marine areas covered by snow and ice is decreasing over time, with seasonal and regional variability in the trends consistent with regional differences in surface temperature trends. In particular, summer sea ice cover has decreased significantly across nearly all Canadian marine regions, and the rate of multi-year ice loss in the Beaufort Sea and Canadian Arctic Archipelago has nearly doubled over the last 8 years. The multi-model consensus over the 2020-2050 period shows reductions in fall and spring snow cover fraction and sea ice concentration of 5-10 % per decade (or 15-30 % in total), with similar reductions in winter sea ice concentration in both Hudson Bay and eastern Canadian waters. Peak pre-melt terrestrial snow water equivalent reductions of up to 10 % per decade (30 % in total) are projected across southern Canada.
Relative importance of multiple factors on terrestrial loading of DOC to Arctic river networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kicklighter, David W.; Hayes, Daniel J; Mcclelland, James W
2014-01-01
Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to controlling carbon fluxes between the land surface and the atmosphere. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that the pan-arctic watershed has contributed, on average, 32 Tg C/yr of DOC to the Arctic Ocean over the 20th century with most coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate ofmore » terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of increases in air temperatures and precipitation. These increases have been partially compensated by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both compensated and enhanced concurrent effects on hydrology to influence terrestrial DOC loading. Future increases in riverine DOC concentrations and export may occur from warming-induced increases in terrestrial DOC production associated with enhanced microbial metabolism and the exposure of additional organic matter from permafrost degradation along with decreases in water yield associated with warming-induced increases in evapotranspiration. Improvements in simulating terrestrial DOC loading to pan-arctic rivers in the future will require better information on the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.« less
AEROCAN, the Canadian sub-network of AERONET: Aerosol monitoring and air quality applications
NASA Astrophysics Data System (ADS)
Sioris, Christopher E.; Abboud, Ihab; Fioletov, Vitali E.; McLinden, Chris A.
2017-10-01
Previous studies have demonstrated the utility of AERONET (Aerosol Robotic Network) aerosol optical depth (AOD) data for monitoring the spatial variability of particulate matter (PM) in relatively polluted regions of the globe. AEROCAN, a Canadian sub-network of AERONET, was established 20 years ago and currently consists of twenty sites across the country. In this study, we examine whether the AEROCAN sunphotometer data provide evidence of anthropogenic contributions to ambient particulate matter concentrations in relatively clean Canadian locations. The similar weekly cycle of AOD and PM2.5 over Toronto provides insight into the impact of local pollution on observed AODs. High temporal correlations (up to r = 0.78) between daily mean AOD (or its fine-mode component) and PM2.5 are found at southern Ontario AEROCAN sites during May-August, implying that the variability in the aerosol load resides primarily in the boundary layer and that sunphotometers capture day-to-day PM2.5 variations at moderately polluted sites. The sensitivity of AEROCAN AOD data to anthropogenic surface-level aerosol enhancements is demonstrated using boundary-layer wind information for sites near sources of aerosol or its precursors. An advantage of AEROCAN relative to the Canadian in-situ National Air Pollution Surveillance (NAPS) network is the ability to detect free tropospheric aerosol enhancements, which can be large in the case of lofted forest fire smoke or desert dust. These aerosol plumes eventually descend to the surface, sometimes in populated areas, exacerbating air quality. In cases of large AOD (≥0.4), AEROCAN data are also useful in characterizing the aerosol type. The AEROCAN network includes three sites in the high Arctic, a region not sampled by the NAPS PM2.5 monitoring network. These polar sites show the importance of long-range transport and meteorology in the Arctic haze phenomenon. Also, AEROCAN sunphotometers are, by design and due to regular maintenance, the most valuable monitors available for long term aerosol trends. Using a variety of data analysis techniques and timescales, the usefulness of this ground-based remote-sensing sub-network for providing information relevant to air quality is demonstrated.
Trend analysis of Arctic sea ice extent
NASA Astrophysics Data System (ADS)
Silva, M. E.; Barbosa, S. M.; Antunes, Luís; Rocha, Conceição
2009-04-01
The extent of Arctic sea ice is a fundamental parameter of Arctic climate variability. In the context of climate change, the area covered by ice in the Arctic is a particularly useful indicator of recent changes in the Arctic environment. Climate models are in near universal agreement that Arctic sea ice extent will decline through the 21st century as a consequence of global warming and many studies predict a ice free Arctic as soon as 2012. Time series of satellite passive microwave observations allow to assess the temporal changes in the extent of Arctic sea ice. Much of the analysis of the ice extent time series, as in most climate studies from observational data, have been focussed on the computation of deterministic linear trends by ordinary least squares. However, many different processes, including deterministic, unit root and long-range dependent processes can engender trend like features in a time series. Several parametric tests have been developed, mainly in econometrics, to discriminate between stationarity (no trend), deterministic trend and stochastic trends. Here, these tests are applied in the trend analysis of the sea ice extent time series available at National Snow and Ice Data Center. The parametric stationary tests, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and the KPSS, do not support an overall deterministic trend in the time series of Arctic sea ice extent. Therefore, alternative parametrizations such as long-range dependence should be considered for characterising long-term Arctic sea ice variability.
NASA Astrophysics Data System (ADS)
Skorokhod, Andrey; Belikov, Igor; Pankratova, Natalia; Novigatsky, Alexander; Thompson, Rona
2016-04-01
Atmospheric methane (CH4) is the second most important long-lived greenhouse gas. The Arctic has significant sources of CH4, such as from wetlands and possibly also from methane hydrates, which may act as a positive feedback on the climate system. Despite significant efforts in establishing a network of ground-based CH4 observations in the Arctic zone, there is still a lack of measurements over the Arctic Ocean and sub-polar seas. From 21 July to 9 October 2015, concentrations of CH4 and CO2, as well as of the 13C:12C isotopic ratio in CH4, i.e., δ13C, were measured in the marine boundary layer from aboard the Research Vessel "Akademik Mstislav Keldysh" by the Shirshov Institute of Oceanology. Measurements were made using a Cavity Ring Down Spectroscopy instrument from Picarro™ (model G2132-i). The cruises covered a vast area including the North Atlantic up to 70°N, the Baltic, North, Norwegian, Greenland, Barents, White, Kara and Laptev Seas. To the best of our knowledge, these are the first measurements of their type made in these regions. Concentrations of CH4 typically had low variations (in the range of a few ppb) in the open sea but relatively large variations (of the order of 100 ppb) were recorded near and during stops in ports. High variability of atmospheric CH4 was also registered near the delta of the Lena River in the Laptev Sea, which has been suggested to be a large CH4 reservoir and where bubbles rising through the water column have been observed. The obtained set of δ13CCH4 is characterized by significant range of the measured values varying from open Atlantic to polluted regions near large sea ports. The Keeling plot analyses were implemented to study possible CH4 sources according to its isotopic signature. Footprint analyses are presented for the shipboard observations, as well as comparisons to simulated CH4 concentrations and δ13C using the Lagrangian transport model, FLEXPART. This work has been carried-out with the financial support of RFBR (Project #14-05-93089) and RSF (Project #14-47-00049).
It's the Physics: Organized Complexity in the Arctic/Midlatitude Weather Controversy
NASA Astrophysics Data System (ADS)
Overland, J. E.; Francis, J. A.; Wang, M.
2017-12-01
There is intense scientific and public interest in whether major Arctic changes can and will impact mid-latitude weather. Despite numerous workshops and a growing literature, convergence of understanding is lacking, with major objections about possible large impacts within the scientific community. Yet research on the Arctic as a new potential driver in improving subseasonal forecasting at midlatitudes remains a priority. A recent review laid part of the controversy on shortcomings in experimental design and ill-suited metrics, such as examining the influence of only sea-ice loss rather than overall Arctic temperature amplification, and/or calculating averages over large regions, long time periods, or many ensemble members that would tend to obscure event-like Arctic connections. The present analysis lays the difficulty at a deeper level owing to the inherently complex physics. Jet-stream dynamics and weather linkages on the scale of a week to months has characteristics of an organized complex system, with large-scale processes that operate in patterned, quasi-geostrophic ways but whose component feedbacks are continually changing. Arctic linkages may be state dependent, i.e., relationships may be more robust in one atmospheric wave pattern than another, generating intermittency. The observational network is insufficient to fully initialize such a system and the inherent noise obscures linkage signals, leading to an underdetermined problem; often more than one explanation can fit the data. Further, the problem may be computationally irreducible; the only way to know the result of these interactions is to trace out their path over time. Modeling is a suggested approach, but at present it is unclear whether previous model studies fully resolve anticipated complexity. The jet stream from autumn to early winter is characterized by non-linear interactions among enhanced atmospheric planetary waves, irregular transitions between the zonal and meridional flows, and the maintenance of atmospheric blocks (near stationary large amplitude atmospheric waves). For weather forecast improvement, but not necessarily to elucidate mechanism of linkages, a Numerical Weather Prediction (NWP) approach is appropriate; such is the plan for the upcoming Year of Polar Prediction (YOPP).
NASA Technical Reports Server (NTRS)
McGee, Thomas J.; Burris, John F.; Hoegy, Walter; Newman, Paul; Heaps,William; Silbert, Donald; Lait, Leslie; Sumnicht, Grant; Twigg, Laurence
2000-01-01
During the winter of 1999-2000, the AROTEL instrument was deployed on the NASA DC-8 at Kiruna, Sweden for the SAGE III Ozone Loss Validation Experiment (SOLVE). Measurements of ozone, temperature and aerosols were made on 18 local science flights from December to March. Extremely low temperatures were observed throughout most of the Arctic vortex and polar stratospheric clouds were observed throughout the Arctic area during January. Significant ozone loss was measured after the sun began to rise on the vortex area in February. Ozone mixing ratios as low as 800 ppbv were observed during flights in March.
The melting sea ice of Arctic polar cap in the summer solstice month and the role of ocean
NASA Astrophysics Data System (ADS)
Lee, S.; Yi, Y.
2014-12-01
The Arctic sea ice is becoming smaller and thinner than climatological standard normal and more fragmented in the early summer. We investigated the widely changing Arctic sea ice using the daily sea ice concentration data. Sea ice data is generated from brightness temperature data derived from the sensors: Defense Meteorological Satellite Program (DMSP)-F13 Special Sensor Microwave/Imagers (SSM/Is), the DMSP-F17 Special Sensor Microwave Imager/Sounder (SSMIS) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument on the NASA Earth Observing System (EOS) Aqua satellite. We tried to figure out appearance of arctic sea ice melting region of polar cap from the data of passive microwave sensors. It is hard to explain polar sea ice melting only by atmosphere effects like surface air temperature or wind. Thus, our hypothesis explaining this phenomenon is that the heat from deep undersea in Arctic Ocean ridges and the hydrothermal vents might be contributing to the melting of Arctic sea ice.
Pan-Arctic aerosol number size distributions: seasonality and transport patterns
NASA Astrophysics Data System (ADS)
Freud, Eyal; Krejci, Radovan; Tunved, Peter; Leaitch, Richard; Nguyen, Quynh T.; Massling, Andreas; Skov, Henrik; Barrie, Leonard
2017-07-01
The Arctic environment has an amplified response to global climatic change. It is sensitive to human activities that mostly take place elsewhere. For this study, a multi-year set of observed aerosol number size distributions in the diameter range of 10 to 500 nm from five sites around the Arctic Ocean (Alert, Villum Research Station - Station Nord, Zeppelin, Tiksi and Barrow) was assembled and analysed.A cluster analysis of the aerosol number size distributions revealed four distinct distributions. Together with Lagrangian air parcel back-trajectories, they were used to link the observed aerosol number size distributions with a variety of transport regimes. This analysis yields insight into aerosol dynamics, transport and removal processes, on both an intra- and an inter-monthly scale. For instance, the relative occurrence of aerosol number size distributions that indicate new particle formation (NPF) event is near zero during the dark months, increases gradually to ˜ 40 % from spring to summer, and then collapses in autumn. Also, the likelihood of Arctic haze aerosols is minimal in summer and peaks in April at all sites.The residence time of accumulation-mode particles in the Arctic troposphere is typically long enough to allow tracking them back to their source regions. Air flow that passes at low altitude over central Siberia and western Russia is associated with relatively high concentrations of accumulation-mode particles (Nacc) at all five sites - often above 150 cm-3. There are also indications of air descending into the Arctic boundary layer after transport from lower latitudes.
The analysis of the back-trajectories together with the meteorological fields along them indicates that the main driver of the Arctic annual cycle of Nacc, on the larger scale, is when atmospheric transport covers the source regions for these particles in the 10-day period preceding the observations in the Arctic. The scavenging of these particles by precipitation is shown to be important on a regional scale and it is most active in summer. Cloud processing is an additional factor that enhances the Nacc annual cycle.There are some consistent differences between the sites that are beyond the year-to-year variability. They are the result of differences in the proximity to the aerosol source regions and to the Arctic Ocean sea-ice edge, as well as in the exposure to free-tropospheric air and in precipitation patterns - to mention a few. Hence, for most purposes, aerosol observations from a single Arctic site cannot represent the entire Arctic region. Therefore, the results presented here are a powerful observational benchmark for evaluation of detailed climate and air chemistry modelling studies of aerosols throughout the vast Arctic region.
Active Molecular Iodine Photochemistry in the Arctic
NASA Astrophysics Data System (ADS)
Raso, A. R. W.; Custard, K. D.; May, N.; Tanner, D.; Newburn, M. K.; Walker, L. R.; Moore, R.; Huey, L. G.; Alexander, M. L. L.; Shepson, P. B.; Pratt, K.
2017-12-01
During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition, and pollutant fate. While bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I2) have been reported in the Arctic. The presence of iodine chemistry is also expected to impact atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present the first Arctic I2 and snowpack iodide (I-) measurements, which were conducted near Utqiaġvik, AK in January and February 2014. Using chemical ionization mass spectrometry, I2 was observed in the boundary layer at molar ratios of 0.3 ppt and in the snowpack interstitial air at molar ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated. I2 was not observed in the dark, suggesting a photochemical production mechanism. This is supported by our snowpack measurements of I-, which showed enrichment of up to 1900 times above the seawater ratio of I-/Na+. Simulations show even these low concentrations of I2 observed significantly increases ozone depletion rates, while also producing iodine monoxide at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I2 is likely a dominant source of iodine atoms in the Arctic.
OCoc- from Ocean Colour to Organic Carbon
NASA Astrophysics Data System (ADS)
Heim, B.; Overduin, P. P.; Schirrmeister, L.; Lantuit, H.; Doerffer, R.
2009-12-01
Enhanced permafrost warming and increased arctic river discharges have heightened concern about the input of terrigenous matter into Arctic coastal waters. The ‘OCoc-from Ocean Colour to Organic Carbon’ project (IPY-project 1176), funded by the German Research Foundation (DFG), is an Ocean Colour study joined with the Arctic Coastal Dynamics ACD network and Arctic Circum-polar Coastal Observatory Network ACCO-Net (IPY-project 90). OCoc uses Ocean Colour satellite data for synoptical monitoring of organic matter fluxes from fluvial and coastal sources. Initial results from German-Russian expeditions at the southeastern Laptev Sea Coast (Arctic Siberia, Russia) in August 2008 and August 2009 are presented. Large parts of this coastal zone are characterized by highly erosive organic-rich material. Ocean Colour MERIS Reduced Resolution (RR)-LIB data of the have been processed towards optical aquatic parameters using Beam-Visat4.2 and the MERIS case2 regional processor for coastal application (C2R). Calculated aquatic parameters are absorption and backscattering coefficients, apparent optical properties such as the first attenuation depth (‘Z90’) and calculated concentrations of chlorophyll, total suspended matter and coloured dissolved organic matter absorption from the water leaving reflectances. Initial comparisons with expedition data (Secchi depths, cDOM) show that the MERIS-C2R optical parameters ’total absorption’ and the first attenuation depth, ’Z90’, seem adequately to represent true conditions. High attenuation values in the spectral blue wavelength range may serve as tracer for the organic-rich terrigenous input. The synoptic information of Ocean Colour products will provide valuable spatial and dynamical information on the Organic Carbon and sediment fluxes from the Siberian permafrost coast.
NASA Astrophysics Data System (ADS)
Hoffman, F. M.; Kumar, J.; Maddalena, D. M.; Langford, Z.; Hargrove, W. W.
2014-12-01
Disparate in situ and remote sensing time series data are being collected to understand the structure and function of ecosystems and how they may be affected by climate change. However, resource and logistical constraints limit the frequency and extent of observations, particularly in the harsh environments of the arctic and the tropics, necessitating the development of a systematic sampling strategy to maximize coverage and objectively represent variability at desired scales. These regions host large areas of potentially vulnerable ecosystems that are poorly represented in Earth system models (ESMs), motivating two new field campaigns, called Next Generation Ecosystem Experiments (NGEE) for the Arctic and Tropics, funded by the U.S. Department of Energy. Multivariate Spatio-Temporal Clustering (MSTC) provides a quantitative methodology for stratifying sampling domains, informing site selection, and determining the representativeness of measurement sites and networks. We applied MSTC to down-scaled general circulation model results and data for the State of Alaska at a 4 km2 resolution to define maps of ecoregions for the present (2000-2009) and future (2090-2099), showing how combinations of 37 bioclimatic characteristics are distributed and how they may shift in the future. Optimal representative sampling locations were identified on present and future ecoregion maps, and representativeness maps for candidate sampling locations were produced. We also applied MSTC to remotely sensed LiDAR measurements and multi-spectral imagery from the WorldView-2 satellite at a resolution of about 5 m2 within the Barrow Environmental Observatory (BEO) in Alaska. At this resolution, polygonal ground features—such as centers, edges, rims, and troughs—can be distinguished. Using these remote sensing data, we up-scaled vegetation distribution data collected on these polygonal ground features to a large area of the BEO to provide distributions of plant functional types that can be used to parameterize ESMs. In addition, we applied MSTC to 4 km2 global bioclimate data to define global ecoregions and understand the representativeness of CTFS-ForestGEO, Fluxnet, and RAINFOR sampling networks. These maps identify tropical forests underrepresented in existing observations of individual and combined networks.
The Arctic Grand Challenge: Abrupt Climate Change
NASA Astrophysics Data System (ADS)
Wilkniss, P. E.
2003-12-01
Trouble in polar paradise (Science, 08/30/02), significant changes in the Arctic environment are scientifically documented (R.E. Moritz et al. ibid.). More trouble, lots more, "abrupt climate change," (R. B. Alley, et al. Science 03/28/03). R. Corell, Arctic Climate Impact Assessment team (ACIA), "If you want to see what will happen in the rest of the world 25 years from now just look what's happening in the Arctic," (Arctic Council meeting, Iceland, 08/03). What to do? Make abrupt Arctic climate change a grand challenge for the IPY-4 and beyond! Scientifically:Describe the "state" of the Arctic climate system as succinctly as possible and accept it as the point of departure.Develop a hypothesis and criteria what constitutes "abrupt climate change," in the Arctic that can be tested with observations. Observations: Bring to bear existing observations and coordinate new investments in observations through an IPY-4 scientific management committee. Make the new Barrow, Alaska, Global Climate Change Research Facility a major U.S. contribution and focal point for the IPY-4 in the U.S Arctic. Arctic populations, Native peoples: The people of the North are living already, daily, with wrenching change, encroaching on their habitats and cultures. For them "the earth is faster now," (I. Krupnik and D. Jolly, ARCUS, 2002). From a political, economic, social and entirely realistic perspective, an Arctic grand challenge without the total integration of the Native peoples in this effort cannot succeed. Therefore: Communications must be established, and the respective Native entities must be approached with the determination to create well founded, well functioning, enduring partnerships. In the U.S. Arctic, Barrow with its long history of involvement and active support of science and with the new global climate change research facility should be the focal point of choice Private industry: Resource extraction in the Arctic followed by oil and gas consumption, return the combustion products as greenhouse gases to their regions of origin. Thus multinational company operations are affected by their own activities. There is a strong, convincing case, that these industrial giants must be involved in Arctic partnerships of the grand challenge. A most instructive, very successful example is the collaboration by the chemical companies after the discovery of the polar ozone holes, followed by the replacement of the culprit chlorofluorocarbon compounds. Public relations and involvement/education: The IPY offers a unique opportunity to showcase and drive home, into homes, the seriousness of the issue, Hollywood/Madison Avenue/ NASA style, nothing else will do. Ultimately we need to be mindful that "civilizations are ephemeral compared to species. -What we need is a primer on science, clearly written and unambiguous in its meaning-a primer for anyone interested in the state of the Earth and how to survive and live well on it." (James Lovelock, Science, 08/05/98). - Let's start in the Arctic-NOW.
Snow depth on Arctic and Antarctic sea ice derived from autonomous (Snow Buoy) measurements
NASA Astrophysics Data System (ADS)
Nicolaus, Marcel; Arndt, Stefanie; Hendricks, Stefan; Heygster, Georg; Huntemann, Marcus; Katlein, Christian; Langevin, Danielle; Rossmann, Leonard; Schwegmann, Sandra
2016-04-01
The snow cover on sea ice received more and more attention in recent sea ice studies and model simulations, because its physical properties dominate many sea ice and upper ocean processes. In particular; the temporal and spatial distribution of snow depth is of crucial importance for the energy and mass budgets of sea ice, as well as for the interaction with the atmosphere and the oceanic freshwater budget. Snow depth is also a crucial parameter for sea ice thickness retrieval algorithms from satellite altimetry data. Recent time series of Arctic sea ice volume only use monthly snow depth climatology, which cannot take into account annual changes of the snow depth and its properties. For Antarctic sea ice, no such climatology is available. With a few exceptions, snow depth on sea ice is determined from manual in-situ measurements with very limited coverage of space and time. Hence the need for more consistent observational data sets of snow depth on sea ice is frequently highlighted. Here, we present time series measurements of snow depths on Antarctic and Arctic sea ice, recorded by an innovative and affordable platform. This Snow Buoy is optimized to autonomously monitor the evolution of snow depth on sea ice and will allow new insights into its seasonality. In addition, the instruments report air temperature and atmospheric pressure directly into different international networks, e.g. the Global Telecommunication System (GTS) and the International Arctic Buoy Programme (IABP). We introduce the Snow Buoy concept together with technical specifications and results on data quality, reliability, and performance of the units. We highlight the findings from four buoys, which simultaneously drifted through the Weddell Sea for more than 1.5 years, revealing unique information on characteristic regional and seasonal differences. Finally, results from seven snow buoys co-deployed on Arctic sea ice throughout the winter season 2015/16 suggest the great importance of local effects, weather events, and potential influences of dynamic sea ice processes on snow accumulation.
NASA Astrophysics Data System (ADS)
Schaeffer, A. J.; Snyder, D. B.; Cairns, S.; Elliot, B.; Audet, P.; Esteve, C.; Murray-Bergquist, L.; Falck, H.
2016-12-01
The tectonic evolution of the Beaufort Sea continental margin has contributed to the maturation of these rocks into a major petroleum reservoir. Recent shallow offshore seismic reflection data suggest that Banks Island represents thin crust along a rifted margin established during the opening of the Arctic Ocean. In this case, rifting of the margin caused Banks Island to subside and accumulate sediments rich in petroleum source material. The cooling history and further subsidence of these sediments is important for understanding the thermal maturation of petroleum products. Recently published surface-wave velocity models of North America indicate seismic velocities at 100-150 km depths similar to those beneath Canada's diamond mines in the central Slave craton north of Yellowknife. These results imply that Banks Island is part of the Canadian Shield and that any kimberlites found thereon might contain diamonds. However, the fast velocities are inconsistent with this being a tectonically disrupted and thinned lithosphere along the Arctic margin of the Canada Basin. The problem is therefore to reconcile mantle structure typical of the Canadian Shield with crust typical of a rifted passive margin. Possibly related seismicity beneath the Mackenize River Delta and offshore in the Beaufort Sea has been observed for decades but its origin remains unknown, although has been suggested as due to incipient subduction of oceanic lithosphere beneath the North American craton. Resolving these questions requires high-resolution 3-D seismic models obtained from an array of broadband seismograph stations. Here we present preliminary results on the structure of the crust and uppermost mantle underlying the western Canadian Arctic. These results are generated using new data from the Banks Island Seismograph Network (BISN), three stations installed over the summer of 2014 and 2015; augmented with several USArray Transportable Array stations and older POLARIS and CNSN stations on neighbouring Arctic Islands.
Software defined multi-spectral imaging for Arctic sensor networks
NASA Astrophysics Data System (ADS)
Siewert, Sam; Angoth, Vivek; Krishnamurthy, Ramnarayan; Mani, Karthikeyan; Mock, Kenrick; Singh, Surjith B.; Srivistava, Saurav; Wagner, Chris; Claus, Ryan; Vis, Matthew Demi
2016-05-01
Availability of off-the-shelf infrared sensors combined with high definition visible cameras has made possible the construction of a Software Defined Multi-Spectral Imager (SDMSI) combining long-wave, near-infrared and visible imaging. The SDMSI requires a real-time embedded processor to fuse images and to create real-time depth maps for opportunistic uplink in sensor networks. Researchers at Embry Riddle Aeronautical University working with University of Alaska Anchorage at the Arctic Domain Awareness Center and the University of Colorado Boulder have built several versions of a low-cost drop-in-place SDMSI to test alternatives for power efficient image fusion. The SDMSI is intended for use in field applications including marine security, search and rescue operations and environmental surveys in the Arctic region. Based on Arctic marine sensor network mission goals, the team has designed the SDMSI to include features to rank images based on saliency and to provide on camera fusion and depth mapping. A major challenge has been the design of the camera computing system to operate within a 10 to 20 Watt power budget. This paper presents a power analysis of three options: 1) multi-core, 2) field programmable gate array with multi-core, and 3) graphics processing units with multi-core. For each test, power consumed for common fusion workloads has been measured at a range of frame rates and resolutions. Detailed analyses from our power efficiency comparison for workloads specific to stereo depth mapping and sensor fusion are summarized. Preliminary mission feasibility results from testing with off-the-shelf long-wave infrared and visible cameras in Alaska and Arizona are also summarized to demonstrate the value of the SDMSI for applications such as ice tracking, ocean color, soil moisture, animal and marine vessel detection and tracking. The goal is to select the most power efficient solution for the SDMSI for use on UAVs (Unoccupied Aerial Vehicles) and other drop-in-place installations in the Arctic. The prototype selected will be field tested in Alaska in the summer of 2016.
Changes in the Arctic: Background and Issues for Congress
2011-04-07
resources and to address socioeconomic impacts of changing patterns in the use of natural resources. Changes in the Arctic: Background and Issues for...also increasingly being viewed by some observers as a potential emerging security issue. In varying degrees, the Arctic coastal states have...by the term. Policy discussions of the Arctic can employ varying definitions of the region, and readers should bear in mind that the definition used
A Meteoric Water Budget for the Arctic Ocean
NASA Astrophysics Data System (ADS)
Alkire, Matthew B.; Morison, James; Schweiger, Axel; Zhang, Jinlun; Steele, Michael; Peralta-Ferriz, Cecilia; Dickinson, Suzanne
2017-12-01
A budget of meteoric water (MW = river runoff, net precipitation minus evaporation, and glacial meltwater) over four regions of the Arctic Ocean is constructed using a simple box model, regional precipitation-evaporation estimates from reanalysis data sets, and estimates of import and export fluxes derived from the literature with a focus on the 2003-2008 period. The budget indicates an approximate/slightly positive balance between MW imports and exports (i.e., no change in storage); thus, the observed total freshwater increase observed during this time period likely resulted primarily from changes in non-MW freshwater components (i.e., increases in sea ice melt or Pacific water and/or a decrease in ice export). Further, our analysis indicates that the MW increase observed in the Canada Basin resulted from a spatial redistribution of MW over the Arctic Ocean. Mean residence times for MW were estimated for the Western Arctic (5-7 years), Eastern Arctic (3-4 years), and Lincoln Sea (1-2 years). The MW content over the Siberian shelves was estimated (˜14,000 km3) based on a residence time of 3.5 years. The MW content over the entire Arctic Ocean was estimated to be ≥44,000 km3. The MW export through Fram Strait consisted mostly of water from the Eastern Arctic (3,237 ± 1,370 km3 yr-1) whereas the export through the Canadian Archipelago was nearly equally derived from both the Western Arctic (1,182 ± 534 km3 yr-1) and Lincoln Sea (972 ± 391 km3 yr-1).
Arctic climate tipping points.
Lenton, Timothy M
2012-02-01
There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the Arctic are briefly reviewed. Then, the current behaviour of a range of Arctic systems is summarised. Looking ahead, a range of potential tipping phenomena are described. This leads to a revised and expanded list of potential Arctic climate tipping elements, whose likelihood is assessed, in terms of how much warming will be required to tip them. Finally, the available responses are considered, especially the prospects for avoiding Arctic climate tipping points.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onstott, Tullis C; Pffifner, Susan M; Chourey, Karuna
2014-11-07
Our results to date indicate that CO2 and CH4 fluxes from organic poor, Arctic cryosols on Axel Heiberg Island are net CH4 sinks and CO2 emitters in contrast to organic-rich peat deposits at sub-Arctic latitudes. This is based upon field observations and a 1.5 year long thawing experiment performed upon one meter long intact cores. The results of the core thawing experiments are in good agreement with field measurements. Metagenomic, metatranscriptomic and metaproteomic analyses indicate that high affinity aerobic methanotrophs belong to the uncultivated USCalpha are present in <1% abundance in these cryosols are are active in the field duringmore » the summer and in the core thawing experiments. The methanotrophs are 100 times more abundant than the methanogens. As a result mineral cryosols, which comprise 87% of Arctic tundra, are net methane sinks. Their presence and activity may account for the discrepancies observed between the atmospheric methane concentrations observed in the Arctic predicted by climate models and the observed seasonal fluctuations and decadal trends. This has not been done yet.« less
NASA Astrophysics Data System (ADS)
Lappalainen, Hanna K.; Petäjä, Tuukka; Zaytzeva, Nina; Viisanen, Yrjö; Kotlyakov, Vladimir; Kasimov, Nikolay; Bondur, Valery; Matvienko, Gennady; Zilitinkevich, Sergej; Kulmala, Markku
2014-05-01
Pan-Eurasian Experiment (PEEX) is a new multidisciplinary research approach aiming at resolving the major uncertainties in the Earth system science and global sustainability questions in the Arctic and boreal Pan-Eurasian regions (Kulmala et al. 2011). The main goal of PEEX Research agenda is to contribute to solving the scientific questions that are specifically important for the Pan-Eurasian region in the coming years, in particular the global climate change and its consequences to nature and human society. Pan Eurasian region represents one the Earth most extensive areas of boreal forest (taiga) and the largest natural wetlands, thus being a significant source area of trace gas emissions, biogenic aerosol particles, and source and sink area for the greenhouse gas (GHG) exchange in a global scale (Guenther et al. 1995, Timkovsky et al. 2010, Tunved et al. 2006, Glagolev et al. 2010). One of the first activities of the PEEX initiative is to establish a process towards high level Pan-Eurasian Observation Networks. Siberian region is currently lacking a coordinated, coherent ground based atmosphere-ecosystem measurement network, which would be crucial component for observing and predicting the effects of climate change in the Northern Pan- Eurasian region The vision of the Pan-Eurasion network will be based on a hierarchical SMEAR-type (Stations Measuring Atmosphere-Ecosystem Interactions) integrated land-atmosphere observation system (Hari et al. 2009). A suite of stations have been selected for the Preliminary Phase of PEEX Observation network. These Preliminary Phase stations includes the SMEAR-type stations in Finland (SMEAR-I-II-II-IV stations), in Estonia (SMEAR-Järviselja) and in China (SMEAR-Nanjing) and selected stations in Russia and ecosystem station network in China. PEEX observation network will fill in the current observational gap in the Siberian region and bring the Siberian observation setup into international context with the with standardized or comparable procedures. It will prove a basis for the long-term continuation of advanced measurements on aerosols, clouds, GHGs and trace gases in Northern Pan- Eurasian area to be operated by PEEX educated technical staff.
The Arctic Vortex in March 2011: A Dynamical Perspective
NASA Technical Reports Server (NTRS)
Hurwitz, Margaret M.; Newman, Paul A.; Garfinkel,Chaim I.
2011-01-01
Despite the record ozone loss observed in March 2011, dynamical conditions in the Arctic stratosphere were unusual but not unprecedented. Weak planetary wave driving in February preceded cold anomalies in t he polar lower stratosphere in March and a relatively late breakup of the Arctic vortex in April. La Nina conditions and the westerly phas e of the quasi-biennial oscillation (QBO) were observed in March 201 1. Though these conditions are generally associated with a stronger vortex in mid-winter, the respective cold anomalies do not persist t hrough March. Therefore, the La Nina and QBO-westerly conditions cannot explain the observed cold anomalies in March 2011. In contrast, po sitive sea surface temperature anomalies in the North Pacific may ha ve contributed to the unusually weak tropospheric wave driving and s trong Arctic vortex in late winter 2011.
NASA Astrophysics Data System (ADS)
Craymer, M.; Forbes, D.; Henton, J.; Lapelle, E.; Piraszewski, M.; Solomon, S.
2005-12-01
With observed climate warming in the western Canadian Arctic and potential increases in regional sea level, we anticipate expansion of the coastal region subject to rising relative sea level and increased flooding risk. This is a concern for coastal communities such as Tuktoyaktuk and Sachs Harbour and for the design and safety of hydrocarbon production facilities on the Mackenzie Delta. To provide a framework in which to monitor these changes, a consistent velocity field has been determined from GPS observations throughout North America, including the Canadian Arctic Archipelago and the Mackenzie Delta region. An expanded network of continuous GPS sites and multi-epoch (episodic) sites has enabled an increased density that enhances the application to geophysical studies including the discrimination of crustal motion, other components of coastal subsidence, and sea-level rise. To obtain a dense velocity field consistent at all scales, we have combined weekly solutions of continuous GPS sites from different agencies in Canada and the USA, together with the global reference frame under the North American Reference Frame initiative. Although there is already a high density of continuous GPS sites in the conterminous United States, there are many fewer such sites in Canada. To make up for this lack of density, we have incorporated high-accuracy episodic GPS observations on stable monuments distributed throughout Canada. By combining up to ten years of repeated, episodic GPS observations at such sites, together with weekly solutions from the continuous sites, we have obtained a highly consistent velocity field with a significantly increased spatial sampling of crustal deformation throughout Canada. This exhibits a spatially coherent pattern of uplift and subsidence in Canada that is consistent with the expected rates of glacial isostatic adjustment. To determine the contribution of vertical motion to sea-level rise under climate warming in the Canadian Arctic, we have established co-located tide gauges and continuous GPS at a number of sites across the Canadian Arctic, including Tuktoyaktuk on the eastern side of the Mackenzie Delta. We are also investigating additional sources of subsidence in the delta, including sediment loading, compaction of unfrozen and discontinuously ice-bonded sediments, and anticipated subsidence resulting from future natural gas production. Further densification of the velocity field, including the addition of new sites in the delta, and regular reoccupation of episodic sites will assist in determining local rates of motion. Strategies for discriminating the various components of subsidence in this large delta include episodic GPS on monuments and borehole casing penetrating to various depths and supporting InSAR analysis and geological data. Coastal flooding hazards will be evaluated using digital elevation models derived from real-time kinematic GPS, airborne LiDAR surveys, and synthetic aperture radar flood mapping.
The role of sustained observations and data co-management in Arctic Ocean governance
NASA Astrophysics Data System (ADS)
Eicken, H.; Lee, O. A.; Rupp, S. T.; Trainor, S.; Walsh, J. E.
2015-12-01
Rapid environmental change, a rise in maritime activities and resource development, and increasing engagement by non-Arctic nations are key to major shifts underway in Arctic social-environmental systems (SES). These shifts are triggering responses by policy makers, regulators and a range of other actors in the Arctic Ocean region. Arctic science can play an important role in informing such responses, in particular by (i) providing data from sustained observations to serve as indicators of change and major transitions and to inform regulatory and policy response; (ii) identifying linkages across subsystems of Arctic SES and across regions; (iii) providing predictions or scenarios of future states of Arctic SES; and (iv) informing adaptation action in response to rapid change. Policy responses to a changing Arctic are taking a multi-faceted approach by advancing international agreements through the Arctic Council (e.g., Search and Rescue Agreement), global forums (e.g., IMO Polar Code) or private sector instruments (e.g., ISO code for offshore structures). At the regional level, co-management of marine living resources involving local, indigenous stakeholders has proven effective. All of these approaches rely on scientific data and information for planning and decision-making. Examples from the Pacific Arctic sector illustrate how such relevant data is currently collected through a multitude of different government agencies, universities, and private entities. Its effective use in informing policy, planning and emergency response requires coordinated, sustained acquisition, common standards or best practices, and data sharing agreements - best achieved through data co-management approaches. For projections and scenarios of future states of Arctic SES, knowledge co-production that involves all relevant stakeholders and specifically addresses major sources of uncertainty is of particular relevance in an international context.
Cloud Response to Arctic Sea Ice Loss and Implications for Feedbacks in the CESM1 Climate Model
NASA Astrophysics Data System (ADS)
Morrison, A.; Kay, J. E.; Chepfer, H.; Guzman, R.; Bonazzola, M.
2017-12-01
Clouds have the potential to accelerate or slow the rate of Arctic sea ice loss through their radiative influence on the surface. Cloud feedbacks can therefore play into Arctic warming as clouds respond to changes in sea ice cover. As the Arctic moves toward an ice-free state, understanding how cloud - sea ice relationships change in response to sea ice loss is critical for predicting the future climate trajectory. From satellite observations we know the effect of present-day sea ice cover on clouds, but how will clouds respond to sea ice loss as the Arctic transitions to a seasonally open water state? In this study we use a lidar simulator to first evaluate cloud - sea ice relationships in the Community Earth System Model (CESM1) against present-day observations (2006-2015). In the current climate, the cloud response to sea ice is well-represented in CESM1: we see no summer cloud response to changes in sea ice cover, but more fall clouds over open water than over sea ice. Since CESM1 is credible for the current Arctic climate, we next assess if our process-based understanding of Arctic cloud feedbacks related to sea ice loss is relevant for understanding future Arctic clouds. In the future Arctic, summer cloud structure continues to be insensitive to surface conditions. As the Arctic warms in the fall, however, the boundary layer deepens and cloud fraction increases over open ocean during each consecutive decade from 2020 - 2100. This study will also explore seasonal changes in cloud properties such as opacity and liquid water path. Results thus far suggest that a positive fall cloud - sea ice feedback exists in the present-day and future Arctic climate.
Bring, Arvid; Destouni, Georgia
2011-06-01
Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes.
Baggio, Jacopo A; BurnSilver, Shauna B; Arenas, Alex; Magdanz, James S; Kofinas, Gary P; De Domenico, Manlio
2016-11-29
Network analysis provides a powerful tool to analyze complex influences of social and ecological structures on community and household dynamics. Most network studies of social-ecological systems use simple, undirected, unweighted networks. We analyze multiplex, directed, and weighted networks of subsistence food flows collected in three small indigenous communities in Arctic Alaska potentially facing substantial economic and ecological changes. Our analysis of plausible future scenarios suggests that changes to social relations and key households have greater effects on community robustness than changes to specific wild food resources.
Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling
2015-09-30
ababanin.com/ LONG-TERM GOALS The long-term goals of the present project are two: wind/wave climatology for the Arctic Seas, and their current...OBJECTIVES The wind/wave climatology for the Arctic Seas will be developed based on altimeter observations. It will have a major scientific and...applied significance as presently there is no reference climatology for this region of the ocean available. The new versions of wave models for the
European Plate Observing System - the Arctic dimension and the Nordic collaboration
NASA Astrophysics Data System (ADS)
Atakan, K.; Heikkinen, P.; Juhlin, C.; Thybo, H.; Vogfjord, K.
2012-04-01
Within the framework of the EPOS project, Nordic interests are significant, not only in fundamental scientific issues related to geodynamic processes, but also in terms of the application of these to several central problems such as, hydrocarbon exploration and production including the related environmental issues, CO2 storage (or other toxic waste repositories) in geological formations, geothermal energy (natural and hot-dry rock) utilization and mining, geohazards (earthquakes, landslides and volcanic eruptions) and their consequences to the society. The Arctic dimension including Fennoscandia, the northern North Atlantic and the Arctic Sea constitutes an area of considerable geographical extent within the European plate. The region also contains a significant part of the European plate boundary submerged under the North Atlantic and the Arctic sea, where geodynamic processes such as rifting and fracturing are especially energetic. In particular, where the plate boundary is exposed on land in the South Iceland seismic zone, large earthquakes are frequently observed including two Mw6.5 events in 2000 and one Mw6.3 event in 2008. But, seismic hazard is not confined to the plate boundary. Significant intra-plate earthquakes have recently occurred in the region (Mw6.1 in the continental shelf near Spitsbergen in 2008, Mw5.0 in Southern Sweden in 2008, Mw5.2 near Kaliningrad in 2004) showing that there is considerable seismic hazard in the region. In addition, submarine landslide earthquakes are always of concern due to possible tsunami generation. Volcanic activity occurs on the plate boundary and is particularly strong in the rift zones of Iceland, where on average two volcanic eruptions occur per decade. subaerial volcanic eruptions also occur on Jan Mayen island, farther north on the Mid Atlantic ridge. Together, the Danish seismic network in Greenland, the Norwegian seismic arrays and national network traversing the length of Norway and the Icelandic seismic and strong motion networks monitor seismic activity and hazard in the North Atlantic. Vigorous volcanic activity along the plate boundary in Iceland and associated hazards are monitored by the Icelandic, seismic, geodetic, meteorological and hydrological networks. Recent eruptions, like the 2010 Eyjafjallajökull eruptions have demonstrated the far-reaching hazard to aviation caused by volcanic eruptions in Iceland. The high-sensitivity seismic and geodetic networks of Sweden monitor isostatic rebound of Fennoscandia. In this context, the varied Nordic monitoring networks provide a significant contribution to the main objectives of EPOS. There are already existing links with the other ESFRI initiatives where strong Nordic participation is established, such as SIOS and EMSO. As such EPOS provides the necessary platform to collaborate and develop an important Nordic dimension in the European Research Area. There is a long tradition of collaboration at the governmental level between the Nordic countries, Norway, Sweden, Denmark, Finland and Iceland. Within the fields of research and education, the Nordic Ministries have a dedicated program, where research networks are being promoted. Recently a Nordic collaborative network in seismology, "NordQuake" (coordinated by Denmark) was established within this program. This collaboration which is now formalized and supported by the Nordic Ministries is based on a cooperation which was initiated more than 40 years ago, where annual Nordic Seminars in seismology (previously on detection seismology) was the central element. EPOS Nordic collaboration, building upon a long lasting history, has a significant potential for synergy effects in the region and therefore represents an important dimension within EPOS. Nordic EPOS Team: Lars Ottemöller (UiB), Mathilde B. Sørensen (UiB), Louise W. Bjerrum (UiB), Conrad Lindholm (Norsar), Halfdan Kjerulf (SK), Amir Kaynia (NGI), Valerie Maupin (UiO), Tor Langeland (CMR), Joerg Ebbing (NGU), John Dehls (NGU), Øystein Nordgulen (NGU), Roland Roberts (UU), Reynir Bødvarsson (UU), Ólafur Guðmundsson (UU), Steinunn Jacobsdottir (IMO), Freysteinn Sigmundsson (IES), Benedikt Halldórsson (EERC), Gudmundur Valsson (LMI), Irina Artemieva (KU), Peter Voss (GEUS), Trine Dahl-Jensen (GEUS), Tine B. Larsen (GEUS), Jens Jørgen Møller (GEUS), Martin Hansen (GEUS), Jørgen Tulstrup (GEUS), Johnny Fredericia (GEUS), Niels Andersen (DTU-Space), Jurgen Matzka (DTU-Space), Shfaqat Abbas Khan (DTU-Space), Niels Balling (AU), Markku Poutanen (FGI), Elena Kozlovskaya (SGO).
Detecting regional patterns of changing CO2 flux in Alaska
Parazoo, Nicholas C.; Wofsy, Steven C.; Koven, Charles D.; Sweeney, Colm; Lawrence, David M.; Lindaas, Jakob; Chang, Rachel Y.-W.; Miller, Charles E.
2016-01-01
With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO2 with climatically forced CO2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage and near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO2 observing network is unlikely to detect potentially large CO2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. Although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost. PMID:27354511
Detecting regional patterns of changing CO 2 flux in Alaska
Parazoo, Nicholas C.; Commane, Roisin; Wofsy, Steven C.; ...
2016-06-27
With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO 2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO 2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO 2 with climatically forced CO 2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage andmore » near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO 2 observing network is unlikely to detect potentially large CO 2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. In conclusion, although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost.« less
2010-09-01
involve Indian tribal governments, such as certain Arctic indigenous communities in Alaska , in decisions that affect them.14 Finally, since the Arctic...primarily as vehicles for distributing land and monetary benefits to Alaska Natives to provide a fair and just settlement of aboriginal land claims in... Alaska Native stakeholders, as well as private or nonprofit organizations representing Arctic interests. These observations are not
A Antarctic Magnetometer Chain Along the Cusp Latitude: Preliminary Results
NASA Astrophysics Data System (ADS)
Liu, Y.
2016-12-01
A magnetometer chain from Zhongshan Station to Dome-A in Antarctica has been established since February 2009, consisting in five fluxgate magnetometers, with one regular magnetometer at Zhongshan Station and four low power magnetometers along the cusp latitude in the southern hemisphere, over a distance of 1260 Km. It is one part of the magnetometer network in Antarctic continent, filling the void area for magnetic observation over east-southern Antarctica, greatly enlarging the coverage of the Zhongshan Station. It is also magnetically conjugated with Svalbard region in the Arctic, with a leg extending to DNB in east coast Greenland. Conjunction observation among these magnetometers could provide excellent tracing of series of the typical space physical phenomena such as FTE, TCV, MIE, ULF waves, etc.
Suppressed midlatitude summer atmospheric warming by Arctic sea ice loss during 1979-2012
NASA Astrophysics Data System (ADS)
Wu, Qigang; Cheng, Luyao; Chan, Duo; Yao, Yonghong; Hu, Haibo; Yao, Ying
2016-03-01
Since the 1980s, rapid Arctic warming, sea ice decline, and weakening summer circulation have coincided with an increasing number of extreme heat waves and other destructive weather events in the Northern Hemisphere (NH) midlatitudes in summer. Recent papers disagree about whether such high-impact events are related to Arctic warming and/or ice loss. Here we use atmospheric model ensemble simulations to attribute effects of sea ice loss and other factors on observed summer climate trends during 1979-2012. The ongoing greenhouse gas buildup and resulting sea surface temperature warming outside the Arctic explains nearly all land warming and a significant portion of observed weakening zonal winds in the NH midlatitudes. However, sea ice loss has induced a negative Arctic Oscillation(AO)-type circulation with significant summer surface and tropospheric cooling trends over large portions of the NH midlatitudes, which reduce the warming and might reduce the probability of regional severe hot summers.
NASA Astrophysics Data System (ADS)
Shen, Yuan; Benner, Ronald; Kaiser, Karl; Fichot, Cédric G.; Whitledge, Terry E.
2018-02-01
Rapid environmental changes in the Arctic Ocean affect plankton productivity and the bioavailability of dissolved organic matter (DOM) that supports microbial food webs. We report concentrations of dissolved organic carbon (DOC) and yields of amino acids (indicators of labile DOM) in surface waters across major Arctic margins. Concentrations of DOC and bioavailability of DOM showed large pan-Arctic variability that corresponded to varying hydrological conditions and ecosystem productivity, respectively. Widespread hot spots of labile DOM were observed over productive inflow shelves (Chukchi and Barents Seas), in contrast to oligotrophic interior margins (Kara, Laptev, East Siberian, and Beaufort Seas). Amino acid yields in outflow gateways (Canadian Archipelago and Baffin Bay) indicated the prevalence of semilabile DOM in sea ice covered regions and sporadic production of labile DOM in ice-free waters. Comparing these observations with surface circulation patterns indicated varying shelf subsidies of bioavailable DOM to Arctic deep basins.
Aerosol-driven increase in Arctic sea ice over the middle of the twentieth century
NASA Astrophysics Data System (ADS)
Gagné, Marie-Ève; Fyfe, John C.; Gillett, Nathan P.; Polyakov, Igor V.; Flato, Gregory M.
2017-07-01
Updated observational data sets without climatological infilling show that there was an increase in sea ice concentration in the eastern Arctic between 1950 and 1975, contrary to earlier climatology infilled observational data sets that show weak interannual variations during that time period. We here present climate model simulations showing that this observed sea ice concentration increase was primarily a consequence of cooling induced by increasing anthropogenic aerosols and natural forcing. Indeed, sulphur dioxide emissions, which lead to the formation of sulphate aerosols, peaked around 1980 causing a sharp increase in the burden of sulphate between the 1950s and 1970s; but since 1980, the burden has dropped. Our climate model simulations show that the cooling contribution of aerosols offset the warming effect of increasing greenhouse gases over the midtwentieth century resulting in the expansion of the Arctic sea ice cover. These results challenge the perception that Arctic sea ice extent was unperturbed by human influence until the 1970s, suggesting instead that it exhibited earlier forced multidecadal variations, with implications for our understanding of impacts and adaptation in human and natural Arctic systems.
Active molecular iodine photochemistry in the Arctic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raso, Angela R. W.; Custard, Kyle D.; May, Nathaniel W.
During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I 2) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I2 and snowpack iodide (I-) measurements, which were conducted near Utqiagvik, AK, in Februarymore » 2014. Using chemical ionization mass spectrometry, I2 was observed in the atmosphere at mole ratios of 0.3–1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I-measurements showed enrichments of up to ~1,900 times above the seawater ratio of I-/Na+, consistent with iodine activation and recycling. Modeling shows that observed I 2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I 2 is likely a dominant source of iodine atoms in the Arctic.« less
Factors driving mercury variability in the Arctic atmosphere and ocean over the past 30 years
NASA Astrophysics Data System (ADS)
Fisher, Jenny A.; Jacob, Daniel J.; Soerensen, Anne L.; Amos, Helen M.; Corbitt, Elizabeth S.; Streets, David G.; Wang, Qiaoqiao; Yantosca, Robert M.; Sunderland, Elsie M.
2013-12-01
observations at Arctic sites (Alert and Zeppelin) show large interannual variability (IAV) in atmospheric mercury (Hg), implying a strong sensitivity of Hg to environmental factors and potentially to climate change. We use the GEOS-Chem global biogeochemical Hg model to interpret these observations and identify the principal drivers of spring and summer IAV in the Arctic atmosphere and surface ocean from 1979-2008. The model has moderate skill in simulating the observed atmospheric IAV at the two sites (r 0.4) and successfully reproduces a long-term shift at Alert in the timing of the spring minimum from May to April (r = 0.7). Principal component analysis indicates that much of the IAV in the model can be explained by a single climate mode with high temperatures, low sea ice fraction, low cloudiness, and shallow boundary layer. This mode drives decreased bromine-driven deposition in spring and increased ocean evasion in summer. In the Arctic surface ocean, we find that the IAV for modeled total Hg is dominated by the meltwater flux of Hg previously deposited to sea ice, which is largest in years with high solar radiation (clear skies) and cold spring air temperature. Climate change in the Arctic is projected to result in increased cloudiness and strong warming in spring, which may thus lead to decreased Hg inputs to the Arctic Ocean. The effect of climate change on Hg discharges from Arctic rivers remains a major source of uncertainty.
NASA Astrophysics Data System (ADS)
Kirpes, R.; Bondy, A. L.; Bonanno, D.; Moffet, R.; Wang, B.; Laskin, A.; Ault, A. P.; Pratt, K.
2016-12-01
The Arctic region is undergoing rapid transformations and loss of sea ice due to climate change. With increased sea ice fracturing resulting in greater open ocean surface, winter emissions of sea spray aerosol (SSA) are expected to be increasing. Additionally, during the winter-spring transition, Arctic haze contributes to the Arctic aerosol budget. The magnitude of aerosol climate effects depends on the aerosol composition and mixing state (distribution of chemical species within and between particles). However, few studies of aerosol chemistry have been conducted in the winter Arctic, despite it being a time when aerosol impacts on clouds are expected to be significant. To study aerosol composition and mixing state in the winter Arctic, atmospheric particles were collected near Barrow, Alaska in January and February 2014 for off-line individual particle chemical analysis. SSA was the most prevalent particle type observed. Sulfate and nitrate were observed to be internally mixed with SSA and organic aerosol. Greater than 98% of observed SSA particles contained organic content, with 15-35% organic volume fraction on average for individual particles. The SSA organic compounds consisted of carbohydrates, lipids, and fatty acids found in the seawater surface microlayer. SSA was determined to be emitted from open leads, while transported sulfate and nitrate contributed to aging of SSA and organic aerosol. Determining the aerosol chemical composition and mixing state in the winter Arctic will further the understanding of how individual aerosol particles impact climate through radiative effects and cloud formation.
Active molecular iodine photochemistry in the Arctic
Raso, Angela R. W.; Custard, Kyle D.; May, Nathaniel W.; ...
2017-09-05
During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I 2) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I 2 and snowpack iodide (I -) measurements, which were conducted near Utqiagvik, AK,more » in February 2014. Using chemical ionization mass spectrometry, I 2 was observed in the atmosphere at mole ratios of 0.3–1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I-measurements showed enrichments of up to ~1,900 times above the seawater ratio of I-/Na +, consistent with iodine activation and recycling. Modeling shows that observed I 2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. Furthermore, these results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I 2 is likely a dominant source of iodine atoms in the Arctic.« less
Estimation of Melt Ponds over Arctic Sea Ice using MODIS Surface Reflectance Data
NASA Astrophysics Data System (ADS)
Ding, Y.; Cheng, X.; Liu, J.
2017-12-01
Melt ponds over Arctic sea ice is one of the main factors affecting variability of surface albedo, increasing absorption of solar radiation and further melting of snow and ice. In recent years, a large number of melt ponds have been observed during the melt season in Arctic. Moreover, some studies have suggested that late spring to mid summer melt ponds information promises to improve the prediction skill of seasonal Arctic sea ice minimum. In the study, we extract the melt pond fraction over Arctic sea ice since 2000 using three bands MODIS weekly surface reflectance data by considering the difference of spectral reflectance in ponds, ice and open water. The preliminary comparison shows our derived Arctic-wide melt ponds are in good agreement with that derived by the University of Hamburg, especially at the pond distribution. We analyze seasonal evolution, interannual variability and trend of the melt ponds, as well as the changes of onset and re-freezing. The melt pond fraction shows an asymmetrical growth and decay pattern. The observed melt ponds fraction is almost within 25% in early May and increases rapidly in June and July with a high fraction of more than 40% in the east of Greenland and Beaufort Sea. A significant increasing trend in the melt pond fraction is observed for the period of 2000-2017. The relationship between melt pond fraction and sea ice extent will be also discussed. Key Words: melt ponds, sea ice, Arctic
Active molecular iodine photochemistry in the Arctic
NASA Astrophysics Data System (ADS)
Raso, Angela R. W.; Custard, Kyle D.; May, Nathaniel W.; Tanner, David; Newburn, Matt K.; Walker, Lawrence; Moore, Ronald J.; Huey, L. G.; Alexander, Liz; Shepson, Paul B.; Pratt, Kerri A.
2017-09-01
During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I2) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I2 and snowpack iodide (I-) measurements, which were conducted near Utqiaġvik, AK, in February 2014. Using chemical ionization mass spectrometry, I2 was observed in the atmosphere at mole ratios of 0.3-1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I- measurements showed enrichments of up to ˜1,900 times above the seawater ratio of I-/Na+, consistent with iodine activation and recycling. Modeling shows that observed I2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I2 is likely a dominant source of iodine atoms in the Arctic.
Active molecular iodine photochemistry in the Arctic.
Raso, Angela R W; Custard, Kyle D; May, Nathaniel W; Tanner, David; Newburn, Matt K; Walker, Lawrence; Moore, Ronald J; Huey, L G; Alexander, Liz; Shepson, Paul B; Pratt, Kerri A
2017-09-19
During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I 2 ) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I 2 and snowpack iodide (I - ) measurements, which were conducted near Utqiaġvik, AK, in February 2014. Using chemical ionization mass spectrometry, I 2 was observed in the atmosphere at mole ratios of 0.3-1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I - measurements showed enrichments of up to ∼1,900 times above the seawater ratio of I - /Na + , consistent with iodine activation and recycling. Modeling shows that observed I 2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I 2 is likely a dominant source of iodine atoms in the Arctic.
Climatology and Characteristics of Aerosol Optical Properties in the Arctic
NASA Astrophysics Data System (ADS)
Schmeisser, Lauren; Ogren, John; Backman, John; Asmi, Eija; Andrews, Elisabeth; Jefferson, Anne; Bergin, Michael; Tunved, Peter; Sharma, Sangeeta; Starkweather, Sandra
2016-04-01
Within the Arctic, climate forcers like atmospheric aerosols are important contributors to the observed warming and environmental changes in the region. Quantifying the forcing by aerosols in the Arctic is especially difficult, given short aerosol lifetimes, annual variability in illumination and surface albedo, stratified atmospheric conditions, complex feedbacks, and long-range aerosol transport. However, in-situ surface measurements of Arctic aerosol optical properties can be used to constrain variability of light scattering and absorption, identify potential particle sources, and help evaluate the resulting forcing. Data from six WMO Global Atmosphere Watch stations are presented: Alert, Canada (ALT); Barrow, Alaska (BRW); Pallas, Finland (PAL); Summit, Greenland (SUM); Tiksi, Russia (TIK); and Zeppelin Mountain, Norway (ZEP). These sites contribute to the International Arctic System for Observing the Atmosphere (IASOA), which facilitates Arctic-wide data collection and analysis. Climatologies of aerosol optical properties from each station show differences in magnitude and variability of observed parameters. For example, most stations (ALT, BRW, SUM, TIK, ZEP) experience maximum scattering in winter/spring, while PAL exhibits maximum scattering in the summer. The observed range in scattering across these sites is large (almost an order of magnitude) - SUM has the lowest annual median scattering at 0.82 Mm-1 while BRW has the highest at 6.9 Mm-1. A closer look at systematic variability between optical properties at each station, as well as site back trajectories, suggest differences in aerosol processes, sources and transport. The development of consistent climatologies and additional analyses like the ones presented here can help provide a better understanding of trans-Arctic aerosol variability, which can be an asset for improving aerosol models in this unique and remote region.
Assessment of Arctic and Antarctic Sea Ice Predictability in CMIP5 Decadal Hindcasts
NASA Technical Reports Server (NTRS)
Yang, Chao-Yuan; Liu, Jiping (Inventor); Hu, Yongyun; Horton, Radley M.; Chen, Liqi; Cheng, Xiao
2016-01-01
This paper examines the ability of coupled global climate models to predict decadal variability of Arctic and Antarctic sea ice. We analyze decadal hindcasts/predictions of 11 Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Decadal hindcasts exhibit a large multimodel spread in the simulated sea ice extent, with some models deviating significantly from the observations as the predicted ice extent quickly drifts away from the initial constraint. The anomaly correlation analysis between the decadal hindcast and observed sea ice suggests that in the Arctic, for most models, the areas showing significant predictive skill become broader associated with increasing lead times. This area expansion is largely because nearly all the models are capable of predicting the observed decreasing Arctic sea ice cover. Sea ice extent in the North Pacific has better predictive skill than that in the North Atlantic (particularly at a lead time of 3-7 years), but there is a reemerging predictive skill in the North Atlantic at a lead time of 6-8 years. In contrast to the Arctic, Antarctic sea ice decadal hindcasts do not show broad predictive skill at any timescales, and there is no obvious improvement linking the areal extent of significant predictive skill to lead time increase. This might be because nearly all the models predict a retreating Antarctic sea ice cover, opposite to the observations. For the Arctic, the predictive skill of the multi-model ensemble mean outperforms most models and the persistence prediction at longer timescales, which is not the case for the Antarctic. Overall, for the Arctic, initialized decadal hindcasts show improved predictive skill compared to uninitialized simulations, although this improvement is not present in the Antarctic.
NASA Astrophysics Data System (ADS)
Kikuchi, T.; Itoh, M.; Nishino, S.
2016-02-01
Changes of the Arctic Ocean environment are well known as one of the most remarkable evidences of global warming, attracting social and public attentions as well as scientists'. However, to illustrate on-going changes and predict future condition of the Arctic marine environment, we still do not have enough knowledge of Arctic sea ice and marine environment. In particular, lack of observation data in winter, e.g., under sea ice, still remains a key issue for precise understanding of seasonal cycle on oceanographic condition in the Arctic Ocean. Mooring-based observation is one of the most useful methods to collect year-long data in the Arctic Ocean. We have been conducting long-term monitoring using mooring system in the Pacific sector of the Arctic Ocean. Volume, heat, and freshwater fluxes through Barrow Canyon where is a major conduit of Pacific-origin water-masses into the Canada Basin have been observed since 2000. We show from an analysis of the mooring results that volume flux through Barrow Canyon was about 60 % of Bering Strait volume flux. Averaged heat flux ranges from 0.9 to 3.07 TW, which could melt 88,000 to 300,000 km2 of 1m thick ice in the Canada Basin, which likely contributed to sea ice retreat in the Pacific sector of the Arctic Ocean. In winter, we found inter-annual variability in salinity related to coastal polynya activity in the Chukchi Sea and strong upwelling events due to easterly winds. We also initiated year-long mooring observation in the Hope Valley of the southern Chukchi Sea since 2012. Interestingly, winter oceanographic conditions in the Hope Valley are greatly different between in 2012-2013 and in 2013-2014. We speculate that differences of sea ice freeze-up and coastal polynya activity in the southern Chukchi Sea cause significant difference of winter oceanographic condition. It suggests that recent sea ice reduction in the Pacific sector of the Arctic Ocean presumably influences marine environment not only in summer but also in winter.
Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thonat, Thibaud; Saunois, Marielle; Bousquet, Philippe
Understanding the recent evolution of methane emissions in the Arctic is necessary to interpret the global methane cycle. Emissions are affected by significant uncertainties and are sensitive to climate change, leading to potential feedbacks. A polar version of the CHIMERE chemistry-transport model is used to simulate the evolution of tropospheric methane in the Arctic during 2012, including all known regional anthropogenic and natural sources, in particular freshwater emissions which are often overlooked in methane modelling. CHIMERE simulations are compared to atmospheric continuous observations at six measurement sites in the Arctic region. In winter, the Arctic is dominated by anthropogenic emissions;more » emissions from continental seepages and oceans, including from the East Siberian Arctic Shelf, can contribute significantly in more limited areas. In summer, emissions from wetland and freshwater sources dominate across the whole region. The model is able to reproduce the seasonality and synoptic variations of methane measured at the different sites. We find that all methane sources significantly affect the measurements at all stations at least at the synoptic scale, except for biomass burning. In particular, freshwater systems play a decisive part in summer, representing on average between 11 and 26 % of the simulated Arctic methane signal at the sites. This indicates the relevance of continuous observations to gain a mechanistic understanding of Arctic methane sources. Sensitivity tests reveal that the choice of the land-surface model used to prescribe wetland emissions can be critical in correctly representing methane mixing ratios. The closest agreement with the observations is reached when using the two wetland models which have emissions peaking in August–September, while all others reach their maximum in June–July. Such phasing provides an interesting constraint on wetland models which still have large uncertainties at present. Also testing different freshwater emission inventories leads to large differences in modelled methane. Attempts to include methane sinks (OH oxidation and soil uptake) reduced the model bias relative to observed atmospheric methane. Here, the study illustrates how multiple sources, having different spatiotemporal dynamics and magnitudes, jointly influence the overall Arctic methane budget, and highlights ways towards further improved assessments.« less
Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements
Thonat, Thibaud; Saunois, Marielle; Bousquet, Philippe; ...
2017-07-11
Understanding the recent evolution of methane emissions in the Arctic is necessary to interpret the global methane cycle. Emissions are affected by significant uncertainties and are sensitive to climate change, leading to potential feedbacks. A polar version of the CHIMERE chemistry-transport model is used to simulate the evolution of tropospheric methane in the Arctic during 2012, including all known regional anthropogenic and natural sources, in particular freshwater emissions which are often overlooked in methane modelling. CHIMERE simulations are compared to atmospheric continuous observations at six measurement sites in the Arctic region. In winter, the Arctic is dominated by anthropogenic emissions;more » emissions from continental seepages and oceans, including from the East Siberian Arctic Shelf, can contribute significantly in more limited areas. In summer, emissions from wetland and freshwater sources dominate across the whole region. The model is able to reproduce the seasonality and synoptic variations of methane measured at the different sites. We find that all methane sources significantly affect the measurements at all stations at least at the synoptic scale, except for biomass burning. In particular, freshwater systems play a decisive part in summer, representing on average between 11 and 26 % of the simulated Arctic methane signal at the sites. This indicates the relevance of continuous observations to gain a mechanistic understanding of Arctic methane sources. Sensitivity tests reveal that the choice of the land-surface model used to prescribe wetland emissions can be critical in correctly representing methane mixing ratios. The closest agreement with the observations is reached when using the two wetland models which have emissions peaking in August–September, while all others reach their maximum in June–July. Such phasing provides an interesting constraint on wetland models which still have large uncertainties at present. Also testing different freshwater emission inventories leads to large differences in modelled methane. Attempts to include methane sinks (OH oxidation and soil uptake) reduced the model bias relative to observed atmospheric methane. Here, the study illustrates how multiple sources, having different spatiotemporal dynamics and magnitudes, jointly influence the overall Arctic methane budget, and highlights ways towards further improved assessments.« less
Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements
NASA Astrophysics Data System (ADS)
Thonat, Thibaud; Saunois, Marielle; Bousquet, Philippe; Pison, Isabelle; Tan, Zeli; Zhuang, Qianlai; Crill, Patrick M.; Thornton, Brett F.; Bastviken, David; Dlugokencky, Ed J.; Zimov, Nikita; Laurila, Tuomas; Hatakka, Juha; Hermansen, Ove; Worthy, Doug E. J.
2017-07-01
Understanding the recent evolution of methane emissions in the Arctic is necessary to interpret the global methane cycle. Emissions are affected by significant uncertainties and are sensitive to climate change, leading to potential feedbacks. A polar version of the CHIMERE chemistry-transport model is used to simulate the evolution of tropospheric methane in the Arctic during 2012, including all known regional anthropogenic and natural sources, in particular freshwater emissions which are often overlooked in methane modelling. CHIMERE simulations are compared to atmospheric continuous observations at six measurement sites in the Arctic region. In winter, the Arctic is dominated by anthropogenic emissions; emissions from continental seepages and oceans, including from the East Siberian Arctic Shelf, can contribute significantly in more limited areas. In summer, emissions from wetland and freshwater sources dominate across the whole region. The model is able to reproduce the seasonality and synoptic variations of methane measured at the different sites. We find that all methane sources significantly affect the measurements at all stations at least at the synoptic scale, except for biomass burning. In particular, freshwater systems play a decisive part in summer, representing on average between 11 and 26 % of the simulated Arctic methane signal at the sites. This indicates the relevance of continuous observations to gain a mechanistic understanding of Arctic methane sources. Sensitivity tests reveal that the choice of the land-surface model used to prescribe wetland emissions can be critical in correctly representing methane mixing ratios. The closest agreement with the observations is reached when using the two wetland models which have emissions peaking in August-September, while all others reach their maximum in June-July. Such phasing provides an interesting constraint on wetland models which still have large uncertainties at present. Also testing different freshwater emission inventories leads to large differences in modelled methane. Attempts to include methane sinks (OH oxidation and soil uptake) reduced the model bias relative to observed atmospheric methane. The study illustrates how multiple sources, having different spatiotemporal dynamics and magnitudes, jointly influence the overall Arctic methane budget, and highlights ways towards further improved assessments.
Arctic Warming Signals from Satellite Observations
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.
2005-01-01
Global warming signals are expected to be amplified in the Arctic primarily because of ice-albedo feedback associated with the high reflectivity of ice and snow that blankets much of the region. The Arctic had been a poorly explored territory basically because of its general inaccessibility on account of extremely harsh weather conditions and the dominant presence of thick perennial ice in the region. The advent of satellite remote sensing systems since the 1960s, however, enabled the acquisition of synoptic data that depict in good spatial detail the temporal changes of many Arctic surface parameters. Among the surface parameters that have been studied using space based systems are surface temperature, sea ice concentration, snow cover, surface albedo and phytoplankton concentration. Associated atmospheric parameters, such as cloud cover, temperature profile, ozone concentration, and aerosol have also been derived. Recent observational and phenomenological studies have indeed revealed progressively changing conditions in the Arctic during the last few decades (e g , Walsh et al. 1996; Serreze et al 2000; Comiso and Parkinson 2004). The changes included declines in the extent and area of surfaces covered by sea ice and snow, increases in melt area over the Greenland ice sheets, thawing of the permafrost, warming in the troposphere, and retreat of the glaciers. These observations are consistent with the observed global warming that has been associated with the increasing concentration of greenhouse gases in the atmosphere (Karl and Trenberth 2003) and confirmed by modeling studies (Holland and Bitz, 2003). The Arctic system, however, is still not well understood complicated by a largely fluctuating wind circulation and atmospheric conditions (Proshutinsky and Johnson 1997) and controlled by what is now known as the Arctic Oscillation (AO) which provides a measure of the strength of atmospheric activities in the region (Thompson and Wallace 1998). Meanwhile, the observed Arctic conditions since the 1970s have been shown to exhibit a linear behavior that directly contradicts what has been expected from the A0 (Overland, 2005). The decade of the 1990s has been regarded as the warmest decade in the last century and current data indicates that the 2000s may be even a warmer decade than the 1990s further supporting the linear variability. In this paper, we use satellite data to gain insights into the warming Arctic and how the abnormally warm conditions during the last few years are reflected in the region.
The Arctic Summer Cloud-Ocean Study (ASCOS): overview and experimental design
NASA Astrophysics Data System (ADS)
Tjernström, M.; Leck, C.; Birch, C. E.; Brooks, B. J.; Brooks, I. M.; Bäcklin, L.; Chang, R. Y.-W.; Granath, E.; Graus, M.; Hansel, A.; Heintzenberg, J.; Held, A.; Hind, A.; de la Rosa, S.; Johnston, P.; Knulst, J.; de Leeuw, G.; Di Liberto, L.; Martin, M.; Matrai, P. A.; Mauritsen, T.; Müller, M.; Norris, S. J.; Orellana, M. V.; Orsini, D. A.; Paatero, J.; Persson, P. O. G.; Gao, Q.; Rauschenberg, C.; Ristovski, Z.; Sedlar, J.; Shupe, M. D.; Sierau, B.; Sirevaag, A.; Sjogren, S.; Stetzer, O.; Swietlicki, E.; Szczodrak, M.; Vaattovaara, P.; Wahlberg, N.; Westberg, M.; Wheeler, C. R.
2013-05-01
The climate in the Arctic is changing faster than anywhere else on Earth. Poorly understood feedback processes relating to Arctic clouds and aerosol-cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in-situ in this difficult to reach region with logistically demanding environmental conditions. The Arctic Summer Cloud-Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007-2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait; two in open water and two in the marginal ice zone. After traversing the pack-ice northward an ice camp was set up on 12 August at 87°21' N 01°29' W and remained in operation through 1 September, drifting with the ice. During this time extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggest the possibility of primary marine organically derived cloud condensation nuclei in Arctic stratocumulus clouds. Direct observations of surface fluxes of aerosols could, however, not explain observed variability in aerosol concentrations and the balance between local and remote aerosols sources remains open. Lack of CCN was at times a controlling factor in low-level cloud formation, and hence for the impact of clouds on the surface energy budget. ASCOS provided detailed measurements of the surface energy balance from late summer melt into the initial autumn freeze-up, and documented the effects of clouds and storms on the surface energy balance during this transition. In addition to such process-level studies, the unique, independent ASCOS data set can and is being used for validation of satellite retrievals, operational models, and reanalysis data sets.
The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design
NASA Astrophysics Data System (ADS)
Tjernström, M.; Leck, C.; Birch, C. E.; Bottenheim, J. W.; Brooks, B. J.; Brooks, I. M.; Bäcklin, L.; Chang, R. Y.-W.; de Leeuw, G.; Di Liberto, L.; de la Rosa, S.; Granath, E.; Graus, M.; Hansel, A.; Heintzenberg, J.; Held, A.; Hind, A.; Johnston, P.; Knulst, J.; Martin, M.; Matrai, P. A.; Mauritsen, T.; Müller, M.; Norris, S. J.; Orellana, M. V.; Orsini, D. A.; Paatero, J.; Persson, P. O. G.; Gao, Q.; Rauschenberg, C.; Ristovski, Z.; Sedlar, J.; Shupe, M. D.; Sierau, B.; Sirevaag, A.; Sjogren, S.; Stetzer, O.; Swietlicki, E.; Szczodrak, M.; Vaattovaara, P.; Wahlberg, N.; Westberg, M.; Wheeler, C. R.
2014-03-01
The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol-cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in situ in this difficult-to-reach region with logistically demanding environmental conditions. The Arctic Summer Cloud Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007-2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait: two in open water and two in the marginal ice zone. After traversing the pack ice northward, an ice camp was set up on 12 August at 87°21' N, 01°29' W and remained in operation through 1 September, drifting with the ice. During this time, extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first-ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggests the possibility of primary marine organically derived cloud condensation nuclei in Arctic stratocumulus clouds. Direct observations of surface fluxes of aerosols could, however, not explain observed variability in aerosol concentrations, and the balance between local and remote aerosols sources remains open. Lack of cloud condensation nuclei (CCN) was at times a controlling factor in low-level cloud formation, and hence for the impact of clouds on the surface energy budget. ASCOS provided detailed measurements of the surface energy balance from late summer melt into the initial autumn freeze-up, and documented the effects of clouds and storms on the surface energy balance during this transition. In addition to such process-level studies, the unique, independent ASCOS data set can and is being used for validation of satellite retrievals, operational models, and reanalysis data sets.
Ecotoxicological risk assessment of environmental pollutants in the Arctic.
Brunström, B; Halldin, K
2000-03-15
Concentrations of such persistent organic pollutants (POPs) as polychlorinated biphenyls (PCBs) are high in certain Arctic animal species. The polar bear, Arctic fox, and glaucous gull may be exposed to PCB levels above lowest-observed-adverse-effect-level (LOAEL) values for adverse effects on reproduction in mammals and birds. However, the dioxin-like congeners seem to be major contributors to the reproductive effects of PCBs and the relative concentrations of these congeners are low in polar bears. Temporal trends for POPs in Arctic wildlife and the sensitivities of Arctic species to these compounds determine the risk for future adverse health effects.
Toward a Tighter Coupling between Models and Observations of Arctic Energy Balance
NASA Astrophysics Data System (ADS)
L'Ecuyer, T. S.
2016-12-01
The Arctic climate is changing more rapidly than almost anywhere else on Earth owing to a number of unique feedbacks that locally amplify the effects of increased greenhouse gas concentrations. While the basic theory behind these feedback mechanisms has been known for a long time, current climate models still struggle to capture observed rates of sea ice decline and ice sheet melt. This may be explained, at least partially, by a lack of observational constraints on cloud and precipitation processes owing to the challenges of making sustained, high quality atmospheric measurements in this inhospitable region. This presentation will introduce a new multi-satellite, multi-model combined Arctic dataset for probing the state of the Arctic climate and documenting and improving prediction models. Recent satellite-based reconstructions of the Arctic energy budget and its annual cycle contained within this dataset will used to demonstrate that many climate models exhibit significant biases in several key energy flows in the region. These biases, in turn, lead to discrepancies in both the magnitude and seasonality of the implied heat transport into the Arctic from lower latitudes. The potential impacts of these biases on the surface mass balance of the Greenland Ice Sheet will be explored. New estimates of downwelling radiative fluxes that explicitly account for the effects of super-cooled liquid water observed by new active satellite sensors will be used to drive a regional ice sheet model to assess the sensitivity of ice sheet dynamical processes to uncertainties in surface radiation balance.
NASA Technical Reports Server (NTRS)
Johnson, Mark; Proshuntinsky, Andrew; Aksenov, Yevgeny; Nguyen, An T.; Lindsay, Ron; Haas, Christian; Zhang, Jinlun; Diansky, Nikolay; Kwok, Ron; Maslowski, Wieslaw;
2012-01-01
Six Arctic Ocean Model Intercomparison Project model simulations are compared with estimates of sea ice thickness derived from pan-Arctic satellite freeboard measurements (2004-2008); airborne electromagnetic measurements (2001-2009); ice draft data from moored instruments in Fram Strait, the Greenland Sea, and the Beaufort Sea (1992-2008) and from submarines (1975-2000); and drill hole data from the Arctic basin, Laptev, and East Siberian marginal seas (1982-1986) and coastal stations (1998-2009). Despite an assessment of six models that differ in numerical methods, resolution, domain, forcing, and boundary conditions, the models generally overestimate the thickness of measured ice thinner than approximately 2 mand underestimate the thickness of ice measured thicker than about approximately 2m. In the regions of flat immobile landfast ice (shallow Siberian Seas with depths less than 25-30 m), the models generally overestimate both the total observed sea ice thickness and rates of September and October ice growth from observations by more than 4 times and more than one standard deviation, respectively. The models do not reproduce conditions of fast ice formation and growth. Instead, the modeled fast ice is replaced with pack ice which drifts, generating ridges of increasing ice thickness, in addition to thermodynamic ice growth. Considering all observational data sets, the better correlations and smaller differences from observations are from the Estimating the Circulation and Climate of the Ocean, Phase II and Pan-Arctic Ice Ocean Modeling and Assimilation System models.
The Arctic Observing Viewer: A Web-mapping Application for U.S. Arctic Observing Activities
NASA Astrophysics Data System (ADS)
Kassin, A.; Gaylord, A. G.; Manley, W. F.; Villarreal, S.; Tweedie, C. E.; Cody, R. P.; Copenhaver, W.; Dover, M.; Score, R.; Habermann, T.
2014-12-01
Although a great deal of progress has been made with various arctic observing efforts, it can be difficult to assess such progress when so many agencies, organizations, research groups and others are making such rapid progress. To help meet the strategic needs of the U.S. SEARCH-AON program and facilitate the development of SAON and related initiatives, the Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org) has been developed. This web mapping application compiles detailed information pertaining to U.S. Arctic Observing efforts. Contributing partners include the U.S. NSF, USGS, ACADIS, ADIwg, AOOS, a2dc, AON, ARMAP, BAID, IASOA, INTERACT, and others. Over 6100 sites are currently in the AOV database and the application allows users to visualize, navigate, select, advance search, draw, print, and more. AOV is founded on principles of software and data interoperability and includes an emerging "Project" metadata standard, which uses ISO 19115-1 and compatible web services. In the last year, substantial efforts have focused on maintaining and centralizing all database information. In order to keep up with emerging technologies and demand for the application, the AOV data set has been structured and centralized within a relational database; furthermore, the application front-end has been ported to HTML5. Porting the application to HTML5 will now provide access to mobile users utilizing tablets and cell phone devices. Other application enhancements include an embedded Apache Solr search platform which provides users with the capability to perform advance searches throughout the AOV dataset, and an administration web based data management system which allows the administrators to add, update, and delete data in real time. We encourage all collaborators to use AOV tools and services for their own purposes and to help us extend the impact of our efforts and ensure AOV complements other cyber-resources. Reinforcing dispersed but interoperable resources in this way will help to ensure improved capacities for conducting activities such as assessing the status of arctic observing efforts, optimizing logistic operations, and for quickly accessing external and project-focused web resources for more detailed information and data.
NASA Astrophysics Data System (ADS)
Werner, Kirstin; Goessling, Helge; Hoke, Winfried; Kirchhoff, Katharina; Jung, Thomas
2017-04-01
Environmental changes in polar regions open up new opportunities for economic and societal operations such as vessel traffic related to scientific, fishery and tourism activities, and in the case of the Arctic also enhanced resource development. The availability of current and accurate weather and environmental information and forecasts will therefore play an increasingly important role in aiding risk reduction and safety management around the poles. The Year of Polar Prediction (YOPP) has been established by the World Meteorological Organization's World Weather Research Programme as the key activity of the ten-year Polar Prediction Project (PPP; see more on www.polarprediction.net). YOPP is an internationally coordinated initiative to significantly advance our environmental prediction capabilities for the polar regions and beyond, supporting improved weather and climate services. Scheduled to take place from mid-2017 to mid-2019, the YOPP core phase covers an extended period of intensive observing, modelling, prediction, verification, user-engagement and education activities in the Arctic and Antarctic, on a wide range of time scales from hours to seasons. The Year of Polar Prediction will entail periods of enhanced observational and modelling campaigns in both polar regions. With the purpose to close the gaps in the conventional polar observing systems in regions where the observation network is sparse, routine observations will be enhanced during Special Observing Periods for an extended period of time (several weeks) during YOPP. This will allow carrying out subsequent forecasting system experiments aimed at optimizing observing systems in the polar regions and providing insight into the impact of better polar observations on forecast skills in lower latitudes. With various activities and the involvement of a wide range of stakeholders, YOPP will contribute to the knowledge base needed to managing the opportunities and risks that come with polar climate change.
77 FR 37600 - Safety Zone; Arctic Drilling and Support Vessels, Puget Sound, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-22
... made local inquiries and chartered a vessel to observe the mobile offshore drilling unit (MODU) KULLUK... 1625-AA00 Safety Zone; Arctic Drilling and Support Vessels, Puget Sound, WA AGENCY: Coast Guard, DHS... nineteen vessels associated with Arctic drilling as well as their lead towing vessels while those vessels...
Arctic-Nesting Shorebirds: Curriculum for Grades K-12. [Teacher's Guide.
ERIC Educational Resources Information Center
Fish and Wildlife Service (Dept. of Interior), Anchorage, AK.
This teaching guide focuses on Arctic-nesting shorebirds. The format of each section consists of background information, student activities, observation and research ideas, and key words. Basic information on how to use this curriculum and seven sections devoted to different aspects of Arctic-nesting shorebird life are provided. Sections cover…
Developing and Implementing Protocols for Arctic Sea Ice Observations
NASA Astrophysics Data System (ADS)
Perovich, Donald K.; Gerland, Sebastian
2009-05-01
Arctic Surface-Based Sea Ice Observations: Integrated Protocols and Coordinated Data Acquisition; Tromsø, Norway, 26-27 January 2009; The Arctic sea ice cover is diminishing. Over the past several years, not only has ice thinned but the extent of ice at the end of summer, and hence perennial ice, has declined markedly. These changes affect a wide range of issues and are important for a varied group of stakeholders, including Arctic coastal communities, policy makers, industry, the scientific community, and the public. Concerns range from the role of sea ice cover as an indicator and amplifier of climate change to marine transportation, resource extraction, and coastal erosion. To understand and respond to these ongoing changes, it is imperative to develop and implement consistent and robust observational protocols that can be used to describe the current state of the ice cover as well as future changes.
NASA Technical Reports Server (NTRS)
Davies, D. W.
1981-01-01
A model has been developed to test the hypothesis that the observed seasonal and latitudinal distribution of water on Mars is controlled by the sublimation and condensation of surface ice deposits in the Arctic and Antarctic, and the meridional transport of water vapor. Besides reproducing the observed water vapor distribution, the model correctly reproduces the presence of a large permanent ice cap in the Arctic and not in the Antarctic. No permanent ice reservoirs are predicted in the temperate or equatorial zones. Wintertime ice deposits in the Arctic are shown to be the source of the large water vapor abundances observed in the Arctic summertime, and the moderate water vapor abundances in the northern temperate region. Model calculations suggest that a year without dust storms results in very little change in the water vapor distribution. The current water distribution appears to be the equilibrium distribution for present atmospheric conditions.
One Health – a strategy for resilience in a changing arctic
Ruscio, Bruce A.; Brubaker, Michael; Glasser, Joshua; Hueston, Will; Hennessy, Thomas W.
2015-01-01
The circumpolar north is uniquely vulnerable to the health impacts of climate change. While international Arctic collaboration on health has enhanced partnerships and advanced the health of inhabitants, significant challenges lie ahead. One Health is an approach that considers the connections between the environment, plant, animal and human health. Understanding this is increasingly critical in assessing the impact of global climate change on the health of Arctic inhabitants. The effects of climate change are complex and difficult to predict with certainty. Health risks include changes in the distribution of infectious disease, expansion of zoonotic diseases and vectors, changing migration patterns, impacts on food security and changes in water availability and quality, among others. A regional network of diverse stakeholder and transdisciplinary specialists from circumpolar nations and Indigenous groups can advance the understanding of complex climate-driven health risks and provide community-based strategies for early identification, prevention and adaption of health risks in human, animals and environment. We propose a regional One Health approach for assessing interactions at the Arctic human–animal–environment interface to enhance the understanding of, and response to, the complexities of climate change on the health of the Arctic inhabitants. PMID:26333722
NASA Astrophysics Data System (ADS)
Wiggins, H. V.; Warnick, W. K.; Hempel, L. C.; Henk, J.; Sorensen, M.; Tweedie, C. E.; Gaylord, A. G.
2007-12-01
As the creation and use of geospatial data in research, management, logistics, and education applications has proliferated, there is now a tremendous potential for advancing science through a variety of cyber-infrastructure applications, including Spatial Data Infrastructure (SDI) and related technologies. SDIs provide a necessary and common framework of standards, securities, policies, procedures, and technology to support the effective acquisition, coordination, dissemination and use of geospatial data by multiple and distributed stakeholder and user groups. Despite the numerous research activities in the Arctic, there is no established SDI and, because of this lack of a coordinated infrastructure, there is inefficiency, duplication of effort, and reduced data quality and search ability of arctic geospatial data. The urgency for establishing this framework is significant considering the myriad of data that is being collected in celebration of the International Polar Year (IPY) in 2007-2008 and the current international momentum for an improved and integrated circum-arctic terrestrial-marine-atmospheric environmental observatories network. The key objective of this project is to lay the foundation for full implementation of an Arctic Spatial Data Infrastructure (ASDI) through an assessment of community needs, readiness, and resources and through the development of a prototype web-mapping portal.
Status and Impacts of Arctic Freshwater Export
NASA Astrophysics Data System (ADS)
Haine, T. W. N.
2017-12-01
Large freshwater anomalies clearly exist in the Arctic Ocean. For example, liquid freshwater has accumulated in the Beaufort Gyre in the decade of the 2000s compared to 1980-2000, with an extra ≈5000 km3—about 25%—being stored. The sources of freshwater to the Arctic from precipitation and runoff have increased between these periods (most of the evidence comes from models). Despite flux increases from 2001 to 2011, it is uncertain if the marine freshwater source through Bering Strait for the 2000s has changed, as observations in the 1980s and 1990s are incomplete. The marine freshwater fluxes draining the Arctic through Fram and Davis straits are also insignificantly different. In this way, the balance of sources and sinks of freshwater to the Arctic, Canadian Arctic Archipelago (CAA), and Baffin Bay shifted to about 1200±730 km3yr-1 freshening the region, on average, during the 2000s. The observed accumulation of liquid freshwater is consistent with this increased supply and the loss of freshwater from sea ice (Figure, right). Evidence exists that such discharges can impact the Atlantic meridional overturning circulation, and hence Atlantic sector climate. Nevertheless, it appears that the observed AMOC variability since 2004, when high quality measurements began, is not attributable to anthropogenic influence. This work is based on, and updated from, Haine et al. (2015), Carmack et al. (2016), and Haine (2016). Haine, T. W. N. Ocean science: Vagaries of Atlantic overturning. Nature Geoscience, 9, 479-480, 10.1038/ngeo2748, 2016. T. W. N. Haine et al., Arctic Freshwater Export: Status, Mechanisms, and Prospects, Global Planetary Change, 125, 13-35, 10.1016/j.glopacha.2014.11.013, 2015. E. Carmack et al., Fresh water and its role in the Arctic Marine System: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J. G. Res. Biogeosciences, 10.1002/2015JG003140, 2016.
NASA Astrophysics Data System (ADS)
Steen-Larsen, Hans Christian; Sveinbjörnsdottir, Arny; Masson-Delmotte, Valerie; Werner, Martin; Risi, Camille; Yoshimura, Kei
2016-04-01
We have since 2010 carried out in-situ continuous water vapor isotope observations on top of the Greenland Ice Sheet (3 seasons at NEEM), in Svalbard (1 year), in Iceland (4 years), in Bermuda (4 years). The expansive dataset containing high accuracy and precision measurements of δ18O, δD, and the d-excess allow us to validate and benchmark the treatment of the atmospheric hydrological cycle's processes in General Circulation Models using simulations nudged to reanalysis products. Recent findings from both Antarctica and Greenland have documented strong interaction between the snow surface isotopes and the near surface atmospheric water vapor isotopes on diurnal to synoptic time scales. In fact, it has been shown that the snow surface isotopes take up the synoptic driven atmospheric water vapor isotopic signal in-between precipitation events, erasing the precipitation isotope signal in the surface snow. This highlights the importance of using General or Regional Climate Models, which accurately are able to simulate the atmospheric water vapor isotopic composition, to understand and interpret the ice core isotope signal. With this in mind we have used three isotope-enabled General Circulation Models (isoGSM, ECHAM5-wiso, and LMDZiso) nudged to reanalysis products. We have compared the simulations of daily mean isotope values directly with our in-situ observations. This has allowed us to characterize the variability of the isotopic composition in the models and compared it to our observations. We have specifically focused on the d-excess in order to characterize why both the mean and the variability is significantly lower than our observations. We argue that using water vapor isotopes to benchmark General Circulation Models offers an excellent tool for improving the treatment and parameterization of the atmospheric hydrological cycle. Recent studies have documented a very large inter-model dispersion in the treatment of the Arctic water cycle under a future global warming and greenhouse gas emission scenario. Our results call for action to create an international pan-Arctic monitoring water vapor isotope network in order to improve future projections of Arctic climate.
NASA Astrophysics Data System (ADS)
Liang, Q.; Rodriguez, J. M.; Douglass, A. R.; Crawford, J. H.; Olson, J. R.; Apel, E.; Bian, H.; Blake, D. R.; Brune, W.; Chin, M.; Colarco, P. R.; da Silva, A.; Diskin, G. S.; Duncan, B. N.; Huey, L. G.; Knapp, D. J.; Montzka, D. D.; Nielsen, J. E.; Pawson, S.; Riemer, D. D.; Weinheimer, A. J.; Wisthaler, A.
2011-12-01
We use aircraft observations obtained during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission to examine the distributions and source attributions of O3 and NOy in the Arctic and sub-Arctic region. Using a number of marker tracers, we distinguish various air masses from the background troposphere and examine their contributions to NOx, O3, and O3 production in the Arctic troposphere. The background Arctic troposphere has a mean O3 of ~60 ppbv and NOx of ~25 pptv throughout spring and summer with CO decreasing from ~145 ppbv in spring to ~100 ppbv in summer. These observed mixing ratios are not notably different from the values measured during the 1988 ABLE-3A and the 2002 TOPSE field campaigns despite the significant changes in emissions and stratospheric ozone layer in the past two decades that influence Arctic tropospheric composition. Air masses associated with stratosphere-troposphere exchange are present throughout the mid and upper troposphere during spring and summer. These air masses, with mean O3 concentrations of 140-160 ppbv, are significant direct sources of O3 in the Arctic troposphere. In addition, air of stratospheric origin displays net O3 formation in the Arctic due to its sustainable, high NOx (75 pptv in spring and 110 pptv in summer) and NOy (~800 pptv in spring and ~1100 pptv in summer). The air masses influenced by the stratosphere sampled during ARCTAS-B also show conversion of HNO3 to PAN. This active production of PAN is the result of increased degradation of ethane in the stratosphere-troposphere mixed air mass to form CH3CHO, followed by subsequent formation of PAN under high NOx conditions. These findings imply that an adequate representation of stratospheric NOy input, in addition to stratospheric O3 influx, is essential to accurately simulate tropospheric Arctic O3, NOx and PAN in chemistry transport models. Plumes influenced by recent anthropogenic and biomass burning emissions observed during ARCTAS show highly elevated levels of hydrocarbons and NOy (mostly in the form of NOx and PAN), but do not contain O3 higher than that in the Arctic tropospheric background except some aged biomass burning plumes sampled during spring. Convection and/or lightning influences are negligible sources of O3 in the Arctic troposphere but can have significant impacts in the upper troposphere in the continental sub-Arctic during summer.
Exploring Options for an Integrated Water Level Observation Network in Alaska
NASA Astrophysics Data System (ADS)
McCammon, M.
2016-02-01
Portions' of Alaska's remote coastlines are among the Nation's most vulnerable to geohazards such as tsunami, extra-tropical storm surge, and erosion; and the availability of observations of water levels, ocean waves, and river discharge are severely lacking to support water level warnings and forecasts. Alaska is experiencing dramatic reductions in sea ice cover, changes in extra-tropical storm surge patterns, and thawing permafrost. These conditions are endangering coastal populations throughout the State. Gaps in the ocean observing system limit our State's ability to provide useful marine and sea ice forecasts, especially in the Arctic. A spectrum of observation platforms may provide an optimal solution for filling the most critical gaps in these coastal and ocean areas. The collaborations described in this talk and better leveraging of resources and capabilities across federal, state, and academic partners will provide the best opportunity for advancing our science capacity and capabilities in this remote region.
Scaling Issues Between Plot and Satellite Radiobrightness Observations of Arctic Tundra
NASA Technical Reports Server (NTRS)
Kim, Edward J.; England, Anthony W.; Judge, Jasmeet; Zukor, Dorothy J. (Technical Monitor)
2000-01-01
Data from generation of satellite microwave radiometer will allow the detection of seasonal to decadal changes in the arctic hydrology cycle as expressed in temporal and spatial patterns of moisture stored in soil and snow This nw capability will require calibrated Land Surface Process/Radiobrightness (LSP/R) model for the principal terrains found in the circumpolar Arctic. These LSP/R models can than be used in weak constraint. Dimensional Data Assimilation (DDA)of the daily satellite observation to estimate temperature and moisture profiles within the permafrost in active layer.
NASA Astrophysics Data System (ADS)
Agnan, Yannick; Douglas, Thomas A.; Helmig, Detlev; Hueber, Jacques; Obrist, Daniel
2018-06-01
In the Arctic, the snowpack forms the major interface between atmospheric and terrestrial cycling of mercury (Hg), a global pollutant. We investigated Hg dynamics in an interior Arctic tundra snowpack in northern Alaska during two winter seasons. Using a snow tower system to monitor Hg trace gas exchange, we observed consistent concentration declines of gaseous elemental Hg (Hg0gas) from the atmosphere to the snowpack to soils. The snowpack itself was unlikely a direct sink for atmospheric Hg0gas. In addition, there was no evidence of photochemical reduction of HgII to Hg0gas in the tundra snowpack, with the exception of short periods during late winter in the uppermost snow layer. The patterns in this interior Arctic snowpack thus differ substantially from observations in Arctic coastal and temperate snowpacks. We consistently measured low concentrations of both total and dissolved Hg in snowpack throughout the two seasons. Chemical tracers showed that Hg was mainly associated with local mineral dust and regional marine sea spray inputs. Mass balance calculations show that the snowpack represents a small reservoir of Hg, resulting in low inputs during snowmelt. Taken together, the results from this study suggest that interior Arctic snowpacks are negligible sources of Hg to the Arctic.
NASA Astrophysics Data System (ADS)
Zhang, G.; McFarquhar, G.; Poellot, M.; Verlinde, J.; Heymsfield, A.; Kok, G.
2005-12-01
Arctic stratus clouds play an important role in the energy balance of the Arctic region. Previous studies have suggested that Arctic stratus persist due to a balance among cloud top radiation cooling, latent heating, ice crystal fall out and large scale forcing. In this study, radiative heating profiles through Arctic stratus are computed using cloud, surface and thermodynamic observations obtained during the Mixed-Phase Arctic Cloud Experiment (M-PACE) as input to the radiative transfer model STREAMER. In particular, microphysical and macrophycial cloud properties such as phase, water content, effective particle size, particle shape, cloud height and cloud thickness were derived using data collected by in-situ sensors on the University of North Dakota (UND) Citation and ground-based remote sensors at Barrow and Oliktok Point. Temperature profiles were derived from radiosonde launches and a fresh snow surface was assumed. One series of sensitivity studies explored the dependence of the heating profile on the solar zenith angle. For smaller solar zenith angles, more incoming solar radiation is received at cloud top acting to counterbalance infrared cooling. As solar zenith angle in the Arctic is large compared to low latitudes, a large solar zenith angle may contribute to the longevity of these clouds.
2013-09-30
data from the IABP ); 2.) Forecasting weather and sea ice conditions; 3.) Forcing, assimilation and validation of global weather and climate models ...International Arctic Buoy Programme ( IABP ) A US Interagency Arctic Buoy Programme (USIABP) contribution to the IABP Dr. Ignatius G. Rigor Polar...ice motion. These observations are assimilated into Numerical Weather Prediction (NWP) models that are used to forecast weather on synoptic time
NASA Astrophysics Data System (ADS)
Starkweather, S.; Stephenson, S. N.; Rohde, J. A.; Bowden, S.
2015-12-01
The IARPC Collaborations website (www.iarpccollaborations.org) was developed to support collaborative implementation of the Interagency Arctic Research Policy Committee's (IARPC) 5-Year Plan for Arctic Research. The Plan describes an ambitious agenda for advancing understanding of the changing Arctic, a challenge that requires innovative approaches to integrate disparate research activities. IARPC was created by Congress to address this integration with a mandate that includes developing interagency collaboration and outside partnerships, specifically those with the State of Alaska, indigenous communities, academia, industry and non-governmental organizations. The IARPC Collaborations website was introduced in October of 2014 as an innovative means to address IARPC's mandate. It is an open, social networking platform with member-driven content and features to support dialog and milestone tracking. In its first year, IARPC Collaborations has attracted more than 600 members. Member-supplied content added to the site includes more than 575 research planning documents and scientific presentations and 300 updates on research plans and resources; all content is tagged with descriptive keywords to expedite discovery and elucidate connectivity across members and topics. Applying a social network analysis to metadata from the site reveals the strength and nature of this connectivity. This analysis demonstrates that Collaboration Team phone meetings remain the dominant form of communication. Dialog on the site through comment forums has been slow to emerge despite its merits of persistence and transparency. While more than 80 members have used the comment features at least once, the strong centrality of the IARPC Secretariat to website dialog is apparent. An analysis of content keywords demonstrates the potential for improved dialog based on overlapping interests as revealed by trending topics like "sea ice prediction", "traditional knowledge" and "permafrost carbon". Less than one year into launch, this analysis of IARPC's experiment in collaborative integration reveals the enduring strengths of traditional collaboration tools like secretariat support and phone meetings; the full potential of IARPC's social networking tools remains to be seen.
Short-cut transport path for Asian dust directly to the Arctic: a case study
NASA Astrophysics Data System (ADS)
Huang, Zhongwei; Huang, Jianping; Hayasaka, Tadahiro; Wang, Shanshan; Zhou, Tian; Jin, Hongchun
2015-11-01
Asian dust can be transported long distances from the Taklimakan or Gobi desert to North America across the Pacific Ocean, and it has been found to have a significant impact on ecosystems, climate, and human health. Although it is well known that Asian dust is transported all over the globe, there are limited observations reporting Asian dust transported to the Arctic. We report a case study of a large-scale heavy dust storm over East Asia on 19 March 2010, as shown by ground-based and space-borne multi-sensor observations, as well as NCEP/NCAR reanalysis data and HYSPLIT trajectories. Our analysis suggests that Asian dust aerosols were transported from northwest China to the Arctic within 5 days, crossing eastern China, Japan and Siberia before reaching the Arctic. The results indicate that Asian dust can be transported for long distances along a previously unreported transport path. Evidence from other dust events over the past decade (2001-2010) also supports our results, indicating that dust from 25.2% of Asian dust events has potentially been transported directly to the Arctic. The transport of Asian dust to the Arctic is due to cyclones and the enhanced East Asia Trough (EAT), which are very common synoptic systems over East Asia. This suggests that many other large dust events would have generated long-range transport of dust to the Arctic along this path in the past. Thus, Asian dust potentially affects the Arctic climate and ecosystem, making climate change in the Arctic much more complex to be fully understood.
NASA Astrophysics Data System (ADS)
Roberts, Tjarda J.; Dütsch, Marina; Hole, Lars R.; Voss, Paul B.
2016-09-01
Observations from CMET (Controlled Meteorological) balloons are analysed to provide insights into tropospheric meteorological conditions (temperature, humidity, wind) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen) over 5-12 May 2011 and measured vertical atmospheric profiles over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer (ABL) over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I) and to a high-resolution (15 km) Arctic System Reanalysis (ASR) product. To the east of Svalbard over sea ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We demonstrate that CMET balloons are a valuable approach for profiling the free atmosphere and boundary layer in remote regions such as the Arctic, where few other in situ observations are available for model validation.
NASA Astrophysics Data System (ADS)
Gilson, Gaëlle F.; Jiskoot, Hester; Cassano, John J.; Gultepe, Ismail; James, Timothy D.
2018-05-01
An automated method to classify Arctic fog into distinct thermodynamic profiles using historic in-situ surface and upper-air observations is presented. This classification is applied to low-resolution Integrated Global Radiosonde Archive (IGRA) soundings and high-resolution Arctic Summer Cloud Ocean Study (ASCOS) soundings in low- and high-Arctic coastal and pack-ice environments. Results allow investigation of fog macrophysical properties and processes in coastal East Greenland during melt seasons 1980-2012. Integrated with fog observations from three synoptic weather stations, 422 IGRA soundings are classified into six fog thermodynamic types based on surface saturation ratio, type of temperature inversion, fog-top height relative to inversion-base height and stability using the virtual potential temperature gradient. Between 65-80% of fog observations occur with a low-level inversion, and statically neutral or unstable surface layers occur frequently. Thermodynamic classification is sensitive to the assigned dew-point depression threshold, but categorization is robust. Despite differences in the vertical resolution of radiosonde observations, IGRA and ASCOS soundings yield the same six fog classes, with fog-class distribution varying with latitude and environmental conditions. High-Arctic fog frequently resides within an elevated inversion layer, whereas low-Arctic fog is more often restricted to the mixed layer. Using supplementary time-lapse images, ASCOS microwave radiometer retrievals and airmass back-trajectories, we hypothesize that the thermodynamic classes represent different stages of advection fog formation, development, and dissipation, including stratus-base lowering and fog lifting. This automated extraction of thermodynamic boundary-layer and inversion structure can be applied to radiosonde observations worldwide to better evaluate fog conditions that affect transportation and lead to improvements in numerical models.
Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications
NASA Astrophysics Data System (ADS)
DeWeaver, Eric T.; Bitz, Cecilia M.; Tremblay, L.-Bruno
This volume addresses the rapid decline of Arctic sea ice, placing recent sea ice decline in the context of past observations, climate model simulations and projections, and simple models of the climate sensitivity of sea ice. Highlights of the work presented here include • An appraisal of the role played by wind forcing in driving the decline; • A reconstruction of Arctic sea ice conditions prior to human observations, based on proxy data from sediments; • A modeling approach for assessing the impact of sea ice decline on polar bears, used as input to the U.S. Fish and Wildlife Service's decision to list the polar bear as a threatened species under the Endangered Species Act; • Contrasting studies on the existence of a "tipping point," beyond which Arctic sea ice decline will become (or has already become) irreversible, including an examination of the role of the small ice cap instability in global warming simulations; • A significant summertime atmospheric response to sea ice reduction in an atmospheric general circulation model, suggesting a positive feedback and the potential for short-term climate prediction. The book will be of interest to researchers attempting to understand the recent behavior of Arctic sea ice, model projections of future sea ice loss, and the consequences of sea ice loss for the natural and human systems of the Arctic.
The possibility of a tipping point in the Arctic sea ice cover, and associated early-warning signals
NASA Astrophysics Data System (ADS)
Jastamin Steene, Rebekka
2017-04-01
As the Arctic sea ice has become one of the primer indicators of global climate change, with a seemingly accelerated loss in both ice extent and volume the latest decades, the existence of a tipping point related to the Arctic sea ice cover has been widely debated. Several observed and potential abrupt transitions in the climate system may be interpreted as bifurcations in randomly driven dynamical systems. This means that a system approaching a bifurcation point shifts from one stable state to another, and we say that the system is subject to a critical transition. As the equilibrium states become unstable in the vicinity of a bifurcation point the characteristic relaxation times increases, and the system is said to experience a "critical slowing down". This makes it plausible to observe so called early-warning signals (EWS) when approaching a critical transition. In the Arctic non-linear mechanisms like the temperature response of the ice-albedo feedback can potentially cause a sudden shift to an ice-free Arctic Ocean. Using bifurcation theory and potential analyses we examine time series of observational data of the Arctic sea ice, investigating the possibility of multiple states in the behavior of the ice cover. We further debate whether a shift between states is irreversible, and whether it can be preluded by early-warning signals.
Arctic atmospheric preconditioning: do not rule out shortwave radiation just yet
NASA Astrophysics Data System (ADS)
Sedlar, J.
2017-12-01
Springtime atmospheric preconditioning of Arctic sea ice for enhanced or buffered sea ice melt during the subsequent melt year has received considerable research focus in recent years. A general consensus points to enhanced poleward atmospheric transport of moisture and heat during spring, effectively increasing the emission of longwave radiation to the surface. Studies have essentially ruled out the role of shortwave radiation as an effective preconditioning mechanism because of the relatively weak incident solar radiation and high surface albedo from sea ice and snow during spring. These conclusions, however, are derived primarily from atmospheric reanalysis data, which may not always represent an accurate depiction of the Arctic climate system. Here, observations of top of atmosphere radiation from state of the art satellite sensors are examined and compared with reanalysis and climate model data to examine the differences in the spring radiative budget over the Arctic Ocean for years with extreme low/high ice extent at the end of the ice melt season (September). Distinct biases are observed between satellite-based measurements and reanalysis/models, particularly for the amount of shortwave radiation trapped (warming effect) within the Arctic climate system during spring months. A connection between the differences in reanalysis/model surface albedo representation and the albedo observed by satellite is discussed. These results suggest that shortwave radiation should not be overlooked as a significant contributing mechanism to springtime Arctic atmospheric preconditioning.
Arctic vs. Tropical Influence and Over the Period of Arctic Amplification including Winter 2015/16
NASA Astrophysics Data System (ADS)
Cohen, J. L.; Francis, J. A.; Pfeiffer, K.
2016-12-01
The tropics in general and El Niño/Southern Oscillation (ENSO) in particular are almost exclusively relied upon for seasonal forecasting. Much less considered and certainly more controversial is the idea that Arctic variability is influencing mid-latitude weather. However, since the late 1980s and early 1990s the Arctic has undergone the most rapid warming observed globally, referred to as Arctic amplification (AA), which has coincided with an observed increase in extreme weather. Analysis of observed trends in hemispheric circulation over the period of AA more closely resembles variability associated with Arctic boundary forcings than with tropical forcing. Furthermore, analysis of intra-seasonal temperature variability shows that the cooling in mid-latitude winter temperatures has been accompanied by an increase in temperature variability and not a decrease, popularly referred to as "weather whiplash." When a record El Niño occurred this past winter, it should have been an opportunity to showcase decades of research and resources dedicated to the study of the ENSO phenomenon and its global impacts. However the dynamical forecasts performed poorly this past winter. Instead we will show that many of the significant circulation anomalies of this past winter are related to high latitude processes. We believe that the failed forecasts of this past winter will serve as a watershed moment and an inflection point in climate science. Climate science requires a paradigm shift in order to improve long-range forecasts. Less reliance on the tropics and exploration of new regions of predictability, including the Arctic, are required.
Metfies, Katja; von Appen, Wilken-Jon; Kilias, Estelle; Nicolaus, Anja; Nöthig, Eva-Maria
2016-01-01
Information on recent photosynthetic biomass distribution and biogeography of Arctic marine pico-eukaryotes (0.2–3 μm) is needed to better understand consequences of environmental change for Arctic marine ecosystems. We analysed pico-eukaryote biomass and community composition in Fram Strait and large parts of the Central Arctic Ocean (Nansen Basin, Amundsen Basin) using chlorophyll a (Chl a) measurements, automated ribosomal intergenic spacer analysis (ARISA) and 454-pyrosequencing. Samples were collected during summer 2012, the year with the most recent record sea ice minimum. Chl a concentrations were highest in eastern Fram Strait and pico-plankton accounted for 60–90% of Chl a biomass during the observation period. ARISA-patterns and 454-pyrosequencing revealed that pico-eukaryote distribution is closely related to water mass distribution in the euphotic zone of the Arctic Ocean. Phaeocystaceae, Micromonas sp., Dinophyceae and Syndiniales constitute a high proportion of sequence reads, while sequence abundance of autotrophic Phaeocystaceae and mixotrophic Micromonas sp. was inversely correlated. Highest sequence abundances of Phaeocystaceae were observed in the warm Atlantic Waters in Fram Strait, while Micromonas sp. dominated the abundant biosphere in the arctic halocline. Our results are of particular interest considering existing hypotheses that environmental conditions in Nansen Basin might become more similar to the current conditions in Fram Strait. We propose that in response, biodiversity and biomass of pico-eukaryotes in Nansen Basin could resemble those currently observed in Fram Strait in the future. This would significantly alter biogeochemical cycles in a large part of the Central Arctic Ocean. PMID:26895333
NASA Technical Reports Server (NTRS)
Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.
2011-01-01
Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic.
NASA Astrophysics Data System (ADS)
Khosrawi, Farahnaz; Kirner, Oliver; Sinnhuber, Bjoern-Martin; Johansson, Sören; Höpfner, Michael; Santee, Michelle L.; Manney, Gloria; Froidevaux, Lucien; Ungermann, Jörn; Preusse, Peter; Friedl-Vallon, Felix; Ruhnke, Roland; Woiwode, Wolfgang; Oelhaf, Hermann; Braesicke, Peter
2017-04-01
The Arctic winter 2015/2016 has been one of the coldest stratospheric winters in recent years. A stable vortex formed already in early December and the early winter has been exceptionally cold. Cold pool temperatures dropped below the Nitric Acid Trihydrate (NAT) existence temperature, thus allowing Polar Stratospheric Clouds (PSCs) to form. The low temperatures in the polar stratosphere persisted until early March allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles have led to denitrification as well as dehydration of stratospheric layers. Nudged model simulations of the Arctic winter 2015/2016 were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the POLSTRACC (Polar Stratosphere in a Changing Climate) campaign. POLSTRACC was a HALO mission (High Altitude and LOng Range Research Aircraft) aiming on the investigation of the structure, composition and evolution of the Arctic Upper Troposphere Lower Stratosphere (UTLS). The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, polar stratospheric clouds as well as cirrus clouds were investigated. In this presentation, an overview of the chemistry and dynamics of the Arctic winter 2015/2016 as simulated with EMAC will be given. Chemical-dynamical processes such as denitrification, dehydration and ozone loss will be investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS) as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) performed onboard of HALO during the POLSTRACC campaign show that the EMAC simulations are in good agreement with observations (differences generally within ±20%). However, larger differences between model and simulations are found e.g. in the areas of denitrification. Both, model simulations and observation show that in 2015/2016 ozone loss was quite strong, but not as strong as in 2010/2011 while denitrification and dehydration were so far the strongest in the Arctic stratosphere.
NASA Astrophysics Data System (ADS)
Spreen, G.; Wendisch, M.; Brückner, M.
2016-12-01
Within the last 25 years a remarkable increase of the Arctic near-surface air temperature exceeding the global warming by a factor of at least two has been observed. This phenomenon is commonly referred to as Arctic Amplification. The warming results in rather dramatic changes of a variety of climate parameters. For example, the Arctic sea ice has declined significantly. This ice retreat has been well identified by satellite measurements. Over recent decades, significant progress has been made in two main scientific areas: (i) the capabilities of in-situ measurements and remote sensing techniques to observe key physico-chemical atmospheric constituents and surface parameters at high latitudes have advanced impressively, and (ii) the computational skills and power used to model individual feedback mechanisms on small scales have improved notably. It is, therefore, timely to exploit synergistically these new developments to enhance our knowledge of the origins of the observed Arctic climate changes. To achieve this aim a new Transregional Collaborative Research Center (TR 172) was launched in January 2016 called "ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms" with the acronym (AC)3. Observations from instrumentation on satellites, aircraft, tethered balloons, research vessels, and a selected set of ground-based sites will be integrated in dedicated campaigns, as well as being combined with long-term measurements. The field studies will be conducted in different seasons and meteorological conditions, covering a suitably wide range of spatial and temporal scales. They will be performed in an international context and in close collaboration with modelling activities. The latter utilize a hierarchy of process, meso-scale, regional, and global models to bridge the spatio-temporal scales from local individual processes to appropriate climate signals. The models will serve to guide the campaigns, to analyse the measurements and sensitivities, to facilitate the attribution of the origins of observed Arctic climate changes, and to test the ability of the models to reproduce observations. The presentation will give an overview of the scientific rationale, objectives, international links, and the work program of the (AC)³ project.
NASA Technical Reports Server (NTRS)
Pistone, K.; Eisenman, I.; Ramanathan, V.
2017-01-01
The Arctic region has seen dramatic changes over the past several decades, from polar amplification of global temperature rise to ecosystem changes to the decline of the sea ice. While there has been much speculation as to when the world will see an ice-free Arctic, the radiative impacts of an eventual disappearance of the Arctic sea ice are likely to be significant regardless of the timing. Using CERES radiation and microwave satellite sea ice data, Pistone et al (2014) estimated the radiative forcing due to albedo changes associated with the Arctic sea ice retreat over the 30 years of the satellite data record. In this study, we found that the Arctic Ocean saw a decrease in all-sky albedo of 4% (from 52% to 48%), for an estimated increase in solar heating of 6.4 W/m(exp 2) between 1979 and 2011, or 0.21 W/m(exp 2) when averaged over the globe. This value is substantial--approximately 25% as large as the forcing due to the change in CO2 during the same period. Here we update and expand upon this previous work and use the CERES broadband shortwave observations to explore the radiative impacts of a transition to completely ice-free Arctic Ocean. We estimate the annually-averaged Arctic Ocean planetary albedo under ice-free and cloud-free conditions to be 14% over the region, or approximately 25% lower in absolute terms than the Arctic Ocean cloud-free albedo in 1979. However, the question of all-sky conditions (i.e. including the effects of clouds) introduces a new level of complexity. We explore several cloud scenarios and the resultant impact on albedo. In each of these cases, the estimated forcing is not uniformly distributed throughout the year. We describe the relative contributions of ice loss by month as well as the spatial distributions of the resulting changes in absorbed solar energy. The seasonal timing and location—in addition to magnitude—of the altered solar absorption may have significant implications for atmospheric and ocean dynamics in the Arctic and at lower latitudes; this observationally-based estimate of the large-scale characteristics of an ice-free Arctic thus provides a valuable tool to complement and validate model-based assessments of future climate.
NASA Astrophysics Data System (ADS)
Croft, B.; Wentworth, G. R.; Martin, R. V.; Leaitch, W. R.; Murphy, J. G.; Murphy, B. N.; Kodros, J. K.; Abbatt, J. P. D.; Pierce, J. R.
2016-11-01
The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about -0.5 W m-2 pan-Arctic-mean cooling), exceeding -1 W m-2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological-chemical processes may be susceptible to Arctic warming and industrialization.
Croft, B; Wentworth, G R; Martin, R V; Leaitch, W R; Murphy, J G; Murphy, B N; Kodros, J K; Abbatt, J P D; Pierce, J R
2016-11-15
The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about -0.5 W m -2 pan-Arctic-mean cooling), exceeding -1 W m -2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological-chemical processes may be susceptible to Arctic warming and industrialization.
NASA Astrophysics Data System (ADS)
Haine, T. W. N.; Martin, T.
2017-12-01
The loss of Arctic sea ice is a conspicuous example of climate change. Climate models project ice-free conditions during summer this century under realistic emission scenarios, reflecting the increase in seasonality in ice cover. To quantify the increased seasonality in the Arctic-Subarctic sea ice system, we define a non-dimensional seasonality number for sea ice extent, area, and volume from satellite data and realistic coupled climate models. We show that the Arctic-Subarctic, i.e. the northern hemisphere, sea ice now exhibits similar levels of seasonality to the Antarctic, which is in a seasonal regime without significant change since satellite observations began in 1979. Realistic climate models suggest that this transition to the seasonal regime is being accompanied by a maximum in Arctic amplification, which is the faster warming of Arctic latitudes compared to the global mean, in the 2010s. The strong link points to a peak in sea-ice-related feedbacks that occurs long before the Arctic becomes ice-free in summer.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Chen, C.; Beardsley, R. C.; Gao, G.; Qi, J.; Lin, H.
2016-02-01
A high-resolution (up to 2 km), unstructured-grid, fully ice-sea coupled Arctic Ocean Finite-Volume Community Ocean Model (AO-FVCOM) was used to simulate the Arctic sea ice over the period 1978-2014. Good agreements were found between simulated and observed sea ice extent, concentration, drift velocity and thickness, indicating that the AO-FVCOM captured not only the seasonal and interannual variability but also the spatial distribution of the sea ice in the Arctic in the past 37 years. Compared with other six Arctic Ocean models (ECCO2, GSFC, INMOM, ORCA, NAME and UW), the AO-FVCOM-simulated ice thickness showed a higher correlation coefficient and a smaller difference with observations. An effort was also made to examine the physical processes attributing to the model-produced bias in the sea ice simulation. The error in the direction of the ice drift velocity was sensitive to the wind turning angle; smaller when the wind was stronger, but larger when the wind was weaker. This error could lead to the bias in the near-surface current in the fully or partially ice-covered zone where the ice-sea interfacial stress was a major driving force.
NASA Astrophysics Data System (ADS)
Cazenave, A. A.
2017-12-01
During recent decades, the Arctic region has warmed at a rate about twice the rest of the globe. Sea ice melting is increasing and the Greenland ice sheet is losing mass at an accelerated rate. Arctic warming, decrease in the sea ice cover and fresh water input to the Arctic ocean may eventually impact the Arctic sea level. In this presentation, we review our current knowledge of contemporary Arctic sea level changes. Until the beginning of the 1990s, Arctic sea level variations were essentially deduced from tide gauges located along the Russian and Norwegian coastlines. Since then, high inclination satellite altimetry missions have allowed measuring sea level over a large portion of the Arctic Ocean (up to 80 degree north). Measuring sea level in the Arctic by satellite altimetry is challenging because the presence of sea ice cover limits the full capacity of this technique. However adapted processing of raw altimetric measurements significantly increases the number of valid data, hence the data coverage, from which regional sea level variations can be extracted. Over the altimetry era, positive trend patterns are observed over the Beaufort Gyre and along the east coast of Greenland, while negative trends are reported along the Siberian shelf. On average over the Arctic region covered by satellite altimetry, the rate of sea level rise since 1992 is slightly less than the global mea sea level rate (of about 3 mm per year). On the other hand, the interannual variability is quite significant. Space gravimetry data from the GRACE mission and ocean reanalyses provide information on the mass and steric contributions to sea level, hence on the sea level budget. Budget studies show that regional sea level trends over the Beaufort Gyre and along the eastern coast of Greenland, are essentially due to salinity changes. However, in terms of regional average, the net steric component contributes little to the observed sea level trend. The sea level budget in the Arctic indicates a dominant mass contribution, especially in the Greenland, Norwegian, and Barents Seas sector.
The changing seasonal climate in the Arctic.
Bintanja, R; van der Linden, E C
2013-01-01
Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities.
CARVE: The Carbon in Arctic Reservoirs Vulnerability Experiment
NASA Technical Reports Server (NTRS)
Miller, Charles E.; Dinardo, Steven J.
2012-01-01
The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a NASA Earth Ventures (EV-1) investigation designed to quantify correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems through intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. CARVE's objectives are to: (1) Directly test hypotheses attributing the mobilization of vulnerable Arctic carbon reservoirs to climate warming; (2) Deliver the first direct measurements and detailed maps of CO2 and CH4 sources on regional scales in the Alaskan Arctic; and (3) Demonstrate new remote sensing and modeling capabilities to quantify feedbacks between carbon fluxes and carbon cycle-climate processes in the Arctic (Figure 1). We describe the investigation design and results from 2011 test flights in Alaska.
The changing seasonal climate in the Arctic
Bintanja, R.; van der Linden, E. C.
2013-01-01
Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities. PMID:23532038
Decision Making For Sustainable Futures In A Rapidly Changing Arctic
NASA Astrophysics Data System (ADS)
Chabay, I.
2016-12-01
Observing, understanding, and predicting effects of rapid climate change in the Arctic are crucial as the circumpolar region becomes more accessible and demand grows for commercial development and resource extraction. Climate change effects - including changes in ocean ice coverage, Arctic weather patterns, permafrost conditions, and coastal erosion - are a consequence of fossil fuel use outside the Arctic, while at the same time the changes open greater access to the Arctic's rich resources, including oil and gas. This offers new opportunities for livelihoods and development of Arctic communities, but inevitably also introduces substantially increased environmental, social, and economic risks. I will outline the rationale for and the process of our transdisciplinary project in engaging with a wide range of actors in the Arctic and beyond. The purpose of the project is to support informed and effective decision making for sustainable futures that is contextually appropriate through co-design and co-production of knowledge with rights-holders and stakeholders.
Changing Arctic Ocean freshwater pathways.
Morison, James; Kwok, Ron; Peralta-Ferriz, Cecilia; Alkire, Matt; Rigor, Ignatius; Andersen, Roger; Steele, Mike
2012-01-04
Freshening in the Canada basin of the Arctic Ocean began in the 1990s and continued to at least the end of 2008. By then, the Arctic Ocean might have gained four times as much fresh water as comprised the Great Salinity Anomaly of the 1970s, raising the spectre of slowing global ocean circulation. Freshening has been attributed to increased sea ice melting and contributions from runoff, but a leading explanation has been a strengthening of the Beaufort High--a characteristic peak in sea level atmospheric pressure--which tends to accelerate an anticyclonic (clockwise) wind pattern causing convergence of fresh surface water. Limited observations have made this explanation difficult to verify, and observations of increasing freshwater content under a weakened Beaufort High suggest that other factors must be affecting freshwater content. Here we use observations to show that during a time of record reductions in ice extent from 2005 to 2008, the dominant freshwater content changes were an increase in the Canada basin balanced by a decrease in the Eurasian basin. Observations are drawn from satellite data (sea surface height and ocean-bottom pressure) and in situ data. The freshwater changes were due to a cyclonic (anticlockwise) shift in the ocean pathway of Eurasian runoff forced by strengthening of the west-to-east Northern Hemisphere atmospheric circulation characterized by an increased Arctic Oscillation index. Our results confirm that runoff is an important influence on the Arctic Ocean and establish that the spatial and temporal manifestations of the runoff pathways are modulated by the Arctic Oscillation, rather than the strength of the wind-driven Beaufort Gyre circulation.
NASA Astrophysics Data System (ADS)
Charsley-Groffman, L.; Killeffer, T.; Wullschleger, S. D.; Wilson, C. J.
2016-12-01
The Next Generation Ecosystem Experiment, NGEE Arctic, project aims to improve the representation of arctic terrestrial processes and properties in Earth System Models, ESMs, through coordinated multi-disciplinary field-based observations and experiments. NGEE involves nearly one hundred research staff, post docs and students from multiple DOE laboratories and universities who deploy a wide range of in-situ and remote field observation techniques to quantify and understand interactions between the climate system and surface and subsurface coupled thermal-hydrologic, biogeochemical and vegetation processes. Careful attention was given to the design and management of co-located long-term and one off data collection efforts, as well as their data streams. Field research sites at the Barrow Environmental Observatory near Barrow AK and on the Seward Peninsula were designed around the concept of "ecotypes" which co-evolved with readily identified and classified hydro-geomorphic features characteristic of arctic landscapes. NGEE sub-teams focused on 5 unique science questions collaborated to design field sites and develop naming conventions for locations and data types to develop coherent data sets to parameterize, initialize and test a range of site-specific process resolving models to ESMs. Multi-layer mapping products were a critical means of developing a coordinated and coherent observation design, and a centralized data portal and data reporting framework was critical to ensuring meaningful data products for NGEE modelers and Arctic scientific community at large. We present examples of what works and lessons learned for a large multi-disciplinary terrestrial observational research project in the Arctic.
NASA Astrophysics Data System (ADS)
Zhang, Damao; Wang, Zhien; Luo, Tao; Yin, Yan; Flynn, Connor
2017-03-01
Ice particle formation in slightly supercooled stratiform clouds is not well documented or understood. In this study, 4 years of combined lidar depolarization and radar reflectivity (Ze) measurements are analyzed to distinguish between cold drizzle and ice crystal formations in slightly supercooled Arctic stratiform clouds over the Atmospheric Radiation Measurement Program Climate Research Facility North Slope of Alaska Utqiaġvik ("Barrow") site. Ice particles are detected and statistically shown to be responsible for the strong precipitation in slightly supercooled Arctic stratiform clouds at cloud top temperatures as high as -4°C. For ice precipitating Arctic stratiform clouds, the lidar particulate linear depolarization ratio (δpar_lin) correlates well with radar Ze at each temperature range, but the δpar_lin-Ze relationship varies with temperature ranges. In addition, lidar depolarization and radar Ze observations of ice generation characteristics in Arctic stratiform clouds are consistent with laboratory-measured temperature-dependent ice growth habits.
Suppressed mid-latitude summer atmospheric warming by Arctic sea ice loss during 1979-2012
NASA Astrophysics Data System (ADS)
Wu, Q.
2016-12-01
Since the 1980s, rapid Arctic warming, sea ice decline, and weakening summer circulation have coincided with an increasing number of extreme heatwaves and other destructive weather events in the Northern Hemisphere (NH) mid-latitudes in summer. Recent papers disagree about whether such high-impact events are related to Arctic warming and/or ice loss. Here we use atmospheric model ensemble simulations to attribute effects of sea ice loss and other factors on observed summer climate trends during 1979-2012. The ongoing greenhouse gas buildup and resulting sea surface temperature (SST) warming outside the Arctic explains nearly all land warming and a significant portion of observed weakening zonal winds in the NH mid-latitudes. However, sea ice loss has induced a negative Arctic Oscillation (AO)-type circulation with significant summer surface and tropospheric cooling trends over large portions of the NH mid-latitudes, which reduce the warming and might reduce the probability of regional severe hot summers.
Modeling seasonality of ice and ocean carbon production in the Arctic
NASA Astrophysics Data System (ADS)
Jin, M.; Deal, C. M.; Ji, R.
2011-12-01
In the Arctic Ocean, both phytoplankton and sea ice algae are important contributors to the primary production and the arctic food web. Copepod in the arctic regions have developed their feeding habit depending on the timing between the ice algal bloom and the subsequent phytoplankton bloom. A mismatch of the timing due to climate changes could have dramatic consequences on the food web as shown by some regional observations. In this study, a global coupled ice-ocean-ecosystem model was used to assess the seasonality of the ice algal and phytoplankton blooms in the arctic. The ice-ocean ecosystem modules are fully coupled in the physical model POP-CICE (Parallel Ocean Program- Los Alamos Sea Ice Model). The model results are compared with various observations. The modeled ice and ocean carbon production were analyzed by regions and their linkage to the physical environment changes (such as changes of ice concentration and water temperature, and light intensity etc.) between low- and high-ice years.
Climate-driven regime shifts in Arctic marine benthos
Kortsch, Susanne; Primicerio, Raul; Beuchel, Frank; Renaud, Paul E.; Rodrigues, João; Lønne, Ole Jørgen; Gulliksen, Bjørn
2012-01-01
Climate warming can trigger abrupt ecosystem changes in the Arctic. Despite the considerable interest in characterizing and understanding the ecological impact of rapid climate warming in the Arctic, few long time series exist that allow addressing these research goals. During a 30-y period (1980–2010) of gradually increasing seawater temperature and decreasing sea ice cover in Svalbard, we document rapid and extensive structural changes in the rocky-bottom communities of two Arctic fjords. The most striking component of the benthic reorganization was an abrupt fivefold increase in macroalgal cover in 1995 in Kongsfjord and an eightfold increase in 2000 in Smeerenburgfjord. Simultaneous changes in the abundance of benthic invertebrates suggest that the macroalgae played a key structuring role in these communities. The abrupt, substantial, and persistent nature of the changes observed is indicative of a climate-driven ecological regime shift. The ecological processes thought to drive the observed regime shifts are likely to promote the borealization of these Arctic marine communities in the coming years. PMID:22891319
NASA Astrophysics Data System (ADS)
Kim, Y.; Wang, Z.
2017-12-01
The vegetation types change in Arctic has been studied using 10 years of MODIS land cover product (MCD12Q1). The shrub expansion is observed in Alaska and Northeast Asia, while shrub fraction decreases in North Canada and Southwest Arctic Eurasia. The total Arctic shrub fraction increases 3% in 10 years. The tundra decreases where the shrub expands, and thrives where the shrub retreats. In order to isolate the influence of the vegetation dynamic on the permafrost thawing, the Arctic terrestrial ecosystem in recent decades will be simulated using the Community Land Model (CLM) with and without the vegetation type changes. The energy and carbon exchange on the land surface will also be simulated and compared. Acknowledgement: This work was supported by the Korea Polar Research Institute (KOPRI, PN17081) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800).
NASA Astrophysics Data System (ADS)
Taketani, F.; Miyakawa, T.; Takigawa, M.; Yamaguchi, M.; Kanaya, Y.; Komazaki, Y.; Takashima, H.; Mordovskoi, P.; Tohjima, Y.
2017-12-01
Black carbon (BC), formed through the incomplete combustion of fossil fuels, biofuels, and biomass, is a major component of light-absorbing particulate matter in the atmosphere, causing positive radiative forcing. Also, BC deposition on the surface reduces the Earth's albedo and accelerates snow/ice melting by absorbing the sunlight. Therefore, the impact of BC on the Arctic climate needs to be assessed; however, observational information has been still insufficient. Over the Arctic Ocean, we have been conducting ship-based BC observations using a single particle soot photometer (SP2) on R/V Mirai every summer since 2014. To estimate the transport pathways of BC, we have also conducted model simulations during the period of cruise using a regional transport model (WRF-Chem 3.8.1). Here we focus on observations conducted on-board the R/V Mirai from 22 August to 5 October 2016 in a round trip to the Arctic Ocean through the Bering Strait from a port of Hachinohe (40.52N, 141.51E), Japan. We captured relatively high BC mass concentration events in this observation. The observed average BC mass concentration during 2016 was 0.8 ± 1.4 ng/m3 in >70N, similar to the levels ( 1.0ng/m3) recorded during our previous observations in the Arctic during 2014 and 2015. The variations in the observed concentrations in 2016 were qualitatively well reproduced by the regional chemical transport model. Quantitatively, however, the model tended to overestimate the BC levels, suggesting the possibilities that the emission rates were overestimated and/or the removal rates were underestimated. We will present further analysis on the size distribution, coating, and possible sources.
NASA Astrophysics Data System (ADS)
Sommar, J.; Andersson, M. E.; Jacobi, H.-W.
2010-06-01
Using the Swedish icebreaker Oden as a platform, continuous measurements of airborne mercury (gaseous elemental mercury (Hg0), divalent gaseous mercury species HgIIX2(g) (acronym RGM) and mercury attached to particles (PHg)) and some long-lived trace gases (carbon monoxide CO and ozone O3) were performed over the North Atlantic and the Arctic Ocean. The measurements were performed for nearly three months (July-September 2005) during the Beringia 2005 expedition (from Göteborg, Sweden via the proper Northwest Passage to the Beringia region Alaska - Chukchi Penninsula - Wrangel Island and in-turn via a north-polar transect to Longyearbyen, Spitsbergen). The Beringia 2005 expedition was the first time that these species have been measured during summer over the Arctic Ocean going from 60° to 90° N. During the North Atlantic transect, concentration levels of Hg0, CO and O3 were measured comparable to typical levels for the ambient mid-hemispheric average. However, a rapid increase of Hg0 in air and surface water was observed when entering the ice-covered waters of the Canadian Arctic archipelago. Large parts of the measured waters were supersaturated with respect to Hg0, reflecting a strong disequilibrium. Heading through the sea ice of the Arctic Ocean, a fraction of the strong Hg0 pulse in the water was transferred with some time-delay into the air samples collected ~20 m above sea level. Several episodes of elevated Hg0 in air were encountered along the sea ice route with higher mean concentration (1.81±0.43 ng m-3) compared to the marine boundary layer over ice-free Arctic oceanic waters (1.55±0.21 ng m-3). In addition, the bulk of the variance in the temporal series of Hg0 concentrations was observed during July. The Oden Hg0 observations compare in this aspect very favourably with those at the coastal station Alert. Atmospheric boundary layer O3 mixing ratios decreased when initially sailing northward. In the Arctic, an O3 minimum around 15-20 ppbV was observed during summer (July-August). Alongside the polar transect during the beginning of autumn, a steady trend of increasing O3 mixing ratios was measured returning to initial levels of the expedition (>30 ppbV). Ambient CO was fairly stable (84±12 ppbV) during the expedition. However, from the Beaufort Sea and moving onwards steadily increasing CO mixing ratios were observed (0.3 ppbV day-1). On a comparison with coeval archived CO and O3 data from the Arctic coastal strip monitoring sites Barrow and Alert, the observations from Oden indicate these species to be homogeneously distributed over the Arctic Ocean. Neither correlated low ozone and Hg0 events nor elevated concentrations of RGM and PHg were at any extent sampled, suggesting that atmospheric mercury deposition to the Arctic basin is low during the Polar summer and autumn.
A climatologically significant aerosol longwave indirect effect in the Arctic.
Lubin, Dan; Vogelmann, Andrew M
2006-01-26
The warming of Arctic climate and decreases in sea ice thickness and extent observed over recent decades are believed to result from increased direct greenhouse gas forcing, changes in atmospheric dynamics having anthropogenic origin, and important positive reinforcements including ice-albedo and cloud-radiation feedbacks. The importance of cloud-radiation interactions is being investigated through advanced instrumentation deployed in the high Arctic since 1997 (refs 7, 8). These studies have established that clouds, via the dominance of longwave radiation, exert a net warming on the Arctic climate system throughout most of the year, except briefly during the summer. The Arctic region also experiences significant periodic influxes of anthropogenic aerosols, which originate from the industrial regions in lower latitudes. Here we use multisensor radiometric data to show that enhanced aerosol concentrations alter the microphysical properties of Arctic clouds, in a process known as the 'first indirect' effect. Under frequently occurring cloud types we find that this leads to an increase of an average 3.4 watts per square metre in the surface longwave fluxes. This is comparable to a warming effect from established greenhouse gases and implies that the observed longwave enhancement is climatologically significant.
Optimizing Observations of Sea Ice Thickness and Snow Depth in the Arctic
2014-09-30
changes in the thickness of sea ice, glaciers , and ice sheets. These observations are critical for predicting the response of Earth’s polar ice to...Arctic Sea Ice Conditions in Spring 2009 - 2013 Prior to Melt , Geophys. Res. Lett., 40, 5888-5893, doi: 10.1002/2013GL058011. [published, refereed
NASA Astrophysics Data System (ADS)
Kirpes, R.; Rodriguez, B.; Kim, S.; Park, K.; China, S.; Laskin, A.; Pratt, K.
2017-12-01
The Arctic region is rapidly changing due to sea ice loss and increasing oil/gas development and shipping activity. These changes influence aerosol sources and composition, resulting in complex aerosol-cloud-climate feedbacks. Atmospheric particles were collected aboard the R/V Araon in July-August 2016 in the Alaskan Arctic along the Bering Strait and Chukchi Sea. Offline analysis of individual particles by microscopic and spectroscopic techniques provided information on particle size, morphology, and chemical composition. Sea spray aerosol (SSA) and organic aerosol (OA) particles were the most commonly observed particle types, and sulfate was internally mixed with both SSA and OA. Evidence of multiphase sea spray aerosol reactions was observed, with varying degrees of chlorine depletion observed along the cruise. Notably, atmospherically processed SSA, completely depleted in chlorine, and internally mixed organic and sulfate particles, were observed in samples influenced by the central Arctic Ocean. Changes in particle composition due to fog processing were also investigated. Due to the changing aerosol sources and atmospheric processes in the Arctic region, it is crucial to understand aerosol composition in order to predict climate impacts.
Tveit, Alexander Tøsdal; Urich, Tim; Frenzel, Peter; Svenning, Mette Marianne
2015-01-01
Arctic permafrost soils store large amounts of soil organic carbon (SOC) that could be released into the atmosphere as methane (CH4) in a future warmer climate. How warming affects the complex microbial network decomposing SOC is not understood. We studied CH4 production of Arctic peat soil microbiota in anoxic microcosms over a temperature gradient from 1 to 30 °C, combining metatranscriptomic, metagenomic, and targeted metabolic profiling. The CH4 production rate at 4 °C was 25% of that at 25 °C and increased rapidly with temperature, driven by fast adaptations of microbial community structure, metabolic network of SOC decomposition, and trophic interactions. Below 7 °C, syntrophic propionate oxidation was the rate-limiting step for CH4 production; above this threshold temperature, polysaccharide hydrolysis became rate limiting. This change was associated with a shift within the functional guild for syntrophic propionate oxidation, with Firmicutes being replaced by Bacteroidetes. Correspondingly, there was a shift from the formate- and H2-using Methanobacteriales to Methanomicrobiales and from the acetotrophic Methanosarcinaceae to Methanosaetaceae. Methanogenesis from methylamines, probably stemming from degradation of bacterial cells, became more important with increasing temperature and corresponded with an increased relative abundance of predatory protists of the phylum Cercozoa. We concluded that Arctic peat microbiota responds rapidly to increased temperatures by modulating metabolic and trophic interactions so that CH4 is always highly produced: The microbial community adapts through taxonomic shifts, and cascade effects of substrate availability cause replacement of functional guilds and functional changes within taxa. PMID:25918393
Campbell, William J.; Gloersen, Per; Zwally, H. Jay; ,
1984-01-01
Observations made from 1972 to 1976 with the Electrically Scanning Microwave Radiometer on board the Nimbus-5 satellite provide sequential synoptic information of the Arctic sea ice cover. This four-year data set was used to construct a fairly continuous series of three-day average 19-GHz passive microwave images which has become a valuable source of polar information, yielding many anticipated and unanticipated discoveries of the sea ice canopy observed in its entirety through the clouds and during the polar night. Short-term, seasonal, and annual variations of key sea ice parameters, such as ice edge position, ice types, mixtures of ice types, ice concentrations, and snow melt on the ice, are presented for various parts of the Arctic.
Jorien E. Vonk,; Tank, Suzanne E.; Paul J. Mann,; Robert G.M. Spencer,; Treat, Claire C.; Striegl, Robert G.; Benjamin W. Abbott,; Wickland, Kimberly P.
2015-01-01
As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the degradability of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism, yet knowledge of the mechanistic controls on DOC biodegradability is currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences commonly used in the literature. We also synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-arctic trends in BDOC.An increasing extent of permafrost across the landscape resulted in higher DOC losses in both soil and aquatic systems. We hypothesize that the unique composition of (yedoma) permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively short flow path lengths and transport times, contributed to a higher overall terrestrial and freshwater DOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January–December) decrease in BDOC in large streams and rivers, but saw no apparent change in smaller streams or soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later in the summer, as well as decreasing hydrologic connectivity between soils and surface water as the thaw season progresses. Our results suggest that future climate warming-induced shifts of continuous permafrost into discontinuous permafrost regions could affect the degradation potential of thaw-released DOC, the amount of BDOC, as well as its variability throughout the Arctic summer. We lastly recommend a standardized BDOC protocol to facilitate the comparison of future work and improve our knowledge of processing and transport of DOC in a changing Arctic.
NASA Astrophysics Data System (ADS)
Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G. M.; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.
2015-12-01
As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the degradability of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism, yet knowledge of the mechanistic controls on DOC biodegradability is currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences commonly used in the literature. We also synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher DOC losses in both soil and aquatic systems. We hypothesize that the unique composition of (yedoma) permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively short flow path lengths and transport times, contributed to a higher overall terrestrial and freshwater DOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January-December) decrease in BDOC in large streams and rivers, but saw no apparent change in smaller streams or soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later in the summer, as well as decreasing hydrologic connectivity between soils and surface water as the thaw season progresses. Our results suggest that future climate warming-induced shifts of continuous permafrost into discontinuous permafrost regions could affect the degradation potential of thaw-released DOC, the amount of BDOC, as well as its variability throughout the Arctic summer. We lastly recommend a standardized BDOC protocol to facilitate the comparison of future work and improve our knowledge of processing and transport of DOC in a changing Arctic.
2009/2010 Eurasian Cold Winter and Loss of Arctic Sea-ice over Barents/Kara Sea
NASA Astrophysics Data System (ADS)
Shim, T.; Kim, B.; Kim, S.
2012-12-01
In 2009/2010 winter, a few extreme cold events and heavy snowfall occurred over central North America, north western Europe, and East Asia exerting a severe social and economic impacts. In this study, we performed modeling experiments to examine the role of substantially reduced Arctic sea-ice over Barents/Kara Sea on the 2009/2010 cold winters. Although several previous studies investigated cause of the extreme events and emphasized the large snow-covered area over Siberia in autumn 2009, we note that the area extent of Arctic sea-ice over Barents/Kara sea in autumn 2009 was anomalously low and the possible impact from Arctic for the extreme cold events has not been presented. To investigate the influence from the Arctic, we designed three model runs using Community Atmosphere Model Version 3 (CAM3). Each simulation differs by the prescribed surface boundary conditions: (a) CTRL - climatological seasonal cycle of sea surface temperature (SST) and sea-ice concentration (SIC) are prescribed everywhere, (b) EXP_65N - SST and SIC inside the Arctic circle (north of 65°N) are replaced by 2009/2010 values. Elsewhere, the climatology is used, (c) EXP_BK - Same with (b) except that SIC and SST are fixed only over Barents/Kara Sea where the sea-ice area dropped significantly in 2009/2010 winter. Model results from EXP_65N and EXP_BK commonly showed a large increase of air temperature in the lower troposphere where Arctic sea-ice showed a large reduction. Also, compared with the observation, model successfully captured thickened geopotential height in the Arctic and showed downstream wave propagation toward midlatitude. From the analysis, we reveal that this large dipolar Arctic-midlatitude teleconnection pattern in the upper troposphere easily propagate upward and played a role in the weakening of polar vortex. This is also confirmed in the observation. However, the timing of excitation of upward propagating wave in EXP_65N and EXP_BK were different and thus the timing of weakening of polar vortex also differs in each experiment. Unlike with our expectation, both EXP_65N and EXP_BK did not capture the abrupt increase of snow-cover in the observation over Siberian region in autumn 2009. Therefore, given the successful reproduction of key observed features of cold winter 2009/2010 by EXP_65N and EXP_BK, we conclude that Arctic sea-ice in autumn 2009 played a key role for the subsequent development of cold winter 2009/2010 and the role was largely independent with the autumn snow-cover.
Sediments in Arctic sea ice: Implications for entrainment, transport and release
Nurnberg, D.; Wollenburg, I.; Dethleff, D.; Eicken, H.; Kassens, H.; Letzig, T.; Reimnitz, E.; Thiede, Jorn
1994-01-01
Despite the Arctic sea ice cover's recognized sensitivity to environmental change, the role of sediment inclusions in lowering ice albedo and affecting ice ablation is poorly understood. Sea ice sediment inclusions were studied in the central Arctic Ocean during the Arctic 91 expedition and in the Laptev Sea (East Siberian Arctic Region Expedition 1992). Results from these investigations are here combined with previous studies performed in major areas of ice ablation and the southern central Arctic Ocean. This study documents the regional distribution and composition of particle-laden ice, investigates and evaluates processes by which sediment is incorporated into the ice cover, and identifies transport paths and probable depositional centers for the released sediment. In April 1992, sea ice in the Laptev Sea was relatively clean. The sediment occasionally observed was distributed diffusely over the entire ice column, forming turbid ice. Observations indicate that frazil and anchor ice formation occurring in a large coastal polynya provide a main mechanism for sediment entrainment. In the central Arctic Ocean sediments are concentrated in layers within or at the surface of ice floes due to melting and refreezing processes. The surface sediment accumulation in central Arctic multi-year sea ice exceeds by far the amounts observed in first-year ice from the Laptev Sea in April 1992. Sea ice sediments are generally fine grained, although coarse sediments and stones up to 5 cm in diameter are observed. Component analysis indicates that quartz and clay minerals are the main terrigenous sediment particles. The biogenous components, namely shells of pelecypods and benthic foraminiferal tests, point to a shallow, benthic, marine source area. Apparently, sediment inclusions were resuspended from shelf areas before and incorporated into the sea ice by suspension freezing. Clay mineralogy of ice-rafted sediments provides information on potential source areas. A smectite maximum in sea ice sediment samples repeatedly occurred between 81??N and 83??N along the Arctic 91 transect, indicating a rather stable and narrow smectite rich ice drift stream of the Transpolar Drift. The smectite concentrations are comparable to those found in both Laptev Sea shelf sediments and anchor ice sediments, pointing to this sea as a potential source area for sea ice sediments. In the central Arctic Ocean sea ice clay mineralogy is significantly different from deep-sea clay mineral distribution patterns. The contribution of sea ice sediments to the deep sea is apparently diluted by sedimentary material provided by other transport mechanisms. ?? 1994.
Reconstruction of Arctic surface temperature in past 100 years using DINEOF
NASA Astrophysics Data System (ADS)
Zhang, Qiyi; Huang, Jianbin; Luo, Yong
2015-04-01
Global annual mean surface temperature has not risen apparently since 1998, which is described as global warming hiatus in recent years. However, measuring of temperature variability in Arctic is difficult because of large gaps in coverage of Arctic region in most observed gridded datasets. Since Arctic has experienced a rapid temperature change in recent years that called polar amplification, and temperature risen in Arctic is faster than global mean, the unobserved temperature in central Arctic will result in cold bias in both global and Arctic temperature measurement compared with model simulations and reanalysis datasets. Moreover, some datasets that have complete coverage in Arctic but short temporal scale cannot show Arctic temperature variability for long time. Data Interpolating Empirical Orthogonal Function (DINEOF) were applied to fill the coverage gap of NASA's Goddard Institute for Space Studies Surface Temperature Analysis (GISTEMP 250km smooth) product in Arctic with IABP dataset which covers entire Arctic region between 1979 and 1998, and to reconstruct Arctic temperature in 1900-2012. This method provided temperature reconstruction in central Arctic and precise estimation of both global and Arctic temperature variability with a long temporal scale. Results have been verified by extra independent station records in Arctic by statistical analysis, such as variance and standard deviation. The result of reconstruction shows significant warming trend in Arctic in recent 30 years, as the temperature trend in Arctic since 1997 is 0.76°C per decade, compared with 0.48°C and 0.67°C per decade from 250km smooth and 1200km smooth of GISTEMP. And global temperature trend is two times greater after using DINEOF. The discrepancies above stress the importance of fully consideration of temperature variance in Arctic because gaps of coverage in Arctic cause apparent cold bias in temperature estimation. The result of global surface temperature also proves that global warming in recent years is not as slow as thought.
Estimation of polar low characteristics for the Nordic Seas for 1995-2008 using satellite data
NASA Astrophysics Data System (ADS)
Smirnova, Julia; Chapron, Bertrand; Zabolotskikh, Elizaveta; Leonid Bobylev, Mr
In recent years the scientific research confirmed the fact of the global warming. The Arctic climate is warming even more rapidly. Powerful storm polar lows having wind speeds of about 25 m/c are known to be the cause of hazardous weather. Polar lows present themselves as the atmospheric phenomena the horizontal dimensions of which do not exceed 1,000 km, appear and which exist from 12 to 24 hours. The wave fall and low temperatures can lead to increased probability of vessel icing the intensity of which increases with the high wind speed and large wave height. Study of the mesoscale processes, such as polar lows in the Arctic has become especially relevant due to the sharp sea ice decreasing in the Arctic Ocean and Arctic seas in recent years. Only the use of satellite data allows obtaining regular and spacious information about the polar lows. Early detection and evaluation of the characteristics of the polar lows is an extremely important task to ensure the safety of navigation, fishing and oil industry in the Arctic region. With new open areas dangerous polar lows can arise over them. So early detection of the polar lows, studying their characteristics, tracking their movement and prediction presents one the most important problems of the modern science. The present-day meteorological observational network has severe limitations in detecting all, especially small mesoscale cyclones, so there is a strong need for new and/or improved methods to detect and monitor polar lows. Satellite remote sensing seems to be the most feasible tool for early detection and monitoring of the polar lows. Several remote sensing sensors are capable to detect a polar low but each of them suffers from various deficiencies. In the work, satellite passive microwave data have been intensively exploited aiming at obtaining the fields of geophysical parameters inside the polar lows. DMSP Special Sensor Microwave/Imager - SSM/I data were used in the research. The polar lows have been identified on satellite passive microwave imagery by fields of means of analysis of atmospheric water vapour fields using a new approach. This approach consists of two stages. During the first stage the total atmospheric water vapor fields are calculated from passive microwave measurements using precise retrieval Neural Network Algorithms (Bobylev et al., 2010). During the second stage the vortex structures are detected in these fields, and polar lows are identified and tracked. Based on this approach, were estimated polar low characteristics in the Nordic seas for the period of 1995 - 2008. All polar lows have been identified for this period on SSM/I imagery. Other satellite data, such as QuikSCAT SeaWinds, NOAA AVHRR were used as additional information for polar low parameter retrieval and analysis.
The Coastal Observing System for Northern and Arctic Seas (COSYNA)
NASA Astrophysics Data System (ADS)
Baschek, Burkard; Schroeder, Friedhelm; Brix, Holger; Riethmüller, Rolf; Badewien, Thomas H.; Breitbach, Gisbert; Brügge, Bernd; Colijn, Franciscus; Doerffer, Roland; Eschenbach, Christiane; Friedrich, Jana; Fischer, Philipp; Garthe, Stefan; Horstmann, Jochen; Krasemann, Hajo; Metfies, Katja; Merckelbach, Lucas; Ohle, Nino; Petersen, Wilhelm; Pröfrock, Daniel; Röttgers, Rüdiger; Schlüter, Michael; Schulz, Jan; Schulz-Stellenfleth, Johannes; Stanev, Emil; Staneva, Joanna; Winter, Christian; Wirtz, Kai; Wollschläger, Jochen; Zielinski, Oliver; Ziemer, Friedwart
2017-05-01
The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the German Bight in the North Sea as a prime example of a heavily used coastal area, and Svalbard as an example of an Arctic coast that is under strong pressure due to global change.The COSYNA automated observing and modelling system is designed to monitor real-time conditions and provide short-term forecasts, data, and data products to help assess the impact of anthropogenically induced change. Observations are carried out by combining satellite and radar remote sensing with various in situ platforms. Novel sensors, instruments, and algorithms are developed to further improve the understanding of the interdisciplinary interactions between physics, biogeochemistry, and the ecology of coastal seas. New modelling and data assimilation techniques are used to integrate observations and models in a quasi-operational system providing descriptions and forecasts of key hydrographic variables. Data and data products are publicly available free of charge and in real time. They are used by multiple interest groups in science, agencies, politics, industry, and the public.
The Arctic Lower Troposphere Observed Structure (ALTOS) Campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verlinde, J
2010-10-18
The ALTOS campaign focuses on operating a tethered observing system for routine in situ sampling of low-level (< 2 km) Arctic clouds. It has been a long-term hope to fly tethered systems at Barrow, Alaska, but it is clear that the Federal Aviation Administration (FAA) will not permit in-cloud tether systems at Barrow, even if unmanned aerial vehicle (UAV) operations are allowed in the future. We have provided the scientific rationale for long-term, routine in situ measurements of cloud and aerosol properties in the Arctic. The existing restricted air space at Oliktok offers an opportunity to do so.
NASA Astrophysics Data System (ADS)
Cox, Christopher J.
The polar regions serve an important role in the Earth's energy balance by acting as a heat sink for the global climate system. In the Arctic, a complex distribution of continental and oceanic features support large spatial variability in environmental parameters important for climate. Additionally, feedbacks that are unique to the cryosphere cause the region to be very sensitive to climate perturbations. Environmental changes are being observed, including increasing temperatures, reductions in sea ice extent and thickness, melting permafrost, changing atmospheric circulation patterns and changing cloud properties, which may be signaling a shift in climate. Despite these changes, the Arctic remains an understudied region, including with respect to the atmosphere and clouds. A better understanding of cloud properties and their geographical variability is needed to better understand observed changes and to forecast the future state of the system, to support adaptation and mitigation strategies, and understand how Arctic change impacts other regions of the globe. Surface-based observations of the atmosphere are critical measurements in this effort because they are high quality and have high temporal resolution, but there are few atmospheric observatories in the Arctic and the period of record is short. Reanalyses combine assimilated observations with models to fill in spatial and temporal data gaps, and also provide additional model-derived parameters. Reanalyses are spatially comprehensive, but are limited by large uncertainties and biases, in particular with respect to derived parameters. Infrared radiation is a large component of the surface energy budget. Infrared emission from clouds is closely tied to cloud properties, so measurements of the infrared spectrum can be used to retrieve information about clouds and can also be used to investigate the influence clouds have on the surface radiation balance. In this dissertation, spectral infrared radiances and other observations obtained between 2006 and 2012 at three Arctic observatories are used to investigate the spatial and temporal characteristics of cloud properties in the Arctic. The observatory locations are Barrow, Alaska; Eureka, Nunavut, Canada; and Summit Station, Greenland. Additional spatial information is inferred from reanalysis data. Therefore, to establish confidence in analysis results and context for interpretation, the reanalyses are validated using the surface observations in a mutually informative validation-analysis approach. In Chapter 1, a method is developed to convert spectral infrared radiances to downwelling infrared flux. These measurements are used to compare Barrow and Eureka. These sites are then situated in the context of the greater Arctic using the reanalyses. In Chapter 2, spectral infrared radiances are used to obtain a baseline data set of cloud microphysical and optical properties from Eureka. In Chapter 3, downwelling infrared fluxes are obtained from Summit Station using the method from Chapter 1 and are used to develop a new method for reanalysis validation. Comparisons are made between Summit, Barrow and Eureka. Spatial comparisons of cloud infrared influence are made across the Greenland ice sheet using the reanalyses. Chapter 4 reports on an effort to conduct timely and engaging educational programs for high school students in the Arctic, thereby helping to extend the reach of Arctic cloud science beyond research community.
The International Arctic Buoy Programme (IABP)
NASA Astrophysics Data System (ADS)
Rigor, I. G.; Ortmeyer, M.
2003-12-01
The Arctic has undergone dramatic changes in weather, climate and environment. It should be noted that many of these changes were first observed and studied using data from the International Arctic Buoy Programme (IABP). For example, IABP data were fundamental to Walsh et al. (1996) showing that atmospheric pressure has decreased, Rigor et al. (2000) showing that air temperatures have increased, and to Proshutinsky and Johnson (1997); Steele and Boyd, (1998); Kwok, (2000); and Rigor et al. (2002) showing that the clockwise circulation of sea ice and the ocean has weakened. All these results relied heavily on data from the IABP. In addition to supporting these studies of climate change, the IABP observations are also used to forecast weather and ice conditions, validate satellite retrievals of environmental variables, to force, validate and initialize numerical models. Over 350 papers have been written using data from the IABP. The observations and datasets of the IABP data are one of the cornerstones for environmental forecasting and research in the Arctic.
Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter
NASA Astrophysics Data System (ADS)
Khosrawi, Farahnaz; Kirner, Oliver; Sinnhuber, Björn-Martin; Johansson, Sören; Höpfner, Michael; Santee, Michelle L.; Froidevaux, Lucien; Ungermann, Jörn; Ruhnke, Roland; Woiwode, Wolfgang; Oelhaf, Hermann; Braesicke, Peter
2017-11-01
The 2015/2016 Arctic winter was one of the coldest stratospheric winters in recent years. A stable vortex formed by early December and the early winter was exceptionally cold. Cold pool temperatures dropped below the nitric acid trihydrate (NAT) existence temperature of about 195 K, thus allowing polar stratospheric clouds (PSCs) to form. The low temperatures in the polar stratosphere persisted until early March, allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles led to denitrification as well as dehydration of stratospheric layers. Model simulations of the 2015/2016 Arctic winter nudged toward European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the Polar Stratosphere in a Changing Climate (POLSTRACC) campaign. POLSTRACC is a High Altitude and Long Range Research Aircraft (HALO) mission aimed at the investigation of the structure, composition and evolution of the Arctic upper troposphere and lower stratosphere (UTLS). The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, PSCs and cirrus clouds are investigated. In this study, an overview of the chemistry and dynamics of the 2015/2016 Arctic winter as simulated with EMAC is given. Further, chemical-dynamical processes such as denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter are investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS) as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) performed aboard HALO during the POLSTRACC campaign show that the EMAC simulations nudged toward ECMWF analysis generally agree well with observations. We derive a maximum polar stratospheric O3 loss of ˜ 2 ppmv or 117 DU in terms of column ozone in mid-March. The stratosphere was denitrified by about 4-8 ppbv HNO3 and dehydrated by about 0.6-1 ppmv H2O from the middle to the end of February. While ozone loss was quite strong, but not as strong as in 2010/2011, denitrification and dehydration were so far the strongest observed in the Arctic stratosphere in at least the past 10 years.
Ma, Yuxin; Xie, Zhiyong; Lohmann, Rainer; Mi, Wenying; Gao, Guoping
2017-04-04
The presence of organophosphate ester (OPE) flame retardants and plasticizers in surface sediment from the North Pacific to Arctic Ocean was observed for the first time during the fourth National Arctic Research Expedition of China in the summer of 2010. The samples were analyzed for three halogenated OPEs [tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), and tris(dichloroisopropyl) phosphate], three alkylated OPEs [triisobutyl phosphate (TiBP), tri-n-butyl phosphate, and tripentyl phosphate], and triphenyl phosphate. Σ 7 OPEs (total concentration of the observed OPEs) was in the range of 159-4658 pg/g of dry weight. Halogenated OPEs were generally more abundant than the nonhalogenated OPEs; TCEP and TiBP dominated the overall concentrations. Except for that of the Bering Sea, Σ 7 OPEs values increased with increasing latitudes from Bering Strait to the Central Arctic Ocean, while the contributions of halogenated OPEs (typically TCEP and TCPP) to the total OPE profile also increased from the Bering Strait to the Central Arctic Ocean, indicating they are more likely to be transported to the remote Arctic. The median budget of 52 (range of 17-292) tons for Σ 7 OPEs in sediment from the Central Arctic Ocean represents only a very small amount of their total production volume, yet the amount of OPEs in Arctic Ocean sediment was significantly larger than the sum of polybrominated diphenyl ethers (PBDEs) in the sediment, indicating they are equally prone to long-range transport away from source regions. Given the increasing level of production and usage of OPEs as substitutes of PBDEs, OPEs will continue to accumulate in the remote Arctic.
NASA Astrophysics Data System (ADS)
Linderholm, Hans W.; Nicolle, Marie; Francus, Pierre; Gajewski, Konrad; Helama, Samuli; Korhola, Atte; Solomina, Olga; Yu, Zicheng; Zhang, Peng; D'Andrea, William J.; Debret, Maxime; Divine, Dmitry V.; Gunnarson, Björn E.; Loader, Neil J.; Massei, Nicolas; Seftigen, Kristina; Thomas, Elizabeth K.; Werner, Johannes; Andersson, Sofia; Berntsson, Annika; Luoto, Tomi P.; Nevalainen, Liisa; Saarni, Saija; Väliranta, Minna
2018-04-01
Reanalysis data show an increasing trend in Arctic precipitation over the 20th century, but changes are not homogenous across seasons or space. The observed hydroclimate changes are expected to continue and possibly accelerate in the coming century, not only affecting pan-Arctic natural ecosystems and human activities, but also lower latitudes through the atmospheric and ocean circulations. However, a lack of spatiotemporal observational data makes reliable quantification of Arctic hydroclimate change difficult, especially in a long-term context. To understand Arctic hydroclimate and its variability prior to the instrumental record, climate proxy records are needed. The purpose of this review is to summarise the current understanding of Arctic hydroclimate during the past 2000 years. First, the paper reviews the main natural archives and proxies used to infer past hydroclimate variations in this remote region and outlines the difficulty of disentangling the moisture from the temperature signal in these records. Second, a comparison of two sets of hydroclimate records covering the Common Era from two data-rich regions, North America and Fennoscandia, reveals inter- and intra-regional differences. Third, building on earlier work, this paper shows the potential for providing a high-resolution hydroclimate reconstruction for the Arctic and a comparison with last-millennium simulations from fully coupled climate models. In general, hydroclimate proxies and simulations indicate that the Medieval Climate Anomaly tends to have been wetter than the Little Ice Age (LIA), but there are large regional differences. However, the regional coverage of the proxy data is inadequate, with distinct data gaps in most of Eurasia and parts of North America, making robust assessments for the whole Arctic impossible at present. To fully assess pan-Arctic hydroclimate variability for the last 2 millennia, additional proxy records are required.
Vertical structure of recent Arctic warming.
Graversen, Rune G; Mauritsen, Thorsten; Tjernström, Michael; Källén, Erland; Svensson, Gunilla
2008-01-03
Near-surface warming in the Arctic has been almost twice as large as the global average over recent decades-a phenomenon that is known as the 'Arctic amplification'. The underlying causes of this temperature amplification remain uncertain. The reduction in snow and ice cover that has occurred over recent decades may have played a role. Climate model experiments indicate that when global temperature rises, Arctic snow and ice cover retreats, causing excessive polar warming. Reduction of the snow and ice cover causes albedo changes, and increased refreezing of sea ice during the cold season and decreases in sea-ice thickness both increase heat flux from the ocean to the atmosphere. Changes in oceanic and atmospheric circulation, as well as cloud cover, have also been proposed to cause Arctic temperature amplification. Here we examine the vertical structure of temperature change in the Arctic during the late twentieth century using reanalysis data. We find evidence for temperature amplification well above the surface. Snow and ice feedbacks cannot be the main cause of the warming aloft during the greater part of the year, because these feedbacks are expected to primarily affect temperatures in the lowermost part of the atmosphere, resulting in a pattern of warming that we only observe in spring. A significant proportion of the observed temperature amplification must therefore be explained by mechanisms that induce warming above the lowermost part of the atmosphere. We regress the Arctic temperature field on the atmospheric energy transport into the Arctic and find that, in the summer half-year, a significant proportion of the vertical structure of warming can be explained by changes in this variable. We conclude that changes in atmospheric heat transport may be an important cause of the recent Arctic temperature amplification.
Bayesian Networks for Modeling Dredging Decisions
2011-10-01
change scenarios. Arctic Expert elicitation Netica Bacon et al . 2002 Identify factors that might lead to a change in land use from farming to...tree) algorithms developed by Lauritzen and Spiegelhalter (1988) and Jensen et al . (1990). Statistical inference is simply the process of...causality when constructing a Bayesian network (Kjaerulff and Madsen 2008, Darwiche 2009, Marcot et al . 2006). A knowledge representation approach is the
NASA Astrophysics Data System (ADS)
Nugent, Paul Winston
Cloud cover is an important but poorly understood component of current climate models, and although climate change is most easily observed in the Arctic, cloud data in the Arctic is unreliable or simply unavailable. Ground-based infrared cloud imaging has the potential to fill this gap. This technique uses a thermal infrared camera to observe cloud amount, cloud optical depth, and cloud spatial distribution at a particular location. The Montana State University Optical Remote Sensor Laboratory has developed the ground-based Infrared Cloud Imager (ICI) instrument to measure spatial and temporal cloud data. To build an ICI for Arctic sites required the system to be engineered to overcome the challenges of this environment. Of particular challenge was keeping the system calibration and data processing accurate through the severe temperature changes. Another significant challenge was that weak emission from the cold, dry Arctic atmosphere pushed the camera used in the instrument to its operational limits. To gain an understanding of the operation of the ICI systems for the Arctic and to gather critical data on Arctic clouds, a prototype arctic ICI was deployed in Barrow, AK from July 2012 through July 2014. To understand the long-term operation of an ICI in the arctic, a study was conducted of the ICI system accuracy in relation to co-located active and passive sensors. Understanding the operation of this system in the Arctic environment required careful characterization of the full optical system, including the lens, filter, and detector. Alternative data processing techniques using decision trees and support vector machines were studied to improve data accuracy and reduce dependence on auxiliary instrument data and the resulting accuracy is reported here. The work described in this project was part of the effort to develop a fourth-generation ICI ready to be deployed in the Arctic. This system will serve a critical role in developing our understanding of cloud cover in the Arctic, an important but poorly understood region of the world.
Observing a catastrophic thermokarst lake drainage in northern Alaska
Jones, Benjamin M.; Arp, Christopher D.
2015-01-01
The formation and drainage of thermokarst lakes have reshaped ice-rich permafrost lowlands in the Arctic throughout the Holocene. North of Teshekpuk Lake, on the Arctic Coastal Plain of northern Alaska, thermokarst lakes presently occupy 22.5% of the landscape, and drained thermokarst lake basins occupy 61.8%. Analysis of remotely sensed imagery indicates that nine lakes (>10 ha) have drained in the 1,750 km2 study area between 1955 and 2014. The most recent lake drainage was observed using in situ data loggers providing information on the duration and magnitude of the event, and a nearby weather station provided information on the environmental conditions preceding the lake drainage. Lake 195 (L195), an 80 ha thermokarst lake with an estimated water volume of ~872,000 m3, catastrophically drained on 05 July 2014. Abundant winter snowfall and heavy early summer precipitation resulted in elevated lake water levels that likely promoted bank overtopping, thermo-erosion along an ice-wedge network, and formation of a 9 m wide, 2 m deep, and 70 m long drainage gully. The lake emptied in 36 hours, with 75% of the water volume loss occurring in the first ten hours. The observed peak discharge of the resultant flood was 25 m3/s, which is similar to that in northern Alaska river basins whose areas are more than two orders of magnitude larger. Our findings support the catastrophic nature of sudden lake drainage events and the mechanistic hypotheses developed by J. Ross Mackay.
Symptoms of change in multi-scale observations of arctic ecosystem carbon cycling
NASA Astrophysics Data System (ADS)
Stoy, P. C.; Williams, M. D.; Hartley, I. P.; Street, L.; Hill, T. C.; Prieto-Blanco, A.; Wayolle, A.; Disney, M.; Evans, J.; Fletcher, B.; Poyatos, R.; Wookey, P.; Merbold, L.; Wade, T. J.; Moncrieff, J.
2009-12-01
Arctic ecosystems are responding rapidly to observed climate change. Quantifying the magnitude of these changes, and their implications for the climate system, requires observations of their current structure and function, as well as extrapolation and modelling (i.e. ‘upscaling’) across time and space. Here, we describe the major results of the International Polar Year (IPY) ABACUS project, a multi-scale investigation across arctic Fennoscandia that couples plant and soil process studies, isotope analyses, flux and micrometeorological measurements, process modelling, and aircraft and satellite observations to improve predictions of the response of the arctic terrestrial biosphere to global change. We begin with a synthesis of eddy covariance observations from the global FLUXNET database. We demonstrate that a simple model parameterized using pan-arctic chamber measurements explains over 80% of the variance of half-hourly CO2 fluxes during the growing season across most arctic and montane tundra ecosystems given accurate measurements of leaf area index (LAI), which agrees with the recently proposed ‘functional convergence’ paradigm for tundra vegetation. The ability of MODIS to deliver accurate LAI estimates is briefly discussed and an adjusted algorithm is presented and validated using direct observations. We argue for an Information Theory-based framework for upscaling in Earth science by conceptualizing multi-scale research as a transfer of information across scales. We then demonstrate how error in upscaled arctic C flux estimates can be reduced to less than 4% from their high-resolution counterpart by formally preserving the information content of high spatial and spectral resolution aircraft and satellite imagery. Jaynes’ classic Maximum Entropy (MaxEnt) principle is employed to incorporate logical, biological and physical constraints to reduce error in downscaled flux estimates. Errors are further reduced by assimilating flux, biological and remote sensing data into the DALEC ecosystem model using the ensemble Kalman filter. We use a flux footprint analysis to demonstrate that the ABACUS study ecosystems display functional convergence at chamber, tower and aircraft scales. The importance of the rapidly changing cold and ‘shoulder’ seasons to annual CO2 flux is emphasized; these represent over 20% of annual C exchange at our field sites. The role of moss in determining non-growing season C uptake and loss is highlighted using direct chamber-based observations. We demonstrate ‘priming’ of the decomposition of older forest soil during the period of vegetative activity using 14CO2 observations, and show that tundra ecosystems paradoxically store more C than birch forests in the region. This biological priming of older C stocks is not included in current models of the arctic C cycle.
NASA Technical Reports Server (NTRS)
Fisher, J. A.; Jacob, D. J.; Purdy, M. T.; Kopacz, M.; LeSager, P.; Carouge, C.; Holmes, C. D.; Yantosca, R. M.; Batchelor, R. L.; Strong, K.;
2009-01-01
We use aircraft observations of carbon monoxide (CO) from the NASA ARCTAS and NOAA ARCPAC campaigns in April 2008 together with multiyear (2003-2008) CO satellite data from the AIRS instrument and a global chemical transport model (GEOS-Chem) to better understand the sources, transport, and interannual variability of pollution in the Arctic in spring. Model simulation of the aircraft data gives best estimates of CO emissions in April 2008 of 26 Tg month-1 for Asian anthropogenic, 9.1 for European anthropogenic, 4.2 for North American anthropogenic, 9.3 for Russian biomass burning (anomalously large that year), and 21 for Southeast Asian biomass burning. We find that Asian anthropogenic emissions are the dominant source of Arctic CO pollution everywhere except in surface air where European anthropogenic emissions are of similar importance. Synoptic pollution influences in the Arctic free troposphere include contributions of comparable magnitude from Russian biomass burning and from North American, European, and Asian anthropogenic sources. European pollution dominates synoptic variability near the surface. Analysis of two pollution events sampled by the aircraft demonstrates that AIRS is capable of observing pollution transport to the Arctic in the mid-troposphere. The 2003-2008 record of CO from AIRS shows that interannual variability averaged over the Arctic cap is very small. AIRS CO columns over Alaska are highly correlated with the Ocean Nino Index, suggesting a link between El Nino and northward pollution transport. AIRS shows lower-than-average CO columns over Alaska during April 2008, despite the Russian fires, due to a weakened Aleutian Low hindering transport from Asia and associated with the moderate 2007-2008 La Nina. This suggests that Asian pollution influence over the Arctic may be particularly large under strong El Nino conditions.
Zdanowicz, Christian; Kruemmel, Eva; Lean, David; Poulain, Alexandre; Kinnard, Christophe; Yumvihoze, Emmanuel; Chen, JiuBin; Hintelmann, Holger
2015-03-15
Sulfate (SO4(2-)) and mercury (Hg) are airborne pollutants transported to the Arctic where they can affect properties of the atmosphere and the health of marine or terrestrial ecosystems. Detecting trends in Arctic Hg pollution is challenging because of the short period of direct observations, particularly of actual deposition. Here, we present an updated proxy record of atmospheric SO4(2-) and a new 40-year record of total Hg (THg) and monomethyl Hg (MeHg) deposition developed from a firn core (P2010) drilled from Penny Ice Cap, Baffin Island, Canada. The updated P2010 record shows stable mean SO4(2-) levels over the past 40 years, which is inconsistent with observations of declining atmospheric SO4(2-) or snow acidity in the Arctic during the same period. A sharp THg enhancement in the P2010 core ca 1991 is tentatively attributed to the fallout from the eruption of the Icelandic volcano Hekla. Although MeHg accumulation on Penny Ice Cap had remained constant since 1970, THg accumulation increased after the 1980s. This increase is not easily explained by changes in snow accumulation, marine aerosol inputs or air mass trajectories; however, a causal link may exist with the declining sea-ice cover conditions in the Baffin Bay sector. The ratio of THg accumulation between pre-industrial times (reconstructed from archived ice cores) and the modern industrial era is estimated at between 4- and 16-fold, which is consistent with estimates from Arctic lake sediment cores. The new P2010 THg record is the first of its kind developed from the Baffin Island region of the eastern Canadian Arctic and one of very few such records presently available in the Arctic. As such, it may help to bridge the knowledge gap linking direct observation of gaseous Hg in the Arctic atmosphere and actual net deposition and accumulation in various terrestrial media. Copyright © 2014 Elsevier B.V. All rights reserved.
Synoptic Drivers of Precipitation in the Atlantic Sector of the Arctic
NASA Astrophysics Data System (ADS)
Cohen, L.; Hudson, S.; Graham, R.; Renwick, J. A.
2017-12-01
Precipitation in the Arctic has been shown to be increasing in recent decades, from both observational and modelling studies, with largest trends seen in autumn and winter. This trend is attributed to a combination of the warming atmosphere and reduced sea ice extent. The seasonality of precipitation in the Arctic is important as it largely determines whether the precipitation falls as snow or rain. This study assesses the spatial and temporal variability of the synoptic drivers of precipitation in the Atlantic (European) sector of the Arctic. This region of the Arctic is of particular interest as it has the largest inter-annual variability in sea ice extent and is the primary pathway for moisture transport into the Arctic from lower latitudes. This study uses the ECMWF ERA-I reanalysis total precipitation to compare to long-term precipitation observations from Ny Ålesund, Svalbard to show that the reanalysis captures the synoptic variability of precipitation well and that most precipitation in this region is synoptically driven. The annual variability of precipitation in the Atlantic Arctic shows strong regionality. In the Svalbard and Barents Sea region, most of the annual total precipitation occurs during autumn and winter (Oct-Mar) (>60% of annual total), while the high-Arctic (> 80N) and Kara Sea receives most of the annual precipitation ( 60% of annual total) during summer (July-Sept). Using a synoptic classification developed for this region, this study shows that winter precipitation is driven by winter cyclone occurrence, with strong correlations to the AO and NAO indices. High precipitation over Svalbard is also strongly correlated with the Scandinavian blocking pattern, which produces a southerly flow in the Greenland Sea/Svalbard area. An increasing occurrence of these synoptic patterns are seen for winter months (Nov and Jan), which may explain much of the observed winter increase in precipitation.
Enabling Arctic Research Through Science and Engineering Partnerships
NASA Astrophysics Data System (ADS)
Kendall, E. A.; Valentic, T. A.; Stehle, R. H.
2014-12-01
Under an Arctic Research Support and Logistics contract from NSF (GEO/PLR), SRI International, as part of the CH2M HILL Polar Services (CPS) program, forms partnerships with Arctic research teams to provide data transfer, remote operations, and safety/operations communications. This teamwork is integral to the success of real-time science results and often allows for unmanned operations which are both cost-effective and safer. The CPS program utilizes a variety of communications networks, services and technologies to support researchers and instruments throughout the Arctic, including Iridium, VSAT, Inmarsat BGAN, HughesNet, TeleGreenland, radios, and personal locator beacons. Program-wide IT and communications limitations are due to the broad categories of bandwidth, availability, and power. At these sites it is essential to conserve bandwidth and power through using efficient software, coding and scheduling techniques. There are interesting new products and services on the horizon that the program may be able to take advantage of in the future such as Iridium NEXT, Inmarsat Xpress, and Omnispace mobile satellite services. Additionally, there are engineering and computer software opportunities to develop more efficient products. We will present an overview of science/engineering partnerships formed by the CPS program, discuss current limitations and identify future technological possibilities that could further advance Arctic science goals.
Epidemiology of bacterial meningitis in the North American Arctic, 2000-2010.
Gounder, Prabhu P; Zulz, Tammy; Desai, Shalini; Stenz, Flemming; Rudolph, Karen; Tsang, Raymond; Tyrrell, Gregory J; Bruce, Michael G
2015-08-01
To determine the incidence of meningitis caused by Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pneumoniae in the North American Arctic during 2000-2010. Surveillance data were obtained from the International Circumpolar Surveillance network. We defined a case of bacterial meningitis caused by H. influenzae, N. meningitidis, or S. pneumoniae as a culture-positive isolate obtained from a normally sterile site in a resident with a meningitis diagnosis. The annual incidence/100,000 persons for meningitis caused by H. influenzae, N. meningitidis, and S. pneumoniae among all North American Arctic residents was: 0.6, 0.5, and 1.5, respectively; the meningitis incidence among indigenous persons in Alaska and Canada (indigenous status not recorded in Greenland) for those three bacteria was: 2.1, 0.8, and 2.4, respectively. The percentage of pneumococcal isolates belonging to a 7-valent pneumococcal conjugate vaccine serotype declined from 2000-2004 to 2005-2010 (31%-2%, p-value <0.01). During 2005-2010, serotype a caused 55% of H. influenzae meningitis and serogroup B caused 86% of meningococcal meningitis. Compared with all North American Arctic residents, indigenous people suffer disproportionately from bacterial meningitis. Arctic residents could benefit from the development of an H. influenzae serotype a vaccine and implementation of a meningococcal serogroup B vaccine. Published by Elsevier Ltd.
Science Traverses in the Canadian High Arctic
NASA Technical Reports Server (NTRS)
Williamson, Marie-Claude
2012-01-01
The presentation is divided into three parts. Part I is an overview of early expeditions to the High Arctic, and their political consequences at the time. The focus then shifts to the Geological Survey of Canada s mapping program in the North (Operation Franklin), and to the Polar Continental Shelf Project (PCSP), a unique organization that resides within the Government of Canada s Department of Natural Resources, and supports mapping projects and science investigations. PCSP is highlighted throughout the presentation so a description of mandate, budgets, and support infrastructure is warranted. In Part II, the presenter describes the planning required in advance of scientific deployments carried out in the Canadian High Arctic from the perspective of government and university investigators. Field operations and challenges encountered while leading arctic field teams in fly camps are also described in this part of the presentation, with particular emphasis on the 2008 field season. Part III is a summary of preliminary results obtained from a Polar Survey questionnaire sent out to members of the Arctic research community in anticipation of the workshop. The last part of the talk is an update on the analog program at the Canadian Space Agency, specifically, the Canadian Analog Research Network (CARN) and current activities related to Analog missions, 2009-2010.
NASA Astrophysics Data System (ADS)
Eucker, W.; McGillivary, P. A.
2012-12-01
One apparent consequence of global climate change has been a decrease in the extent and thickness of Arctic sea ice more rapidly than models have predicted, while Arctic ship traffic has likewise increased beyond economic predictions. To ensure representative observations of changing climate conditions and human use of the Arctic Ocean, we concluded a method of tracking daily changes in both sea ice and shipping in the Arctic Ocean was needed. Such a process improves the availability of sea ice data for navigational safety and allows future developments to be monitored for understanding of ice and shipping in relation to policy decisions appropriate to optimize sustainable use of a changing Arctic Ocean. The impetus for this work was the 2009 Arctic Marine Shipping Assessment (AMSA) which provided baseline data on Arctic ship traffic. AMSA was based on responses from circumpolar countries, was manpower intensive, and took years to compile. A more timely method of monitoring human use of the Arctic Ocean was needed. To address this, a method of monitoring sea ice on a scale relevant to ship-navigation (<10km) was developed and implemented in conjunction with arctic ship tracking using S-AIS (Satellite Automatic Identification Systems). S-AIS is internationally required on ships over a certain size, which includes most commercial vessels in the Arctic Ocean. Daily AIS and sea ice observations were chosen for this study. Results of this method of geospatial analysis of the entire arctic are presented for a year long period from April 1, 2010 to March 31, 2011. This confirmed the dominance of European Arctic ship traffic. Arctic shipping is maximal during August and diminishes in September with a minimum in winter, although some shipping continues year-round in perennially ice-free areas. Data are analyzed for the four principal arctic quadrants around the North Pole by season for number and nationality of vessels. The goal of this study was not merely to monitor ship traffic and ice conditions concurrently, but also to demonstrate a new method of ocean monitoring based on daily assimilation, data fusion, and integrated visualization of satellite ice remote sensing data and S-AIS ship data. In the future, as Arctic ship traffic and cryosphere sea ice cover variability are both expected to increase, this method can provide near real-time physical data on global climate change and human dimensions of ocean use of to guide policies addressing arctic resource management, Search and Rescue (SAR) operations, oil spill response, and issues such as ship noise impacts on marine mammals, and whale-ship collision avoidance. An internationally agreed implementation of this methodology would benefit ships operating in the Arctic and advance sustainable use of the Arctic Ocean.
Climbing the Slope of Enlightenment during NASA's Arctic Boreal Vulnerability Experiment
NASA Astrophysics Data System (ADS)
Griffith, P. C.; Hoy, E.; Duffy, D.; McInerney, M.
2015-12-01
The Arctic Boreal Vulnerability Experiment (ABoVE) is a new field campaign sponsored by NASA's Terrestrial Ecology Program and designed to improve understanding of the vulnerability and resilience of Arctic and boreal social-ecological systems to environmental change (http://above.nasa.gov). ABoVE is integrating field-based studies, modeling, and data from airborne and satellite remote sensing. The NASA Center for Climate Simulation (NCCS) has partnered with the NASA Carbon Cycle and Ecosystems Office (CCEO) to create a high performance science cloud for this field campaign. The ABoVE Science Cloud combines high performance computing with emerging technologies and data management with tools for analyzing and processing geographic information to create an environment specifically designed for large-scale modeling, analysis of remote sensing data, copious disk storage for "big data" with integrated data management, and integration of core variables from in-situ networks. The ABoVE Science Cloud is a collaboration that is accelerating the pace of new Arctic science for researchers participating in the field campaign. Specific examples of the utilization of the ABoVE Science Cloud by several funded projects will be presented.
Arctic Ozone Depletion from UARS MLS Measurements
NASA Technical Reports Server (NTRS)
Manney, G. L.
1995-01-01
Microwave Limb Sounder (MLS) measurements of ozone during four Arctic winters are compared. The evolution of ozone in the lower stratosphere is related to temperature, chlorine monoxide (also measured by MLS), and the evolution of the polar vortex. Lagrangian transport calculations using winds from the United Kingdom Meteorological Office's Stratosphere-Troposphere Data Assimilation system are used to estimate to what extent the evolution of lower stratospheric ozone is controlled by dynamics. Observations, along with calculations of the expected dynamical behavior, show evidence for chemical ozone depletion throughout most of the Arctic lower stratospheric vortex during the 1992-93 middle and late winter, and during all of the 1994-95 winter that was observed by MLS. Both of these winters were unusually cold and had unusually cold and had unusually strong Arctic polar vortices compared to meteorological data over the past 17 years.
Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)
NASA Astrophysics Data System (ADS)
Dethloff, Klaus; Rex, Markus; Shupe, Matthew
2016-04-01
The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) is an international initiative under the International Arctic Science Committee (IASC) umbrella that aims to improve numerical model representations of sea ice, weather, and climate processes through coupled system observations and modeling activities that link the central Arctic atmosphere, sea ice, ocean, and the ecosystem. Observations of many critical parameters such as cloud properties, surface energy fluxes, atmospheric aerosols, small-scale sea-ice and oceanic processes, biological feedbacks with the sea-ice ice and ocean, and others have never been made in the central Arctic in all seasons, and certainly not in a coupled system fashion. The primary objective of MOSAiC is to develop a better understanding of these important coupled-system processes so they can be more accurately represented in regional- and global-scale weather- and climate models. Such enhancements will contribute to improved modeling of global climate and weather, and Arctic sea-ice predictive capabilities. The MOSAiC observations are an important opportunity to gather the high quality and comprehensive observations needed to improve numerical modeling of critical, scale-dependent processes impacting Arctic predictability given diminished sea ice coverage and increased model complexity. Model improvements are needed to understand the effects of a changing Arctic on mid-latitude weather and climate. MOSAiC is specifically designed to provide the multi-parameter, coordinated observations needed to improve sub-grid scale model parameterizations especially with respect to thinner ice conditions. To facilitate, evaluate, and develop the needed model improvements, MOSAiC will employ a hierarchy of modeling approaches ranging from process model studies, to regional climate model intercomparisons, to operational forecasts and assimilation of real-time observations. Model evaluations prior to the field program will be used to identify specific gaps and parameterization needs. Preliminary modeling and operational forecasting will also be necessary to directly guide field planning and optimal implementation of field resources, and to support the safety of the project. The MOSAiC Observatory will be deployed in, and drift with, the Arctic sea-ice pack for at least a full annual cycle, starting in fall 2019 and ending in autumn 2020. Initial plans are for the drift to start in the newly forming autumn sea-ice in, or near, the East Siberian Sea. The specific location will be selected to allow for the observatory to follow the Transpolar Drift towards the North Pole and on to the Fram Strait. IASC has adopted MOSAiC as a key international activity, the German Alfred Wegener Institute has made the huge contribution of the icebreaker Polarstern to serve as the central drifting observatory for this year long endeavor, and the US Department of Energy has committed a comprehensive atmospheric measurement suite. Many other nations and agencies have expressed interest in participation and in gaining access to this unprecedented observational dataset. International coordination is needed to support this groundbreaking endeavor.
NASA Astrophysics Data System (ADS)
Janzhura, Alexander
A real-time information on geophysical processes in polar regions is very important for goals of Space Weather monitoring by the ground-based means. The modern communication systems and computer technology makes it possible to collect and process the data from remote sites without significant delays. A new acquisition equipment based on microprocessor modules and reliable in hush climatic conditions was deployed at the Roshydromet networks of geophysical observations in Arctic and is deployed at observatories in Antarctic. A contemporary system for on-line collecting and transmitting the geophysical data from the Arctic and Antarctic stations to AARI has been realized and the Polar Geophysical Center (PGC) arranged at AARI ensures the near-real time processing and analyzing the geophysical information from 11 stations in Arctic and 5 stations in Antarctic. The space weather monitoring by the ground based means is one of the main tasks standing before the Polar Geophysical Center. As studies by Troshichev and Janzhura, [2012] showed, the PC index characterizing the polar cap magnetic activity appeared to be an adequate indicator of the solar wind energy that entered into the magnetosphere and the energy that is accumulating in the magnetosphere. A great advantage of the PC index application over other methods based on satellite data is a permanent on-line availability of information about magnetic activity in both northern and southern polar caps. A special procedure agreed between Arctic and Antarctic Research Institute (AARI) and Space Institute of the Danish Technical University (DTUSpace) ensures calculation of the unified PC index in quasi-real time by magnetic data from the Thule and Vostok stations (see public site: http://pc-index.org). The method for estimation of AL and Dst indices (as indicators of state of the disturbed magnetosphere) based on data on foregoing PC indices has been elaborated and testified in the Polar Geophysical Center. It is demonstrated that the PC index can be successfully used to monitor the state of the magnetosphere (space weather monitoring) and the readiness of the magnetosphere to producing substorm or storm (space weather nowcasting).
NASA Astrophysics Data System (ADS)
Mei, Linlu; Xue, Yong
2013-04-01
The Arctic atmosphere is perturbed by nature/anthropogenic aerosol sources known as the Arctic haze, was firstly observed in 1956 by J. Murray Mitchell in Alaska (Mitchell, 1956). Pacyna and Shaw (1992) summarized that Arctic haze is a mixture of anthropogenic and natural pollutants from a variety of sources in different geographical areas at altitudes from 2 to 4 or 5 km while the source for layers of polluted air at altitudes below 2.5 km mainly comes from episodic transportation of anthropogenic sources situated closer to the Arctic. Arctic haze of low troposphere was found to be of a very strong seasonal variation characterized by a summer minimum and a winter maximum in Alaskan (Barrie, 1986; Shaw, 1995) and other Arctic region (Xie and Hopke, 1999). An anthropogenic factor dominated by together with metallic species like Pb, Zn, V, As, Sb, In, etc. and nature source such as sea salt factor consisting mainly of Cl, Na, and K (Xie and Hopke, 1999), dust containing Fe, Al and so on (Rahn et al.,1977). Black carbon and soot can also be included during summer time because of the mix of smoke from wildfires. The Arctic air mass is a unique meteorological feature of the troposphere characterized by sub-zero temperatures, little precipitation, stable stratification that prevents strong vertical mixing and low levels of solar radiations (Barrie, 1986), causing less pollutants was scavenged, the major revival pathway for particulates from the atmosphere in Arctic (Shaw, 1981, 1995; Heintzenberg and Larssen, 1983). Due to the special meteorological condition mentioned above, we can conclude that Eurasian is the main contributor of the Arctic pollutants and the strong transport into the Arctic from Eurasia during winter caused by the high pressure of the climatologically persistent Siberian high pressure region (Barrie, 1986). The paper intends to address the atmospheric characteristics of Arctic haze by comparing the clear day and haze day using different dataset, including satellite remote sensing, ground-based observations and modelling. The key question is which information should be used for analysis and how to integrate the source information. The behavior of different atmospheric parameters as described in the paper is consistent and the analysis using satellite atmospheric parameters is in line with synoptic charts. Hence the different data sources are complementary and the results support each other (Mei et al., 2011). In the paper, Aerosol Optical Depth (AOD) from both satellite retrieval data and ground-based measurements were analyzed the characteristic, especially the absorption. We also discuss the effect of Arctic haze to the Arctic temperature, snow albedo and arctic flux in details.
Influence of Mountains on Arctic Tropospheric Ozone
NASA Astrophysics Data System (ADS)
Whiteway, J. A.; Seabrook, J.
2015-12-01
Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring using a differential absorption lidar (DIAL). Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletion events were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be presented.
Observations of Bromine Chloride (BrCl) at an Arctic Coastal Site
NASA Astrophysics Data System (ADS)
McNamara, S. M.; Garner, N.; Wang, S.; Raso, A. R. W.; Thanekar, S.; Fuentes, J. D.; Shepson, P. B.; Pratt, K.
2017-12-01
Chlorine and bromine chemistry in the Arctic boundary layer have significant impacts on tropospheric ozone depletion and the fates of atmospheric pollutants such as methane, a greenhouse gas, and mercury. However, there is sparse understanding of halogen production and removal pathways due to a lack of observations. Here, we report chemical ionization mass spectrometry measurements of bromine chloride (BrCl) observed at Utqiaġvik (Barrow), AK during March-May 2016. Over the course of the three-month study, two distinct BrCl diurnal trends were identified, and production mechanisms were explored using 0-dimensional modeling, constrained by a suite of reactive halogen measurements. The findings in this work highlight coupled chlorine and bromine chemistry, as well as halogen activation pathways in the Arctic.
NASA Astrophysics Data System (ADS)
Pinchuk, Alexei I.; Eisner, Lisa B.
2017-01-01
Interest in the Arctic shelf ecosystems has increased in recent years as the climate has rapidly warmed and sea ice declined. These changing conditions prompted the broad-scale multidisciplinary Arctic Ecosystem integrated survey (Arctic Eis) aimed at systematic, comparative analyses of interannual variability of the shelf ecosystem. In this study, we compared zooplankton composition and geographical distribution in relation to water properties on the eastern Chukchi and northern Bering Sea shelves during the summers of 2012 and 2013. In 2012, waters of Pacific origin prevailed over the study area carrying expatriate oceanic species (e.g. copepods Neocalanus spp., Eucalanus bungii) from the Bering Sea outer shelf well onto the northeastern Chukchi shelf. In contrast, in 2013, zooplankton of Pacific origin was mainly distributed over the southern Chukchi shelf, suggesting a change of advection pathways into the Arctic. These changes also manifested in the emergence of large lipid-rich Arctic zooplankton (e.g. Calanus hyperboreus) on the northeastern Chukchi shelf in 2013. The predominant copepod Calanus glacialis was composed of two distinct populations originating from the Bering Sea and from the Arctic, with the Arctic population expanding over a broader range in 2013. The observed interannual variability in zooplankton distribution on the Chukchi Sea shelf may be explained by previously described systematic oceanographic patterns derived from long-term observations. Variability in oceanic circulation and related zooplankton distributions (e.g. changes in southwestward advection of C. hyperboreus) may impact keystone predators such as Arctic Cod (Boreogadus saida) that feed on energy-rich zooplankton.
NASA Astrophysics Data System (ADS)
Bozem, H.; Hoor, P. M.; Koellner, F.; Kunkel, D.; Schneider, J.; Schulz, C.; Herber, A. B.; Borrmann, S.; Wendisch, M.; Ehrlich, A.; Leaitch, W. R.; Willis, M. D.; Burkart, J.; Thomas, J. L.; Abbatt, J.
2015-12-01
The Arctic is warming much faster than any other place in the world and undergoes a rapid change dominated by a changing climate in this region. The impact of polluted air masses traveling to the Arctic from various remote sources significantly contributes to the observed climate change, in contrast there are additional local emission sources contributing to the level of pollutants (trace gases and aerosol). Processes affecting the emission and transport of these pollutants are not well understood and need to be further investigated. We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories we analyze the transport regimes prevalent during spring (RACEPAC 2014 and NETCARE 2015) and summer (NETCARE 2014) in the observed region. Whereas the eastern part of the Canadian Arctic is affected by air masses with their origin in Asia, in the central and western parts of the Canadian and European Arctic air masses from North America are predominant at the time of the measurement. In general the more northern parts of the Arctic were relatively unaffected by pollution from mid-latitudes since air masses mostly travel within the polar dome, being quite isolated. Associated mixing ratios of CO and CO2 fit into the seasonal cycle observed at NOAA ground stations throughout the Arctic, but show a more mid-latitudinal characteristic at higher altitudes. The transition is remarkably sharp and allows for a chemical definition of the polar dome. At low altitudes, synoptic disturbances transport polluted air masses from mid-latitudes into regions of the polar dome. These air masses contribute to the Arctic pollution background, but also contain single pollution plumes that perturb the background tracer distribution. These plumes could be traced back to biomass burning or flaring in remote regions, as well as local ship emissions within the measurement region.
Croft, B.; Wentworth, G. R.; Martin, R. V.; Leaitch, W. R.; Murphy, J. G.; Murphy, B. N.; Kodros, J. K.; Abbatt, J. P. D.; Pierce, J. R.
2016-01-01
The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about −0.5 W m−2 pan-Arctic-mean cooling), exceeding −1 W m−2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological–chemical processes may be susceptible to Arctic warming and industrialization. PMID:27845764
Identifying Priorities for International Arctic Research and Policy
NASA Astrophysics Data System (ADS)
Rachold, V.; Hik, D.; Barr, S.
2015-12-01
The International Arctic Science Committee (IASC) is a non-governmental, international scientific organization, founded in 1990 by representatives of national scientific organizations of the eight Arctic countries - Canada, Denmark, Finland, Iceland, Norway, Russia (at that time Union of Soviet Socialist Republics), Sweden and the United States of America. Over the past 25 years, IASC has evolved into the leading international science organization of the North and its membership today includes 23 countries involved in all aspects of Arctic research, including 15 non-Arctic countries (Austria, China, the Czech Republic, France, Germany, India, Italy, Japan, the Netherlands, Poland, Portugal, South Korea, Spain, Switzerland and the UK). The Founding Articles committed IASC to pursue a mission of encouraging and facilitating cooperation in all aspects of Arctic research, in all countries engaged in Arctic research and in all areas of the Arctic region. IASC promotes and supports leading-edge multi-disciplinary research in order to foster a greater scientific understanding of the Arctic region and its role in the Earth system. IASC has organized three forward-looking conferences focused on international and interdisciplinary perspectives for advancing Arctic research cooperation and applications of Arctic knowledge. Indeed, the IASC Founding Articles call for IASC to host these conferences periodically in order to "review the status of Arctic science, provide scientific and technical advice, and promote cooperation and links with other national and international organizations." Through its members, including national science organizations and funding agencies from all countries engaged in Arctic research, IASC is uniquely placed to undertake this task. As an accredited observer on the Arctic Council, IASC is also in the position to introduce the outcome of its science planning efforts into the Arctićs main political body and to liaise with the Arctic Council Permanent Participants. This paper presents an overview of IASC´s efforts and achievements in terms of identifying Arctic research priorities and providing scientific expertise to policy makers and people who live in or near the Arctic.
Photosynthesis, Earth System Models and the Arctic
NASA Astrophysics Data System (ADS)
Rogers, A.; Sloan, V. L.; Xu, C.; Wullschleger, S. D.
2013-12-01
The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this they must accurately represent the huge carbon fluxes associated with the terrestrial carbon cycle. Photosynthetic CO2 uptake is the largest of these fluxes, and is well described by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis. Most ESMs use a derivation of the FvCB model to calculate gross primary productivity (GPP). One of the key parameters required by the FvCB model is an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max). In ESMs the parameter Vc,max is usually fixed for a given plant functional type (PFT). Although Arctic GPP a small flux relative to global GPP, uncertainty is large. Only four ESMs currently have an explicit Arctic PFT and the data used to derive Vc,max for the Arctic PFT in these models relies on small data sets and unjustified assumptions. As part of a multidisciplinary project to improve the representation of the Arctic in ESMs (Next Generation Ecosystem Experiments - Arctic) we examined the derivation of Vc,max in current Arctic PFTs and estimated Vc,max for 12 species representing both dominant vegetation and key PFTs growing on the Barrow Environmental Observatory, Barrow, AK. The values of Vc,max currently used to represent Arctic PFTs in ESMs are 70% lower than the values we measured in these species. Separate measurements of CO2 assimilation (A) made at ambient conditions were compared with A modeled using the Vc,max values we measured in Barrow and those used by the ESMs. The A modeled with the Vc,max values used by the ESMs was 80% lower than the observed A. When our measured Vc,max values were used, modeled A was within 5% of observed A. Examination of the derivation of Vc,max in ESMs identified that the cause of the relatively low Vc,max value was the result of underestimating both the leaf N content and the investment of that N in Rubisco. Here we have identified possible improvements to the derivation of Vc,max in ESMs and provided new physiological characterization of Arctic species that is mechanistically consistent with observed leaf level CO2 uptake. These data suggest that the Arctic tundra has a much greater capacity for CO2 uptake than is currently represented in ESMs. Our parameterization can be used in future model projections to improve representation of the Arctic landscape in ESMs.
Arctic Browning: vegetation damage and implications for carbon balance.
NASA Astrophysics Data System (ADS)
Treharne, Rachael; Bjerke, Jarle; Emberson, Lisa; Tømmervik, Hans; Phoenix, Gareth
2016-04-01
'Arctic browning' is the loss of biomass and canopy in Arctic ecosystems. This process is often driven by climatic and biological extreme events - notably extreme winter warm periods, winter frost-drought and severe outbreaks of defoliating insects. Evidence suggests that browning is becoming increasingly frequent and severe at the pan-arctic scale, a view supported by observations from more intensely observed regions, with major and unprecedented vegetation damage reported at landscape (>1000km2) and regional (Nordic Arctic Region) scales in recent years. Critically, the damage caused by these extreme events is in direct opposition to 'Arctic greening', the well-established increase in productivity and shrub abundance observed at high latitudes in response to long-term warming. This opposition creates uncertainty as to future anticipated vegetation change in the Arctic, with implications for Arctic carbon balance. As high latitude ecosystems store around twice as much carbon as the atmosphere, and vegetation impacts are key to determining rates of loss or gain of ecosystem carbon stocks, Arctic browning has the potential to influence the role of these ecosystems in global climate. There is therefore a clear need for a quantitative understanding of the impacts of browning events on key ecosystem carbon fluxes. To address this, field sites were chosen in central and northern Norway and in Svalbard, in areas known to have been affected by either climatic extremes or insect outbreak and subsequent browning in the past four years. Sites were chosen along a latitudinal gradient to capture both conditions already causing vegetation browning throughout the Norwegian Arctic, and conditions currently common at lower latitudes which are likely to become more damaging further North as climate change progresses. At each site the response of Net Ecosystem CO2 Exchange to light was measured using a LiCor LI6400 Portable Photosynthesis system and a custom vegetation chamber with artificial shading. These data allowed the impact of browning on plot-level Gross Primary Productivity (GPP), Net Ecosystem Exchange and ecosystem respiration to be calculated. Substantial site-level impacts were identified, with heavily damaged vegetation converted from a net CO2 sink to a net source. Plot-level spectral data were then used to establish a relationship between Leaf Area Index (LAI), as predicted from Normalised Differenced Vegetation Index (NDVI), and GPP. This builds on work demonstrating that NDVI-derived LAI can explain up to 80% of variation in GPP in healthy vegetation. Confirmation that this relationship holds true in browned vegetation validates its use for estimating browning impacts on Arctic carbon balance using remotely sensed data.
Sea ice decline and 21st century trans-Arctic shipping routes
NASA Astrophysics Data System (ADS)
Melia, N.; Haines, K.; Hawkins, E.
2016-09-01
The observed decline in Arctic sea ice is projected to continue, opening shorter trade routes across the Arctic Ocean, with potentially global economic implications. Here we quantify, using Coupled Model Intercomparison Project Phase 5 global climate model simulations calibrated to remove spatial biases, how projected sea ice loss might increase opportunities for Arctic transit shipping. By midcentury for standard open water vessels, the frequency of navigable periods doubles, with routes across the central Arctic becoming available. A sea ice-ship speed relationship is used to show that European routes to Asia typically become 10 days faster via the Arctic than alternatives by midcentury, and 13 days faster by late century, while North American routes become 4 days faster. Future greenhouse gas emissions have a larger impact by late century; the shipping season reaching 4-8 months in Representative Concentration Pathway (RCP)8.5 double that of RCP2.6, both with substantial interannual variability. Moderately, ice-strengthened vessels likely enable Arctic transits for 10-12 months by late century.
Modern benthic foraminifer distribution in the Amerasian Basin, Arctic Ocean
Ishman, S.E.; Foley, K.M.
1996-01-01
A total of 38 box cores were collected from the Amerasian Basin, Arctic Ocean during the U.S. Geological Survey 1992 (PI92-AR) and 1993 (PI93-AR) Arctic Cruises aboard the U.S. Coast Guard Icebreaker Polar Star. In addition, the cruises collected geophysical data, piston cores and hydrographic data to address the geologic and oceanographic history of the western Arctic Ocean. This paper reports the results of the quantitative analyses of benthic foraminifer distribution data of the total (live + dead) assemblages derived from 22 box core-top samples. The results show that a distinct depth distribution of three dominant benthic foraminifer assemblages, the Textularia spp. - Spiroplectammina biformis, Cassidulina teretis and Oridorsalis tener - Eponides tumidulus Biofacies are strongly controlled by the dominant water masses within the Canada Basin: the Arctic Surface Water, Arctic Intermediate Water and Canada Basin Deep Water. The faunal distributions and their oceanographic associations in the Canada Basin are consistent with observations of benthic foraminifer distributions from other regions within the Arctic Ocean.
United States Naval Academy Polar Science Program's Visual Arctic Observing Buoys; The IceGoat
NASA Astrophysics Data System (ADS)
Woods, J. E.; Clemente-Colon, P.; Nghiem, S. V.; Rigor, I.; Valentic, T. A.
2012-12-01
The U.S. Naval Academy Oceanography Department currently has a curriculum based Polar Science Program (USNA PSP). Within the PSP there is an Arctic Buoy Program (ABP) student research component that will include the design, build, testing and deployment of Arctic Buoys. Establishing an active, field-research program in Polar Science will greatly enhance Midshipman education and research, as well as introduce future Naval Officers to the Arctic environment. The Oceanography Department has engaged the USNA Ocean Engineering, Systems Engineering, Aerospace Engineering, and Computer Science Departments and developed a USNA Visual Arctic Observing Buoy, IceGoat1, which was designed, built, and deployed by midshipmen. The experience gained through Polar field studies and data derived from these buoys will be used to enhance course materials and laboratories and will also be used directly in Midshipman independent research projects. The USNA PSP successfully deployed IceGoat1 during the BROMEX 2012 field campaign out of Barrow, AK in March 2012. This buoy reports near real-time observation of Air Temperature, Sea Temperature, Atmospheric Pressure, Position and Images from 2 mounted webcams. The importance of this unique type of buoy being inserted into the U.S. Interagency Arctic Buoy Program and the International Arctic Buoy Programme (USIABP/IABP) array is cross validating satellite observations of sea ice cover in the Arctic with the buoys webcams. We also propose to develop multiple sensor packages for the IceGoat to include a more robust weather suite, and a passive acoustic hydrophone. Remote cameras on buoys have provided crucial qualitative information that complements the quantitative measurements of geophysical parameters. For example, the mechanical anemometers on the IABP Polar Arctic Weather Station at the North Pole Environmental Observatory (NPEO) have at times reported zero winds speeds, and inspection of the images from the NPEO cameras have showed frosting on the camera during these same periods indicating that the anemometer has temporarily frozen up. Later when the camera lens clears, the anemometers resume providing reasonable wind speeds. The cameras have also provided confirmation of the onset of melt and freeze, and indications of cloudy and clear skies. USNA PSP will monitor meteorological and oceanographic parameters of the Arctic environment remotely via its own buoys. Web cameras will provide near real time visual observations of the buoys current positions, allowing for instant validation of other remotes sensors and modeled data. Each buoy will be developed with at a minimum a meteorological sensor package in accordance with IABP protocol (2m Air Temp, SLP). Platforms will also be developed with new sensor packages to possibly include, wind speed, ice temperature, sea ice thickness, underwater acoustics, and new communications suites (Iridium, Radio). The uniqueness of the IceGoat is that it is based on the new AXIB buoy designed by LBI, Inc. that has a proven record of being able to survive in the harsh marginal ice zone environment. IceGoat1 will be deployed in the High Arctic during the USCGC HEALY cruise in late August 2012.
A Decade of Shear-Wave Splitting Observations in Alaska
NASA Astrophysics Data System (ADS)
Bellesiles, A. K.; Christensen, D. H.; Abers, G. A.; Hansen, R. A.; Pavlis, G. L.; Song, X.
2010-12-01
Over the last decade four PASSCAL experiments have been conducted in different regions of Alaska. ARCTIC, BEAAR and MOOS form a north-south transect across the state, from the Arctic Ocean to Price Williams Sound, while the STEEP experiment is currently deployed to the east of that line in the St Elias Mountains of Southeastern Alaska. Shear-wave splitting observations from these networks in addition to several permanent stations of the Alaska Earthquake Information Center were determined in an attempt to understand mantle flow under Alaska in a variety of different geologic settings. Results show two dominant splitting patterns in Alaska, separated by the subducted Pacific Plate. North of the subducted Pacific Plate fast directions are parallel to the trench (along strike of the subducted Pacific Plate) indicating large scale mantle flow in the northeast-southwest direction with higher anisotropy (splitting times) within the mantle wedge. Within or below the Pacific Plate fast directions are normal to the trench in the direction of Pacific Plate convergence. In addition to these two prominent splitting patterns there are several regions that do not match either of these trends. These more complex regions which include the results from STEEP could be due to several factors including effects from the edge of the Pacific Plate. The increase of station coverage that Earthscope will bring to Alaska will aid in developing a more complete model for anisotropy and mantle flow in Alaska.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Daokai; Lu, Jian; Sun, Lantao
In an attempt to resolve the controversy as to whether Arctic sea ice loss leads to more mid-latitude extremes, a metric of finite-amplitude wave activity is adopted to quantify the midlatitude wave activity and its change during the observed period of the drastic Arctic sea ice decline in both ERA Interim reanalysis data and a set of AMIP-type of atmospheric model experiments. Neither the experiment with the trend in the SST or that with the declining trend of Arctic sea ice can simulate the sizable midlatitude-wide reduction in the total wave activity (Ae) observed in the reanalysis, leaving its explanationmore » to the atmospheric internal variability. On the other hand, both the diagnostics of the flux of the local wave activity and the model experiments lend evidence to a possible linkage between the sea ice loss near the Barents and Kara seas and the increasing trend of anticyclonic local wave activity over the northern part of the central Eurasia and the associated impacts on the frequency of temperature extremes.« less
Arctic Sea ice studies with passive microwave satellite observations
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.
1988-01-01
The objectives of this research are: (1) to improve sea ice concentration determinations from passive microwave space observations; (2) to study the role of Arctic polynyas in the production of sea ice and the associated salinization of Arctic shelf water; and (3) to study large scale sea ice variability in the polar oceans. The strategy is to analyze existing data sets and data acquired from both the DMSP SSM/I and recently completed aircraft underflights. Special attention will be given the high resolution 85.5 GHz SSM/I channels for application to thin ice algorithms and processes studies. Analysis of aircraft and satellite data sets is expected to provide a basis for determining the potential of the SSM/I high frequency channels for improving sea ice algorithms and for investigating oceanic processes. Improved sea ice algorithms will aid the study of Arctic coastal polynyas which in turn will provide a better understanding of the role of these polynyas in maintaining the Arctic watermass structure. Analysis of satellite and archived meteorological data sets will provide improved estimates of annual, seasonal and shorter-term sea ice variability.
Quantifying Direct and Indirect Impact of Future Climate on Sub-Arctic Hydrology
NASA Astrophysics Data System (ADS)
Endalamaw, A. M.; Bolton, W. R.; Young-Robertson, J. M.; Morton, D.; Hinzman, L. D.
2016-12-01
Projected future climate will have a significant impact on the hydrology of interior Alaskan sub-arctic watersheds, directly though the changes in precipitation and temperature patterns, and indirectly through the cryospheric and ecological impacts. Although the latter is the dominant factor controlling the hydrological processes in the interior Alaska sub-arctic, it is often overlooked in many climate change impact studies. In this study, we aim to quantify and compare the direct and indirect impact of the projected future climate on the hydrology of the interior Alaskan sub-arctic watersheds. The Variable Infiltration Capacity (VIC) meso-scale hydrological model will be implemented to simulate the hydrological processes, including runoff, evapotranspiration, and soil moisture dynamics in the Chena River Basin (area = 5400km2), located in the interior Alaska sub-arctic region. Permafrost and vegetation distribution will be derived from the Geophysical Institute Permafrost Lab (GIPL) model and the Lund-Potsdam-Jena Dynamic Global Model (LPJ) model, respectively. All models will be calibrated and validated using historical data. The Scenario Network for Alaskan and Arctic Planning (SNAP) 5-model average projected climate data products will be used as forcing data for each of these models. The direct impact of climate change on hydrology is estimated using surface parameterization derived from the present day permafrost and vegetation distribution, and future climate forcing from SNAP projected climate data products. Along with the projected future climate, outputs of GIPL and LPJ will be incorporated into the VIC model to estimate the indirect and overall impact of future climate on the hydrology processes in the interior Alaskan sub-arctic watersheds. Finally, we will present the potential hydrological and ecological changes by the end of the 21st century.
Environmental Implications of Maritime Vessel Intensification in Arctic Waters
NASA Astrophysics Data System (ADS)
Stevenson, T. C.; Banis, D.; Sheard, W.
2016-12-01
In 2016, the Arctic experienced some of the warmest monthly temperatures on record. Record high temperatures in the Arctic continue to cause rapid sea ice declines, opening new areas of ocean to commercial exploitation and transportation and causing significant reductions in critical sea ice habitats used by iconic species. Elevated maritime vessel traffic in the Arctic is projected to increase black carbon emissions, encourage the spread of invasive species, increase mammal strikes, intensify conflict with smaller subsistence boats, and heighten oil spill risks. The Arctic Council, an intergovernmental organization concerned with sustainable development and environmental protection, is working with member countries, indigenous participants and other groups on developing networks of marine protected areas within ecologically or biologically important areas. To help inform that process, we analyzed vessel traffic and marine protected area coverage occurring within ecologically or biologically significant areas in the circumpolar Arctic. Our preliminary findings suggest vessel traffic within ecologically or biologically significant areas were highest around Iceland, Norway, Russia and United States but differed by vessel type. The density of fishing vessels occurring within ecologically or biologically important areas were highest near Norway, Iceland, Faroe Islands, parts of Greenland and United States, whereas vessels carrying liquefied natural gas and oil were concentrated near Norway and Russia. The percentage of area covered by marine protected areas within ecologically or biologically significant areas was low, with the exception of places like Wrangel Island, Svalbard, and areas around Greenland. These findings are important because it illustrates ecologically or biologically significant areas in the Arctic are vulnerable to projected vessel traffic intensification and the level of protection afforded by marine protected areas is relatively low.
An Innovative Network to Improve Sea Ice Prediction in a Changing Arctic
2014-09-30
sea ice volume. The EXP ensemble is initialized with 1/5 of CNTL snow depths, thus resulting in a reduced snow cover and lower summer albedo ... Sea Ice - Albedo Feedback in Sea Ice Predictions is also about understanding sea ice predictability. REFERENCES Blanchard-Wrigglesworth, E., K...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. An Innovative Network to Improve Sea Ice Prediction
Observations of iodine monoxide in the Arctic troposphere
NASA Astrophysics Data System (ADS)
Zielcke, Johannes; Lampel, Johannes; Frieß, Udo; Sihler, Holger; Netcheva, Stoyka; Platt, Ulrich
2014-05-01
A unique feature of the polar troposphere is the strong impact of halogen photochemistry, in which reactive halogen species are responsible for ozone depletion as well as the oxidation of elemental mercury and dimethyl sulfide. The sources, however, as well as release and recycling mechanisms of these halogen species are far from being completely understood, especially the role of chlorine and iodine compounds. For iodine, which is thought to be produced either by organic precursors or inorganic processes, one curious issue is the difference of its role in the two polar regions, the Arctic and the Antarctic. Satellite observations show significant quantities of IO in large areas of Antarctica and the surrounding ocean and comparatively no IO in the Arctic. This is in concordance with some ground-based remote sensing observations in Antarctica, whereas publications of IO mixing ratios or upper limits from the Arctic are seldom. This strong hemispheric dichotomy may however not be the whole picture. Here we present data from ground-based MAX-DOAS observations in the Arctic. Long-term measurements from Alert, Canada (82N) spanning the period from 2007 until 2013 indicate elevated and significant quantities of IO in the troposphere in late spring and early summer comparable to ground-based observations in Antarctica. This is backed up by ship-borne MAX-DOAS measurements in Baffin Bay during summer 2010, which also show elevated and significant amounts of IO. Furthermore the interaction of IO and BrO will be shown, as well as the influence of meteorological parameters and the data will be compared to other measurements.
NASA Technical Reports Server (NTRS)
Ganeshan, Manisha; Wu, Dongliang
2016-01-01
The increasing ice-free area during late summer has transformed the Arctic to a climate system with more dynamic boundary layer (BL) clouds and seasonal sea ice growth. The open-ocean sensible heat flux, a crucial mechanism of excessive ocean heat loss to the atmosphere during the fall freeze season, is speculated to play an important role in the recently observed cloud cover increase and BL instability. However, lack of observations and understanding of the resilience of the proposed mechanisms, especially in relation to meteorological and interannual variability, has left a poorly constrained BL parameterization scheme in Arctic climate models. In this study, we use multiyear Japanese cruise-ship observations from RV Mirai over the open Arctic Ocean to characterize the surface sensible heat flux (SSHF) during early fall and investigate its contribution to BL turbulence. It is found that mixing by SSHF is favored during episodes of high surface wind speed and is also influenced by the prevailing cloud regime. The deepest BLs and maximum ocean-atmosphere temperature difference are observed during cold air advection (associated with the stratocumulus regime), yet, contrary to previous speculation, the efficiency of sensible heat exchange is low. On the other hand, the SSHF contributes significantly to BL mixing during the uplift (low pressure) followed by the highly stable (stratus) regime. Overall, it can explain 10 of the open ocean BL height variability, whereas cloud-driven (moisture and radiative) mechanisms appear to be the other dominant source of convective turbulence. Nevertheless, there is strong interannual variability in the relationship between the SSHF and the BL height which can be intensified by the changing occurrence of Arctic climate patterns, such as positive surface wind speed anomalies and more frequent conditions of uplift. This study highlights the need for comprehensive BL observations like the RV Mirai for better understanding and predicting the dynamic nature of the Arctic climate.
Arctic sea ice in the global eddy-permitting ocean reanalysis ORAP5
NASA Astrophysics Data System (ADS)
Tietsche, Steffen; Balmaseda, Magdalena A.; Zuo, Hao; Mogensen, Kristian
2017-08-01
We discuss the state of Arctic sea ice in the global eddy-permitting ocean reanalysis Ocean ReAnalysis Pilot 5 (ORAP5). Among other innovations, ORAP5 now assimilates observations of sea ice concentration using a univariate 3DVar-FGAT scheme. We focus on the period 1993-2012 and emphasize the evaluation of model performance with respect to recent observations of sea ice thickness. We find that sea ice concentration in ORAP5 is close to assimilated observations, with root mean square analysis residuals of less than 5 % in most regions. However, larger discrepancies exist for the Labrador Sea and east of Greenland during winter owing to biases in the free-running model. Sea ice thickness is evaluated against three different observational data sets that have sufficient spatial and temporal coverage: ICESat, IceBridge and SMOSIce. Large-scale features like the gradient between the thickest ice in the Canadian Arctic and thinner ice in the Siberian Arctic are simulated well by ORAP5. However, some biases remain. Of special note is the model's tendency to accumulate too thick ice in the Beaufort Gyre. The root mean square error of ORAP5 sea ice thickness with respect to ICESat observations is 1.0 m, which is on par with the well-established PIOMAS model sea ice reconstruction. Interannual variability and trend of sea ice volume in ORAP5 also compare well with PIOMAS and ICESat estimates. We conclude that, notwithstanding a relatively simple sea ice data assimilation scheme, the overall state of Arctic sea ice in ORAP5 is in good agreement with observations and will provide useful initial conditions for predictions.
Bokhorst, Stef; Pedersen, Stine Højlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W; Brown, Ross D; Ehrich, Dorothee; Essery, Richard L H; Heilig, Achim; Ingvander, Susanne; Johansson, Cecilia; Johansson, Margareta; Jónsdóttir, Ingibjörg Svala; Inga, Niila; Luojus, Kari; Macelloni, Giovanni; Mariash, Heather; McLennan, Donald; Rosqvist, Gunhild Ninis; Sato, Atsushi; Savela, Hannele; Schneebeli, Martin; Sokolov, Aleksandr; Sokratov, Sergey A; Terzago, Silvia; Vikhamar-Schuler, Dagrun; Williamson, Scott; Qiu, Yubao; Callaghan, Terry V
2016-09-01
Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.
NASA Technical Reports Server (NTRS)
Bokhorst, Stef; Pedersen, Stine Hojlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W.; Brown, Ross D.; Ehrich, Dorothee; Essery, Richard L. H.; Heilig, Achim; Ingvander, Susanne;
2016-01-01
Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.
Arctic Ocean Freshwater Content and Its Decadal Memory of Sea-Level Pressure
NASA Astrophysics Data System (ADS)
Johnson, Helen L.; Cornish, Sam B.; Kostov, Yavor; Beer, Emma; Lique, Camille
2018-05-01
Arctic freshwater content (FWC) has increased significantly over the last two decades, with potential future implications for the Atlantic meridional overturning circulation downstream. We investigate the relationship between Arctic FWC and atmospheric circulation in the control run of a coupled climate model. Multiple linear lagged regression is used to extract the response of total Arctic FWC to a hypothetical step increase in the principal components of sea-level pressure. The results demonstrate that the FWC adjusts on a decadal timescale, consistent with the idea that wind-driven ocean dynamics and eddies determine the response of Arctic Ocean circulation and properties to a change in surface forcing, as suggested by idealized models and theory. Convolving the response of FWC to a change in sea-level pressure with historical sea-level pressure variations reveals that the recent observed increase in Arctic FWC is related to natural variations in sea-level pressure.
ERIC Educational Resources Information Center
Krupnik, Igor, Ed.; Jolly, Dyanna, Ed.
This book focuses on documenting and understanding the nature of environmental changes observed by indigenous residents of the Arctic. Common themes include increasing variability and unpredictability of the weather and seasonal climatic patterns, as well as changes in the sea ice and the health of wildlife. Nine papers focus on these changes,…
Observations of Hydration and Dehydration in the Winter 2000 Arctic Stratosphere
NASA Technical Reports Server (NTRS)
Herman, R.; Webster, C.; Ordla, K.; Bui, P.; Gandrud, B.
2000-01-01
During the January 2000 deployment of the SAGE III Ozone Loss Validation Experiment (SOLVE), the NASA ER-2 aircraft intercepted air parcels with unusual water mixing ratios within the the Arctic polar vortex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Boer, Gijs
Data were collected to improve understanding of the Arctic troposphere, and to provide researchers with a focused case-study period for future observational and modeling studies pertaining to Arctic atmospheric processes.
Variation of atmospheric carbon monoxide over the Arctic Ocean during summer 2012
NASA Astrophysics Data System (ADS)
Park, Keyhong; Siek Rhee, Tae; Emmons, Louisa
2014-05-01
Atmospheric carbon monoxide (CO) plays an important role in ozone-related chemistry in the troposphere, especially under low-NOx conditions like the open ocean. During summer 2012, we performed a continuous high-resolution (0.1Hz) shipboard measurement of atmospheric CO over the Arctic Ocean. We also simulated the observation using a 3-D global chemical transport model (the Model for OZone And Related chemical Tracers-4; MOZART-4) for further analysis of the observed results. In the model, tags for each sources and emission regions of CO are applied and this enables us to delineate the source composition of the observations. Along with the observed variation of CO concentration during the research cruise, we will present in detailed analysis of the variation of source components and change of regional contributions. We found large (~80ppbv) variation of CO concentration in the Arctic Ocean which is mostly influenced by the variation of biomass burning activity. The contribution of anthropogenic emission is limited over the Arctic Ocean, although the northeast Asian anthropogenic emission shows a dominant component of transported anthropogenic CO. Also, our analysis shows, near the Bering Strait, Europe is the main emission region for anthropogenic CO.
NASA Technical Reports Server (NTRS)
Foster, James; Robinson, Dave; Estilow, Tom; Hall, Dorothy
2012-01-01
Spring snow cover across Arctic lands has, on average, retreated approximately five days earlier since the late 1980s compared to the previous twenty years. However, it appears that since about 1990, the date the snowline first retreats north during the spring has remained nearly unchanged--in the last twenty years, the date of snow disappearance has not been occurring noticeably earlier. Snowmelt changes observed in the 1980s was step-like in nature, unlike a more continuous downward trend seen in Arctic sea ice extent. At latitude 70 deg N, several latitudinal segments (of 10 degrees) show significant (negative) trends. However, only two latitudinal segments at 60 deg N show significant trends, one positive and one negative. These variations appear to be related to variations in the Arctic Oscillation (AO). Additional observations and modeling investigations are needed to better explain past and present spring melt characteristics and peculiarities.
NASA Technical Reports Server (NTRS)
Blake, Donald R.; Hurst, Dale F.; Smith, Tyrrel W., Jr.; Whipple, Wayne J.; Chen, Tai-Yih; Blake, Nicola J.; Rowland, F. S.
1992-01-01
The concentration distributions of several nonmethane hydrocarbons (NMHIC) in the Arctic and Subarctic regions of Alaska are discussed using data obtained during July and August of 1988 as part of the Arctic Boundary Layer Expedition (ABLE 3A). Plume enhancement of some or all of the measured NMHIC were observed on more than half of the 33 missions flown during the project. The usual summer vertical profile of reactive hydrocarbons at these high latitudes has elevated concentrations at high altitudes, with mixing ratio variations largely controlled by hydroxyl radical reactions. Wildfires were established as a significant source of various NMHIC. Biomass burning emission ratios relative to ethane were established for ethyne (0.38 +/- 0.04) and propane (0.08 +/- 0.03). Activities associated with oil drilling are a probable source of enhanced levels of alkanes observed as much as 300 km northeast of Prudhoe Bay.
Will Arctic sea ice thickness initialization improve seasonal forecast skill?
NASA Astrophysics Data System (ADS)
Day, J. J.; Hawkins, E.; Tietsche, S.
2014-11-01
Arctic sea ice thickness is thought to be an important predictor of Arctic sea ice extent. However, coupled seasonal forecast systems do not generally use sea ice thickness observations in their initialization and are therefore missing a potentially important source of additional skill. To investigate how large this source is, a set of ensemble potential predictability experiments with a global climate model, initialized with and without knowledge of the sea ice thickness initial state, have been run. These experiments show that accurate knowledge of the sea ice thickness field is crucially important for sea ice concentration and extent forecasts up to 8 months ahead, especially in summer. Perturbing sea ice thickness also has a significant impact on the forecast error in Arctic 2 m temperature a few months ahead. These results suggest that advancing capabilities to observe and assimilate sea ice thickness into coupled forecast systems could significantly increase skill.
Arctic Ocean Freshwater: How Robust are Model Simulations
NASA Technical Reports Server (NTRS)
Jahn, A.; Aksenov, Y.; deCuevas, B. A.; deSteur, L.; Haekkinen, S.; Hansen, E.; Herbaut, C.; Houssais, M.-N.; Karcher, M.; Kauker, F.;
2012-01-01
The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the investigated models. While they agree on the general sink and source terms of the Arctic FW budget, the long-term means as well as the variability of the FW export vary among models. The best model-to-model agreement is found for the interannual and seasonal variability of the solid FW export and the solid FW storage, which also agree well with observations. For the interannual and seasonal variability of the liquid FW export, the agreement among models is better for the Canadian Arctic Archipelago (CAA) than for Fram Strait. The reason for this is that models are more consistent in simulating volume flux anomalies than salinity anomalies and volume-flux anomalies dominate the liquid FW export variability in the CAA but not in Fram Strait. The seasonal cycle of the liquid FW export generally shows a better agreement among models than the interannual variability, and compared to observations the models capture the seasonality of the liquid FW export rather well. In order to improve future simulations of the Arctic FW budget, the simulation of the salinity field needs to be improved, so that model results on the variability of the liquid FW export and storage become more robust.
NASA Astrophysics Data System (ADS)
Li, J.; Yu, Q.; Tian, Y. Q.
2017-12-01
The DOC flux from land to the Arctic Ocean has remarkable implication on the carbon cycle, biogeochemical & ecological processes in the Arctic. This lateral carbon flux is required to be monitored with high spatial & temporal resolution. However, the current studies in the Arctic regions were obstructed by the factors of the low spatial coverages. The remote sensing could provide an alternative bio-optical approach to field sampling for DOC dynamics monitoring through the observation of the colored dissolved organic matter (CDOM). The DOC and CDOM were found highly correlated based on the analysis of the field sampling data from the Arctic-GRO. These provide the solid foundation of the remote sensing observation. In this study, six major Arctic Rivers (Yukon, Kolyma, Lena, Mackenzie, Ob', Yenisey) were selected to derive the CDOM dynamics along four years. Our newly developed SBOP algorithm was applied to the large Landsat-8 OLI image data (nearly 100 images) for getting the high spatial resolution results. The SBOP algorithm is the first approach developing for the Shallow Water Bio-optical properties estimation. The CDOM absorption derived from the satellite images were verified with the field sampling results with high accuracy (R2 = 0.87). The distinct CDOM dynamics were found in different Rivers. The CDOM absorptions were found highly related to the hydrological activities and the terrestrially environmental dynamics. Our study helps to build the reliable system for studying the carbon cycle at Arctic regions.
Evidence and implications of recent climate change in Northern Alaska and other Arctic regions
Hinzman, L.D.; Bettez, N.D.; Bolton, W.R.; Chapin, F.S.; Dyurgerov, M.B.; Fastie, C.L.; Griffith, B.; Hollister, R.D.; Hope, Allen; Huntington, H.P.; Jensen, A.M.; Jia, G.J.; Jorgenson, T.; Kane, D.L.; Klein, D.R.; Kofinas, G.; Lynch, A.H.; Lloyd, A.H.; McGuire, A.D.; Nelson, Frederick E.; Oechel, W.C.; Osterkamp, T.E.; Racine, C.H.; Romanovsky, V.E.; Stone, R.S.; Stow, D.A.; Sturm, M.; Tweedie, C.E.; Vourlitis, G.L.; Walker, M.D.; Walker, D.A.; Webber, P.J.; Welker, J.M.; Winker, K.S.; Yoshikawa, K.
2005-01-01
The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth system and how humans will need to adapt. Our holistic review presents a broad array of evidence that illustrates convincingly; the Arctic is undergoing a system-wide response to an altered climatic state. New extreme and seasonal surface climatic conditions are being experienced, a range of biophysical states and processes influenced by the threshold and phase change of freezing point are being altered, hydrological and biogeochemical cycles are shifting, and more regularly human sub-systems are being affected. Importantly, the patterns, magnitude and mechanisms of change have sometimes been unpredictable or difficult to isolate due to compounding factors. In almost every discipline represented, we show how the biocomplexity of the Arctic system has highlighted and challenged a paucity of integrated scientific knowledge, the lack of sustained observational and experimental time series, and the technical and logistic constraints of researching the Arctic environment. This study supports ongoing efforts to strengthen the interdisciplinarity of arctic system science and improve the coupling of large scale experimental manipulation with sustained time series observations by incorporating and integrating novel technologies, remote sensing and modeling. ?? Springer 2005.
Sensitivity of CAM5-simulated Arctic clouds and radiation to ice nucleation parameterization
Xie, Shaocheng; Liu, Xiaohong; Zhao, Chuanfeng; ...
2013-08-06
Sensitivity of Arctic clouds and radiation in the Community Atmospheric Model, version 5, to the ice nucleation process is examined by testing a new physically based ice nucleation scheme that links the variation of ice nuclei (IN) number concentration to aerosol properties. The default scheme parameterizes the IN concentration simply as a function of ice supersaturation. The new scheme leads to a significant reduction in simulated IN concentration at all latitudes while changes in cloud amounts and properties are mainly seen at high- and midlatitude storm tracks. In the Arctic, there is a considerable increase in midlevel clouds and amore » decrease in low-level clouds, which result from the complex interaction among the cloud macrophysics, microphysics, and large-scale environment. The smaller IN concentrations result in an increase in liquid water path and a decrease in ice water path caused by the slowdown of the Bergeron–Findeisen process in mixed-phase clouds. Overall, there is an increase in the optical depth of Arctic clouds, which leads to a stronger cloud radiative forcing (net cooling) at the top of the atmosphere. The comparison with satellite data shows that the new scheme slightly improves low-level cloud simulations over most of the Arctic but produces too many midlevel clouds. Considerable improvements are seen in the simulated low-level clouds and their properties when compared with Arctic ground-based measurements. As a result, issues with the observations and the model–observation comparison in the Arctic region are discussed.« less
NASA Astrophysics Data System (ADS)
Nomokonova, Tatiana; Ebell, Kerstin; Löhnert, Ulrich; Maturilli, Marion
2017-04-01
Clouds are one of the crucial components of the hydrological and energy cycles and thus affecting the global climate. Their special importance in Arctic regions is defined by cloud's influence on the radiation budget. Arctic clouds usually occur at low altitudes and often contain highly concentrated tiny liquid drops. During winter, spring, and autumn periods such clouds tend to conserve the long-wave radiation in the atmosphere and, thus, produce warming of the Arctic climate. In summer though clouds efficiently scatter the solar radiation back to space and, therefore, induce a cooling effect. An accurate characterization of the net effect of clouds on the Arctic climate requires long-term and precise observations. However, only a few measurement sites exist which perform continuous, vertically resolved observations of clouds in the Arctic, e.g. in Alaska, Canada, and Greenland. These sites typically make use of a combination of different ground-based remote sensing instruments, e.g. cloud radar, ceilometer and microwave radiometer in order to characterize clouds. Within the Transregional Collaborative Research Center (TR 172) "Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)3" comprehensive observations of the atmospheric column are performed at the German-French Research Station AWIPEV at Ny-Ålesund, Svalbard. Ny-Ålesund is located in the warmest part of the Arctic where climate is significantly influenced by adiabatic heating from the warm ocean. Thus, measurements at Ny-Ålesund will complement our understanding of cloud formation and development in the Arctic. This particular study is devoted to the characterization of the cloud macro- and microphysical properties at Ny-Ålesund and of the atmospheric conditions, under which these clouds form and develop. To this end, the information of the various instrumentation at the AWIPEV observatory is synergistically analysed: information about the thermodynamic structure of the atmosphere is obtained from long-term radiosonde launches. In addition, continuous vertical profiles of temperature and humidity are provided by the microwave radiometer HATPRO. A set of active remote sensing instruments performs cloud observations at Ny-Ålesund: a ceilometer and a Doppler lidar operating since 2011 and 2013, respectively, are now complemented with a novel 94 GHz FMCW cloud radar. As a first step, the CLOUDNET algorithms, including a target categorization and classification, are applied to the observations. In this study, we will present a first analysis of cloud properties at Ny-Ålesund including for example cloud occurrence, cloud geometry (cloud base, cloud top, and thickness) and cloud type (liquid, ice, mixed-phase). The different types of clouds are set into context to the environmental conditions such as temperature, amount of water vapour, and liquid water. We also expect that the cloud properties strongly depend on the wind direction. The first results of this analysis will be also shown.
NASA Astrophysics Data System (ADS)
Sommar, J.; Andersson, M. E.; Jacobi, H.-W.
2009-10-01
Using the Swedish icebreaker Oden as a platform, continuous measurements of airborne mercury (gaseous elemental mercury (Hg0), divalent mercury HgII(g) (acronym RGM) and mercury attached to particles (PHg)) and some long-lived trace gases (carbon monoxide CO and ozone O3) were performed over the North Atlantic and the Arctic Ocean. The measurements were performed for nearly three months (July-September, 2005) during the Beringia 2005 expedition (from Göteborg, Sweden via the proper Northwest Passage to the Beringia region Alaska - Chukchi Penninsula - Wrangel Island and in-turn via a north-polar transect to Longyearbyen, Spitsbergen). The Beringia 2005 expedition was the first time that these species have been measured during summer over the Arctic Ocean going from 60° to 90° N. During the North Atlantic transect, concentration levels of Hg0, CO and O3 were measured comparable to typical levels for the ambient mid-hemispheric average. However, a rapid increase of Hg0 in air and surface water was observed when entering the ice-covered waters of the Canadian Arctic archipelago. Large parts of the measured waters were supersaturated with respect to Hg0, reflecting a strong disequilibrium. Heading through the sea ice of the Arctic Ocean, a fraction of the strong Hg0} pulse in the water was spilled with some time-delay into the air samples collected 20 m a.s.l. Several episodes of elevated Hg0(g) were encountered along the sea ice route with higher mean concentration (1.81±0.43 ng m-3) compared to the marine boundary layer over ice-free oceanic waters (1.55±0.21 ng m-3). In addition, an overall majority of the variance in the temporal series of Hg0 concentrations was observed during July. Atmospheric boundary layer {O3} mixing ratios decreased when initially sailing northward. In the Arctic, an O3 minimum around 15-20 ppbv was observed during summer (July-August). Alongside the polar transect during the beginning of autumn, a steady trend of increasing O3 mixing ratios was measured returning to initial levels of the expedition (>30 ppbv). Ambient CO was fairly stable (84±12 ppbv) during the expedition. However, from the Beaufort Sea and moving onwards steadily increasing CO mixing ratios were observed (0.3 ppbv day-1). On a comparison with coeval archived CO and O3 data from the Arctic coastal strip monitoring sites Barrow and Alert, the observations from Oden indicate these species to be homogeneously distributed over the Arctic Ocean. Neither correlated low ozone and GEM events nor elevated concentrations of RGM and PHg were at any extent sampled, suggesting that atmospheric mercury deposition to the Arctic basin is low during the Polar summer and autumn. Elevated levels of Hg0 and CO were episodically observed in air along the Chukchi Peninsula indicating transport of regional pollution.
Toward a Better Quantitative Understanding of Polar Stratospheric Ozone Loss
NASA Technical Reports Server (NTRS)
Frieler, K.; Rex, M.; Salawitch, R. J.; Canty, T.; Streibel, M.; Stimpfle, R. M.; Pfeilsticker, K.; Dorf, M.; Weisenstein, D. K.; Godin-Beekmann, S.
2006-01-01
Previous studies have shown that observed large O3 loss rates in cold Arctic Januaries cannot be explained with current understanding of the loss processes, recommended reaction kinetics, and standard assumptions about total stratospheric chlorine and bromine. Studies based on data collected during recent field campaigns suggest faster rates of photolysis and thermal decomposition of ClOOCl and higher stratospheric bromine concentrations than previously assumed. We show that a model accounting for these kinetic changes and higher levels of BrO can largely resolve the January Arctic O3 loss problem and closely reproduces observed Arctic O3 loss while being consistent with observed levels of ClO and ClOOCl. The model also suggests that bromine catalyzed O3 loss is more important relative to chlorine catalyzed loss than previously thought.
Interactions of arctic clouds, radiation, and sea ice in present-day and future climates
NASA Astrophysics Data System (ADS)
Burt, Melissa Ann
The Arctic climate system involves complex interactions among the atmosphere, land surface, and the sea-ice-covered Arctic Ocean. Observed changes in the Arctic have emerged and projected climate trends are of significant concern. Surface warming over the last few decades is nearly double that of the entire Earth. Reduced sea-ice extent and volume, changes to ecosystems, and melting permafrost are some examples of noticeable changes in the region. This work is aimed at improving our understanding of how Arctic clouds interact with, and influence, the surface budget, how clouds influence the distribution of sea ice, and the role of downwelling longwave radiation (DLR) in climate change. In the first half of this study, we explore the roles of sea-ice thickness and downwelling longwave radiation in Arctic amplification. As the Arctic sea ice thins and ultimately disappears in a warming climate, its insulating power decreases. This causes the surface air temperature to approach the temperature of the relatively warm ocean water below the ice. The resulting increases in air temperature, water vapor and cloudiness lead to an increase in the surface downwelling longwave radiation, which enables a further thinning of the ice. This positive ice-insulation feedback operates mainly in the autumn and winter. A climate-change simulation with the Community Earth System Model shows that, averaged over the year, the increase in Arctic DLR is three times stronger than the increase in Arctic absorbed solar radiation at the surface. The warming of the surface air over the Arctic Ocean during fall and winter creates a strong thermal contrast with the colder surrounding continents. Sea-level pressure falls over the Arctic Ocean and the high-latitude circulation reorganizes into a shallow "winter monsoon." The resulting increase in surface wind speed promotes stronger surface evaporation and higher humidity over portions of the Arctic Ocean, thus reinforcing the ice-insulation feedback. In the second half of this study, we explore the effects of super-parameterization on the Arctic climate by evaluating a number of key atmospheric characteristics that strongly influence the regional and global climate. One aspect in particular that we examine is the occurrence of Arctic weather states. Observations show that during winter the Arctic exhibits two preferred and persistent states --- a radiatively clear and an opaquely cloudy state. These distinct regimes are influenced by the phase of the clouds and affect the surface radiative fluxes. We explore the radiative and microphysical effects of these Arctic clouds and the influence on these regimes in two present-day climate simulations. We compare simulations performed with the Community Earth System Model, and its super-parameterized counterpart (SP-CESM). We find that the SP-CESM is able to better reproduce both of the preferred winter states, compared to CESM, and has an overall more realistic representation of the Arctic climate.
NASA Astrophysics Data System (ADS)
Wright, N.; Polashenski, C. M.
2017-12-01
Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces exert tremendous influence over the energy balance of the Arctic Ocean by controlling the absorption of solar radiation. Here we demonstrate the use of a newly released, open source, image classification algorithm designed to identify surface features in high resolution optical satellite imagery of sea ice. Through explicitly resolving individual features on the surface, the algorithm can determine the percentage of ice that is covered by melt ponds with a high degree of certainty. We then compare observations of melt pond fraction extracted from these images with an established method of estimating melt pond fraction from medium resolution satellite images (e.g. MODIS). Because high resolution satellite imagery does not provide the spatial footprint needed to examine the entire Arctic basin, we propose a method of synthesizing both high and medium resolution satellite imagery for an improved determination of melt pond fraction across whole Arctic. We assess the historical trends of melt pond fraction in the Arctic ocean, and address the question: Is pond coverage changing in response to changing ice conditions? Furthermore, we explore the image area that must be observed in order to get a locally representative sample (i.e. the aggregate scale), and show that it is possible to determine accurate estimates of melt pond fraction by observing sample areas significantly smaller than the typical footprint of high-resolution satellite imagery.
Assessment of the Dehydration-Greenhouse Feedback Over the Arctic During Winter
NASA Astrophysics Data System (ADS)
Girard, E.; Stefanof, A.; Peltier-Champigny, M.; Munoz-Alpizar, R.; Dueymes, G.; Jean-Pierre, B.
2007-12-01
The effect of pollution-derived sulphuric acid aerosols on the aerosol-cloud-radiation interactions is investigated over the Arctic for February 1990. Observations suggest that acidic aerosols can decrease the heterogeneous nucleation rate of ice crystals and lower the homogeneous freezing temperature of haze droplets. Based on these observations, we hypothesize that the cloud thermodynamic phase is modified in polluted air mass (Arctic haze). Cloud ice number concentration is reduced, thus promoting further ice crystal growth by the Bergeron-Findeisen process. Hence, ice crystals reach larger sizes and low-level ice crystal precipitation from mixed-phase clouds increases. Enhanced dehydration of the lower troposphere contributes to decrease the water vapour greenhouse effect and cool the surface. A positive feedback is created between surface cooling and air dehydration, accelerating the cold air production. This process is referred to as the dehydration-greenhouse feedback (DGF). Simulations performed using an arctic regional climate model for February 1990, February and March 1985 and 1995 are used to assess the potential effect of the DGF on the Arctic climate. Results show that the DGF has an important effect over the Central and Eurasian Arctic, which is the coldest part of the Arctic with a surface cooling ranging between 0 and -3K. Moreover, the lower tropospheric cooling over the Eurasian and Central Arctic strengthens the atmospheric circulation at upper level, thus increasing the aerosol transport from the mid-latitudes and enhancing the DGF. Over warmer areas, the increased aerosol concentration (caused by the DGF) leads to longer cloud lifetime, which contributes to warm these areas. It is also shown that the maximum ice nuclei reduction must be of the order of 100 to get a significant effect.
NASA Astrophysics Data System (ADS)
Feltham, D. L.; Heorton, H. D.; Tsamados, M.
2016-12-01
The spatial distribution of Arctic sea ice arises from its deformation, driven by external momentum forcing, thermodynamic growth and melt. The deformation of Arctic sea ice is observed to have structural alignment on a broad range of length scales. By considering the alignment of diamond-shaped sea ice floes, an anisotropic rheology (known as the Elastic Anisotropic Plastic, EAP, rheology) has been developed for use in a climate sea ice model. Here we present investigations into the role of anisotropy in determining the internal ice stress gradient and the complete force balance of Arctic sea ice using a state-of-the-art climate sea ice model. Our investigations are focused on the link between external imposed dynamical forcing, predominantly the wind stress, and the emergent properties of sea ice, including its drift speed and thickness distribution. We analyse the characteristics of deformation events for different sea ice states and anisotropic alignment over different regions of the Arctic Ocean. We present the full seasonal stress balance and sea ice state over the Arctic ocean. We have performed 10 km basin-scale simulations over a 30-year time scale, and 2 km and 500 m resolution simulations in an idealised configuration. The anisotropic EAP sea ice rheology gives higher shear stresses than the more customary isotropic EVP rheology, and these reduce ice drift speed and mechanical thickening, particularly important in the Archipelago. In the central Arctic the circulation of sea ice is reduced allowing it to grow thicker thermodynamically. The emergent stress-strain rate correlations from the EAP model suggest that it is possible to characterise the internal ice stresses of Arctic sea ice from observable basin-wide deformation and drift patterns.
The Rapidly Diminishing Arctic ice Cover and its Potential Impact on Navy Operational Considerations
NASA Astrophysics Data System (ADS)
Muench, R. D.; Conlon, D.; Lamb, D.
2001-12-01
Observations made from U.S. Navy Fleet submarines during the 1990s have revealed a dramatic decrease in thickness, when compared to historical values, of the central Arctic Ocean pack ice cover. Estimates of this decrease have been as high as 40%. Remote sensing observations have shown a coincident decrease in the areal extent of the pack. The areal decrease has been especially apparent during winter. The overall loss of ice appears to have accelerated over the past decade, raising the possibility that the Northwest Passage and the Northern Sea Route may become seasonally navigable on a regular basis in the coming decade. The ice loss has been most evident in the peripheral seas and continental shelf areas. For example, during winter 2000-2001 the Bering Sea was effectively ice-free, with strong and immediate impacts on the surrounding indigenous populations. Lessening of the peripheral pack ice cover will presumably, lead to accelerated development of the resource-rich regions that surround the deep, central Arctic Ocean basin. This raises potential issues with respect to national security and commercial interests, and has implicit strategic concerns for the Navy. The timeline for a significantly navigable Arctic may extend decades into the future; however, operational requirements must be identified in the nearer term to ensure that the necessary capabilities exist when future Arctic missions do present themselves. A first step is to improve the understanding of the coupled atmosphere/ice/ocean system. Current environmental measurement and prediction, including Arctic weather and ice prediction, shallow water acoustic performance prediction, dynamic ocean environmental changes and data to support navigation is inadequate to support sustained naval operations in the Arctic. A new focus on data collection is required in order to measure, map, monitor and model Arctic weather, ice and oceanographic conditions.
NASA Astrophysics Data System (ADS)
Aheyeva, Viktoryia; Gruzdev, Aleksandr; Grishaev, Mikhail
Data of ground-based measurements of NO2 column contents are analyzed to study winter-spring NO2 anomalies associated with negative anomalies in column ozone and stratospheric temperature. Episodes of significant decrease in column NO2 contents in the winter-spring period of 2011 in the northern hemisphere (NH) were detected at European and Siberian stations of Zvenigorod (55.7°N, Moscow Region) and Tomsk (56.5°N, West Siberia) in the middle latitudes, Harestua (60.2°N), Sodankyla (67.4°N, both in North Europe), and Zhigansk (66.8°N, East Siberia) in the high latitudes, and at the Arctic station of Scoresbysund (70.5°N, Greenland). All the stations, except Tomsk, are a part of the Network of the Detection of Atmospheric Composition Change (NDACC), and the data are accesses at http://ndacc.org. The decrease in NO2 is generally accompanied by total ozone and stratospheric temperature decrease and is shown to be caused by the transport of stratospheric air from the region of the ozone hole observed that season in the Arctic. Overpass total ozone data from Giovanni service and radiosonde data were used for the analysis. Although negative NO2 anomalies due to the transport from the Arctic were also observed in some other years, the anomalies in 2011 reached record magnitudes. A significant positive correlation has been found between variations in NO2 and ozone columns as well as NO2 column and stratospheric temperature during the winter-spring period of 2011, whereas the correlation is much weaker in years without Arctic ozone depletion. The correlation becomes even stronger if only episodes with significant NO2 decrease are considered. For example the correlation coefficients between NO2 and ozone columns deviations are about 0.9 for Zvenigorod and Scoresbysund. Correlation coefficients between variations in column NO2 and total ozone and stratospheric temperature as well as coefficients of regression of NO2 on ozone and temperature in the winter-spring period of 2011 for the Siberian stations are less than those for European stations. For comparison analysis, data of column NO2, total ozone and stratospheric temperature at the southern hemisphere (SH) stations of Dumont D’Urville (66.7°S, the Antarctic), Macquarie Island (54.5°S) and Kerguelen Island (49.3°S) (all stations are NDACC stations) were used. Correlation and regression coefficients between variations in column NO2 and total ozone as well as in column NO2 and stratospheric temperature for the winter-spring periods at the SH stations depend on the phase of the quasi-biennial oscillation (QBO) in the 30 hPa equatorial wind velocity. The correlation coefficients and the coefficients of regression of NO2 on ozone and temperature for the west QBO phase are large compared to those for the east phase. The 2011 Arctic ozone hole was observed during the west phase of the 30 hPa QBO. The calculated correlation coefficients at the NH stations for the winter-spring period of 2011 associated with the Arctic ozone hole are close to similar coefficients at the SH stations in winter-spring periods for the west QBO phase. The regression coefficients at the NH stations are less than those at the SH stations for the west QBO phase but greater than similar coefficients for the east phase. We can conclude that physico-chemical processes specific for ozone hole conditions cause spatial correlation between distribution of stratospheric NO2 and distributions of total ozone and temperature in polar and adjacent regions, which is generally stronger for stronger ozone deficit in a polar region. This results in significant time correlation between NO2, ozone and temperature at observation sites due to transport processes.
Influence of mountains on Arctic tropospheric ozone
NASA Astrophysics Data System (ADS)
Seabrook, Jeffrey; Whiteway, James
2016-02-01
Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring of 2008 using a differential absorption lidar. The observations were carried out at Eureka Weather Station, which is located between various mountain ranges. Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the midtroposphere descended in the lee of the mountains. Three case studies from spring of 2008 are described.
Space satellite to aid arctic oil development
NASA Technical Reports Server (NTRS)
1975-01-01
A project which utilizes the Nimbus-6 weather satellite and air-dropable data collection platforms for observation of Arctic ice movement is described. The information gained from the project could be valuable for planning oil recovery operations in the area.
Variations in freshwater pathways from the Arctic Ocean into the North Atlantic Ocean
NASA Astrophysics Data System (ADS)
Wang, Zeliang; Hamilton, James; Su, Jie
2017-06-01
Understanding the mechanisms that drive exchanges between the Arctic Ocean and adjacent oceans is critical to building our knowledge of how the Arctic is reacting to a warming climate, and how potential changes in Arctic Ocean freshwater export may impact the AMOC (Atlantic Meridional Overturning Circulation). Here, freshwater pathways from the Arctic Ocean to the North Atlantic are investigated using a 1 degree global model. An EOF analysis of modeled sea surface height (SSH) demonstrates that while the second mode accounts for only 15% of the variability, the associated geostrophic currents are strongly correlated with freshwater exports through CAA (Canadian Arctic Archipelago; r = 0.75), Nares Strait (r = 0.77) and Fram Strait (r = -0.60). Separation of sea level into contributing parts allows us to show that the EOF1 is primarily a barotropic mode reflecting variability in bottom pressure equivalent sea level, while the EOF2 mode reflects changes in steric height in the Arctic Basin. This second mode is linked to momentum wind driven surface current, and dominates the Arctic Ocean freshwater exports. Both the Arctic Oscillation and Arctic Dipole atmospheric indices are shown to be linked to Arctic Ocean freshwater exports, with the forcing associated with the Arctic Dipole reflecting the out-of-phase relationship between transports through the CAA and those through Fram Strait. Finally, observed freshwater transport variation through the CAA is found to be strongly correlated with tide gauge data from the Beaufort Sea coast (r = 0.81), and with the EOF2 mode of GRACE bottom pressure data (r = 0.85) on inter-annual timescales.
SWIFT Observations in the Arctic Sea State DRI
2015-09-30
to understand the role of waves and sea state in the Arctic Ocean, such that forecast models are improved and a robust climatology is defined...OBJECTIVES The objectives are to: develop a sea state climatology for the Arctic Ocean, improve wave forecasting in the presence of sea ice, improve...experiment, coordination of remote sensing products, and analysis of climatology . A detailed cruise plan has been written, including a table of the remote
China and the Arctic: An Opportunity for the U.S.
2017-04-06
DISTRIBUTION A. Approved for public release: distribution unlimited. 10 nations’ sovereign claims and the Law of the Sea.53 As an observer on the Arctic...distribution unlimited. 13 China and UNCLOS To sustain or grow its economy, China needs to navigate the Law of the Sea (UNCLOS) concerning the Arctic...right to adopt and enforce non-discriminatory laws and regulations for the prevention, reduction and control of marine pollution from vessels in ice
Changes in the Arctic: Background and Issues for Congress
2010-10-15
resources and to address socioeconomic impacts of changing patterns in the use of natural resources. Changes in the Arctic: Background and Issues for...by some observers as a potential emerging security issue. In varying degrees, the Arctic coastal states have indicated a willingness to establish and...varying definitions of the region, and readers should bear in mind that the definition used in one discussion may differ from that used in another. This
Recent warming leads to a rapid borealization of fish communities in the Arctic
NASA Astrophysics Data System (ADS)
Fossheim, Maria; Primicerio, Raul; Johannesen, Edda; Ingvaldsen, Randi B.; Aschan, Michaela M.; Dolgov, Andrey V.
2015-07-01
Arctic marine ecosystems are warming twice as fast as the global average. As a consequence of warming, many incoming species experience increasing abundances and expanding distribution ranges in the Arctic. The Arctic is expected to have the largest species turnover with regard to invading and locally extinct species, with a modelled invasion intensity of five times the global average. Studies in this region might therefore give valuable insights into community-wide shifts of species driven by climate warming. We found that the recent warming in the Barents Sea has led to a change in spatial distribution of fish communities, with boreal communities expanding northwards at a pace reflecting the local climate velocities. Increased abundance and distribution areas of large, migratory fish predators explain the observed community-wide distributional shifts. These shifts change the ecological interactions experienced by Arctic fish species. The Arctic shelf fish community retracted northwards to deeper areas bordering the deep polar basin. Depth might limit further retraction of some of the fish species in the Arctic shelf community. We conclude that climate warming is inducing structural change over large spatial scales at high latitudes, leading to a borealization of fish communities in the Arctic.
Export of algal biomass from the melting Arctic sea ice.
Boetius, Antje; Albrecht, Sebastian; Bakker, Karel; Bienhold, Christina; Felden, Janine; Fernández-Méndez, Mar; Hendricks, Stefan; Katlein, Christian; Lalande, Catherine; Krumpen, Thomas; Nicolaus, Marcel; Peeken, Ilka; Rabe, Benjamin; Rogacheva, Antonina; Rybakova, Elena; Somavilla, Raquel; Wenzhöfer, Frank
2013-03-22
In the Arctic, under-ice primary production is limited to summer months and is restricted not only by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. Research Vessel Polarstern visited the ice-covered eastern-central basins between 82° to 89°N and 30° to 130°E in summer 2012, when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 grams of carbon per square meter to the deep-sea floor of the central Arctic basins. Data from this cruise will contribute to assessing the effect of current climate change on Arctic productivity, biodiversity, and ecological function.
Oceanographic Aspects of Recent Changes in the Arctic
NASA Astrophysics Data System (ADS)
Morison, J. H.
2002-12-01
In the Arctic recent decadal-scale changes have marked the atmosphere, ocean, and land. Connections between the oceanographic changes and large-scale atmospheric circulation changes are emerging. Surface atmospheric pressure has shown a declining trend over the Arctic. In the 1990s, the Arctic Ocean circulation took on a more cyclonic character, and the front separating Atlantic-derived waters of the Eurasian Basin and the Pacific-derived waters of the Canadian Basin shifted counterclockwise. The temperature of Atlantic water in the Arctic Ocean reached record levels. The cold halocline, which isolates the surface from the warm Atlantic water, grew thinner disappearing entirely from the Amundsen Basin at one point [Steele and Boyd, 1998]. Arctic sea ice extent has decreased 3% per decade since the 1970s [Parkinson et al., 1999]. Sea ice thickness over much of the Arctic decreased 43% between 1958-1976 and 1993-1997 [Rothrock et al., 1999]. Arctic ecosystems have responded to these changes. Sea ice studies in the late 1990s indicate that the sea ice algal species composition changed from decades before, with the species recently being characterized by more brackish and freshwater forms. Barents Sea fisheries have shifted north following reductions in ice extent. Pacific salmon species have been found entering rivers in the Arctic. There is evidence that this complex of pan-Arctic changes is connected with the rising trend in the Arctic Oscillation (AO) or Northern Hemisphere atmospheric polar vortex in the 1990s. Theoretical evidence that a positive trend in the AO index might be indicative of greenhouse warming raises the possibility that the recent complex of changes is an Arctic characteristic of global climate change. Also, the changes in ice cover manifest a connection between the complex of change and global climate through ice-albedo feedback, by which reductions in ice cover reduce the amount of sunlight reflected from the earth's surface. Another important climate feedback is that the changes in ocean circulation and ice production have increased the amount of relatively fresh surface water exported to the sub-Arctic Seas, increasing stratification there, and arguably reducing the strength of the global thermohaline circulation. Since the mid-1990s the strength of the Polar Vortex (AO) has relaxed partially toward earlier levels. Recent observations show that Arctic Ocean water mass structure has relaxed somewhat towards climatology near the surface but is still changing at depth. The cold halocline has recovered in some areas. This reinforces the notion that the changes in the Arctic are tied to the atmospheric circulation of the whole northern hemisphere. The events of the last 10-15 years suggest ways the Arctic environment may be an indicator and agent of climate change and highlight the importance of a systematic program to observe the changing Arctic. References Parkinson C. L., D. J. Cavalieri, P. Gloersen, H. J. Zwally, and J. C. Comiso, 1999, Arctic sea ice extents, areas, and trends, 1978-1996, J. Geophys. Res., 104, 20,387-20,856. Rothrock, D. A., Y. Yu, and G. A. Maykut, 1999, Thinning of the Arctic sea-ice cover, Geophys. Res. Lett., 26(23), 3469-3472. Steele, M., and T. Boyd, 1998, Retreat of the cold halocline layer in the Arctic Ocean, J. Geophys. Res., 103, 10,419-10,435.
NASA Astrophysics Data System (ADS)
Polk, J.; North, L. A.; Strenecky, B.
2015-12-01
Changes in Arctic warming influence the various atmospheric and oceanic patterns that drive Caribbean and mid-latitude climate events, including extreme events like drought, tornadoes, and flooding in Kentucky and the surrounding region. Recently, the establishment of the North Atlantic Climate Change Collaboration (NAC3) project at Western Kentucky University (WKU) in partnership with the University of Akureyri (UNAK), Iceland Arctic Cooperation Network (IACN), and Caribbean Community Climate Change Centre (CCCCC) provides a foundation from which to engage students in applied research from the local to global levels and more clearly understand the many tenets of climate change impacts in the Arctic within both a global and local community context. The NAC3 project encompasses many facets, including joint international courses, student internships, economic development, service learning, and applied research. In its first phase, the project has generated myriad outcomes and opportunities for bridging STEM disciplines with other fields to holistically and collaboratively address specific human-environmental issues falling under the broad umbrella of climate change. WKU and UNAK students desire interaction and exposure to other cultures and regions that are threatened by climate change and Iceland presents a unique opportunity to study influences such as oceanic processes, island economies, sustainable harvest of fisheries, and Arctic influences on climate change. The project aims to develop a model to bring partners together to conduct applied research on the complex subject of global environmental change, particularly in the Arctic, while simultaneously focusing on changing how we learn, develop community, and engage internationally to understand the impacts and find solutions.
Kumamoto, Yuichiro; Aoyama, Michio; Hamajima, Yasunori; Nishino, Shigeto; Murata, Akihiko; Kikuchi, Takashi
2017-08-01
We measured radiocesium ( 134 Cs and 137 Cs) in seawater from the western subarctic area of the North Pacific Ocean, Bering Sea, and Arctic Ocean in 2013 and 2014. Fukushima-derived 134 Cs in surface seawater was observed in the western subarctic area and Bering Sea but not in the Arctic Ocean. Vertical profile of 134 Cs in the Canada Basin of the Arctic Ocean implies that Fukushima-derived 134 Cs intruded into the basin from the Bering Sea through subsurface (150m depth) in 2014. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Scherwath, Martin; Dewey, Richard; Heesemann, Martin; Thomsen, Laurenz; Purser, Autun; Roemer, Miriam; Xu, Guangyu
2015-04-01
Ocean Networks Canada operates ocean observatories and hosts data from the Canadian Pacific, Arctic and recently the Atlantic Ocean. The two prominent observatories are VENUS (Victoria Experimental Network Under the Sea), online since 2006, inshore from Vancouver Island in the Salish Sea, and NEPTUNE (North East Pacific Time-series Underwater Networked Experiments), offshore at the northern Cascadia margin across the Juan de Fuca Plate, online since 2009. Over 250 Terabytes of data have been collected and are openly and freely accessible. Geoscientific research has made use of these high-resolution permanent time series and started to quantify ocean and seafloor dynamics. For example, upward-looking echo-sounders quantify vertical migration of euphausiids (e.g. krill) in the water column, showing additional environment- and growth-related influence to the expected light intensity-related diel migration pattern; or camera observations quantify in-situ the speed of bacterial mat withering, clam movements and local anoxic region distribution changes; or rotating sonars show unprecedented long-term stability observations of a hydrothermal vent system and the sudden changes after a local earthquake, or at a gas hydrate field sonar data detect gas venting that has an amazingly specific tidal pressure correlation which hints at internal sediment processes in relation to gas hydrate dissociation; or a regional array of bottom pressure recorders has detected five major tsunami events which help fine-tune tsunami models for better hazard preparedness.
The Arctic clouds from model simulations and long-term observations at Barrow, Alaska
NASA Astrophysics Data System (ADS)
Zhao, Ming
The Arctic is a region that is very sensitive to global climate change while also experiencing significant changes in its surface air temperature, sea-ice cover, atmospheric circulation, precipitation, snowfall, biogeochemical cycling, and land surface. Although previous studies have shown that the arctic clouds play an important role in the arctic climate changes, the arctic clouds are poorly understood and simulated in climate model due to limited observations. Furthermore, most of the studies were based on short-term experiments and typically only cover the warm seasons, which do not provide a full understanding of the seasonal cycle of arctic clouds. To address the above concerns and to improve our understanding of arctic clouds, six years of observational and retrieval data from 1999 to 2004 at the Atmospheric Radiation Management (ARM) Climate Research Facility (ACRF) North Slope of Alaska (NSA) Barrow site are used to understand the arctic clouds and related radiative processes. In particular, we focus on the liquid-ice mass partition in the mixed-phase cloud layer. Statistical results show that aerosol type and concentration are important factors that impact the mixed-phase stratus (MPS) cloud microphysical properties: liquid water path (LWP) and liquid water fraction (LWF) decrease with the increase of cloud condensation nuclei (CCN) number concentration; the high dust loading and dust occurrence in the spring are possible reasons for the much lower LWF than the other seasons. The importance of liquid-ice mass partition on surface radiation budgets was analyzed by comparing cloud longwave radiative forcings under the same LWP but different ice water path (IWP) ranges. Results show the ice phase enhance the surface cloud longwave (LW) forcing by 8˜9 W m-2 in the moderately thin MPS. This result provides an observational evidence on the aerosol glaciation effect in the moderately thin MPS, which is largely unknown so far. The above new insights are important to guide the model parameterizations of liquid-ice mass partition in arctic mixed-phase clouds, and are served as a test bed to cloud models and cloud microphysical schemes. The observational data between 1999 and 2007 are used to assess the performance of the European Center for Medium-Range Weather Forecasts (ECMWF) model in the Arctic region. The ECMWF model-simulated near-surface humidity had seasonal dependent biases as large as 20%, while also experiencing difficulty representing boundary layer (BL) temperature inversion height and strength during the transition seasons. Although the ECMWF model captured the seasonal variation of surface heat fluxes, it had sensible heat flux biases over 20 W m-2 in most of the cold months. Furthermore, even though the model captured the general seasonal variations of low-level cloud fraction (LCF) and LWP, it still overestimated the LCF by 20% or more and underestimated the LWP over 50% in the cold season. On average, the ECMWF model underestimated LWP by ˜30 g m-2 but more accurately predicted ice water path for BL clouds. For BL mixed-phase clouds, the model predicted water-ice mass partition was significantly lower than the observations, largely due to the temperature dependence of water-ice mass partition used in the model. The new cloud and BL schemes of the ECMWF model that were implemented after 2003 only resulted in minor improvements in BL cloud simulations in summer. These results indicate that significant improvements in cold season BL and mixed-phase cloud processes in the model are needed. In this study, single-layer MPS clouds were simulated by the Weather Research and Forecasting (WRF) model under different microphysical schemes and different ice nuclei (IN) number concentrations. Results show that by using proper IN concentration, the WRF model incorporated with Morrison microphysical scheme can reasonably capture the observed seasonal differences in temperature dependent liquid-ice mass partition. However, WRF simulations underestimate both LWP and IWP indicating its deficiency in capturing the radiative impacts of arctic MPS clouds.
NASA Astrophysics Data System (ADS)
Steffen, A.; Ferrari, C.; Dommergue, A.; Scherz, T.; Lawson, G.; Leiatch, R.
2006-12-01
Mercury is a known toxic pollutant in the Arctic environment. Atmospheric mercury depletion events (AMDEs) have been studied in the Arctic since 1995. While advances in understanding this newly discovered cycling of mercury in the atmosphere have been made, much of the chemistry and the impact of this annually reoccurring event to the Arctic ecosystem are not well understood. Four years of continuous measurements at Alert, Canada of so-called reactive gaseous mercury (RGM) and mercury associated to particles (PHg) coupled with ongoing snow sampling have produced new information on the atmospheric chemistry and deposition of these mercury species to the Arctic. A distinct pattern during the springtime period in the distribution of these atmospheric mercury species has emerged. This pattern is characterized by the predominance of PHg concentration at the onset of the AMDEs. During the latter part of the AMDE season, there is an obvious swicth in the speciation of mercury to RGM as the main component during AMDEs. This swicth from PHg to RGM is clearly linked to a significant increase of mercury in the snow. In addition, concentrations of PHg are clearly linked with particles in the air that are primarily associated with Arctic haze. Recently, similar results have also been observed in Ny-Alesund (Svalbard). Further observations indicate that once deposited, the deposited mercury appears to evolve chemically in the snow. This change in mercury may impact the transfer of mercury to the environment during snow melt. These first time observed links between atmospheric conditions and subsequent deposition of mercury may help to ascertain the conditions throughout the Arctic as to when significant deposition of mercury will occur. It is proposed that should the concentration of atmospheric particles increase in the Arctic due to long range transport from emission sources, an increase in the deposition of mercury to this environment will increase during the springtime period. Additionally, information from these data demonstrates that the primary product of the oxidation of gaseous elemental mercury (GEM) is RGM which will associate to the particles and exist as PHg when these particles are available in the atmosphere. The oxidation of GEM is, therefore, a result of homogeneous chemistry. Results from this ongoing study and the impacts of this pollutant to the Arctic environment will be presented.
Trends in aerosol optical depth in the Russian Arctic and their links with synoptic climatology.
Shahgedanova, Maria; Lamakin, Mikhail
2005-04-01
Temporal and spatial variability of aerosol optical depth (AOD) are examined using observations of direct solar radiation in the Eurasian Arctic for 1940-1990. AOD is estimated using empirical methods for 14 stations located between 66.2 degrees N and 80.6 degrees N, from the Kara Sea to the Chukchi Sea. While AOD exhibits a well-known springtime maximum and summertime minimum at all stations, atmospheric turbidity is higher in spring in the western (Kara-Laptev) part of the Eurasian Arctic. Between June and August, the eastern (East Siberian-Chukchi) sector experiences higher transparency than the western part. A statistically significant positive trend in AOD was observed in the Kara-Laptev sector between the late 1950s and the early 1980s predominantly in spring when pollution-derived aerosol dominates the Arctic atmosphere but not in the eastern sector. Although all stations are remote, those with positive trends are located closer to the anthropogenic sources of air pollution. By contrast, a widespread decline in AOD was observed between 1982 and 1990 in the eastern Arctic in spring but was limited to two sites in the western Arctic. These results suggest that the post-1982 decline in anthropogenic emissions in Europe and the former Soviet Union has had a limited effect on aerosol load in the Arctic. The post-1982 negative trends in AOD in summer, when marine aerosol is present in the atmosphere, were more common in the west. The relationships between AOD and atmospheric circulation are examined using a synoptic climatology approach. In spring, AOD depends primarily on the strength and direction of air flow. Thus strong westerly and northerly flows result in low AOD values in the East Siberian-Chukchi sector. By contrast, strong southerly flow associated with the passage of depressions results in high AOD in the Kara-Laptev sector and trajectory analysis points to the contribution of industrial regions of the sub-Arctic. In summer, low pressure gradient or anticyclonic conditions result in high atmospheric turbidity. The frequency of this weather type has declined significantly since the early 1980s in the Kara-Laptev sector, which partly explains the decline in summer AOD values.
Observations of denitrification and dehydration in the winter polar stratospheres
NASA Technical Reports Server (NTRS)
Fahey, D. W.; Kelly, K. K.; Kawa, S. R.; Tuck, A. F.; Loewenstein, M.
1990-01-01
It is argued that denitrification of the Arctic stratosphere can be explained by the selective growth and sedimentation of aerosol particles rich in nitric acid. Because reactive nitrogen species moderate the destruction of ozone by chlorine-catalyzed reactions by sequestering chlorine in reservoir species such as ClONO2, the possibility of the removal of reactive nitrogen without dehydration should be allowed for in attempts to model ozone depletion in the Arctic. Indeed, denitrification along with elevated concentrations of reactive chlorine observed in 1989 indicate that the Arctic was chemically primed for ozone destruction without an extended period of temperatures below the frost point, as is characteristic of the Antarctic.
Building University Capacity to Visualize Solutions to Complex Problems in the Arctic
NASA Astrophysics Data System (ADS)
Broderson, D.; Veazey, P.; Raymond, V. L.; Kowalski, K.; Prakash, A.; Signor, B.
2016-12-01
Rapidly changing environments are creating complex problems across the globe, which are particular magnified in the Arctic. These worldwide challenges can best be addressed through diverse and interdisciplinary research teams. It is incumbent on such teams to promote co-production of knowledge and data-driven decision-making by identifying effective methods to communicate their findings and to engage with the public. Decision Theater North (DTN) is a new semi-immersive visualization system that provides a space for teams to collaborate and develop solutions to complex problems, relying on diverse sets of skills and knowledge. It provides a venue to synthesize the talents of scientists, who gather information (data); modelers, who create models of complex systems; artists, who develop visualizations; communicators, who connect and bridge populations; and policymakers, who can use the visualizations to develop sustainable solutions to pressing problems. The mission of Decision Theater North is to provide a cutting-edge visual environment to facilitate dialogue and decision-making by stakeholders including government, industry, communities and academia. We achieve this mission by adopting a multi-faceted approach reflected in the theater's design, technology, networking capabilities, user support, community relationship building, and strategic partnerships. DTN is a joint project of Alaska's National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) and the University of Alaska Fairbanks (UAF), who have brought the facility up to full operational status and are now expanding its development space to support larger team science efforts. Based in Fairbanks, Alaska, DTN is uniquely poised to address changes taking place in the Arctic and subarctic, and is connected with a larger network of decision theaters that include the Arizona State University Decision Theater Network and the McCain Institute in Washington, DC.
Second-Year Results from the Circumarctic Lakes Observation Network (CALON) Project
NASA Astrophysics Data System (ADS)
Hinkel, K. M.; Arp, C. D.; Beck, R. A.; Eisner, W. R.; Frey, K. E.; Gaglioti, B.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Townsend-Small, A.
2013-12-01
Beginning in April 2012, over 55 lakes in northern Alaska were instrumented as the initial phase of CALON, a project designed to document landscape-scale variability in physical and biogeochemical processes of Arctic lakes developed atop permafrost. The current network has nine observation nodes along two latitudinal transects that extend from the Arctic Ocean south 200 km to the foothills of the Brooks Range. At each node, six representative lakes of differing area and depth were instrumented at different intensity levels, and a suite of instruments were deployed to collect field measurements on lake physiochemistry, lake-surface and terrestrial climatology, and lake bed and permafrost temperature. Each April, sensors measuring water temperature and water depth are deployed through the ice and water samples are collected. Sensors are downloaded from lakes and meteorological stations in August, recording a timeline of lake regimes and events from ice decay to the summertime energy and water balance. In general, lake ice thickness increased with latitude. In 2012, ice on deeper (>2 m) lakes was about 1.4 m thick in the Arctic Foothills and 1.7 m thick near the Arctic Ocean coast. Lake ice thickness was about 20 cm thicker in winter 2013 although winter temperatures were several degrees warmer than the previous year; this is likely due to a thinner snow cover in 2013. Lake ice elevations agree with this general trend, showing higher absolute elevation in April 2013 compared to 2012 for most of the surveyed lakes. Regionally, ice-off occurs 2-4 weeks later on lakes near the coast, although there is significant inter-lake variability related to lake depth. Following ice-off, rapid lake warming occurs and water temperature varies synchronously in response to synoptic weather variations and associated changes in net radiation and turbulent heat fluxes. Average mid-summer (July) lake temperatures spanned a relatively wide range in 2012 from 7°C to 18°C, with higher temperatures in small shallow lakes and more southern latitudes. Most lakes are well-mixed and largely isothermal, with short periods of thermal stratification occurring in deeper lakes during calm, sunny periods. Over the ice-free season, the majority of the available energy from net radiation goes into evaporation, followed by sensible heat flux and warming of bottom sediments. Thermal bands of MODIS and Landsat imagery were fused using a spatio-temporal cokriging method to generate daily surface temperature estimates at Landsat spatial resolution. The close correspondence between satellite-derived and in situ measured near-surface lake temperature suggests that this approach yields viable results. Biogeochemical and inorganic geochemical constituents measured include dissolved greenhouse gas concentrations (CO2, CH4, and N2O), inorganic N, DON and DOC, alkalinity, chlorophyll-a, major ions, and CDOM. The greatest difference in the dissolved CH4:CO2 ratio in summer was longitudinal, with several lakes in western Alaskan Arctic exhibiting CH4 concentrations hundreds of times more supersaturated than air. Stable isotope analyses of CH4 (δ13C and δ2H) show that several of these lakes have natural gas methane sources. Methane concentrations under ice (April) were several thousand times higher than in open-water conditions (August). Data collected during this 4-year project are archived at A-CADIS.
Filling the monitoring gaps across the US Arctic by permanently adopting USArray stations
NASA Astrophysics Data System (ADS)
Buurman, H.; West, M. E.
2017-12-01
The USArray project represents a truly unique opportunity to fundamentally change geophysical monitoring in the US Arctic. The addition of more than 200 stations capable of recording seismic, infrasound, ground temperature and meteorologic data has brought a diverse group of organizations to the table, fostering new connections and collaborations between scientists whose paths otherwise would not cross. With the array slated for removal beginning in 2019, there is a window of opportunity to advocate for permanently retaining a subset of the USArray stations. The Alaska Earthquake Center has drafted a plan to permanently adopt a subset of the USArray stations and maintain them as part of the seismic network in Alaska. The expanded seismic network would substantially improve on the Alaska Earthquake Center's ongoing mission to advance Alaska's resilience to earthquake hazards. By continuing to provide public climate and infrasound data, the Alaska Earthquake Center would also fill important gaps in the weather, wildfire and climate research monitoring networks across Alaska. The many challenges in adopting USArray stations include choosing which stations to retain, upgrading the power systems to have 24/7 data transmission through the long Alaskan winter months, and lowering the costs of continuous telemetry.
Warm Arctic-cold Siberia: comparing the recent and the early 20th-century Arctic warmings
NASA Astrophysics Data System (ADS)
Wegmann, Martin; Orsolini, Yvan; Zolina, Olga
2018-02-01
The Warm Arctic-cold Siberia surface temperature pattern during recent boreal winter is suggested to be triggered by the ongoing decrease of Arctic autumn sea ice concentration and has been observed together with an increase in mid-latitude extreme events and a meridionalization of tropospheric circulation. However, the exact mechanism behind this dipole temperature pattern is still under debate, since model experiments with reduced sea ice show conflicting results. We use the early twentieth-century Arctic warming (ETCAW) as a case study to investigate the link between September sea ice in the Barents-Kara Sea (BKS) and the Siberian temperature evolution. Analyzing a variety of long-term climate reanalyses, we find that the overall winter temperature and heat flux trend occurs with the reduction of September BKS sea ice. Tropospheric conditions show a strengthened atmospheric blocking over the BKS, strengthening the advection of cold air from the Arctic to central Siberia on its eastern flank, together with a reduction of warm air advection by the westerlies. This setup is valid for both the ETCAW and the current Arctic warming period.
NASA Astrophysics Data System (ADS)
Bring, Arvid; Kalantari, Zahra
2017-04-01
Natural ecological functions provide essential and fundamental benefits to mankind, but can also be actively employed in nature-based solutions to specific challenges in society. For example, water-related ecosystem services have a role in such societal benefits as flood protection, erosion control, and excess nutrient removal. Ecosystem services may be produced and consumed in different locations, and research has recently attempted to formalize this discrepancy in identifying service providing areas (SPAs), service benefitting areas (SBAs), and service connecting areas (SCAs). However, in terms of water-related services, there is a lack of formal evaluation of how SPAs, SBAs, and SCAs are related to hydrological measures such as discharge, flood recurrence, excess nutrient removal, etc. We seek to map SPAs, SBAs and SCAs for a number of key ecosystem services in the Nordic and Arctic region though established ecological definitions (typically, based on land use) and evaluate the findings alongside metrics of hydrological connectivity (river networks), provisioning areas (runoff generating areas), and benefitting areas (river stretches where water flow is moderated). We make use of extensive GIS analysis using both high-resolution land cover data and river network maps. In the end, the results are expected to contribute to identifying how water-related ecosystem services can be employed as nature-based solutions for hydro-meteorological risk reduction and nutrient removal in a changing climate in the Nordic and Arctic regions.
Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils.
Weedon, James T; Aerts, Rien; Kowalchuk, George A; van Bodegom, Peter M
2011-01-01
Understanding global change impacts on the globally important carbon storage in alpine, Arctic and sub-Arctic soils requires knowledge of the mechanisms underlying the balance between plant primary productivity and decomposition. Given that nitrogen availability limits both processes, understanding the response of the soil nitrogen cycle to shifts in temperature and other global change factors is crucial for predicting the fate of cold biome carbon stores. Measurements of soil enzyme activities at different positions of the nitrogen cycling network are an important tool for this purpose. We review a selection of studies that provide data on potential enzyme activities across natural, seasonal and experimental gradients in cold biomes. Responses of enzyme activities to increased nitrogen availability and temperature are diverse and seasonal dynamics are often larger than differences due to experimental treatments, suggesting that enzyme expression is regulated by a combination of interacting factors reflecting both nutrient supply and demand. The extrapolation from potential enzyme activities to prediction of elemental nitrogen fluxes under field conditions remains challenging. Progress in molecular '-omics' approaches may eventually facilitate deeper understanding of the links between soil microbial community structure and biogeochemical fluxes. In the meantime, accounting for effects of the soil spatial structure and in situ variations in pH and temperature, better mapping of the network of enzymatic processes and the identification of rate-limiting steps under different conditions should advance our ability to predict nitrogen fluxes.
The sign, magnitude and potential drivers of change in surface water extent in Canadian tundra
NASA Astrophysics Data System (ADS)
Carroll, Mark L.; Loboda, Tatiana V.
2018-04-01
The accelerated rate of warming in the Arctic has considerable implications for all components of ecosystem functioning in the High Northern Latitudes. Changes to hydrological cycle in the Arctic are particularly complex as the observed and projected warming directly impacts permafrost and leads to variable responses in surface water extent which is currently poorly characterized at the regional scale. In this study we take advantage of the 30 plus years of medium resolution (30 m) Landsat data to quantify the spatial patterns of change in the extent of water bodies in the Arctic tundra in Nunavut, Canada. Our results show a divergent pattern of change—growing surface water extent in the north-west and shrinking in the south-east—which is not a function of the overall distribution of surface water in the region. The observed changes cannot be explained by latitudinal stratification, nor is it explained by available temperature and precipitation records. However, the sign of change appears to be consistent within the boundaries of individual watersheds defined by the Canada National Hydro Network based on the random forest analysis. Using land cover maps as a proxy for ecological function we were able to link shrinking tundra water bodies to substrates with shallow soil layers (i.e. bedrock and barren landscapes) with a moderate correlation (R 2 = 0.46, p < 0.001). It has previously been reported that rising temperatures are driving a deepening of the active layer and shrinking water bodies can be associated with coarse textured soils beneath the lakes. Unlike water bodies with soil, or gravel, beneath them the water bodies that are situated on bedrock are likely cut off from ground water. Drying water bodies clustered in areas of bedrock and thin soils points to evaporation as an important driver of surface water decrease in these cases.
Tool to assess contents of ARM surface meteorology network netCDF files
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staudt, A.; Kwan, T.; Tichler, J.
The Atmospheric Radiation Measurement (ARM) Program, supported by the US Department of Energy, is a major program of atmospheric measurement and modeling designed to improve the understanding of processes and properties that affect atmospheric radiation, with a particular focus on the influence of clouds and the role of cloud radiative feedback in the climate system. The ARM Program will use three highly instrumented primary measurement sites. Deployment of instrumentation at the first site, located in the Southern Great Plains of the United States, began in May of 1992. The first phase of deployment at the second site in the Tropicalmore » Western Pacific is scheduled for late in 1995. The third site will be in the North Slope of Alaska and adjacent Arctic Ocean. To meet the scientific objectives of ARM, observations from the ARM sites are combined with data from other sources; these are called external data. Among these external data sets are surface meteorological observations from the Oklahoma Mesonet, a Kansas automated weather network, the Wind Profiler Demonstration Network (WPDN), and the National Weather Service (NWS) surface stations. Before combining these data with the Surface Meteorological Observations Station (SMOS) ARM data, it was necessary to assess the contents and quality of both the ARM and the external data sets. Since these data sets had previously been converted to netCDF format for use by the ARM Science Team, a tool was written to assess the contents of the netCDF files.« less
NASA Astrophysics Data System (ADS)
Khaykin, S. M.; Engel, I.; Vömel, H.; Formanyuk, I. M.; Kivi, R.; Korshunov, L. I.; Krämer, M.; Lykov, A. D.; Meier, S.; Naebert, T.; Pitts, M. C.; Santee, M. L.; Spelten, N.; Wienhold, F. G.; Yushkov, V. A.; Peter, T.
2013-11-01
We present high-resolution measurements of water vapour, aerosols and clouds in the Arctic stratosphere in January and February 2010 carried out by in situ instrumentation on balloon sondes and high-altitude aircraft combined with satellite observations. The measurements provide unparalleled evidence of dehydration and rehydration due to gravitational settling of ice particles. An extreme cooling of the Arctic stratospheric vortex during the second half of January 2010 resulted in a rare synoptic-scale outbreak of ice polar stratospheric clouds (PSCs) remotely detected by the lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite. The widespread occurrence of ice clouds was followed by sedimentation and consequent sublimation of ice particles, leading to vertical redistribution of water inside the vortex. A sequence of balloon and aircraft soundings with chilled mirror and Lyman- α hygrometers (Cryogenic Frostpoint Hygrometer, CFH; Fast In Situ Stratospheric Hygrometer, FISH; Fluorescent Airborne Stratospheric Hygrometer, FLASH) and backscatter sondes (Compact Optical Backscatter Aerosol Detector, COBALD) conducted in January 2010 within the LAPBIAT (Lapland Atmosphere-Biosphere Facility) and RECONCILE (Reconciliation of Essential Process Parameters for an Enhanced Predictability of Arctic Stratospheric Ozone Loss and its Climate Interactions) campaigns captured various phases of this phenomenon: ice formation, irreversible dehydration and rehydration. Consistent observations of water vapour by these independent measurement techniques show clear signatures of irreversible dehydration of the vortex air by up to 1.6 ppmv in the 20-24 km altitude range and rehydration by up to 0.9 ppmv in a 1 km thick layer below. Comparison with space-borne Aura MLS (Microwave Limb Sounder) water vapour observations allow the spatiotemporal evolution of dehydrated air masses within the Arctic vortex to be derived and upscaled.
NASA Astrophysics Data System (ADS)
Tang, Jing; Schurgers, Guy; Valolahti, Hanna; Faubert, Patrick; Tiiva, Päivi; Michelsen, Anders; Rinnan, Riikka
2016-12-01
The Arctic is warming at twice the global average speed, and the warming-induced increases in biogenic volatile organic compounds (BVOCs) emissions from Arctic plants are expected to be drastic. The current global models' estimations of minimal BVOC emissions from the Arctic are based on very few observations and have been challenged increasingly by field data. This study applied a dynamic ecosystem model, LPJ-GUESS, as a platform to investigate short-term and long-term BVOC emission responses to Arctic climate warming. Field observations in a subarctic tundra heath with long-term (13-year) warming treatments were extensively used for parameterizing and evaluating BVOC-related processes (photosynthesis, emission responses to temperature and vegetation composition). We propose an adjusted temperature (T) response curve for Arctic plants with much stronger T sensitivity than the commonly used algorithms for large-scale modelling. The simulated emission responses to 2 °C warming between the adjusted and original T response curves were evaluated against the observed warming responses (WRs) at short-term scales. Moreover, the model responses to warming by 4 and 8 °C were also investigated as a sensitivity test. The model showed reasonable agreement to the observed vegetation CO2 fluxes in the main growing season as well as day-to-day variability of isoprene and monoterpene emissions. The observed relatively high WRs were better captured by the adjusted T response curve than by the common one. During 1999-2012, the modelled annual mean isoprene and monoterpene emissions were 20 and 8 mg C m-2 yr-1, with an increase by 55 and 57 % for 2 °C summertime warming, respectively. Warming by 4 and 8 °C for the same period further elevated isoprene emission for all years, but the impacts on monoterpene emissions levelled off during the last few years. At hour-day scale, the WRs seem to be strongly impacted by canopy air T, while at the day-year scale, the WRs are a combined effect of plant functional type (PFT) dynamics and instantaneous BVOC responses to warming. The identified challenges in estimating Arctic BVOC emissions are (1) correct leaf T estimation, (2) PFT parameterization accounting for plant emission features as well as physiological responses to warming, and (3) representation of long-term vegetation changes in the past and the future.
NASA Astrophysics Data System (ADS)
Young, Gillian; Jones, Hazel M.; Crosier, Jonathan; Bower, Keith N.; Darbyshire, Eoghan; Taylor, Jonathan W.; Liu, Dantong; Allan, James D.; Williams, Paul I.; Gallagher, Martin W.; Choularton, Thomas W.
2016-04-01
The Arctic sea-ice is intricately coupled to the atmosphere[1]. The decreasing sea-ice extent with the changing climate raises questions about how Arctic cloud structure will respond. Any effort to answer these questions is hindered by the scarcity of atmospheric observations in this region. Comprehensive cloud and aerosol measurements could allow for an improved understanding of the relationship between surface conditions and cloud structure; knowledge which could be key in validating weather model forecasts. Previous studies[2] have shown via remote sensing that cloudiness increases over the marginal ice zone (MIZ) and ocean with comparison to the sea-ice; however, to our knowledge, detailed in-situ data of this transition have not been previously presented. In 2013, the Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign was carried out in the vicinity of Svalbard, Norway to collect in-situ observations of the Arctic atmosphere and investigate this issue. Fitted with a suite of remote sensing, cloud and aerosol instrumentation, the FAAM BAe-146 aircraft was used during the spring segment of the campaign (Mar-Apr 2013). One case study (23rd Mar 2013) produced excellent coverage of the atmospheric changes when transitioning from sea-ice, through the MIZ, to the open ocean. Clear microphysical changes were observed, with the cloud liquid-water content increasing by almost four times over the transition. Cloud base, depth and droplet number also increased, whilst ice number concentrations decreased slightly. The surface warmed by ~13 K from sea-ice to ocean, with minor differences in aerosol particle number (of sizes corresponding to Cloud Condensation Nuclei or Ice Nucleating Particles) observed, suggesting that the primary driver of these microphysical changes was the increased heat fluxes and induced turbulence from the warm ocean surface as expected. References: [1] Kapsch, M.L., Graversen, R.G. and Tjernström, M. Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nature Clim. Change 3, 744-748, doi:10.1038/nclimate1884 (2013) [2] Palm, S. P., Strey, S. T., Spinhirne, J., and Markus, T.: Influence of Arctic sea ice extent on polar cloud fraction and vertical structure and implications for regional climate. Journal of Geophysical Research (Atmospheres), 115, D21209, doi:10.1029/2010JD013900 (2010)
Use of Field Observations for Understanding Controls of Polar Low Cloud Microphysical Properties
NASA Astrophysics Data System (ADS)
McFarquhar, G. M.
2016-12-01
Although arctic clouds have a net warming effect on the Arctic surface, their radiative effect is sensitive to cloud microphysical properties, namely the sizes, phases and shapes of cloud particles. Such cloud properties are influenced by the numbers, compositions and sizes of aerosols, meteorological conditions, and surface characteristics. Uncertainty in representing cloud-aerosol interactions in varying environmental conditions and associated feedbacks is a major cause in our lack of understanding of why the Arctic is warming faster than the rest of the Earth. Here, the understanding of cloud-aerosol interactions gained from past arctic field experiments is reviewed. Such studies have characterized the structure of single-layer mixed phase clouds that are ubiquitous in the Arctic and investigated different aerosol indirect effect mechanisms acting in these clouds. But, it is still unknown what controls the amount of supercooled water in arctic clouds (especially in complex frequently occurring multi-layer clouds), how probability distributions of cloud properties and radiative heating and their subsequent impact on temperature profiles and underlying snow and sea ice cover vary with aerosol loading and composition in different surface and meteorological conditions, how the composition and concentration of arctic aerosols and cloud microphysical properties vary annually and interannually, and how cloud-aerosol-radiative interactions can be better represented in models with varying temporal and spatial scales. These needs can be addressed in two ways. First, there is a need for comprehensive and routine aircraft, UAV and tethered balloon measurements in the presence of ground, air or space-based remote sensors over a variety of surface and meteorological conditions. Second, planned observational campaigns (the Measurements of Aerosols Radiation and Clouds over the Southern Oceans MARCUS and the Southern Oceans Cloud Radiation Transport Experimental Study SOCRATES) should provide cloud, aerosol, radiative and precipitation observations over the pristine and continually cloudy Southern Oceans that are remote from natural and continental anthropogenic aerosol sources should provide a process-oriented understanding of cloud-aerosol interactions in liquid and ice clouds.
NASA Astrophysics Data System (ADS)
Ehrlich, André; Bierwirth, Eike; Borrmann, Stephan; Crewell, Susanne; Herber, Andreas; Hoor, Peter; Jourdan, Olivier; Krämer, Martina; Lüpkes, Christof; Mertes, Stephan; Neuber, Roland; Petzold, Andreas; Schnaiter, Martin; Schneider, Johannes; Weigel, Ralf; Weinzierl, Bernadett; Wendisch, Manfred
2016-04-01
To improve our understanding of Arctic mixed-phase clouds a series of airborne research campaigns has been initiated by a collaboration of German research institutes. Clouds in areas dominated by a close sea-ice cover were observed during the research campaign Vertical distribution of ice in Arctic mixed-phase clouds (VERDI, April/May 2012) and the Radiation-Aerosol-Cloud Experiment in the Arctic Circle (RACEPAC, April/May 2014) which both were based in Inuvik, Canada. The aircraft (Polar 5 & 6, Basler BT-67) operated by the Alfred Wegener Institute for Polar and Marine Research, Germany did cover a wide area above the Canadian Beaufort with in total 149 flight hours (62h during VERDI, 87h during RACEPAC). For May/June 2017 a third campaign ACLOUD (Arctic Clouds - Characterization of Ice, aerosol Particles and Energy fluxes) with base in Svalbard is planned within the Transregional Collaborative Research Centre TR 172 ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3 to investigate Arctic clouds in the transition zone between open ocean and sea ice. The aim of all campaigns is to combine remote sensing and in-situ cloud, aerosol and trace gas measurements to investigate interactions between radiation, cloud and aerosol particles. While during VERDI remote sensing and in-situ measurements were performed by one aircraft subsequently, for RACEPAC and ACLOUD two identical aircraft are coordinated at different altitudes to horizontally collocate both remote sensing and in-situ measurements. The campaign showed that in this way radiative and microphysical processes in the clouds can by studied more reliably and remote sensing methods can be validated efficiently. Here we will illustrate the scientific strategy of the projects including the progress in instrumentation. Differences in the general synoptic and sea ice situation and related changes in cloud properties at the different locations and seasons will be addressed to illustrate the broad spectrum of the observations. Exemplary results will be highlighted.
Arctic climatechange and its impacts on the ecology of the North Atlantic.
Greene, Charles H; Pershing, Andrew J; Cronin, Thomas M; Ceci, Nicole
2008-11-01
Arctic climate change from the Paleocene epoch to the present is reconstructed with the objective of assessing its recent and future impacts on the ecology of the North Atlantic. A recurring theme in Earth's paleoclimate record is the importance of the Arctic atmosphere, ocean, and cryosphere in regulating global climate on a variety of spatial and temporal scales. A second recurring theme in this record is the importance of freshwater export from the Arctic in regulating global- to basin-scale ocean circulation patterns and climate. Since the 1970s, historically unprecedented changes have been observed in the Arctic as climate warming has increased precipitation, river discharge, and glacial as well as sea-ice melting. In addition, modal shifts in the atmosphere have altered Arctic Ocean circulation patterns and the export of freshwater into the North Atlantic. The combination of these processes has resulted in variable patterns of freshwater export from the Arctic Ocean and the emergence of salinity anomalies that have periodically freshened waters in the North Atlantic. Since the early 1990s, changes in Arctic Ocean circulation patterns and freshwater export have been associated with two types of ecological responses in the North Atlantic. The first of these responses has been an ongoing series of biogeographic range expansions by boreal plankton, including renewal of the trans-Arctic exchanges of Pacific species with the Atlantic. The second response was a dramatic regime shift in the shelf ecosystems of the Northwest Atlantic that occurred during the early 1990s. This regime shift resulted from freshening and stratification of the shelf waters, which in turn could be linked to changes in the abundances and seasonal cycles of phytoplankton, zooplankton, and higher trophic-level consumer populations. It is predicted that the recently observed ecological responses to Arctic climate change in the North Atlantic will continue into the near future if current trends in sea ice, freshwater export, and surface ocean salinity continue. It is more difficult to predict ecological responses to abrupt climate change in the more distant future as tipping points in the Earth's climate system are exceeded.
Halogen and Sulfur Reactions Relevant to Polar Chemistry
NASA Technical Reports Server (NTRS)
Wine, Paul H.; Nicovich, J. Michael; Stickel, Robert E.; Zhao, Z.; Shackleford, C. J.; Kreutter, K. D.; Daykin, E. P.; Wang, S.
1997-01-01
It is widely hypothesized that catalytic cycles involving BrO(x) species play an important role in the episodic destruction of ground-level ozone which is observed in the springtime Arctic boundary layer, although the exact mechanism for production of BrO(x) radicals remains an open question [Barrie et al., Bottenheim et al.; Finlayson-Pitts et al., McConnell et al.] The critical evidence linking ozone depletion with BrO(x) chemistry is an observed negative correlation between ozone and filterable bromine [Bottenheim et al., Kieser et al.] In a recent field study of springtime Arctic boundary layer chemistry [Kieser et al.] ozone concentrations and ethane concentrations were found to be correlated; this observation suggests chlorine atoms (which react rapidly with ethane) may also be an important catalyst for ozone destruction under springtime Arctic conditions.
Scaling properties of the Arctic sea ice Deformation from Buoy Dispersion Analysis
NASA Astrophysics Data System (ADS)
Weiss, J.; Rampal, P.; Marsan, D.; Lindsay, R.; Stern, H.
2007-12-01
A temporal and spatial scaling analysis of Arctic sea ice deformation is performed over time scales from 3 hours to 3 months and over spatial scales from 300 m to 300 km. The deformation is derived from the dispersion of pairs of drifting buoys, using the IABP (International Arctic Buoy Program) buoy data sets. This study characterizes the deformation of a very large solid plate -the Arctic sea ice cover- stressed by heterogeneous forcing terms like winds and ocean currents. It shows that the sea ice deformation rate depends on the scales of observation following specific space and time scaling laws. These scaling properties share similarities with those observed for turbulent fluids, especially for the ocean and the atmosphere. However, in our case, the time scaling exponent depends on the spatial scale, and the spatial exponent on the temporal scale, which implies a time/space coupling. An analysis of the exponent values shows that Arctic sea ice deformation is very heterogeneous and intermittent whatever the scales, i.e. it cannot be considered as viscous-like, even at very large time and/or spatial scales. Instead, it suggests a deformation accommodated by a multi-scale fracturing/faulting processes.
CARVE Measurements of Atmospheric Methane Concentrations and Emissions in Arctic and Boreal Alaska
NASA Astrophysics Data System (ADS)
Miller, C. E.; Miller, J. B.; Chang, R. Y.; Sweeney, C.; Karion, A.; Wofsy, S. C.; Henderson, J.; Eluszkiewicz, J.; Mountain, M.; Oechel, W. C.
2013-12-01
The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a NASA Earth Ventures (EV-1) investigation designed to quantify correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems through intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. We present CARVE airborne measurements of spatial and temporal patterns in atmospheric CH4 concentrations and estimated surface-atmosphere emissions for Arctic and Boreal Alaska. Continuous in situ CH4, CO2 and CO data are supplemented by periodic whole air flask samples from which 13CH4 and non-methane hydrocarbons are used to assess the relative contributions of wetlands, fossil fuel combustion, and oil and gas production to the observed CH4 signals. The CARVE project has also initiated monthly 14CH4 sampling at Barrow, AK (BRW) and the CARVE Tower in Fox, AK (CRV) to evaluate seasonal changes in the fraction of old carbon being mobilized via methanogenesis.
The Influence of Nitrogen Oxides on Chlorine Chemistry in Barrow, Alaska
NASA Astrophysics Data System (ADS)
McNamara, S. M.; Raso, A. R. W.; Wang, S.; Thanekar, S.; Fuentes, J. D.; Shepson, P. B.; Pratt, K.
2016-12-01
Active chlorine chemistry in the springtime Arctic boundary layer impacts the fate of atmospheric pollutants and greenhouse gases. Recent field studies have reported high amounts of molecular chlorine (Cl2), up to 400 parts per trillion (ppt), as well as the presence of chlorinated hydrocarbon oxidation products. However, our knowledge of Arctic chlorine chemistry is limited by a paucity of observations. The presence of nitrogen oxides (NOx) may influence the chlorine chemistry in this region. Here, we report chemical ionization mass spectrometry measurements of Cl2, chlorine monoxide (ClO), nitryl chloride (ClNO2), and dinitrogen pentoxide (N2O5), and NOx measurements at Barrow, AK during March-May 2016. To our knowledge, these data represent the first observations of ClNO2 in the Arctic. While the main source of NOx in a pristine Arctic environment is irradiated snow surfaces, anthropogenic sources can significantly enhance local NOx concentrations. The role of NOx in the activation and temporal trends of the reactive chlorine species are examined using a 0-D photochemical model. The prevalence of chlorine chemistry under elevated nitrogen oxide conditions may have significant impacts on the atmospheric composition in an increasingly polluted Arctic.
NASA Astrophysics Data System (ADS)
Cristobal, J.; Prakash, A.; Starkenburg, D. P.; Fochesatto, G. J.; Anderson, M. C.; Gens, R.; Kane, D. L.; Kustas, W.; Alfieri, J. G.
2012-12-01
Evapotranspiration (ET) plays a significant role in the hydrologic cycle of Arctic and Sub-Arctic basins. Surface-atmosphere exchanges due to ET are estimated from water balance computations to be about 74% of summer precipitation or 50% of annual precipitation. Even though ET is a significant component of the hydrologic cycle in this region, the bulk estimates don't accurately account for spatial and temporal variability due to vegetation type, topography, etc. (Kane and Yang, 2004). Nowadays, remote sensing is the only technology capable of providing the necessary radiometric measurements for the calculation of the ET at global scales and in a feasible economic way, especially in Arctic and Sub-Arctic Alaskan basins with a very sparse network of both meteorological and flux towers. In this work we present the implementation and validation of the Dual-Time-Difference model (Kustas et al., 2001) to retrieve energy fluxes (ET, sensible heat flux, net radiation and soil heat flux) in tundra vegetation in Arctic conditions and in a black spruce (Picea mariana) forest in Sub-Arctic conditions. In order to validate the model in tundra vegetation we used a flux tower from the Imnavait Creek sites of the Arctic Observatory Network (Euskirchen et al. 2012). In the case of the black spruce forest, on September 2011 we installed a flux tower in the University of Alaska Fairbanks north campus that includes an eddy-covariance system as well a net radiometer, air temperature probes, soil heat flux plates, soil moisture sensors and thermistors to fully estimate energy fluxes in the field (see http://www.et.alaska.edu/ for further details). Additionally, in order to upscale energy fluxes into MODIS spatial resolution, a scintillometer was also installed covering 1.2 km across the flux tower. DTD model mainly requires meteorological inputs as well as land surface temperature (LST) and leaf area index (LAI) data, both coming from satellite imagery, at two different times: after local sunrise and from mid morning to mid afternoon. As remote sensing data we used 11 TERRA/AQUA MODIS dates from July to September 2008. For these dates we selected the LST that better fits this two times using the LST MODIS product (MOD11/MYD11) and as LAI input we used the LAI daily product (MOD15/MYD15). In the case of tundra validation, preliminary results show an acceptable agreement between DTD model and flux tower data. RMSE obtained in the case of at satellite pass evapotranspiration, sensible heat flux and soil heat flux were 50, 80 and 33 W m-2, respectively, and R2 of 0.92, 0.76 and 0.69, respectively. Results from the black spruce forest will be discussed in later work. Further efforts will be focused on the daily energy flux integration by means of the implementation of the ALEXi/DisALEXI model (Anderson et al., 2007), the energy fluxes upscaling validated by means of scintillometer data as well as the energy balance computation in snow conditions.
Larsen, Aud; Egge, Jorun K; Nejstgaard, Jens C; Di Capua, Iole; Thyrhaug, Runar; Bratbak, Gunnar; Thingstad, T Frede
2015-03-01
A minimum mathematical model of the marine pelagic microbial food web has previously shown to be able to reproduce central aspects of observed system response to different bottom-up manipulations in a mesocosm experiment Microbial Ecosystem Dynamics (MEDEA) in Danish waters. In this study, we apply this model to two mesocosm experiments (Polar Aquatic Microbial Ecology (PAME)-I and PAME-II) conducted at the Arctic location Kongsfjorden, Svalbard. The different responses of the microbial community to similar nutrient manipulation in the three mesocosm experiments may be described as diatom-dominated (MEDEA), bacteria-dominated (PAME-I), and flagellated-dominated (PAME-II). When allowing ciliates to be able to feed on small diatoms, the model describing the diatom-dominated MEDEA experiment give a bacteria-dominated response as observed in PAME I in which the diatom community comprised almost exclusively small-sized cells. Introducing a high initial mesozooplankton stock as observed in PAME-II, the model gives a flagellate-dominated response in accordance with the observed response also of this experiment. The ability of the model originally developed for temperate waters to reproduce population dynamics in a 10°C colder Arctic fjord, does not support the existence of important shifts in population balances over this temperature range. Rather, it suggests a quite resilient microbial food web when adapted to in situ temperature. The sensitivity of the model response to its mesozooplankton component suggests, however, that the seasonal vertical migration of Arctic copepods may be a strong forcing factor on Arctic microbial food webs.
Larsen, Aud; Egge, Jorun K; Nejstgaard, Jens C; Di Capua, Iole; Thyrhaug, Runar; Bratbak, Gunnar; Thingstad, T Frede
2015-01-01
A minimum mathematical model of the marine pelagic microbial food web has previously shown to be able to reproduce central aspects of observed system response to different bottom-up manipulations in a mesocosm experiment Microbial Ecosystem Dynamics (MEDEA) in Danish waters. In this study, we apply this model to two mesocosm experiments (Polar Aquatic Microbial Ecology (PAME)-I and PAME-II) conducted at the Arctic location Kongsfjorden, Svalbard. The different responses of the microbial community to similar nutrient manipulation in the three mesocosm experiments may be described as diatom-dominated (MEDEA), bacteria-dominated (PAME-I), and flagellated-dominated (PAME-II). When allowing ciliates to be able to feed on small diatoms, the model describing the diatom-dominated MEDEA experiment give a bacteria-dominated response as observed in PAME I in which the diatom community comprised almost exclusively small-sized cells. Introducing a high initial mesozooplankton stock as observed in PAME-II, the model gives a flagellate-dominated response in accordance with the observed response also of this experiment. The ability of the model originally developed for temperate waters to reproduce population dynamics in a 10°C colder Arctic fjord, does not support the existence of important shifts in population balances over this temperature range. Rather, it suggests a quite resilient microbial food web when adapted to in situ temperature. The sensitivity of the model response to its mesozooplankton component suggests, however, that the seasonal vertical migration of Arctic copepods may be a strong forcing factor on Arctic microbial food webs. PMID:26074626
Biodegradability of dissolved organic carbon in permafrost soils and waterways: a meta-analysis
NASA Astrophysics Data System (ADS)
Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G. M.; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.
2015-06-01
As Arctic regions warm, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to thaw and decomposition. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the reactivity and subsequent fate of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism and its biodegradability will determine the extent and rate of carbon release from aquatic ecosystems to the atmosphere. Knowledge of the mechanistic controls on DOC biodegradability is however currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences used as common practice in the literature. We further synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-Arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher BDOC losses in both soil and aquatic systems. We hypothesize that the unique composition of permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively shorter flow path lengths and transport times, resulted in higher overall terrestrial and freshwater BDOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January-December) decrease in BDOC losses in large streams and rivers, but no apparent change in smaller streams and soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later in the summer, as well as decreasing hydrologic connectivity between soils and surface water as the seasons progress. Our results suggest that future, climate warming-induced shifts of continuous permafrost into discontinuous permafrost regions could affect the degradation potential of thaw-released DOC as well as its variability throughout the Arctic summer. We lastly present a recommended standardized BDOC protocol to facilitate the comparison of future work and improve our knowledge of processing and transport of DOC in a changing Arctic.
Community Data Management and the Exchange for Local Observations and Knowledge of the Arctic
NASA Astrophysics Data System (ADS)
Duerr, R.; Pulsifer, P. L.; Strawhacker, C.; Mccann, H. S.
2016-12-01
The mission of the Exchange for Local Observations and Knowledge of the Arctic (ELOKA) is to facilitate the collection, preservation, exchange, and use of local observations and knowledge by Indigenous communities in the Arctic by providing data management services and user support, and by fostering collaboration between resident Arctic experts and visiting researchers. ELOKA's overarching philosophy is that Local and Traditional Knowledge (LTK) and scientific data and expertise are complementary and reinforcing ways of understanding the Arctic system. Collecting, documenting, preserving, and sharing knowledge is a cooperative endeavor, and ELOKA is dedicated to fostering ethical knowledge sharing among Arctic residents and communities, scientists, educators, policy makers, and the general public. But what does that mean in practice and what are the next steps for ELOKA in the coming years? In this presentation, we discuss the ethical issues involved with data management for LTK and community-based projects, some of the tools ELOKA has developed for interacting with communities and researchers and for managing LTK data, and our plans for the future. These include a discussion of the considerations local and community-based projects should make when planning and conducting research. It is clear, for example, that research projects should either include Indigenous voices at the outset of the project or have a prominent Indigenous voice so that appropriate methods or approaches can be adopted. Discussion of data access and funder obligations will be included. The data management tools that ELOKA employs and is developing for the future that can manage the wide range of data types typical of a community or LTK project will also be described, as will ELOKA's program for transferring long-term data management skills to communities that wish to take that on. Finally, ELOKA's plans for the future will be described.
NASA Technical Reports Server (NTRS)
Shindell, D. T.; Reeves, J. M.; Emmons, L. K.; De Zafra, R. L.
1994-01-01
We have determined the vertical distribution of chlorine monoxide (ClO), from measurements of pressure-broadened molecular-emission spectra made over Thule, Greenland, during the 1993 Arctic spring. The measurements show a weak lower stratospheric layer of chlorine monoxide inside the vortex in late February, which was, however, significantly greater in mixing ratio than that seen in observations we made in the spring of 1992. ClO was also observed in much smaller quantities in early to mid-March 1993 when Thule was outside the vortex. The amount of ClO within the vortex was severely reduced by the time it returned over Thule in late March. This reduction occurred several weeks earlier relative to the winter solstice than the decline of ClO inside the Antarctic vortex in 1993. The enhanced Arctic lower stratospheric layer seen in late February 1993 at a nearly equivalent photochemical period, and beyond. We have calculated daily ozone loss rates, due primarily to the dimer chlorine catalytic cycle, from both sets of measurements. The vertical integral of the Arctic daily percentage ozone loss when the largest ClO levels were present, at the end of February, is found to be approximately one quarter of that in the Antarctic at a photochemical period only 1 week later. The relative weakness of daily ozone depletion, combined with the early disappearance of ClO in the Arctic, suggests that hemispheric dilution by ozone-poor air from within the Arctic vortex is unlikely to be sufficient to explain the historically extreme loss of midlatitude northern hemisphere ozone which began in 1992 and persisted throughout 1993.
NASA Astrophysics Data System (ADS)
Khosrawi, Farahnaz; Kirner, Ole; Sinnhuber, Bjoern-Martin; Ruhnke, Roland; Hoepfner, Michael; Woiwode, Wolfgang; Oelhaf, Hermann; Santee, Michelle L.; Manney, Gloria L.; Froidevaux, Lucien; Murtagh, Donal; Braesicke, Peter
2016-04-01
Model simulations of the Arctic winter 2015/2016 were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the POLSTRACC (Polar Stratosphere in a Changing Climate) project. The POLSTRACC project is a HALO mission (High Altitude and LOng Range Research Aircraft) that aims to investigate the structure, composition and evolution of the Arctic Upper Troposphere Lower Stratosphere (UTLS) in a changing climate. Especially, the chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, polar stratospheric clouds as well as cirrus clouds are investigated. The model simulations were performed with a resolution of T42L90, corresponding to a quadratic Gaussian grid of approximately 2.8°× 2.8° degrees in latitude and longitude, and 90 vertical layers from the surface up to 0.01 hPa (approx. 80 km). A Newtonian relaxation technique of the prognostic variables temperature, vorticity, divergence and surface pressure towards ECMWF data was applied above the boundary layer and below 10 hPa, in order to nudge the model dynamics towards the observed meteorology. During the Arctic winter 2015/2016 a stable vortex formed in early December, with a cold pool where temperatures reached below the Nitric Acid Trihydrate (NAT) existence temperature of 195 K, thus allowing Polar Stratospheric Clouds (PSCs) to form. The early winter has been exceptionally cold and satellite observations indicate that sedimenting PSC particles have lead to denitrification as well as dehydration of stratospheric layers. In this presentation an overview of the chemistry and dynamics of the Arctic winter 2015/2016 as simulated with EMAC will be given and comparisons to satellite observations such as e.g. Aura/MLS and Odin/SMR will be shown.
NABOS-II Observational Program in the Arctic Ocean: New Perspectives and New Challenges
NASA Astrophysics Data System (ADS)
Ivanov, V.; Polyakov, I.; Ashik, I. M.; Pnyushkov, A.; Alkire, M. B.; Repina, I.; Alexeev, V. A.; Waddington, I.; Kanzow, T.; Goszczko, I.; Rember, R.; Artamonov, A.
2016-02-01
NABOS-II observational program was launched in 2013 on the basis of new knowledge obtained during NABOS (=Nansen and Amundsen Basins Observations System) project back in 2000s. Up to now two large scale expeditions in the Eurasian sector of the Arctic Ocean were carried out in framework of NABOS-II: in 2013 and in 2015. These field studies were conducted by International Arctic Research Center (IARC) University of Alaska Fairbanks, USA in partnership with Arctic and Antarctic Research Institute (AARI) St.Petersburg Russia. The main goal of the NABOS-II project is to provide quantitative assessment of circulation and water mass transformation along the principal pathways transporting water from the Nordic Seas to the Arctic Basin under conditions of substantially reduced summer ice cover. Reduced sea ice causes changes in the water column and in the overlying atmosphere. Documenting of these changes was the main target of the NABOS-II cruises. The scope of this goal and the opportunities of extended scientific research in the Arctic, provided during NABOS expeditions, encouraged scientific institutions from the USA, Europe and Asia to raise funds, contribute to the cruise program and to send their personnel to expeditions, thus giving them a true multidisciplinary status. The ambitious mission of collecting a two year long time series of hydrographic data at 6 moorings along 126E meridian from the upper slope (250 m depth) to the deep basin (3900 m depth) in the Laptev Sea was successfully accomplished in 2015. The collected data are truly unique, since they shed new light on the structure and spatio-temporal variability of water properties and transports in the Lapev Sea, which is the key region for understanding of interaction between Atlantic water branches. This presentation describes preliminary results of performed analysis.
NABOS-II Observational Program in the Arctic Ocean: New Perspectives and new Challenges
NASA Astrophysics Data System (ADS)
Ivanov, Vladimir; Polyakov, Igor; Ashik, Igor; Pnyushkov, Andrey; Alkire, Matthew; Repina, Irina; Alexeev, Vladimir; Waddington, Ian; Kanzow, Torsten; Rember, Robert; Artamonov, Alexander; Goszczko, Ilona
2016-04-01
NABOS-II observational program was launched in 2013 on the basis of new knowledge obtained during NABOS (=Nansen and Amundsen Basins Observations System) project back in 2000s. Up to now two large scale expeditions in the Eurasian sector of the Arctic Ocean were carried out in framework of NABOS-II: in 2013 and in 2015. These field studies were conducted by International Arctic Research Center (IARC) University of Alaska Fairbanks, USA in partnership with Arctic and Antarctic Research Institute (AARI) St.Petersburg Russia. The main goal of the NABOS-II project is to provide quantitative assessment of circulation and water mass transformation along the principal pathways transporting water from the Nordic Seas to the Arctic Basin under conditions of substantially reduced summer ice cover. Reduced sea ice causes changes in the water column and in the overlying atmosphere. Documenting of these changes was the main target of the NABOS-II cruises. The scope of this goal and the opportunities of extended scientific research in the Arctic, provided during NABOS expeditions, encouraged scientific institutions from the USA, Europe and Asia to raise funds, contribute to the cruise program and to send their personnel to expeditions, thus giving them a true multidisciplinary status. The ambitious mission of collecting a two year long time series of hydrographic data at 6 moorings along 126E meridian from the upper slope (250 m depth) to the deep basin (3900 m depth) in the Laptev Sea was successfully accomplished in 2015. The collected data are truly unique, since they shed new light on the structure and spatio-temporal variability of water properties and transports in the Lapev Sea, which is the key region for understanding of interaction between Atlantic water branches. This presentation describes preliminary results of performed analysis.
NASA Astrophysics Data System (ADS)
Jacob, D. J.; Crawford, J. H.; Maring, H.; Clarke, A. D.; Dibb, J. E.; Emmons, L. K.; Ferrare, R. A.; Hostetler, C. A.; Russell, P. B.; Singh, H. B.; Thompson, A. M.; Shaw, G. E.; McCauley, E.; Pederson, J. R.; Fisher, J. A.
2010-06-01
The NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission was conducted in two 3-week deployments based in Alaska (April 2008) and western Canada (June-July 2008). Its goal was to better understand the factors driving current changes in Arctic atmospheric composition and climate, including (1) influx of mid-latitude pollution, (2) boreal forest fires, (3) aerosol radiative forcing, and (4) chemical processes. The June-July deployment was preceded by one week of flights over California (ARCTAS-CARB) focused on (1) improving state emission inventories for greenhouse gases and aerosols, (2) providing observations to test and improve models of ozone and aerosol pollution. ARCTAS involved three aircraft: a DC-8 with a detailed chemical payload, a P-3 with an extensive aerosol and radiometric payload, and a B-200 with aerosol remote sensing instrumentation. The aircraft data augmented satellite observations of Arctic atmospheric composition, in particular from the NASA A-Train. The spring phase (ARCTAS-A) revealed pervasive Asian pollution throughout the Arctic as well as significant European pollution below 2 km. Unusually large Siberian fires in April 2008 caused high concentrations of carbonaceous aerosols and also affected ozone. Satellite observations of BrO column hotspots were found not to be related to Arctic boundary layer events but instead to tropopause depressions, suggesting the presence of elevated inorganic bromine (5-10 pptv) in the lower stratosphere. Fresh fire plumes from Canada and California sampled during the summer phase (ARCTAS-B) indicated low NOx emission factors from the fires, rapid conversion of NOx to PAN, no significant secondary aerosol production, and no significant ozone enhancements except when mixed with urban pollution.
NASA Astrophysics Data System (ADS)
Macke, A.
2017-12-01
The Polar regions are important components in the global climate system. The widespread surface snow and ice cover strongly impacts the surface energy budget, which is tightly coupled to global atmospheric and oceanic circulations. The coupling of sea ice, clouds and aerosol in the transition zone between Open Ocean and sea ice is the focus of the PASCAL investigations to improve our understanding of the recent dramatic reduction in Arctic sea-ice. A large variety of active/passive remote sensing, in-situ-aerosol observation, and spectral irradiance measurements have been obtained during the German research icebreaker POLARSTERN expedition PS106, and provided detailed information on the atmospheric spatiotemporal structure, aerosol and cloud chemical and microphysical properties as well as the resulting surface radiation budget. Nearly identical measurements at the AWIPEV Base (German - French Research Base) in Ny-Ålesund close to the Open Ocean and collocated airborne activities of the POLAR 5 and POLAR 6 AWI aircraft in the framework of the ACLOUD project have been carried out in parallel. The airborne observations have been supplemented by observations of the boundary layer structure (mean and turbulent quantities) from a tethered balloon reaching up to 1500 m, which was operated at an ice floe station nearby POLARSTERN for two weeks. All observational activities together with intense modelling at various scales are part of the German Collaborative Research Cluster TR 172 "Arctic Amplification" that aims to provide an unprecedented picture of the complex Arctic weather and climate system. The presentation provides an overview of the measurements on-board POLARSTERN and on the ice floe station during PASCAL from May 24 to July 21 2017. We conclude how these and future similar measurements during the one-year ice drift of POLARSTERN in the framework of MOSAiC help to reduce uncertainties in Arctic aerosol-cloud interaction, cloud radiative forcing, and surface/atmosphere feedback mechanisms.
Frequent ultrafine particle formation and growth in Canadian Arctic marine and coastal environments
NASA Astrophysics Data System (ADS)
Collins, Douglas B.; Burkart, Julia; Chang, Rachel Y.-W.; Lizotte, Martine; Boivin-Rioux, Aude; Blais, Marjolaine; Mungall, Emma L.; Boyer, Matthew; Irish, Victoria E.; Massé, Guillaume; Kunkel, Daniel; Tremblay, Jean-Éric; Papakyriakou, Tim; Bertram, Allan K.; Bozem, Heiko; Gosselin, Michel; Levasseur, Maurice; Abbatt, Jonathan P. D.
2017-11-01
The source strength and capability of aerosol particles in the Arctic to act as cloud condensation nuclei have important implications for understanding the indirect aerosol-cloud effect within the polar climate system. It has been shown in several Arctic regions that ultrafine particle (UFP) formation and growth is a key contributor to aerosol number concentrations during the summer. This study uses aerosol number size distribution measurements from shipboard expeditions aboard the research icebreaker CCGS Amundsen in the summers of 2014 and 2016 throughout the Canadian Arctic to gain a deeper understanding of the drivers of UFP formation and growth within this marine boundary layer. UFP number concentrations (diameter > 4 nm) in the range of 101-104 cm-3 were observed during the two seasons, with concentrations greater than 103 cm-3 occurring more frequently in 2016. Higher concentrations in 2016 were associated with UFP formation and growth, with events occurring on 41 % of days, while events were only observed on 6 % of days in 2014. Assessment of relevant parameters for aerosol nucleation showed that the median condensation sink in this region was approximately 1.2 h-1 in 2016 and 2.2 h-1 in 2014, which lie at the lower end of ranges observed at even the most remote stations reported in the literature. Apparent growth rates of all observed events in both expeditions averaged 4.3 ± 4.1 nm h-1, in general agreement with other recent studies at similar latitudes. Higher solar radiation, lower cloud fractions, and lower sea ice concentrations combined with differences in the developmental stage and activity of marine microbial communities within the Canadian Arctic were documented and help explain differences between the aerosol measurements made during the 2014 and 2016 expeditions. These findings help to motivate further studies of biosphere-atmosphere interactions within the Arctic marine environment to explain the production of UFP and their growth to sizes relevant for cloud droplet activation.
Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing.
Bintanja, R; Krikken, F
2016-12-02
Observed and projected climate warming is strongest in the Arctic regions, peaking in autumn/winter. Attempts to explain this feature have focused primarily on identifying the associated climate feedbacks, particularly the ice-albedo and lapse-rate feedbacks. Here we use a state-of-the-art global climate model in idealized seasonal forcing simulations to show that Arctic warming (especially in winter) and sea ice decline are particularly sensitive to radiative forcing in spring, during which the energy is effectively 'absorbed' by the ocean (through sea ice melt and ocean warming, amplified by the ice-albedo feedback) and consequently released to the lower atmosphere in autumn and winter, mainly along the sea ice periphery. In contrast, winter radiative forcing causes a more uniform response centered over the Arctic Ocean. This finding suggests that intermodel differences in simulated Arctic (winter) warming can to a considerable degree be attributed to model uncertainties in Arctic radiative fluxes, which peak in summer.
Estimation of Volume and Freshwater Flux from the Arctic Ocean using SMAP and NCEP CFSv2
NASA Astrophysics Data System (ADS)
Bulusu, S.
2017-12-01
Spatial and temporal monitoring of sea surface salinity (SSS) plays an important role globally and especially over the Arctic Ocean. The Arctic ice melt has led to an influx of freshwater into the Arctic environment, a process that can be observed in SSS. The recently launched NASA's Soil Moisture Active Passive (SMAP) mission is primarily designed for the global monitoring of soil moisture using L- band (1.4GHz) frequency. SMAP also has the capability of measuring SSS and can thus extend the NASA's Aquarius salinity mission (ended June 7, 2015), salinity data record with improved temporal/spatial sampling. In this research an attempt is made to investigate the retrievability of SSS over the Arctic from SMAP satellite. The objectives of this study are to verify the use of SMAP sea surface salinity (and freshwater) variability in the Arctic Ocean and the extent to estimate freshwater, salt and volume flux from the Arctic Ocean. Along with SMAP data we will use NASA's Ice, Cloud,and land Elevation Satellites (ICESat and ICESat-2), and ESA's CryoSat-2, and NASA's Gravity Recovery and Climate Experiment (GRACE) satellites data to estimate ice melt in the Arctic. The preliminary results from SMAP compared well with the NCEP Climate Forecast System version 2 (CFSv2) salinity data in this region capturing patterns fairly well over the Arctic.
Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean.
Heimbürger, Lars-Eric; Sonke, Jeroen E; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers
2015-05-20
Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79 °N). Here we present the first central Arctic Ocean (79-90 °N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81-85 °N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150-200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production.
Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean
Heimbürger, Lars-Eric; Sonke, Jeroen E.; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T.; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers
2015-01-01
Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79°N). Here we present the first central Arctic Ocean (79–90°N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81–85°N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150–200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production. PMID:25993348
The Fram Strait integrated ocean observatory
NASA Astrophysics Data System (ADS)
Fahrbach, E.; Beszczynska-Möller, A.; Rettig, S.; Rohardt, G.; Sagen, H.; Sandven, S.; Hansen, E.
2012-04-01
A long-term oceanographic moored array has been operated since 1997 to measure the ocean water column properties and oceanic advective fluxes through Fram Strait. While the mooring line along 78°50'N is devoted to monitoring variability of the physical environment, the AWI Hausgarten observatory, located north of it, focuses on ecosystem properties and benthic biology. Under the EU DAMOCLES and ACOBAR projects, the oceanographic observatory has been extended towards the innovative integrated observing system, combining the deep ocean moorings, multipurpose acoustic system and a network of gliders. The main aim of this system is long-term environmental monitoring in Fram Strait, combining satellite data, acoustic tomography, oceanographic measurements at moorings and glider sections with high-resolution ice-ocean circulation models through data assimilation. In future perspective, a cable connection between the Hausgarten observatory and a land base on Svalbard is planned as the implementation of the ESONET Arctic node. To take advantage of the planned cabled node, different technologies for the underwater data transmission were reviewed and partially tested under the ESONET DM AOEM. The main focus was to design and evaluate available technical solutions for collecting data from different components of the Fram Strait ocean observing system, and an integration of available data streams for the optimal delivery to the future cabled node. The main components of the Fram Strait integrated observing system will be presented and the current status of available technologies for underwater data transfer will be reviewed. On the long term, an initiative of Helmholtz observatories foresees the interdisciplinary Earth-Observing-System FRAM which combines observatories such as the long term deep-sea ecological observatory HAUSGARTEN, the oceanographic Fram Strait integrated observing system and the Svalbard coastal stations maintained by the Norwegian ARCTOS network. A vision of this modular underwater observatory network in Fram Strait will be presented.
New data from cold war treasure trove
NASA Astrophysics Data System (ADS)
Carlowicz, Michael
For half a century, the Russian and United States navies competed for tactical advantage in the Arctic Ocean, mapping seafloor and floating ice sheets, measuring temperatures and reckoning chemistry. But with old enemies becoming new friends, data once collected for the sake of war now are being shared in the name of scientific cooperation.In mid-January, the U.S. and Russian governments announced the release of the first of four volumes of a new atlas of the Arctic Ocean. The previously classified data it contains will effectively double the amount of Arctic data that is available to the scientific community. The set includes more than 1.3 million temperature and salinity observations collected from 1948 to 1993 by drifting ice camps and stations, icebreaking ships, land—and airborne expeditions, and buoys. Approximately 70% of the observations for the Arctic Ocean and shelf seas were derived from Russian archives of formerly restricted data, with the other 30% coming from comparable sources in the U.S., Canada, and other Western nations.
Seasonal evolution of the Arctic marginal ice zone and its power-law obeying floe size distribution
NASA Astrophysics Data System (ADS)
Zhang, J.; Stern, H. L., III; Schweiger, A. J. B.; Steele, M.; Hwang, P. B.
2017-12-01
A thickness, floe size, and enthalpy distribution (TFED) sea ice model, implemented numerically into the Pan-arctic Ice-Ocean Modeling and Assimilation System (PIOMAS), is used to investigate the seasonal evolution of the Arctic marginal ice zone (MIZ) and its floe size distribution. The TFED sea ice model, by coupling the Zhang et al. [2015] sea ice floe size distribution (FSD) theory with the Thorndike et al. [1975] ice thickness distribution (ITD) theory, simulates 12-category FSD and ITD explicitly and jointly. A range of ice thickness and floe size observations were used for model calibration and validation. The model creates FSDs that generally obey a power law or upper truncated power law, as observed by satellites and aerial surveys. In this study, we will examine the role of ice fragmentation and lateral melting in altering FSDs in the Arctic MIZ. We will also investigate how changes in FSD impact the seasonal evolution of the MIZ by modifying the thermodynamic processes.
Facets of Arctic energy accumulation based on observations and reanalyses 2000-2015
NASA Astrophysics Data System (ADS)
Mayer, Michael; Haimberger, Leopold; Pietschnig, Marianne; Storto, Andrea
2016-10-01
Various observation- and reanalysis-based estimates of sea ice mass and ocean heat content trends imply that the energy imbalance of the Arctic climate system was similar [1.0 (0.9,1.2) Wm-2] to the global ocean average during the 2000-2015 period. Most of this extra heat warmed the ocean, and a comparatively small fraction went into sea ice melt. Poleward energy transports and radiation contributed to this energy increase at varying strengths. On a seasonal scale, stronger radiative energy input during summer associated with the ice-albedo feedback enhances seasonal oceanic heat uptake and sea ice melt. In return, lower sea ice extent and higher sea surface temperatures lead to enhanced heat release from the ocean during fall. This weakens meridional temperature gradients, consequently reducing atmospheric energy transports into the polar cap. The seasonal cycle of the Arctic energy budget is thus amplified, whereas the Arctic's long-term energy imbalance is close to the global mean.
Facets of Arctic energy accumulation based on observations and reanalyses 2000-2015.
Mayer, Michael; Haimberger, Leopold; Pietschnig, Marianne; Storto, Andrea
2016-10-16
Various observation- and reanalysis-based estimates of sea ice mass and ocean heat content trends imply that the energy imbalance of the Arctic climate system was similar [1.0 (0.9,1.2) Wm -2 ] to the global ocean average during the 2000-2015 period. Most of this extra heat warmed the ocean, and a comparatively small fraction went into sea ice melt. Poleward energy transports and radiation contributed to this energy increase at varying strengths. On a seasonal scale, stronger radiative energy input during summer associated with the ice-albedo feedback enhances seasonal oceanic heat uptake and sea ice melt. In return, lower sea ice extent and higher sea surface temperatures lead to enhanced heat release from the ocean during fall. This weakens meridional temperature gradients, consequently reducing atmospheric energy transports into the polar cap. The seasonal cycle of the Arctic energy budget is thus amplified, whereas the Arctic's long-term energy imbalance is close to the global mean.
MODIS Interactive Subsetting Tool (MIST)
NASA Astrophysics Data System (ADS)
McAllister, M.; Duerr, R.; Haran, T.; Khalsa, S. S.; Miller, D.
2008-12-01
In response to requests from the user community, NSIDC has teamed with the Oak Ridge National Laboratory Distributive Active Archive Center (ORNL DAAC) and the Moderate Resolution Data Center (MrDC) to provide time series subsets of satellite data covering stations in the Greenland Climate Network (GC-NET) and the International Arctic Systems for Observing the Atmosphere (IASOA) network. To serve these data NSIDC created the MODIS Interactive Subsetting Tool (MIST). MIST works with 7 km by 7 km subset time series of certain Version 5 (V005) MODIS products over GC-Net and IASOA stations. User- selected data are delivered in a text Comma Separated Value (CSV) file format. MIST also provides online analysis capabilities that include generating time series and scatter plots. Currently, MIST is a Beta prototype and NSIDC intends that user requests will drive future development of the tool. The intent of this poster is to introduce MIST to the MODIS data user audience and illustrate some of the online analysis capabilities.
Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice
Assmy, Philipp; Fernández-Méndez, Mar; Duarte, Pedro; Meyer, Amelie; Randelhoff, Achim; Mundy, Christopher J.; Olsen, Lasse M.; Kauko, Hanna M.; Bailey, Allison; Chierici, Melissa; Cohen, Lana; Doulgeris, Anthony P.; Ehn, Jens K.; Fransson, Agneta; Gerland, Sebastian; Hop, Haakon; Hudson, Stephen R.; Hughes, Nick; Itkin, Polona; Johnsen, Geir; King, Jennifer A.; Koch, Boris P.; Koenig, Zoe; Kwasniewski, Slawomir; Laney, Samuel R.; Nicolaus, Marcel; Pavlov, Alexey K.; Polashenski, Christopher M.; Provost, Christine; Rösel, Anja; Sandbu, Marthe; Spreen, Gunnar; Smedsrud, Lars H.; Sundfjord, Arild; Taskjelle, Torbjørn; Tatarek, Agnieszka; Wiktor, Jozef; Wagner, Penelope M.; Wold, Anette; Steen, Harald; Granskog, Mats A.
2017-01-01
The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean. PMID:28102329
Polar cloud observatory at Ny-Ålesund in GRENE Arctic Climate Change Research Project
NASA Astrophysics Data System (ADS)
Yamanouchi, Takashi; Takano, Toshiaki; Shiobara, Masataka; Okamoto, Hajime; Koike, Makoto; Ukita, Jinro
2016-04-01
Cloud is one of the main processes in the climate system and especially a large feed back agent for Arctic warming amplification (Yoshimori et al., 2014). From this reason, observation of polar cloud has been emphasized and 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard in 2013 as one of the basic infrastructure in the GRENE (Green Network of Excellence Program) Arctic Climate Change Research Project. The radar, "FALCON-A", is a FM-CW (frequency modulated continuous wave) Doppler radar, developed for Arctic use by Chiba University (PI: T. Takano) in 2012, following its prototype, "FALCON-1" which was developed in 2006 (Takano et al., 2010). The specifications of the radar are, central frequency: 94.84 GHz; antenna power: 1 W; observation height: up to 15 km; range resolution: 48 m; beam width: 0.2 degree (15 m at 5 km); Doppler width: 3.2 m/s; time interval: 10 sec, and capable of archiving high sensitivity and high spatial and time resolution. An FM-CW type radar realizes similar sensitivity with much smaller parabolic antennas separated 1.4 m from each other used for transmitting and receiving the wave. Polarized Micro-Pulse Lidar (PMPL, Sigma Space MPL-4B-IDS), which is capable to measure the backscatter and depolarization ratio, has also been deployed to Ny-Ålesund in March 2012, and now operated to perform collocated measurements with FALCON-A. Simultaneous measurement data from collocated PMPL and FALCON-A are available for synergetic analyses of cloud microphysics. Cloud mycrophysics, such as effective radius of ice particles and ice water content, are obtained from the analysis based on algorithm, which is modified for ground-based measurements from Okamoto's retrieval algorithm for satellite based cloud profiling radar and lidar (CloudSat and CALIPSO; Okamoto et al., 2010). Results of two years will be shown in the presentation. Calibration is a point to derive radar reflectivity (dBZ) from original intensity data. Degradation of transmission power was monitored and sensitivity of receiving system was derived with estimating antenna gain by using radio wave absorber and considering antenna geometry of two antenna system. In order to estimate final results, altitude dependent detection limit curve was also calculated. Original intensity data in real time and calibrated radar reflectivity data are archived on "Arctic Data archive System (ADS)". Other collocated observations were made with fog monitor (particle size distribution), MPS (particle image) for continuous measurements at Zeppelin Mountain, 450 m height a. s. l., and tethered balloon for intense observing period. From these measurements together with aerosol and meteorological monitoring made by collaborating institutes (Stockholm University, University of Florence, AWI, NILU, NCAR and NPI) microphysics of low level cloud and aerosol-cloud interactions are discussed. Ground based remote sensors provide a powerful validation for satellite cloud observations. Radar reflectivity (dBZ) by FALCON-A was compared with that by CPR on CloudSAT during several overpasses around Ny-Ålesund, and though some difference due to the different vertical resolution was seen, overall agreement was confirmed. We are planning to establish Ny-Ålesund observatory as the super site for validation for EarthCARE (JAXA-ESA) mission.
NASA Astrophysics Data System (ADS)
Coakley, Bernard; Edmonds, Henrietta N.; Frey, Karen; Gascard, Jean-Claude; Grebmeier, Jacqueline M.; Kassens, Heidemarie; Thiede, Jörn; Wegner, Carolyn
2007-07-01
A follow-up to the 2nd International Conference on Arctic Research Planning, 19-21 November 2007, Potsdam, Germany The Arctic Ocean is the missing piece for any global model. Records of processes at both long and short timescales will be necessary to predict the future evolution of the Arctic Ocean through what appears to be a period of rapid climate change. Ocean monitoring is impoverished without the long-timescale records available from paleoceanography and the boundary conditions that can be obtained from marine geology and geophysics. The past and the present are the key to our ability to predict the future.
NASA Astrophysics Data System (ADS)
Cao, Y.; Liang, S.
2017-12-01
Despite an apparent hiatus in global warming, the Arctic climate continues to experience unprecedented changes. Summer sea ice is retreating at an accelerated rate, and surface temperatures in this region are rising at a rate double that of the global average, a phenomenon known as Arctic amplification. Although a lot of efforts have been made, the causes this unprecedented phenomenon remain unclear and are subjects of considerable debate. In this study, we report strong observational evidence, for the first time from long-term (1984-2014) spatially complete satellite records, that increased cloudiness and atmospheric water vapor in winter and spring have caused an extraordinary downward longwave radiative flux to the ice surface, which may then amplify the Arctic wintertime ice-surface warming. In addition, we also provide observed evidence that it is quite likely the enhancement of the wintertime greenhouse effect caused by water vapor and cloudiness has advanced the time of onset of ice melting in mid-May through inhibiting sea-ice refreezing in the winter and accelerating the pre-melting process in the spring, and in turn triggered the positive sea-ice albedo feedback process and accelerated the sea ice melting in the summer.
NASA Astrophysics Data System (ADS)
McGillivary, P. A.; Borges de Sousa, J.; Wackowski, S.; Walker, G.
2011-12-01
Small remotely piloted aircraft have recently been used for maritime remote sensing, including launch and retrieval operations from land, ships and sea ice. Such aircraft can also function to collect and communicate data from other ocean observing system platforms including moorings, tagged animals, drifters, autonomous surface vessels (ASVs), and autonomous underwater vessels (AUVs). The use of small remotely piloted aircraft (or UASs, unmanned aerial systems) with a combination of these capabilities will be required to monitor the vast areas of the open ocean, as well as in harsh high-latitude ecosystems. Indeed, these aircraft are a key component of planned high latitude maritime domain awareness environmental data collection capabilities, including use of visible, IR and hyperspectral sensors, as well as lidar, meteorological sensors, and interferometric synthetic aperture radars (ISARs). We here first describe at-sea demonstrations of improved reliability and bandwidth of communications from ocean sensors on autonomous underwater vehicles to autonomous surface vessels, and then via remotely piloted aircraft to shore, ships and manned aircraft using Delay and Disruption Tolerant (DTN) communication protocols. DTN enables data exchange in communications-challenged environments, such as remote regions of the ocean including high latitudes where low satellite angles and auroral disturbances can be problematic. DTN provides a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources. This communications method enables aircraft and surface vessels to function as data mules to move data between physically disparate nodes. We provide examples of the uses of this communication protocol for environmental data collection and data distribution with a variety of different remotely piloted aircraft in a coastal ocean environment. Next, we highlight use in the arctic of two different small remotely piloted aircraft (ScanEagle and RAVEN) for remote sensing of ice and ocean conditions as well as surveys of marine mammals. Finally, we explain how these can be used in future networked environments with DTN support not only for the collection of ocean and ice data for maritime domain awareness, but also for monitoring oil spill dynamics in high latitude environments, including spills in and under sea ice. The networked operation of heterogeneous air and ocean vehicle systems using DTN communications methods can provide unprecedented levels of spatial-temporal sampling resolution important to improving arctic remote sensing and maritime domain awareness capabilities.
Monitoring arctic habitat and goose production by satellite imagery
Reeves, H.M.; Cooch, F.G.; Munro, R.E.
1976-01-01
Spacecraft imagery, especially from the National Atmospheric and Oceanic Administration's Improved TIROS (Television Infra-Red Observational Satellite) Operational Satellites, permits timely evaluations of snow and ice conditions encountered by arctic nesting geese. Imagery from the TIROS satellite for 5 wide]y scattered locations in arctic North America was obtained for three 3-day intervals in June 1973 and 1974. These pictures were used to expand fragmentary habitat data available from ground observations. Late disappearance of snow and ice may prevent or retard nesting effort and reproductive success. Our immediate aim is to recognize years of catastrophic or very good production; however, supporting information from ground studies, LANDSAT imagery, analyses of banding data, and studies of age ratios in popu]ations and harvests eventua
NASA Astrophysics Data System (ADS)
Mauritzen, C.; Hansen, E.; Andersson, M.; Berx, B.; Beszczynska-Möller, A.; Burud, I.; Christensen, K. H.; Debernard, J.; de Steur, L.; Dodd, P.; Gerland, S.; Godøy, Ø.; Hansen, B.; Hudson, S.; Høydalsvik, F.; Ingvaldsen, R.; Isachsen, P. E.; Kasajima, Y.; Koszalka, I.; Kovacs, K. M.; Køltzow, M.; LaCasce, J.; Lee, C. M.; Lavergne, T.; Lydersen, C.; Nicolaus, M.; Nilsen, F.; Nøst, O. A.; Orvik, K. A.; Reigstad, M.; Schyberg, H.; Seuthe, L.; Skagseth, Ø.; Skarðhamar, J.; Skogseth, R.; Sperrevik, A.; Svensen, C.; Søiland, H.; Teigen, S. H.; Tverberg, V.; Wexels Riser, C.
2011-07-01
During the 4th International Polar Year 2007-2009 (IPY), it has become increasingly obvious that we need to prepare for a new era in the Arctic. IPY occurred during the time of the largest retreat of Arctic sea ice since satellite observations started in 1979. This minimum in September sea ice coverage was accompanied by other signs of a changing Arctic, including the unexpectedly rapid transpolar drift of the Tara schooner, a general thinning of Arctic sea ice and a double-dip minimum of the Arctic Oscillation at the end of 2009. Thanks to the lucky timing of the IPY, those recent phenomena are well documented as they have been scrutinized by the international research community, taking advantage of the dedicated observing systems that were deployed during IPY. However, understanding changes in the Arctic System likely requires monitoring over decades, not years. Many IPY projects have contributed to the pilot phase of a future, sustained, observing system for the Arctic. We now know that many of the technical challenges can be overcome. The Norwegian projects iAOOS-Norway, POLEWARD and MEOP were significant ocean monitoring/research contributions during the IPY. A large variety of techniques were used in these programs, ranging from oceanographic cruises to animal-borne platforms, autonomous gliders, helicopter surveys, surface drifters and current meter arrays. Our research approach was interdisciplinary from the outset, merging ocean dynamics, hydrography, biology, sea ice studies, as well as forecasting. The datasets are tremendously rich, and they will surely yield numerous findings in the years to come. Here, we present a status report at the end of the official period for IPY. Highlights of the research include: a quantification of the Meridional Overturning Circulation in the Nordic Seas (“ the loop”) in thermal space, based on a set of up to 15-year-long series of current measurements; a detailed map of the surface circulation as well as characterization of eddy dispersion based on drifter data; transport monitoring of Atlantic Water using gliders; a view of the water mass exchanges in the Norwegian Atlantic Current from both Eulerian and Lagrangian data; an integrated physical-biological view of the ice-influenced ecosystem in the East Greenland Current, showing for instance nutrient-limited primary production as a consequence of decreasing ice cover for larger regions of the Arctic Ocean. Our sea ice studies show that the albedo of snow on ice is lower when snow cover is thinner and suggest that reductions in sea ice thickness, without changes in sea ice extent, will have a significant impact on the arctic atmosphere. We present up-to-date freshwater transport numbers for the East Greenland Current in the Fram Strait, as well as the first map of the annual cycle of freshwater layer thickness in the East Greenland Current along the east coast of Greenland, from data obtained by CTDs mounted on seals that traveled back and forth across the Nordic Seas. We have taken advantage of the real-time transmission of some of these platforms and demonstrate the use of ice-tethered profilers in validating satellite products of sea ice motion, as well as the use of Seagliders in validating ocean forecasts, and we present a sea ice drift product - significantly improved both in space and time - for use in operational ice-forecasting applications. We consider real-time acquisition of data from the ocean interior to be a vital component of a sustained Arctic Ocean Observing System, and we conclude by presenting an outline for an observing system for the European sector of the Arctic Ocean.
Sea ice roughness: the key for predicting Arctic summer ice albedo
NASA Astrophysics Data System (ADS)
Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.
2017-12-01
Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.
Observing Recent Changes in the Large-Scale Arctic Energy Budget
NASA Astrophysics Data System (ADS)
Porter, D. F.; Serreze, M.; Cassano, J.
2008-12-01
Changes in the large-scale energy budget of the Arctic are examined using a variety of next-generation reanalysis and observational data. An effort is made to construct a best-guess of the current arctic energy budget using a variety of atmospheric data. For the period of 2000-2005, monthly means from the Clouds and the Earth's Radiant Energy System (CERES) data represents the current most-reliable top of atmosphere radiation budget. The remaining components of the energy budget system in the arctic polar cap (defined as 70 degrees North latitude circle), comprising of the vertically-integrated storage and horizontal transports of energy, and net heat transfers between the atmosphere and the subsurface column, are diagnosed using the Japanese 25-year Reanalysis Project (JRA-25) and the NCEP/NCAR Reanalysis (NRA). The as then record-setting minimum sea-ice extent during the 2005 melt season is used as a marker of recent changes occurring in the arctic climate system. However, changes in each reanalysis differs than the satellite observations. In one example, when compared to the 2000-2005 climatology, CERES shows a shift in the peak TOA radiation from July to June in 2005, a change that is absent in the reanalyses and directly attributable to the early and pronounced albedo reduction. An earlier peak in TOA radiation can strongly modulate the flux energy convergence from lower latitudes through circulation changes. Here, the energy budget framework provides a simplified view of the pathway through which changes of key component parings occur.
A 15 year legacy of cloud and atmosphere observations in Barrow, Alaska
NASA Astrophysics Data System (ADS)
Shupe, M.
2012-12-01
For the past 15 years, the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program has operated the North Slope of Alaska (NSA) atmospheric observatory in Barrow, Alaska. Barrow offers many valuable perspectives on the Arctic environment that complement observations at lower latitudes. Unique features of the Arctic region include cold and dry atmospheric conditions, strong annual variability in sun light, a seasonally high-reflective surface, and persistent clouds that involve mixed-phase processes. ARM's ultimate objective with its flagship observatory at the northernmost point in U.S. territory is to provide measurements that can be used to improve the understanding of these atmospheric physical and radiative properties and processes such that they can be better represented in climate models. The NSA is the most detailed and long-lasting cloud-radiation-atmosphere observatory in the Arctic, providing continuous, sophisticated measurements of climate-relevant parameters. Instrument suites include active radars and lidars at various frequencies, passive radiometers monitoring radiation in microwave, infrared, visible and ultraviolet wavelengths, meteorological towers, and sounding systems. Together these measurements are used to characterize many of the important properties of clouds, aerosols, atmospheric radiation, dynamics, thermodynamics, and the surface. The coordinated nature of these measurements offers important multi-dimensional insight into many fundamental processes linking these different elements of the climate system. Moreover, the continuous operations of the facility support these observations over the full diurnal cycle and in all seasons of the year. This presentation will highlight a number of important studies and key findings that have been facilitated by the NSA observations during the first 15 years in operation. Some of these include: a thorough documentation of clouds, their occurrence frequency, phase, microphysical properties, and impacts on surface radiation; the indirect effect of aerosols on the surface longwave radiative effects of Arctic clouds; improved measurements of low amounts of atmospheric water vapor and their impacts on atmospheric radiation; dynamical and microphysical processes that are responsible for long-lived Arctic stratiform clouds; evaluation of satellite observations in extreme and observationally-difficult regimes; and assessment of model performance for models ranging from very high resolution to climate model simulations in the Arctic. The observational legacy at Barrow continues as ARM works to expand and enhance its impact. Plans are underway to install observational capabilities at a sister location in Oliktok Point to the east of Barrow, including enhanced capabilities of tethered balloon profiling and flying unmanned aerial vehicles over the adjacent Arctic Ocean. A new set of scanning cloud and precipitation radars have recently come online at Barrow that will allow for new insights on the spatial context of measurements at Barrow, including important information on the variability of atmospheric processes associated with the coastline. And lastly, there are many opportunities for the intensive observations at Barrow to inform important regional research on permafrost and sea-ice loss, while also serving as an unmatched, long-term record for evaluating atmospheric processes in regional and global climate models.
Sea Ice Summer Camp: Bringing Together Arctic Sea Ice Modelers and Observers
NASA Astrophysics Data System (ADS)
Perovich, D. K.; Holland, M. M.
2016-12-01
The Arctic sea ice has undergone dramatic change and numerical models project this to continue for the foreseeable future. Understanding the mechanisms behind sea ice loss and its consequences for the larger Arctic and global systems is of critical importance if we are to anticipate and plan for the future. One impediment to progress is a disconnect between the observational and modeling communities. A sea ice summer camp was held in Barrow Alaska from 26 May to 1 June 2016 to overcome this impediment and better integrate the sea ice community. The 25 participants were a mix of modelers and observers from 13 different institutions at career stages from graduate student to senior scientist. The summer camp provided an accelerated program on sea ice observations and models and also fostered future collaborative interdisciplinary activities. Each morning was spent in the classroom with a daily lecture on an aspect of modeling or remote sensing followed by practical exercises. Topics included using models to assess sensitivity, to test hypotheses and to explore sources of uncertainty in future Arctic sea ice loss. The afternoons were spent on the ice making observations. There were four observational activities; albedo observations, ice thickness measurements, ice coring and physical properties, and ice morphology surveys. The last field day consisted of a grand challenge where the group formulated a hypothesis, developed an observational and modeling strategy to test the hypothesis, and then integrated the observations and model results. The impacts of changing sea ice are being felt today in Barrow Alaska. We opened a dialog with Barrow community members to further understand these changes. This included an evening discussion with two Barrow sea ice experts and a community presentation of our work in a public lecture at the Inupiat Heritage Center.
An intercomparison of artificial intelligence approaches for polar scene identification
NASA Technical Reports Server (NTRS)
Tovinkere, V. R.; Penaloza, M.; Logar, A.; Lee, J.; Weger, R. C.; Berendes, T. A.; Welch, R. M.
1993-01-01
The following six different artificial-intelligence (AI) approaches to polar scene identification are examined: (1) a feed forward back propagation neural network, (2) a probabilistic neural network, (3) a hybrid neural network, (4) a 'don't care' feed forward perception model, (5) a 'don't care' feed forward back propagation neural network, and (6) a fuzzy logic based expert system. The ten classes into which six AVHRR local-coverage arctic scenes were classified were: water, solid sea ice, broken sea ice, snow-covered mountains, land, stratus over ice, stratus over water, cirrus over water, cumulus over water, and multilayer cloudiness. It was found that 'don't care' back propagation neural network produced the highest accuracies. This approach has also low CPU requirement.
NASA Astrophysics Data System (ADS)
Kamal, S.; Maslowski, W.; Roberts, A.; Osinski, R.; Cassano, J. J.; Seefeldt, M. W.
2017-12-01
The Regional Arctic system model has been developed and used to advance the current state of Arctic modeling and increase the skill of sea ice forecast. RASM is a fully coupled, limited-area model that includes the atmosphere, ocean, sea ice, land hydrology and runoff routing components and the flux coupler to exchange information among them. Boundary conditions are derived from NCEP Climate Forecasting System Reanalyses (CFSR) or Era Iterim (ERA-I) for hindcast simulations or from NCEP Coupled Forecast System Model version 2 (CFSv2) for seasonal forecasts. We have used RASM to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook (SIO) of the Sea Ice Prediction Network (SIPN). Each year, we produced three SIOs for the September minimum, initialized on June 1, July 1 and August 1. In 2016, predictions used a simple linear regression model to correct for systematic biases and included the mean September sea ice extent, the daily minimum and the week of the minimum. In 2017, we produced a 12-member ensemble on June 1 and July 1, and 28-member ensemble August 1. The predictions of September 2017 included the pan-Arctic and regional Alaskan sea ice extent, daily and monthly mean pan-Arctic maps of sea ice probability, concentration and thickness. No bias correction was applied to the 2017 forecasts. Finally, we will also discuss future plans for RASM forecasts, which include increased resolution for model components, ecosystem predictions with marine biogeochemistry extensions (mBGC) to the ocean and sea ice components, and feasibility of optional boundary conditions using the Navy Global Environmental Model (NAVGEM).
Design of Hybrid Mobile Communication Networks for Planetary Exploration
NASA Technical Reports Server (NTRS)
Alena, Richard L.; Ossenfort, John; Lee, Charles; Walker, Edward; Stone, Thom
2004-01-01
The Mobile Exploration System Project (MEX) at NASA Ames Research Center has been conducting studies into hybrid communication networks for future planetary missions. These networks consist of space-based communication assets connected to ground-based Internets and planetary surface-based mobile wireless networks. These hybrid mobile networks have been deployed in rugged field locations in the American desert and the Canadian arctic for support of science and simulation activities on at least six occasions. This work has been conducted over the past five years resulting in evolving architectural complexity, improved component characteristics and better analysis and test methods. A rich set of data and techniques have resulted from the development and field testing of the communication network during field expeditions such as the Haughton Mars Project and NASA Mobile Agents Project.
The Immediacy of Arctic Change
NASA Astrophysics Data System (ADS)
Overland, J. E.; Wang, M.; Soreide, N. N.
2015-12-01
Ongoing temperature changes in the Arctic are large relative to lower latitudes; a process known as Arctic Amplification. Arctic temperatures have increased at least 3 times the rate of mid-latitude temperatures relative to the late 20th century, due to multiple interacting feedbacks driven by modest global change. Even if global temperature increases are contained to +2° C by 2040, Arctic (North of 60° N) monthly mean temperatures in fall will increase by +5° C. The Arctic is very likely to be sea ice free during summer before 2040, with the sea ice free duration limited to <5 months. Snow cover will be absent in May and June on most land masses. Whether these changes impact mid-latitude weather events is complex and controversial, as the time period for observing such linkages is short [<10 years] and involves understanding direct forcing by Arctic changes on a chaotic climatic system. Although chaotic internal variability dominates the dynamics of atmospheric circulation, Arctic thermodynamic influences can reinforce regional weather patterns. Extreme Arctic temperature events, as a combination of mean temperature increases combined with natural variability, will become common, nearing and exceeding previous thresholds. Such an event as an analog for the future was the +4° C anomalies for Alaska in November-December 2014 related to recent warm Pacific sea surface temperatures. Thus for the next few decades out to 2040, continuing rapid environmental changes in the Arctic are very likely, despite any mitigation activities, and the appropriate response is to plan for adaptation to meet these mean and extreme event changes. Mitigation is essential to forestall further disasters in the second half of the century. It is important to note such future rapid Arctic amplification, and the potential for environmental surprises, to support those making planning decisions and encourage action.
NASA Astrophysics Data System (ADS)
Pozzoli, Luca; Dobricic, Srdan; Russo, Simone; Vignati, Elisabetta
2017-10-01
Winter warming and sea-ice retreat observed in the Arctic in the last decades may be related to changes of large-scale atmospheric circulation pattern, which may impact the transport of black carbon (BC) to the Arctic and its deposition on the sea ice, with possible feedbacks on the regional and global climate forcing. In this study we developed and applied a statistical algorithm, based on the maximum likelihood estimate approach, to determine how the changes of three large-scale weather patterns associated with increasing temperatures in winter and sea-ice retreat in the Arctic impact the transport of BC to the Arctic and its deposition. We found that two atmospheric patterns together determine a decreasing winter deposition trend of BC between 1980 and 2015 in the eastern Arctic while they increase BC deposition in the western Arctic. The increasing BC trend is mainly due to a pattern characterized by a high-pressure anomaly near Scandinavia favouring the transport in the lower troposphere of BC from Europe and North Atlantic directly into to the Arctic. Another pattern with a high-pressure anomaly over the Arctic and low-pressure anomaly over the North Atlantic Ocean has a smaller impact on BC deposition but determines an increasing BC atmospheric load over the entire Arctic Ocean with increasing BC concentrations in the upper troposphere. The results show that changes in atmospheric circulation due to polar atmospheric warming and reduced winter sea ice significantly impacted BC transport and deposition. The anthropogenic emission reductions applied in the last decades were, therefore, crucial to counterbalance the most likely trend of increasing BC pollution in the Arctic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S. -Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying
In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March-April. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric warming type versus a flat trend in stratospheric warming type. Given that tropospheric warming events occur twice as fast than the stratospheric warming type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated impact on the anomalously cold Siberia.« less
Jespersen, R Gus; Leffler, A Joshua; Oberbauer, Steven F; Welker, Jeffrey M
2018-06-28
Warming-linked woody shrub expansion in the Arctic has critical consequences for ecosystem processes and climate feedbacks. The snow-shrub interaction model has been widely implicated in observed Arctic shrub increases, yet equivocal experimental results regarding nutrient-related components of this model have highlighted the need for a consideration of the increased meltwater predicted in expanding shrub stands. We used a 22-year snow manipulation experiment to simultaneously address the unexplored role of snow meltwater in arctic plant ecophysiology and nutrient-related components of the snow-shrub hypothesis. We coupled measurements of leaf-level gas exchange and leaf tissue chemistry (%N and δ 13 C) with an analysis of stable isotopes (δ 18 O and δ 2 H) in soil water, precipitation, and stem water. In deeper snow areas photosynthesis, conductance, and leaf N increased and δ 13 C values decreased in the deciduous shrubs, Betula nana and Salix pulchra, and the graminoid, Eriophorum vaginatum, with the strongest treatment effects observed in deciduous shrubs, consistent with predictions of the snow-shrub hypothesis. We also found that deciduous shrubs, especially S. pulchra, obtained much of their water from snow melt early in the growing season (40-50%), more than either E. vaginatum or the evergreen shrub, Rhododendron tomentosum (Ledum palustre). This result provides the basis for adding a meltwater-focused feedback loop to the snow-shrub interaction model of shrub expansion in the Arctic. Our results highlight the critical role of winter snow in the ecophysiology of Arctic plants, particularly deciduous shrubs, and underline the importance of understanding how global warming will affect the Arctic winter snowpack.
NSF-supported education/outreach program takes young researchers to the Arctic
NASA Astrophysics Data System (ADS)
Alexeev, V. A.; Walsh, J. E.; Hock, R.; Repina, I.; Kaden, U.; Bartholomew, L.
2014-12-01
Today, more than ever, an integrated cross-disciplinary approach is necessary to explain changes in the Arctic and understand their implications for the human environment. Advanced training and active involvement of early-career scientists is an important component of this cross-disciplinary approach. This effort led by the International Arctic Research Center at the University of Alaska Fairbanks (UAF) started in 2003. The newly supported project in 2013 is planning four summer schools (one per year) focused on four themes in four different Arctic locations. It provides the participants with an interdisciplinary perspective on Arctic change and its impacts on diverse sectors of the North. It is linked to other ongoing long-term observational and educational programs (e.g. NABOS, Nansen and Amundsen Basins Observational System; LTER, Long Term Environmental Research) and targets young scientists by using the interdisciplinary and place-based setting to broaden their perspective on Arctic change and to enhance their communication skills. Each course for 15-20 people consists of classroom and hands-on components and work with a multidisciplinary group of mentors on projects devoted to themes exemplified by the location. An education/outreach specialist from the Miami Science Museum covers the activities and teaches students the important science communications skills. A specialist from the School of Education at UAF evaluates student's progress during the summer schools. Lessons learned during the 12 years of conducting summer schools, methods of attracting in-kind support and approaches to teaching students are prominently featured in this study. Activities during the two most recent schools, one conducted in the Arctic Ocean jointly with the 2013 NABOS expedition and another on an Alaskan glacier in 2014 is another focus of this work.
The Impact of Changing Cloud Cover on the High Arctic's Primary Cooling-to-space Windows
NASA Astrophysics Data System (ADS)
Mariani, Zen; Rowe, Penny; Strong, Kimberly; Walden, Von; Drummond, James
2014-05-01
In the Arctic, most of the infrared energy emitted by the surface escapes to space in two atmospheric windows at 10 and 20 μm. As the Arctic warms, the 20 μm cooling-to-space window becomes increasingly opaque (or "closed"), trapping more surface infrared radiation in the atmosphere, with implications for the Arctic's radiative energy balance. Since 2006, the Canadian Network for the Detection of Atmospheric Change (CANDAC) has measured downwelling infrared radiance with an Atmospheric Emitted Radiance Interferometer (AERI) at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Canada, providing the first long-term measurements of the 10 and 20 μm windows in the high Arctic. In this work, measurements of the distribution of downwelling 10 and 20 µm brightness temperatures at Eureka are separated based on cloud cover, providing a comparison to an existing climatology from the Southern Great Plains (SGP). Measurements of the downwelling radiance at both 10 and 20 μm exhibit strong seasonal variability as a result of changes in temperature and water vapour, in addition to variability with cloud cover. When separated by season, brightness temperatures in the 20 µm window are found to be independent of cloud thickness in the summertime, indicating that this window is closed in the summer. Radiance trends in three-month averages are positive and are significantly larger (factor > 5) than the trends detected at the SGP, indicating that changes in the downwelling radiance are accelerated in the high Arctic compared to lower latitudes. This statistically significant increase (> 5% / yr) in radiance at 10 μm occurs only when the 20 μm window is mostly transparent, or "open" (i.e., in all seasons except summer), and may have long-term consequences, particularly as warmer temperatures and increased water vapour "close" the dirty window for a prolonged period. These surface-based measurements of radiative forcing can be used to quantify changes in the high-Arctic energy budget and evaluate general circulation model simulations.
NSF-supported education/outreach program takes young researchers to the Arctic
NASA Astrophysics Data System (ADS)
Alexeev, V. A.; Walsh, J. E.; Hock, R.; Kaden, U.; Euskirchen, E. S.; Kholodov, A. L.; Bret-Harte, M. S.; Sparrow, E. B.
2015-12-01
Today, more than ever, an integrated cross-disciplinary approach is necessary to explain changes in the Arctic and understand their implications for the human environment. Advanced training and active involvement of early-career scientists is an important component of this cross-disciplinary approach. This effort led by the International Arctic Research Center at the University of Alaska Fairbanks (UAF) started in 2003. The newly supported project in 2013 is planning four summer schools (one per year) focused on four themes in four different Arctic locations. It provides the participants with an interdisciplinary perspective on Arctic change and its impacts on diverse sectors of the North. It is linked to other ongoing long-term observational and educational programs (e.g. NABOS, Nansen and Amundsen Basins Observational System; LTER, Long Term Environmental Research) and targets young scientists by using the interdisciplinary and place-based setting to broaden their perspective on Arctic change and to enhance their communication skills. Each course for 15-20 people consists of classroom and hands-on components and work with a multidisciplinary group of mentors on projects devoted to themes exemplified by the location. A specialist from the School of Education at UAF evaluates student's progress during the summer schools. Lessons learned during the 12 years of conducting summer schools, methods of attracting in-kind support and approaches to teaching students are prominently featured in this study. Activities during the most recent school, conducted in Fairbanks and LTER Toolik Lake Field Station in 2015 are the focus of this presentation.
NASA Astrophysics Data System (ADS)
Martin, Andrew C.; Jeffers, Elizabeth S.; Petrokofsky, Gillian; Myers-Smith, Isla; Macias-Fauria, Marc
2017-08-01
Woody shrubs have increased in biomass and expanded into new areas throughout the Pan-Arctic tundra biome in recent decades, which has been linked to a biome-wide observed increase in productivity. Experimental, observational, and socio-ecological research suggests that air temperature—and to a lesser degree precipitation—trends have been the predominant drivers of this change. However, a progressive decoupling of these drivers from Arctic vegetation productivity has been reported, and since 2010, vegetation productivity has also been declining. We created a protocol to (a) identify the suite of controls that may be operating on shrub growth and expansion, and (b) characterise the evidence base for controls on Arctic shrub growth and expansion. We found evidence for a suite of 23 proximal controls that operate directly on shrub growth and expansion; the evidence base focused predominantly on just four controls (air temperature, soil moisture, herbivory, and snow dynamics). 65% of evidence was generated in the warmest tundra climes, while 24% was from only one of 28 floristic sectors. Temporal limitations beyond 10 years existed for most controls, while the use of space-for-time approaches was high, with 14% of the evidence derived via experimental approaches. The findings suggest the current evidence base is not sufficiently robust or comprehensive at present to answer key questions of Pan-Arctic shrub change. We suggest future directions that could strengthen the evidence, and lead to an understanding of the key mechanisms driving changes in Arctic shrub environments.
Satellite Observed Changes in the Arctic
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Parkinson, Claire L.
2004-01-01
The Arctic is currently considered an area in transformation. Glaciers have been retreating, permafrost has been diminishing, snow covered areas have been decreasing, and sea ice and ice sheets have been thinning. This paper provides an overview of the unique role that satellite sensors have contributed in the detection of changes in the Arctic and demonstrates that many of the changes are not just local but a pan-Arctic phenomenon. Changes from the upper atmosphere to the surface are discussed and it is apparent that the magnitude of the trends tends to vary from region to region and from season to season. Previous reports of a warming Arctic and a retreating perennial ice cover have also been updated, and results show that changes are ongoing. Feedback effects that can lead to amplification of the signals and the role of satellite data in enhancing global circulation models are also discussed.
Enhanced sea-ice export from the Arctic during the Younger Dryas.
Not, Christelle; Hillaire-Marcel, Claude
2012-01-31
The Younger Dryas cold spell of the last deglaciation and related slowing of the Atlantic meridional overturning circulation have been linked to a large array of processes, notably an influx of fresh water into the North Atlantic related to partial drainage of glacial Lake Agassiz. Here we observe a major drainage event, in marine sediment cores raised from the Lomonosov Ridge, in the central Arctic Ocean marked by a pulse in detrital dolomitic-limestones. This points to an Arctic-Canadian sediment source area with about fivefold higher Younger Dryas ice-rafting deposition rate, in comparison with the Holocene. Our findings thus support the hypothesis of a glacial drainage event in the Canadian Arctic area, at the onset of the Younger Dryas, enhancing sea-ice production and drifting through the Arctic, then export through Fram Strait, towards Atlantic meridional overturning circulation sites of the northern North Atlantic.
Future sea ice conditions and weather forecasts in the Arctic: Implications for Arctic shipping.
Gascard, Jean-Claude; Riemann-Campe, Kathrin; Gerdes, Rüdiger; Schyberg, Harald; Randriamampianina, Roger; Karcher, Michael; Zhang, Jinlun; Rafizadeh, Mehrad
2017-12-01
The ability to forecast sea ice (both extent and thickness) and weather conditions are the major factors when it comes to safe marine transportation in the Arctic Ocean. This paper presents findings focusing on sea ice and weather prediction in the Arctic Ocean for navigation purposes, in particular along the Northeast Passage. Based on comparison with the observed sea ice concentrations for validation, the best performing Earth system models from the Intergovernmental Panel on Climate Change (IPCC) program (CMIP5-Coupled Model Intercomparison Project phase 5) were selected to provide ranges of potential future sea ice conditions. Our results showed that, despite a general tendency toward less sea ice cover in summer, internal variability will still be large and shipping along the Northeast Passage might still be hampered by sea ice blocking narrow passages. This will make sea ice forecasts on shorter time and space scales and Arctic weather prediction even more important.
Potential impacts of shipping noise on marine mammals in the western Canadian Arctic.
Halliday, William D; Insley, Stephen J; Hilliard, R Casey; de Jong, Tyler; Pine, Matthew K
2017-10-15
As the Arctic warms and sea ice decreases, increased shipping will lead to higher ambient noise levels in the Arctic Ocean. Arctic marine mammals are vulnerable to increased noise because they use sound to survive and likely evolved in a relatively quiet soundscape. We model vessel noise propagation in the proposed western Canadian Arctic shipping corridor in order to examine impacts on marine mammals and marine protected areas (MPAs). Our model predicts that loud vessels are audible underwater when >100km away, could affect marine mammal behaviour when within 2km for icebreakers vessels, and as far as 52km for tankers. This vessel noise could have substantial impacts on marine mammals during migration and in MPAs. We suggest that locating the corridor farther north, use of marine mammal observers on vessels, and the reduction of vessel speed would help to reduce this impact. Copyright © 2017 Elsevier Ltd. All rights reserved.